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ABSTRACT 

Magnetic shape memory alloys (MSMA) are fascinating materials that show a 

recoverable shape change in a rotating magnetic field. Single crystalline MSMA’s display 

magnetic-field-induced strains (MFIS) up to 10%. However, single crystals have inherent 

drawbacks such as cost and chemical segregation during production. Polycrystalline 

materials are easier to produce and display chemical homogeneity but display a much 

smaller MFIS than single crystals. It has been shown recently that adding porosity to 

polycrystalline Ni-Mn-Ga (i.e. metal foam) can increase MFIS.  

 

Variables that affect the performance of polycrystalline Ni-Mn-Ga foam include 

phase transformation temperature, pore architecture, spatial distribution of pores, 

porosity, training, and magnetic anisotropy/texture. Samples were tested for MFIS and 

phase transformation temperatures to probe for a correlation. Single pore foam 

architecture with a mono-modal pore size distribution and dual pore foam architecture 

with a bi-modal pore size distribution were compared in terms of microstructure and 

magneto-mechanical behavior. Pore distributions were characterized with x-ray 

tomography and compared with the temperature dependent MFIS, to deduce the role of 

the large and small pores. Samples were systematically etched and tested for MFIS to 

investigate the effect of porosity on strain. Magneto-mechanical, thermo-magnetic, and 

thermo magneto-mechanical training effect on MFIS was also investigated.   
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 The results are discussed in terms of a concept of a network of struts (bridging 

metal) with hard and soft links. Where, hard links are struts that are unable to deform. It 

was found that increasing porosity increased strain, confirming the hypothesis that 

porosity is responsible for enhanced MFIS. The porosity strain relationship indicated strut 

thickness is a crucial factor in determining the strain, i.e. the thicker the strut the “harder 

the link.” The dual pore foam has much smaller struts and therefore has fewer hard links. 

Pore distribution affected the number and distribution of hard links. The metal is more 

compliant when the sample temperature approaches the phase transformation 

temperature. Therefore, samples with transformation temperatures close to the testing 

temperature contain softer links and produce more MFIS. Hard links can also be softened 

by training 

 

For optimal MFIS and fatigue resistance foams of dual pore architecture with a 

spatially homogenous distribution of pores, high porosity ( 65-70%) and a martensitic 

phase transformation temperature close to testing temperature should be employed.  

Foams with such optimized microstructures and chemical homogeneity are expected to 

perform reproducibly and consistently. 
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1 INTRODUCTION 

Fifty years ago materials science focused on strength and mechanical properties. 

Present day material science has evolved the focus unto functional materials and 

materials for devices. Unique materials properties such as magnetic, thermal, and 

electrical have been utilized for applications that have revolutionized the world. In 1903 a 

German miner /chemist Heusler discovered that if he alloyed three non metallic metals 

(Cu, Al, and Mn) the resulting alloy would be found to be magnetic. These types of 

alloys would later be called Heusler alloys, named after the discoverer [1]. In the late 

1960’s at a naval ordinance lab, 12  intermetallic alloys, including Nickel Titanium 

(NiTi), were selected for work on missile reentry nose cones [2]. During testing it was 

discovered that NiTi had unusual properties such as temperature dependent sound 

dampening and significant length changes after annealing [2]. At a Naval Ordinance Lab 

(NOL) management meeting, Dr. William J. Buehler brought a thin sheet of the unusual 

metal to the meeting and bent it in multiple places in an accordion shape.  Associate 

Director of NOL, Dr. David Muzzey , then heated the sample with his tobacco pipe and 

found the metal returned to its original shape “with considerable force” [2]. The shape 

memory alloy NiTi was discovered out of pure curiosity and some say accidentally.  
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Shape memory alloys (SMA) are a class of functional materials that can change 

their shapes and dimensions under the application of external fields [3-5]. The external 

fields used may be the thermal, electric or magnetic. Thermal activated SMA, such as 

NiTi, may exhibit plastic deformation up to 6%  which is recovered by heating the 

deformed martensite through the martensitic/austenitic transformation temperature [6]. 

Magnetic Shape Memory Alloys (MSMA) are activated by a magnetic field, in the 

martensitic state, in which strains can be recovered by rotation of the magnetic field [7-

11]. Therefore, MSMAs do not have to proceed through a phase transformation to 

recover the original shape. MSMA include antiferromagnetic materials, such as 

Ni45Co5Mn36.7In13. and Mn–Fe–Cu which can show strains of 3% and 1.6% at magnetic 

fields of 8 and  3.8 T respectively [12, 13]. Ferromagnetic MSMA, include Fe–Pd, Fe–Pt 

and Ni–Mn–Ga.  FePd demonstrates strains up to 0.5% [11, 14, 15]. In 1996, Ullakko et 

al. found a 0.2% magnetic field induced strain (MFIS) in a Ni-Mn-Ga single crystal [11]. 

The MFIS of Ni–Mn–Ga single crystal increased up to 6%  in 2000 [16] and to 9.5% in 

2002 by slightly varying the composition and martensite variant selection (otherwise 

called training) [7, 10, 17, 18]. Therefore off stoichiometric Ni-Mn-Ga has been one of 

the most promising MSMA and has been widely studied. 
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2 MOTIVATION 

Ni-Mn-Ga has high potential for uses as an actuators, sensors, and power 

generation because of the magnetic shape memory properties [18-23]. One advantage of 

MSMA over thermally activated SMA is that the actuation frequency can be 1000 times 

faster, depending on size, due to the low thermal conductivity of SMA [24]. Piezoelectric 

materials can deform at frequencies up to 10
7
 Hz but at much lower strains than MSMAs. 

Magnetostrictive materials such as Terfenol-D (Tb0.27Dy0.73Fe2) can deform with the 

same frequency as MSMA s but only to 0.1% strain [25].  

 

Giant MFIS, at room temperature, has only been shown in single crystals of Ni-

Mn-Ga. Single crystal growth is time consuming with high production costs. Crystal 

growth also leads to chemical segregation throughout the crystal rod [26, 27]. 

Consequently there are many hindrances in studying and producing single crystals with 

reproducible properties. Polycrystalline materials show chemical homogeneity and have 

much lower production costs. Polycrystalline Ni-Mn-Ga alloys are not widely studied due 

to the small amounts of Magnetic Field Induced Strain (MFIS) [28-30]. It is assumed that 

the low MFIS is due to geometric constraints of the grain boundary on twin boundary 

motion. To reduce the hindrance on twin boundary motion in polycrystals often highly 
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textured, large grained specimens with extensive mechanical training or thin films are 

studied [28, 31-38].  

 

Recently is has been proposed that porosity may also be an additional means of 

increasing MFIS [39]. Pores take up grain boundaries and effectively reduce the degree 

of internal constraint within the polycrystal. The first Ni-Mn-Ga foams, with a 

monomodal pore size distribution, demonstrated MFIS larger than reported values for 

other polycrystalline Ni-Mn-Ga giving credence to the assumption [39]. Therefore 

porosity may lead to enhancement of MFIS. 
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3 BACKGROUND 

 

3.1 Magnetism 

The magnetic moment can be thought of classically with a current loop model given by 1, 

where I is current and A is area[40, 41]. 

AI 


                                                              (1) 

A magnetic moment 


can also be attributed to an electron orbiting a nucleus given 

below [40, 41]. 

L
m

e 

2
                                                             (2) 

Where m is the mass of the electron, e is the charge and L


 is the angular momentum. The 

magnetic moment can also be written in terms of the spin S


as shown in 3[40, 41].
 
 

S
m

e 


                                                              
 (3) 

 

In a solid, the magnetic moments of atoms are summed up to give the 

macroscopic magnetic moment per unit volume, otherwise known as magnetization M


. 
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A magnetic field can be described by the magnetic field induction B


 and the magnetic 

field intensity H


 which are related through the permeability of free space [40, 41]. 

HB


0                                                              
 (4) 

In a material, B


 and H


 are related through 5. The magnetization and magnetic field 

intensity in a material are related through the  magnetic susceptibility (χ) given in 6.[41] 

)(0 MHB


 
                                                      

 (5) 

HM


                                                               (6) 

Magnetic susceptibility can either be positive for paramagnetic materials or negative for 

diamagnetic materials.  

 

3.1.1 Diamagnetism 

In diamagnetic materials no magnetic dipoles exist without a magnetic field. In a 

diamagnetic material when a field is applied a dipole is created through the induction 

phenomenon described by 1. The induced dipole orients opposite to the applied field due 

to Lenz law (Figure 3.1). Diamagnetic materials typically have no unpaired electrons. 
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Figure 3.1 Atomic Dipoles Without (Left) and With (Right) a Magnetic Field 

Applied to a Diamagnetic Material. Reprinted with Kind Permission From [42]. 

 

 

3.1.2 Paramagnetism  

In a paramagnetic material there exist magnetic dipoles without the presence of a 

magnetic field. Due to thermal energy the dipoles are randomly oriented.  When a field is 

applied the dipoles will align parallel to the field and exhibit a net magnetization (Figure 

3.2). Typically, materials that exhibit paramagnetic properties are those with unpaired 

electrons. 
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Figure 3.2 Atomic Dipoles of a Paramagnetic Material Without an Applied Field 

(Left) And With An Applied Field (Right). Reprinted With Kind Permission From 

[42]. 

 

 

3.1.2.1 Ferromagnetism 

Neighboring magnetic moments can couple parallel to each other and be 

considered ferromagnetic or couple anit parallel and be considered antiferromagnetic 

illustrated in Figure 3.3. Ferromagnetic materials can exhibit spontaneous magnetization 

without an applied field.  

 

Figure 3.3 Magnetic Coupling can be Ferromagnetic and Align Parallel to Each 

Other or Antiferromagnetic And Align in Opposite Direction to Each Other. 
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Magnetic domains are groups of magnetic dipoles; they form such that areas of 

the material show different orientations of the magnetic moments. Figure 3.4 shows the 

change in magnetic domains of a ferromagnetic material with increasing field. At first the 

magnetic domains are oriented such that there is no net magnetization. As the magnetic 

field increases the domains that are oriented with the applied field, grow and the other 

domains shrink. As the domains grow the magnetization increases. At some magnetic 

field only one domain remains that is slightly rotated from the direction of the applied 

magnetic field. With an increase in magnetic field the domain rotates parallel to the 

direction of the magnetic field and results in magnetization saturation. The point at which 

the field increase no longer changes the net magnetization is called magnetization 

saturation.   
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Figure 3.4 The Change in Magnetization with Increasing Field Strength is Shown 

Along with the Change in Magnetic Domain Structure. Domain Barriers are 

Marked with Solid Lines and the Direction of Net Magnetization are Marked with 

the Arrow. The Dotted Line is the Magnetization Saturation Point Where All 

Magnetic Domains are Fully Aligned with the Field. Reprinted with Kind 

Permission from [42]. 

 

 

If the field is decreased back to zero the magnetization will not fallow the same 

path and there will be some remnant magnetization Mr (Figure 3.5). In fact to return the 

magnetization back to zero the field must be reversed. The negative field that is required 

to give a magnetization of zero is called the coercivity Hc (Figure 3.5).  A magnetic 

hysteresis exists because energy has to be dissipated for domain wall motion.   
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Figure 3.5 Hysteresis Loop of a Ferromagnetic Material Showing Remnant 

Magnetization Mr and Coercivity Hc. Starting at the Origin to Initial Magnetization 

(Dashed Line)Up to Saturation (S). The Magnetic Field is Then Decreased to Zero 

Where Some Remnant Magnetizations Mr is Observed. A Negative Magnetic Field is 

Applied Past the Point of Zero Magnetization (Hc) Until the Domains are Fully 

Saturated in the Opposite Direction as the Original Saturation Magnetization. The 

Magnetic Field is Once Again Driven to Zero and Then Increased Until Domains 

are Once Again Saturated. Reprinted with Kind Permission from [42]  
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3.1.2.2 Magnetic Ordering in Heulser Alloys  

In Heusler alloys the ordering of the L21 lattice is crucial for formation of the 

magnetic moments. In Ni2MnGa, manganese atoms carry most of the magnetic moment 

in the unit cell.  Normally in elemental manganese magnetic dipoles couple 

antiferromagnetic between neighboring atoms. However, in the L21 structure the 

manganese atoms couple through the adjacent atomic orbital, to give rise to 

ferromagnetic ordering. The magnetic coupling is driven by the spacing of the manganese 

atoms.  Therefore MSMs magnetic properties are extremely compositionally sensitive. In 

off stoichiometric Ni-Mn-Ga excess Nickel, Manganese, or Gallium fill positions not 

specified by the L21 structure and may lead to localized antiferromagnetic coupling.  

 

3.1.2.3 Magnetic Transitions 

Thermal fluctuation disrupt any magnetic order and therefore cause second order 

magnetic transitions. In a ferromagnetic material the temperature at which a sample loses 

magnetization is called the Curie temperature or Tc seen in Figure 3.6. Similarly in 

antiferromagnetic materials the temperature at which the antiferromagnetic ordering is 

lost is called the Ne`el Temperature.   
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Figure 3.6 Curie Transformation of Iron and Ferrite. The Saturation Magnetization 

Decreases with Increasing Temperature until All Magnetization is Lost. The 

Temperature at Which Magnetization Reaches Zero or Tc, is 750 °C and 560 °C for 

Iron and Ferrite Respectively. Reprinted with Kind Permission from [42] 
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3.1.3  Anisotropy 

Anisotropy occurs in a material when material properties have a directional 

dependence.  Magneto crystalline anisotropy occurs when the magnetic properties depend 

on the crystallographic direction. With magneto crystalline anisotropy there will be an 

“easy” and “hard’ direction of magnetization, that correlates to some crystallographic 

direction. The easy direction of magnetization is such that a lower magnetic field is 

needed to reach magnetization saturation (marked by a dashed line in Figure 3.7). The 

hard direction of magnetization is the crystallographic direction that requires a higher 

magnetic field, to reach magnetization saturation.  Figure 3.7 shows a plot of 

magnetization versus field, in two different crystallographic orientations, of a single 

crystal of magnetite.  Both curves reach the same saturation magnetization, but the slopes 

of the M-H curve before saturation are very different. The steeper M- H curve correlates 

to applying a magnetic field parallel to the easy axis of magnetization, and the shallow 

slope corresponds to applying the magnetic field parallel to the hard axis of 

magnetization.  Therefore the magnetization at any field below saturation will be higher 

for the easy axis of magnetization.  



15 

 

 

 

Figure 3.7 Magneto Crystalline Anisotropy for Magnetite. The Easy Direction (blue) 

of Magnetization Requires Less Field to Reach Saturation than the Hard Direction 

(red) of Magnetization (Marked by Dotted Line). The Easy and Hard Directions of 

Magnetization Correlate to Crystallographic Orientation Shown in the Unit Cell. 

Reprinted with Kind Permission from [43] 

 

The area between the curves corresponds to the magneto crystalline anisotropy 

energy. In polycrystals magneto crystalline anisotropy arises from a preferred orientation 

of the easy and hard axis of magnetization (i.e. from crystallographic texture).      

 

When a magnetic field is an applied to a material magnetization will occur. The 

magnetization in the media creates an internal magnetic field ( intH


) opposing the applied 

field which is leads to internal demagnetization. The internal demagnetization therefore 

reduces the applied magnetic field. The internal demagnetization depends on the shape. 
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Consequently shape anisotropy will exist for any non spherical shape.  The effective field 

intensity effH


 is the applied field intensity appH


 diminished by the internal magnetic field 

which is proportional to a size dependent demagnetization factor (N) and magnetization

M


[40, 41].
  

 

MNHHHH demagappappeff


 int

                                                (7)  

 

A detailed explanation of determining demagnetization factors for the parallelepiped 

samples of this study are given is section 4.2.1. The magneto crystalline anisotropy of Ni-

Mn-Ga is discussed more in section 3.3. 

 

3.2 Crystal Structures 

The high temperature austenite phase of Ni2MnGa has face centered cubic lattice 

with the atomic positions and space group shown in Table 3.1.  

Table 3.1 Crystal Structure Information for the L21 Ordered Austenite Phase of 

Ni2MnGa. 

Space 

Group 

Lattice 

Parameter 

Atomic Positions Illustration 

Fm-3m a= 5.81Å Ga 0 0 0 

Mn 0 0 0.5 

Ni 0.25 0.25 0.25 

Ni 0.25 0.25 0.75 
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The low temperature martensite phase can adopt either modulated or non 

modulated structures. The most commonly reported structures are 14M, 10M (M 

meaning modulated) or non-modulated NM, for which crystal information can be found 

in Table  A.1 in the appendix.   

 

14M and 10M are modulated structures which are also referred to as 7M and 5M 

respectively. 14M and 10M structures are described with ( 5 , 2)2 and ( 3 ,2)2 stacking 

sequences using Zandov notation which is illustrated in Figure 3.8 [8, 44-46]. The 

modulated cell can be chosen from multiple reference frames but here a body centered 

monoclinic cell was chosen to fully reflect the lattice symmetry (Figure 3.8). The long 

period stacking occurs by displacement of (001)m (m is referring monoclinic martensite 

reference frame) in the [100]m direction[8]. The b axis of the austenite becomes the b axis 

of the modulated structures and the )110( of the cubic cell becomes the (001) plane in the 

Martensite cell.[8]   
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Figure 3.8 Crystal Structures of the Modulated Martensite Lattice. 14M (Left) 

Shows an Ordered Displacement, Traced by the Dotted Line, in the [100] Along the 

Long Period [001] Direction, and No Modulation Along the b Direction. The 

Ordered Displacement is Between (001) Type “Basal” Planes and is Described by 5 

Steps in One Direction Followed by 2 Step in the Opposite Direction Repeated 

Twice. 10M (right) has Less Modulation as Described by the ( 3 ,2)2 Stacking 

Sequence (Traced with Dotted Line). Gray Circles Represent Nickel, Pink 

Represents Manganese and Green Represents Gallium. 

  

 

The modulated structures can also be viewed from the reference frame of the 

austenite or parent lattice. If viewed from the austenite reference frame tetragonal and 

orthorhombic cells for 10M and 14M are reported. However if the austenite reference 

frame is drawn into the modulated lattice, it can be seen that the resulting cell cannot be 
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described with tetragonal or orthorhombic lattices since no angles are 90° and the shape  

of the “exact” cell vary from layer to layer (Figure 3.9) . The tetragonal and orthorhombic 

cells are therefore approximations of the modulated lattice and are thus pseudo-cells. If 

the pseudo-cell is draw throughout the entire modulated unit cell the average of all angles 

and lattice parameters result in lattice parameters which match experimentally determined 

lattice parameters of tetragonal and orthorhombic cells [26]. The non modulated lattice 

can be accurately described by a tetragonal cell and is described in Table 10.1 in the 

appendix. Orthorhombic and tetragonal pseudo cells are convenient to describe the 

magneto mechanical behavior and therefore will be used here.   
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Figure 3.9 14M Lattice Viewed from the Austenite Reference Frame. The White 

Boxes are the Distorted Martensite Cells as Would be Viewed from the Austenite 

Reference Frame. The Cell are Traced up Through the Modulated Lattice do not 

Result in any 90° Angles and Therefore Cannot be Described with an Orthonormal 

Bravais Lattice. 

 

Composition is one main factor affecting crystal structure.  Richard et al. in 2006 

characterized the crystal structure of powdered single crystals with varying compositions 

and found multiple combinations of structures shown in Figure 3.10 [26]. Furthermore, 

residual stress can change the crystal structure. [34, 47].   
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Figure 3.10 Composition Effects on Crystal Structure After Annealing. 

Orthorhombic is Plotted with Squares, Tetragonal with Circles, and Mixtures with 

Triangles. The Solid Sloped Lines are Different Temperatures. Reprinted with Kind 

Permission from [26].  

 

 

3.3 Anisotropy of  Ni-Mn-Ga 

In the austenite phase the material has little magnetic anisotropy with saturation 

occurring at 0.04-0.05 T depending on composition [21, 48]. In the martensite phase the 

magneto crystalline anisotropy energy can range from 50-250 kJ/m
3
depending on the 

crystal structure[49, 50]. In the 10M, 14M, and NM tetragonal martensite the short lattice 

parameter of the pseudo unit cell is the easy axis (or plane) of magnetization (Figure 

3.11) [50]. For the 10M crystal structure (Figure 3.11a) there is an easy direction of 
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magnetization parallel to the [001] direction (dashed line) and a hard plane of 

magnetization in the (001) plane. In the NM martensite (Figure 3.11b) there is a easy 

plane of magnetization (001) and a hard direction of magnetization parallel to the [001] 

direction (black circles).The orthorhombic cell for the 14M martensite (Figure 3.11c) 

shows three axis of magnetization: an easy axis parallel to [001] direction, an 

intermediate axis (dotted line) parallel to [010], and a hard axis parallel to [100] [50]. 

Therefore for all four crystal structures discussed, at a low field the easiest direction of 

magnetization will have the highest magnetization.   
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Figure 3.11 Magnetic Hysteresis Curves for Three Crystal Structures of Ni2MnGa. 

For the 10M (a) there is an Easy Direction of Magnetization Parallel to the [001] 

Direction (Dashed Line) and a Hard Plane of Magnetization in the (001) Plane. In 

the NM Martensite (b) there is a Easy Plane of Magnetization (001) and a Hard 

Direction of Magnetization Parallel to the [001] Direction (Black Circles).The 14M 

Martensite (c) Shows Three Axis of Magnetization an Easy Axis Parallel to [001] 

Direction, a Medium Axis (Dotted Line) Parallel to [010], and a Hard Axis Parallel 

to [100] Lattice Parameters are Given for each Crystal Structure. Reprinted with 

Kind Permission from [50]. Copyright [2002] IEEE.  
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3.4 Martensite Phase Transformation 

Martensite phase transformations are diffusionless displacive transformations[51]. 

In MSMA a high temperature phase (cubic for Ni-Mn-Ga) goes through a Bain distortion 

where two or three axes are distorted such that the symmetry is reduced[8, 52]. The 

distortion is followed by a lattice invariant shear in which twins are formed to minimize 

strain energy from the phase transformation[6]. Twins are defined as two crystals related 

through a mirror operation. Figure 3.12 shows a view of the austenite and martensite 

lattice, with a simplified interface relationship. Dislocations form at the twin interface 

and facilitate the motion of the twin boundaries. Thus, twinning dislocations are 

responsible for the MFIS seen in MSMA’s, which will be discussed in section 3.5.1. 
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Figure 3.12 Change in Structure Upon the Martensite Phase Transformation. The 

Cubic Austenite is the Lattice on the Right Where the Cubic Cell is Marked. Upon 

the Martensite Phase Transformation (Left Lattice) the Lattice Goes Through a 

Tetragonal or Orthorhombic Distortion, Marked by the Gray Tetragonal Cells, 

Followed by Lattice Invariant Shear that Result in Twin Formation. The Mirror 

Symmetry by Twin Formation is Shown by the Mirror Relation of the Two 

Tetragonal Cells. Reprinted with Kind Permission from[53].  

 

Once in the martensite phase it is possible for intermartensitic transformations to 

occur. Severe cooling or force can initiate the intermartensitic transformation. 

Intermartensitic transformations have been observed to occur such that a 14M structure 

transforms to a 10M and the 10M follows to NM structure [54-57].  

 

3.4.1 Thermodynamics of Martensite Transformations 

The strain energy caused by the nucleation and growth of the martensite phases 

causes a martensite phase transformation hysteresis with many measureable quantities 
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such as magnetization and strain (Figure 3.13). Upon heating the austenite starts to form 

As resulting in an increase of magnetization. As the volume of austenite is increased the 

magnetization is increased until the transformation is finished at Af. Magnetization is lost 

upon further heating at the Curie temperature Tc. Cooling restores the magnetization and 

initiates the martensite phase transformation Ms. The magnetization is reduced as the 

volume fraction of martensite is increased until the materials is fully martensite Mf. 
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Figure 3.13 Phase and Magnetic Transformation for A Ni-Mn-Ga Polycrystal. Upon 

Heating the Austenite Starts to Form As Resulting in an Increase of Magnetization 

as the Volume of Austenite Increases until the Transformation is Finished Af, 

Marked with Red Lines. Magnetization is Lost Upon Further Heating at the Curie 

Temperature Tc. Cooling Restores the Magnetization and Initiates the Martensite 

Phase Transformation Ms. The Magnetization is Reduced as the Volume Fraction of 

Martensite Increases Until the Materials is Fully Martensite Mf , Marked With Blue 

Lines.   

 

The additional strain and surface energies due to martensite formation must be 

accounted for within any thermodynamic energy expression [6, 51, 58-61]. To proceed 

with a favorable transformation the specimen must be under cooled or over heated to a 

critical temperature at which the strain energy is overcome by the change in temperature 
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[6, 51, 58-61].  Additionally the formation of the second phase will add strain energy 

requiring more work to be put into the system for the phase transformation to proceed.[6, 

51, 59] Therefore, the transformation will happen over a range in temperature such that 

As≠Af and Ms≠Mf which is seen in Figure 3.13 [6, 26, 51, 59]. Finally the total Gibbs free 

energy of martensite formation is a function of the chemical free energy and the non-

chemical free energy.[6] Where ΔGc is the chemical energy from the structural change, 

ΔGs is the surface energy between parent and martensite, ΔGe is the elastic or plastic 

strain energy term around the martensite.  

esc

mp GGGG  

                                             
(9) 

Simplifying further the Gibbs free energy of transformation becomes, 

             ncc

mp GGG  

                                                
(10) 

Where ΔGnc is non-chemical energy term and is the sum of the surface and elastic strain 

energy terms. 

 

The non-chemical free energy can be different based on the type of 

transformation. There are thermoelastic and non thermoelastic transformations [6, 51, 58, 

59]. Thermoelastic martensite transformation occurs when the austenite- martensite 

interface boundary is mobile and there is total elastic variant reversion [6, 58, 60, 61]. 

Elastic variant reversion means the orientation of the parent phase is remembered and 

recaptured during phase cycling [61]. Thermoelastic transformations are necessary for a 

working MSMA or SMA and often result in a small non chemical free energy term. Non-

thermoelastic transformations do not have a mobile interface and upon variant reversion 
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the orientation is not remembered [6, 61]. Non-thermoelastic transformation results in an 

elastic and plastic strain, causing a larger non chemical free energy term. A non-thermal 

transformation is typical of martensite formation in steel [6, 61].  

 

3.5  Magneto Mechanical Properties  

 

3.5.1 Twin Boundary Motion 

  The magnetic shape memory effect is achieved by twin boundary motion, 

mediated through the motion of dislocation [8, 19, 53]. Twin boundaries will move in 

response to an applied force, such as stress or magnetic field illustrated in Figure 3.14 [7-

9, 11, 17, 19, 53, 62, 63]. The anisotropy of the material is the driving force for twin 

boundary motion.  The motion will proceed, such that twin variants that have the c axis 

aligned with the applied force will grow, at the expense of the surrounding variants [7-9, 

11, 17, 19, 53, 62, 63].  The twin variant growth provides the overall shape change as 

shown in Figure 3.14.  The theoretical strain of a single crystal can therefore be 

calculated by martensite lattice parameters. The theoretical strains for  NM is 21% , 10M 

is 6%, and 14M is 10% [7, 11, 17, 62-64]. For twin boundaries to move in a rotating 

magnetic field the magneto stress on the twin dislocation σmae must be greater than the 

twinning stress σtbm.  
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Figure 3.14 Twin Boundary Motion Due to an Applied Magnetic Field. The Easy 

Axis of Magnetization is Marked with an Arrow Inside the Cell. A) In the Initial 

State There are Two Distributions of the Easy Axis and Therefore Two Martensite 

Variants. B) In the Intermediate State A “Week” Magnetic Field is Applied Which 

is Enough to Move the Twin Boundaries. The Boundaries Move Such that the 

Variant with the Easy Axis of Magnetization Aligned with the Field Grows and the 

Second Variant Shrinks. C) Lastly with a Stronger Magnetic Field with Twin 

Boundaries Can Move Completely Through the Lattice Resulting in a Single 

Variant State. Reprinted with Kind Permission from[65]. 

  

 

3.5.2 Twinning Incompatibilities  

Twin microstructure has a large impact on the magneto-mechanical properties as 

well as the fatigue life [8]. It is seen that self accommodated martensites (many twin 

variants) show very small strains as compared to the single variant or trained state, which 

is illustrated in Figure 3.15[8, 17].  Single variant microstructures show high strain but 

short fatigue lives. Fine twins show smaller strains but longer fatigue life [8, 66]. 
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Figure 3.15 Changes in Magneto-Mechanical Behavior with Microstructure of 

Single Crystals. A Thermo-Mechanically Trained Sample with a 14M Structure 

Shows the Theoretical Maximum in Strain (A) With a Narrow Range of Field 

Angles that Resulted in Strain. The Strain Caused By a Magnetic Field is Small in a 

Self Accommodated State (B) and Occurs Over a Wide Range in Angles. Trained 

and Self Accommodated Microstructure Might Exist Which are Shown in (C,D). 

Adapted and Reprinted with Kind Permission from [8, 17] 

    

   

Upon studying the fatigue life in single crystals, by mechanical cycling, voids and 

cracks were formed along the twin boundaries shown in Figure 3.16.  
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Figure 3.16 Micrographs of 10M Single Crystals After Mechanical Fatigue Testing. 

A,B) Show Pore Formation at the Twin Boundary and C,D) Show Cracking at the 

Twin Boundary Which was Often Connected to the Pores. Reprinted with Kind 

Permission from [67].  

  

Cracks and voids are caused by dislocation pile ups. The pile ups initiate new 

surface in order to relax the high stress concentration [7, 17, 19, 53, 67].  Dislocation 

pinning by defects such as surface deformation, impurity atoms, or inclusions, decrease 

twin mobility [7, 17, 19, 53, 67, 68].  Twinning incompatibilities also hinder twin 

mobility through dislocation repulsion between twin variants. Twin interactions can 

therefore severely impact the strain and performance of MSMAs. 
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3.5.3  Martensite Variant Selection Via Training  

Without internal or external constraints, all directions of Bain Strain and lattice 

invariant shear associated with twin formation are equally likely. Thus all twin variants 

have equal formation energies during the martensite phase transformation, and a self 

accommodated structure will arise [6]. However, if some external force is applied, 

martensitic variants with transformation strain in the direction of the force will have a 

lower non-chemical free energy term and therefore be more favorable to form. Hence, 

applying force during the martensite phase transformation allows for selection of a 

twinning system [7, 17, 68]. Twinning system selection is often referred to as training. 

Mechanical and magnetic forces can be used for training and are referred to as thermo-

mechanical and thermo-magnetic training. Training can also proceed without thermal 

assistance. Deformation either mechanically or by magnetic field, moves twin boundaries 

such that after many cycles of deformation unfavorable twinning systems are eliminated 

[7, 17, 68]. Training is one method commonly used for reduction of twinning 

incompatibilities, and increasing twin boundary mobility. 

 

3.6 Polycrystals 

 

3.6.1 MFIS in Fine Grained Polycrystals 

In polycrystalline materials the mechanical properties are dependent of the grain 

size. For example, the yield stress follows the Hall-Petch relationship. 
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(11) 

The smaller the grain size dgb the higher the yield stress where σo is the single crystalline 

yield stress and K is a constant [69]. Smaller grains are therefore better for hardening, as 

the dislocation motion responsible for plasticity, is hindered by the grain boundaries. In 

MSMAs the yield stress must be low to allow for twin boundary motion during the 

application of a magnetic field. Therefore very little MFIS can be achieved in fine 

grained materials. 

 

3.6.2 Grain Boundary as Internal Constraints 

Grain boundaries will suppress twining due to internal geometric constraints at 

the grain boundary. At the grain boundary twinning incompatibilities will wither lead to 

the formation of voids or suppression of twin boundary motion. Grain boundaries can 

constrain MFIS (or inhibit twin boundary motion) in a polycrystalline material in 

multiple directions depending on the grain structure and the direction of strain (Figure 

3.17). For comparison single crystals have no grain boundaries and can show up to 6 and 

10% maximum strain for 10M and 14M respectively. Ni-Mn-Ga fibers with bamboo 

grains where grains span the thickness of the fiber have one dimensional constraints. 

Fibers with bamboo grains have been reported to show up to 1% MFIS [70]. Thin films, 

in which the grains span the thickness of the film, have two dimensional constraints and 

show up to 0.04% MFIS [71].  Bulk large grained polycrystals of Ni-Mn-Ga have three 

dimensional constraints and show minimal MFIS. MFIS of up to 0.3% is only found in 
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highly textured, mechanical trained, bulk polycrystals [32, 33, 35]. Upon heating to  

temperatures close to the martensite phase transformation the MFIS may increase to 1% 

due to temperature effects on twin boundary mobility [33]. Texture diminishes 

incompatibilities across the grain boundaries. Training further reduces twinning 

incompatibilities within the grains [32, 33, 72]. 

  



36 

 

 

 

Figure 3.17 Grain Structures in Different Polycrystalline Magnetic Shape Memory 

Alloys. a) Bulk Course Grained Polycrystal having Three Dimensions of Constraint 

on Twin Boundary Motion B) Thin Films where Grains Span the Thickness of the 

Film having Two Dimensions of Constraint on Twin Boundary Motion and C) 

Fibers Showing One Dimension of Constraint on Twin Boundary Motion.  
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Recently textured platelet polycrystals (Figure 3.18) demonstrated 0.16% 

MFIS.[38] The textured platelets grain boundary network where most grains span the 

length of the sample. The textured platelets have smaller grains than the samples 

reporting 0.3% strain. Because of the geometry of the grains the textured platelets can 

show half of the strain reported for large grained textured polycrystals.   The above 

combined data suggests that not only does the dimension of constraint affect strain but 

grain boundary volume fraction is also crucial in enhancing MFIS [73]. 

 

Figure 3.18 Micrographs of Platelet Geometry. A) Microstructure of an Entire 

Directionally Solidified (ds) Polycrystal Detailing Where the Platelet Sample was 

Cut. B) EBSD Map of Platelet Sample Showing Grain Structure and Texture. 

Reprinted with Kind Permission from [38].  
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3.6.3 Porosity to Enhance MFIS 

Another method of reducing grain boundary volume fraction without introducing 

texture is to introduce porosity. Pores take up the grain boundaries as seen by comparing 

Figure 3.19 a and b. Introducing pores result in a porous network of bridging metal called 

struts which connect at points called nodes (Figure 3.19c). Further, after introduction of 

porosity the remaining struts are mostly single crystalline (Figure 3.19b) leaving the grain 

boundaries in the nodes thus reducing the constraint on twin boundary motion of the 

whole network.   

 

Figure 3.19 Adding Porosity Reduces Grain Boundary Volume and Results in a 

Network of Struts. A) Bulk Polycrystalline Material Before and B) After Addition of 

Porosity. After Addition of Porosity the Material Becomes a Network of Bridging 

Metal “Struts” And Nodes. 
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3.6.3.1 Foam Deformation Mechanisms: 

The free space of the pores opens avenues for further mechanisms of deformation 

besides twin boundary motion. A typical stress strain curve, in compression, for metal 

foams (Figure 3.20 left) usually shows an initial elastic deformation region followed by a 

plateau of plastic deformation, and upon additional stress the metal foam starts to 

densify[74]. Densification can clearly be seen in shock testing where the foam cells have 

collapsed to a low porosity behind the shock front (Figure 3.20 right)[75].   

 

Figure 3.20 Metal Foam Deformation During Compression. Right) Typically Foam 

Deforms First by an Elastic Deformation Region Followed by a Plateau of Plastic 

Deformation,  and Finally Densification Occurs Through Cell Wall Collapse. Left ) 

Illustration of Densification Through Cell Wall Collapse During Taylor Cylinder-

Hopkinson Bar Impact Testing in a Metal Foam.  Reprinted with Kind Permission 

from [74, 75]. 

 

  

In an open cell metallic foam (Figure 3.21a) deformation modes such as: strut 

bending (Figure 3.21b), buckling (Figure 3.21c), and hinging (Figure 3.21d) may occur. 
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In bending mode of deformation in an open cell metal the struts normal to any force will 

bend, typically this is an elastic process. Buckling mode occurs in the struts parallel to the 

force. Additionally, strut bending occurs in the struts normal to the force to balance the 

torque.  Lastly when the struts parallel to the force are rigid the corners or nodes can act 

as hinging points allowing the struts normal to the force to tilt or rotate.  

 

Figure 3.21 Deformation Mechanism in an Open Cell Metallic Foam. A) Open Cell 

Without Deformation. As Force is Applied B) Struts Normal to the Force Will Bend 

C) In Addition the Struts Parallel to the Force May Buckle C) If Struts are Rigid the 

Nodes May Act as a Hinging Point.  Reprinted with Kind Permission from [75].  
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4  EXPERIMENTAL 

 

4.1 Materials 

 

4.1.1 Parent Ingot Casting 

99.9% Nickel pellets (ESPI), 99.9% electrolytic Manganese (Alfa Aesar) and 

99.999% Gallium (Alfa Aesor) pellets were mixed to give the nominal composition 

shown in Table 4.1 and was induction casted with a Reitel casting furnace into copper 

molds. This solid ingot was then used for foam fabrication.  

 

4.1.2 Foam Fabrication 

All Ni-Mn-Ga foam (NMGF) samples were made by Northwestern University in 

Evanston Illinois under the direction of Dr. David C Dunand. Foams were cast by either 

Dr. Xuxei Zhang or Peiqi Zheng. In a collaborative effort the NMG foam was 

characterized where processing was focused on by Northwestern University and 

performance and magnetic properties were characterized at Boise State University. 
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 Two types of foam architectures were investigated: single pore with a mono-

modal pore size distribution and dual pore with a bi-modal pore sizes distribution. 

Examples of the two architectures are shown in Figure 4.1. The topography of the SEM 

images and the optical micrographs demonstrate that the strut thickness is much greater 

in the mono-modal foam than in the bimodal foam. 

 

Figure 4.1 A) SEM Micrographs of Single Pore Foam with a Mono-Modal 

Distribution of Pores, and B) Dual Pore Foam with a Bimodoal Pore Distribution. 

Optical Micrographs of C) Single Pore Foam with Struts Labeled S, Nodes Labeled 

N and the Pores Labeled P. 

 

Single pore foam was easier to prepare because the single pore size allowed for 

easier mixing of space holder. Dual pore foam was easier to etch because of thinner walls 

between pores. To create Ni-Mn-Ga foam molten metal was infiltrated through a pre-
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form of ceramic powders. The ceramic powder was subsequently removed and therefore 

acted as a space holder during casting to become future pores (Figure 4.2).  

    

Figure 4.2 Illustration of the Replicate Casting Method for Manufacturing Metal 

Foams. In an Alumina Crucible A) a Polycrystalline Ingot is Placed on Top of a 

Partially Sintered Ceramic Perform (Circles) B) Ni-Mn-Ga Ingot is Melted and Fills 

the Space Around the Ceramic Space Holder. The Ceramic is Removed After 

Casting to Become the Pore.   

 

Open-cell, Ni-Mn-Ga foams were created by the replication casting method 

(Figure 4.2).  Liquid metal was infiltrated into a pre-form of sodium aluminate (NaAlO2) 
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space-holder powders. For bimodal foam the pre-forms were designed to give nominal 

porosity to be roughly 50%.  With a ratio of  73:27  (by weight and volume) of large 

(500~600 μm) and small (75~90 μm) blend of NaAlO2 powders were used to create the 

bimodal pore distribution.  The blended powders were poured into an alumina crucible 

with an internal diameter of 9.53 mm and lightly sintered in air at 1500 ˚C for 3 h to 

create necks between powders, as to ensure no displacement of powders during melt 

infiltration.  The parent ingot was placed on top of the sintered pre-form, which was then 

heated to 1200 ˚C at 7 ˚C/min under a vacuum of 3.5×10
-6

 torr.  The temperature was 

maintained at 1200 ˚C for 24 mins and high-purity argon gas was introduced in the 

furnace at a pressure of 1.34 atm to push the molten alloy into the preform.  At the same 

time the temperature was dropped at 7 ˚C/min. The foam was chemically homogenized 

(1000˚C/1h) in vacuum and then subjected to a stepwise heat-treatment to establish the 

L21 structure (725 ˚C /2h, 700˚C /10h, 500˚C /20h).  

 

4.1.3 Samples 

Samples were named according to two naming conventions. First foams were 

named by date followed by a letter, therefore if the names contain the same date the 

samples are from the same foam rod. Secondly Ni-Mn-Ga foam parent ingot number 

AR[1-100], then by foam cast number AR[1-100]_[a-f], and lastly a number indicating it 

position within the foam rod AR[1-100]_[A-f]_[1-100]. Table 4.1 shows a list of all 

samples, sample properties and the specific study in which the sample was used in. 
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Table 4.1 List of Samples Detailing the Porosity, Composition, Architecture and the 

Study the Sample was used in. 

Sample 

Name  

Porosity Composition Architecture Study Sample was 

Used in 

8-1 b 54.7% Ni50.6Mn28Ga21.4 Dual Pore Training, Phase 

transformation 

8-1_HCL  57.1% Ni50.6Mn28Ga21.4 Dual Pore Training, Phase 

transformation 

4-8 H2SO4 50.0% Ni52Mn24.4Ga23.6 Dual Pore Training, Phase 

transformation 

4-23_1 54.2% Ni50.6Mn28Ga21.4 Dual Pore Training 

4-23_2 51.0% Ni50.6Mn28Ga21.4 Dual Pore Training, Phase 

transformation 

4-23_3 53.08% Ni50.6Mn28Ga21.4 Dual Pore Training, Phase 

transformation 

AR0_A2  59.1% Ni50.6Mn28Ga21.4 Dual Pore Training 

AR0_B6 69.3% Ni50.6Mn28Ga21.4 Dual Pore Training 

AR0_D6 63.9% Ni50.6Mn28Ga21.4 Dual Pore Phase transformation 

AR20_C2  62.7% Ni52.3Mn24.3Ga21.4 Dual Pore Training, Phase 

transformation, Pore 

Architecture 

AR20_C3  60.4% Ni52.3Mn24.3Ga21.4 Dual Pore Training 

AR20_C11  58.8% Ni52.3Mn24.3Ga21.4 Dual Pore Training, Phase 

transformation 

AR20_C12  64.0% Ni52.3Mn24.3Ga21.4 Dual Pore Training, Pore 

Distribution, Phase 

transformation 

AR20_C13  62.4% Ni52.3Mn24.3Ga21.4 Dual Pore Training, Phase 

transformation 

AR26_E1  56.5% Ni52Mn24.4Ga23.6 Single Pore Pore Architecture 

AR49_F1-S1  66.6% Ni50.6Mn28Ga21.4 Dual Pore Pore Distribution, Phase 

transformation 

AR49_F2-S2  71.1% Ni50.6Mn28Ga21.4 Dual Pore Pore Distribution, Phase 

transformation 

AR49_F2-S3  67.0% Ni50.6Mn28Ga21.4 Dual Pore Pore Distribution, Phase 

transformation 

AR56_I2_S1  46-56% Ni52Mn24.4Ga23.6 Dual Pore Porosity Study, 

AR56_I2_S2  53-62% Ni52Mn24.4Ga23.6 Dual Pore Porosity Study 

AR59_G2-S1  70-73% Ni52Mn24.4Ga23.6 Dual Pore Porosity Study 

AR75_K6_S2  50.8% Ni55Mn20Ga25 Single Pore Size effects, Phase 

transformation 
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4.1.4 Porosity 

Parallelepiped samples with a dimension of approximately 6×3×2 mm
3
 were 

prepared using a diamond saw. The shortest dimension of the sample is referred to as the 

x direction, the longest dimension on the sample is referred to as the z direction and the 

intermediate dimension is referred to as the y direction. Most of the NaAlO2 powders 

were removed by immersion in 34% H2SO4 under sonication at the temperature 24 ˚C .  

The samples were secondly immersed in 10% HCl under sonication with a water 

temperature of 25 °C ±9 °C, for removal of the remaining NaAlO2 space holder and 

porosity increase via strut thinning.  Porosity is defined here as the volume ratio of the 

pores to the volume of the sample. Therefore the porosity (P) can be determined from 

measurements of mass of the sample (mfoam) and total volume sample without pores 

(Vtotal) 

total

GaMnNifoamtotal

total

pores )(

V

mV

V

V
P 




                                            (12) 

Where ρNi-Mn-Ga ,  depends on composition but ranges from 7.9 to 8.2 g/cm
3
. 

 

4.2 Methods 

 

4.2.1 Vibrating Sample Magnometer 

A vibrating sample magnometer (VSM) DSM Model 10, was used to characterize 

magnetic properties as well as magnetic transitions. A VSM works based on Faraday’s 

law a changing magnet induction will induce a voltage. A VSM detects magnetization by 
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vibrating a sample within a coil, such that any dynamic magnetic changes induce a 

voltage (Figure 4.3). The induced voltage is therefore proportional to the change in flux 

density. Magnetization as a function of temperature, magnetic field strength and field 

orientation can be recorded. 

 

The instrument is calibrated with a Ni Standard. To minimize error, the Ni 

Standard is saturated and centered within the pickup coil before measurements were 

conducted. Magnetization of 2.0x10
6 
Am

2 
kg

-1
 is the limit of detection for the VSM. 

 
A 

magnetic field, up to 2 T, may be produced by a water cooled electromagnet.  

 

Figure 4.3 Vibrating Sample Magnometer(VSM). Left) is a Zoomed Out View of the 

VSM where a is the Vibration Unit and c is the Electromagnet Used to Produce the 

Magnetic Field. Right) is a Zoomed in View of the Sample Holder where (a) is the 

Vibration Unit and (b) is the Coil in which the Sample is Housed to Detect 

Magnetization. 
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Magnetization as a function of temperature was recorded by heating and cooling, 

at a rate of 8.5 °C/min with a 2 minute dwell time, in the presence of a small bias field 

usually between 0.025 T and 0.032 T. Magnetization changes as a function of 

temperature will give the Curie temperature and the martensite-austenite phase 

transformation.  

 

Magnetization is also measured as a function of increasing field strength up to 2 

T. In this study only initial magnetization up to saturation were measured and not the full  

magnetic hysteresis.  If a magnetization is recorded as a function of field, with the 

magnetic field applied to multiple directions of the sample (successively), information 

can be obtained about the magneto crystalline anisotropy.  With static field orientations 

the shape anisotropy was corrected for by correcting the applied field with the 

demagnetization factor as described in equation 7.  

 

Demagnetization factors were found using the chart in Figure 4.4 where q is the 

ratio of the length, in which the field is applied, over the diameter. The shapes with 

square and ellipsoidal cross sections are shown in Figure 4.4 by the solid and dashed line 

respectively. However the samples tested in this study are rectangular so the equation for 

q was adapted such that the diameter is replaced with the area of the plane tested. For 

example the parallelepiped samples in this study have three different directions x y and z 

such that the z direction is the longest sample dimension, x is the shortest and y is the 
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intermediate length, when the field is applied parallel to the z direction 1/q is given by 

equation 13. 

z

yx

q

22
1 


                                                            (13)

 

 

Figure 4.4 Demagnetization Factor N as a Function of q or 1/q a Ration of Sample 

Dimensions. Solid Lines are Demagnetization Factor for Square Shape, and Dotted 

Lines are the Demagnetization Factor for Ellipsoid Shapes. Reprinted in [76] from 

the Work of Rhodes and Rowlands in 1954. 

 

Easy and hard magnetization directions can be probed by rotation of a constant, 

0.10 mT magnetic field, around the sample while magnetization is recorded (field 
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orientation dependent magnetization). As the field rotates the magnetization will change 

due to the shape anisotropy and any magneto crystalline anisotropy. Shape anisotropy is 

expected to show a relative change in magnetization during field rotation of about 10% 

based on experiments for parallelepiped samples. For field orientation dependent 

magnetization measurements shape anisotropy was not corrected for.  

 

4.2.2 Magneto Mechanical Testing 

Rotation of a magnetic field around a magnetic shape memory alloy will allow for 

a direct observation of magnetic field induced strain. Due to twin boundary motion in Ni-

Mn-Ga when a single crystal is subjected to a rotating magnetic field, it will expand and 

contract twice during one full field revolution (Figure 4.5). 

  



51 

 

 

 

Figure 4.5 Magnetic Shape Memory Effect of A Single Crystal in a Rotating 

Magnetic Field. A) with A Magnetic Field Applied 0° from the Long Axis of the 

Sample (Blue Arrow) the Short Axis of Unit Cell (Arrow With Black Box) is Aligned 

Parallel to the Long Axis of the Sample (Gray) Resulting in Zero Strain. B) When 

the Field is Rotated About the X Axis to 90° Now the Long Axis of the Unit Cell is 

Aligned with the Long Axis of the Sample therefore Causing an Elongation as 

Compared to the Original Length(Dashed Box). C) As the Field Rotates to 180° The 

Sample Returns to the Original Shape Therefore Showing Zero Strain. D) When the 

Magnetic Field Rotates to 270° the Sample Again Elongates as Seen with the 

Magnetic Field 90° from the Sample. Therefore a Magnetic Shape Memory Alloy 

Will Expand and Contract Twice for Every One Revolution of a Magnetic Field. 

 

In the lower symmetry martensite phase, the easy direction of magnetization, is 

coupled with the shorter crystallographic length, which is shown in Figure 4.5, marked by 

the arrow on the tetragonal cell. Within the unit cell the easy direction (i.e. short axis) 

will align the magnetic field. When the field is aligned with the long axis, or is at 

0°(Figure 4.5 a,c) to the sample the strain will be at a minimum. When the field is at 90° 

to the sample the strain should be at a maximum as the long axis of the unit cell is aligned 

with the long axis of the sample. (Figure 4.5 b,d) . Thus, from 0-180° rotation of the 

magnetic field is one magneto-mechanical cycle (MMC) and is one cycle of expansion 
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and contraction. However in polycrystalline samples the expectation of magneto-

mechanical behavior is not as straight forward. The maximum of strain can be seen at 

field angles deviating from 90° because the grains have different crystallographic 

orientation within the sample, and different relative sizes. Further since multiple grains 

can deform at different field angles broad peaks of maximum strain may be observed as 

well as multiple MFIS maxima. 

 

4.2.2.1 Magneto-Mechanical Cycling 

A magnetic field of  0.97T was rotated about x axis shown in Figure 4.6. In order 

the measure the MFIS accurately that sample (1) is held with glue by a stationary bracket 

(2) on one side and movable (sliding head, 3) bracket on the other side. Sliding head 

displacement is guided on the sides and on the top (not shown) in order to limit sample 

bending (Figure 4.6 b). The sliding head displacement was translated to an extensiometer 

(6) (Heidenhain, type MT1281) via a ceramic rod (5). All sample mounting parts were 

made from self lubricating Vespal 
C
 to limit friction that would hinder MFIS. The 

displacement (engineering strain) measured was only relative to the samples long (Z) 

axis. Measurements were taken at a rotational speed of 30 rpm to minimize error due to 

vibrations [77]. MFIS from magneto-mechanical cycling was measured at a constant 

temperature of 19 °C ± 2 °C. 
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Figure 4.6 Measuring Magnetic Field Induced Strain. The Sample (1) is Held With 

Glue by a Stationary Bracket (2) On One Side and Movable (Sliding Head, 3) 

Bracket on the Other Side. Sliding Head Displacement Δz is Guided on the Sides B) 

and on Top with a Lid that is Not Shown Here. The Sliding Head Displacement is 

Translated to Δx Via a Ceramic Rod (5) to an Extensiometer (6) that Measures 

Displacement. 

 

To determine experimental error, a measurement a low carbon steel sample was 

tested in the magneto-mechanical measuring device. Steel was chosen because it has a 

high magnetization and thus a large torque in a rotating field yet no magnetoplasticity. 

Such that the signal detected for magneto-mechanical cycling of steel should be zero. 

Therefore any error would be taken as the MFIS detection limit. Figure 4.7 is four 

averaged field revolutions of low carbon steel glued on both sides (as is the foam). Figure 
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4.7 shows no maximum or minimum as would be expected for sample holder bending. 

Averaging the curves reduces signal noise. However Figure 4.7 may still show some 

noise (~330°) since only four cycles were averaged. Therefore 0.002% is the limit of 

detection for MFIS during field rotation which was based on the width of the signal 

detected. Further NMG foam had a minimal magnetic attraction due to the 

polycrystallinity therefore it is expected the error in measuring MFIS in foam is minimal. 

In addition to low error in measuring MFIS in foam it is expected that the restriction of 

twin boundary motion from the glue is limited due to porosity.      

 

Figure 4.7 Calibration of Magneto-Mechanical Cycling With 1018 Steel. The 

Calibration Showed that there is No Detectable Error Introduced from the Sample 

Holder Bending. 
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4.2.2.2 Thermo Magneto-Mechanical Cycling 

During field rotation the samples were heated and cooled through the martensite 

phase transformation, which is called thermo magneto-mechanical cycling (TMC). TMC 

allows for in situ observation of the martensitic phase transformation, thermo magneto-

mechanical training, and MFIS produced by a sample in a fully martensitic state which 

may be below the operating temperature of the system. Heating and cooling of the sample 

was achieved through introduction of hot or cold air into the sample chamber. The 

sample temperature was measured via a thermocouple with direct contact to the sample. 

The temperature was averaged over one revolution (cycle) of the magnetic field. The 

maximum MFIS for one magnet revolution was plotted against the temperature for the 

corresponding cycle.  TMC allowed for MFIS as low as 0.01% to be accurately 

measured. Room temperature cycling can measure strains as low as 0.002% so the added 

error of the TMC is due to the vibrations of the forced air flow. 

 

4.2.3 X- ray Diffraction 

X-ray diffraction XRD was used to characterize the crystal structure of Ni-Mn-Ga 

foams. X-ray waves interact with the periodic medium due the crystalline nature and 

results in diffraction according to Bragg’s law.  

 sin2dn                                                                (14) 

 

Where n is an integer multiple, λ is the wavelength, d is the lattice spacing and 2ϴ is the 

angle between the incident wave and exigent diffracted wave. In essence when the lattice 
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spacing is an integer multiple of the wave length, diffraction will occur at a characteristic 

angle. 

 

A Bruker D8 discover diffractometer with a Cu Kα source equipped with a Gobel 

mirror, and a monochromator with a 1.0 mm universal beam collimator and an area 

detector was used for all diffraction experiments in a parallel beam setup shown in Figure 

4.8. NIST Corundum standards were used to characterize the peak position and width. If 

the peak position was within 0.04° in 2ϴ of the reference, the detector position was 

deemed acceptable according to ASTM standards. This gives accuracy of experimentally 

observed d spacings to the 0.004Å. 
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Figure 4.8 X-ray Diffractometer With Parallel Beam Set Up. ϴ1 is the Angle of 

Inclination of the X-ray Source (Orange), and Similarly ϴ2 is the Angle of 

Inclination of the X-ray Area Detector. Phi Φ (red) is Rotation About the Sample 

Plane Normal. Chi χ (Yellow) is Rotation Marked with the Yellow Arrow.  

 

4.2.3.1 Crystallographic Texture 

Crystallographic texture is a distribution of crystallographic orientations 

throughout a sample. Texture can either show crystallographic orientations of no 

preference relative to the sample, which is referred to a random texture, or a preferred 
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orientation relative to the sample. Texture can be represented by the distribution of the 

normal direction of a crystallographic plane (called poles) which are mapped in a 

stereographic projection. These pole projections are commonly referred to as a 

polefigure. A polefigure, will therefore show the distribution of the poles within the 

volume of the sample that was investigated. For Ni-Mn-Ga foam, the grains were large 

enough that each grain orientation was distinguishable and easily identified. Therefore a 

texture measurement could show the number of grains at the surface. Texture was also 

employed to characterize the change in crystallographic orientation with thermo-

magnetic training and to quantify the training effect. 

 

Texture was measured by taking diffraction patterns in discrete steps of Φ, and χ 

at a constant 2ϴ angle using an area detector which has a 30° 2ϴ range of detection.   The 

table below shows the plan of  Φ, χ and 2ϴ angles needed to construct a polefigure. Pole 

planning and texture evaluation was done with the software Multex V2. To construct a 

polefigure with Multex a 2ϴ - χ region is highlighted. The highlighted area is then 

integrated and the diffracted intensity is plotted over χ and Φ coordinates of the pole 

sphere. Therefore each pole is associated with a χ and Φ angle of the sample.  To quantify 

texture in Multex, crystal orientations must be matched over the polefigure and refined 

such that all diffracted intensity is accounted for. Also a background grid may be used to 

remove background intensity from the area detector data. 
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Table 4.2 Sample Orientations Used to Measure Texture in Ni-Mn-Ga Polycrystals. 

Run number Θ1[°] Θ2[°] χ [°] Steps in Φ [°] 

1 27.0 27.0 75 13.5 

2 27.0 27.0 60 10.3 

3 27.0 27.0 45 13.8 

4 27.0 27.0 30 10.9 

5 27.0 27.0 15 12.0 

6 27.0 27.0 0 10.3 

 

A detailed investigation was done on the effect of the 2ϴ -χ area used to construct 

the polefigure, as well as the background removal resolution on the resulting polefigure.  

Table 4.3 shows resulting polefigures by using different background removal resolutions 

and different 2ϴ -χ regions. With a higher degree of background removal (5 ° resolution) 

the high background area around the perimeter of the detector is reduced. If the edges of 

the area detector with high background are included, a ring of intensity shows in the 

polefigure which would be falsely interpreted as fiber texture. The higher background 

removal resolution allows for a larger χ range to be included in the polefigure 

construction. The level of background removal should depend on diffracted intensity and 

the area of high background should not be included in the polefigure construction.  
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Table 4.3 Background and 2ϴ -χ  Area Selection Effects of the Resulting Polefigure. 

Resulting Polefigure Chi 

Range 

Selected 

Background 

Grid 

Area Detector Data  

 

0-360 3 mesh 

5° 

resolution 

42.1-43.4 

 

 

160.5-

199.5 

3 mesh 

5° 

resolution 

42.1-43.4 

 

 

0-360 3 mesh 

15° 

resolution 

 

 

160-199 3 mesh 

15° 

resolution 
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4.2.4 Neutron Diffraction 

Neutrons are non charged particles with both mass and spin[78]. Debrogile’s 

relationship describes all particles as having wavelike properties depending on the mass 

and velocity of the particles[78]. The wavelike property of neutrons can be used for 

characterization of materials via diffraction. Neutrons also interact very little with 

materials, lending to a much larger penetration depth[79, 80]. The high penetration depth 

allows for a very large volume of material to be probed. Neutrons scatter from the 

nucleus and not the electrons orbiting of an atom. Nuclear scattering allows for 

differentiation of atoms with similar electronic structure, and allows for more sensitivity 

to lower Z atoms[79, 80].  

 

One way of producing neutrons is spallation. Spallation occurs by protons being 

accelerated into a heavy metal target, often tungsten or lead[80]. When the high energy 

proton hits the nucleus of the target materials it decays producing 10 plus neutrons[80]. 

Neutrons produced from spallation have different velocities and therefore different 

wavelengths, following DeBrogile’s relationship[80]. To utilize neutrons from a 

spallation source, neutrons (with varying wavelengths) are allowed to spread out over 

time as the neutrons travel from the source to the sample which is deemed a time of flight 

technique[80]. The time of flight technique delivers multiple wavelengths of neutrons, 

which interact with the sample one wavelength at a time (Figure 4.9 b). This method 
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allows for multiple Bragg conditions to be fulfilled for one sample orientation, with a 

fixed detector position[79, 80].  

Neutron diffraction texture was conducted at Los Alamos National lab with a 

Tungsten spallation source using the HiPPO (high intensity pressure preferred 

orientation) instrument beam line. The HiPPO as rings of detector panels: back scatter, 

90°, 40°, 20° and 10° (Figure 4.9a). Each panel in the ring was integrated and added 

together to give a diffraction pattern. 
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Figure 4.9 Hippo Neutron Diffraction Instrument. a) Geometry of the Detector 

Panels, Sample, and Beam. b) Time of Flight Technique. As the Pulse of Neutrons 

Travel from the Source to the Sample the Band Width of the Neutrons Spread Out 

Allowing for Discrete Wavelengths to Interact with the Sample. Reprinted with 

Kind Permission of Sven Vogel at Los Alamos Nation Lab. 

     

 

4.2.5 Electron Dispersive Spectroscopy Compositional Data 

Electron Dispersive Spectroscopy EDS is a chemical analysis technique that 

works in conjunction with a scanning electron microscope SEM. High energy electrons 
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come in contact with the surface knocking electrons off atoms resulting in an unfilled 

electron orbital. An electron from a higher energy shell will give off energy in the form 

of an x-ray photon and fill the unoccupied state of lower energy. Since all atoms have 

discrete energy levels the X-ray photon energy is characteristic of the source atoms. The 

EDS technique can identify atoms (with Z > 12) within the interaction volume of the 

electron beam.  

 

The Chemical compositions were determined by a Hitachi S3400N-II scanning 

electron microscope (SEM) and Leo 1430 VP  SEM equipped with an integrated Oxford 

EDS system. Copper calibrations were done prior to use, working distance was kept at 15 

mm, spot size was 400 ± 50 µm, and accelerating voltage was 15 keV ± 4 keV. Spot size 

and accelerating voltage were adjusted to give a dead time of 17% ± 3%. If sample 

compositions were compared, all samples were tested with the same beam conditions.  

 

4.3 Studies 

NMG foams have many variables that could affect MFIS, among them are: 

composition, magnetic ordering, crystal structure, crystallographic texture, grain size, 

magnetic anisotropy, pore architecture, pore distribution and porosity. This thesis focused 

on specific studies on how the transformation temperature, pore architecture, training, 

porosity, anisotropy, and pore distribution affected the performance and maximum MFIS. 

These studies are outlined below. 
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4.3.1 Martensite Phase Transformation Effects on MFIS 

Transformation temperatures were obtained with temperature dependent 

magnetization experiments and the range of MFIS was obtained by magneto-mechanical 

cycling. To study if there was a correlation between martensite phase transformation 

temperature and MFIS the range of MFIS was plotted against the martensite finish 

temperatures. The samples included in this study are listed Table 4.1 and includes single 

pore and dual pore foam. Foam was fabricated as described in section 4.1.1-4.1.2 with 

space holders and strut thinning performed as described in section 4.1.4. Porosities 

resulting from the etching and space holder removal are also given in Table 4.1. 

Compositions were not characterized for each sample in this study.  

 

4.3.2 Training 

Three forms of training were investigated: magneto-mechanical, thermo-

magnetic, and thermo magneto-mechanical training. Samples were fabricated and 

processed as discussed in sections 4.1.1-4.1.4. The samples used in this study are given in 

Table 4.1 with nominal compositions and porosity listed. No chemical composition 

characterizations were done for the individual samples of this study.   

Magneto-mechanical training is the elimination of unfavorable twinning systems 

through magnetic field induced twin boundary motion. Magneto-mechanical training will 

therefore show an increase in MFIS with magneto-mechanical cycling. Magneto-

mechanical training was evaluated based the rate of increase in MFIS during cycling.   
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Thermo-magnetic training allows for martensite variant selection and may 

reduce the number of twinning systems present in a specimen thus changing the magneto-

mechanical behavior. First magneto-mechanical cycling was conducted to obtain the 

maximum MFIS and the field orientation dependent MFIS. Next thermo-magnetic 

training was accomplished by heating the specimen in the VSM past the Curie 

temperature followed by cooling with an applied magnetic field of 2T. Heating and 

cooling rates are specified in section 4.2.1. After thermo-magnetic training, magneto-

mechanical cycling was conducted to obtain the maximum MFIS and the field orientation 

dependent MFIS. To evaluate the effect of the thermo-magnetic training on magneto-

mechanical properties, magneto-mechanical behavior (i.e. maximum MFIS and angle of 

strain peak(s)) was compared before and after training.  

 

Thermo magneto-mechanical training was accomplished by in-situ heating and 

cooling during magneto-mechanical cycling. This form of training will not only reduce 

twining systems by martensite variant selection but select twinning systems that are 

highly mobile. Heating and cooling (a thermal cycle) was repeated multiple times without 

un-mounting the sample. To evaluate the effectiveness of the thermo magneto-

mechanical training, the maximum strain for each thermal cycle was compared.   

 

4.3.3 Pore Architecture 

Two pore architectures were studied: single pore with mono-modal size 

distribution and dual pore with a bi-modal size distribution. The two foams AR26_E1 and 



67 

 

 

AR20_C2 were fabricated and processed as discussed in sections 4.1.1-4.1.4. The 

nominal compositions and porosity are given in Table 4.1. No chemical composition 

characterizations were done for the individual samples of this study. Twin morphology, 

strut size was observed with optical microscopy at Northwestern University. MFIS as a 

function of magneto-mechanical cycle were compared for two foams AR26_E1 and 

AR20_C2 in the initial and thermo-magnetically trained state. No training was done for 

AR26_E1.  

 

4.3.4 Porosity Study 

To investigate how the level of porosity impacted the magneto-mechanical 

properties, foams were systematically studied as porosity was increased. Dual pore 

samples (AR56_I2_S2, AR56_I2_S1, and AR59_G2_S2) were manufactured as 

described in section 4.1.2. To evaluate the phase transformation temperatures, 

temperature dependent magnetization experiments were preformed as described in 

section 4.2.1. Compositions were evaluated by EDS described in section 4.2.4. Magneto 

crystalline anisotropy was evaluated by field dependent magnetization measurements 

with the field parallel to the easy and hard axis of magnetization. To quantify only 

magneto crystalline anisotropy, shape anisotropy was removed as described in section 

4.2.1. The area between the M-H curves with the field parallel to the easy and hard axis 

of magnetization was integrated to give the magneto crystalline anisotropy energy. 
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   For one porosity increase step, the sample was first thermo magneto-

mechanically cycled (TMC), then etched to increase porosity (described in section 4.1.4), 

after which the porosity was evaluated as described by equation 12 (section 4.1.4). 

Porosity steps were repeated until the sample could no longer be tested. TMC was done 

because the samples in the porosity study were not martensitic at room temperature and 

therefore needed to be cooled to show MFIS. The maximum strain for each TMC 

experiment was plotted against porosity to evaluate the porosity MFIS relationship. 

Porosity strain correlations were only made per sample which therefore limited 

extraneous variables from impacting the correlation.  

 

4.3.5 Pore Distribution Study 

Dual pore samples AR49_F2_S1, AR49_F2_S2, and AR49_F2_S3 were 

manufactured as described in section 4.1.2. Three samples AR49_F2_S1, AR49_F2_S2, 

and AR49_F2_S3 were used for the pore distribution study. To evaluate the phase 

transformation temperatures temperature dependent magnetization experiments were 

preformed as described in section 4.2.1. Compositions were evaluated by EDS for the 

foam and the parent ingot (described in section 4.2.4), and were found to be within 

experimental error of each other (data not shown). Magneto crystalline anisotropy was 

first evaluated by field orientation dependent magnetization as described in section 4.2.1. 

The field orientation dependent magnetization measurements give the angle of easy and 

hard axis of magnetization for the polycrystalline sample. In addition the relative change 

in magnetization with field rotation is an indication of magnetic anisotropy where 
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magnetization changes during rotation of 10% and less are due to shape anisotropy.   

Secondly magneto crystalline anisotropy was evaluated by field dependent magnetization 

measurements with the field parallel to the easy and hard axis of magnetization for 

samples AR49_F2_S1, AR49_F2_S2.   

 

Xray tomography was utilized to characterize the spatial distribution of large and 

small pores within the sample. The pore distribution was characterized with x-ray 

microcomputer tomography by Dr. Markus Chmielus. The x-ray radiation was generated 

by a microfocus tube (Hamamatsu, L8121-03) with a spot size of 7 µm and detected by a 

flat panel detector (Hamamatsu, C7942SK-05). The scanner was set to an acceleration 

voltage of 100 keV and a current of 95 µA. The out coming beam was filtered by a 1 mm 

thick Aluminum plate. The magnification ratio was preset to 7.1 with an effective pixel 

size of 7.1 µm for the sample. The reconstruction of the data set of 1000 projections was 

performed using OCTOPUS 8.3 software[81]. 

 

Each sample was thermo magneto-mechanically cycled to study the magneto-

mechanical properties as well as training effectiveness. The trends in pore distribution 

homogeneity and anisotropy were compared with the MFIS between samples to conclude 

any impact of the pore distribution on MFIS.    
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4.3.6 Size Effects 

Single pore foam AR75_K2_S2 were manufactured as described in section 4.1.2 

and only space holders were removed as described in section 4.1.4. Porosity and nominal 

composition are listed in Table 4.1. The foam was consecutively cut in half along the x-z 

plane followed by magneto-mechanical cycling. The magneto mechanical behavior was 

compared before and after cutting to probe for a sample size affect on the MFIS. 
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5 RESULTS 

 

5.1 Martensitic Phase Transformational Effects on MFIS 

Sample AR0_D6 showed transformation behavior in which the austenite finish 

temperature was above the Curie temperature. For AR0_D6 the As is at 62 °C and the Mf 

is at 60 °C and Af and Ms are indeterminate (Figure 5.1 top). The corresponding MFIS for 

the sample was 0.0015%. These results posed a question of whether the transformation 

temperature and MFIS were correlated. Below is a semi-log MFIS versus the martensite 

finish temperature for numerous samples. The error bars in Figure 5.2 indicate the range 

in MFIS demonstrated by a particular sample.  
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Figure 5.1 Top) Temperature Dependent Magnetization for AR0_D6, Showing the 

Mf at 60 °C and the As at 62 °C. Bottom) Magneto-Mechanical Cycling of AR0_D6 

where the Maximum MFIS is 0.0015%.  
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Figure 5.2 Semi-Log Plot of the Average MFIS at Room Temperature Plotted 

Against the Mf,. The Error Bars Indicate the Range in MFIS Demonstrated by a 

Particular Sample. The Red Dashed Lines are a Guide for the Eye that Indicates a 

Linear Band of Increasing MFIS with Decreasing Mf. 

 

5.2 Training Effects on MFIS 

 

5.2.1 Magneto-Mechanical Training 

Magneto-mechanical training is marked by increased strain with magneto-

mechanical cycling. Of 15 samples that were magneto-mechanically tested, only three 

samples showed a magneto-mechanical training effect: 7-31, 4-8 H2SO4 and AR20_C11 

(see appendix) . Figure 5.3 shows the changes in strain with magneto-mechanical cycling 
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for 8 samples. The MFIS of sample 7-31, marked with full black circles, increased from 

0.725% to 0.800% over 10
5
 MMC and then dropped to 0.060%. Samples 8-1_HCL, 4-

23_1, 4-23_2, and 4-23_3 showed consistent strain over the whole range of MMC tested. 

Samples 8-1a, 4-8_H2SO4, and 8-1b showed large discontinuities in strain, resulting in a 

positive or negative change. 

 

 

Figure 5.3 Change in MFIS with Magneto-Mechanical Cycling. 8-1a (Black Square) 

8-1b (Empty Squares), 8-1HCl (Half Full Squares) are from the Same Foam Rod. 4-

8 H2SO4 (Empty Circle), and 7-31 (Black Circles) Singularly Represent a Seperate 

Foam Rod. 4-23_1 (Black Triangle), 4-23_2 (Half Empty Triangle) and 4-23_3 

(Empty Triangles) are from the Same Foam Rod. 
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5.2.2 Thermo-Magnetic Training 

Thermo-magnetic training was applied to 10 samples with varying results. In 

some cases training increased the MFIS significantly. For sample 4-23_3 the MFIS 

changed from 0.002% to 0.070% a 34 fold increase in MFIS (Figure 5.4). Both trained 

and untrained states showed a large maxima when the field is at 110°, 290° from the long 

axis of the sample. The trained state showed an additional but smaller peak at 0 and 180° 

with a MFIS of 0.010%.  

 

 

Figure 5.4 Magneto-Mechanical Behavior for Sample 4-23_3 Before and After 

Thermo-Magnetic Training. After Training a 34 Fold Increase MFIS Occurred. In 

Addition to the Strain Increase Training Initiated a New Strain Peak at 0 and 180°. 
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Another sample AR20_C2 showed a threefold increase in MFIS with training 

from 0.090% to 0.275% strain (Figure 5.5a). The thermo-magnetically trained dual pore 

foam was then heated above the Curie temperature and cooled without magnetic field to 

neutralize the training effect. As expected, the MFIS decreased (open triangles Figure 5.5 

a), to a value of ~0.027%, which shows a slight decrease beginning at ~1300 MMC to 

~0.014% followed by a stable level of MFIS from 0.027 to 0.020% up to ~200,000 

MMC. The foam was then trained a second time, without significant increase in MFIS 

(Figure 5.5a black triangles). Without another neutralization treatment, the sample was 

trained a third time, leading to a small strain increase to ~0.04% (Figure 5.5 a open 

circles), remaining near constant over ~151,000 MMC. Figure 5.5 b shows the MFIS 

magnitude as a function of the magnetic field orientation for a full field rotation for the 

initial state, after first training, after first neutralization, after second training and after 

third training. The annealed foam (labeled “Initial” in Fig. 5.5 b) shows a broad strain 

peak (0.1% MFIS) between -20 ° and 130 ° (and a corresponding peak between 160 ° and 

310°) with an asymmetric shape, indicating the presence of multiple sub-peaks (and thus 

multiple variants). After the first magneto-mechanical training, a single peak (0.28% 

MFIS) with near-symmetrical shape centered at 90/270 ° is visible, indicating a more 

homogeneous activation of twinning systems. Neutralization and subsequent trainings did 

not significantly alter the peak shape and position. 
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Figure 5.5Change in Magneto-Mechanical Behavior for AR20_C2 at Multiple 

Trained States. a) MFIS as a Function of Magneto Mechanical Cycle in the Initial 

State(Crosses), after Thermo-Magnetic Training (Open Circles), with Training 

Neutralized (Empty Triangles) Followed by a Second (Full Triangles) and Third 

Thermo-Magnetic Training (Empty Circles). b) MFIS as a Function of Magnetic 

Field Angle for the Trained States Listed in (a) where the Neutralized State is 

Represented with a Dashed Curve. 

 

Not all training treatments resulted in an increase in MFIS. For sample AR3_A2 

the initial state had 2 peaks per MMC, at 50 and 145 ° with MFIS of 0.095 and 0.130% 

respectively (Figure 5.6 dashed line). After thermo-magnetic training the MFIS decreased 

to 0.013 and 0.008% for the maxima at 50 and 145 ° respectively (Figure. 5.6 solid line).  
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Figure 5.6 Negative Change in Magnetic Field Induced Strain with Thermo-

Magnetic Training for Sample NMGF_AR3_A2. The Initial State (Dashed Line) 

Shows a Higher MFIS than after Thermo-Magnetic Training (Solid Line). 

 

To evaluate the effectiveness of thermo-magnetic training the initial MFIS  (black 

diamond) and the relative change in MFIS (red squares) were plotted on a primary and 

secondary axis versus the porosity of different samples (Figure 5.7a). The highest initial 

MFIS were found in the region between 57 and 64% porosity, giving MFIS from 0.095 to 

0.500%. After training the samples with the lower initial MFIS showed some of the 

largest relative change in MFIS, from 2 to 34 fold increases (Figure 5.7b). A 5 fold 

increase in MFIS was the average relative change in MFIS after thermo-magnetic 

training. 
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Figure 5.7 Effectiveness of Training for Multiple Samples for a Range of Porosities. 

a) Initial MFIS (Black) is Plotted on the Primary Axis for Samples of Varying 

Porosity. The Relative Change in MFIS (Red) is Plotted on the Secondary (Right) 

Axis for the Samples Represented Initially (Black). The Solid Line Represents a 

Relative Change of  MFIS. b) The Ratio of MFIS after Training to Initial MFIS is 

Plotted Against the Initial MFIS.     

  

Often training would increase the MFIS, as seen previously, but would also result 

maxima shift to ~0 and 180 °. Figure 5.8 shows the change in magneto-mechanical 
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behavior with thermo-magnetic training for 4-23_1. Initially two peaks per MMC were 

found at 47 ° and 131 ° with a MFIS of 0.007%. After training the maxima shifted to 69 

and 178 ° with MFIS of  0.035% and 0.075% respectively. The maximum shift was seen 

in 50% of the low porosity (< 54%) samples (see appendix for each sample represented in 

Figure5.7).  

 

Figure 5.8 Change in Magnetic Field Induced Strain with Thermo-Magnetic 

Training for Sample 4-23_1. The Trained State Shows a Higher MFIS as well as 

Strain Maxima Shifts to Angles Not Expected, for Twin Boundary Motion. 

 

The dual peak phenomenon was sometimes induced upon training as observed for 

AR0_B6 in Figure5.9 (also see 8-1b, 4-23_3, 8-1a in appendix). Initial testing showed 

one peak per MMC at 75 ° at a MFIS of 0.005%. After thermo-magnetic training for 
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1MMC the sample displayed two peaks in MFIS. For AR0_B6 one peak was found at 45 

° with a MFIS of 0.017% and a second at 130 ° with a MFIS of 0.027%.  

 

Figure 5.9 Change in Magnetic Field Induced Strain with Thermo-Magnetic 

Training for Sample AR0_B6. The Thermo-Magnetically Trained State shows a 

Higher MFIS as well as Two Strain Peaks. 

 

 

5.2.3 Thermo Magneto-Mechanical Training  

In the martensite phase, the foam AR20 C13 exhibited an initial MFIS of 2.1% 

shown in Figure 5.9. The MFIS increased over the next 2,000 MMC to 3.4%, stabilizing 

at this value up to 15,000 MMC, which decreased to 2.0% up to 75,000 MMC and 

remaining stable at this value up to 161,000 MMC (black squares). The foam was then 

removed from the sample holder for visual inspection and remounted after its integrity 

was confirmed. The subsequent MFIS was below 0.5% (red circles), probably because of 
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misoriented twins introduced by handling during unmounting and remounting. The foam 

was then thermo-magnetically trained. The training returned the high MFIS value that 

remained in the range 1.5-1.9% for a further 90,000 MMC (blue triangles).  

 

 

Figure 5.10 MFIS as a Function of Magneto Mechanical Cycle for Sample 

AR20_C13  in the Initial State (Black Squares), after Remounting (Red Circles), and 

after Thermo-Magnetic Training (Blue Triangles).[82] 

 

To compare thermo-magnetic with thermo magneto-mechanical training the foam 

was thermally cycled between the martensite and austenite states, with the MFIS 

measured in situ in a rotating magnetic field. As shown in Figure 5.11, during the first 

heating through the phase transformation, the MFIS remains constant at 1.4%  in the 
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martensite phase before dropping rapidly to a near-zero  value, over a temperature range 

of 35-41°C corresponding to the martensite-austenite transformation. On subsequent 

cooling, the MFIS increased sharply between 22 and 23 °C, very close to the Mf 

temperature, to a value of 2.2%. At the end of this first Heating/Cooling (H/C cycle), the 

temperature rapidly dropped to below -100 °C. As a result, on heating back to room 

temperature, the MFIS was strongly reduced to 0.2%. At the end of the second 

temperature cycle, however, the MFIS recovered its original value of 2.5%. The MFIS 

further increased in the third and fourth temperature cycles, reaching a value of 8.7% at 

the end of the fourth cycle.  
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Figure 5.11 Semi Log Plot of Temperature Dependent Magnetic Field Induced 

Strain from Thermo Magneto-Mechanical Cycling of AR20_C13. The Sample was 

Heated then Cooled for Four Heating/Cooling (H/C) Cycles where H/C 1 is Marked 

with Open Black Squares, H/C 2 with Open Circles, H/C 3 with Open Triangles, 

and H/C 4 with Black Closed Triangles.    

 

5.2.4 Quantifying Training 

Texture measurements with X-rays and neutrons were conducted in order to 

investigate the training phenomenon and quantify the training effect. Texture could be 

used to observe the shift in volume fractions between different martensite variants, and 

therefore probe the effectiveness of training. Figure 5.12 shows the polefigures from the 

pseudo tetragonal 004 planes before and after thermo-magnetic training. It was optically 
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confirmed that the same area was tested before and after training to ensure the pole 

figures were comparable.  The polefigures shows 5 Φ and χ orientations of diffracted 

intensity (red areas). The different areas of red probably correlate to different grains. 

After training there is a noticeable intensity change between 004 poles meaning certain 

grains have a higher volume fraction of 004 poles, after training 

 

Figure 5.12 Spatial Change in 004 Poles of the 10M Pseudo Tetragonal Cell with 

Thermo-Magnetic Training for Sample AR26_E1. Red Areas are χ and Φ 

Orientations of Diffracted Intensity of the (004) Plane. Left is Stereographic 

Projection of 004 Pole from the YZ Plane of the Sample. Right is the Stereographic 

Projection of 004 Pole after Thermo-Magnetic Training. Both Pole Figures are from 

the Same Sample Area. 

 

 

Neutron diffraction, in which neutrons can permeate the entire sample, shows this 

same intensity shift before and after thermo-magnetic training. The pattern was indexed 

with the monoclinic 10M cell. The training effect is shown by the change in relative peak 
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intensities. For example after training the 0,2,0 peak reduces to 25% of the 1,0,5 peak, as 

well as the decrease of the 2,1,5 and 1,1,10 peaks to near 0 intensity (Figure 5.13). 
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Figure 5.13 Neutron Back Scattered Diffraction Before and After Thermo-Magnetic 

Training. Patterns from Four Sample Orientations were Added and Integrated. The 

10M Monoclinc Cell was Used to Index the Diffraction Pattern. 
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5.3 Pore Architecture Effect on MFIS 

Figure 5.14 shows the twin microstructure within one single pore foam (Figure 

5.14a) and dual pore foam (Figure 5.14 b) strut. In the single pore foam struts are much 

larger and show multiple twin arrangements most of which do not fully span the struts. 

Though the grain boundaries were not etched, the twin terminating in certain areas 

indicated grain boundaries may exist in the struts of the single pore foam. The dual pore 

foam have much smaller struts due to the addition of small pores and twins fully span the 

width of the dual pore foam strut (Figure 5.14b).  

 

Figure 5.14 Optical Micrographs of Twin Microstructures in a) Single Pore Foam 

and b) Dual Pore Foam. Thanks to Y. Boonyongmaneerat and X.X. Zhang for 

Images. [83-85]   

 

Figure 5.15a is a plot of MFIS vs. magneto-mechanical cycles (MMC), of the 

single-pore foam AR26_E1 after annealing. The MFIS decreases from 0.24% at cycle 

78% to 0.18% at cycle 506, then remained stable at 0.18–0.19% until cycle 20,378. 

Figure 5.15b shows plots of MFIS vs. magnetic field orientation for cycles 68 and 20,378 
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for the same single-pore foam. In the first MMC (0–180°), two strain peaks appear at 60 

and 115 °, with respective MFISs of 0.20% and 0.24% for 68 MMC. In the second MMC 

(181–360 °), the same peaks occur at 240 and 300 °, as expected. As shown in Figure 

5.15b, the heights of these peaks are reduced to 0.16% and 0.18% for cycle 20,378. The 

peak shapes after  20,378 MMC are unchanged, except for a small shoulder at 105 ° 

within the second ~135/315 ° peak. 

 

 

Figure 5.15 Magneto-Mechanical Behavior of Single Pore Foam AR26_E1. a) 

Magneto-Mechanical Cycle Dependent MFIS. b) Magnetic Field Orientation 

Dependent MFIS for MMC 68 and 20,378. 

 

 

Figure 5.16 depicts the MFIS of the dual-pore foam AR20_C2 and is equivalent 

to Figure 5.15a for the single pore foam. The magnetic field orientation dependent MFIS 

for AR20_C2 is discussed in section 5.2.2. Direct comparison is however hampered by 

the different porosities. Figure 5.16 shows plots of MFIS vs. MMC number before (open 
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squares) and after thermo-magnetic training (black squares). When tested in the initial 

annealed state, the foam shows a strain of 0.10%, decaying to 0.014% after 60,000 MMC 

and remaining at this value for up to ~300,000 MMC. After subsequent thermo-magnetic 

training, the foam showed a notable increase in MFIS to 0.28% for MMC 4, again 

decaying to 0.17% after 6000 MMC. 

 

 

Figure 5.16 Magneto-Mechanical Cycle Dependent MFIS of Dual Pore Foam 

AR20_C2 Before (Black Squares) and After (Open Squares) Thermo-Magnetic 

Training. 

 

 

In the semi-logarithmic plots of Figure 5.15a and Figure 5.16 the rate of MFIS 

decrease is roughly linear up to ~500 and 6000 MMC in single pore and dual pore foams, 

respectively. The rate of strain decrease between 100 and 6000 MMC is ~0.040 and 
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0.050 % MFIS/MMC for the dual-pore foam in both annealed and trained states, 

respectively. This is lower than the value of ~0.069 %MFIS/MMC for the single-pore 

foam. 

 

5.4 Porosity Effect on MFIS 

A porosity study was conducted to confirm the hypothesis that porosity was the 

reason for enhanced MFIS of Polycrystals. Three dual pore samples AR56_I2_S2, 

AR56_I2_S1, AR59_G2_S1 were systematically tested for MFIS followed by a porosity 

increase for multiple etching steps. This systematic study allowed for observation of the 

effect of porosity on MFIS without convolution of variables. 

  Phase transformations of all three samples are listed in Table 5.1. The three 

sample show transformations that are within 5 °C of each other. This table also shows the 

martensite finish is below room temperature and the samples therefore needed to be 

cooled below room temperature to be fully martensitic. 

 

Table 5.1 Phase Transformation Temperatures of Ni-Mn-Ga Foams Tested in the 

Porosity Study. 

 Ms [°C] Mf [°C] As [°C] Af [°C] Curie [°C] 

I2_S1 27 14 22 37 99 

I2_S2 24 22 20 33 90 

G2_S1 26 12 22 35 95 
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Table 5.2 lists the compositions of the three samples in the porosity study.  

Deviations from the parent ingot target composition, with the measured compositions are 

within experimental error of each other. The composition was checked for each etching 

step of one sample, to ensure there was no preferred dissolution of one element. EDS 

confirmed that they chemical composition remained constant with each etching step. 

Therefore, no chemical compositional changes occurred through the course of etching 

and TMC.  

 

Table 5.2 Compositions of Foam Samples Compared to the Parent Ingot Target 

Composition. 

Sample Ni at% Mn at% Ga at% 

Nominal 

Parent Ingot 

Composition 

52.0 24.3 23.7 

I2-S1 51.7±2.6 24.5±1.3 23.7±2.8 

I2-S2 51.6±1.8 24.9±0.8 23.4±1.8 

G2-S1 50.7±1.8 24.8±1.1 24.4±0.6 

 

Anisotropy was measured for the foam sample to address the presence of 

crystallographic texture. Table 3 shows the anisotropy of the three samples which are 

corrected for shape anisotropy. The anisotropy energies of I2-S1 and G2-S1 was a little 

less than 40 kJ/m
3
, which is about 20% of the magneto crystalline anisotropy energy of a 

single crystal [50]. The anisotropy energy of sample I2-S2 was 10.5 kJ/m
3
, which is only 

about 5% of the magneto crystalline anisotropy energy of a single crystal. The amount of 

anisotropy can be used to infer the degree of preferred orientation throughout the grains, 

though a crystallographic texture analysis is not presented here.  
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Table 5.3 Magneto Crystalline Anisotropy Energy of Ni-Mn-Ga Foams used in the 

Porosity Study. 

Sample Anisotropy ( kJ/m
3
) 

I2-S1 39.1 

I2-S2 10.5 

G2-S1 37.1 

 

Figure 5.17 shows the maximum MFIS as a function of porosity. The maximum 

strain was obtained from thermo magneto-mechanical cycling and plotted against the 

porosity. G2-S1 showed a ten-fold increase in MFIS from 0.12% to 1.26% with an 

increase in porosity from 71% to  72.3% respectively (Figure 5.17 red circles). The MFIS 

for I2-S1 showed a MFIS of 0.26% at a porosity of 48.5 which increased to 0.27% when 

the porosity was increased to 52.3%. The MFIS further increased to 0.29% when the 

porosity was increased to 56.8% (Figure 5.17 blue triangles). I2-S1 did not display a clear 

martensite-austenite phase transformation hysteresis and training affect therefore to fully 

represent the maximum MFIS, multiple cooling curves were averaged and the error bars 

on Figure 5.17 represent the standard deviation of the averaged maximum MFIS. I2-S2 

initially showed a MFIS of 0.09% at a porosity of 54%, after etching to a 56.4% porosity 

the MFIS increased to 0.36%. Further etching of I2-S2 to a porosity of 58.2% showed a 

strain of 0.35% a small decrease, but after etching even further to 60.3% porosity the 

MFIS again increased to 0.613% (Figure 5.17 black squares).  The lowest porosity shown 

in Figure 5.17 is the considered the initial porosity, and was the first time the MFIS was 

measured for this sample. 
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Figure 5.17 The Effect of Porosity Increase on the Maximum Level of MFIS for Ni-

Mn-Ga Foams: I2-S1 (Triangle), I2-S2( Squares), G2-S1(Circles). The Error Bars 

on I2_S1 Indicated the Standard Deviations from Averaging the Maximum MFIS 

from Multiple Thermal Cycles. Each Sample Showed and Increasing MFIS with 

Increasing Porosity. 

 

Figure 5.18 a and b show the result of TMC for G2-S1 before and after etching. 

Figure 5.18 a, is the initial TMC for G2_S1. The maximum MFIS is 0.12% and decreases 

to 0.01% when heated to 50 °C. No clear martensitic phase transformation is observed in 

the temperature regime probed. With an increase of only 1.3% porosity the MFIS 

increased 10 fold to 1.25%. After the porosity increased the martensitic phase 

transformation hysteresis was clearly visible, (Figure 5.18 b) where arrows mark the 
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direction of the temperature change. The MFIS decreased upon heating as the martensite 

to austenite transformation happened from 27 to 36 °C. Upon cooling the phase 

transformation from austenite to martensite occurred from 22 to 11 °C.  For the first 

heating and cooling cycle (H/C) (Figure 5.18 black squares) the MFIS was 0.58% at -10 

°C and decreased to 0.27% at 27 °C when the martensite to austenite transformation 

occurred. The MFIS was near 0% up to 22 °C when the reverse transformation occurred, 

after which the MFIS followed the same path of strain increase up to 0.58% upon 

cooling. Subsequent heating cooling cycles (H/C 2-4) showed a very flat region of MFIS 

while heating (from -10 to 30 °C). However on cooling the MFIS increased past the 

intersection of the heating curve up to a maximum MFIS at ~10 °C followed by a decay 

in MFIS. For example H/C 2 showed a MFIS of 0.45% from -5 °C to 30 °C until the 

martensite to austenite transformation, and upon cooling the MFIS was near zero down to 

22 °C when the MFIS increased to 0.84% at 10 °C followed by a decrease in MFIS to 

0.55% at -10 °C. For H/C 2-4 in the martensitic state the MFIS vs temperature paths are 

not the same for both heating and cooling as seen for H/C 1. Repeated TMC resulted in 

an increase of MFIS from one H/C cycle to the next. The maximum MFIS was 0.62% for 

H/C 1 and reached 1.25% for H/C 4. After the second etching step the sample could no 

longer be tested because the sample developed a large cavity making handling difficult. 

SEM micrographs were taken after the last magneto-mechanical testing (Figure 5.18 c). 

The micrograph shows severe cracking accompanied by the displacement of crack 

surfaces.   
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Figure 5.18 Maximum Magnetic Field Induced Strain vs Temperature for G2-S1 at  

a)71.0%Porosity  b)72.3% Porosity, and c) SEM Micrographs of G2-S1 at 72.3% 

Porosity after TMC Showing  Extensive Cracking. For a and b the Multiple Curves 

Represent Successive Heating Cooling (H/C) Cycles.   
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I2-S2 also showed an increase in MFIS over multiple etching steps. Figure 5.19 

shows one TMC for three different porosities. The maximum MFIS increased with each 

porosity increase. For a porosity of 54.4% (Figure 5.19 black squares) the MFIS 

increased upon heating to 0.08% at 13 °C until the martensite to austenite transition from 

13°C to 40 °C. Subsequent cooling of I2-S2 at 54.8% porosity showed near zero MFIS 

down to about 4 °C when the austenite to martensite transformation occurred. At a 

porosity of 56.6% (Figure 5.19 red circles) while heated the MFIS gradually increased 

from 0.25% at -15 °C to 0.35% at 27 °C, after which the martensite to austenite 

transformation occurred. Interestingly the MFIS (red circles), drops to near zero from 27 

to 29 °C follow by a sharp increase in MFIS to 0.24% at 30.5 °C ensued by a drop in 

MFIS over the next 3 degrees. The spike in MFIS was also seen upon cooling at 18 °C 

when the MFIS suddenly increased to 0.16% followed by an subsequent decrease in 

MFIS. Upon further cooling the MFIS increased to 0.25% at -20 °C.  At a porosity of 

60.3%  (Figure 5.19 blue triangles), the MFIS vs temperature behavior was similar to that 

seen in Figure 5.18b , while heated, the MFIS was consistently at 0.40% up to 22 °C 

when the martensite to austenite transformation occurred. Similar to the TMC for 56.6% 

porosity a sharp peak in MFIS occurred at 33 °C fallowed by zero MFIS at 35 °C. When 

I2_S2, was cooled the MFIS was near zero until 16 °C when the austenite to martensite 

transformation occurred, which was followed by at peak and decay in MFIS at 11 °C. 

Upon further cooling the MFIS increased past the intersection of the heating curve at 3 

°C at which IS_S2 was fully martensitic and displayed a MFIS of 0.61%. 
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Figure 5.19 One Thermal Cycle of Maximum Magnetic Field Induced Strain vs 

Temperature Curve for I2-S2 at Different Porosities. Full Squares are the 2
nd

 H/C 

Cycle for 54.8% Porosity, Full Circles are the 2
nd

 H/C Cycle for 56.6% Porosity and 

the Triangles are 3
rd

 H/C Cycle for I2-S2 at 60.3% Porosity. Arrows Indicate 

Direction of Temperature Increase. 

 

 

5.5  Pore Distribution Effects on MFIS 

Three samples AR49_F2_S1, AR49_F2_S2, AR49_F2_S3 from the same foam 

rod, with compositions within experimental error of each other and very similar phase 

transformation were tested for MFIS by thermo magneto-mechanically cycling (TMC), 

anisotropy and pore distribution. Pore distribution was analyzed by X-ray Tomography at 

HBZ in Berlin Germany by Dr. Markus Chmielus. 

Temperature dependent magnetization measurements were conducted in which 

the martensitic phase transformation and Curie temperature were found. Table 5.4 shows 

that the phase transformation of the three sample were very close, within ± 3 °C of each 

other. The Curie temperatures of the three samples were within ± 5 °C of each other. 
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Table 5.4 Phase Transformation Temperatures of F2_S1, F2_S2, and F2_S3 

Samples that were Used in the Pore Distribution Study. 

Sample As [°C] Af [°C] Ms [°C] Mf [°C] Curie [°C] 

AR49_F2_S1 26 31 25 17 91 

AR49_F2_S2 25 31 24 16 100 

AR49_F2_S3 23 36 24 15 105 

    

Upon initial magneto-mechanical cycling of the dual pore foams, AR49_F2_S1, 

AR9_F2_S2, and AR49_F2_S3 showed a maximum MFIS of 0.124%, 0.750%, and 

0.270% respectively. AR49_F2_S1 showed an initial MFIS of 0.124% that tapered off to 

0.084% over 10
5
 MMC (Figure 5.20a). AR49_F2_S2 showed an initial MFIS of 0.605% 

that declined to 0.495% at 10
5 

MMC (Figure 5.20b). AR49_F2_S2 was then left in the 

testing apparatus overnight. Testing AR49_F2_S2 the next day revealed an increase in 

MFIS to 0.625% which increased further upon cycling to 0.750% at 115,000 MMC. 

AR49_F2_S3 showed an initial MFIS of 0.251%, which increased to 0.270 at 10
4
 MMC. 

After 10
4
MMC the MFIS decreased to 0.252% at 120,000 MMC (Figure 5.20c).   
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Figure 5.20 Magneto-Mechanical Cycle Dependent MFIS for a)AR49_F2_S1 b) 

AR49_F2_S2 and c) AR49_F2_S3 at a Constant Operating Temperature. 
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Since the Mf was below room temperature TMC was conducted to test for MFIS 

in a fully martensitic state. For AR49_F2_S1 (Figure 5.21) initially the MFIS started at 

0.17% and upon heating the MFIS gradually decreased to 0.13% at 27 °C after which the 

MFIS sharply decreased to 0.07% at 30 °C the MFIS continued to decrease to 0.02%  at 

45 °C. The MFIS continued to gradually rise to 0.07% at 25 °C after which the MFIS 

increased sharply to 0.25% at 18 °C which was followed by a sharp decrease in MFIS. 

Each H/C cycle exhibited similar behaviors in MFIS indicating very little thermo 

magneto-mechanical training occurred during TMC.  

 

Figure 5.21 Temperature Dependent Magnetic Field Induced Strain from Thermo 

Magneto-Mechanical Cycling of AR49_F2_S1. The Sample was Heated then Cooled 

for Four Heating/Cooling (H/C) Cycles where H/C 1 is Marked with Black Squares, 

H/C 2 with Red Circles, H/C 3 with Green Triangles, and H/C 4 with Blue 

Triangles.    
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For AR49_F2_S2 very different MFIS resulted from TMC as compared to TMC 

for AR49_F2_S1 (Figure 5.22).  For H/C 1 (black squares) the MFIS started at 1.1% and 

was constant up to where the martensite to austenite transformation occurred from 27 °C 

to 34 °C. On cooling the MFIS was minimal until the austenite to martensite 

transformation from 25 °C to 16 °C. The MFIS increased past the heating curve to 1.32% 

at 15 °C which is the start of the MFIS of H/C 2 (red squares). For H/C 2 and 3 the phase 

transformation behavior was similar to the first only with a distinct spike in MFIS during 

austenite to martensite phase transformation at about 32 °C. On H/C 3 the MFIS 

increases slightly to 1.5% before the martensite to austenite phase transformation at 27 

°C. 
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Figure 5.22 Temperature Dependent Magnetic Field Induced Strain from Thermo 

Magneto-Mechanical Cycling of AR49_F2_S2. The Sample was Heated then Cooled 

for Three Heating/Cooling (H/C) Cycles where H/C 1 is Marked with Black 

Squares, H/C 2 with Red Circles, and H/C 3 with Green Triangles. 

 

 

During TMC of AR49_F2_S3 the sample was first cooled then heated (Figure 

5.23). On the first cooling (black squares), the MFIS starts at 0.70% at 15 °C which 

decreased to 0.35% at 5 °C. Upon heating the MFIS displays a constant MFIS of 0.36% 

up to 20 °C where there was a marked increase in MFIS. Upon heating, the martensite to 

austenite transformation occurred from 27 to 31°C resulting in a decrease in MFIS. At 30 

°C the MFIS gradually increased to 0.15% down to 20 °C. A peak of 0.5% and decay of 

MFIS to 0.35% occurred at 17 °C. Further cooling showed a 0.35% MFIS which was 
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stable down to -5 °C. C/H 3, (green triangles) showed a similar transformation behavior 

to C/H 2.   

 

Figure 5.23 Temperature Dependent Magnetic Field Induced Strain from Thermo 

Magneto-Mechanical Cycling of AR49_F2_S3. The Sample was Heated then Cooled 

for Three Cooling/Heating (C/H) Cycles where C/H 1 is Marked with Black 

Squares, C/H 2 with Red Circles, and C/H 3 with Green Triangles. 

 

Field orientation dependent and field strength dependent magnetization 

measurements were done to test for magneto crystalline anisotropy. The field orientation 

dependent magnetization measurements revealed the magnetic field angles that resulted 

in a minimum and maximum of magnetization. The relative change in magnetization 

during the field rotation is an indicator of the degree of anisotropy. Figure 5.24 shows the 
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resulting field orientation magnetization measurements of AR49_F2_S1(black), F2_S2 

(red), and F2_S3(blue). AR49_F2_S1, AR49_F2_S2 and AR49_F2_S3 showed  a 19.7%, 

68%, and17%  relative change in magnetization respectively during the field rotation.  

 

Figure 5.24 Magnetic Field Orientation Dependent Magnetization for (a) 

AR49_F2_S1, (black curve), AR49_F2_S2 (red), and AR49_F2_S3 (blue) Using a 

Magnetic Field of 100mT Rotated Around the x Axis of the Sample.  

 

Field dependent magnetization measurements were done at the angles that gave 

minimum and maximum magnetizations. Once corrected for shape anisotropy the curves 

taken at the hard (minimum magnetization) and easy (maximum magnetization) direction 

of magnetization (102 ° and 12 ° respectively) almost perfectly overlap for AR49_F2_S1 

indicating that the magneto crystalline anisotropy was very small (Figure 5.25a). 

Conversely for AR49_F2_S2, after correction for shape anisotropy, there exists a large 



106 

 

 

area between the easy direction (18 °) and hard direction (108 °) of magnetization 

indicating magneto crystalline anisotropy is large (Figure 5.25b). Since AR49_F2_S3 

showed the smallest change in magnetization during the low field anisotropy 

measurements no saturation magnetization measurements were done, as similar results to 

AR49_F2_S1 were expected. 
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Figure 5.25 Magnetic Field Dependent Magnetization at the Easy and Hard 

Directions of Magnetization of the y-z Sample Plane, Found from Angle Dependent 

Magnetization Measurements. a) AR49_F2_S1 where Field was Applied 12 ° (Black) 

and 102 ° (Red) from the Long Axis of the Sample. b) AR49_F2_S2 where Field was 

Applied 18 ° (Black) and 108 ° (Red) from the Long Axis of the Sample. 
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X-ray tomography was done to see the distribution of small and large pores. 

Snapshots of pore distribution in the yz sample plane were taken at four depths (top, 1/3, 

2/3 and the bottom) along the samples x direction. In AR49_F2_S1 (Figure 5.26) shows 

small pores are almost absent in the lower half of the sample. Also there are fewer large 

pores at the top of the sample as compared to the bottom. AR49_F2_S2 (Figure 5.27) 

shows the most even distribution of pores of the three samples. AR49_F2_S3 shows 

about the same area without small pores as AR49_F2_S1, again mostly in the lower half 

of the sample (Figure 5.28). However AR49_F2_S3 has a higher quantity of large pores 

in the top half of the sample than AR49_F2_S1.   

 

Figure 5.26 X-ray Tomography Showing Small and Large Pore Distributions of 

AR49_F2_S1.  Pore Distributions are Show for the yz Sample Plane at Different 

Depths Along the Sample x Direction (tx). Large Areas Absent of Small Pores are 

Outlined in White. Thanks to Dr. Chmielus for the Image. 
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Figure 5.27 X-ray tomography showing small and large pore distributions of 

AR49_F2_S2.  Pore distributions are show for the yz sample plane at different 

depths along the sample x direction (tx). Large areas absent of small pores are 

outlined in white. Thanks to Dr. Chmielus for the image 
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Figure 5.28 X-ray Tomography Showing Small and Large pore Distributions of 

AR49_F2_S3.  Pore Distributions are Show for the yz Sample Plane at Different 

Depths Along the Sample x Direction (tx). Large Areas Absent of Small Pores are 

Outlined in White. Thanks to Dr. Chmielus for the Image. 

      

5.6 Size Effects on MFIS  

A single pore sample AR75_K6_S2 (Figure 5.29 a) was magneto mechanically 

cycled then cut in half to create two new smaller samples AR75_K6_S2_A (Figure 5.20 

b) and AR75_K6_S2_B (Figure 5.29 c).  Each of the smaller samples was magneto-

mechanically cycled and the field orientation dependent MFIS was compared for all three 

samples shown in Figure 5.29 (a-c). In the initial large state the sample showed two strain 

maximum of 0.007% at 44 and 126° for the first MMC. After cutting, AR75_K6_S2_A 

showed a 0.013% increase in MFIS to 0.02% and one main strain peak at 44 ° with an 
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additional shoulder at field angles above 90 °.  AR75_K6_S2_B showed one main strain 

peak of 0.007% at 126 ° with an additional shoulder at field angles below 90 °. 

 

Figure 5.29 Size Effect Study on MFIS in Single Pore AR75_K6_S2. a) is the Initial 

Magneto-Mechanical Behavior for the Initial Size of the Sample (Grey Box). The 

Sample was then Cut in Half and Tested Separately (Solid Arrows) as 

AR75_K6_S2_A (b Blue) and AR75_K6_S2_B(c Red). Each Strain Peak Observed 

in the Initial Sample was Distributed to the Substituent Samples Shown by the 

Dotted Curve.   
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6  DISCUSSION 

In the martensitic phase transformational effects on MFIS study, the samples 

investigated represent a host a variables such as composition, porosity, pore architecture, 

and pore distribution. Composition strongly effects the martensite transformation 

temperature [86]. Cherneko et al. found for Ni-Mn-Ga alloys that have the martensitic 

phase transformation temperature higher than the Curie temperature, during the onset of 

ferromagnetic ordering the material stiffened [55].  Therefore for AR20_D6( Figure 5.1) 

since the Curie temperature and austenite finish overlap the martensite would be stiffer 

causing twin boundary mobility to decrease [55]. Cherneko also found  when the 

martensitic phase transformation temperature is below the Curie temperature, the elastic 

modulus decreases, as the transformation is approached. Therefore the material becomes 

more compliant at temperatures around the phase transformation[55]. If the metal is more 

compliant, twin boundary mobility increases thus enhancing the MFIS. This temperature 

dependence of twin boundary mobility has been demonstrated recently by Gaitzsch et al. 

[33] for textured polycrystals, where increasing the testing temperature to within 15K of 

the martensitic phase transformation, increased the MFIS by 0.7% [33, 55].  Thus higher 

MFIS may be achieved in samples with Mf temperatures that are close to the testing 

temperature of ~17 °C. This explains the tendency that samples with Mf  close to ~17 °C 

show a higher MFIS as demonstrated in Figure 5.2.   
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From Figure 5.17 a relationship between porosity and MFIS was found, 

independently, for three samples in the porosity study. G2_S1 showed a ten-fold increase 

with a porosity increase of only 1.3%, which is a dramatic effect. Figure 6.1a shows a 

porous frame work that can be thought of as a system of bridging metal called struts and 

where struts connect called nodes. If strain is measured in the horizontal direction (arrow) 

and a few struts are constrained such that no deformation can occur in them, these struts 

can be thought of as “hard links” marked with a dashed line. If the hard links make up a 

hard chain in the direction of the strain, the hard chain will inhibit the MFIS throughout 

the whole network. The nodes or grain boundaries constrain a volume near the node, 

since the twin boundary cannot move past the point of where the twin boundary interacts 

with any constraint (illustrated in Figure 6.1b).[87, 88]. Etching will reduce the fraction 

of constrained (or hard) volume (blue area in Figure 6.1b) and increase the volume of 

unconstrained (or soft) material (dotted white line Figure 6.1b) within one strut. 

Therefore if the strut cross section is reduced the twinning system can take up a larger 

volume fraction in the strut. The unconstrained volume fraction (vfree) is:  

)tan(1 
l

w
v free                                                      (16) 

where w is the strut width l is the strut length and α is the angle between the twin 

boundary and node.  If a significant amount of hard links are broken or etched enough 

such that connectivity of the hard chain is no longer maintained the deformation of the 

whole network can deform to a much higher degree. In this way very little porosity 
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increase could be needed to achieve the effect of removing hard links in the bimodal 

foam.  

 

Figure 6.1 a) Porous Network of Struts and Nodes with Hard Link (Black Dashed 

Line) Strung Together in a Hard Chain. If the Strain (ΔL) is Measured in the 

Direction Marked by the Arrow, the Hard Chain will Not Allow Deformation to 

Occur. b) Representation of One Strut Node Complex where Dark Blue Squares are 

nodes. The Gray Area is the Strut before Etching. If the Struts are Assumed to be 

Single Crystalline with 45° Twin Boundaries the Corresponding Deformation Area 

is Shown in Blue. When the Strut is Etched or Thinned the Strut Width Decreases 

to the Dotted Line. For the Thinned Strut the Volume of Deformation Becomes the 

Area Outlined with the White Dashed Line. 

 

This hard link concept may explain why G2_S1(porosity study) had such a 

dramatic increase in MFIS with very little porosity increase. In Figure 5.18 G2-S1 

initially showed no martensitic phase transformation hysteresis but a slow decline in 

MFIS which might be expected due to the dependency of twin boundary motion on 

temperature [89]. Severe cracking, (Figure 5.18 c) as discovered after TMC, is indirect 

evidence that space holders were present during the initial testing. The crack ledges are 

also displaced implying that the material deformed after being initially cracked, 
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suggesting the space holder was only present during the first TMC. During TMC the hard 

ceramic restricted the deformation in the Ni-Mn-Ga metal, which was accommodated by 

cracking within the metal. If the residual space holders were present during the first 

testing, enough three dimension constraint could be imposed such that the sample did not 

deform and therefore no martensitic phase transformation could be observed. During the 

first etching the space holder was probably removed completely allowing the material to 

be able to deform. The cracks along with the etching, thus broke the hard links and lead 

to the dramatic increase in MFIS. 

 

The porosity study showed that the width of the strut effects whether a strut is 

hard or soft.  Therefore pore architecture must be a large factor in determining 

performance properties of the foam. Micrographs of the twin structures show that struts 

in single pore foam are much thicker than struts in the dual pore foam (Figure 5.14). 

Single pore struts show many twin variants and possibly grain boundaries, in contrast to 

dual pore foam which show twins that span the thickness of the strut. Even though the 

MFIS demonstrated between the mono-modal foam and the bimodal foam in the pore 

architecture study (Figures 5.15 and 5.16 respectively) were similar, the strain reduction 

rate with magneto-mechanical cycling was higher in the single pore foam as compared to 

the dual pore foam. The high strain reduction rate of the single pore foam can be 

attributed to a higher degree of twinning incompatibilities present in the thicker struts [7, 

8, 17, 19, 67, 68, 87]. Twin boundary motion is easier in dual pore foam, due to a 

reduction of the number of twin–twin interactions which lead to the creation of cracks[8, 
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68]. Also, because of strut and node size differences, cracks originating in the small dual 

pore foam struts do not propagate as far as those originating in the larger nodes and struts 

of the single pore foam. Incompatible twinning interactions and grain boundaries make 

thick struts “hard links”. The single pore foam could have varying degrees of hard links 

depending of the twin microstructure within the strut which may be why the single pore 

foam can still display MFIS twice as large as previous single pore foam results[39] and 

on the same order of magnitude as the magnetostrictive material Terfenol D[23]. Dual 

pore foams have demonstrated up to 8.7% MFIS making the dual pore foam the best 

architecture investigated.  

   

For all three samples tested in the porosity study the MFIS increased with 

increasing porosity though the strength of the effect varied considerably (Figure 5.17). 

Samples tested in the porosity study had compositions within experimental error of each 

other (Table 5.2), demonstrating that composition was not a factor affecting the rate of 

MFIS increase with porosity increase. The different rate of MFIS increase with porosity 

increase could be due to crystallographic texture and/or pore distribution. The samples in 

the porosity study display varying degrees of magneto crystalline anisotropy energy 

(Table 5.3) from 20% to 5% of a single crystal of Ni-Mn-Ga. The varying magneto 

crystalline anisotropy energy therefore demonstrates different levels of crystallographic 

textures. It is well know that texture in polycrystalline materials can enhance MFIS [32, 

33, 36-38, 90]. Further, equation 16 shows the free deformation volume is dependent on 
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the twin orientation within the struts (α). The twin orientation within the strut dictates the 

rate of free volume increase with strut thinning.   

 

In the pore distribution study it was found that samples with homogenously 

distributed large and small pores showed much higher MFIS than samples in which pore 

segregation dominated the architecture. F2_S2 the sample with the most uniform pore 

distribution out of the Ar49 foams(Figure 5.27) and also showed the highest magnetic 

anisotropy indicating(Figure 5.24) a higher degree of texture than the other two samples. 

F2_S2 also showed a notable increase in MFIS with thermo magneto-mechanical cycling 

(i.e. a training effect),(Figure 5.22) . In Figure 5.26, Figure 5.27, Figure 5.28 the areas 

outlined in white, are struts that are not filled with small pores. The struts enclosed in the 

white area, therefore show much thicker struts. Both F2_S1 and F2_S3 (Figures 5.26 and 

5.28) showed almost half of the sample was devoid of smaller pores. However F2_S3 

shows a higher amount of large pores evenly distributed, where F2_S1 has large sections 

filled mostly with small pores. During TMC, F2_S3 showed a MFIS of 0.37% that was 

stable for a wide temperature range(Figure 5.23) where F2_S1 showed 0.25% for a very 

narrow temperature window (Figure 5.21). Both F2_S1 and F2_S3 show little anisotropy 

(Figure 5.24) and little training effect. In the bimodal foam the struts that are missing the 

small pores are much larger and are similar to the struts see in the mono-modal foam. The 

large struts in the bimodal foam likely have incompatible twin-twin interaction as well as 

a higher chance of containing grain boundaries. In essence the large struts that are devoid 

of small pores are most likely hard links and the pore distribution dictates the population 
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and position of the hard links. The presence of texture seems to correlate to the 

trainability as the foam with the highest anisotropy shows the highest training effect and 

vice versa. However anisotropy isn’t the only factor in MFIS as F2_S3 showed 3% lower 

anisotropy than F2_S1 but ~0.1%  higher MFIS, indicating that the pore distribution 

plays a significant role in controlling MFIS.    

 

The porosity distribution may also have a large impact on how effective etching 

relieves constraints and could be another reason for different MFIS vs porosity slopes. 

The distribution of thick struts not only would give the absolute population of hard links 

but the spatial arrangement of hard links. Hard links that are close to one another would 

form a chain which can be “broken” by etching or cracking as discussed above. On the 

other hand if a hard link is isolated it probably contributes less to the entire constraint on 

the strut network.  

 

Training may be another method for reducing the number of hard links in the 

network of struts. There were three types of training investigated in this study: magneto 

mechanical, thermo-magnetic, and thermo magneto-mechanical training. Magneto 

mechanical training occurs from moving twin boundaries eliminating unfavorable twin 

variants.[7, 17, 19] Magneto mechanical training was only seen in a small percentage of 

foam(Figure 5.3). The lack of magneto mechanical training in MSM dual pore foam 

could be due to the limited volume of the struts such that there is less interacting twinning 

systems, which was discussed above in regards to the pore architecture study.   
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During thermo-magnetic training the applied field reduces the energy for 

martensite to form such that the direction of easy magnetization is aligned with the 

applied field. In thermo-magnetic training the number of twinning systems are reduced 

which results in a reduction of incompatible, intersecting twins [7, 17, 19]. Thermo-

magnetic training resulted in a wide variety of effects and presented here are only a few 

possible explanations for the phenomenon observed. Detailed studies on microstructural 

evolution are needed to further substantiate the ideas presented below.  

 

In most cases thermo-magnetic training showed an increase in MFIS (Figure5.7). 

A great example of the twin variant selection during thermo-magnetic training is for 

sample C2 (Figure 5.5). During initial testing the sample C2 showed a broad strain peak 

probably because there were multiple twin variants contributing to the deformation 

(Figure 5.5). After training the peak narrowed dramatically and the maximum MFIS now 

occurs at 90 °, as expected for twin boundary motion in a single crystal. The change is 

magneto mechanical behavior indicates some twinning systems were eliminated during 

the training. Subsequently the training was removed and as expected the MFIS drops 

below the initial MFIS. After neutralization C2 was trained a second and third time with 

very little increase in MFIS. The small increase in MFIS upon the 3
rd

 training suggests 

that training could an additive effect. The lack of training response for the 2
nd

 and 3
rd

 

trainings could be due to damage accumulation from magneto mechanical cycling. 
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The occurrence of two strain peaks per MMC (rather than a single peak expected 

from a single crystal) are not unusual and may reflect the polycrystalline nature of the 

foam (Figure 5.15, 5.29 and 5.9). Grains of different orientations in the foam nodes and 

struts, elongate and contract in different directions thus contributing differently to the 

average foam strain which is measured only in the z direction. Different foam 

deformation modes such as bending or hinging could also accommodate different 

directional strains from neighboring grains. The two strain peaks probably correspond to 

two dominant twin variants, possibly in different grains, expanding and contracting at 

specific magnetic field angles. One possible explanation for the dual peak phenomenon to 

be initiated, after thermo-magnetic training, is that prior to training, the twinning 

incompatibilities from multiple variants limit MFIS so much that each variant deforming 

was not distinguishable. Reduction of number of twin variants, by training, may be such 

that two dominant variants remain, each variant now able to freely deform thus 

distinguishable and results in two strain peaks per MMC.  

 

 In the size effect study when one, single pore foam was sectioned the two peaks 

per MMC, which were initially present, are split up between the sections of the sample 

(Figure 5.29). As the sample was sectioned the numbers of grains contributing to MFIS 

were distributed between the samples thereby distributing the strain peaks accordingly. 

The splitting of the MFIS peaks between the halved samples supports the claim that 

polycrystallinity is responsible for the dual peak phenomenon. Interestingly as 
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neighboring grains were removed the MFIS increased, further corroborating the claim 

that grain boundaries are responsible for reduced MFIS. 

 

The multiple mechanisms of deformation within foam may allow deformation to 

be transmitted through “hard regions” in which twinning is not possible. Such a 

mechanism would not be available in bulk materials. In an open cell porous material of a 

MSMA not all struts can deform in the same direction. Thus, if a strut or groups of struts 

deform by twin boundary motion the surrounding area of struts can “allow” for the twin 

induced deformation by strut bending or buckling. Secondly any twin boundary motion in 

the nodes may initiate hinging. Hinging could result in very large strains at the ends of 

the strut with very little displacement at the hinge point. All of the deformation modes 

described essentially allows each grain and each strut to deform via twin boundary 

motion to the highest degree. 

 

In the samples that showed strains less than 0.1% half of the cases thermo-

magnetic training would result in a maximum strain shift to an angle that is not associated 

with twin boundary motion(~0 and 180°) for a single crystal (Figure5.8). For usual twin 

boundary motion 0 and 180 degrees would correspond to a minimum as the short lattice 

parameter of the crystal would be aligned with the long axis of the sample. Chopra et al. 

reported twin microstructures for bent and unbent single crystal martensites[91]. If the 

bent microstructure (Figure 6.2 a,b) was placed into a magnetic field aligned with the 

long axis parallel to the magnetic field the twin boundaries would move resulting is the 
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3D microstructure detailed in Figure 6.2 d. Due to variant coarsening the twin boundary 

on the corners would be disappear. In single crystals the lack of twin boundaries on the 

corners and edges often result in a kinked shape [87]. This kinking may occur in the 

struts of the foam and therefore result in a positive strain at a field angle of 0 °. The strut 

dimensional change from kinking would be very small and is probably why this effect 

was only seen in low MFIS, low porosity samples. The kinking effect could also be 

initiated in non bent or normal microstructures, after twin boundary motion, but would 

occur at 90 °. The kink formation may initiate other forms of deformation such as hinging 

where the struts bend or hinged about a fixed point such as a node as described above.  

 

 

Figure 6.2 Bent Martensite Microstructures as Seen from Top (a) and Three 

Dimensionally (b) where Squares Indicate the Unit Cell Orientation. If the Bent 

Microstructure has a Magnetic Field Applied Parallel to the Long Axis as Shown by 

the Arrow, the Resulting Microstructures where c is the Top View and d is Three 

Dimensional Would be Found. Adapted and Reprinted with Kind Permission from 

[91]. 
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Thermo magneto-mechanical training is performed by heating and cooling 

through the martensitic phase transformation in the presence of a rotating field. Not only 

is one twinning system preferred during the martensite formation by the application of a 

magnetic field but additionally the rotating field selects twining systems that are also 

mobile in the plane of the rotating field.  For one sample AR20_C13 both thermo 

magneto-mechanical (Figure 5.11) and thermo-magnetic training (Figure 5.10) 

effectiveness’s were compared. Thermo-magnetic training resulted in an increase in 

MFIS of 1.5%. When the same sample was thermo magneto-mechanically trained with 

over 4 H/C cycles the MFIS increased by a total of 7%. However trainings could have an 

additive effect as seen for C2 and thus the comparison of training methods may be 

hampered. Nonetheless this study shows that TMC could be one of the most effective 

means of training MSMA.  

  

In the porosity study, G2-S1 also showed a clear training effect from TMC 

demonstrated by an increase in maximum MFIS with each H/C cycle. In Figure 5.18 b 

the first H/C cycle follows the same MFIS vs temperature path while in the martensite 

phase for both heating and cooling curves. However after the first H/C cycle the heating 

and cooling curves do not follow the same path. In the first H/C cycle the foam is most 

likely self accommodated which would explain the slowly decreasing MFIS until the 

phase transformation. Incompatible twinning systems interfere with each other as rotation 

of the magnetic field proceeds [7, 17, 68, 77]. After the first H/C cycle the foam is now in 

a trained state, showing constant MFIS until the martensite to austenite transformation. 
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Once trained it is possible that during cooling with a rotating field certain twinning 

systems become inactive and remain inactive even upon heating [7, 17, 68, 77].  

  

Figure 5.19 shows one H/C cycle for TMC for multiple porosities of I2_S2. The 

maximum level of MFIS from lower porosity to higher porosity increased as well as the 

martensitic phase transformation hysteresis changes. Both the change in the MFIS and 

the change in the martensitic phase transformation hysteresis could be explained by 

removal of the hard links. At the lower porosities 54.8% and 56.6% the martensitic phase 

transformation hysteresis occur over a wide temperature range and active cooling only 

gradually increases MFIS. In fact the highest strain of the thermal cycle occurs during 

heating at the lower porosities. This is in stark contrast to I2_S2 at 60.3% porosity, there 

is a sharp increase in MFIS upon cooling and the martensitic phase transformation 

hysteresis narrows. The presence of the hard links could act as three dimensional 

constraints for the whole foam network and require more undercooling for the martenistic 

phase transformation to be complete. Overall in light of the hard link concept, the 

variations between the thermo magneto-mechanical training and hysteresis of various 

foams probably reflect the effects of various distributions of hard links due to 

combinations of grain orientations and sizes and grain boundary location.  

  

Each sample experienced failure after the final etching step of the porosity study. 

Ni alloys are easily passivated by a chemiadsorbed layer of either sulfur or oxygen; since 

Ni-Mn-Ga is 50% Ni the same could be true for the alloy as well [92-94]. Local 
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breakdown of the passive layer in the deformation area, may be appreciable during 

magnetic field induced deformation. The regions of breakdown in the chemiadsorbed 

layer may be etched at a much higher rate that the surrounding area. Therefore the 

combination of etching and deformation experiments contributed to low etching cycle 

lifetime of these samples. 

 

X-ray texture measurements (Figure 5.12) showed that there are 5 or more grains 

that were detected over the probed area of ~12 mm
2
 meaning grains are in the mm size 

range. If grains are millimeter sized there could be 10 or more grains in the volume of the 

sample and therefore still be considered polycrystalline. X-ray texture and neutron 

diffraction experiments show detectable intensity shifts demonstrating the texture could 

be used to see the volume fraction changes that occur during training. Texture has to 

potential to quantify the training effects but need more work to be able to successfully 

use the results.       
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7  CONCLUSIONS 

Variables that affect the performance of polycrystalline Ni-Mn-Ga foam were 

identified and investigated. Variables investigated include martensitic phase 

transformation temperature, pore architecture, pore distribution, porosity, training, and 

magnetic anisotropy/texture. A concept of a network of strut with hard links was 

developed to correlate these variables with the effect on MFIS. A hard link is a strut that 

is unable to deform, and further the presence of the hard link reduces the ability for the 

whole strut network to deform.  A slight correlation between MFIS and Mf was found. 

The metal is more compliant when the temperature starts to approach the martensitic 

phase transformation and contains fewer hard links. The smaller struts in the bimodal 

foam have less twin interaction that create cracking and therefore sustain less damage 

accumulation. Dual pore foam has far less hard links than the single pore foam, due to 

twin incompatibility reduction in the thinner struts. However in dual pore foams 

homogenous pore distributions are crucial in lowering the population of hard links. 

Further the pore distribution drives the hard link distribution. The different hard link 

distributions could explain the variety of properties found in foam samples with identical 

(within experimental error) compositions. Systematically increasing porosity in foams 

with constant composition, grain size, and texture, shows that the addition of porosity to 



127 

 

 

polycrystalline Ni-Mn-Ga is responsible for the enhanced MFIS confirming the original 

hypothesis.  Various forms of training were used to soften hard links. Magneto-

mechanical training was only observed for a small percentage of samples probably due to 

the porosity screening the twin interactions. Thermo-magnetic training gave various 

results such as dramatic 34 fold increases, negative training effects, dual peak initiation, 

and peak maxima shifting. Thermo magneto-mechanical training showed the highest 

increase in MFIS and may the most efficient form of training.  

 

With the variables that affect MFIS in Ni-Mn-Ga foam identified, it is possible to 

fabricate NMG foam with consistent microstructure and therefore consistent MFIS over a 

large number of cycles. By adjusting the foam microstructure and architecture MFIS may 

be tailored to the specific actuation application.  
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8 FUTURE WORK 

In the future, foams may be manufactured with a powder metallurgy method and a 

salt space holder. In the powder metallurgy process, Ni-Mn-Ga powder is mixed with salt 

and hot pressed at temperatures less than the melting temperature. The method should 

allow for more grain size control by powder fabrication, easy dissolution of space holder 

(no acid needed), and limitation of Manganese and Gallium evaporation because 

materials are processed at a lower temperature than the replicate casting method. The 

powder will also be magnetically aligned prior to pressing to produce a texture and 

theoretical enhance the MFIS.  

Further work is required to quantify textures of the foam samples. Once texture is 

quantifiable, variant selection through training could be investigated. Texture may also be 

employed for observing the effect of hot pressing on the preferred orientation of the 

sintered powders. Neutron diffraction texture during field rotation and at constant 

temperatures will be further analyzed to investigate the other deformation mechanism in 

cast foam, primarily hinging.     

Optical observations of the twin boundaries moving in a rotating magnetic field with 

polarized light should be conducted to elucidate the magneto mechanical behavior 
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presented in the training section (section 5.2). An optical device for the above purpose is 

built and implementation of the device in currently being developed 
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Table A.1 Crystallographic Information for Ni2MnGa Martensites. 

 Space 

Group 

Lattice 

Parameter 

Atomic Positions Illustration 

14M I2/m a= 4.23Å 

b=5.50 Å 

c=29.7 Å 

β=93.5°  

Ga 0 1/2 0 

Ga 13/21 1 1/14 

Ga 3/4 1/2 2/14 

Ga 22/42 0 3/14 

Ga 41/42 1/2 4/4 

Ga 18/42 0 5/14 

Ga 37/42 1/2 6/14 

Mn 0 0 0 

Mn 13/21 1/2 1/14 

Mn 1/42 0 2/14 

Mn 22/42 1/2 1/14 

Mn 41/42 0 4/14 

Mn 18/4 1/2 5/4 

Mn 37/2 0 6/14 

Ni 1/2 1/4 0 

N
 1/2 3/4 0 

Ni 5/42 3/4 1/14 

Ni 5/42 5/4 1/14 

Ni 4/7 1/4 2/14 

Ni 4/7 3/4 2/14 

Ni 1/42 3/4 3/14 

Ni 1/42 1/4 3/14 

Ni 10/21 1/4 4/14 

Ni 10/21 3/4 4/14 

Ni 13/14 3/4 5/14 

Ni 13/14 1/4 5/14 

Ni 8/21 1/4 6/14 

Ni 8/21 3/4 6/14 
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10M I2/m a= 4.23Å 

b=5.57 Å 

c=21.5 Å 

β=90.5° 

Ga 0.000 0.50 0.00 

Ga 0.045 0.50 0.20 

Ga 0.940 0.50 0.40 

Mn 0.000 0.00 0.00 

Mn 0.040 0.00 0.20 

Mn 0.930 0.00 0.40 

Ni 0.500 0.25 0.00 

Ni 0.540 0.25 0.20 

Ni 0.440 0.25 0.20 
 

 
NM I4/m

mm 

a= 3.23Å 

c=5.98 Å 

Mn 0 0 1/2 

Ga 0 0 0 

Ni 1/2 0 1/4 

Ni 0 1/2 1/4 
 

 



140 

 

 

 

Figure A.1  8-1_b Effect of Thermo- Magnetic Training on MFIS. 

 

 

Figure A.2  4-8 H2SO4 Effect of Thermo-Magnetic Training on MFIS. 

 



141 

 

 

 

Figure A.3  4-23_3 Effect of Thermo- Magnetic Training on MFIS. 

 

 

Figure A.4  8-1 HCL Effect of Thermo-Magnetic Training on MFIS. 
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Figure A.5  8-1_a Effect of Thermo-Magnetic Training on MFIS. 

 

 

 

Figure A.6  Magneto-Mechanical Cycling of 8-1b. Curve 1 is 1120 MM Cycles, 2 is 

200,000 MM Cycles, and 3 is 800,000 MM Cycles.    
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Figure A.7  Magneto-Mechanical Cycle Dependent MFIS of AR20_C11. 

 

 

Figure A.8  Magnetic Field Orientation Dependent MFIS of AR20_C11. 1) 1998 

MMC, 2) 723442 MMC and after Training MMC Number 3) 2 MMC and 4) 

40,1270 MMC.  
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Figure A.9  Magneto-Mechanical Cycle Dependent MFIS of AR3_A2 in the Initial 

State (Black Squares) and Trained State (Open Squares) 

 


