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ABSTRACT 

Seasonal thaw depth beneath arctic streams significantly impacts physical and 

biological processes within arctic stream environments.  The impact of greater seasonal 

thaw for extended periods of time can alter ecosystems that have, in the past, resulted 

from more prevalent permafrost environments.  Effects of climatic change on arctic 

stream environments necessitate the need for more information on characteristics of 

seasonal thaw and processes that occur within the thawed layer.  Multiple ground-

penetrating radar (GPR) methods and one-dimensional (1D) thermal modeling were used 

to investigate seasonal thaw beneath arctic streams and determine the dominant thermal 

process. 

Study sites were selected to include stream reaches that span a range of 

geomorphologic conditions in rivers and streams on Alaska’s North Slope.  Results from 

seasonal time-lapse common-offset GPR transects, gathered throughout the summer 

season of 2004, illustrated that low-energy stream environments react slowly to seasonal 

solar input and maintain thaw thicknesses longer throughout the late season.  Thaw 

depths beneath high-energy streams respond quickly in the beginning of the season and 

appear to decrease just as quickly over the late season period. 

Continuous multi-offset (CMO) GPR method improves the quality of subsurface 

images through stacking and velocity filtering and provides measurements of vertical and 

lateral velocity distributions.  Detailed velocities were estimated from CMO transects, 
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gathered in August 2005, using reflection tomography processing methods.  Resulting 

velocity tomograms were then used to estimate water content and porosity using the Topp 

equation.  Porosity estimates were then used to help constrain a 1D finite-difference 

thermal model.  

Within the high-energy stream environments three-dimensional (3D) GPR data 

illustrate greater thaw depths beneath riffle and gravel bar features relative to the 

neighboring pool features.  Due to differences in thermal properties the low-energy 

stream sites indicate the opposite: greater thaw depths beneath pools and thinner thaws 

beneath the connecting runs.  Results provide detailed 3D geometry of active layer thaw 

depths that can greatly improve hydrological studies seeking to quantify transport and 

biogeochemical processes that occur within the hyporheic zone. 

Using the finite-difference approach a 1D heat transport model with phase change 

was developed to estimate seasonal temperatures beneath two arctic streams to determine 

the dominant thermal process occurring beneath the stream sites.  The model was driven 

by stream water or near-surface temperature data recorded at select stream sites near 

Toolik Field Station, AK, for the summer months of 2004 and 2005.  Model temperatures 

were calibrated to measured temperatures at corresponding depths and evaluated against 

interpreted thaw depths from cross-sectional GPR images gathered over the 2004 summer 

season.  Results are in reasonable agreement with observed temperatures and GPR thaw 

depth estimates and imply thaw processes dominated by thermal conduction.  

Discrepancies between model and observed values are likely due to homogenous soil 
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property assumptions, oversimplified convection influence assumptions, and deviations 

from the 1D model. 
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PREFACE 

The individual chapters within this dissertation were prepared with the intent to 

eventually publish the material from each chapter in the peer-reviewed literature.  The 

chapters are essentially stand-alone manuscripts with references made to material in other 

chapters when appropriate. The material presented adheres to a common theme of 

characterizing active layer thaw beneath arctic streams using ground-penetrating radar 

and thermal modeling methodologies. The introductory discussion (Chapter 1) describes 

the general layout of the dissertation and how each individual chapter is tied into the 

central theme of the dissertation. 

 

 



 

 

1

1 INTRODUCTION 

A century long warming trend in the Alaskan arctic [Lachenbruch et al., 1982; 

Lachenbruch and Marchall, 1986] has caused permafrost warming, and in some areas, 

thawing [Osterkamp, 1995; Osterkamp and Romanovsky, 1999; Osterkamp et al., 2000; 

Zhang and Osterkamp, 1993].  The impact of warming permafrost can significantly alter 

ecosystems that have relied on permafrost as a foundation [Jorgenson et al., 2000].  

Future assessment of warming permafrost and active layer thaw on ecosystems requires 

an improved understanding and characterization of these processes within specific 

environmental settings.  This study presents methodologies that characterize the active 

layer thaw beneath arctic stream environments through multiple ground-penetrating radar 

(GPR) methods and numerical one-dimensional (1D) thermal modeling providing 

significant information about the subsurface architecture which can aid hydrological and 

biological studies within arctic stream environments.  Knowledge of the active layer is 

particularly important in the arctic where the seasonal thaw may limit subsurface flow 

and biogeochemical cycling within stream ecosystems. 

Numerous studies have characterized active layer thaw and permafrost features of 

arctic terrestrial environments through the use of common-offset GPR methods [Annan 

and Davis, 1976; Arcone and Delaney, 1982; Arcone et al., 1993; Arcone et al., 1998b; 

Arcone and Delaney, 2003; Delaney et al., 1990; Doolittle et al., 1990; Doolittle et al., 

1992; Hinkel et al., 2001].  Other studies have utilized temperature measurements and
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modeling of the thermal processes to characterize the active layer and warming 

permafrost [Kane et al., 1991; Lachenbruch et al., 1982; Osterkamp and Romanovsky, 

1996; 1997; Romanovsky and Osterkamp, 1995; 2000; Woo and Xia, 1996; Zhang et al., 

1996; Zhang and Stamnes, 1998].  Few studies have extended these methodologies to 

characterize active layer thaw and its interaction with subsurface water flow beneath 

arctic stream environments [Arcone et al., 1992; Arcone et al., 1998a; Best et al., 2005; 

Bradford et al., 2005; Delaney et al., 1990; Schwamborn et al., 2002] and fewer still have 

used non-invasive geophysical results to inform and validate thermal models.   

The movement of stream water flowing into the near sub-surface and returning to 

the stream channel is known as hyporheic exchange flow.  The spatial extent of this 

exchange defines the hyporheic zone (Figure 1.1).  Hyporheic exchange processes have a 

significant effect on biogeochemical cycling within stream ecosystems [Gooseff et al., 

2002; Jones et al., 1995; Mulholland et al., 1997].  These processes have been studied in 

temperate stream systems [Arntzen et al., 2006; Harvey and Bencala, 1993; Hill et al., 

1998; Kasahara and Wondzell, 2003; Vervier et al., 1993; Wondzell and Swanson, 1999; 

Wroblicky et al., 1998] and, to a lesser extent, in arctic stream environments [Edwardson 

et al., 2003; Greenwald et al., 2008; Zarnetske et al., 2007; Zarnetske et al., 2008].  

Hydrological and biological studies of hyporheic flow typically involve point 

measurements through piezometer installation which provides an inadequate 

understanding of the subsurface architecture.  A critical component to these studies 

includes knowledge of the 3D distribution of the depth of thaw through time. 
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Figure 1.1. The extent of the hyporheic zone is defined as the area where channel water 
and subsurface water mix.  In arctic streams the hyporheic zone exists within the seasonal 
thaw layer, defined as the thaw bulb beneath the streams [Greenwald et al., 2008]. 

Geophysical methods present opportunities to collect many times more data, non-

invasively, and in a shorter amount of time.  The use of geophysical methodologies to 

characterize problems in other scientific disciplines has increased, however this area of 

interdisciplinary collaboration is still in its infancy.  Immense opportunities for further 

advancements exist.   

The following chapters document GPR methodologies and results from time-lapse, 

multi-offset, and 3D imaging used to characterize the active layer beneath arctic stream 

sites (Figure 1.2).  GPR results were used to inform and validate thermal models with the 

intent to determine the dominant thermal process that controls the development of the 

active layer.  While each of the GPR methods presented in these studies are not new, in 

of themselves, their application to study and characterize the development of the active 

layer thaw and hyporheic flow beneath arctic streams is unique and original.       
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Figure 1.2. Locations of all study sites.  Note the different survey methods which varied 
by site. 
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1.1 Time-Lapse Ground-Penetrating Radar 

Geophysical time-lapse studies can provide an immense amount of information on 

subsurface conditions.  Advances in collection and processing methods have significantly 

improved the feasibility of time-lapse experiments with numerous successes, illustrating 

an increased understanding of subsurface processes through these monitoring methods 

[Lane et al., 2006; Lumley, 2001; MacBeth et al., 2006; Miller et al., 2008].  One distinct 

advantage of a time-lapse investigation is the collection of multiple datasets, compared to 

the usual single snapshot image.  Differences between images provide information about 

subsurface processes and property interactions. 

Chapter 2 presents a common-offset GPR time-lapse study conducted at five stream 

sites on the North Slope of Alaska and has been published in Permafrost and Periglacial 

Processes [Brosten et al., 2006].  The purpose of the study was to provide a time series of 

the evolution of the active layer thaw under peat-bed and alluvial stream types over open 

waters during the summer season of 2004.  GPR transects were acquired weekly during 

the first summer month, June, and then on a monthly basis until September.  Time-lapse 

images proved to be advantageous where a distinct moving boundary, noted from image 

to image, is interpreted as the active layer/permafrost reflection, rather than 

misinterpreting water bottom multiples as the thaw front.    

1.2 Multi-Offset Ground-Penetrating Radar 

Conventional GPR surveys are mostly acquired with a constant transmitter-receiver 

offset.  EM velocities for the GPR images are estimated by one of three methods: 
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1. Radar reflectors are directly correlated with significant boundaries identified in 

the borehole data.  Drawbacks include misinterpretation, limited lateral 

resolution, and the expense of deploying a destructive method.   

2. Moveout of scattering diffractions within the data image can be used to 

estimate velocities.  However, diffractions are not always present and when 

they are, their distribution determines the limits of the lateral and vertical 

velocity estimates. 

3. Lastly, sparsely located common-midpoint (CMP) soundings are gathered 

(perhaps at one or two points) along the survey line and then normal moveout 

(NMO) analysis is used to estimate root-mean-square (rms) velocity 

distribution.  Next, Dix inversion computes interval velocities from the rms 

velocities [Dix, 1955].  Drawbacks to the latter method include limited lateral 

velocity control and errors associated with NMO assumptions which include 

planar flat reflections and small velocity gradients [Al-Chalabi, 1973; Al-

Chalabi, 1974; Yilmaz, 2001]. 

Several studies show significantly improved images when an entire GPR survey is 

acquired with CMP geometry [Bradford, 2003; 2004; Bradford, 2006; Bradford and 

Deeds, 2006; Deeds and Bradford, 2002; Fisher et al., 1992; Greaves et al., 1996; 

Liberty and Pelton, 1994; Pipan et al., 1999; Pipan et al., 2003].  With CMP acquisition, 

multi-trace reflection seismic processing methods can be applied for accurate depth 

imaging from laterally and vertically continuous GPR velocity measurements.  An 
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additional advantage of CMP data includes improved suppression of coherent and 

random noise. 

Chapter 3 illustrates continuous multi-offset (CMO) GPR methods used to obtain 

spatially distributed porosity estimates in the substream environment.  Results are utilized 

to image the hyporheic zone and subsurface porosity from transects collected in August 

2005, across four arctic streams north of the Brooks Range, AK, and one transect 

gathered on September, 2007, across a temperate stream site within the Sawtooth 

Mountains near Boise, ID.  The objective of this study was to accurately image GPR 

velocity structure, then use these measurements to estimate porosity estimates using the 

petrophysical relationship defined by the Topp equation [Topp et al., 1980].  This 

information will provide input to future hyporheic flow and heat flow models to better 

understand hyporheic zone processes. 

1.3 3D Ground-Penetrating Radar 

Advances in data processing software and data acquisition instruments have 

enabled research methods to expand to three-dimensional (3D) data collection and 

analysis for a more complete characterization of subsurface structures.  3D GPR has been 

used in multiple research areas including archaeology [Grasmueck et al., 2004; 

Leckebush, 2003; Leucci and Negri, 2006; Negri and Leucci, 2006], geology [Asprion 

and Aigner, 1999; Beres et al., 1995; Guidry et al., 2007; Kostic and Aigner, 2007], 

hydrology [Bradford and Wu, 2007; Bradford, 2008; Kruse et al., 2006], and geological 

engineering applications [Anderson et al., 2007; Grasmueck, 1996]; however the benefits 
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provided by 3D GPR to map near-surface structures in permafrost environments has not, 

as of yet, been fully exploited.  One recent investigation took advantage of the dielectric 

contrast between ice wedges and the surrounding material using 3D GPR to interpret the 

3D geometry of ice-wedge polygons on the Arctic Coastal Plain of northern Alaska 

[Munroe et al., 2007].   

2D groundwater flow modeling efforts [Zarnetske et al., 2008] found that 

hyporheic exchange, within arctic streams, occurs up to a threshold depth primarily 

determined by hydraulic head gradients established by the stream morphology.  

Hyporheic studies seeking to quantify water storage and biogeochemical processes could 

be greatly improved with the addition of a more complete characterization of the active 

layer geometry provided by a 3D GPR survey. 

Chapter 4 presents 3D GPR data collection methodology applied to acquire a 

volume dataset in August 2005, at three stream sites within the Kuparuk watershed on the 

North Slope, AK.  This chapter expands on knowledge obtained from previous studies on 

arctic stream characterization [Bradford et al., 2005; Brosten et al., 2006] using 3D GPR 

to provide detailed variations of the seasonal thaw depth within changes in local 

streambed features.  Results can be used to improve groundwater flow and particle 

tracking models seeking to quantify hyporheic exchange processes within arctic streams. 

1.4 Thermal Modeling 

Thermal modeling has been used extensively to visualize past climate changes 

[Lachenbruch et al., 1982; Lachenbruch and Marchall, 1986] and evaluate and predict 
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future climate trends [Kane et al., 1991].  Additional investigations have studied the 

effects of snow cover on the thermal regime of the active layer and permafrost within 

terrestrial environments [Goodrich, 1982; Zhang et al., 1996; Zhang and Stamnes, 1998].  

Few studies have employed non-invasive surface geophysical methods to inform thermal 

models.  Specifically, amounts of unfrozen water content within the active layer, 

provided by multi-offset GPR transects, can significantly improve thermal model results 

where models not accounting for effects from unfrozen water will produce large errors 

[Riseborough, 2002; Romanovsky and Osterkamp, 2000].         

There are also a limited number of published investigations of thermal processes 

beneath arctic streams.  Thermal modeling can provide valuable insight on the dominant 

affects from thermal conduction and advective processes on the development and 

expansion of the active layer and its affects on hyporheic processes.  Wankiewicz [1982] 

studied thermal processes of a river talik beneath two arctic rivers through modeling 

measured subsurface temperatures in April, August, and November 1977-1978.  

Wankiewicz [1982] concluded conduction as the dominated heat transfer process at one 

site while macrodispersion of heat from ground water flow was the dominate process at 

the second site.   

Chapter 5 illustrates a 1D heat transport model, with phase change developed to 

predict summer month temperatures beneath three stream sites on the North Slope, AK. 

Observed stream water temperatures or near-surface temperatures were used to drive the 

model to predict active layer seasonal thaw from early June to mid October 2004 and 

mid-May to mid-October 2005.  Multi-offset GPR transects helped inform the models 
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with volumetric water content estimates.  Additionally, seasonal time-lapse GPR 

transects, gathered in 2004, are compared to modeled thaw depth estimates for validation. 
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2 PROFILES OF TEMPROAL THAW DEPTHS BENEATH TWO ARCTIC 

STREAM TYPES USING GROUND-PENETRATING RADAR 

2.1 Abstract 

Thaw depths beneath arctic streams may have significant impact on the seasonal 

development of hyporheic zone hydraulics.  To investigate thaw progression over the 

2004 summer season we acquired a series of GPR profiles at nine sites from May - 

September, using 100, 200, and 400 MHz antennas.  We selected sites with the objective 

of including stream reaches that span a range of geomorphologic conditions on Alaska’s 

North Slope.  Permafrost depths interpreted from GPR data were constrained by both 

recorded subsurface temperature profiles and by pressing a metal probe through the 

active layer to the point of refusal where the active layer is defined as the seasonal thaw 

layer that resides on top of the permafrost.  We found that low-energy stream 

environments react much more slowly to seasonal solar input and maintain thaw 

thicknesses longer throughout the late season whereas thaw depths increase rapidly 

within high-energy streams at the beginning of the season and decreased over the late 

season period.   

2.2 Introduction 

Streams on the North Slope of Alaska can be broadly classified as peat or alluvial. 

This streambed condition can be considered a geomorphologic property of the stream.
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Several studies have shown that stream geomorphology can have strong controls on 

hyporheic flow paths [Harvey and Bencala, 1993; Kasahara and Wondzell, 2003; 

Morrice et al., 1997; Wroblicky et al., 1998].  In streams underlain by permafrost, 

hyporheic flow is the movement of water from the channel into the active layer and back.  

For the purpose of this paper the thaw bulb is defined as the active layer area directly 

beneath streambed channels, whereas more common usage defines it as the thawed zone 

under or surrounding a man-made structure placed on or in permafrost [Everdingen, 

2005]. Thus, hyporheic flow carries heat into the bed sediments and, as a result, controls 

the depth of thaw, setting up a feedback loop between stream geomorphology, hyporheic 

flow, and depth of thaw. To understand how streambed morphologies control thaw bulb 

expansion, which, in turn, affects hyporheic processes, it is important to understand the 

temporal evolution of the thaw bulb in streams with different morphologies.   

Arcone et al. [1992; 1998a] successfully illustrated ground-penetrating radar (GPR) 

capabilities to profile groundwater and taliks, subsurface pockets that remain unfrozen 

year around, beneath frozen stream channels on the Sagavanirktok flood plain.  Bradford 

et al. [2005] showed that it is possible to measure the depth of thaw under peat-bed 

streams across open water in August 2003 using GPR. These previous studies were 

limited in scope in that they provided either early season measurements within a frozen 

alluvial steam environment or one measurement in time within a peat-bed stream. The 

purpose of the current study is to provide a time series of the evolution of the thaw bulb 

under peat-bed and alluvial stream types over open waters during the summer season.  
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This purpose is also in direct support of ongoing studies by the authors investigating 

hyporheic dynamics in arctic streams [Zarnetske et al., 2007]. 

2.3 Field Sites  

The Kuparuk watershed is underlain by continuous permafrost with thickness 

ranging from 250 m near the foothills to over 600 m near the coast [Osterkamp and 

Payne, 1981].  Temperatures at 150 cm deep range between –9 °C to 3 °C, averaging –1 

°C annually where the active layer thaws to depths of over 150 cm in the terrestrial soils 

during the summer seasons and begins to re-freeze in mid-September.  Annual air 

temperatures range from –40 °C to 21 °C and averaged  –8 °C for 2004 [LTER, 2004].   

Study sites, located in the Kuparuk watershed (Figure 2.1) were selected to include 

stream reaches that spanned a range of geomorphologic conditions in rivers and streams 

on Alaska’s North Slope.  The streams were divided into two categories: 1) low-energy 

water flow with organic material lining the streambeds (peat streams) or 2) high-energy 

water flow with cobble to gravel material lining the streambeds (alluvial streams).  
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Figure 2.1. Locations of the five study sites within the Kuparuk watershed. 

The Peat Inlet (PI) and Green Cabin (GC) sites represent the low-energy water flow 

environment and are described as beaded streams (deep pools connected by shallow, 

narrow channels).  The GC stream reach is the stream right channel entering a confluence 

located upstream of Green Cabin Lake and is characterized by two large pools connected 

by a shallow channel.  The upstream pool has a peat-lined stream bottom while the 
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second, downstream pool, is gravel-lined along the streambed.  Radar profiles were 

collected across the middle of both pools and across the connecting channels upstream 

and downstream of each pool.  To represent results at this site and avoid redundancy, 

only two of the five profile lines will be discussed (Table 2.1).   

Table 2.1. Site Names with Stream Morphology and GPR Profile Descriptions. 

 

The PI stream reach flows into Toolik Lake and is characterized by large, deep 

pools (12 m wide, 2.5 m deep) connected by relatively deep channels.  Radar profiles 

were collected across one of the deeply incised connecting channels in the same location 

where Bradford et al. [2005] collected radar profiles in August 2004 (Table 2.1).   
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I-8 stream is in close proximity to the PI site and also flows into Toolik Lake.  It, 

however, represents the high-energy flow environment.  The I-8 Inlet site represents a run 

section of the stream and (8I) is located upstream of I-8 lake.  The next site, I-8 Outlet 

(8O), is located downstream of I-8 Lake, where radar profile were acquired across a pool 

and riffle section of the stream (Table 2.1).   

Oksrukuyik Creek (OC), located just upstream of the Dalton Highway crossing, is a 

hybrid of the two previous categories.  The stream reach is described as beaded and is 

characterized by a series of incised large pools connected by relatively fast moving, 

shallow channels; however, the streambed bottom along the entire reach is lined with 

gravel-to-cobble sized rocks rather than organic matter which indicates intermittent high-

energy flow events.  Radar profiles were gathered across one of the pools and across the 

upstream and downstream connectors of the same pool.  Results from this site will focus 

on the images collected over the pool (Table 2.1).    

2.4 Methods 

GPR data were collected at the five sites from May - September 2004.  Profiles 

were gathered on a weekly to monthly basis to measure changes in the thaw bulb 

thickness over the summer season and evaluate the effectiveness of GPR within the 

varying environments.  In addition, we recorded channel and thaw bulb temperatures 

using thermocouples placed at varying substream depths within two of the five GPR data 

collection sites (PI and 8I) to help constrain and verify GPR interpretation.   
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2.4.1  Ground-Penetrating Radar (GPR) 

GPR is a non-invasive method used to explore the shallow subsurface with 

electromagnetic waves.  The transmitting antenna creates a pulsed electric field which 

propagates into the subsurface and is reflected where abrupt changes in electrical 

properties occur across interfaces.  The receiving antenna records a trace of the reflected 

wave field in time. Multiple measurements are made along the surface, producing a 

cross-sectional reflection profile image of electric impedance contrasts in the subsurface 

[Davis and Annan, 1989]. 

There is a large electrical contrast between water and ice.  Using the time 

dependence equation given by Olhoeft [1981] the dielectric constant for water, at 0 ºC, is 

87-88 and 3.2 for ice [Davis and Annan, 1989].  Consequently, as water freezes within 

the subsurface, the dielectric permittivity (a measure of molecular polarizability of the 

wet sediments) decreases while the velocity of propagation increases [Scott et al., 1990].  

Because GPR reflections primarily result from contrasts in electric permittivity, GPR is 

an ideal tool for mapping the saturated soils/permafrost boundary.  Numerous studies 

have shown that GPR has been used successfully to detect spatial and temporal variations 

in the permafrost boundaries within terrestrial soils [Arcone et al., 1998b; Doolittle et al., 

1990; Doolittle et al., 1992; Hinkel et al., 2001; Pilon et al., 1985; Wong et al., 1977].   

Problems that arise while collecting substream radar images include attenuation of 

signal due to the strong frequency dependence of radar wave velocity and image 

distortion due to velocity contrasts.  High frequencies travel faster and attenuate more 

quickly in water, which causes the dominant frequency to shift towards the lower end of 
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the spectrum, resulting in lower resolution potential.  For the data presented here, 

frequency decreases due to loading and frequency-dependent attenuation are significant 

and measurable such that attenuation through water lowers the frequency in 200 and 100 

MHz data to ~120 and ~70 MHz, respectively [Bradford et al., 2005].  Stream water 

discharge and temperature variations can increase the dissolved solid concentration levels 

in the water, which causes higher conductivities and results in greater attenuation rates 

and even lower resolution potential [Bradford et al., 2005].  Water conductivity values at 

the study sites were very low (~40 μS/cm), with no apparent seasonal variation, therefore 

their effects on the data are negligible.  Additionally, image distortion occurs where 

reflections are pushed down due to large velocity contrasts between water and saturated 

soils.  Depth migration with the right velocities corrects for the distortion by placing the 

reflectors in their proper spatial location.  Despite these limitations, several studies have 

successfully demonstrated high-resolution water bottom images over cold-region 

freshwater bodies [Arcone et al., 1992; Arcone et al., 1998a; Best et al., 2005; Delaney et 

al., 1990; Schwamborn et al., 2002].  

GPR resolution is limited by wavelength which is related to velocity, v, and 

frequency, f, through the relation λ=v/f.  This relationship shows that higher frequencies 

result in smaller wavelengths which are capable of resolving finer features; however, 

higher frequencies also attenuate more quickly, therefore decreasing the depth of 

investigation; thus a tradeoff exists between depth of investigation and resolution 

potential.  For this study, the wavelength relationship to velocity works in our favor 
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because the velocity within the water-saturated thaw bulb region is lower than in the 

permafrost region, leading to greater resolution potential within the area of interest.   

Data were acquired using a Sensors and Software pulsed radar system with a high-

power transmitter (1000V) used for all antenna frequencies.  Early in the field season we 

used the 400 and 200 MHz antennas to maximize resolution potential, and then shifted to 

the 200 and 100 MHz antennas later in the summer season to increase the depth of 

penetration. We placed the radar antennas in the bottom of a small rubber boat, then 

pulled the boat across the bank and through the stream while collecting radar traces at a 

constant distance interval via a string odometer system.  Stakes were placed at the start 

and end points where the profile lines were collected so that the GPR lines were collected 

at the same locations throughout the season.  Despite the location control, differences are 

apparent in some of the stream profiles due to variations in stream water discharge. 

In addition, depth to the thaw front (freeze/thaw interface) was measured on the 

stream banks and shallow streambed areas by pressing a metal probe into the ground to 

the point of refusal.  At 8I and PI, subsurface temperature profiles were used to constrain 

GPR interpretations with the assumption that the depth at which the temperature is 0 ºC is 

the boundary between the active layer and the permafrost.   

We applied the following processing flow to each dataset:  

1. Time zero correction with first break correlation to remove start of record delay 

and system drift. 
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2. DC shift and bandpass filtering with a 25-50-400-800 (for the 200 MHz) and a 

12-25-200-400 (for the 100 MHz) Ormsby filter to attenuate the low frequency 

transient and high frequency random noise. 

3. Amplitude correction which varied by site.   

4. Kirchhoff depth migration coupled with iterative velocity model refinement 

[Yilmaz, 2001]. 

Because we were interested in thaw bulb depths, our velocity models only included 

values for water and the water saturated substrate material.  A velocity value of 0.032 m 

ns-1 was used for water at 0 oC, and a velocity value of 0.05 m ns-1 was used for saturated 

peat material based on results reported by Bradford et al. [2005] and was also within 

range of values reported in other studies [Davis and Annan, 1989; Moorman et al., 2003].  

From the migration velocity analysis (using a velocity value of 0.07 m ns-1 for the 

saturated gravel/sand material) we collapsed the diffractions and minimized migration 

artifacts.  

High amplitude water bottom and permafrost multiples, and diffraction patterns 

caused by out-of-plane point sources within the gravel-lined stream site profiles 

presented interpretation challenges.  Time lapse images helped identify the thaw front 

despite the presence of multiples or diffraction patterns.  Additionally, due to radar 

resolution limitations, temperature data profiles significantly improved our ability to 

interpret the permafrost boundary in early season radar images. 
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2.4.2  Temperature Measurement 

Temperature was measured using Type-T thermocouple wire connected to a 

Campbell Scientific CR10X datalogger and AM16/32 multiplexer using a CR107 

reference thermistor. Errors associated with Type-T thermocouples are ±1.0 °C over the 

range of -65 to 130 °C.  Thermocouples were installed in vertical profiles by driving a 

steel sleeve and interior bar into the streambed. The bar was then removed and the 

thermocouples were inserted into the sleeve. Lastly, the sleeve was removed from the 

sediment and pulled over the thermocouple wire, leaving the thermocouples in place. We 

installed 4 streambed profiles and 1 soil profile in 8I and 2 streambed profiles in PI at 20 

cm increments to varying depths. Temperature profiles at site 8I reached a depth of 107 

cm, while those at site PI reached a depth of 38 cm. The shallow depths at PI are due to 

frozen soil and deep water at the time of installation.  Continuous subsurface temperature 

readings were recorded from late May throughout the remaining year. 

2.5 Results 

2.5.1  Low-Energy 

At the GC site (connector), the late May reflections (200 MHz) of the thaw front 

were difficult to discern from the water bottom reflections due to resolution limitations 

where λ/4 provides an approximate vertical resolution limit [Yilmaz, 2001].  Assuming a 

dominate frequency of 200 MHz with loading at ~120 MHz and a velocity in water-

saturated peat of 0.05 m ns-1, the signal wavelength is 0.416 m and the vertical resolution 

limits are roughly 10 cm, meaning that objects separated by less than this distance cannot 
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be individually identified.  For the 100 MHz antennas with loading at ~70 MHz and a 

velocity of 0.07 m ns-1 in water-saturated gravel the vertical resolution is 25 cm.  Within 

a month the boundary became discernible (Figure 2.2a-b).  As the thaw depth increased 

we recorded a separate and easily recognizable strong, continuous reflection from the 

thaw front where the maximum thaw bulb thickness, 51 cm, was recorded on September 

21 (Figure 2.2c-d).  The later season profiles show relatively weak reflections at the 

water-to-peat bottom boundary due to relatively small contrasts in the permittivity 

between the two media.  Also notable are the pulldown in the reflectors under the channel 

due to the lateral velocity change from the water-filled channel to water-saturated soil 

(Figure 2.2a and c) and correct positioning of the reflector pullup after depth migration 

was applied (Figure 2.2b and d).   
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Figure 2.2. (a) Preprocessed image from GC-connector recorded on June 28, 2004 (200 
MHz), (b) depth migrated image, (c) preprocessed image recorded September 21, 2004 
(200 MHz), (d) depth migrated image.  (―) interpreted water bottom, (●) thaw front, 
(TF) thaw front reflection, (WB) water bottom, (M) multiple. 

Resolution was not problematic in early season, 200 MHz profiles from the pool 

site (GC-pool) due to initially deeper thaw depths where the thaw bulb was easily 

resolved     (Figure 2.3a-b).  The maximum thaw bulb thickness, 104 cm, was recorded 

on September 21 (Figure 2.3c-d).  Relative reflection strength was higher in pool profiles 
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in comparison to connector profiles.  This difference in amplitude indicates greater 

permittivity contrast caused by the gravel-lined pool bottom. 

 
Figure 2.3. (a) Preprocessed image from GC-pool recorded on June 28, 2004 (200 MHz), 
(b) depth migrated image, (c) preprocessed image recorded September 21, 2004 (200 
MHz), (d) depth migrated image.  (TF) thaw front reflection, (WB) water bottom. (M) 
multiple. 

Results at the PI site were very similar to those noted within the GC-connector 

profiles.  The thaw front proved easy to identify from a strong continuous reflection 
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throughout the season (Figure 2.4).  Despite the physical differences, the PI site being 

deeply incised with greater water depths, the thaw depth seasonal patterns at PI and GC-

connector are remarkably similar.   

 
Figure 2.4. (a) Preprocessed image from PI site recorded on June 7, 2004 (200 Mhz), (b) 
depth migrated image, (c) preprocessed image recorded on August 6, 2004 (200 MHz), 
(d) depth migrated image.  (―) interpreted water bottom, (TF) thaw front reflection, 
(WB) water bottom, temperature sensor locations represented at B (16 and 36 cm) and A 
(18 and 38 cm). 
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Subsurface temperature values recorded by the thermocouples helped us to interpret 

the thaw front in the early season profiles and confirmed interpretations in the later 

season images.  We began logging temperature profiles on May 31. Prior to our initial 

logging, profile A had just thawed to 18 cm, but profile B did not thaw to 16 cm until 9 

days later (June 12).  Likewise, profile A thawed to 38 cm on June 27 while Profile B 

remained frozen at 36 cm until July 11.  Warmer temperature values recorded at profile A 

correlate with the radar profiles where a deeper reflection is noted on the right side of the 

streambed (Figure 2.4b), indicating greater thaw depths beneath the thalweg of the 

stream.  Maximum thaw beneath the thalweg may be caused by more heat going into the 

system from the warmer instream water temperatures.  As the season advances and the 

temperatures increase, thalweg effects became less prevalent and the maximum thaw 

depth becomes more evenly distributed across the center of the streambed (Figure 2.4d).  

The August profile from PI (Figure 2.4a-b) also correlates with the radar image collected 

by Bradford et al. [2005] where the maximum thaw depth was estimated at 61 cm in 

August 2003 and 63 cm in August 2004. 

The alluvial-peat Oksrukuyik Creek (OC), despite having a peat-influenced 

morphology, experienced the greatest overall thaw depths compared to the other peat-

lined stream sites.  We collected early season radar images with 200 MHz antennas and 

then shifted to 100 MHz antennas in the later season to increase the depth of 

investigation.  In the early season profile, within the unmigrated image, there is a 

continuous thaw front reflection obscured by high-amplitude water bottom diffractions 

(Figure 2.5a).  After migration, the diffractions are collapsed and the water bottom and 
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frost table reflectors were moved to their correct spatial locations, resulting in a distinct 

reflection at the thaw front (Figure 2.5b).  The August radar image, collected with 100 

MHz antennas, captured a distinct reflection of the thaw front at a depth of 233 cm 

(Figure 2.5c).  The boundary then becomes partly obscured from multiple scattering and 

water bottom multiples as the boundary depths decrease towards the sides of the channel 

(Figure 2.5c).  The thaw front in the migrated image of the same profile is difficult to 

distinguish due to over-migration of multiples (Figure 2.5d).  Migration algorithms only 

account for primary traveltimes therefore multiples are not treated correctly and always 

appear over-migrated.   
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Figure 2.5. (a) Preprocessed image from OC recorded on June 2, 2004 (200 MHz), (b) 
depth migrated image, (c) preprocessed image recorded August 5, 2004 (100 MHz), (d) 
depth migrated image.  (●) thaw front, (TF) thaw front reflection, (WB) water bottom, 
(M) multiple. 

2.5.2  High-Energy 

Imaging the thaw bulb within the gravel-lined stream sites proved to be more 

difficult due to a highly heterogeneous environment.  Variable sand-to-gravel-to-cobble-

to-boulder sized material under the streambeds caused, in some cases, severe multiple 
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scattering patterns within the radar images.  These diffraction patterns effectively masked 

the location of the frost table beneath the streambed channels.  Despite these limitations 

we were able to interpret the thaw front from a number of images. 

Radar images collected at the 8I site were among the most difficult to interpret; 

however, subsurface temperature data collected at this site confirmed early season depth- 

to-thaw boundaries.  Some of the later season profiles resolved the thaw front relatively 

well, whereas after migration the same images became difficult to interpret.  This was 

due to 2D limitations where 3D point source diffractions cannot be collapsed by 2D 

migration to their correct spatial location because they occur off the 2D GPR line. 

Stream temperature logging began at 8I following the snowmelt period on May 31, 

2004. Three thermocouple profiles in the streambed show that subsurface thaw had 

started prior to May 31. In profile A the streambed was thawed past 47 cm, but remained 

frozen at greater depths. The streambed thawed to 67 cm, 87 cm, and 107 cm on June 2, 

June 5, and June 7, respectively. In profiles B and C the streambed was thawed past 80 

and 82 cm, respectively, prior to our arrival in late May, but appears to have just thawed 

to 100 cm and 102 cm on June 2. Thaw occurs in the adjacent soil later than in the 

streambed. The soil was slightly above 0 °C at 8 cm deep when we began logging, but 

did not thaw until June 14 and June 19 at 28 cm and 48 cm, respectively.   

Following thaw, all four streambed temperature profiles behaved similarly with 

peak temperatures occurring in early July. Streambed temperatures rose and fell, 

mimicking air temperature with slight lags at depth. Throughout the season subsurface 

temperature values decreased with depth until late-August when temperatures at greater 
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depths became warmer than temperatures at shallower depths.  All profiles and all depths 

reached 0 ºC by late-September. 

Images collected at the pool and riffle sections at the 8O site were more easily 

interpreted than the 8I profiles, probably because the subsurface was more homogeneous.  

Radar profiles over the pool illustrate an excellent continuous reflection from the thaw 

front throughout the season.  Radar images over the riffle showed a clear reflection from 

the thaw front in both the migrated and unmigrated images (Figure 2.6).  Profiles over the 

riffle resolved a much deeper thaw front under the exposed gravel bar, left side, and a 

thinner thawed region under the active stream section (3 – 6 m).  Overall interpreted 

maximum thaw depths were greater at the 8O-riffle site than at the 8I site.    
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Figure 2.6. (a) Preprocessed image from 8O-riffle recorded on June 7, 2004 (200 MHz), 
(b) depth migrated image, (c) preprocessed image recorded June 22, 2004 (200 MHz), (d) 
depth migrated image.  (―) interpreted water bottom, (●) thaw front, (TF) thaw front 
reflection, (WB) water bottom. 

2.6 Discussion and Conclusions 

Our results demonstrate that GPR methods are useful in monitoring subsurface 

seasonal thaw within both peat and alluvial stream environments.  In some of the early 

season profiles the thaw front within the peat-lined streams was difficult to identify, due 
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to resolution limitations.  Later season images were successful due to a typically 

homogeneous subsurface, small contrast between peat and water, and smooth channel 

bottoms.  Successful images within gravel-lined streams were strongly site dependent and 

interpretations were significantly more complicated due to diffraction patterns caused by 

a highly heterogeneous subsurface and the irregular water/streambed interface.  

Identification of the thaw front reflection within the gravel-lined streams was greatly 

improved by gathering time-lapse profiles over the summer season where the moving 

boundary was properly identified.  The same reflection in a one time seasonal image may 

be misinterpreted as a multiple.  

Thaw bulb development within the two stream environments was distinctly 

different.  Figure 2.7 illustrates interpretations of the thaw front depths for each site, from 

GPR and temperature data, throughout the field season period.  Thaw depths increased to 

depths greater than 1 m within the first four weeks of the season within gravel-lined 

streams and to only 32 cm within peat-lined streams (Figure 2.7 and Figure 2.8).  Based 

on multiple images gathered over the season, maximum thaw depths within the gravel-

lined streams, which may represent the permafrost table, were recorded in August.  In 

September the gravel-lined sites began to refreeze while the peat-lined sites continued to 

thaw.  Maximum thaw depths in the latter were recorded up to the last site visit in 

September, indicating a heat lag in the peat-lined streams (Figure 2.8).  
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Figure 2.7. Frost/thaw boundary depths interpreted from GPR images and temperature 
data when available.  ( - - -) frost/thaw boundary interpreted at a shallower depth than 
earlier GPR profiles.  (a) PI with temperature sensor locations (cm) measured from the 
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stream channel bottom, (b) 8I with temperature sensor locations (cm) measured from the 
stream channel bottom, (c) GC-pool, (d) 8O-pool, (e) GC-connector, (f) 8O-riffle, (g) 
OC. 

 
Figure 2.8. Maximum thaw-bulb depths for the five sites.  For the 200 MHz data a ± 5 cm 
error is calculated for the peat-lined stream sites.  At the gravel-lined stream site a ±8 cm 
error is estimated for interpretations made from the 200 MHz and a ±13 cm error is 
estimated for the 100 MHz data. 

Temperature profiles recorded at 8I coincide with the interpreted GPR profiles 

where the thaw bulb grew rapidly in the early season.  Thermocouples did not reach to 

the depth of the interpreted permafrost table recorded in August; however, the 

temperature gradient which inverted late August (cooler temperatures at shallow depths) 
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indicates a change in the thermal input into the system (Figure 2.9).  The September GPR 

interpretation illustrates thaw bulb retreat from colder temperatures (Figure 2.7).     

 
Figure 2.9. Temperature data from (a) string A at 8I site and (b) string A at PI site. 

Early season thaw depths between 8I and 8O-riffle were both similar in trend with 

much greater thaw depths interpreted at the 8O-riffle in the later season.  Variation in the 

thaw bulb thicknesses between 8I and 8O-riffle is likely due to heat transfer from a 

greater surface area of exposed rocks (left side) within the riffle section at 8O.  Overall 
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thaw depths within the 8O-pool section were much smaller and are likely due to minimal 

rock exposure compared with the 8I and 8O-riffle sections.   

Comparisons between temperature values recorded at PI and 8I illustrate distinct 

differences in thermal input between the two systems.  Maximum temperatures are 

reached by July 4 and August 22 at 8I and PI, respectively.  At the PI site temperature 

gradients are much larger and shallow temperatures (16 and 18 cm) are always warmer 

than the deeper (36 and 38 cm) temperatures over the field season period.  At 8I 

temperature gradients are much smaller, over a greater depth range, and a temperature 

inversion occurs at the same time maximum temperatures are recorded at 38 cm beneath 

the PI site (Figure 2.8).  Differences between sites could be due to the deeper water at PI, 

combined with the peat lining that covers the streambed.  

The pool profile at OC responded similarly to the pool section at GC in that thaw 

depths at both sites continued to increase up to the last site visit in September.  However, 

the OC site recorded much greater thaw depths with a maximum thaw depth of 240 cm 

on September 20 (Figure 2.8).  One possible cause for the continued thaw at OC may be 

the result of more substantial and persistent flows experienced by OC which, in turn, 

promoted sub-channel thaw through September. 

Comparisons between the two stream types illustrate distinct differences in the 

seasonal thaw bulb development.  Gravel-lined streams respond much more quickly to 

thermal input and peat-lined sites display a much slower response in early season and 

either maintained or expanded their thawed regions through the late season (Figure 2.8).  

These observations indicate rapid heat absorption and heat loss in the gravel-lined 
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streams whereas the peat-lined streams illustrate an insulating effect that extends past the 

maximum solar input time frame.   
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3 MULTI-OFFSET GPR METHODS FOR HYPORHEIC ZONE INVESTIGATIONS 

3.1 Abstract 

Porosity of stream sediments has a direct effect on hyporheic exchange patterns and 

rates.  Improved estimates of porosity heterogeneity will yield enhanced simulation of 

hyporheic exchange processes.  Ground-penetrating radar (GPR) velocity measurements 

are strongly controlled by water content thus accurate measures of GPR velocity in 

saturated sediments provides estimates of porosity beneath stream channels using 

petrophysical relationships. Imaging the substream system using surface based reflection 

measurements is particularly challenging due to large velocity gradients that occur at the 

transition from open water to saturated sediments.  The continuous multi-offset (CMO) 

method improves the quality of subsurface images through stacking and provides 

measurements of vertical and lateral velocity distributions.  We applied the CMO method 

to stream sites on the North Slope, AK, and the Sawtooth Mountains near Boise, ID, 

USA.  From the CMO data, we measure velocity using reflection tomography then 

estimate water content and porosity using the Topp equation.  These values provide 

detailed measurements for improved stream channel hydraulic and thermal modeling.
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3.2 Introduction 

The movement of stream water flowing into the near sub-surface and back out to 

the stream channel is known as hyporheic exchange flow (Figure 3.1).  The spatial extent 

of this exchange defines the hyporheic zone.  Hyporheic exchange processes have a 

significant effect on biogeochemical cycling within stream ecosystems [Gooseff et al., 

2002; Jones et al., 1995; Mulholland et al., 1997].  These processes have been studied in 

temperate stream systems [Arntzen et al., 2006; Harvey and Bencala, 1993; Hill et al., 

1998; Kasahara and Wondzell, 2003; Vervier et al., 1993; Wondzell and Swanson, 1999; 

Wroblicky et al., 1998] and, to a lesser extent, in arctic stream environments [Edwardson 

et al., 2003; Greenwald et al., 2008; Zarnetske et al., 2007; Zarnetske et al., 2008]. 

 
Figure 3.1. The extent of the hyporheic zone is defined as the area where channel water 
and subsurface water mix.  In arctic streams the hyporheic zone exists within the seasonal 
thaw layer, defined as the thaw bulb beneath the streams [Greenwald et al., 2008]. 

Rates of hyporheic exchange flow in a stream reach are governed by spatial 

distributions of hydraulic head and hydraulic conductivity, which are typically measured 

at point, rather than reach, scales. The spatial distribution of hydraulic conductivity can 

be particularly important to understand given the high heterogeneity of sediments in 
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gravel-bed rivers [Cardenas and Willson, 2004]. However, obtaining distributed 

measurements of hydraulic conductivity by conventional piezometer methods in a 

streambed is impractical and invasive. Non-invasive, surface-based methods to obtain 

distributed measurements of hydraulic conductivity would add value to studies of 

hyporheic exchange.  

For the ground-penetrating radar (GPR) frequency band of 10-1000 Mhz, the 

frequency dependence of the conductivity and dielectric permittivity are small for many 

earth materials and are often assumed to be constant.  With this assumption, 

electromagnetic (EM) wave velocity, v, is related to dielectric permittivity, K, by 

K
cv = , where c is the speed of light in a vacuum and 0/εε=K  ( 0ε is the dielectric 

permittivity of a vacuum mF /1085.8 12−×  and ε  is the dielectric permittivity of the 

material).  The magnetic permeability,μ , is assumed to be equal to 0μ , the free space 

permeability ( mH /104 7−×π ). 

Given the previous assumptions, the dielectric permittivity dominates EM velocity 

variations where water is a highly polarizable naturally occurring material (with a 

permittivity of K≈81 in contrast to typical soil grain material permittivity values of 4-6).  

Because water is always present, in the pore space of hyporheic sediments, it has a 

dominant effect on electrical properties.  The relationship between permittivity and water 

content has been used in a number of previous studies to transform velocity to moisture 

content [Bradford, 2008; Greaves et al., 1996; Hanafy and Hagrey, 2006; Huisman et al., 
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2003; Lunt et al., 2005; Topp et al., 1980]. In fully saturated soils, water content is 

equivalent to porosity. 

Because the sediments are fully saturated in the hyporheic zone, GPR velocity 

measurements are strongly tied to hyporheic zone porosity.  In temperate and arctic 

stream environments unfrozen water content, which is related to porosity, is an important 

parameter that directly affects the depth and rate of freezing and thawing [Hinzman et al., 

1991; Romanovsky and Osterkamp, 2000].  The link between GPR measurements and 

hydraulic conductivity is more tenuous and is an area of active research.  We do not 

attempt to derive hydraulic conductivity from GPR measurements in this study, however, 

it is important to recognize that previous studies have established empirical relationships 

where hydraulic conductivity is derived from dynamic viscosity, effective grain size, and 

porosity for sand and gravel systems [Bear, 1972; Carman, 1937; Fitts, 2002].  These 

relationships break down when clay is introduced to the system.  Soils within the study 

sites presented in this study are composed of low-loss materials where GPR propagates 

effectively implying the presence of little to no clay.   

Topp et al. [1980] presented an empirical relationship of water content as a function 

of dielectric permittivity based on four soil types (sandy loam to clay dominated).  To test 

the validity of their relationship they expanded the study to include an organic soil, 

ground vermiculite mineral, and two sizes of glass beads.  Through the petrophysical 

relationship presented by Topp et al. [1980] GPR can provide laterally and vertically 

continuous porosity measurements beneath stream channels.  These porosity 

measurements in turn provide constraints on hyporheic zone hydraulic conductivity and 
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perhaps more effectively provide a measure of lateral variability in the hydraulic 

conductivity.  These constraints have the potential to significantly improve the 

understanding of hyporheic flow and thermal dynamics.   

Conventional GPR surveys are acquired with a constant transmitter-receiver offset.  

EM velocities for the GPR images are estimated by one of three methods; 1) radar 

reflectors are directly correlated with significant boundaries identified in the borehole 

data.  Drawbacks include misinterpretation, lack of lateral resolution, and the expense of 

deploying a destructive method.  2) Moveout of scattering diffractions within the data 

image can be used to estimate velocities.  However, diffractions are not always present 

and when they are their distribution determines the limits of the lateral and vertical 

velocity estimates.  3) Lastly, sparsely located common-midpoint (CMP) soundings are 

gathered (perhaps at one or two points) along the survey line and then normal moveout 

(NMO) analysis is used to estimate root-mean square (rms) velocity distribution.  Next, 

Dix inversion computes interval velocities from the rms velocities [Dix, 1955].  

Drawbacks to the latter method include limited lateral velocity variations and errors 

associated with NMO assumptions which include small offset-to-depth ratios, small 

vertical and horizontal velocity gradients, and planar flat-lying reflections [Al-Chalabi, 

1973; Al-Chalabi, 1974; Yilmaz, 2001]. 

Several studies show significantly improved images when an entire GPR survey is 

acquired with CMP geometry [Bradford, 2003; 2004; Bradford, 2006; Bradford and 

Deeds, 2006; Deeds and Bradford, 2002; Fisher et al., 1992; Greaves et al., 1996; 

Liberty and Pelton, 1994; Pipan et al., 1999; Pipan et al., 2003].  With CMP acquisition, 
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multi-trace reflection seismic processing methods can be applied for accurate depth 

imaging from laterally and vertically continuous GPR velocity measurements.  An 

additional advantage of CMP data includes improved suppression of coherent and 

random noise. 

In this paper we present a method to obtain spatially distributed porosity estimates 

in the substream environment.  We use the continuous multi-offset (CMO) method to 

image the hyporheic zone and subsurface porosity in four arctic streams north of the 

Brooks Range, AK, and a temperate stream site within the Sawtooth Mountains near 

Boise, ID, USA.  Our primary objective was to accurately image GPR velocity structure, 

then use these measurements to estimate porosity distribution using the petrophysical 

relationship defined by the Topp equation [Topp et al., 1980].  This information will 

provide input to future hyporheic flow and heat flow models to better understand 

hyporheic zone processes. 

3.3 Methods 

Employing CMO methods over stream channels is more challenging than land 

based surveys.  One difference is determining a feasible method to successfully bridge 

across actively flowing steam channels while maximizing coupling between the antennas 

and the earth surface.   Additionally, results can be largely affected by rapid elevation 

changes from stream banks to the active channel which can be accounted for with an 

accurate elevation survey of the profile line.  Perhaps the greatest challenge however, is 

imaging the large velocity contrast present at the transition from free flowing water, in 
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the stream channel, to water saturated sediments where the velocity may increase by a 

factor of three or more.  This change can occur laterally across nearly vertical boundaries 

thus severely violating the assumptions of NMO analysis and necessitating more accurate 

velocity estimation and prestack depth imaging techniques. 

At all sites, CMO data were gathered by extending a 25 – 30 cm wide board across 

the stream, just above the stream water flow level.  This board then served as a bridge 

along which we acquired GPR measurements.  Traces were gathered in common source 

gathers by incrementally stepping the receiver across the stream at a set distance interval 

while the transmitter remained stationary.  Once completed, the transmitter was moved a 

set distance along the profile line and the process repeated until the transmitter reached 

the end of the profile. 

Premigration processing steps for all data sets include time zero correction, 

bandpass filtering, amplitude correction, and/or automatic gain control that varied by site.  

For the arctic sites an additional three-CDP mix is included to improve the stacking 

display. Initially, NMO velocity analysis with constant stacking velocities was applied to 

each data set and produced significant improvements in signal to noise (S/N) ratio when 

compared to the conventional common-offset image.   NMO assumptions are violated in 

the stream environment where the velocity increases from ~0.032 m ns-1 in the stream 

water to 0.05 – 0.08 m ns-1 in the surrounding saturated sediments [Brosten et al., 2006].  

Additionally, the reflector geometries in the substream environment often proved to be 

complex with steeply dipping and truncated reflectors.  We applied prestack depth 
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migration (PSDM) and reflection tomography to improve velocity estimates and image 

accuracy. 

The PSDM process requires a starting velocity model as initial input then the 

velocity model is refined iteratively until a good migration result is obtained.  Our 

method for deriving the starting model varied by site (see site specific descriptions 

below).  The output of PSDM is a set of common image point (CIP) gathers that display 

reflector horizons as a function of offset and depth.  When the correct velocity is used the 

reflection depth is independent of offset, whereas incorrect velocity leads to reflectors 

displaying apparent offset dependence.  This offset dependent depth is defined as residual 

moveout (RMO). 

To derive the final velocity model we utilized Stork’s [1992] method of reflection 

tomography which consists of tomographic inversion to minimize RMO in the post-

migration domain..  A typical processing sequence goes as follows: PSDM is applied 

with the starting velocity model, RMO is computed for a selected reflector, tomography 

updates the velocity model, and PSDM is applied with the new velocity model.  This 

process continues iteratively until the RMO is minimized for all coherent reflectors.   For 

a detailed review of PSDM with reflection tomography as applied to GPR imaging, see 

[Bradford, 2006; Bradford, 2008]. 
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3.4 Field Examples 

3.4.1  Arctic Sites 

Gathering GPR reflection data to study frozen ground in the arctic regions has been 

well documented by an extensive number of published investigations [Annan and Davis, 

1976; Arcone and Delaney, 1982; Arcone et al., 1998b; Delaney et al., 1990; Hinkel et 

al., 2001; Moorman et al., 2003].  Fewer published studies exist which focus on 

identifying thaw features and the active layer thaw beneath arctic streams and rivers 

[Arcone et al., 1992; Arcone et al., 1998a; Bradford et al., 2005; Brosten et al., 2006].  

Many of the above mentioned studies successfully used wide-angle reflection and 

refraction (WARR) in conjunction with conventional constant transmitter-receiver offset 

surveys to exploit the low permittivity of permafrost underlying a seasonal thaw to 

determine permittivity and velocities of the two layers.  But these were only for single or 

sparsely located locations which does not allow for PSDM or laterally continuous 

velocity measurements. 

The Arctic stream sites we studied are located within the Kuparuk watershed north 

of the Brooks Range, AK, where the drainage area is underlain by continuous permafrost 

with thicknesses ranging from 250 m near the foothills to over 600 m near the coast 

[Osterkamp and Payne, 1981].  Based on results from the 2004 fieldwork campaign 

[Brosten et al., 2006] four sites were selected and revisited for CMO data collection in 

early August 2005 (Figure 3.2).  The stream sites encompassed two general 

geomorphologic conditions found in rivers and streams on Alaska’s North Slope; 1) low-
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energy water flow, organic material lining, beaded morphology, 0.90% gradient, and 2) 

high-energy water flow, riffle-pool-riffle morphology, cobble to gravel material lining, 

0.97 –1.18% gradient. 

 
Figure 3.2. Locations and photos of four arctic stream study sites (8I, 8O, PI, and GC) 
within the Kuparuk watershed, AK. 
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All of our arctic sites have the potential to contain some fraction of peat or sand 

and cobble sediments.  Therefore, we use Topp’s general equation and estimate an 

uncertainty of ±5% in porosity values based on Topp’s relationships for equivalent sand 

and organic soil types.  We expect that values for sand dominated sites may be 

overestimated by 5% and values within the peat dominated sites may be underestimated 

by 5%.  Past studies, e.g. Ponizovsky et al. [1999], comparing estimates from Topp’s 

equation to laboratory measurements reported a good fit for sand material.  We 

acknowledge the uncertainty in our porosity measurements, specifically within the peat 

dominated sites, but maintain that GPR can provide laterally and vertically continuous 

porosity approximations, within 5% accuracy, beneath stream channels. 

3.4.1.1  Peat Inlet Stream Site (PI), AK 

The Peat Inlet (PI) is the first of two low-energy peat lined stream sites.  The 

profile along the PI stream was collected across one of the deeply incised connecting 

channels located ~0.5 km north of Toolik Field Station.  We started trace gathers at the PI 

site 2 m in from the stream channel on the stream bank right side, continued across the 

stream and ended 3 m in from the stream channel on the stream bank left side.  Data were 

acquired with 200 MHz antennas in common-source point gathers with 0.2 m receiver 

and 0.4 m source intervals, 0.6 m near offset.  Additional acquisition details are given in 

(Table 3.1) and apply to all the arctic sites. 
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Table 3.1. Acquisition Parameters for the Arctic Stream Sites, North Slope, AK. 

 

The deeply incised bank sides of the PI site made the reflection tomography 

processing steps more challenging.  We migrated only the near offset data, 60 cm, using a 

water velocity at 0.032 m ns-1 in order to locate the water bottom in the image.  Then, for 

the starting velocity model we set the water channel, in the proper spatial location, to 

0.032 m ns-1 and the remaining area to 0.055 m ns-1 based on scattering diffraction 

velocities noted by Bradford et al. [2005].  They achieved good migration results by 

including a positive vertical velocity gradient within the seasonal thaw layer that is 

consistent with lithology grading from saturated peat to water-saturated sand/gravel.  We 

used the velocity model that resulted from our first-pass reflection tomogram analysis to 

migrate the image.  Due to significant topography variations at this site the image was 

corrected to a local datum generated from elevation measurements collected along the 

profile line.  The resulting image illustrates an excellent active layer/permafrost boundary 

reflector easily seen on both sides of the stream bank and underneath the stream as well 
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(Figure 3.3a).  The moisture content model shows fairly homogenous porosity estimate of 

~43% throughout the active-layer (Figure 3.3b). 

 
Figure 3.3. (a) PSDM image of PI profile with the reflection tomogram used for 
migration overlaid.  (b) Moisture content estimated from the velocity model in (a), colors 
have been scaled to show variations in the thaw layer. 

Common-source gathers illustrate strong subsurface refraction events from the 

velocity increase between active layer and frozen soil (e.g. Tx @ 0 m, Figure 3.4a, 

indicated by yellow arrows).  These events become less apparent and the direct wave 

disappears completely as the transmitter moves across the profile (Tx @ 3.2 and 5.6 m) 
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due to rapid topography changes along the profile line.  A reflection event from the active 

layer/permafrost boundary in the first gather (Tx @ 0.0 m) is barely evident at the near 

offset before it is obscured by refraction energy.  The backdipping moveout shown by the 

reflection in the third gather located over the stream channel (Tx @ 5.6 m) results from a 

steeply dipping reflector.  A synthetic common-source gather (last gather in Figure 3.4a) 

was generated using a 4th order finite difference solution of the scalar wave equation.  

The synthetic gather was evaluated against the common-source gather collected at the 

start of the profile line (Tx @ 0 m) to verify model velocities.  The model includes a 2 m 

layer of air to account for the air wave and permafrost/air mixing in the refraction phase, 

1 m by 2 m water channel at 0.032 m ns-1, 1m thick active layer with a velocity at 0.055 

m ns-1 for saturated peat, all underlain by continuous permafrost at 0.168 m ns-1 (Figure 

3.4b).  Similar refraction events, indicated by yellow arrows from left to right, represent 

the direct wave, thaw/frozen refraction, direct wave through the water channel, and the 

thaw/frozen refraction on the far side of the channel.  A reflection event from the 

active/permafrost boundary that arrives at ~40 ns near offset (black arrows) is also 

evident within both gathers.  This demonstrates that, despite the simplified model, the 

synthetic velocity model is a reasonable representation of the true velocity distribution. 
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Figure 3.4. (a) Filtered and gained common-source gathers along PI profile.  Note that the 
last gather is a synthetic.  Black arrows indicate the thaw/frozen reflection event and 
yellow arrows, from left to right, for Tx @ 0.0m and synthetic shot represent the direct 
wave, thaw/frozen refraction, direct wave through the water channel, and the thaw/frozen 
refraction on the far side of the channel.  Yellow arrows, from left to right, for Tx @ 
3.2m shot gather represent thaw/frozen refraction, direct wave through the water channel, 
and the thaw/frozen refraction on the far side of the channel.  Tx @ 5.6m is over the 
stream channel and shows a strong dipping reflection from backdipping moveout. (b) 
Velocity model used to generate a synthetic common-source gather with the same source 
and receiver spacing as Tx @ 0.0m for comparison.      
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We should note here that seasonal time-lapse common-offset GPR data were 

collected at this same profile line in the summer of 2004 [Brosten et al., 2006].  The 

migrated data (Figure 3.3a) show thaw depths up to 1 m (about 0.35 m greater than the 

August 2004 interpretation).  This is partly due to a higher velocity obtained from the 

reflection tomography analysis, ~0.057 m ns-1, in comparison to the migration velocity of 

0.05 m ns-1 used in the previous study.  The remaining discrepancy is likely due to 

differences in the correctly interpreted water-bottom reflection caused by small 

permittivity contrast between the water and organic material lining the channel.   

3.4.1.2  Green Cabin Lake Inlet Stream Site (GC), AK 

The second low-energy study site (GC) is the right channel entering a confluence 

located upstream of Green Cabin Lake.  The profile at this site was gathered across one 

of the connecting channels characterized by a shallow, actively flowing, stream with 

minimal channel incision.  The site is located at a higher elevation than the other three 

sites resulting in cooler seasonal temperatures and therefore a shallower thaw depth is 

estimated at ~0.61 m (Figure 3.5a). The porosity estimates (Figure 3.5b) were slightly 

higher than those estimated at the PI site, specifically within a small area beneath the 

stream just above the permafrost (at 4 m along the profile line) that could represent a 

small pocket of localized sand disposition.  This profile line was also studied during a 

field campaign in 2004 [Brosten et al., 2006] however, the interpreted thaw depth from 

the 2005 profile is only ~0.11 m greater than the 2004 profile.  Given the more rigorous 

approach to velocity estimation in the present study, we believe that these velocities are 
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more reliable and the thaw depth estimate is likely more accurate in this case, however it 

is not unreasonable to expect annual variations in the maximum thaw depth. 

 
Figure 3.5. (a) PSDM image of GC profile with the reflection tomogram used for 
migration overlaid.  (b) Moisture content estimated from the velocity model in (a), colors 
have been scaled to show variations in the thaw layer. 

3.4.1.3  I-8 Lake Inlet Stream Site (8I), AK 

The first high-energy gravel-lined stream site (8I) is located on the inlet stream to I-

8 Lake and is in close proximity to the PI site (Figure 3.2).  The CMO profile is located 

just downstream of a riffle section.  The line starts on the stream bank left side on top of 
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an exposed gravel bar that extends along the line for the first 3 m of the line.  The last 

trace gather ends on the stream bank right side ~3 m onto the terrestrial tundra. 

Common-source gathers along the line illustrates the difficulty in interpreting 

reflection events (Figure 3.6).  The thaw/frozen boundary in the first gather (Tx @ 0.0 m) 

is downward dipping causing the apex of the corresponding reflection event to occur well 

before the near offset trace (black arrow).  Most of the leg from the same reflection is 

obscured by the direct wave where the interpreted near offset arrival is at ~60 ns.  The 

second and third gathers display a reflection (annotated by black arrows) arriving at ~75 

and ~100 ns, respectively and is interpreted as the thaw boundary reflection.  The 

reflection event at ~100 ns in the last gather (Tx @ 6.8 m) exhibits a similar moveout to 

the one noted in the PI gather (Figure 3.4a, Tx @ 5.6 m) indicating an upward dipping 

event possibly caused by a rapid decrease in the thaw/frozen boundary.  There is also a 

clear refraction event from the thaw/frozen boundary within the three gathers (yellow 

arrows) that arrives sooner as the transmitter steps down the line indicating a decrease in 

thaw towards the right side of the profile line.  These refraction events are traveling 

upslope on the far side of the stream profile and therefore have high apparent velocities. 
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Figure 3.6. Filtered and gained common-source gathers along 8I profile.  Black/yellow 
arrows show locations of reflection/refraction events, respectively, within each gather. 

Values for the starting depth-velocity model were incorporated from velocities 

generated by Bradford et al. [2005].  Based on their results we used 0.075 m ns-1 as our 

starting depth-velocity model.  Multiple coherent reflectors within the cross-section 

produced a velocity model displaying excellent detail in lateral velocity changes within 

the subsurface.  The migrated image shows preferential thaw towards the exposed gravel 

bar for a maximum thickness of ~2.6 m (Figure 3.7a), likely due to enhanced heat 

conduction into the subsurface from exposed gravel warming up from solar radiation. 
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Figure 3.7. (a) PSDM image of 8I profile with the reflection tomogram used for 
migration overlaid.  (b) Moisture content estimated from the velocity model in (a). 

Porosity estimates are highest beneath the active stream channel and just beneath 

the peaty tundra on the stream bank right side.  Moisture content is noticeably higher 

within the upper 1.5 m of the subsurface with a gradual decrease to ~20% beneath the 

gravel bar (Figure 3.7b). 

3.4.1.4  I-8 Lake Outlet Stream Site (8O), AK 

Trace gathering at the 8O site started just over 2 m to the left of the stream bank left 

side.  Gathers were collected across the stream up to 3 m past the stream bank right side.  
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We were unable to use reflection tomography to refine the velocity model due to poor 

S/N in the post migration domain; however, the constant velocity stacked image from this 

site shows significant improvement in the S/N ratio in the multi-offset profile in 

comparison to the conventional common-offset profile (Figure 3.8).  A pseudo common-

offset GPR section was created by combining traces with 0.6-1.2 m offsets and constant-

velocity (0.085 m ns-1) normal moveout (Figure 3.8a) for comparison to the CMP stack 

generated with offsets up to 4.6 m and the same stacking velocity (Figure 3.8b).  There is 

a noticeable improvement in the thaw/frozen boundary reflection beneath the stream at 

~100 ns (~ 3.4 m maximum thaw depth).  Our failure to generate a reasonable velocity 

model at this site emphasizes the extreme heterogeneity that can occur within these high-

energy gravel-lined sites.  In this case, the noise is primarily coherent noise caused by 

multiple 3D scattering near the streambed where the sediments consist of cobble to 

boulder sized material.  This strong scattering also results in greater signal attenuation 

exacerbating the problem. 
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Figure 3.8. (a) Pseudo common-offset stack (0.085m/ns) at 8O site with 0.60-1.2m off-
sets (ـ ـ active layer/permafrost boundary).  (b) Multi-offset stack (0.085 m/ns) with 0.60-
4.6m offsets.  There is noticeable improvement in the S/N ratio illustrated by a stronger 
reflector representative of the active layer/permafrost boundary beneath the stream (100 
ns) (ـ ـ active layer/permafrost boundary). 

3.4.2  Temperate Stream Site 

Our research team acquired CMO data late September 2007 at an inlet stream that 

drains into Bull Trout Lake (BT), located within the Sawtooth Mountains near Boise, ID, 

USA (Figure 3.9).  BT is a temperate, sand and gravel lined, low gradient (<0.05 m m-1), 

riffle-pool-riffle morphology, with a drainage area of 9.7 km2 at the lake inlet [Arp et al., 
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2007].  The inlet stream lining is composed of late Pleistocene unsorted to moderately 

sorted sandy boulder till, sandy gravel, and coarse sand [Freed et al., 2006]. 
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Figure 3.9. Location and photo of temperate stream site (BT) above the inlet of Bull 
Trout Lake, ID. 
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The collection method was similar to the method used in the arctic studies except 

that shielded 500 MHz antennas were used for data collection.  In addition, the receiver 

was placed on a sled and triggered every 0.05 m, by an attached odometer wheel, as it 

was pushed away from the transmitter, starting at 0.1 m near-offset up to a maximum of 

2m far-offset.  Once completed, the transmitter was moved 0.1 m along the profile line 

and the process was repeated until the transmitter reached the end of the profile.  

Additional acquisition details are given in (Table 3.2). 

Table 3.2. Acquisition Parameters for the Temperate Stream Site, Bull Trout Lake, ID. 

 

Multiple CMO data lines were gathered across a number of different stream 

features at this site.  For the purpose of this paper, and to minimize redundancy, we will 

show only one of the profiles.  The CMO profile started on the stream bank left side with 

the foot of the board embedded into the bank just above the water line.  The line 

continued across 2 m of active channel and then continued and additional 2.5 m across a 

well-sorted sand/gravel point bar.  Strong reflection events are evident throughout the 
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profile as illustrated by the common midpoint (CMP) gathers shown in Figure 3.10.  High 

variability in the distribution of reflectors in the CMP gathers indicates significant 

subsurface complexity. 

 
Figure 3.10. Common midpoint gathers (arrows indicate strong reflection events). 

Clear reflectors from past channel erosion and deposition are seen at 0.5-1 m depth 

starting on the right side of the profile (gravel bar) and dipping downward towards the 

active channel on the left.  Based on NMO analysis we used 0.065 m ns-1 for water-

saturated sands as our starting depth-velocity model for the temperate stream site.  The 

resulting reflection tomogram show slower velocities (~0.06 m ns-1) along the same 

reflectors overlaying a faster velocity (~0.075 m ns-1) layer that is confined by another 

slower velocity layer (0.065 m ns-1) marked by strong reflectors at ~1.75 m (Figure 

3.11a).  The corresponding porosity estimates illustrate a distinct lower porosity content 

layer (~0.25%) enclosed by higher porosity layer (~0.35-.045%) above and below (Figure 
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3.11b). This noticeable layering indicates more porous well-sorted sand/gravel layers 

bounding a less porous poorly-sorted gravel layer.  

 
Figure 3.11. (a) PSDM image of BT profile with the reflection tomogram used for 
migration overlaid.  Note the stream channel bottom at 0.5 m on the left and the highly 
coherent reflection layering beneath the gravel bar on the right side.  (b) Moisture content 
estimated from the velocity model in (a), colors have been scaled to show variations in 
the saturated zone.  The moisture content model provides an excellent display of layering 
from a high porosity material overlaying a lower porosity layer overlaying another high 
porosity layer. 
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3.5 Conclusions 

Results from the five field sites presented in this study illustrate the benefits of 

continuous multi-offset GPR data including significant improvement in S/N ratio within 

the stacked GPR profiles, leading to a more detailed and confident interpretation.  The 

field data example at Bull Trout Lake, BT, shows excellent detail of individual deposition 

events in addition to three distinct porosity layers revealed through reflection tomography 

analysis.  The gravel-lined stream site results from the arctic studies illustrate a detailed 

lateral depth-velocity model at the 8I site but not 8O due to insufficient coherent 

reflectors.  Our ability to generate an appropriate velocity model at 8I but not 8O suggests 

a high degree of the 3D diffraction scattering likely due to irregular high-energy 

depositional events.  Whereas the depth-velocity models from the peat-lined stream sites 

show more homogenous constant velocities representative of the active layer thaw. 

Continuous multi-offset GPR methods have the advantage of providing laterally 

continuous measurements of subsurface stratigraphy and properties, whereas borehole 

methods provide detailed vertical measurements at a single point.  While more time 

consuming than conventional single offset methods, CMO profiles can be acquired and 

analyzed rapidly relative to the time required to install, sample and analyze borehole data.  

The real strength of the method is seen by combining a few direct borehole measurements 

with laterally extensive radar measurements.   

PSDM methods, along with reflection tomography analysis, provide detailed depth-

velocity models and migrated GPR profiles for interpretation.  Through petrophysical 

relationships detailed porosity estimates beneath various stream environments can be 
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achieved.  A large number of cross-sectional porosity measurements are obtained through 

non-invasive methods and provide a high degree of lateral detail that, in turn, provides 

information of the spatial distribution of hydraulic properties.  These in-situ estimates can 

improve and help constrain hydrological and thermal models. 
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4 ESTIMATING 3D VARIATION IN ACTIVE-LAYER THICKNESS BENEATH 

ARCTIC STREAMS USING GROUND-PENETRATING RADAR 

4.1 Abstract 

We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across 

three stream sites on the North Slope, AK, in August 2005, to investigate the dependence 

of thaw depth on channel morphology.  Data were migrated with mean velocities derived 

from multi-offset GPR profiles collected across a stream section within each of the 3D 

survey areas.  GPR data interpretations from the alluvial-lined stream site illustrate 

greater thaw depths beneath riffle and gravel bar features relative to neighboring pool 

features.  The peat-lined stream sites indicate the opposite; greater thaw depths beneath 

pools and shallower thaw beneath the connecting runs.  Results provide detailed 3D 

geometry of active layer thaw depths that can support hydrological studies seeking to 

quantify transport and biogeochemical processes that occur within the hyporheic zone. 

4.2 Introduction 

Developing an understanding of the permafrost and active layer in the arctic has been a 

primary research topic for numerous studies.  Research has included permafrost and 

active layer temperature measurements to show the affects of changes in climate on past 
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and present thermal regime within the arctic tundra [Kane et al., 1991; Lachenbruch and 

Marchall, 1986; Osterkamp and Gosink, 1991; Osterkamp et al., 1994; Romanovsky and 

Osterkamp, 1995].  In addition to temperature measurements, two-dimensional (2D) 

ground-penetrating radar (GPR) has been used extensively in the arctic to study active 

layer and permafrost features [Annan and Davis, 1976; Arcone and Delaney, 1982; 

Arcone et al., 1993; Arcone et al., 1998b; Arcone and Delaney, 2003; Bradford and 

Deeds, 2006; Delaney et al., 1990; Doolittle et al., 1990; Doolittle et al., 1992; Hinkel et 

al., 2001].  GPR has also been employed to study active layer thickness and development 

across arctic streams and rivers [Bradford et al., 2005; Brosten et al., 2006], taliks 

[Arcone et al., 1992; Arcone et al., 1998a], and river channel morphology [Best et al., 

2005].   

Advances in data processing software and data acquisition instruments have 

enabled research methods to expand to three-dimensional (3D) data collection and 

analysis for a more complete characterization of subsurface structures.  3D GPR has been 

used in multiple research areas including archaeology [Grasmueck et al., 2004; 

Leckebush, 2003; Leucci and Negri, 2006; Negri and Leucci, 2006], geology [Asprion 

and Aigner, 1999; Beres et al., 1995; Guidry et al., 2007; Kostic and Aigner, 2007], 

hydrology [Bradford and Wu, 2007; Bradford, 2008; Kruse et al., 2006], and geological 

engineering applications [Anderson et al., 2007; Grasmueck, 1996].  However, the 

benefits provided by 3D GPR to map near-surface structures in permafrost environments 

has not, as of yet, been fully exploited.  One recent investigation took advantage of the 

dielectric contrast between ice wedges and the surrounding material using 3D GPR to 
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interpret the 3D geometry of ice-wedge polygons on the Arctic Coastal Plain of northern 

Alaska [Munroe et al., 2007].   

The movement of stream water flowing into the near sub-surface and back out to 

the stream channel is known as hyporheic exchange flow (Figure 4.1).  The extent of this 

exchange resides within the active layer and defines the hyporheic zone.  Studies have 

shown that hyporheic exchange processes have a significant effect on biogeochemical 

cycling within stream ecosystems [Gooseff et al., 2002; Jones et al., 1995; Mulholland et 

al., 1997] and temporary storage of stream water [Harvey and Wagner, 2000].  Through 

2D modeling efforts Zarnetske et al. [2008] found that hyporheic exchange, within arctic 

streams, occurs up to a threshold depth primarily determined by hydraulic head gradients 

established by the stream morphology.  Currently hydrological and biological studies of 

the hyporheic zone are conducted without much knowledge of the 3D subsurface 

architecture [Wright et al., 2005].  Information provided by 3D GPR will improve 

hyporheic zone groundwater flow modeling by constraining the model domain in 3D 

space thereby reducing the uncertainty associated with transport processes such as water 

and solute exchange.  3D geometry is particularly important in the arctic regions where 

active layer thaw may limit hyporheic extent.  It is critical to know the 3D distribution of 

the thaw depth to improve hyporheic studies seeking to quantify water storage and 

biogeochemical processes.  This study provides a more complete characterization of the 

active layer geometry beneath arctic streams with the use of 3D GPR methodologies. 
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Figure 4.1. The extent of the hyporheic zone is defined as the area where channel water 
and subsurface water mix.  In arctic streams the hyporheic zone exists within the seasonal 
thaw layer, defined as the thaw bulb beneath the streams [Greenwald et al., 2008]. 

3D GPR data were acquired at three stream sites within the Kuparuk watershed on 

the North Slope, AK, (Figure 4.2) where continuous permafrost depths reach depths of 

250 m near the foothills to over 600 m near the coast [Osterkamp and Payne, 1981].  In 

general streams on the North Slope, Alaska, can be grouped into two geomorphologic 

stream types.  The first stream type is a high-energy stream system with cobble to gravel 

streambed lining and riffle-pool morphology (alluvial stream). The second stream type is 

a low-energy flow stream system with beaded morphology (pools connected by short 

runs) and organic streambed lining (peat stream).  Survey grids were established to 

encompass local streambed features including either a pool/riffle or pool/run sequence.  

We selected sites based on results from time-lapse 2D GPR profiles collected previously 

at five study sites [Brosten et al., 2006].  This paper expands on knowledge obtained 

from previous studies on arctic stream characterization using 3D GPR to provide detailed 

geometry of the seasonal thaw depth related to changes in local streambed features.   
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Figure 4.2. Locations of the three study sites selected for 3D GPR acquisition. 

4.3 Methods 

GPR data were acquired the second week of August 2005 using a Sensors and 

Software PE100A pulsed radar system with a 1000V transmitter. The transmitting and 

receiving 200 MHz antennas were placed at the bottom of a small rubber boat for data 

acquisition.  Profile lines were gathered by pulling the boat across the stream ~1 m past 

the channel bank-to-bank while triggering at a constant time interval.  Lines were 

collected at ~0.3 m intervals and continued upstream until a pool-riffle sequence was 

covered (Table 4.1).  Precise spatial data were collected using differential global 

positioning system (DGPS) calibrated to the GPR system.  Spatial data were corrected to 



 

 

71

GPS base station data recorded at Toolik Field Station, AK (Figure 4.2) and then filtered 

to remove outliers over 0.05 m horizontal and 0.17 m vertical precision.  After filtering 

over 95% of the remaining data points were within <= 0.05 m and 0.1 m horizontal and 

vertical accuracy, respectively.  The following processing steps were applied to each 

dataset:                 

Table 4.1. GPR Acquisition Parameters. 

 

1. Time stamp method to obtain a spatial position for each GPR trace. 

2. Each data cube was binned for 3D time migration where the bin sizes varied by 

site. 

3. Bandpass filtering with a 25-50-400-800 Ormsby filter to attenuate low 

frequency transient and high frequency random noise. 

4. Time zero correction with first break correlation to remove start of record delay 

and system drift. 

5. Kirchoff 3D time migration. 

Velocity models were determined from a 2D multi-offset GPR line collected across 

the stream within each 3D survey grid (Chapter 3). Velocities for the water saturated 
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material below the channel bottom ranged from 0.06 to 0.09 m ns-1 for the alluvial sites 

and 0.04 to 0.058 m ns-1 for the peat sites indicating a more homogeneous subsurface 

within the low-energy stream sites.  Because the primary objective of this study is to 

estimate the relative active layer thickness beneath the channel streambeds, only mean 

velocities for the water-saturated substrate material were used for time migration.  A 

velocity of 0.068 m ns-1 was used for migration of the saturated gravel/sand material 

datasets and 0.056 m ns-1 was used to migrate the saturated peat material datasets. 

GPR resolution is limited by wavelength which is related to velocity, v, and 

frequency, f, through the relation λ=v/f.  Higher frequencies result in smaller wavelengths 

which are capable of resolving finer features.  However, higher frequencies also attenuate 

more quickly, decreasing the depth of investigation.  Thus a tradeoff exists between depth 

of investigation and resolution potential where, in this case, λ represents the dominant 

frequency and λ/4 provides an approximate vertical resolution limit [Yilmaz, 2001].  The 

dominate frequency of our signal was ~120 MHz due to antenna loading; with a velocity 

in water-saturated peat of 0.056 m ns-1 the signal wavelength is 0.47 m and the vertical 

resolution limits are roughly ± 0.06 m, meaning that objects separated by less than this 

distance cannot be individually identified.  A velocity of 0.068 m ns-1 in water-saturated 

gravel provides a signal wavelength of 0.57 m with a vertical resolution limit of  ± 0.07 

m.   

Uncertainty in interpreted depths to the thaw/permafrost interface is linked to 

uncertainties in the velocity model and wavelength resolution.  Depths, Dest, are estimated 
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using the two-way travel equation, 
2
tvDest = , where t is the one-way travel time, ns, to 

the reflector and v is the velocity, m ns-1.  We estimated depth uncertainty by   
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where vσ  is the velocity model standard deviation, Vm is the mean velocity value used to 

calculate the depth, Dest (where Vm≈v), dλ  is the dominate wavelength and 4/dλ provides 

an approximate vertical resolution limit [Yilmaz, 2001]. 

4.4 Field Examples 

The first study area (8I) is located along the inlet stream to I-8 Lake (Figure 4.2).  

This site represents the high-energy environment with a cobble/gravel streambed.  The 

survey grid spanned across two pool areas (~0.8 m deep) and a riffle section located at 

the upstream section of the grid (25 m x 11 m) (Figure 4.3).  Also worth noting is the 

presence of a gravel bar which resides along the left side stream bank of the survey area.   
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Figure 4.3. Aerial view of study site with GPR (orange) lines.  The three holes within the 
dataset represent areas where either a capacitance rod or nested piezometers resided for 
data acquisition related to collaborative studies at this site.  Zero/zero crosshair (lower 
left-hand side) indicates approximate location of the zero inline/crossline for the 3D 
dataset volume.  (●) location of multi-offset GPR transect, (▬) location of inline 
transects shown in Figure 4.4 (a) and (b). 

Within the 8I site, velocity estimates from the multi-offset data illustrated a high 

degree of variation, laterally and vertically across the stream site (Chapter 3) indicating 

likely velocity variations throughout the data volume.  A velocity value of 0.068 m ns-1 

may oversimplify true velocity variations within the 8I data volume but the migrated 

results collapsed the majority of the diffractions and improved reflector spatial coherence.  

Interpreted thaw thickness varied throughout the data volume where maximum thickness 
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up to 2.3 ± 0.38 m coincided with the riffle section and gravel bar located on the left side 

stream bank (Figure 4.4a and d).  Thinner thaw thickness occurred beneath the pool areas 

where maximum thickness ranged up to 1 ± 0.21 m (Figure 4.4b-d). 

 
Figure 4.4. (a) Transect inline from 3D GPR survey with interpreted water and thaw 
depths.  (b) Transect inline from 3D GPR dataset with interpreted water and thaw depths.  
(c) Chair display of 3D GPR survey sliced along the inline B - B' transect.  (d) Interpreted 
seasonal thaw thickness (filled contours) from the 3D GPR dataset with water bottom 
contours (black) overlain where greatest thaw thickness coincides with the riffle and 
gravel bar areas.  (▬) location of inline transects shown in (a) and (b). 
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The Peat Inlet (PI) is the second study site and is an incised beaded stream with 

large, deep pools (12 m wide, up to 3 m deep) connected by relatively deep channels (1.5 

m deep) (Figure 4.2).  This site is a low-energy water flow environment with a peat-lined 

streambed.  The survey spanned across a channel section, through a narrow pool, across 

another short channel section, and then into a deep large pool where cobbles/boulders 

were noted along the bottom of the last pool (16 m x 34 m) (Figure 4.5).   

 
Figure 4.5. Aerial view of study site with GPR (orange) lines.  Zero/zero crosshair (upper 
left-hand side) indicates approximate location of the zero inline/crossline for the 3D 
datasets over the stream and gravel bar.  (●) location of multi-offset GPR transect, (▬) 
location of transects illustrated in Figure 4.7 (a) and (b). 

Radar velocity variations within the PI site were much smaller than the 8I site with 

a mean velocity of 0.056 ± 0.002 m ns-1.  In this case the mean velocity is likely resulting 

in a more accurate depth estimate than at the alluvial site.  The water bottom reflector at 
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this site was much less obvious due a gradational transition from channel water to 

saturated peat causing a smaller permittivity contrast between the two zones.  Seasonal 

thaw thickness at the PI site was greatest beneath the pool areas with a maximum 

thickness up to 1.5 ± 0.13 m (Figure 4.6 and Figure 4.7).  The narrow channel connectors 

coincide with shallower thaw up to 0.9 ± 0.12 m (Figure 4.6 and Figure 4.7).  

 
Figure 4.6. Interpreted seasonal thaw thickness (filled contours) from the 3D GPR 
datasets with water bottom and the surface gravel bar contours (black) overlain where 
maximum thaw thickness coincide with the deepest pool area.  (▬) location of transects 
illustrated in Figure 4.7 (a) and (b). 
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Figure 4.7. (a) Crossline transect from 3D GPR dataset with interpreted water and thaw 
depths.  (b) Unmigrated thalweg transect with interpreted water and thaw depths. 

The last site (GC) is located along the stream right channel flowing into a 

confluence upstream of Green Cabin Lake and represents a mix of the low-energy/high-

energy environments that characterize the first two study sites (Figure 4.2).  The 3D 

survey spanned across two large pools (up to 2 m deep) connected by a shallow channel 

(less than 0.5 m deep) for a total grid survey area of 12 m x 30 m (Figure 4.8).  The 

upstream pool has a peat-lined stream bottom and the downstream pool is gravel-lined.  

A large gravel bar is located just above the confluence point of the two streams and acts 

as a topographic barrier, during low flow, for the stream right channel.  At the time of the 
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survey in August 2005 the entire stream right channel flow transitioned from surface 

channel to subsurface flow through the gravel bar, at the stream channel/gravel bar 

boundary (see photo of GC site in Figure 4.2), and reappeared along the downstream end 

of the gravel bar where it merged with surface water in the gravel-lined, stream left 

channel.  An additional 3D survey was conducted across the gravel bar (17 m x 22 m) to 

measure the thaw depths influenced from the evident subsurface flow.  

 
Figure 4.8. Aerial view of study site with GPR (orange) lines.  Zero/zero crosshair (lower 
left-hand side) indicates approximate location of the zero inline/crossline for the 3D 
datasets over the stream and gravel bar.  (●) location of multi-offset GPR transect, (▬) 
location of transects illustrated in Figure 4.9 (a), (b), and (c) sliced from the 3D dataset 
volumes. 

Results from the GC site illustrate thaw thicknesses resulting from a combination 

of thermal processes which occur within both 8I and PI sites.  A strong reflector 

representing the thaw/permafrost boundary was evident within both dataset volumes.  

Maximum thaw thickness within the stream section occurred beneath the pools with 

thickness values up to 2 ± 0.17 m (Figure 4.9a and Figure 4.10).  Thaw thickness under 



 

 

80

the gravel bar ranged up to 2.9 ± 0.47 m and is the subsurface zone with the greatest 

amount of seasonal thaw we have observed in tundra streams around Toolik (Figure 4.9b-

c and Figure 4.10).    

 
Figure 4.9. (a) Crossline transect from stream 3D GPR dataset with interpreted water and 
thaw depths.  (b) Inline transect from gravel bar 3D GPR dataset with interpreted thaw 
depth.  (c) Crossline transect from gravel bar 3D GPR dataset with interpreted thaw 
depth. 
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Figure 4.10. Interpreted seasonal thaw thickness (filled contours) from the 3D GPR 
datasets with water bottom and the surface gravel bar contours (black) overlain where 
maximum thaw thickness occurring over the gravel bar area. 

    

4.5  Discussion and Conclusions 

Results from the three study sites illustrate detailed 3D GPR interpretations of 

seasonal thaw thickness as it varies with changing streambed features.  Within the high-

energy site (8I) maximum thaw occurred beneath the riffle and gravel bar features.  

Deeper thaw within these areas is likely a response to heating of the exposed rock from 

solar radiation, conduction processes transferring heat downward from varying summer 

temperatures, and heat convection occurring from subsurface water flow.  These 

processes also take place within the gravel bar at the GC site where the thermal response 

from radiation and convection is maximized from exposed rocks and the large hydraulic 

head gradient across the gravel bar resulting in maximum thaw thicknesses up to almost 3 

m.  Less seasonal thaw takes place under the pool regions likely due to a shallower water 

convection zone as well as greater water depths resulting in less thermal radiation 
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occurring beneath pool areas.  Influence from convective processes within 8I is supported 

by solute injection experiment results where horizontal hydraulic conductivity values 

beneath pools were almost an order of magnitude smaller than the adjacent upstream 

riffle tails [Zarnetske et al., 2008].   

Thaw depths within the low-energy stream sites at PI and GC are primarily 

controlled by likely heat conduction processes where peat material has a low hydraulic 

conductivity and radiation is absorbed and carried away by greater, continuous channel 

water flow throughout the summer.  Within the pool regions where thaw depths progress 

up to 2 m we propose the existence of a talik (a thawed region within the subsurface 

which remains thawed year around) that persists due to the insulating properties of the 

low-energy stream environments.  Because of the water depth and associated insulation, 

little or no freezing may occur at the base of the deeper pools allowing for talik formation 

and persistence over several seasons resulting in greater maximum thaw depth.   

Results from the three study sites help resolve problems that plagued GPR 

interpretations of the seasonal thaw/permafrost boundary in an earlier study [Brosten et 

al., 2006] that included 3D point source diffractions.  The 3D datasets provided the 

necessary information to collapse diffractions to the proper point source location after 

migration.  New challenges arose from migration artifacts occurring along the boundaries 

of the 3D volume in addition to strong water bottom multiples, within the gravel-lined 

stream site (8I), causing difficulties in locating the proper reflector representative of the 

thaw/permafrost boundary. 



 

 

83

This chapter has illustrated the use of 3D GPR within arctic stream environments.  

Results provide detailed maps of seasonal thaw thickness between two different stream 

environments where maximum thaws occur beneath opposing stream features (i.e. 

beneath riffles in the gravel-lined streams and pools in the peat-lined streams) likely due 

to very different thermal processes.  Detailed thaw depth geometry provided by the 3D 

GPR surveys can be used to inform and significantly improve 3D groundwater flow and 

particle tracking models by constraining the model domain in 3D space and, in turn, 

reducing the uncertainty associated with hyporheic zone transport processes.   
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5 MODELING THERMAL PROCESSES BENEATH ARCTIC STREAMS ON THE 

NORTH SLOPE, AK 

5.1 Abstract 

Seasonal thaw depth beneath arctic streams significantly impacts physical and 

biological processes within arctic stream environments.  To better understand the 

influence from thermal conduction on active layer thaw we developed, using the finite-

difference method, a one-dimensional, heat transport model with phase change to 

estimate seasonal temperatures beneath two arctic stream types; a high-energy gravel-

dominated stream and a low-energy peat-bedded stream.  The model was driven by 

stream water or near-surface temperature data recorded at selected stream sites near 

Toolik Field Station, AK, for the summer months of 2004 and 2005.  Model temperatures 

were calibrated to measured temperatures at corresponding depths and evaluated against 

interpreted thaw depths from cross-sectional ground-penetrating radar (GPR) images 

gathered over the 2004 summer season.  Model temperatures were in reasonable 

agreement with observed temperatures and GPR thaw depth estimates.  However, 

temperature variations between model and observed values increased with depth.  The 

variations are likely due to a homogenous soil property assumption, oversimplification of 

convection processes, and deviations from the 1D model.
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5.2 Introduction 

Biological and physical processes that take place within arctic streams are strongly 

affected by the duration and extent of the active layer which resides beneath, and adjacent 

to, the stream channel and above the permafrost table.  This area of active layer thaw is 

defined as the thaw bulb and has been shown to extend to greater depths than the 

surrounding terrestrial active layer thaw [Brosten et al., 2006].  The movement of stream 

water flowing into the near subsurface and back out to the stream channel is known as 

hyporheic exchange flow and occurs within the upper portion of the thaw bulb (Figure 

5.1). The extent of this exchange defines the hyporheic zone and is where nutrient cycling 

takes place.   

 
Figure 5.1. The extent of the hyporheic zone is defined as the area where channel water 
and subsurface water mix.  In arctic streams the hyporheic zone exists within the seasonal 
thaw layer, defined as the thaw bulb beneath the streams [Greenwald et al., 2008]. 

A preliminary study of seasonal thaw beneath arctic streams hypothesized that the 

thaw bulb may control hyporheic zone hydrology [Bradford et al., 2005].  Time-lapse 

results illustrated rapid thaw bulb development, up to 1 m within the first week of June 
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2004, beneath gravel-lined stream sites and a slower more progressive thaw beneath the 

peat-lined sites [Brosten et al., 2006].  Hydrologic and water chemistry results concluded 

that influence from seasonal thaw depth on hyporheic flow processes is minimal 

[Greenwald et al., 2008; Zarnetske et al., 2007] and that the hyporheic zone is influenced 

by depth of thaw only up to a threshold depth, which is controlled by hydraulic head 

gradients imposed by stream morphology [Zarnetske et al., 2008].   

These previous studies concluded that the depth of thaw does not influence 

hyporheic flow.  In this study we approach the problem from another direction and 

attempt to determine if hyporheic flow affects the depth of thaw.  The time-lapse study 

established that the seasonal thaw beneath arctic streams occurs at greater depths 

compared to the adjacent terrestrial tundra and thaw beneath gravel-lined streams 

progresses much quicker with deeper maximum thaw depths than the peat-lined streams 

[Brosten et al., 2006].  Both scenarios suggest that hyporheic flow may be contributing to 

thaw bulb growth.  A finite-difference, one-dimensional (1D), heat transport model with 

phase change was used to model seasonal thaw bulb temperatures.  To determine if 

advected heat from hyporheic flow contributes to thaw bulb growth we added a 

simplified term to represent heat transfer from advection resulting in an enhanced 

conduction model.  Model results from the conduction (conduction only) and enhanced 

conduction (conduction plus convection) are compared to determine influence of thaw 

from thermal conduction and advection processes. 

There are an extensive number of published studies that have investigated and 

monitored thermal processes and properties within the terrestrial arctic active layer and 
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permafrost through modeling and temperature measurements [Goodrich, 1982; Kane et 

al., 1991; Osterkamp and Romanovsky, 1996; 1997; Romanovsky and Osterkamp, 1995; 

2000; Woo and Xia, 1996; Zhang et al., 1996; Zhang and Stamnes, 1998].  Romanovsky 

and Osterkamp [1997] studied the thermal processes in the active layer and near-surface 

permafrost during seasonal thawing.  Subsurface temperature data were used to calibrate 

a 1D finite element conductive heat flow model with a moving phase boundary 

[Osterkamp and Gosink, 1991; Osterkamp and Romanovsky, 1996] which was then used 

to simulate the seasonal thawing in the active layer and near-surface permafrost.  Results 

indicated that unfrozen water content had a significant affect on temporal variations in 

thermal conductivities.  Therefore, a conduction model could accurately predict thaw 

depths provided that the properly averaged thermal properties were used.  Another study 

conducted by Zhang and Stamnes [1998] concluded air temperature as the most important 

parameter controlling soil temperatures.         

Few studies have investigated thermal processes beneath arctic streams, likely due 

to logistical complications, and can provide valuable information for ecological impacts 

on the hydrological and biological environments as climate changes.  Wankiewicz [1982] 

studied thermal processes of a river talik beneath two arctic rivers through modeling 

measured subsurface temperatures in April, August, and November 1977-1978.  

Wankiewicz [1982] concluded that conduction dominated heat transfer process at one site 

while macrodispersion of heat from ground water flow was the dominate process at the 

second site. 
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We present continuous subsurface temperature data recorded over the 2004-05 

summer months at three stream sites on the North Slope, AK, for comparison to seasonal 

time-lapse GPR transects, gathered in 2004, by employing a 1D conductive heat transfer 

model with phase change to determine the amount of thaw caused by thermal conduction 

processes.  In addition, effects from advection were investigated with an enhanced 

conduction term.  Observed stream water temperatures or near-surface temperatures were 

used to drive the model to predict active layer seasonal thaw from early June to mid-

October 2004 and mid-May to mid-October 2005.  Modeled temperature results were 

compared and validated against estimated thaw depths interpreted from common-offset 

GPR transects gathered across two of the stream sites over the 2004 summer season.  

Models were calibrated to observed temperatures ranging down to depths of 1.6 m.  

Additionally, multi-offset GPR transects, gathered in 2005, provided water content 

estimates for the thermal models.  

5.3 Field Sites 

Study sites are located ~1 km south of Toolik Field Station on the North Slope, AK 

(Figure 5.2).  The stream sites encompassed two general geomorphologic conditions 

found in rivers and streams on Alaska’s North Slope; 1) low-energy water flow, organic 

material lining, beaded morphology, 0.03% gradient, and 2) high-energy water flow, 

riffle-pool-riffle morphology, cobble to gravel material lining, 0.70% gradient.  The Peat 

Inlet (PI) site represents the low-energy water flow environment and is characterized by 

large, deep pools (12 m wide, 2.5 m deep) connected by shallow narrow channels (2.5 m 
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wide, 1 m deep).  The next two sites represent the high-energy environment with one site 

located on the inlet stream to I-8 lake (I8) and the second site located downstream of the 

lake (8O).  These two sites were selected to study the lake effect on thermal processes 

within the thaw bulb environment. 

 
Figure 5.2. Locations and photos of the three thermocouple instrumentation study sites 
(8I, 8O, and PI) within the Kuparuk watershed, AK. 
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5.4 Methods 

5.4.1  Heat Transfer Model 

An explicit 1D heat conduction model was developed, using the finite-difference 

method, to investigate seasonal thaw beneath arctic streams.  It is well established that 

unfrozen water can strongly influence heat and mass transport processes in soils [Harlan, 

1973; Jame and Norum, 1980; Nakano and Brown, 1972; Osterkamp, 1987].  Therefore, 

an analytical approach was incorporated into the conduction model to account for the 

effects of unfrozen water on thermal properties [Osterkamp, 1987] (see Appendix C for 

details). 

Assuming that unfrozen water does not move within permafrost then the 1D heat 

transport equation is 
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where T is the soil temperature (˚C), K is thermal conductivity (W m-1˚C-1), and C is the 

apparent volumetric heat capacity (MJ m-3˚C-1).  The difference in density between ice 

and unfrozen water are neglected except in the latent heat term where it is incorporated 

into the apparent volumetric heat capacity, 
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where Cv is the volumetric heat capacity (MJ m-3˚C-1), L is the volumetric latent heat of 

fusion for ice (J m-3), ρi and ρu are the densities for ice and unfrozen water respectively, 

and θi is the volumetric ice content.  Assuming that ρi and ρu are independent of 
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temperature then equation (5.2) can be expressed in term of volumetric unfrozen water 

content θu,  

T
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.                                                   (5.3) 

The unfrozen water content of a partially frozen soil or permafrost is represented by a 

power law where,  
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ρb is the dry bulk density of the partially frozen soil or permafrost, a  and b are 

empirically derived material-dependent constants [Anderson et al., 1973; Tice et al., 

1981].    

Temperature measurements recorded by thermocouples placed within the stream 

channel water or near surface defined the upper, driving, boundary for the model.  The 

lower boundary was set at 30 m depth to ensure no significant effects on thermal 

processes at shallow depths.  A constant geothermal heat flux of 0.0565 W m-2 

[Lachenbruch et al., 1982] was set at the lower boundary.  Model stability is maintained 

while the Fourier number, Fo, [Incropera and DeWitt, 2002] remains at or below 0.5,   
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where Di is the thermal diffusivity, Δz is the depth step ranging from 0.01 to 1 m and, Δt 

is the time step increment set at 1 minute. 

Thermal diffusivity, 
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i
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is determined from the thermal conductivity, Ki, and apparent volumetric heat capacity, 

Ci, for the ith layer (Appendix C).  Substitute equation (5.6) into (5.1) and the heat 

equation becomes 
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for the ith layer.  The 1D explicit form of the finite difference equation is 
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Measured temperatures on June 1, 2004 and May 15, 2005 were used as the initial 

temperature conditions.  Temperatures for the remaining grid cells past the last measured 

temperature cell were extrapolated to the bottom boundary with an exponential decay to -

7.95 ˚C (Figure 5.3) and represents the mean permafrost temperature measured from 

1983 to 2001 at 30 m depth, Deadhorse, AK [Osterkamp, 2003]. 
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Figure 5.3. Temperature profiles of initial conditions for study sites.  (a) 2004 initial 
conditions for 8I and PI sites with observed temperatures noted.  (b) 2005 initial 
conditions for 8I and 8O sites with observed temperatures noted. 

To account for advective heat transfer from hyporheic flow within the gravel-lined 

sites an additional heat transport term, in the vertical direction, was added where equation 

(5.1) becomes 
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and Ke is the effective conductivity defined as the sum of conduction and advection given 

by [Wankiewicz, 1982] 

SKCKK hTue γ+= .                                             (5.10) 
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The advection term is the product of the volumetric heat capacity for water (MJ m-3˚C-1), 

Cu, transverse dispersivity (m), γT, hydraulic conductivity (m s-1), Kh, and channel slope, 

S.  In advective flows the thermal diffusivity, D, and kinematic viscosity, v, are 

approximately equal, 

ρ
μ

=≈ vD ,                                                    (5.11) 

where μ is the dynamic viscosity and ρ is the fluid density.  The advection term in 

equation 5.10 enhances the transport of heat vertically resulting in greater diffusivity 

values within the hyporheic flow region.  In a 1D model this is a reasonable approach to 

account for additional heat input from advective processes.  A positive transverse 

dispersivity term (in the vertical direction) is used to simulate maximum thaw scenarios 

while lateral dispersivity is assumed to be negligible.  

Studies conducted by Zarnetske et al. [2008] observed hyporheic flow up to ~1 m 

depths; therefore, the effective conductivity term is assumed to reside within the upper 

first meter where its influence exponentially decreases to zero at the one meter depth cell.  

Due to the shallow hyporheic flow depths noted by Zarnetske et al. [2008] heat addition 

from subsurface water flow beneath the PI stream is assumed to be negligible and 

therefore not modeled.       

One soil type with corresponding physical and thermal properties was assumed for 

each model.  Table 5.1 provides a summary of the range of soil thermal and physical 

properties published in previous studies [Hinzman et al., 1991; Kane et al., 1991; 

Lachenbruch et al., 1982; Osterkamp and Romanovsky, 1997; Romanovsky and 
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Osterkamp, 1997; Williams and Smith, 1989] where peat values were used for the PI site 

model and silt to gravel properties were used for the 8I and 8O models.  Calibration of 

the models included selecting reasonable density and thermal conductivity values, based 

on past studies, which minimized differences between calculated and observed 

temperature profiles through trial and error model runs.  Volumetric water content 

estimates were obtained from multi-offset GPR images gathered at or near the 

thermocouple sites in August 2005 (Chapter 3) using the pertrophysical relationship 

defined by the Topp equation [Topp et al., 1980].  Hydraulic conductivity and slope 

values for 8I were acquired from field measurements gathered in 2005 upstream ~100 m 

from the 8I temperature site [Zarnetske et al., 2007; Zarnetske et al., 2008].  The same 

values were used at the 8O site with the assumption that differences in slope and 

hydraulic conductivity values between the two sites is negligible.  Transverse dispersivity 

values reported by Pickens and Grisak [1981] ranged from 0.20 to 9.2 m where a positive 

value of 0.23 m were used for the 8I and 8O temperature models to simulate maximum 

thaw.    
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Table 5.1. Physical and Thermal Properties of the Active Layer and Near-Permafrost 
Soils Determined from Past Studies Where Subscripts t and f Represent Thawed and 
Frozen Soils with Their Corresponding Range of Values for Thermal Conductivity, 
Volumetric Heat Capacity, and Thermal Diffusivity. 

 

Predicted temperatures were compared to observed temperatures at each study site for 

validation.  An uncertainty analysis of the modeled temperatures, 2
Tσ , was calculated by 

varying parameters independent of temperature which included soil thermal conductivity, 

soil density, and porosity, in addition to hydraulic conductivity, transverse dispersivity, 

and slope included for the enhanced conduction models, 
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where errors for parameter measurements are assumed to be normally distributed. 

5.4.2  Temperature Measurements 

Temperatures were measured using Type-T thermocouple wire connected to a 

Campbell Scientific CR10X datalogger and AM16/32 multiplexer using a CR107 

reference thermistor. Uncertainty associated with Type-T thermocouples are ±1.0 °C over 

the range of -65 to 130 °C.  Thermocouples were installed in vertical profiles by driving a 
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steel sleeve and interior bar into the streambed. The bar was then removed and the 

thermocouples were inserted into the sleeve. Lastly, the sleeve was removed from the 

sediment and pulled over the thermocouple wire, leaving the thermocouples in place. 

We installed four streambed thermocouple strings in 8I (across a riffle section) and 

two temperature strings in PI (across a deeply incised channel section) at 0.20 m 

increments to varying depths in late August 2003 (Table 5.2).  Two thermocouple strings 

were installed at the 8O site (across a riffle section), in August 2004 at 0.30 m increments 

(Table 5.2).  Continuous subsurface temperature readings were recorded every four to six 

hours starting late May 2004, at the 8I and PI sites and August 2004 at the 8O site.  

Temperature variations for each approximate corresponding depth recorded by 

neighboring thermocouple strings, installed at each site, was negligible.  Therefore, to 

avoid redundancy only one thermocouple string, from each site, was used for modeling 

purposes, string (2) for 8I, and string (1) for 8O and PI (Table 5.2).  For all sites 

thermocouples were installed as deep as possible however the method employed limited 

our ability to install thermocouples past the maximum active layer thaw depth, into the 

permafrost layer.  



 

 

98

Table 5.2. Thermocouple Strings at Depth for Each Study Site. 

 

5.4.3  Ground-Penetrating Radar 

Time-lapse GPR transects were gathered across the 8I and PI temperature recording 

site in 2004 at weekly intervals on June 2, 7, 14, and 22, August 6, and September 19.  

Maximum thaw depths were interpreted for each transect [Brosten et al., 2006] and are 

compared to the zero degree isotherm depth estimated by the thermal model.  GPR data 

were acquired using a Sensors and Software PE100A pulsed radar system, 1000V 

transmitter, and 200 MHz antennas.  Also in August 2005 multi-offset GPR profiles were 

gathered across the 8I stream ~100 m upstream of the temperature site and across the 8O 

and PI temperature sites [Brosten et al., in review].  The standard deviation from velocity 

models, derived from the multi-offset transect, in addition to the vertical wavelength 

resolution determined uncertainty in interpreted thaw depths from the GPR data.  The 

GPR thaw depth uncertainty, Dσ , is defined by 
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where vσ  is the velocity model standard deviation, Vm is the mean velocity value used to 

calculate the depth, Dest.  Wavelength is related to velocity, v, and frequency, f, by 

fv /=λ  where mλ  is the mean wavelength and 4/mλ  provides an approximate vertical 

resolution limit meaning that objects separated by less than this distance cannot be 

individually identified [Yilmaz, 2001]. 

5.5 Results 

5.5.1  8I Site 

Subsurface temperature measurements at the 8I stream site exhibited a rapid 

response to seasonal thermal processes for 2004 and 2005 (Figure 5.4 and Figure 5.5) and 

with a maximum temperature of ~18 ˚C at 0.20 m on July 2, 2004 (Figure 5.4b) and June 

30, 2005 (Figure 5.5b).  A temperature gradient is apparent during the initial thawing for 

both summer periods.  Starting in July measured temperatures at greater depths (0.60, 

0.80, and 1.0 m) inverted periodically with shallower temperatures (0.20 and 0.40 m) 

throughout the summer months indicate a rapid response to the fluctuating surface 

temperatures.  Daily average temperatures at all depths, for both seasons, were above 

freezing by late May and cooled to 0 ˚C by late September. 
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Figure 5.4. Daily average temperature profile recorded at the 8I stream site.  (a) Recorded 
temperatures for 2004 (temperature logging started May 28, 2004) with temperatures 
measured from 0.20 to 1.0m depth at 0.20m increments.  Air temperatures were recorded 
at the Toolik Field Station Meteorological Station [Shaver, 2004].  (b) Subset of the 
recorded temperatures used for model validation (1 June to 15 October). 
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Figure 5.5. Daily average temperature profile recorded at the 8I stream site.  (a) Recorded 
temperatures for 2005 (missing temperature data for the first ~4 months were due to 
instrument failure) with temperatures measured from 0.20 to 1.0m depth at 0.20m 
increments.  Air temperatures were recorded at the Toolik Field Station Meteorological 
Station [Shaver, 2005].  (b) Subset of the recorded temperatures used for model 
validation (15 May to 15 October). 

Parameter values used for the thermal model include a soil density of 1600 kg m-3, 

soil thermal conductivity of 2.92 W m-1˚C-1, volumetric water content value of 0.30 

(mean value derived from the GPR data), hydraulic conductivity of 1.5 × 10-2 m s-1, and a 

slope value of 0.7% [Zarnetske et al., 2008].  Predicted temperatures provided by the 

thermal model for 2004 underestimate observed temperatures at 0.40, 0.60, 0.80, and 1.0 

m with differences increasing with depth (Figure 5.6).  Maximum temperature 

differences, between modeled and observed, ranged up to ~6 ˚C in 2004 (Figure 5.6d) 

and ~5 ˚C in 2005 at the 1.0 m depth interval.  Models with the enhanced conduction 

term for 2004 and 2005 both exhibit a slightly better fit to the observed values by 

removing the time lag between peaks and troughs within the temperature signature; 
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however, results from the additional advection term was minimal with less than 1˚C 

temperature difference, for most days, when compared to results from conduction alone.  

Therefore, only model results from the 1D conduction model were pursued for further 

analysis.  

 
Figure 5.6. Comparison between 2004 daily averaged predicted and observed 
temperatures at (a) 0.40m; (b) 0.60m; (c) 0.80m; and (d) 1.0m. 

The conduction models predicted maximum thaw depths (the zero isotherm) to 

3.26 and 3.24 m on September 1, 2004 and, August 30, 2005 respectively (Figure 5.7a 

and Figure 5.8).  Thaw depth estimates interpreted from the 2004 time-lapse GPR 

profiles ranged from 1.0 m, on June 2, up to 2.0 m on June 22 and are in good agreement 
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with depths to the 0 ˚C isotherm estimated from the thermal model (Figure 5.7b).  The 

GPR thaw depth estimate for August 6 was 2.4 ± 0.38 m and is shallower compared to 

the 3.15 ± 0.10 m estimate from the thermal model.  The last GPR acquisition on 

September 19 estimated a maximum thaw depth of 2.0 ± 0.33 m and is ~1 m less than the 

thermal model with an estimated thaw depth of 3.15 ± 0.05 m (Figure 5.7b). 

 
Figure 5.7. Simulated temperature results for 8I 2004.  (a) Isotherm plot of modeled 
temperatures at depth. (●) represents thaw depth estimates from GPR transects collection 
on June 2, 7, 14, and 22; August 6; and September 19, 2004.  (b) Comparison between 
the zero degree isotherm estimated from the thermal model, at depth, and estimated 
maximum thaw depths from GPR transects. 
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Figure 5.8. Simulated temperature results for 8I 2005.  (a) Comparison between observed 
temperatures, thermal model with conduction, and thermal model with conduction and 
convection term.  (b) Isotherm plot of modeled temperatures at depth. 

5.5.2   8O Site 

Temperatures recorded in 2005 at the 8O site illustrate an overall dampened 

temperature signature, due to the lake effect, where a maximum temperature peak of ~13 

˚C was reached briefly at 0.40 m on June 16 (Figure 5.9).  Otherwise, all temperature 

depths at 8O remained below 8 ˚C with a consistent temperature gradient from shallow to 

deep observed temperature depths throughout the summer months (Figure 5.9b).  Daily 

temperature averages at all depths were above 0 ˚C by early June and did not return to 

temperatures at or below 0 ˚C until October 21 (almost a full month later in comparison 

to 8I temperatures). 
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Figure 5.9. Daily average temperature profile recorded at the 8O stream site.  (a) 
Recorded temperatures for 2005 with temperatures measured from 0.40 to 1.6m depth at 
0.30m increments.  Air temperatures were recorded at the Toolik Field Station 
Meteorological Station [Shaver, 2005].  (b) Subset of the recorded temperatures used for 
model validation (15 May to 15 October). 

The same model parameters used at 8I were also applied to the 8O thermal model 

except for the volumetric water content value.  The multi-offset GPR transect gathered 

across the 8O temperature site was complicated by scattering attenuation; however, a 

stacking velocity of 0.085 m ns-1 displayed a reflection interpreted as the thaw 

bulb/permafrost boundary [Brosten et al., in review] with a maximum thaw bulb 

thickness of 3.4 ± 0.42 m.  Using the normal move-out velocity of 0.085 m ns-1 we use 

the Topp equation [Topp et al., 1980] and estimate the bulk water content at 23% (7% 

less than the 8I site).     

Temperature differences between simulated and observed temperatures at 0.70, 1.0, 

1.3, and 1.6 m also progressively increased with depth except during the period where 

temperatures spiked at 0.40 m depth from June 6 to July 7 (Figure 5.10).  Temperature 
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differences at the 1.6 m depth interval averaged 1.3 ˚C with a maximum difference of 1.6 

˚C on July 13 (Figure 5.11d).  Model results estimated a maximum thaw depth at 2.88m 

on August 29 (Figure 5.11).  Compared to the multi-offset GPR transect collected on 

August 7, with an estimated thaw depth of 3.4 ± 0.42 m, the thermal model 

underestimates the thaw depth with a value at 2.78 ± 0.05 m. 

 
Figure 5.10. Comparison between 2005 daily averaged predicted and observed 
temperatures at (a) 0.70m; (b) 1.0m; (c) 1.30m; and (d) 1.60m. 
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Figure 5.11. Simulated temperature results for 8O 2005.  (a) Comparison between 
observed temperatures, thermal model with conduction, and thermal model with 
conduction and convection term.  (b) Isotherm plot of modeled temperatures at depth. 

5.5.3  PI Site 

The PI site is significantly different from the gravel-lined sites in its physical 

characteristics (e.g. material lining, slope, and channel water depth) and seasonal thermal 

response.  Observed temperatures at 0.18 and 0.38 m depths were much slower to warm 

in response to the seasonal thermal processes with a more apparent temperature gradient 

between the two depths throughout the 2004 season (Figure 5.12) with temperature 

differences, between measurement depths, ranging up to 6 ˚C.     
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Figure 5.12. Daily average temperature profile recorded at the PI stream site.  (a) 
Recorded temperatures for 2004 (temperature logging started May 28, 2004) with 
temperatures measure at stream water, 0.18m, and 0.38m.  Air temperatures were 
recorded at the Toolik Field Station Meteorological Station [Shaver, 2004].  (b) Subset of 
the recorded temperatures used for model validation (1 June to 15 October). 

Parameter values for the thermal model at PI include a thermal conductivity value 

of 0.25 W m-1˚C and a soil density of 700 kg m-3.  The volumetric water content, 

calculated from the multi-offset GPR transect, was estimated at ~0.50.  A study of the 

hyporheic flow in 2005 at the PI stream site indicates subsurface flow occurring at depths 

no greater than 0.15 m [Zarnetske et al., 2008] indicating little to no heat addition from 

subsurface flow.  The resulting model progressively overestimate measured temperatures 

at 0.18 and 0.38 m with estimated temperatures exceeding the measured temperatures up 

to 3 ˚C at 0.18m and 6 ˚C at the 0.38 m depth interval (Figure 5.13).  Model results 

estimate a maximum thaw depth of 1.06 m on September 6 (Figure 5.14a).  A comparison 

between GPR thaw depth estimates to the modeled zero degree isotherm illustrates 
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consistently greater thaw depth estimates from the model throughout the 2004 season 

(Figure 5.14b).  

 
Figure 5.13. Simulated temperature results for PI 2004.  Comparison between observed 
temperatures, thermal conduction model at (a) 0.18m and (b) 0.38m. 
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Figure 5.14. (a) Isotherm plot of modeled temperatures at depth for PI 2004. (●) 
represents thaw depth estimates from GPR transects collection on June 2, 7, 14, and 22, 
August 6, and September 19, 2004.  (b) Comparison between the zero degree isotherm 
estimated from the thermal model, at depth, and estimated maximum thaw depths from 
GPR transects. 

5.6 Discussion 

Daily average temperature profiles at 8I show that values for the two shallowest 

depths (0.20 and 0.40 m) are nearly identical for most of the season throughout the 

summer (Figure 5.4 and Figure 5.5) implying a homogenous layer between these two 

depths with nearly identical response to thermal processes within the hyporheic zone.  In 

addition these same temperatures invert periodically throughout the season (i.e. 
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temperatures at shallow depths become colder than temperatures at deeper depths) and 

may be responding to variations in seasonal temperatures.   

Results from the thermal models for 8I illustrate conduction as the primary 

contributor to seasonal thaw.  The enhanced conduction term improved results by 

removing the time lag between the observed and predicted peaks and troughs; however, 

improvements in temperature amplitudes from advective influence were minimal which 

implies an insignificant contribution to seasonal thaw.  Estimated thaw depth 

comparisons between the GPR interpretations and predicted temperatures for 2004 were 

in good agreement for the first four GPR acquisition dates.  In September the thaw depth 

interpreted from the GPR data, 2.0 ± 0.33 m, was ~1 m shallower than the predicted 

model, 3.15 ± 0.05 m (Figure 5.7b).  Model assumptions including homogeneous soil 

properties, oversimplification of convective influence, and 1D model assumptions all 

contribute to discrepancies between the modeled results and true temperatures.   

Observed temperatures at 8O are significantly different from 8I due to the lake 

effect which acts as a heat sink.  As warm water enters the lake much of its heat is lost 

from mixing with the colder lake water.  Temperatures of water exiting the lake have 

been dampened to a lower more constant temperature due to lake volume and residence 

time within the lake.  The thermocouple site located less than 100 m downstream of the 

lake outlet provides channel water temperatures representative of the lake effect given the 

short distance for influence from season thermal radiation from the gravel bed lining 

material.    
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Predicted temperatures at 8O were, overall, in better agreement with the observed 

temperatures due to less thermal heterogeneity in comparison to the 8I modeled results.  

Influence from advective processes at 8O is negligible where the driving boundary, 

located at the 0.40 m depth interval, is below depths where advection would be greatest.  

The largest discrepancy between observed and predicted temperatures occurs from June 6 

to July 13 and is caused by the large temperature increase at 0.40 m that occurred over 

the same time period (Figure 5.9b).  Since the recorded temperatures at 0.40 m were used 

as the driving boundary for the model the same temperature anomaly propagated 

downward becoming less prevalent at greater depths (Figure 5.10).   

The thaw depth estimate from the GPR transect recorded on August 7, 2005 was 

greater than the thermal model estimate (3.4 ± 0.42 m vs. 2.78 ± 0.05 m) and is also 

greater than any of the interpreted GPR transects recorded at 8I.  The existence of greater 

thaw depths at 8O are likely caused by the presence of larger exposed black rocks above 

the water line resulting in greater amounts of thermal radiation transferring into the 

subsurface.  Observed temperatures also remain above 0 ˚C for an additional month 

compared to 8I temperatures possibly due to greater amounts of heat from radiation 

processes.  The cause for underestimated thaw depths from the thermal model are 

attributed to soil heterogeneities creating heat flow paths not accounted for in the model.   

Model results from the PI site compared poorly to the observed temperatures with 

overestimated temperature values at 0.18 and 0.38 m throughout the summer period, May 

to September (Figure 5.13).  The rapid deviation between measured and modeled values 

at depth between 0.18 and 0.38 m implies assumptions not representative of the true 



 

 

113

conditions.  An inaccurate representation of unfrozen water content could be the primary 

cause of modeled temperature over-estimations.  Observed temperatures illustrate a slow 

response to seasonal temperatures and a consistent thermal gradient that could be caused 

by a low thermal conductivity from greater amounts of unfrozen water mixed with frozen 

peat material occurring over a larger temperature range than what has been modeled.    

Thaw depth estimates from GPR transects imply a slow thaw response that may 

continue to thicken past the last GPR acquisition in September (Figure 5.14).  The 

thermal model illustrates a more rapid response, compared to the GPR interpretations, to 

seasonal temperatures; however, the trend of the zero degree isotherm is very similar to 

the GPR thaw depth interpretations indicating refreezing of the active layer soon after the 

last GPR acquisition date.       

Within the gravel-lined sites maximum thaw depths predicted from the thermal 

models appear to overestimate at the inlet site, 8I, and underestimate at the outlet site, 

8O, compared with GPR interpretations.  This implies differences in subsurface thermal 

property variations between the two sites not accounted for in the models.  Predicted 

thaw depths at the PI site exceed GPR thaw depth estimates and are likely due to 

unfrozen water content that contributes to soil property variations not accounted for in the 

thermal model.    

5.7 Conclusions 

A 1D heat conduction transport model with phase change was used to simulate 

seasonal thaw beneath arctic streams.  Results indicate thermal conduction as the primary 
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contributor to seasonal thaw.   Modeled temperature magnitudes, using the effective 

conductivity values, did not change significantly compared to temperature results from 

conduction values alone supporting evidence that conduction is the primary heat transfer 

process.  The additional advection term improved the model response by removing the 

time lag between the measured and predicted temperatures.  Differences between 

modeled and true temperatures are, primarily, due to homogenous soil property 

assumptions made in the models that affect the amount of thermal contributions from 

conduction.  This study utilizes two distinctly different methods for seasonal thaw depth 

verification beneath arctic streams (GPR and thermal modeling).  Disagreement between 

the two methods indicates the need for soil property measurements in order to better 

constrain numerical model results.   
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APPENDIX A 

Wave Propagation
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WAVE PROPAGATION 

Radar propagation is limited by the conductivity of the medium where only in low-

loss media can radar penetrate deep enough for a useful subsurface image.  To derive the 

wave equation for an EM wave propagating in a conductor we will start with Maxwell’s 

equations.  Combining Faraday’s law,
t
BE
∂
∂

−=×∇
r

r
 with Ampere’s law,

t
DJH
∂
∂

+=×∇
r

rr
, 

in addition to the constitutive relationships yields the following electric field wave 

equation for a homogeneous isotropic medium, 

2

2
2

t
E

t
EE

∂
∂

+
∂
∂

=∇
rr

r
μεμσ ,                                            (A.1) 

where E
r

 is the electric field strength vector (V/m), B
r

 is the magnetic flux density vector 

(T), D
r

 is the electric displacement vector (C/m2), H
r

 is the magnetic field intensity 

(A/m), J
r

 is the electric current density vector (A/m2), t is time (s), and ε, μ, and σ are the 

electric permittivity, magnetic permeability, and conductivity of the medium.  The first 

term on the right side (A.1) represents conduction effects by the applied electric field and 

the second term describes the polarization effects caused by the field. 

A solution to equation (A.1) of the form 

( )tkxieEE ω−= 0

rr
                                                     (A.2) 

yields the complex wave number squared 

μσωμεω ik += 22 .                                                (A.3)
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Taking the square root of equation (A.3) and solving for the real and imaginary parts the 

wave number k can be written as 

βα ik += ,                                                     (A.4) 

where the real part of the wave number is described by 

( ) 2
1

2 1tan1
2 ⎥⎦

⎤
⎢⎣
⎡ ++= δωα K

c
                                       (A.5) 

and the imaginary part of the wave number, attenuation coefficient, and is described by 

( ) 2
1

2 1tan1
2 ⎥⎦

⎤
⎢⎣
⎡ −+= δωβ K

c
.                                      (A.6) 

The parameters c and Ke are the velocity of an electromagnetic wave in free space, 

00

1
εμ

=c , and the dielectric permittivity of the medium, 
0ε
ε

=K , respectively, where 

0ε  is the dielectric permittivity of free space, mF /1085.8 12−× , and 0μ  is the magnetic 

permeability of free space.  For a plane-wave propagating with the angular frequency, ω , 

the loss tangent, δtan , is the ratio of conduction to displacement current density 

assuming that both σ and ε are real 

ωε
σδ =tan .                                                      (A.7) 

GPR is most effective when the loss tangent is very small and the diffusion term 

can be neglected.  Such that 1tan <<δ , the wave number reduces to  

K
c
ωα = ,                                                      (A.8) 

and the velocity, v, is frequency independent given by 
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K
cv ≈≈

α
ω .                                                     (A.9) 

This discussion of the wave equation does not consider material properties that are 

also frequency dependent in which case they should be treated as complex numbers.  In 

the frequency range of GPR, 10 MHz - 1 GHz, the frequency dependence of the dielectric 

permittivity can be assumed to be constant [Davis and Annan, 1989].  In the research 

presented in this dissertation we treat the dielectric permittivity as real and related it to 

the propagation velocity by the expression found in equation (A.9).  We acknowledge 

that frequency dependence, in addition to, scattering loss, source/receiver antenna power, 

transmission characteristics, and ground coupling are not accounted for and assume that 

these factors change much more slowly than the dielectric permittivity and are therefore, 

neglected.   
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APPENDIX B 

Petrophysical Relationship
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PETROPHYSICAL RELATIONSHIP 

The complex dielectric permittivity, K*, (sometimes called the complex dielectric 

constant) is given by Topp et al. [1980] as 

iKKK ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

0

* '
ωε
σ ,                                             (B.1) 

where 
0ε
ε

=K , is the real part of the dielectric permittivity, 0ε  is the permittivity of a 

vacuum mF /1085.8 12−× , and ε  is the permittivity of the material.  The imaginary part 

is the sum of two relaxation mechanisms where 'K  is the imaginary part of the dielectric 

permittivity representing the non-conductive part; 
0ωε

σ  represents the conductive 

medium part where σ  is the zero-frequency conductivity and ω  is the angular 

frequency.  

The electromagnetic (EM) wave velocity, v, defined by Topp et al. [1980] is 

{ }
2
tan11 2

1
2 δ++

=

K

cv ,                                           (B.2) 

where c is the velocity of an electromagnetic wave in free space (3 × 108 m/s) and the 

loss tangent, the ratio of the imaginary to real parts of the complex modulus, is  

K

K
⎭
⎬
⎫

⎩
⎨
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'
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ωε
σ
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Davis and Annan [1977] indicated that the dielectric loss of the imaginary part was much 

less than the real part in frequency ranges from 1 MHz to 1 GHz and if the loss tangent, 

δtan , is much less than 1 and that the magnetic permeability of the soil, μ , is equal to 

that of free space, 0μ , then 

K
cv ≈ .                                                       (B.4) 

With the assumption that the magnetic permeability is equal to that of free space 

and the electric conductivity is low Topp et al. [1980] developed an equation to obtain 

water content, wθ , from the measured dielectric permittivity, K, where 

( ) ( ) ( )32 70.7600.14630.903.3 wwwK θθθ −++= .                         (B.5) 

While not measurable Topp et al. [1980] noted some electrical loss in their estimate of 

dielectric permittivity and therefore called their measured dielectric permittivity the 

apparent dielectric permittivity, Ka, where for low-loss nearly homogenous materials 

KK a ≈ .   

Equation B.5 was determined from regression analysis of data obtained from four 

different soils with varying water content and clay.  The inverse form of the Topp 

equation (B.5) has become one of the standard methods for estimating water content from 

dielectric measurements: 

( ) ( ) ( )362442 103.4105.51092.2103.5 KKKw
−−−− ×+×−×+×−=θ .          (B.6) 

The advantage of using the Topp equation to estimate water content is that only 

dielectric permittivity measurements are needed.  The disadvantage is the empirical 
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nature of its development and limited accuracy when applied to materials different from 

the ones used to develop the relationship.  For the purpose of this research we assume 

that the material properties at each arctic study site are similar to the electrical properties 

of soils used by Topp et al. [1980] keeping in mind that these values are an 

approximation.
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APPENDIX C 

Thermal Parameters for Conduction with Unfrozen Water Content
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THERMAL PARAMETERS FOR CONDUCTION WITH UNFROZEN WATER 

CONTENT 

An analytical solution presented by Osterkamp [1987] is used to account for effects 

of unfrozen water content on temperature dependent thermal properties for freezing and 

thawing soils within the active layer and near-surface permafrost.  For this solution the 

phase boundary is diffuse where the amount of ice gradually increases and the amount of 

unfrozen water gradually decreases from the phase boundary.  Thermal parameters 

needed for the conduction model include the thermal conductivity, apparent volumetric 

heat capacity, and thermal diffusivity. 

Assuming a fully saturated system the thermal conductivity is a mixture of soil 

particles, unfrozen water, and ice and can be represented a geometric mean equation 

[Ling and Zhang, 2004] 

ius
ius KKKK θθθ=                                                   (C.1) 

where Ks, Ki, and Ku are the thermal conductivities of soil, ice, and water.  The 

volumetric fractions of ice, θi, unfrozen water content, θu, and soil particles, θs, sum to 

one.  The unfrozen water content is represented by a power law [Tice et al., 1981] as 

b

u

b
u Ta⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρ

θ                                                   (C.2) 

where ρb and ρu are the dry bulk densities the partially frozen soil and the unfrozen water, 

a  and b are empirically derived material-dependent constants.  The thermal conductivity 

for ice, Ki, is temperature dependent [Dillard and Timmerhaus, 1966] represented by 
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T
Ki +

+=
15.273

19.4884685.0 ,                                         (C.3) 

and the temperature dependence equation for the thermal conductivity of unfrozen water 

content, Ku, [Touloukian et al., 1970] is 

( )TKu +×+= − 15.273106318.111455.0 3 .                             (C.4) 

The apparent volumetric heat capacity for a mixture of soil particles, unfrozen 

water, and ice is calculated from 

T
LCC u

v ∂
∂

−=
θ

                                                   (C.5) 

where the volumetric heat capacity, Cv, is estimated by the weighted mean 

uuiissv CCCC θθθ ++= ,                                          (C.6) 

Cs, Ci, and Cu are the volumetric heat capacities of the soil, ice, and unfrozen water. 

Substitute (C.2) into the second term on the right-hand side of (C.5) yields 

 1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂ b

u

bu TLab
T

L
ρ
ρθ

.                                           (C.7) 

The volumetric heat capacity for peat particles, Cp, and silt particles, Cs, are [Ling and 

Zhang, 2004] 

( )TC p +×+−= − 15.27310255.61333.0 3 ,                             (C.8) 

and 

( )TCs +×+= − 15.27310433.54091.0 3 .                               (C.9) 

From Dorsey [1940], the volumetric heat capacity for ice is 

31014.794.1 −×+=iC                                              (C.10) 
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and the volumetric heat capacity for water is [Cox and Weeks, 1975] 

35231 103482.91012142.51011362.120843.4 −−−− ×+×+×+= TTTCu .     

(C.11) 

The volumetric latent heat for ice freezing from the water is [Cox and Weeks, 1975] 

( )202987.0955.42.333 TTL u ++= ρ .                               (C.12) 

Thermal conductivities used for peat and sand/gravel particles are 0.5 and 2.92 Wm-1˚C-1, 

respectively, and were used in equations (C.1)-(C.4) to calculate values for thermal 

conductivities (Figure C.1).  Equations (C.6) – (C.12) were substituted into equation 

(C.5) to estimate values for the apparent volumetric heat capacity (Figure C.1b).  Water 

content estimates calculated from equation (C.2) are shown in Figure C.1c and, finally, 

the resulting diffusivity values, shown in Figure C.1d, represent values used in the heat 

transport equation (C.5) for peat and sand/gravel soils, respectively. 
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Figure C.1. Variations of (a) thermal conductivity, (b) apparent volumetric heat capacity, 
(c) volumetric water content, and (d) diffusivity with respect to temperature for peat and 
sand/gravel soils. 
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