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ABSTRACT

With the advent of more powerful personal computers, inexpensive memory, and

digital cameras, curators around the world are working towards preserving historical

documents on computers. Since many of the organizations for which they work have

limited funds, there is world-wide interest in a low-cost solution to obtaining these

digital records in a computer-readable form. An open source layout analysis system

called OCRopus is being developed for such a purpose. In its original state, though, it

could not process documents that contained information other than text. Segmenting

the page into regions of text and non-text areas is the first step of analyzing a mixed-

content document, but it did not exist in OCRopus. Therefore, the goal of this

thesis was to add this capability so that OCRopus could process a full spectrum of

documents.

By default, the RAST page segmentation algorithm processed text-only docu-

ments at a target resolution of 300 DPI. In a separate module, the Voronoi algorithm

divided the page into regions, but did not classify them as text or non-text. Addition-

ally, it tended to oversegment non-text regions and was tuned to a resolution of 300

DPI. Therefore, the RAST algorithm was improved to recognize non-text regions and

the Voronoi algorithm was extended to classify text and non-text regions and merge

non-text regions appropriately. Finally, both algorithms were modified to perform at

a range of resolutions.

Testing on a set of documents consisting of different types showed an improvement

of 15-40% for the RAST algorithm, giving it at an average segmentation accuracy

viii



of about 80%. Partially due to the representation of the ground truth, the Voronoi

algorithm did not perform as well as the improved RAST algorithm, averaging around

70% overall. Depending on the layout of the historical documents to be digitized,

though, either algorithm could be sufficiently accurate to be utilized.
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CHAPTER 1

INTRODUCTION

The ability to create, store, and modify documents on computers has only existed for

two to three decades. The printing press, on the other hand, invented in Germany and

adopted by the rest of the developed world over time, has been in use for nearly six

centuries [1]. Consequently, a multitude of printed documents have been generated in

book, magazine, and newspaper form. While many have been lost over the years,

a significant portion has been preserved. As historical documents, they are not

only fragile, but are inaccessible to most people. In the interest of sharing and

preserving their contents for eternity, there is a movement to digitize and store them

on computers.

At this time, the most common method for digitizing documents is to use an image

scanner [3]. Image scanners, also known as flatbed or desktop scanners, contain a light

source, an image sensor such as a CCD, and a glass top upon which the document

is placed. Standard scanners that scan documents and produce images of them cost

a few hundred dollars; however, it is also possible to purchase large format scanners

capable of scanning large books and converting the images into searchable PDF files,

but they cost on the order of five thousand dollars. In standard scanners, documents

are digitized by OCR software installed onto the computer.

With the advent of inexpensive digital cameras, it is now possible to photograph
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the pages of books, the bindings of which may be too brittle to withstand the pressure

of being placed, and temporarily deformed, on a scanner bed. Once these images

have been obtained, it is necessary to process and analyze them so that they can

be converted into text documents that are easily readable and searchable. Since

the institutions that house many of these documents have limited funds, a low-cost

solution to digitization is the only feasible option.

The impetus for this thesis was a non-profit organization in Germany called the

Bavarian Traditional Clothing Culture Center and Archive [2], which was formed

to preserve traditional Bavarian costumes and dances. It has been acquiring the

newspapers and magazines of various clubs in the area, which it plans to house in

a new archive facility. The organization then hopes to digitize these documents so

that researchers can examine them to gain a better understanding of how costumes

and dance have evolved over the years. Many of these documents were written in the

German Fraktur font and contain illustrations, but have standard Manhattan layouts.

At this time, there is an open source document analysis program - OCRopus [4],

also developed in Germany - which is capable of converting images of multiple column

text documents into text files; however, it cannot process documents that include

non-text areas, such as the newspapers mentioned previously. Therefore, non-profit

organizations such as the Bavarian Traditional Clothing Culture Center and Archive

cannot digitize and share their materials with historians. In response to this need and

that of thousands of other libraries and organizations, the goal of this master’s thesis

is to improve the OCRopus program by extending its page segmentation capability

to include mixed-content documents of camera-acquired images.
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1.1 Document Recognition and Analysis

1.1.1 Image Acquisition and Processing

The first step in the process of digitizing a document is to capture an image of it.

This can be done by either scanning or photographing it. Mid-priced digital cameras

are capable of taking pictures with resolutions of 3,872 x 2,592 pixels (10 MP) to

4,672 x 3,104 pixels (15 MP). When these images are printed out at a resolution of

300 DPI, they range in size from 12.9” x 8.6” to 15.6” x 10.3”, approximately the

same size as a page of a bound historical document. Typical desktop scanners can

image documents with resolutions of 150 to 1200 DPI. So, today’s common digital

cameras can produce images comparable to those generated by a desktop scanner.

Employing digital cameras for image acquisition, on the other hand, introduces a

host of other issues that need to be resolved before the documents can be analyzed.

First, unless the camera is lined up perfectly with the page, it can capture some areas

outside of it including the table top, the adjacent page, and the edges of the pages

residing between it and the outer cover. The extraneous information contained within

these areas generally needs to be removed prior to analyzing the document so that

only the relevant sections of the document are analyzed. This process is typically

referred to as border removal.

Once the border has been removed, the image’s orientation needs to be checked

for skew and corrected. Other factors that need to be taken into consideration are

the perspective of the page and any distortions that may be present, such as warping

due to stiff spines. Finally, if the lighting under which the photograph was taken was

not optimal or if the pages of the document itself have yellowed with age, the image

may need to be processed so that it is only represented by black-and-white pixels.
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This is called binarization. Additionally, if there is speckle noise present on the page,

it will need to be removed as well.

At this time, there is an open source program called PhotoDoc [5] that is capable of

handling all of these issues except for noise removal and distortion caused by warping.

PhotoDoc can be used in conjunction with an OCR engine such as (open source)

Tesseract [6] or OCRopus for image-to-text conversion. In addition to PhotoDoc,

researchers in the Image Understanding Pattern Recognition (IUPR) Research Group

of Kaiserslautern, Germany, in partnership with the Adaptive Technology Resource

Centre of Toronto, are developing a hardware/software solution for document analysis

called Decapod [7]. Decapod is being designed to work in conjunction with OCRopus,

which has skew correction, binarization, and noise-reduction functionality, but not

border removal. The hardware component of Decapod will consist of a camera/tripod

assembly for photographing the documents and it is assumed that border removal will

be added to OCRopus to complete the software component.

1.1.2 Document Analysis

Once the image has been acquired and processed, it needs to be analyzed in terms

of layout. That is, if the page contains information other than text like graphs,

tables, and half-tone images, the program needs to determine which areas are text

and which are not. This way only the text regions are sent to the OCR engine,

preventing unnecessary errors. Dividing a document in this fashion is called page

segmentation. Once the text regions have been identified, the individual lines are

sorted into reading order.

At this point, the OCR engine is called upon to recognize the characters in the

text regions and convert them into ASCII or Unicode characters. The first step



5

in this process is to segment the lines into words then the words, into characters.

Depending on the algorithm used, certain features like geometrical moments, contour

Fourier descriptors or number of pixels per row are extracted for each character.

These features can then be matched to a character in a database using a K-Nearest

Neighbor algorithm or can be input into a Decision Tree or Neural Network that

returns the most likely character.

Since the motivation behind this thesis is to help provide a means for curators to

digitize documents in a cost-efficient manner, open source document analysis systems

were researched. Besides OCRopus, a program called Gamera [8] was found, but it

is more of a toolkit than a comprehensive document analysis system. It has image

processing and OCR capabilities, but no apparent page segmentation functionality.

Therefore, OCRopus was deemed the system of choice. Like Gamera, page segmen-

tation has not been developed in OCRopus; however, it has some algorithms in place

that can be expanded upon.

1.1.3 Page Segmentation Algorithms

Over the years researchers have developed a number of page segmentation algorithms,

which can be categorized as top-down, bottom-up, or hybrid methods [9]. Top-down

methods involve operating on the document as a whole and subdividing it, whereas

bottom-up methods start with pixel-level operations, which create low-level groups

that are merged into segmented regions. Hybrid methods do not fall into either of

these categories, but may include a little of both.

The Recursive X-Y Cut (RXYC) and Run-Length Smearing Algorithms (RLSA)

fall into the top-down category. RXYC [10] starts by examining the image and con-

structing a block profile where white pixels are represented as zeros and black pixels
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are represented as ones. The block profile then consists of vertical and horizontal

projections of the black areas. Zeros extending across the entire document in the

block profile, or valleys, are possible column candidates with the widest being the

best candidate. Once the largest valley is discovered, the document is subdivided

around it and one of the new blocks is examined for the existence of valleys. After

it has been completely subdivided, the other block is addressed in the order of a

depth-first traversal. The blocks are represented in a data structure called an X-Y

tree, where the valleys are the nodes and the blocks the elements. The structure can

also be visualized as a set of nested, rectangular blocks.

Like RXYC, RLSA [11] also operates from the top down; however, it classifies the

regions as well. It examines each of the pixels in a row-by-row and column-by-column

fashion and changes each white pixel to black if it is surrounded by enough black

pixels. Black pixels are not changed. After the pixels have been updated, the gener-

ated row and column bit maps are ANDed together to form a single bit map. This

bit map then undergoes a horizontal smoothing operation to ensure the connection

of words in a text line. The final bit map typically consists of blocks corresponding

to individual text lines and non-text areas. At this point, measurements are taken

of the blocks (i.e., numbers of black and white pixels, dimensions, coordinates) from

which histograms are built and block classifications derived.

In terms of bottom-up approaches, two documented methods include the Doc-

strum and Voronoi algorithms. Docstrum [12] is a contraction of Document Spectrum

and only segments and classifies text. So, it is not a page segmentation algorithm in

the strict sense; however, its methodology is of interest. It starts by extracting the

connected components (groups of adjacent black pixels) of the image that typically

correspond to characters. Next the K-Nearest Neighbors of each component are found
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based on the coordinates of their centroids and the angle made by the line connecting

them. So, components placed in close proximity and side-by-side (e.g., along a text

line) are given priority. Once these have been grouped, they are classified as text,

title, abstract, etc., based on histograms of their dimensions.

The Voronoi method [13] also starts by identifying connected components. Af-

terwards, it extracts sample points along the boundaries from which it constructs a

Voronoi point diagram. Since the number of components is on the order of the number

of characters, a large number of edges are created, most of which are superfluous.

These unnecessary edges are deleted based on length (i.e., short ones) and whether

or not they are connected to other lines. In this way, the diagram is converted to an

area Voronoi diagram whose areas represent the page regions.

Comparing the two, the top-down approach requires a priori knowledge of the

document because parameters need to be set for determining which white areas are

valleys in RXYC as well as for setting the smearing threshold and smoothing filters of

RLSA. Additionally, neither one of these algorithms lends itself to segmenting layouts

that include regions with diagonal or curved boundaries (non-Manhattan layouts).

The bottom-up approaches, on the other hand, do not require a priori knowledge of

the layout, but will accumulate errors if any exist. Additionally, the Voronoi method

is capable of segmenting more complex, non-Manhattan layouts.

1.1.4 Page Segmentation Accuracy

To assess the accuracy of various page segmentation algorithms, it is necessary to

compare the output to the true region types or so called ”ground truth” of the page.

Three possible formats that this ground truth can take are: image files with labeled

pixels, Document Attribute Format Specification (DAFS) [14] files, or eXtensible
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Markup Language (XML) files. In the first case, pixels are labeled with their region

number or type to which a corresponding unique color is assigned (i.e., green for text,

red for images, etc.). The colors can be assigned using a common graphics program.

An advantage to this format is that regions of any shape can be represented, although

generating the ground truth for non-rectangular regions can be time consuming.

The color coding can be extended to define reading order as well, which is done

by OCRopus where the color gradually changes (e.g., gets ”greener”) as successive

lines are encountered in a column.

In the second case, the image is converted into either an ASCII, Unicode, or binary

file, which contains tags representing the following entities: doc (the document as a

whole), page, column, paragraph, line, word, and glyph (a single character in the

text); however, a more general file format than DAFS is XML in which the regions

are defined by the user. For example, regions can be represented by ”zone” tags

that have a ”classification” attribute specifying its type (i.e., text, graph, image,

etc.), allowing for non-text types. The zones can also have ”dimension” subtags that

include attributes for the coordinates of the corners or vertices that constrain them

to being rectangles or polygons. Realizing that there was need for a tool to generate

ground truth of this type, researchers created TrueViz [15], an open source graphical

application for producing XML ground truth files.

Once the ground truth and a file containing the detected regions have been

generated, they need to be compared and an assessment made as to how well they

match. The same researchers that supplied TrueViz also created a toolkit called

PSET [16, 17], which stands for Page Segmentation Evaluation Toolkit. PSET

contains several algorithms for segmenting document images as well as an algorithm

for measuring the performance of the segmentation; however, PSET generates DAFS
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formatted files and measures the segmentation performance in terms of text-line

accuracy. So, it is not suitable for documents that include images.

Using color-coded ground truth files, one could apply the method developed by

Shafait and Breuel [18] for measuring segmentation accuracy whereby counts of the

number of correct, over and under segmentations are taken in addition to several other

measurements. In the case of comparing rectangular zones, though, one could apply

the metric used in the page segmentation competition held by the International Con-

ference on Document Analysis and Recognition (ICDAR) every odd year [19]. This

method involves calculating and tabulating ”match scores” for the regions, extracting

parameters from this table, calculating detection and recognition accuracies based

on these parameters, then using this information to calculate performance rates for

each region as well as an overall performance measurement. Since the documents of

interest for this thesis have Manhattan layouts and no program is publicly available

to measure segmentation performance, one was written based on the ICDAR method.

1.2 Document Analysis Programs

As mentioned earlier, OCRopus is an open source layout analysis and OCR program.

It is being developed for large-scale digital library applications and is distributed

under the Apache 2 license. Its design supports multi-lingual and multi-script recog-

nition by using Unicode as well as HTML and CSS standards to represent the

typographic formats of the world’s scripts. OCRopus itself is built in modules that

can be switched to test different algorithms as well as incorporate new ones. The

programming language is C++, along with a built-in scripting language called Lua.

Its architecture consists of Layout Analysis, Text Line Recognition, and Statistical
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Language Modeling.

The Layout Analysis module includes five page segmentation algorithms: a triv-

ial morphological segmenter, a single-column projection-based segmenter, a RXYC

segmenter, a Voronoi segmenter, and a Recognition by Adaptive Subdivision of

Transformation Space (RAST) segmenter. The morphological segmenter simply ap-

plies a smearing algorithm to the image to obtain isolated blocks; whereas, the

projection-based segmenter examines the horizontal projection profiles to segment

text lines into characters.

The RXYC and Voronoi segmenters apply the algorithms discussed earlier, but do

not classify or color code the regions by themselves so they cannot be used to convert

images to text. Also, all four of these algorithms only output image files, not XML

files. Of the four, the Voronoi algorithm showed the most promise because it was

able to segment a small collection of complex layouts with the most accuracy (this

topic will be covered in more detail in Chapter 3). Therefore, it was deemed a good

candidate for further improvement.

RAST [4, 20], on the other hand, was the most developed algorithm of the five

and operates by default; however, it is not a page segmentation algorithm, per se.

It was designed for text-only documents [21] and consists of three steps: finding

the columns, finding the text-lines, then determining the reading order. To find

the columns it employs a whitespace rectangle algorithm [22] which was inspired by

RXYC. This algorithm differs from RXYC in that it keeps track of the white spaces

rather than the blocks, and combines them as opposed to subdividing the blocks.

RAST starts by extracting the connected components then determines the largest

possible (maximal) whitespace rectangles (or covers) based on the component bound-

ing boxes. These are then sorted based on how many connected components (e.g.,
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text lines) touch each major side. In this way, column dividers rather than paragraph

or section dividers take priority. The covers are then merged iteratively as long as the

combined cover obeys a given rule of how many components must be incident upon it.

Once the columns dividers (or gutters) have been found, the connected components

are examined and classified as text lines, graphics, and vertical/horizontal rulings

based on their shapes and the fact that they do not cross any gutters.

At this point, the reading order is determined by considering pairs of lines such

that either the line below or the line to the right at the top of the page (e.g., in the

next column) goes next. Once these have been ordered, the pairs are sorted to give

the final reading order. Preliminary tests of the RAST algorithm indicated that it

was capable of processing multiple column documents as long as they did not contain

images; however, when images were included errors were output and the reading order

was negatively impacted (more on this in Chapter 3). For these reasons, the RAST

module was judged as needing improvement.

While the goal of this thesis is to improve the performance of the OCRopus

system, the performance of a commercial program, ABBYY FineReader [23], was

also measured for comparison. As written earlier, the motivation behind this thesis

is to aid curators in their effort to digitize historical documents, specifically Bavarian

documents that were written in the Fraktur font. ABBYY has recently added the

Fraktur font to its OCR engine so it should be able to recognize the characters in

these documents; however, its page segmentation capabilities were unknown. Since

the topic of this thesis is page segmentation, this product was evaluated in this area

only.
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1.3 Thesis Statement

The goals of this thesis are to:

1. Develop an algorithm based on the OCRopus RAST algorithm that can segment

text-only documents, mixed-text, and non-text documents. Ensure that it can

process layouts similar to to that of the Bavarian documents and can recognize

the regions with an accuracy of least 90% over a range of resolutions.

2. Develop an algorithm based on the Voronoi method that not only segments

a document into text and non-text regions, but ensures that like regions are

merged and all regions are classified. As for performance, impose the same

constraints as in the previous objective.

In order to be able to measure these goals, the following tasks were completed:

1. A program was written that compares detected segments to ground truth and

returns a performance measurement.

2. XML output of segmented regions was implemented in OCRopus.

As a measure of performance before and after the improvement, as well as with

respect to industry standards, eight classes of documents stored at five different

resolutions were segmented by the following programs, then analyzed:

1. OCRopus’ current and improved RAST algorithms

2. OCRopus’ current and improved Voronoi algorithms

3. ABBYY FineReader
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CHAPTER 2

METHODS

As covered in the first chapter, the OCRopus document analysis system is the most

suitable open source program for digitizing large numbers of historical documents. In

its current state, though, it is incapable of processing complex layouts because its page

segmentation algorithms are not fully developed. In order to assess the performance of

these methods, OCRopus needed to be modified to output the detected page regions.

The format chosen for this representation was XML. Similarly, documents called

ground truth, that represent the true regions of the page, needed to be generated for

comparison. Then, a program needed to be written to compare the detected regions

to the ground truth.

Since overall performance metrics fail to convey how a particular method might

be failing, images of the output were also examined. For example, when creating text

blocks, the RAST algorithm labels them by assigning slightly different colors to them,

which are subsequently used to define the reading order. By modifying these colors,

the author was able to observe the different text blocks as well as the segmentation

of the non-text areas.

As for the Voronoi method, it was less sophisticated than RAST because it did not

classify the regions, so the graphical output could only be examined for segmentation.

In this case, it was not necessary to color the regions differently; lines were simply
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drawn around them in the original implementation. The accuracy of these regions

could then be examined by analyzing the amount of fracturing and merging.

2.1 Comparison Program Algorithm

A search of open source XML zone comparison programs based on the ICDAR Page

Competetion method [19] did not yield any software, so a program was written to

compare detected regions to ground truth. The algorithm starts by calculating ”match

scores” for each of the regions. That is, each of the regions of the ground truth are

compared to each of the detected regions and given a score indicating how well they

match. If the regions match perfectly, they are given a score of one; otherwise, if they

are completely separate, they are given a score of zero. If they overlap partially, the

score is given by

MatchScore(i, j) = a
T (Gi ∩ Ri ∩ I)

T ((Gi ∪ Ri) ∩ I))
(2.1)

where

a =















1 if gj = ri

0 otherwise

and

T(s) is a function that counts the elements of set s,

Gj is the set of all points inside the jth ground truth region,

gj is the jth ground truth region,

Ri is the set of all points inside the ith detected (or result) region,

ri is the ith detected region,
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I is the set of all ON image points.

In the case of rectangles being compared according to Phillips and Chhabra [24],

the equation for the match score is reduced to

MatchScore(i, j) = a
area(gi ∩ ri)

max(area(gi), area(ri))
. (2.2)

Once the match scores have been calculated, properties of the table are extracted,

including the number of one-to-one matches, the number of one-to-many matches,

and the number of many-to-one matches. The latter two quantities are computed

from both perspectives: the ground truth and detected. For example, if the ground

truth contained a text region of four paragraphs, but the segmenter detected these

as four separate regions, it would count as a ground truth one-to-many match and

four detected many-to-one matches. These values are determined for each region then

used to determine the detection rates and recognition accuracies as given by

DetectRatei = w1

one − to − onei

Ni

+ w2

g one − to − manyi

Ni

+ w3

g many − to − onei

Ni

(2.3)

RecognitionAccuracyi =

{

w4

one − to − onei

Mi

+ w5

d one − to − manyi

Mi

,

+w6

d many − to − onei

Mi

}

(2.4)

where w1, w2, w3, w4, w5 and w6 are pre-determined weights,

Ni is the number of ground truth elements belonging to the ith entity,
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Mi is the number of detected elements belonging to the ith entity.

Using the detection rates and recognition accuracies, the Entity Detection Metric

(EDM) for each region can be calculated as

EDMi =
2 DetectRatei RecognitionAccuracyi

DetectRatei + RecognitionAccuracyi

(2.5)

and an overall performance metric or Segmentation Metric (SM) can be given by

SMi =

∑

Ni EDMi
∑

Ni

. (2.6)

2.2 Method to Output in XML Format

Since the layout of interest is Manhattan and the ICDAR comparison algorithm was

applied, the output of the segmenters needed to be in XML format. The release of

OCRopus at the onset of this thesis (Alpha) has a module called ”buildhtml”, but it

is not complete. It outputs the preamble, or metadata of the document, but none of

the text. A contributor to the project built a patch for it that can output the text

of a simple document; however, this output does not contain any page segmentation

information. There are no tags for regions. So, it cannot be used for comparison to the

ground truth. Therefore, XML page segmentation output needed to be implemented

by the author in OCRopus.

2.3 Original RAST Algorithm

The RAST module of OCRopus was run on the test documents mentioned earlier.

When run in regular, text-recognition mode, the presence of half-tone images and
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graphs resulted in unusable output. That is, since it was unable to segment the page

into text and non-text regions, it treated the entire page as text. Therefore, when it

encountered non-text areas, it attempted to recognize characters within them, which

translated into nonsensical text intermingled with a series of error messages.

As for evaluating its page segmentation capability, since XML format was not

originally an option, color-coded images were output and examined instead. In terms

of classification, it has three types: text, graphics (i.e., non-text), and column dividers

or gutters. The column dividers are colored yellow, graphics light green, and text all

other colors.

The most prevalent error found was sections of non-text being classified as both

text and non-text. Figure 2.1 shows a page with two figures. The figure at the top

of the page is a book colored bright green, red, orange, and blue. Similarly, the

figure at the bottom is a rabbit colored bright green and blue. When the program

was adjusted so that only non-text pixels were output, both figures were completely

green, meaning all of the pixels were classified as non-text; however, when both types

of pixels were output, multiple colors emerged in the figures, indicating that some

pixels were considered both text and non-text.

Graphs also tended to contain both text and non-text pixels; however, they did

not overlap as in the case described in the previous paragraph. Figure 2.2 shows the

output of a page taken from a scientific journal. The legends and axis labeling were

classified as text, but the border, data, and data lines were classified as non-text.

Tables, on the other hand, not only contained text and non-text pixels, but column

divider pixels as well. Figure 2.3 shows the output of a page containing a table for

illustration. Note the presence of gutters between each column of the table. This

resulted in oversegmentation of the table so that the correct reading order could not
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Figure 2.1: Example of RAST output of OCRopus. Note the multiple colors in both
figures.
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Figure 2.2: Example of RAST output of OCRopus. Note the text coloring of the
x-axis labels and the absence of the y-axis labels.
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be found for the OCR engine.

Based on this data, it was determined that the RAST algorithm could be improved

by correcting the segmentation of non-text (e.g., half-tone images) so that text is not

included, as well as properly identifying and segmenting graphs and tables. Since the

goal of this thesis is to enable OCR of text areas, these regions need to be grouped

properly and identified as non-text along with any encountered images. Once this

is done, only text should be fed to the OCR engine. Also, since the images will be

acquired using cameras with different resolutions, RAST needs to be robust enough

to segment low resolution images as well. Therefore, the first goal of this thesis is to

implement these improvements, ensuring that they perform at a range of resolutions

as discussed in Section 3.3.

2.4 Voronoi Basis

The Voronoi module of OCRopus, conceived and implemented by Kise et al. [13],

was also run on the test documents discussed in Section 2.1. It is less sophisticated

than RAST in that it does not classify the regions, so consequently it cannot place

the text in reading order, which means there is no text output. As a segmentation

algorithm, though, it works fairly well. While it does not identify columns, it groups

blocks of text in different columns correctly and usually creates separate segments for

picture captions.

Figure 2.4 shows the Voronoi output from the same page as Figure 2.1. While the

text blocks are segmented properly, the non-text areas (e.g., half-tone images) are

oversegmented. The left side of the figure of the book at the top of the page contains

over fifteen regions alone. Similarly, the figure of the rabbit at the bottom of the page
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Figure 2.3: Example of RAST output of OCRopus. Note the column dividers in the
table and the absence of some entries.
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contains at least four additional regions.

The output of the scientific paper containing graphs is shown in Figure 2.5. Each of

the graphs contains four to twelve regions within the boxed area, as well as individual

regions for each of the axis numbers and labels when only one region should be created

for each graph.

The last example, shown in Figure 2.6, illustrates the output of the document

containing a table. The table is oversegmented along the columns as in the RAST

case; however, the titles are not included in the column regions.

In terms of zone classification, a number of papers have been written on the

subject. The paper documenting the Voronoi method itself [13] states that the zones

were classified as either text or non-text in their study; however, it is not clear how

this was done. From what the author can discern, it may have been when the lines

between the characters were deleted, thus assigning the area containing those lines

the class text.

Two other groups of researchers report classifying segmented regions using neural

networks [26, 27]. First, they extract the connected components, then they segment

the image into regions using either a RXYC or RLSA method. Then, based on the

bounding boxes of the connected components, they use features including the amount

of overlap between boxes, the amount of touching between boxes, the fill ratio of the

boxes (number of black pixels to box area), the dimensions (height, aspect ratio,

and size) of the boxes, the ratio of black to white pixels, the number of horizontal

transitions from black to white pixels, the length of the horizontal run of black pixels,

and the angle subtended from the lower-left corner to the upper-right corner to classify

the regions using a neural network.

A third method [28] uses a simple nearest-neighbor approach with various his-
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Figure 2.4: Example of Voronoi output of OCRopus. Note the oversegmentation of
the figures.
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Figure 2.5: Example of Voronoi output of OCRopus. Note the oversegmentation of
the graphs.
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Figure 2.6: Example of Voronoi output of OCRopus. Note the oversegmentation of
the table.
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tograms (Tamara texture, relational invariant feature, run-length of black and white

pixels in eight different directions, heights, widths and separations of the bounding

boxes) and other aspects (fill ratio and the total number, mean and variance of black

and white pixel runs) as the features. This method is also accurate, but as in the

previous method, determining the values of all of the features is time consuming, and

thus, since this the focus of this thesis is on page segmentation rather than region

classification, a simpler approach was sought.

Based on the segmentation results shown earlier and the need for region classifica-

tion, the second goal of this thesis is to improve the Voronoi algorithm in OCRopus

so that it does not oversegment half-tone images, graphs, and tables. Once this was

done, it needed to classify these regions as text or non-text for which a robust, yet

non-complex solution was found. Since placing the text regions in reading order is

beyond the scope of this thesis, it was not implemented for this effort. Like RAST,

Voronoi needed to operate successfully at low resolutions as well. The design and

implementation of this algorithm is covered in Section 3.4.
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CHAPTER 3

DESIGN AND IMPLEMENTATION

This chapter covers the algorithm development and implementation details of the

comparison program, XML output in OCRopus, RAST page segmentation, and

Voronoi page segmentation. Based on the method described in Section 2.1, a compar-

ison program was implemented and tested iteratively to ensure the correct analysis

of various types of errors. Since it was to be used as the metric for both algorithms,

it was imperative that it be correct. On the other hand, introducing XML output to

the OCRopus program was straightforward and is explained in Section 3.2.

Once OCRopus could output XML page regions and they could be compared to

the ground truth, the algorithms were developed. Since the RAST algorithm was

more sophisticated than the Voronoi algorithm, it was addressed first. A collection of

different types of documents were processed by it and their segmentations evaluated.

The most frequently occurring errors were addressed first by introducing additional

steps in the algorithm, running more tests, then analyzing the results. This process

was repeated until satisfactory performance levels were achieved at 300 DPI.

At this point, the program was examined for resolution dependent parameters.

Upon their discovery, they were replaced by parameters that were extracted from the

document itself (i.e., certain connected components within it) so that the performance

would not change as a function of resolution.
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As for the Voronoi algorithm, since it did not classify the regions, this functionality

needed to be added first. After this was done, it was possible to address the quality

of the segments themselves in terms of oversegmentation using a selection of different

documents. Since non-text areas suffered from this problem the majority of the

time, the algorithm only needed to treat the non-text regions. Once the regions were

segmented properly, resolution issues were resolved as in the RAST algorithm.

3.1 Comparison Program Implementation

The first step in comparing detected regions to ground truth is parsing the XML files.

There are two ways this can be done in C++: SAX (Simple API for XML) and DOM

(Document Object Model) [25]. The SAX method involves event-based parsing where

either callback functions or an object that implements various methods are created

and, as certain tags are encountered, actions are taken. The DOM method, on the

other hand, creates a tree data structure while parsing the file so that the elements

and their descendants can be accessed repeatedly. Since this method essentially has

built-in parsing functionality, it was chosen for this program.

As written earlier, each XML file contains a list of zones corresponding to the seg-

mented regions of the page. Each of the zones has the following tags: “ZoneCorners,”

“Vertex,” “Classification,” and “CategoryValue.” Figure 3.1 illustrates how a file

with two zones would be structured. The information for the zones is kept in the

leaves of the tree. So, in this case, the “Vertex” leaves contain the coordinates of the

corners of the rectangles and the “CategoryValue” leaf contains the class of the zone

(i.e., “Text” or “Non-text”).

Once the file has been parsed into the XML data structure, each of the zones is
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Figure 3.1: XML file data structure.

examined and placed into a custom Rect object that has attributes for the vertices

and classification. It is shown in detail in Appendix A. A two-dimensional array, or

vector, of Rects is then created to house the objects where one dimension corresponds

to the class of the zone and the other to the number of the zone. In this way, the

statistics for each class can be tabulated easily.

Following Rect vector construction, the work of comparing the data files begins.

The first step is to calculate the match scores of each of the regions and place them

into a two-dimensional array where one dimension represents the ground truth regions

and the other the detected regions. Each of the regions is considered in turn and the

amount of overlap between it and each of the other regions is calculated. The overlap

is determined by comparing the vertices of each rectangle then summing the pixels

in the area of overlap, if any. The match score is the amount of overlap divided by

the area of the larger rectangle.

A table of thresholded match scores is also created where regions with match scores

exceeding a user given threshold are assigned a value of one and those that do not are

assigned zero. The tables of match scores can be visualized as listing the ground truth
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Figure 3.2: Example of Match Score tables - actual value on the left, thresholded on
the right - and G and D-profiles. Taken from page 851 of [24].

regions along one direction (i.e., horizontal) and the detected regions along the other

(i.e., vertical). If one were to sum the thresholded match scores for each region in

each direction, Ground Truth and Detected profiles could be constructed for each of

the regions. An illustration of the tables and the G/D-profiles is shown in Figure 3.2.

Now that the groundwork has been laid, counts of the one-to-one, many-to-one,

and one-to-many matches can be calculated. First, the easy one-to-one matches

are counted by adding up the thresholded match scores equal to one that have

corresponding G and D-profiles of one, meaning they are perfect matches. For each

case meeting this criteria, the corresponding G and D-profiles are set to -1 so that

they are not reconsidered.

The next step is to calculate the one-to-one matches where there are multiple

detected regions corresponding to given ground truth regions. Initially the regions

with thresholded match scores and D-profiles of one, but G-profiles greater than one

(indicating multiple matches) are placed into a candidate pool. The candidates for

each ground truth region are then compared and the one with the highest actual
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match score is selected as the matching one. After this, regions matching the above

criteria, with the exception that the D-profile must be greater than one, are considered

and selected in the same fashion. In both cases, the G and D-profiles are set to -1

upon selection of the match and the profiles of the runners up are decremented by

one.

Following the resolution of many-to-one detected regions, the one-to-many de-

tected regions are resolved in a similar fashion. In this case, the best candidates

with D-profiles equal or exceeding two and G-profiles greater than zero are selected.

Then, the opposite cases are considered, where D-profiles are greater than zero and

G-profiles are equal to or exceed two.

After all of the one-to-one matches are tallied, the program counts the detected

one-to-many and many-to-one, as well as ground truth one-to-many and many-to-one

matches. This is done by pooling all of the ground truth regions with match scores

above the user-given rejection threshold for each of the detected regions. If the

sum of the match scores exceeds the acceptance threshold for the detected region

under consideration, it is deemed a one-to-many detected match. The number of

corresponding ground truth regions is then added to the ground truth many-to-one

match count. The same algorithm applies to calculating ground truth one-to-many

and detected many-to-one matches.

After all of this information has been extracted from the match score tables, the

performance of the segmenter can be determined. The detection rate and recognition

accuracies for each class are calculated by the formulas given in Section 2.1 and the

overall segmentation metric is calculated using Equation 2.6.
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3.2 Implementation of XML Output

Since the classification of OCRopus’ segments is rendered by coloring the pixels and

outputting them to a PNG image file, but the comparison program requires XML

files, a module was added to OCRopus to create and output the regions in XML

format.

Starting with the default RAST module of OCRopus, the columns of text and

graphics boxes correspond to the ”Text” and ”Non-text” regions of the page. There-

fore, the easiest way to output the segmentation data to an XML file is to export these

rectangles. After the column separators, or gutters, are found, the horizontal and

vertical rulings, along with the graphics, are extracted from the connected components

of the image. At this point, the text lines are found using this data and parameters

gleaned from the statistics of the connected components (i.e., the estimated height

and width of a text line). Then, the text lines are sorted into reading order and the

columns are found.

After fixing a couple bugs in the original implementation and making some minors

edits to the ”get-text-columns” function in ocropus/ocr-layout/

ocr-detect-columns.cc, the text blocks could be defined properly (i.e., where all are

included, but non-text areas are excluded). Then, the non-text regions are passed to

the hps_dump_regions function of the new ocropus/ocr-layout/ocr-hps-output.cc

file. This function prints a page tag to the given output file then enters a loop where

the text regions are printed to the file. This is accomplished by reading each rectangle

in the text array and printing its coordinates and class with the appropriate tags. A

similar exercise involving the non-text array finishes the file. The code details can be

found in Appendix B.
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3.3 Mixed-Content RAST Algorithm

Once OCRopus was capable of producing output in the correct format, the page

segmentation algorithm itself was addressed. While RAST was designed for text-only

documents, it does partially support text/non-text segmentation. It divides pixels

into groups of text, non-text, gutters, and rulings; however, some of the pixels can

be classified as both text and non-text. It starts by binarizing the page, extracting

the connected components, then determining the bounding boxes of each of them. At

this point, it calculates some statistics for the boxes, including height and width, and

uses them to determine whether or not each of the boxes contains a character. Those

that do contain characters are called character boxes and are saved into an array.

Next, the original algorithm computes the whitespace covers (i.e., white rectangles,

a.k.a., gutters) of the page using statistics dervived from the character boxes. Then,

the non-text pixels, which are classified as either graphics or horizontal/vertical

rulings, are extracted from the large components. All of these items, with the

exception of the horizontal rulings, are placed into an array representing text-line

obstacles.

Now, the basic RAST algorithm determines the text lines of the page, which

for each line is the collection of contiguous character boxes on that particular line.

First, the character boxes that lie within gutters are excluded, then the remaining

character boxes are sorted by x-value. Each of these are then considered in terms of

”matchability.” Character boxes are deemed matches if they obey certain constraints,

including text-line length, gap distance, and number of characters. Once the text lines

have been found, they are sorted into reading order and then grouped into text blocks

as described in Section 3.2.
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Then, the author added new functionality to the RAST algorithm. Since one of

the observed deficiencies of the algorithm was the dual labeling of pixels as shown

in Figure 2.1, the first improvement was made to the text-line extraction function.

Where it filters out character boxes that lie within gutters, it now also filters out

character boxes that are additionally labeled non-text. So, the ”character boxes”

that actually contain connected components that are not characters can no longer be

used to build text lines.

It was also discovered that character boxes not overlapped by the bounding boxes

of any text lines, as shown in Figure 3.3, were dropped from consideration completely.

So, the new algorithm now captures, closes (i.e., dilates, merges, then erodes [29]),

then adds them to the non-text array of boxes. The amount of dilation is one fourth of

the height of an average text-line box so that only ”character boxes” in close proximity

to each other are merged. Another problem was that gray areas of images were not

being classified as non-text. So, isolated pixels and very small bounding boxes, such

as those shown in Figure 3.4, are now saved, closed (using the same amount of dilation

as the non-character boxes), and added to the non-text array as well.

Figures that contained writing, such as book covers, were being partially classified

as text and partially as non-text; however, when considered as a whole, they should

have been classified as one non-text region. So, routines were added to manipulate

the text and non-text boxes to merge the non-text regions. Also, some sections of

non-text areas were classified as text even though they did not contain text as shown

previously in Figure 2.1. By examining both types of bounding boxes for several

different figures, the author found that these text boxes tended to overlap non-text

boxes and/or other text boxes. By identifying these overlaps, erroneous text boxes

can be converted and merged into non-text regions.
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Figure 3.3: This figure illustrates character boxes that were not overlapped by any
text line boxes and had been previously omitted from consideration as either text or
graphics.
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Figure 3.4: This figure illustrates small isolated character boxes that had been
previously omitted from consideration as either text or non-text.
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The new process outlined above starts by merging text boxes that overlap other

text boxes then relabeling their union as non-text. Then, small non-text boxes (i.e.,

below a threshold of 10% of the square of the height of an average text line) are

filtered out, since they most likely correspond to noise in the document image.

At this point, the improved algorithm iterates through a series of three steps until

the array of non-text boxes is stable. First, text lines that overlap non-text boxes are

reclassified as non-text. Second, non-text boxes that overlap other non-text boxes

are merged, and third, non-text boxes are closed so that isolated boxes are merged.

Since the second and third steps can cause non-text boxes to overlap text boxes,

the first step is run again. Similarly, since the first step can cause newly created

non-text boxes, to overlap other non-text boxes the second and third steps need to

be repeated. Therefore, the algorithm iterates through all three steps until no more

boxes are reclassified or merged.

Figure 3.5 illustrates the picture of the book previously shown in Figure 2.1. The

boxes outlined in blue indicate the non-text boxes prior to manipulation. Note the

large number of boxes including a nested set in the upper-left corner. There are also

many overlapping boxes on the right side of the figure, although they are difficult to

see against the black area of the figure. Figure 3.6 shows the same figure after the

text and non-text boxes have been manipulated as discussed earlier. Now there is

only one non-text box, which covers the entire figure.

With the algorithm performing better on images captured at 300 DPI, the next

step in the process was to evaluate it at higher and lower resolutions. Examining the

program for hard-coded parameters, the author found that the minimum length of a

text-line, fed to the text line extraction function, was set at thirty pixels. Since the

dimensions of the character bounding boxes were calculated previously, the parameter
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Figure 3.5: Non-text boxes before converting text boxes, merging and closing.

Figure 3.6: Non-text box after converting text boxes, merging and closing. Note that
it fully encloses the figure.
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was reset to a multiple of the width of this box.

Further testing using this new definition, however, revealed that the box width

itself was not reliable. It was calculated by examining the histogram of the widths

of the boxes and assigning the value of the first peak. Visual examination of the

histograms of several images, though, indicated that the value of the first peak was

much smaller than the width of a typical character. This even occurred in images

not containing pictures, since the bounding boxes of periods, commas, apostrophes,

and noise elements make up a significant portion of the histogram. Therefore, it

is necessary to take the value of the next peak instead, which in the case of width

corresponds to the right-most peak. In the case of height, it also corresponds to

the right-most peak, but it is the third, not the second peak, because the second

corresponds to the height of x-height characters (i.e., a, e, o, u, etc.), unless all of the

text is capitalized.

Finding the correct peaks is not a simple matter. The histogram contains many

local maxima that the program can mistakenly interpret as the peak of choice.

Therefore, it needs to be smoothed until spurious local maxima disappear; however,

it cannot be smoothed too much or the peaks themselves merge into one. So, the

next step is to iteratively smooth the histogram until the expected number of peaks

results. Then, the value of the right-most peak is obtained and assigned the box’s

height or width depending on the type of histogram. Figure 3.7 illustrates iterative

smoothing until only three peaks remain.

The steps of the improved RAST algorithm are shown in Figure 3.8. There

are seven original steps shown in standard font, four modified functions, which are

italicized, and six new functions, which are bold. Also, the modified and new code is

shown in Appendix C.
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Figure 3.7: Histogram of the heights of the bounding boxes of the connected compo-
nents with no smoothing (left), one iteration of smoothing (middle) and two iterations
of smoothing (right). The rightmost peak corresponds to the height of ascenders (i.e.
tall letters), the middle peak to the height of x-height characters (i.e. short letters)
and the leftmost to the height of periods, commas, etc.
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1. Binarize image.

2. Extract Connected Components (CC).

3. Calculate bounding boxes of CC’s.

4. Get character boxes and calculate statistics using iterative smoothing.

5. Compute whitespace covers.

6. Find gutters.

7. Classify large CC’s as either rulings or graphics.

8. Extract text lines ignoring graphics pixels.

9. Capture, merge and reclassify rejected character boxes as graphics.

10. Capture, merge and reclassify very small CC’s as graphics.

11. Merge overlapping text lines then reclassify as graphics.

12. Filter out very small graphics.

13. Merge text and graphics.

(a) Merge and reclassify text lines that overlap graphics.

(b) Merge overlapping graphics.

(c) Close graphics rectangles.

14. Sort text lines into reading order.

15. Add gutters that do not overlap graphics and vertical rulings to vertical separa-
tors.

16. Group text lines into text regions (columns).

17. Group text and graphics regions in XML format.

Figure 3.8: Steps of the improved RAST algorithm. The original steps have a
standard font, the modified functions are italicized and new functions are bold.
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3.4 Voronoi Page Segmentation with Classification

As written earlier, Voronoi page segmentation was not fully implemented in OCRopus.

That is, users could segment document images into Voronoi zones, but they were not

classified as text or non-text so could not be appropriately routed to the OCR engine.

Frequent oversegmentation of zones has also been demonstrated. Additionally, since

XML output is required to measure the accuracy of the page segmentation, the

segmentation needed to be converted to this format as well.

Addressing all three concerns, the algorithm was extended in three steps: clas-

sification of the zones, merging of non-text zones, and clean up of any overlapping

non-text regions (note that the term ”zones” corresponds to geometries created by the

basic Voronoi algorithm and ”regions” corresponds to page segments). The original

algorithm starts by binarizing the image, finding the Voronoi zones, numbering them,

and creating an image of the numbered zones as depicted in Figure 3.9. At this point,

the original Voronoi algorithm ends and the new algorithm developed by the author

begins. The first step of the new algorithm is to save the interior zone boundary lines

into another image as shown in Figure 3.10.

The new algorithm continues by extracting the connected components of the

original image and identifying the character boxes as in RAST. The non-overlapping

character boxes are saved into an array to be used for text classification; whereas, the

overlapping character boxes are considered later as non-text entities. For each zone,

the character boxes located in the extreme upper, lower, left-most and right-most

portions of the zone are found and used to create the smallest rectangular region as

depicted in Figure 3.11, called the ”text block.” Then, the zones that contain ”text

blocks” are passed to a function that determines whether or not the blocks really
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Figure 3.9: The numbered Vornonoi zones. The histograms in Figures 3.12-3.14
correspond to tan text zone number #8.
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Figure 3.10: The Vornonoi lines.
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Figure 3.11: The ”text rectangle” of an unclassified zone.

contain text, and based on this information, classify the zone as text or non-text.

The classification algorithm begins by creating a histogram of the locations of

the lower-left corners (y0-values) of the character boxes so that it can determine the

average location (or y-value) of each text line. A section of the histogram obtained

from zone #8 of Figure 3.9 is shown in Figure 3.12. Notice that there exist shorter

peaks to the left of each major peak. These correspond to the y0-values of descenders

(i.e., letters that extend below the line like g, j, y). Since these values do not represent

the location of the line, they need to be discarded, but in order to do this, the threshold

under which they exist needs to be determined. This is done in a four-step process

developed by the author.

First, the histogram is smoothed once, as shown in Figure 3.13, and the values of

the peaks are found. Note that these values correspond to the number of occurrences

of each y0-value, not the y0-values themselves. The histogram of these numbers

(Figure 3.14) contains two prominent peaks: the one on the right represents the

number of occurrences of the y0-values of letters sitting on the line and the one on

the left represents the number of occurrences of the y0-values of letters extending

below the line. Since the former is the desired parameter, the value of the right-most
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Figure 3.12: Section of the histogram of the y0-values of the character boxes of zone
#8 in Figure 3.9. The peaks to the left correspond to letters extending below the line
and the peaks to the right correspond to letters sitting on the line.

Figure 3.13: Section of the smoothed histogram of Figure 3.12.

peak is selected, which is twelve in this case. Half of this value is then used as the

threshold for finding the peaks of the original histogram.

Once the y-values of the text lines have been found, the character boxes lying

within a certain distance of each line (i.e., the width of an average character box) are

found. For each line, the widths of the associated character boxes are summed and

the x-values over which they extend is calculated. Densities for each line are then

determined as the sum of the widths of the character boxes divided by their x-extent.

If 80% of the lines have densities exceeding 50%, the zone is classified as text.

After the zones have been classified, the non-text ones are merged. The pixels of
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Figure 3.14: Histogram of the peaks of the y0-values of the histogram of Figure 3.13.
In this example, for each of the lines, the median number of occurrences of the main
y0-value is twelve.

each zone are placed into an array and their perimeters and found by dilating the

Voronoi lines and ANDing them with the zone pixels. These pixels are then placed

into another array. At this point, one of the non-text zones is selected and its non-text

neighbors are merged with it recursively.

Part (a) of Figure 3.15 shows an oversegmented non-text region where the selected

zone is colored red. To find its neighbors, the extreme upper, lower, left-most, and

right-most perimeter pixels are identified and the pixels in the directions of the border

are explored. For example, when the top pixel is under consideration, the pixels

directly above it are explored. Since the width of the Voronoi lines are five pixels,

the first five or so will correspond to the line; however, at some point after this, the

exploration will encounter a pixel in a different zone. Based on this information, the

identity of the neighbor is found, after which its label is updated to match the first

zone’s.

The remainder of Figure 3.15 depicts the relabeling of zone neighbors. This trans-

formation occurs recursively until all of the non-text neighbors have been evaluated.
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(a) (b) (c) (d)

Figure 3.15: Zone coloring of non-text relabeling process. a) Initial zone coloring, b)
after the smallest has been relabeled, c) after its neighbor has been relabeled and d)
after all of the neighboring non-text zones have been relabeled.

At this point, the next non-text zone that has not been evaluated is considered and

its neighbors converted to its zone number, and so on.

Following the merging of non-text zones, the algorithm enters the clean-up phase.

This is most easily done in rectangle space rather than pixel space since it involves

merging overlapping rectangles. So, the upper, lower, left-most, and right-most pixels

of each zone are found and used to define the inner rectangles.

The first step of the clean-up addresses all of the text rectangles that are com-

pletely covered by non-text rectangles. This is done by iterating through the rect-

angles and checking for complete overlaps. Completely covered text rectangles are

simply deleted. The next step is to check for the opposite: resolve all non-text rect-

angles that are completely covered by text rectangles. In this case, the encompassing

text rectangles are relabeled as non-text and the covered non-text rectangles are

deleted.

The remaining steps address figures that have been merged across column bound-

aries as well as text that wraps around figures. The first case, illustrated in Fig-

ures 3.16 and 3.17, consists of breaking the non-text rectangle into two and removing
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the text overlaps (i.e., in the upper-right and lower-left quadrants of the original

non-text rectangle). Figures 3.18 and 3.19 show the second case where the oversized

text rectangle is broken up into smaller rectangles to avoid overlapping the figure.

Once the algorithm was completed, it was tested at resolutions other than 300

DPI. At 200 DPI, the performance was slightly lower, but not appreciably and could

be attributed to the loss of detail in the file; however, at 600 DPI, the performance

dropped dramatically and was traced to the hard-coded parameter used to define

noise pixels in the document. That parameter was changed to a fraction (1/326,774,

which was determined based on the hard-coded value for 300 DPI) of the number of

pixels on the page after which the segmentation performance improved.

The steps of the extended Voronoi algorithm are shown in Figure 3.20. There are

two original steps displayed in standard font and six new functions displayed as bold.

Appendix D contains the code.
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Figure 3.16: Pictures in two different columns are merged.



51

Figure 3.17: Merged graphics zone is broken in two and text overlaps removed.
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Figure 3.18: Wrap around text zone covers picture.

Figure 3.19: Wrap around text zone is broken into two zones.
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1. Binarize image.

2. Create Voronoi area diagram then number each zone.

3. Extract Connected Components (CC).

4. Calculate bounding boxes of CC’s.

5. Get character boxes and calculate statistics using iterative smoothing.

6. Place non-overlapping character boxes into an array.

7. Zones are labeled to be text or non-text and rectangular zones are
created.

(a) Find the most frequently occurring y-values (text line locations).

(b) Sort the boxes into text lines.

(c) Calculate the density of the boxes for each text line.

(d) If the density of 80% of the lines is at least 50% label as text.

8. Dilate the line pixels then AND them with the zone pixels to find the
perimeter pixels. Place these and the zone pixels into two separate
arrays.

9. Iterate through the non-text zones merging neighboring zones. For
each non-text zone, use its perimeter pixels to explore outward and
find its neighbors. Then relabel them with the original zone’s label.
The labeling method is recursive whereby after relabeling the given
zone it finds its neighbors and relabels all of them and so on.

10. Clean up the segmentation.

(a) Text zones which are completely overlapped by non-text zones
are deleted.

(b) Non-text zones which are completely overlapped by text zones
are deleted and the text zones are reclassified as non-text.

(c) Non-text zones which have merged across column dividers are
broken so that they do not overlap neighboring text.

(d) Text zones which partially overlap figures (wrap around text) are
segmented.

Figure 3.20: Steps of the extended Voronoi algorithm. The original steps have a
standard font and the new functions are bold.
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CHAPTER 4

TESTING AND ANALYSIS

This chapter covers the testing and analysis of the implementations of the improved

RAST and Voronoi algorithms. 450 text documents were created comprising eight

different types (i.e., single column, double column, etc.) and a range of resolutions.

Then, their associated ground truth XML files were generated. These documents

were used to test and analyze the algorithms such that the comparison program gave

an overall metric and TrueViz provided a means to visualize the results. Using these

tools, the algorithms were analyzed in terms of types of errors, both across and specific

to particular classes, as well as a function of resolution.

4.1 Test Documents

The performance of the algorithms and commercial software was evaluated on a

collection of 450 document images. Since the Bavarian documents of interest are

located in Germany and have not yet been imaged, the document images evaluated for

this thesis were acquired locally. The collection contains 300 hand-made documents

written in the Times New Roman 12 point font saved at five different resolutions (50,

100, 200, 300, and 600 DPI) and three file formats (Tagged Image File Format (TIFF),

Portable Network Graphics (PNG), and Joint Photographic Experts Group (JPEG)).

The documents contain the following layouts: single column text only (10x5), double
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column text only (10x5), single column text with half-tone images (10x5), double

column text with half-tone images (10x5), and a mixture of single and double columns

with half-tone images (10x5). The rest of the data set includes 50 pages taken from

magazines (10x5) and 100 pages of technical journals that contain graphs, figures,

tables and a title/abstract combination (20x5).

While the RAST and Voronoi algorithms were being developed, they were tested

on a subset of the collection. Ground truth XML files were generated for each of the

documents from the TIFF files so they could be compared using the comparison tool.

Testing started from the first class and progressed to the most complex at a resolution

of 300 DPI, using the PNG file format. Once the algorithms demonstrated acceptable

performance levels at 300 DPI, they were analyzed at the remaining resolutions. If

the performance dropped off, the algorithm was examined for resolution-dependent

parameters and modified to be resolution independent as discussed in Section 3.3.

Following the testing of the improved RAST and Voronoi algorithms, ABBYY’s

FineReader OCR package was evaluated to see how well a commercial program could

analyze these types of layouts.

4.2 RAST Analysis

In order to assess the amount of improvement in the performance of the new RAST

algorithm, the test images were first run through the original algorithm with the

updated get-text-columns function (see Section 3.2). This output was then compared

to the ground truth using the comparison program and two different sets of weights.

The average accuracy for each class is plotted as a function of resolution in Figure 4.1

where 100% signifies perfect segmentation.
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The graphs on the left illustrate the performance levels using the same weights

as those used in the ICDAR 2007 Page Segmentation Competition [19] (1.0, 0.75,

0.75, 1.0, 0.75, and 0.75 for w1 through w6, respectively) for Equations 2.3 and 2.4;

whereas, the graphs on the right depict the performance levels using the following

weights: 1.0, 1.12, 1.0, 1.0, 1.0 and 1.12 for w1 through w6, respectively. For this

algorithm, the results using the two different sets of weights are fairly similar.

Examining these plots, the single, double, and mixed column text-only pages were

segmented fairly accurately, from 80-100%, by the original RAST algorithm; however,

the performance level of the documents containing half-tone images peaked between

30-60% at 100 DPI, then dropped at higher resolutions. There are two issues to

address here: 1) is 100 DPI a feasible resolution with which to image a document,

and 2) why does the performance drop after 100 DPI? Addressing the first issue, 100

DPI is a low resolution at which most detail in a document is lost, in which case it

may not even be possible to recognize the characters.

In order to assess the lowest resolution at which the OCRopus OCR engine could

produce reliable output, the author scanned a single column, text-only document at

eight resolutions and ran them through the OCR engine. Table 4.1 shows that at

100 DPI, the OCR engine could not recognize any of the characters. Therefore, the

segmentation algorithms were not expected to perform at or below 100 DPI.

Regarding the second issue, while improving the RAST algorithm, the author

found that the parameter used to specify the minimum length of the text lines was

hard coded. As mentioned in Section 3.2, it was replaced by a multiple of the average

character box height gleaned from the box width histograms.

The performance of the improved RAST algorithm is also shown in Figure 4.1,

which displays not only better performance at 100 DPI, but better performance at
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Figure 4.1: Performance of original (top) and improved (bottom) RAST algorithms
with the ICDAR Page Segmentation Competition weights (left) and the weights
compensated for segmentation of paragraphs (right). Higher numbers indicate higher
performance.
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Resolution (DPI) OCR results
300 missed 1 line
266 missed 2 lines
240 missed 3 lines
200 missed 2 lines
150 missed 18 lines
96 no output
72 no output
50 no output

Table 4.1: The performance of the OCR engine of OCRopus on a single column,
text-only document for a series of image resolutions.

higher resolutions as well. The single, double, and mixed column documents with half-

tone images show the most improvement from 30-60% to 80-90%. The segmentation

of the technical documents improved on the order of 25% from approximately 40% to

60-70%. They did not improve as much because they contain graphs and tables that

are discontinuous and difficult to capture completely as non-text.

The axes labels of the graphs tend to be misclassified or completely dropped, and

the text in the tables tends to be classified as text. Since they actually are text,

one might argue that they should be classified as such anyway; however, mechanisms

would be needed to be added to handle their reading order for the OCR engine. So,

they were treated as non-text in this thesis. The magazine class improved the least

amount from 50% to 65% due to text/non-text merging, which will be explained

shortly.

Taking a closer look at the single and double column documents with half-tone

images, which are similar in format to the magazine documents, three types of errors

emerge. The first one is the oversegmentation of text regions. This typically happened

in areas where one text line was either much shorter or slightly longer than its

neighboring text lines. Figure 4.2 shows an example. Note the line in the middle
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of the left column that has been defined as one region. It is slightly longer than

the line above and below it, so it was not assigned to the same text column in the

”get-text-columns” function.

The second type of error was the merging of text regions as depicted in Figure 4.3.

In this case, as in all of the cases, they were short columns. The reason why short

columns were merged is because the function to find white spaces, some of which are

later turned into column separators, examines their aspect ratios and rejects those

below a certain threshold. So, short columns are not separated by gutters. This could

be fixed by reducing the expected aspect ratio.

The last type of error involved merging text and non-text regions. This occurred

in three different cases: when text wrapped around the figure in a non-linear fashion,

when the column was very narrow, and when non-text was incorrectly detected in

text regions. In the first case, RAST was not designed to handle non-Manhattan

geometries and XML output does not support it either, so this type of layout is

beyond the scope of this thesis. Therefore, that type of error was not addressed. In

the second case, RAST did not recognize the text as columns because they were too

narrow to be defined as text lines. This is a limitation of the algorithm because the

dimensions of text lines must pass certain threshold tests.

The last case occurred somewhat randomly in that the algorithm classified some

pixels within text regions as non-text rather than text. In one of these instances,

the pixels were associated with the first letter of the paragraph that was much larger

than the other letters and gray rather than black. The other instance is shown in

Figure 4.4 where one of the words of a text line was not included because too many

small characters (i.e., -:””) separated it from the rest of the line. The word is ”Ich”

and is located to the left of the upper figure. It was classified as non-text and merged
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Figure 4.2: Example of text oversegmentation in the improved RAST algorithm. Note
the line in the middle of the left column that has been defined as one region. It is
slightly longer than the line above and below it.
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Figure 4.3: Example of column merging in the improved RAST algorithm. Note the
diminutive height of the merged columns at the bottom of the page.
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with the neighboring text-lines, which were subsequently merged with the figure.

Since this example does not represent realistic punctuation this type of error was

ignored.

In conclusion, while the expansion of the RAST algorithm improved its perfor-

mance significantly, it still has some limitations. The root of the problem stems

from the fact that parameters are needed to set length requirements of text lines and

gutters. If the layout of a document does not conform to these criteria, it is not

segmented correctly.

4.3 Voronoi Analysis

Since the basic Voronoi algorithm did not include zone classification, no measurements

could be taken to assess the accuracy of the original segmentation; however, the

images shown in Section 2.4 indicate that the figures were oversegmented. The set

of documents described in Section 4.1 was run through the extended algorithm and

compared to the ground truth for a range of resolutions. Figure 4.5 illustrates the

performance of the algorithm alongside that of RAST using the two sets of weights

mentioned in Section 4.2.

In this case, the results are markedly different for the two weight sets. For the

balanced weights used in the ICDAR Page Segmentation Competition, the overall

performance is lower than that of the other set. It is also much tighter in terms of

variation between classes. This is because the second set of weights was tuned to

avoid penalizing oversegmented text; however, it was not as effective in documents

that contained half-tone images.

Figures 4.6 and 4.7 illustrate how the segments were defined in the ground truth
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Figure 4.4: Example of text-image merging in the improved RAST algorithm. Note
the ”Ich” word to the left of the upper figure separated from the rest of the text on
the line with -:””.
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Figure 4.5: Performance of the Voronoi algorithm (top) and the improved RAST
algorithm (bottom) with the ICDAR Page Segmentation Competition weights (left)
and the weights compensated for segmentation of paragraphs (right).
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and by the Vornonoi segmenter for one of the document images. Note that the entire

document is one region in the ground truth, but the Voronoi algorithm assigns each

space-separated paragraph its own region. The performance measurement returned

by the comparison program for the RAST and Voronoi algorithms for this document

were 100%/100% and 55%/81%, respectively, for the ICDAR and custom weights,

demonstrating a higher level of performance with the custom weights.

Even though the Voronoi algorithm classified the regions correctly, it took a

performance hit for segmenting these regions. Since the paragraphs are separated

by spaces, though, they should have been separated in the ground truth as well, but

the author did not know this at the time it was created. Therefore, this drop in

performance can be attributed to the format of the ground truth rather than the

Voronoi algorithm.

Compared to the RAST algorithm, in terms of overall metrics, Voronoi did not

perform as well. With respect to resolution, the Voronoi algorithm performed essen-

tially the same at 200 and 300 DPI with a small drop at 600 DPI. Also, while the

two column text-only documents segmented at close to 100% accuracy, the Voronoi

algorithm did not segment the single column and mixed column documents as well,

ranging from 80% to 90%. While the weights of the comparison program were chosen

to minimize the performance degradation for this reason, it did not compensate fully

for all of the classes of documents.

Examining the results of the document classes that included half-tone images,

all of them had similar performance measurements with the exception of the mixed

columns class. In this case, the lower segmentation accuracy was either minor or could

be attributed to non-Manhattan layouts. Figures 4.8 and 4.9 show the segmentation

of a non-Manhattan layout (i.e., it does not have a Manhattan geometry) at 300 and



66

Figure 4.6: Ground truth of a single text-only document image.
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Figure 4.7: Voronoi text segments of a single text-only document image.
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600 DPI, respectively. The difference between the two lies in the bottom region. The

higher resolution document contains several text regions; whereas the lower does not

contain any. It only contains two non-text regions in this area. Since the extension

of the Voronoi algorithm did not address non-Manhattan layouts, the results of this

particular document image can be ignored.

For the remaining document classes containing half-tone images, three types

of errors dominate: one can be attributed to the data, another to Kise’s Voronoi

algorithm, and the third to the text classification algorithm. Starting with the first,

a number of the documents contain half-tone images in very close proximity to text,

such as that shown in Figure 4.10. For documents scanned at a resolution of 300

DPI, Kise’s Voronoi algorithm failed to separate the images from text when they

were separated by 23 or fewer pixels. The height of a tall letter at this resolution is

28 pixels, so if the image were positioned within this distance, it might not be placed

into its own region. After the Voronoi regions were defined, it was impossible for the

extension of the algorithm to further segment and classify them correctly.

The second concern is similar to the first in that its root cause can be traced to

Kise’s Voronoi algorithm. As mentioned in Section 3.4, the most frequently occurring

zoning error is the oversegmentation of text. This can be seen in titles, headers,

footers and occasionally in parts of outlying sentences in paragraphs. The title shown

in Figure 3.7 illustrates the phenomenon. Since this problem relates more to reading

order than region classification, it was not addressed in this thesis.

The third issue identified was that some text, namely italicized and bold text,

tended to be classified as images rather than text. This was due to the fact that the

bounding boxes of the characters overlapped so were omitted from the zones and not

considered as text. Therefore, by default they were classified non-text. While this
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Figure 4.8: Voronoi segmentation of a mixed column document with pictures at 300
DPI. The lowest regions were classified as graphics. The accuracy of the segmentation
was 37%.
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Figure 4.9: Voronoi segmentation of a mixed column document with pictures at
600 DPI. Most of the lowest regions were classified as text. The accuracy of the
segmentation was 53%.
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Figure 4.10: Document image where the picture is placed too close to the text to allow
for correct Voronoi zoning. Note the purple text section merged with the rabbit.
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was a problem sometimes, unless the entire block was italicized, it did not have a

substantial impact on the performance. To fix this problem, it might be possible to

add an overlap tolerance to the algorithm so that these letters are not dropped.

4.4 Commercial Package

Following the completion of the page segmentation algorithms, a commercial OCR

program was evaluated for comparison. ABBYY’s Fine Reader Engine 9.0 is a

comprehensive layout analysis package, which not only includes image processing and

layout analysis commands, but table, barcode, text-type recognition (i.e., direction,

italics, underlining, etc.), and synthesis (i.e., hyperlinks, bullets, background, and

text color, etc.) commands. Additionally, it can recognize 186 languages and can

produce output in nine different formats.

The set of test documents described in Section 4.1 were analyzed by Fine Reader

and output in XML format. Since the tags of this format did not match that

of the ground truth, a program was written to convert these files to a matchable

format. These were then compared to the ground truth using the program described

in Section 3.1.

Figure 4.12 shows the performance of Fine Reader alongside the improved RAST

and Voronoi algorithms. Comparing the two different weight classes, the performance

is only slightly higher for the customized weights. Therefore, customizing the weights

benefitted the Voronoi algorithm the most. This is because it segmented the text more

than the other two algorithms as shown in Figures 4.6, 4.7, and 4.11, and placing

higher weights on the one-to-many ground truth-to-detected region parameters results

in a larger performance gain for highly segmented detected regions. As noted in
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Section 4.3, though, the text of the ground truth was undersegmented as a whole.

For both cases, the performance of all classes is between 70% and 85% for all

resolutions, including 100 DPI. Neither RAST nor Voronoi were able to segment as

accurately at 100 DPI. At 50 DPI, the performance drops 5-10% for Fine Reader;

whereas, for the other two algorithms, it essentially drops to zero. Not only does

Fine Reader have a flatter response as a function of resolution, but it also has a

tighter response in that all of the classes were segmented with approximately the

same accuracy.

There were a couple of anomalies, though. At 50 and 100 DPI for the single column

and double column classes, the performance dropped to zero. This was because the

regions were classified as pictures rather than text. Also, the single column class only

performed at approximately 50% throughout the range of resolutions due to the same

reason: the Voronoi algorithm had a lower performance than RAST; the paragraphs

were broken into individual regions, but were only represented by one region in the

ground truth.

Examining the output, the predominant error appeared to be overlapping regions,

which depending on how you define the ground truth, could not even be considered

an error. Figure 4.13 shows one such example. Note the overlapping text and image

regions. So, rather than break up the regions, Fine Reader simply overlaps them.
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Figure 4.11: Fine Reader text segments of a single text-only document image.
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Figure 4.12: Performance of ABBYY’s Fine Reader Engine 9.0 (bottom), the ex-
tended Voronoi algorithm (middle) and the improved (top) RAST algorithm.
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Figure 4.13: Example of Fine Reader segmentation. Note the overlapping image and
text boxes.
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CHAPTER 5

CONCLUSION

In the interest of digitizing historical documents at a low cost, open source layout

analysis programs were researched in the literature and on the Internet. A package

under development called OCRopus, which contains a hardware solution for obtaining

the images (i.e., a digital camera assembly) and a software solution for processing

them, was deemed the most advanced available. In its current state, while the

image processing capabilities were well developed, the page segmentation functionality

was limited to text-only documents and was optimized for a resolution of 300 DPI.

Therefore, the goal of this thesis was to improve its page segmentation performance,

so that camera acquired images of historical documents with layouts similar to the

Bavarian manuscripts of interest could be analyzed and converted to text.

After modifying the program to generate output in XML format, as well as writing

a program to compare detected regions to ground truth, two page segmentation

algorithms in OCRopus were evaluated. The first one was the default algorithm called

RAST, which was designed for text-only documents. When tested on documents that

contained non-text areas as well, it tended to classify regions within them as both

text and non-text. Entities such as graphs and tables, on the other hand, tended to

be divided up into both types of regions. The end result was that OCRopus output a

series of errors along with whatever text it was able to recognize, thus rendering the
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output illegible.

The second algorithm, based on the Voronoi method, was less mature than RAST

in that it segmented the page into regions, but did not classify them. Therefore,

this algorithm did not support OCR so could not even process text-only documents.

In terms of segmentation ability, it worked fairly well, but tended to oversegment

non-text areas as well as text typed in large fonts.

The RAST algorithm was modified in a number of different ways to improve its

performance. First of all, it was discovered that the minimum length parameter used

to define the text lines was not resolution independent so was changed to a multiple

of the average character box width; however, the calculation of the average box width

itself was found to be inaccurate, so an algorithm was developed to find its true value.

This parameter was extracted from a peak of the histogram of the bounding boxes

of the presumed characters. By smoothing the histogram iteratively until it assumed

the targeted shape, the correct value could be extracted. Using this value, RAST was

able to create text lines more accurately.

After the column dividers were found, the algorithm was expanded to merge and

classify the regions correctly. The first two functions served the purpose of keeping

track of pixels that had been lost previously to ensure that they are now classified as

non-text. The next major function reclassifies text lines that overlap other text lines

as non-text because text lines do not overlap. Then, the algorithm loops through

a series of three functions that merge text lines that overlap non-text, non-text

rectangles that overlap other non-text rectangles, and non-text rectangles in close

proximity to each other until no new non-text rectangles are created. In this way,

non-text areas such as figures are more accurately classified.

As for the Voronoi method, it did not have any classification algorithm, so one was
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developed and implemented. It utilizes the same character box extraction method as

RAST, then employs a smoothing algorithm to find the locations of text lines. After

this is done, it examines the density of the boxes along the text lines. If enough lines

have densities above a certain threshold, the region is considered text.

Following the classification of the regions, the oversegmentation of non-text regions

was addressed. This was done in a recursive manner where a non-text region was

selected and its neighboring non-text regions were relabeled with its zone number.

After all of the non-text regions have been examined, the rectangles they form are

considered. If any overlap, they are merged so that segmented regions do not overlap.

With this added functionality, the RAST and Voronoi algorithms are now capable

of processing mixed-content layouts, making the digitization of standard format his-

torical documents by low-budget organizations feasible. Once the improvements were

implemented, they were tested on a set of test images. For the RAST algorithm, the

performance of the hand-made documents with half-tone images improved an average

of 40%, the technical document class 25%, and the magazine class 15% resulting in

final overall accuracies of 90%, 65%, and 55%, respectively. While only the first

six classes met the goal of the thesis, the other two consisted of more sophisticated

content than would typically be included in an historic document, so is not considered

as relevant.

The primary errors were caused by the oversegmentation of text areas due to

unusually long or short text lines, the merging of short columns due to the constraints

used for the definition of column dividers, and the merging of text and non-text regions

due to non-Manhattan layouts, very narrow columns, and stylized text being classified

as non-text.

The performance of the Voronoi algorithm was similar to RAST for the text-only
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documents, but was lower for the documents containing half-tone images, graphs, and

tables. The double column text-only class fared the best at 95% and the double and

mixed column text-only classes at 85%. The rest of the classes, with the exception

of the mixed columns with half-tone images, performed between 50% and 65%. Due

to some anomalies in the files, the mixed column class was only segmented with an

accuracy of 40%.

So, the Voronoi implementation only met the stated goal of the thesis for one of

the classes; however, two other classes came close. As for the remainder, the factors

impacting the performance of these documents included the layouts of the documents

themselves, so that, in some cases, figures were so close to text that the kernel of

the Voronoi algorithm merged them. Also, the algorithm tended to oversegment

large text, breaking it up into separate zones. Additionally, italicized and bold text

was classified as non-text. Since these errors stemmed from either the non-standard

spacing of hand-made documents or the sophisticated layout of modern documents,

it is likely that this method would perform better on the historical documents of

interest.

Finally, the commercial package, Fine Reader, developed by ABBYY, was evalu-

ated using the same set of test documents. With the exception of the single column

class, Fine Reader performed more consistently for all classes and all resolutions than

the OCRopus algorithms, with an accuracy of 70% to 85%. As for the single column

class, its performance was lower because Fine Reader segmented the paragraphs;

whereas, it was not segmented in the ground truth. While Fine Reader demonstrated

a more consistent level of performance for all classes, it did not meet the 90% goal of

the thesis either.

While the RAST and Voronoi algorithms performed well, there remain areas in
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which they could be improved. Namely, the robustness of RAST could be increased

so that it can process text lines of varying widths as well as short and/or narrow

columns. The processing of stylized text and, for Voronoi, italicized and bolded

text, could also be fixed. Also, the Voronoi algorithm could be enhanced by merging

segmented titles and classifying italicized text properly. Finally, since the documents

of interest were not available for this thesis, a true measurement of the performance

of these algorithms could be obtained if images of the manuscripts were captured and

processed.

In conclusion, the improved RAST algorithm compares well to a widely used

commercial program in the case of documents that contain half-tone images rather

than graphs and tables. The Voronoi algorithm did not perform as well as Fine Reader

(by approximately 20%), but if the documents contain ample space between the

figures and text, and there is no italicized or bolded text, it might perform adequately.

Therefore, depending on the type of layout being digitized, either algorithm could

potentially be employed.
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APPENDIX A

COMPARISON PROGRAM

A.1 README File

Zone Comparison Program

The file structure is:

runZoneComp executable

ZoneComp.cpp main program source file

Rect.cpp class source file

Rect.hpp class header file

Description:

This program reads two xml files which list the page segmentation

zones of a document where the zones are categorized as "Text" or

"Non-text". One of the input documents is the "ground truth" which

means it contains the true and accurate zone information of the

document; whereas the other file contains the zones as detected by

a page segmentation program. ZoneComp then compares the two and

returns a metric of how well they match which is a measurement of

how well the page segmenter performed.

The metric is described in the following papers:

A. Antonacopoulos, B. Gatos and D. Bridson, "ICDAR2007 Page

Segmentation Competition," Proceedings of the 9th International

Conference on Document Analysis and Recognition, Curitiba, Brazil,

September 2007, IEEE Computer Society Press, pp. 1279-183.

I. Phillips and A. Chhabra, "Empirical Performance Evaluation of

Graphics Recognition Systems," IEEE Transaction on Pattern Analysis

and Machine Intelligence, Vol. 21, No. 9, pp. 849-870, Sept. 1999.

Note that if either XML file contains a document type tag like



86

<!DOCTYPE Page SYSTEM "Trueviz.dtd"> at the top of the page it needs

to be removed first.

To build the program type

>make

The usage is

>runZoneComp

<-g name of ground truth xml file>

<-d name of detected xml file>

<[-r rejection threshold]>

<[-a acceptance threshold]>

<[-v for verbose]>

Sample program output in default mode is:

Reporting results for the 1colpic300_2.xml

Segmentation Metric = 1.00

Sample program output in verbose mode is:

Reporting results for the 1colpic300_2.xml

The number of one-to-one matches for the text region is 2.

The number of one-to-one matches for the non-text region is 1.

The number of d_one-to-many matches for the text region is 0.

The number of d_one-to-many matches for the non-text region is 0.

The number of g_many-to-one matches for the text region is 0.

The number of g_many-to-one matches for the non-text region is 0.

The number of g_one-to-many matches for the text region is 0.

The number of g_one-to-many matches for the non-text region is 0.

The number of d_many-to-one matches for the text region is 0.

The number of d_many-to-one matches for the non-text region is 0.

The text detection rate = 1.00

The text recognition accuracy = 1.00

The text region metric = 1.00

The non-text detection rate = 1.00

The non-text recognition accuracy = 1.00

The non-text region metric = 1.00

Segmentation Metric = 1.00
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A.2 Code Documentation

A.2.1 Main Program Functions

This function prints the command line usage of the program:

void printUsage(const char* progName)

progName is the name of this program

This function initializes the XML platform:

void initializeXMLplatform()

This function checks the status of an input file

and returns the pointer its XML parser:

XercesDOMParser* checkFile(const char* fileName)

fileName is the name of the XML file to check

This function parses the xml documents:

void parseDoc(DOMNodeList* zoneList,

vector vector Rect zone, int numZones)

zoneList is the list of zones

zone is the list of rectangles

numZones is the number of zones

This function calculates the match scores of the documents:

void calculate Match Scores (vector vector Rect gtZone,

vector vector Rect dtZone,
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vector vector vector float match score,

vector vector vector int match score thres)

gtZone is the ground truth list of zones

dtZone is the etected list of zones

match score the 2D vector (array) which holds the match scores

match score thres is the 2D vector (array)

which holds the thresholded match scores

This function calculates the G-Profile and the D-Profile:

void calculate G And D Profiles(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)

match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function prints the G-Profile and the D-Profile:

void print G And D Profiles(

vector vector int G profile,

vector vector int D profile)

G profile the array which holds the Ground Truth profile



89

D profile the array which holds the Detected profile

This function computes the straight forward one-to-one matches:

void compute one2one Matches Easy(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)

match score is the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving the

many-to-one detected conflicts for the first two cases

void compute one2one Matches Resolving

D many2one Conflicts part1(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)

match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores
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G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving

the many-to-one detected conflicts for the third case:

void compute one2one Matches Resolving

D many2one Conflicts part2(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)

match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile)

This function computes the one-to-one matches by resolving the one-to-many

detected conflicts where the D-Profile is greater than or equal to two

void compute one2one Matches Resolving

D one2many Conflicts part1(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)
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match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function computes the one-to-one matches by resolving the one-to-many

detected conflicts where the G-Profile is greater than or equal to two:

void compute one2one Matches Resolving

D one2many Conflicts part2(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)

match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function computes the partial Detected one-to-many matches and

the partial Ground truth many-to-one matches:

void compute D one2many Matches(

vector vector vector float match score,

vector vector vector int match score thres,
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vector vector int G profile,

vector vector int D profile)

match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function computes the partial Ground truth one-to-many matches

and the partial Detected many-to-one matches

void compute G one2many Matches(

vector vector vector float match score,

vector vector vector int match score thres,

vector vector int G profile,

vector vector int D profile)

match score the 2D vector (array) which holds the match scores

match score thres the 2D vector (array) which holds

the thresholded match scores

G profile the array which holds the Ground Truth profile

D profile the array which holds the Detected profile

This function calculates the detection rates:

void calculate Performance(vector vector Rect gtZone,

vector vector Rect dtZone)

gtZone the ground truth list of zones
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dtZone the detected list of zones

A.2.2 Rect Class Constructor and Functions

This constructor creates a zero area rectangle at (0,0) coordinates:

Rect::Rect()

This constructor creates a rectangle with the given coordinates:

Rect::Rect(int xmin, int xmax, int ymin, int ymax)

xmin the coordinate of the minimum x value

xmax the coordinate of the maximum x value

ymin the coordinate of the minimum y value

ymax the coordinate of the maximum y value

This method prints the coordinates of a rectangle:

void Rect::print()

This method returns the x-value of the left side (minimum x) of a rectangle:

int Rect::getLeft()

This method returns the x-value of the right side (maximum x) of a rectangle:

int Rect::getRight()

This method returns the y-value of the top (minimum y) of a rectangle:
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int Rect::getTop()

This method returns the y-value of the bottom (maximum y) of a rectangle:

int Rect::getBottom()

This method sets the coordinates of a rectangle:

void Rect::setCoords(int xmin, int xmax, int ymin, int ymax)

xmin the coordinate of the minimum x value

xmax the coordinate of the maximum x value

ymin the coordinate of the minimum y value

ymax the coordinate of the maximum y value

This method sets the type or class of a rectangle:

void Rect::setType(int inType)

inType the class of the rectangle (i.e. Text or Non-text)

This method returns the type or class of a rectangle:

int Rect::getType()

This method calculates and returns the match score of two rectangles:

float Rect::getMatchScore(Rect otherRect)

otherRect the rectangle to compare to
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APPENDIX B

XML OUTPUT

B.1 get-text-columns of ocr-detect-columns.cc

void get_text_columns(rectarray &textcolumns,

rectarray &textlines,

rectarray &gutters,

rectarray &graphics){ <--- graphics array now passed

if(!textlines.length()) return;

if(!gutters.length()){

rectangle column = rectangle(textlines[0]);

rectangle tempcolumn = column;

for(int i=1; i<textlines.length(); i++){

tempcolumn.include(textlines[i]);

bool crosses_graphics = false; new graphics code

for(int j=0; j<graphics.length(); j++){ |

if (tempcolumn.fraction_covered_by(graphics[j])>0) |

crosses_graphics = true; |

} |

if (crosses_graphics){ |

textcolumns.push(column); |

column = rectangle(textlines[i]); |

tempcolumn = column; V

} else{

column.include(textlines[i]);

}

}

textcolumns.push(column);

return;

}
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rectangle column = rectangle(textlines[0]);

rectangle tempcolumn =

rectangle(textlines[0].dilated_by(-10,-2,-10,-2));

for(int i=1; i<textlines.length(); i++){

tempcolumn.include(textlines[i].dilated_by(-10,-2,-10,-2));

bool intersects_gutter = false;

bool gutter_penetrating_from_below = false;

bool gutter_penetrating_from_above = false;

for(int j=0; j<gutters.length(); j++){

point top = point(gutters[j].xcenter(),gutters[j].y1) ;

point bottom = point(gutters[j].xcenter(),gutters[j].y0) ;

if(tempcolumn.overlaps(gutters[j])){

intersects_gutter = true;

if(textlines[i].contains(top))

gutter_penetrating_from_below = true;

if(textlines[i].contains(bottom))

gutter_penetrating_from_above = true;

break;

}

}

bool crosses_graphics = false; more new graphics code

for(int j=0; j<graphics.length(); j++){ |

if (tempcolumn.fraction_covered_by(graphics[j])>0) |

crosses_graphics = true; V

}

if (((intersects_gutter) || (crosses_graphics))

&& !gutter_penetrating_from_below){

textcolumns.push(column);

column = rectangle(textlines[i]);

if(!gutter_penetrating_from_above)

tempcolumn=rectangle(textlines[i].dilated_by(-10,-2,-10,-2));

else

tempcolumn=rectangle();

} else{

column.include(textlines[i]);

}

}

textcolumns.push(column); <-------- Push command added.

}
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B.2 Functions of ocr-hps-output.cc

void hps_dump_preamble(FILE *output) {

fprintf(output, "<!DOCTYPE html\n");

fprintf(output, " PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\n");

fprintf(output,

" http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">\n");

}

void hps_dump_head(FILE *output) {

fprintf(output, "<head>\n");

fprintf(output,

"<meta name=\"ocr-capabilities\" content=\"ocr_line ocr_page\" />\n");

fprintf(output, "<meta name=\"ocr-langs\" content=\"en\" />\n");

fprintf(output, "<meta name=\"ocr-scripts\" content=\"Latn\" />\n");

fprintf(output, "<meta name=\"ocr-microformats\" content=\"\" />\n");

fprintf(output,

"<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />");

fprintf(output, "<title>OCR Output</title>\n");

fprintf(output, "</head>\n");

}

void hps_dump_regions(FILE *output, rectarray &textArray,

rectarray &graphArray, int imageHeight)

{

fprintf(output, "<Page>\n");

for(int i=0; i<textArray.length(); i++)

{

int x0 = textArray[i].x0;

int y0 = imageHeight - textArray[i].y1;

int x1 = textArray[i].x1;

int y1 = imageHeight - textArray[i].y0;

fprintf(output, "<Zone>\n");

fprintf(output, "<ZoneCorners>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y0);

fprintf(output, "</Vertex>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y0);

fprintf(output, "</Vertex>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y1);
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fprintf(output, "</Vertex>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y1);

fprintf(output, "</Vertex>\n");

fprintf(output, "</ZoneCorners>\n");

fprintf(output, "<Classification>\n");

fprintf(output, "<Category Value=\"Text\">\n");

fprintf(output, "</Category>\n");

fprintf(output, "</Classification>\n");

fprintf(output, "</Zone>\n");

}

for(int i=0; i<graphArray.length(); i++)

{

int x0 = graphArray[i].x0;

int y0 = imageHeight - graphArray[i].y1;

int x1 = graphArray[i].x1;

int y1 = imageHeight - graphArray[i].y0;

fprintf(output, "<Zone>\n");

fprintf(output, "<ZoneCorners>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y0);

fprintf(output, "</Vertex>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y0);

fprintf(output, "</Vertex>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x1, y1);

fprintf(output, "</Vertex>\n");

fprintf(output, "<Vertex x=\"%d\" y=\"%d\">\n", x0, y1);

fprintf(output, "</Vertex>\n");

fprintf(output, "</ZoneCorners>\n");

fprintf(output, "<Classification>\n");

fprintf(output, "<Category Value=\"Non-text\">\n");

fprintf(output, "</Category>\n");

fprintf(output, "</Classification>\n");

fprintf(output, "</Zone>\n");

}

fprintf(output, "</Page>\n");

}
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APPENDIX C

RAST UPGRADE

C.1 Excerpts of ocr-layout/ocr-layout-rast.cc

void SegmentPageByRAST::segmentInternal(intarray &visualization,

intarray &image,

bytearray &in_not_inverted,

bool need_visualization,

rectarray &extra_obstacles) {

const int zero = 0;

const int yellow = 0x00ffff00;

bytearray in;

copy(in, in_not_inverted);

make_page_binary_and_black(in);

// Do connected component analysis

intarray charimage;

copy(charimage,in);

label_components(charimage,false);

// Clean non-text and noisy boxes and get character statistics

rectarray bboxes;

bounding_boxes(bboxes,charimage);

if(bboxes.length()==0){

makelike(image,in);

fill(image,0x00ffffff);

return ;

}

autodel<CharStats> charstats(make_CharStats());

charstats->getCharBoxes(bboxes);

charstats->calcCharStats();
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rectarray cboxes;

for(int i=0; i<charstats->char_boxes.length(); i++) {

cboxes.push(charstats->char_boxes[i]);

}

// Compute Whitespace Cover

autodel<WhitespaceCover> whitespaces(

make_WhitespaceCover(0,0,in.dim(0),in.dim(1)));

rectarray whitespaceboxes;

whitespaces->compute(whitespaceboxes,charstats->char_boxes);

// Find whitespace column separators (gutters)

autodel<ColSeparators> whitespace_obstacles(make_ColSeparators());

rectarray gutters, column_candidates;

whitespace_obstacles->

findGutters(column_candidates, whitespaceboxes, *charstats);

whitespace_obstacles->filterOverlaps(gutters, column_candidates);

// Separate horizontal/vertical rulings from graphics

rectarray graphics;

rectarray hor_rulings;

rectarray vert_rulings;

autodel<ExtractRulings> rulings(make_ExtractRulings());

rulings->analyzeObstacles(hor_rulings,vert_rulings,graphics,

extra_obstacles,charstats->boxHeight);

rulings->analyzeObstacles(hor_rulings,vert_rulings,graphics,

charstats->large_boxes,charstats->boxHeight);

// Add whitespace gutters and the user-supplied obstacles

// to a list of obstacles

rectarray textline_obstacles;

for(int i=0;i<gutters.length();i++)

textline_obstacles.push(gutters[i]);

for(int i=0;i<extra_obstacles.length();i++)

textline_obstacles.push(extra_obstacles[i]);

for(int i=0;i<vert_rulings.length();i++)

textline_obstacles.push(vert_rulings[i]);

// Extract textlines

narray<TextLine> textlines;

autodel<CTextlineRAST> ctextline(make_CTextlineRAST());

ctextline->min_q = 2.0;
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ctextline->min_count = 2;

ctextline->min_length= (int) 2*charstats->boxWidth;

ctextline->max_results = max_results;

ctextline->min_gap = 3*charstats->boxWidth;

ctextline->extract(textlines,textline_obstacles,graphics,charstats);

// Capture the connected components that were rejected as characters.

rectarray rejected_cboxes;

for (int i=0; i<cboxes.length(); i++) {

bool overlap = false;

for (int j=0; j<textlines.length(); j++) {

rectangle textline_box = textlines[j].bbox;

if (cboxes[i].fraction_covered_by(textline_box)>0)

overlap = true;

}

if (!overlap) {

rejected_cboxes.push(cboxes[i]);

}

}

// Merge the rejects then place them into the graphics array.

rectarray char_graphics;

int textlineHeight = charstats->boxHeight;

int dilation = 0.25*textlineHeight;

bool merged = closeRects(rejected_cboxes, char_graphics, dilation, dilation);

while (merged) {

rectarray mBoxes;

merged = closeRects(char_graphics, mBoxes, dilation, dilation);

if (merged) { char_graphics = mBoxes; }

}

for (int i=0; i<char_graphics.length(); i++) {

graphics.push(char_graphics[i]);

}

// Of the small connected components, select those which do not

// overlap any textlines for further processing.

rectarray small_graphics;

for (int i=0; i<charstats->small_boxes.length(); i++) {

bool overlap = false;

for (int j=0; j<textlines.length(); j++) {

if (textlines[j].bbox.fraction_covered_by(charstats->small_boxes[i])>0)

overlap = true;

}
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if (!overlap)

small_graphics.push(charstats->small_boxes[i]);

}

// Now select the very small graphics rectangles.

int min_area = 0.1*textlineHeight*textlineHeight;

for (int i=0; i<graphics.length(); i++) {

if (graphics[i].area()<min_area) {

bool overlap = false;

for (int j=0; j<textlines.length(); j++) {

if (textlines[j].bbox.fraction_covered_by(graphics[i])>0)

overlap = true;

}

if (!overlap)

small_graphics.push(graphics[i]);

}

}

// Merge all of the small graphics components which correspond

// to isolated pixels or gray areas in images then add them to

// the graphics array.

rectarray small_boxes;

dilation = 0.25*textlineHeight;

merged = closeRects(small_graphics, small_boxes, dilation, dilation);

while (merged) {

rectarray mGraphics;

merged = closeRects(small_boxes, mGraphics, dilation, dilation);

if (merged) { small_boxes = mGraphics; }

}

for (int i=0; i<small_boxes.length(); i++) {

rectangle box = small_boxes[i];

if ((box.width() < textlineHeight) && (box.height() > 10 * textlineHeight))

continue;

graphics.push(box);

}

// Merge overlapping text line boxes and insert them into the graphics array.

bool mergedArrays = true;

while (mergedArrays) {

narray<TextLine> onlyTextlines;

mergedArrays = mergeText(textlines, onlyTextlines, graphics);

if (mergedArrays) { textlines = onlyTextlines; }

}
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// Clean up the graphics array by removing any little rectangles

// that might have been created while processing the gray areas.

min_area = textlineHeight*textlineHeight;

rectarray filtered_graphics2;

for (int i=0; i<graphics.length(); i++) {

if (graphics[i].area()>min_area)

filtered_graphics2.push(graphics[i]);

}

graphics = filtered_graphics2;

// Move textlines that overlap graphics to the graphics array,

// merge overlapping graphics boxes into megagraphics boxes

// then merge nearby graphics boxes.

// Continue doing this until no textlines overlap graphics

bool updated = true;

dilation = 1.4*textlineHeight;

// 1.6 merges graph axis titles, but also figures

// whereas 1.4 doesn’t merge figures.

while (updated) {

narray<TextLine> onlyTextlines;

updated = mergeTextAndGraphics(

textlines, onlyTextlines, graphics, dilation);

if (updated) { textlines = onlyTextlines; }

}

// Sort textlines in reading order

autodel<ReadingOrderByTopologicalSort>

reading_order(make_ReadingOrderByTopologicalSort());

reading_order->sortTextlines(

textlines,gutters,hor_rulings,vert_rulings,*charstats);

rectarray textcolumns;

rectarray paragraphs;

rectarray textline_boxes;

for(int i=0, l=textlines.length(); i<l; i++)

textline_boxes.push(textlines[i].bbox);

// Group textlines into text columns

// Since vertical rulings have the same role as whitespace gutters,

// add them to vertical separators list as long as they are true gutters.

rectarray vert_separators;

for(int i=0,l=vert_rulings.length(); i<l; i++){
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vert_separators.push(vert_rulings[i]);

}

for(int i=0,l=gutters.length(); i<l; i++){

bool overlap = false;

for(int j=0; j<graphics.length(); j++) {

if (gutters[i].fraction_covered_by(graphics[j])>0)

overlap = true;

}

if (!overlap)

vert_separators.push(gutters[i]);

}

get_text_columns(textcolumns, textline_boxes, vert_separators, graphics);

FILE *output = stdout;

//hps_dump_preamble(output);

//hps_dump_head(output);

hps_dump_regions(output, textcolumns, graphics, in_not_inverted.dim(1));

C.2 Excerpts of ocr-layout/ocr-char-stats.cc

/**

* @brief This function finds the major peaks of a histogram which

* have two consecutive lower and higher points to each side.

* @param locations the array in which to place the peak locations

* @param a the histogram

* @param minsize the locatin on the histogram to start examining

* @param maxsize the locatin on the histogram to stop examining

* @param sigma the amount of smoothing to apply

*/

static void major_peaks(intarray &locations, floatarray &a,

int minsize, int maxsize, float sigma)

{

locations.clear();

floatarray v;

copy(v, a);

if (sigma>0)

gauss1d(v, sigma);

int start = max(2, minsize);

int stop = min(v.length()-3, maxsize);
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float maxValue = 0;

for (int i=start; i<stop; i++) {

if (v[i] < 1) { v[i] = 0; }

if (((v[i]>v[i-1]) && (v[i-1]>v[i-2])) &&

((v[i]>v[i+1]) && (v[i+1]>v[i+2])) &&

(v[i] > 0.05 * maxValue))

{

locations.push(i);

if (locations.length() == 1)

maxValue = v[i];

}

}

}

/**

* @brief This function determines the value of the rightmost peak of

* a histogram by iteratively smoothing it until no more than

* the given number of peaks remain.

* @param hist the histogram

* @param peakNumber the desired number of peaks

*/

static int get_hist_peak(floatarray &hist, int peakNumber)

{

int start = 2;

int stop = hist.length();

int numPeaks = 0;

int smooth = 0;

int peak = 0;

bool needsSmoothing = true;

while ((needsSmoothing) && (smooth < 15)) {

intarray modes;

major_peaks(modes, hist, start, stop, smooth);

if ((numPeaks = modes.length()) == peakNumber)

{ // return the value of the peak of choice

peak = modes(peakNumber-1);

needsSmoothing = false;

}

else if (numPeaks == 0)

{ // no peaks were found so more smoothing is needed

needsSmoothing = true;

}
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else if (numPeaks < peakNumber)

{ // too few peaks were found, take the rightmost

peak = modes(numPeaks-1);

needsSmoothing = false;

}

smooth++;

}

if (smooth == 15) { peak = 0; }

return peak;

}

C.3 Excerpts of ocr-layout/ocr-layout-manip.cc

/**

* @brief This function merges text lines then puts them into the graphics array.

* @param textArray the input text line array

* @param newTextArray the output text line array

* @param graphicsArray the graphics array

* @return true if text lines were moved to the graphics array

*/

bool mergeText(narray<TextLine> &textArray,

narray<TextLine> &newTextArray,

rectarray &graphicsArray)

{

int i, j, numBoxes = textArray.length();

int mergeStatus[numBoxes];

bool arraysMerged=false;

for(i=0; i<numBoxes; i++) { mergeStatus[i] = 0; }

for(i=0; i<numBoxes-1; i++) {

j=i+1;

if (mergeStatus[i]==0) {

while ((j<numBoxes) && (mergeStatus[j]==0)) {

rectangle tlBbox_i = textArray[i].bbox;

rectangle tlBbox_j = textArray[j].bbox;

if (tlBbox_i.fraction_covered_by(tlBbox_j)>0) {

float tlBbox_i_height = tlBbox_i.height();

float tlBbox_j_height = tlBbox_j.height();

float diff = abs(tlBbox_i_height - tlBbox_j_height);

float sum = tlBbox_i_height + tlBbox_j_height;

float ratio;

if (tlBbox_i_height < tlBbox_j_height)
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ratio = tlBbox_i_height / tlBbox_j_height;

else

ratio = tlBbox_j_height / tlBbox_i_height;

if (ratio < 0.7)

{ // we’ve got a large and small rectangle

rectangle combinedRect = tlBbox_i.inclusion(tlBbox_j);

graphicsArray.push(combinedRect);

mergeStatus[i] = 1;

mergeStatus[j] = 1;

arraysMerged = true;

} else

{ // we probably have two text lines, check the overlap

if (diff/sum > 0.15) {

rectangle combinedRect = tlBbox_i.inclusion(tlBbox_j);

graphicsArray.push(combinedRect);

mergeStatus[i] = 1;

mergeStatus[j] = 1;

arraysMerged = true;

}

}

}

j++;

}

}

}

for(i=0; i<numBoxes; i++)

if (mergeStatus[i]==0) { newTextArray.push(textArray[i]); }

return arraysMerged;

}

/**

* @brief This function merges overlapping rectangles.

* @param currentArray the input array

* @param newArray the output array

* @return true if rectangles were merged

*/

bool mergeRects(rectarray &currentArray, rectarray &newArray)

{

int i, j, numBoxes = currentArray.length();

int mergeStatus[numBoxes];

bool lastMerged=false, arraysMerged=false;

if (numBoxes==0) { return false; }
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for(i=0; i<numBoxes; i++) { mergeStatus[i] = 0; }

for(i=0; i<numBoxes-1; i++) {

j=i+1;

if (mergeStatus[i]==0) {

while ((j<numBoxes) && (mergeStatus[j]==0)) {

if (currentArray[i].fraction_covered_by(currentArray[j])>0) {

rectangle combinedRect =

currentArray[i].inclusion(currentArray[j]);

newArray.push(combinedRect);

mergeStatus[i] = 1;

mergeStatus[j] = 1;

arraysMerged = true;

if (j == numBoxes-1) { lastMerged = true; }

}

j++;

}

}

if (mergeStatus[i]==0) { newArray.push(currentArray[i]); }

}

if (!lastMerged) { newArray.push(currentArray[i]); }

return arraysMerged;

}

/**

* @brief This function closes rectangles by dilating, merging then eroding them.

* @param currentArray the input array

* @param newArray the output array

* @param x_dilation the horizontal dilation

* @param y_dilation the vertical dilation

* @return true if rectangles were merged

*/

bool closeRects(rectarray &currentArray,

rectarray &newArray,

int x_dilation,

int y_dilation)

{

int i, j, numBoxes = currentArray.length();

rectarray dilatedArray;

int mergeStatus[numBoxes];

bool lastMerged=false, arraysMerged=false;

if (numBoxes==0) { return false; }
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for(i=0; i<numBoxes; i++)

{

dilatedArray.push(currentArray[i].dilated_by(

x_dilation, y_dilation, x_dilation, y_dilation));

mergeStatus[i] = 0;

}

for(i=0; i<numBoxes-1; i++) {

j=i+1;

if (mergeStatus[i]==0) {

while ((j<numBoxes) && (mergeStatus[j]==0)) {

if (dilatedArray[i].fraction_covered_by(dilatedArray[j])>0) {

rectangle combinedRect =

dilatedArray[i].inclusion(dilatedArray[j]);

newArray.push(combinedRect.dilated_by(

-x_dilation, -y_dilation, -x_dilation, -y_dilation));

mergeStatus[i] = 1;

mergeStatus[j] = 1;

arraysMerged = true;

if (j == numBoxes-1) { lastMerged = true; }

}

j++;

}

}

if (mergeStatus[i]==0) { newArray.push(currentArray[i]); }

}

if (!lastMerged) { newArray.push(currentArray[i]); }

return arraysMerged;

}

/**

* @brief This function closes rectangles by dilating, merging then eroding them.

* @param textArray the input text line array

* @param newTextArray the output text line array

* @param dilation the graphics dilation

* @return true if rectangles were added to the new array

*/

bool mergeTextAndGraphics(narray<TextLine> &currentTextArray,

narray<TextLine> &newTextArray,

rectarray &graphicsArray,

int dilation)

{

bool update = false;
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// Move textlines that overlap graphics to the graphics array

bool overlap;

for(int i=0; i<currentTextArray.length(); i++) {

overlap = false;

rectangle tlBbox = currentTextArray[i].bbox;

for(int j=0; j<graphicsArray.length(); j++) {

if (tlBbox.fraction_covered_by(graphicsArray[j])>0)

overlap = true;

}

if (overlap) {

graphicsArray.push(tlBbox);

update = true;

}

else

newTextArray.push(currentTextArray[i]);

}

// Merge overlapping graphics boxes into megagraphics boxes

bool mergedArrays = true;

while (mergedArrays) {

rectarray mGraphics;

mergedArrays = mergeRects(graphicsArray, mGraphics);

if (mergedArrays) {

graphicsArray = mGraphics;

update = true;

}

}

// Merge nearby graphics boxes

mergedArrays = true;

while (mergedArrays) {

rectarray mGraphics;

mergedArrays = closeRects(graphicsArray, mGraphics, dilation, dilation);

if (mergedArrays) {

graphicsArray = mGraphics;

update = true;

}

}

return update;

}
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APPENDIX D

VORONOI UPGRADE

D.1 Excerpts of ocr-voronoi/ocr-voronoi-ocropus.cc

// Color the Voronoi zones and lines

intarray voronoi_zones, voronoi_lines;

makelike(voronoi_zones, voronoi_diagram_image);

makelike(voronoi_lines, voronoi_diagram_image);

for (int i=0; i<voronoi_diagram_image.length1d(); i++){

if (voronoi_diagram_image.at1d(i)==0x00ffffff ||

voronoi_diagram_image.at1d(i)==0) {

// black or white pixels

voronoi_zones.at1d(i) = 1;

voronoi_lines.at1d(i) = 0;

}

else {

// blue pixels corresponding to the lines

voronoi_zones.at1d(i) = 0;

voronoi_lines.at1d(i) = 1;

}

}

// Define the regions by extracting the connected components

// created above and color each differently

// The first zone is the lines.

int numZones = label_components(voronoi_zones,false);

// Now get the bounding boxes of the connected components

bytearray in;

copy(in, in_not_binary);

make_page_binary_and_black(in);

intarray charimage;
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copy(charimage,in);

label_components(charimage,false);

rectarray bboxes;

bounding_boxes(bboxes,charimage);

autodel<CharStats> charstats(make_CharStats());

charstats->getCharBoxes(bboxes);

charstats->calcCharStats();

int numCharBoxes = charstats->char_boxes.length();

rectarray cBoxes;

for (int i=0; i<numCharBoxes; i++)

cBoxes.push(charstats->char_boxes[i]);

int overlap[numCharBoxes];

for (int i=0; i<numCharBoxes; i++)

overlap[i] = 0;

for (int i=0; i<numCharBoxes; i++) {

for (int j=i+1; j<numCharBoxes; j++) {

if (cBoxes[i].overlaps(cBoxes[j])) {

overlap[i] = 1;

overlap[j] = 1;

}

}

}

// Find the extreme points of the character boxes in each zone.

vector<int> wrap_around;

int xminText[numZones], xmaxText[numZones],

yminText[numZones], ymaxText[numZones];

for (int z=0; z<numZones; z++) {

xminText[z] = pageWidth;

xmaxText[z] = 0;

yminText[z] = pageHeight;

ymaxText[z] = 0;

wrap_around.push_back(0);

}

// Can only create one zone character box array at a time

// because of memory limitations.

rectarray printZone;
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rectangle textRect[numZones];

bool textZone[numZones];

for (int z=1; z<numZones; z++) {

rectarray zoneBoxes;

for (int j=0; j<numCharBoxes; j++) {

if (overlap[j] == 0) {

rectangle box = cBoxes[j];

int xmin = box.x0;

int ymin = box.y0;

if (z == voronoi_zones(xmin, ymin)) {

zoneBoxes.push(box);

int xmax = box.x1;

int ymax = box.y1;

if (xmin < xminText[z]) { xminText[z] = xmin; }

if (xmax > xmaxText[z]) { xmaxText[z] = xmax; }

if (ymin < yminText[z]) { yminText[z] = ymin; }

if (ymax > ymaxText[z]) { ymaxText[z] = ymax; }

}

}

}

if (zoneBoxes.length() > 0) {

if (xminText[z] < xmaxText[z])

textRect[z] = rectangle(xminText[z], yminText[z],

xmaxText[z], ymaxText[z]);

else

textRect[z] = rectangle();

textZone[z] = is_text_block(zoneBoxes, wrap_around, z);

}

else

textZone[z] = false;

}

// Create an array of the pixels of each zone.

vector<vector<Pixel> > vZone;

for (int z=0; z<numZones; z++)

vZone.push_back( vector<Pixel>() );

for (int x=0,w=pageWidth;x<w;x++){

for (int y=0,h=pageHeight;y<h;y++){

Pixel pixel;

pixel.x = x;

pixel.y = y;
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vZone[voronoi_zones(x,y)].push_back(pixel);

}

}

// Dilate the lines dividing the zones to get the perimeters.

intarray dilated_lines;

makelike(dilated_lines, voronoi_lines);

for (int x=0,w=pageWidth;x<w;x++)

for (int y=0,h=pageHeight;y<h;y++)

dilated_lines(x,y) = 0;

for (int x=1,w=pageWidth-1;x<w;x++){

for (int y=1,h=pageHeight-1;y<h;y++){

if (voronoi_lines(x,y) > 0){

dilated_lines(x,y+1) = 1;

dilated_lines(x+1,y+1) = 1;

dilated_lines(x+1,y) = 1;

dilated_lines(x+1,y-1) = 1;

dilated_lines(x,y-1) = 1;

dilated_lines(x-1,y-1) = 1;

dilated_lines(x-1,y) = 1;

dilated_lines(x-1,y+1) = 1;

}

}

}

// Create an array of the zone perimeters.

vector<vector<Pixel> > vPeri;

for (int z=0; z<numZones; z++)

vPeri.push_back( vector<Pixel>() );

for (int z=1; z<numZones; z++) {

for (int p=0; p<vZone[z].size(); p++) {

int x = vZone[z][p].x;

int y = vZone[z][p].y;

if (dilated_lines(x,y) == 1)

vPeri[z].push_back(vZone[z][p]);

}

}

// Find the extreme points of each zone.

Pixel xminZone[numZones], xmaxZone[numZones],

yminZone[numZones], ymaxZone[numZones];
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for (int z=0; z<numZones; z++) {

xminZone[z].x = pageWidth;

xmaxZone[z].x = 0;

yminZone[z].y = pageHeight;

ymaxZone[z].y = 0;

}

for (int z=1; z<numZones; z++) {

for (int p=0; p<vPeri[z].size(); p++) {

int x = vPeri[z][p].x;

int y = vPeri[z][p].y;

if (x < xminZone[z].x) { xminZone[z].x = x; xminZone[z].y = y; }

if (x > xmaxZone[z].x) { xmaxZone[z].x = x; xmaxZone[z].y = y; }

if (y < yminZone[z].y) { yminZone[z].y = y; yminZone[z].x = x; }

if (y > ymaxZone[z].y) { ymaxZone[z].y = y; ymaxZone[z].x = x; }

}

}

// Create an array to label zones text or not.

vector<int> converted;

vector<int> imageMap;

for (int z=0; z<numZones; z++){

converted.push_back(0);

imageMap.push_back(z);

}

// Put the image-like zones into an array according to size.

vector<int> zoneBySize;

int firstIndex = 1; // start with one since zero is the lines

bool firstAdded = false;

while (!firstAdded) {

if (!textZone[firstIndex]) {

zoneBySize.push_back(firstIndex);

firstAdded = true;

}

else

firstIndex++;

}

for (int z=firstIndex+1; z<numZones; z++)

{

if (!textZone[z])

{

int j = 0;
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int numPixels = vZone[z].size();

bool foundPlace = false;

while ((!foundPlace) && (j < zoneBySize.size()))

if (numPixels < vZone[zoneBySize[j]].size())

foundPlace = true;

else

j++;

if (j == 0)

zoneBySize.insert(zoneBySize.begin(), z);

else if (j == zoneBySize.size())

zoneBySize.push_back(z);

else

zoneBySize.insert(zoneBySize.begin()+j, z);

}

}

// Create a vector of graphics

vector<int> graphics; // the int value will correspond to the zone number

// Consider the smallest zone on the list. If it’s really small and

// is considered image-like, call it an image,

// find its neighbors, convert them to my zone, and so on.

for (int zi=0; zi<zoneBySize.size(); zi++)

{

int currentNum = zoneBySize[zi];

if ((!textZone[currentNum]) && (converted[currentNum] == 0))

{

bool contain = false;

for (int g=0; g<graphics.size(); g++)

if (graphics[g] == currentNum) { contain = true; }

if (!contain) { graphics.push_back(currentNum); }

converted[currentNum] = 1;

int zoneCount[numZones];

for (int z=1; z<numZones; z++) { zoneCount[z] = 0; }

getBorderingZones(voronoi_zones, vPeri, currentNum,

zoneCount, pageWidth, pageHeight);

for (int z=1; z<numZones; z++) {

if ((zoneCount[z] > 0) && (!textZone[z]) && (converted[z] == 0))

{

convertZone(voronoi_zones, vZone, vPeri, converted, imageMap,
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numZones, z, currentNum,

pageWidth, pageHeight, textZone, graphics);

}

}

}

}

// Now start cleaning up the rectangular zones.

// Create an array of text segments.

int textSegIndex = 0;

int textMap[numZones];

rectarray textSegments0;

for (int z=1; z<numZones; z++) {

if (converted[z] == 0) {

textSegments0.push(textRect[z]);

textMap[textSegIndex++] = z;

}

}

// Create an array of image segments.

// One at a time like the text zones because of memory limitations.

int numImages = graphics.size();

int xminImage[numImages], xmaxImage[numImages],

yminImage[numImages], ymaxImage[numImages];

for (int i=0; i<numImages; i++) {

xminImage[i] = pageWidth;

xmaxImage[i] = 0;

yminImage[i] = pageHeight;

ymaxImage[i] = 0;

}

rectarray imageSegments0;

for (int i=0; i<numImages; i++) {

int imgZone = graphics[i];

for (int x=0,w=pageWidth;x<w;x++){

for (int y=0,h=pageHeight;y<h;y++){

if (voronoi_zones(x,y) == imgZone) {

if (voronoi_diagram_image(x,y) == 0) {

if (x < xminImage[i]) { xminImage[i] = x; }

if (x > xmaxImage[i]) { xmaxImage[i] = x; }

if (y < yminImage[i]) { yminImage[i] = y; }

if (y > ymaxImage[i]) { ymaxImage[i] = y; }

}

}
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}

}

imageSegments0.push(rectangle(xminImage[i], yminImage[i],

xmaxImage[i], ymaxImage[i]));

}

// Identify text segments that are completely covered by image segments

// and delete them.

int notText0[textSegments0.length()];

for (int t=0; t<textSegments0.length(); t++)

notText0[t] = 0;

for (int i=0; i<imageSegments0.length(); i++) {

for (int t=0; t<textSegments0.length(); t++) {

if (imageSegments0[i].includes(textSegments0[t]))

notText0[t] = 1;

}

}

rectarray textSegments1;

for (int t=0; t<textSegments0.length(); t++) {

if (notText0[t] == 0)

textSegments1.push(textSegments0[t]);

}

// Identify image segments that are completely covered by text zones,

// delete them and convert the text segment to an image.

int notImage0[imageSegments0.length()];

for (int i=0; i<imageSegments0.length(); i++)

notImage0[i] = 0;

int notText1[textSegments1.length()];

for (int t=0; t<textSegments1.length(); t++)

notText1[t] = 0;

rectarray tempTextZone;

for (int t=0; t<textSegments1.length(); t++) {

int z = voronoi_zones(textSegments1[t].x0, textSegments1[t].y0);

xminText[z] = pageWidth;

xmaxText[z] = 0;

yminText[z] = pageHeight;

ymaxText[z] = 0;

for (int p=0; p<vZone[z].size(); p++) {

Pixel pixel = vZone[z][p];
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int x = pixel.x;

int y = pixel.y;

if (voronoi_diagram_image(x,y) == 0) {

if (x < xminText[z]) { xminText[z] = x; }

if (x > xmaxText[z]) { xmaxText[z] = x; }

if (y < yminText[z]) { yminText[z] = y; }

if (y > ymaxText[z]) { ymaxText[z] = y; }

}

}

tempTextZone.push(rectangle(xminText[z], yminText[z],

xmaxText[z], ymaxText[z]));

for (int i=0; i<imageSegments0.length(); i++) {

if (tempTextZone[t].includes(imageSegments0[i])) {

notImage0[i] = 1;

notText1[t] = 1;

}

}

}

rectarray imageSegments1;

for (int i=0; i<imageSegments0.length(); i++)

if (notImage0[i] == 0)

imageSegments1.push(imageSegments0[i]);

for (int t=0; t<textSegments1.length(); t++) {

if (notText1[t] == 1) {

imageSegments1.push(tempTextZone[t]);

}

}

rectarray textSegments2;

for (int t=0; t<textSegments1.length(); t++)

if (notText1[t] == 0)

textSegments2.push(textSegments1[t]);

// Break image segments that cross column dividers and

// text segments that wrap around images.

rectarray newTextSegs, newImageSegs;

int brokenTextSegs[textSegments2.length()],

brokenImageSegs[imageSegments1.length()];

for (int t=0; t<textSegments2.length(); t++)

brokenTextSegs[t] = 0;

for (int i=0; i<imageSegments1.length(); i++)
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brokenImageSegs[i] = 0;

for (int t=0; t<textSegments2.length(); t++) {

for (int i=0; i<imageSegments1.length(); i++) {

if (textSegments2[t].overlaps(imageSegments1[i])) {

if (wrap_around[textMap[t]] == 0) {

breakImage(imageSegments1, textSegments2, newImageSegs, i, t);

brokenImageSegs[i] = 1;

} else {

breakText(textSegments2, imageSegments1, newTextSegs, t, i);

brokenTextSegs[t] = 1;

}

}

}

}

int textOverlaps[newTextSegs.length()];

for (int i=0; i<newTextSegs.length(); i++)

textOverlaps[i] = 0;

for (int i=0; i<newTextSegs.length(); i++) {

for (int j=0; j<newTextSegs.length(); j++) {

if ((i != j) && (newTextSegs[i].overlaps(newTextSegs[j]))) {

if (newTextSegs[i].area() > newTextSegs[j].area())

textOverlaps[i] = 1;

else

textOverlaps[j] = 1;

}

}

}

int imageOverlaps[newImageSegs.length()];

for (int i=0; i<newImageSegs.length(); i++)

imageOverlaps[i] = 0;

for (int i=0; i<newImageSegs.length(); i++) {

for (int j=0; j<newImageSegs.length(); j++) {

if ((i != j) && (newImageSegs[i].overlaps(newImageSegs[j]))) {

if (newImageSegs[i].area() > newImageSegs[j].area())

imageOverlaps[i] = 1;

else

imageOverlaps[j] = 1;

}
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}

}

rectarray finalTextSegments;

for (int t=0; t<textSegments2.length(); t++)

if (brokenTextSegs[t] == 0)

finalTextSegments.push(textSegments2[t]);

for (int t=0; t<newTextSegs.length(); t++)

if (textOverlaps[t] == 0)

finalTextSegments.push(newTextSegs[t]);

rectarray finalImageSegments;

for (int i=0; i<imageSegments1.length(); i++)

if (brokenImageSegs[i] == 0)

finalImageSegments.push(imageSegments1[i]);

for (int i=0; i<newImageSegs.length(); i++)

if (imageOverlaps[i] == 0)

finalImageSegments.push(newImageSegs[i]);

D.2 Excerpts of ocr-voronoi/ocr-zone-manip.cc

void getBorderingZones(intarray &voronoi_zones, vector<vector<Pixel> >& vPeri,

int z, int* zoneCount, int pageWidth, int pageHeight)

{

// Now tally the number of zones along the border.

// For each pixel, venture in all four directions until the line is crossed.

for (int p=0; p<vPeri[z].size(); p++)

{

int zoneEast=0, zoneWest=0, zoneNorth=0, zoneSouth=0;

int stepEast=0, stepWest=0, stepNorth=0, stepSouth=0;

int eastX = vPeri[z][p].x+1;

int eastY = vPeri[z][p].y;

while ((eastX < pageWidth) &&

((zoneEast = voronoi_zones(eastX, eastY)) == 0) &&

(stepEast < 20)) {

stepEast++; eastX++;

}

int westX = vPeri[z][p].x-1;
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int westY = vPeri[z][p].y;

while ((westX >= 0) &&

((zoneWest = voronoi_zones(westX, westY)) == 0) &&

(stepWest < 20)) {

stepWest++; westX--;

}

int southX = vPeri[z][p].x;

int southY = vPeri[z][p].y-1;

while ((southY >= 0) &&

((zoneSouth = voronoi_zones(southX, southY)) == 0) &&

(stepSouth < 20)) {

stepSouth++; southY--;

}

int northX = vPeri[z][p].x;

int northY = vPeri[z][p].y+1;

while ((northY < pageHeight) &&

((zoneNorth = voronoi_zones(northX, northY)) == 0) &&

(stepNorth < 20)) {

stepNorth++; northY++;

}

// If the line was crossed in any of the directions

// add that zone to the count.

if ((stepEast > 0) && (stepEast < 20))

zoneCount[zoneEast]++;

else if ((stepWest > 0) && (stepWest < 20))

zoneCount[zoneWest]++;

else if ((stepSouth > 0) && (stepSouth < 20))

zoneCount[zoneSouth]++;

else if ((stepNorth > 0) && (stepNorth < 20))

zoneCount[zoneNorth]++;

}

}

void convertZone(intarray &voronoi_zones, vector<vector<Pixel> >& vZone,

vector<vector<Pixel> >& vPeri, vector<int>& converted,

vector<int>& mapped, int numZones, int thisZoneNum,

int newZoneNum, int pageWidth, int pageHeight,

bool* textZone, vector<int>& graphics)

{
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for (int p=0; p<vZone[thisZoneNum].size(); p++) {

int pixelX = vZone[thisZoneNum][p].x;

int pixelY = vZone[thisZoneNum][p].y;

voronoi_zones(pixelX,pixelY) = newZoneNum;

}

converted[thisZoneNum] = 1;

mapped[thisZoneNum] = newZoneNum;

int zoneCount[numZones];

for (int z=1; z<numZones; z++) { zoneCount[z] = 0; }

getBorderingZones(voronoi_zones, vPeri, thisZoneNum,

zoneCount, pageWidth, pageHeight);

for (int z=1; z<numZones; z++)

{

if ((zoneCount[z] > 0) && (!textZone[z]) && (converted[z] ==0))

{

convertZone(voronoi_zones, vZone, vPeri, converted,

mapped, numZones, z, newZoneNum,

pageWidth, pageHeight, textZone, graphics);

}

}

}

void breakImage(rectarray &arrayToBreak, rectarray &breakerArray,

rectarray &newArray, int arrayToBreak_index,

int breakerArray_index)

{

rectangle rectToBreak = arrayToBreak[arrayToBreak_index];

rectangle breakerRect = breakerArray[breakerArray_index];

rectangle overlap = rectToBreak.intersection(breakerRect);

if ((overlap.x1 + overlap.x0)/2 > (rectToBreak.x1 + rectToBreak.x0)/2) {

if ((overlap.y1 + overlap.y0)/2 > (rectToBreak.y1 + rectToBreak.y0)/2) {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

overlap.x0-1, rectToBreak.y1));

newArray.push(rectangle(overlap.x0, rectToBreak.y0,

rectToBreak.x1, overlap.y0-1));

}

else {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

overlap.x0-1, rectToBreak.y1));

newArray.push(rectangle(overlap.x0, overlap.y1+1,
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rectToBreak.x1, rectToBreak.y1));

}

}

else {

if ((overlap.y1 + overlap.y0)/2 > (rectToBreak.y1 + rectToBreak.y0)/2) {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

overlap.x1, overlap.y0-1));

newArray.push(rectangle(overlap.x1+1, rectToBreak.y0,

rectToBreak.x1, rectToBreak.y1));

}

else {

newArray.push(rectangle(rectToBreak.x0, overlap.y1+1,

overlap.x1, rectToBreak.y1));

newArray.push(rectangle(overlap.x1+1, rectToBreak.y0,

rectToBreak.x1, rectToBreak.y1));

}

}

}

void breakText(rectarray &arrayToBreak, rectarray &breakerArray,

rectarray &newArray, int arrayToBreak_index, int breakerArray_index)

{

rectangle rectToBreak = arrayToBreak[arrayToBreak_index];

rectangle breakerRect = breakerArray[breakerArray_index];

rectangle overlap = rectToBreak.intersection(breakerRect);

if ((overlap.x1 + overlap.x0)/2 > (rectToBreak.x1 + rectToBreak.x0)/2) {

if (breakerRect.includes(rectToBreak.x1, rectToBreak.y1)) {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

rectToBreak.x1, overlap.y0-1));

newArray.push(rectangle(rectToBreak.x0, overlap.y0,

overlap.x0-1, rectToBreak.y1));

}

else if (breakerRect.includes(rectToBreak.x1, rectToBreak.y0)) {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

overlap.x0-1, overlap.y1));

newArray.push(rectangle(rectToBreak.x0, overlap.y1+1,

rectToBreak.x1, rectToBreak.y1));

}

else {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

rectToBreak.x1, overlap.y0-1));

newArray.push(rectangle(rectToBreak.x0, overlap.y0,
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overlap.x0-1, overlap.y1));

newArray.push(rectangle(rectToBreak.x0, overlap.y1+1,

rectToBreak.x1, rectToBreak.y1));

}

}

else {

if (breakerRect.includes(rectToBreak.x0, rectToBreak.y1)) {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

rectToBreak.x1, overlap.y0-1));

newArray.push(rectangle(overlap.x1+1, overlap.y0,

rectToBreak.x1, rectToBreak.y1));

}

else if (breakerRect.includes(rectToBreak.x0, rectToBreak.y0)) {

newArray.push(rectangle(rectToBreak.x0, overlap.y1+1,

rectToBreak.x1, rectToBreak.y1));

newArray.push(rectangle(overlap.x1+1, rectToBreak.y0,

rectToBreak.x1, overlap.y1));

}

else {

newArray.push(rectangle(rectToBreak.x0, rectToBreak.y0,

rectToBreak.x1, overlap.y0-1));

newArray.push(rectangle(overlap.x1+1, overlap.y0,

rectToBreak.x1, overlap.y1));

newArray.push(rectangle(rectToBreak.x0, overlap.y1+1,

rectToBreak.x1, rectToBreak.y1));

}

}

}

D.3 Excerpts of ocr-layout/ocr-char-stats.cc

bool is_text_block(rectarray &bboxes, vector<int>& wrap_around, int zone_num)

{

int i;

int biggest_x = 0;

int width_sum = 0;

int height_sum = 0;

floatarray y0;

floatarray hist;

// Collect the y0 values of the bounding boxes.
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for (i=0; i<bboxes.length(); i++) {

y0.push(bboxes[i].y0);

width_sum += bboxes[i].x1 - bboxes[i].x0;

height_sum += bboxes[i].y1 - bboxes[i].y0;

if (bboxes[i].x1 > biggest_x)

biggest_x = bboxes[i].x1;

}

int avg_width = width_sum / bboxes.length();

int avg_height = height_sum / bboxes.length();

// Create the y0 histogram.

calc_hist(hist, y0);

gauss1d(hist, 1.0);

// Get its peaks.

floatarray peak;

for (i=2; i<hist.length()-2; i++)

{

if ((hist[i] > 1) &&

((hist[i] > hist[i-1]) && (hist[i] >= hist[i+1]))) {

float temp = hist[i];

peak.push(temp);

}

}

if ((hist[i] > 1) && (hist[i] > hist[i-1])) {

float temp = hist[i];

peak.push(temp);

}

// If there are no peaks this is not a text block so return.

if (peak.length() == 0) { return false; }

// Now create the peak histogram.

floatarray peak_hist;

calc_hist(peak_hist, peak);

// The average number of occurences dictating the peaks is ...

int max_peak = 0;

int avg_num_occurences = 2;

for (i=peak_hist.length()-1; i>=0; i--) {

if (peak_hist[i] > max_peak) {

max_peak = peak_hist[i];

if (i > 2)

avg_num_occurences = i;
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}

}

// Now find the y-values given the peak threshold.

intarray line;

for (i=2; i<hist.length()-2; i++) {

if ((hist[i] > (0.5 * avg_num_occurences)) &&

((hist[i] > hist[i-1]) && (hist[i] >= hist[i+1]))){

line.push(i);

}

}

if ((hist[i] > (0.5 * avg_num_occurences)) &&

(hist[i] > hist[i-1])) {

line.push(i);

}

int num_lines = line.length();

// If no lines were found it’s not a text block so return false.

if (num_lines == 0) { return false; }

// Now get the average separation and if it’s too high return false.

int sum_line_seps = 0;

for (i=1; i<num_lines; i++)

sum_line_seps += line[i] - line[i-1];

int avg_line_sep = sum_line_seps / num_lines;

if ((avg_line_sep / avg_height) > 5) { return false; }

// Calculate the compacted widths (summation of box widths)

// and the x-range of the boxes.

int compacted_line_length[num_lines];

int xmin[num_lines], xmax[num_lines];

for (i=0; i<num_lines; i++) {

compacted_line_length[i] = 0;

xmin[i] = biggest_x;

xmax[i] = 0;

}

for (i=0; i<bboxes.length(); i++) {

int j = 0;

bool line_found = false;

while ((!line_found) && (j < num_lines)) {

if ((bboxes[i].y0 > (line[j] - avg_width)) &&

(bboxes[i].y0 < (line[j] + avg_width))) {
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line_found = true;

compacted_line_length[j] += bboxes[i].x1 - bboxes[i].x0;

if (bboxes[i].x0 < xmin[j])

xmin[j] = bboxes[i].x0;

if (bboxes[i].x1 > xmax[j])

xmax[j] = bboxes[i].x1;

}

else

j++;

}

}

// Using these numbers calculate the density.

float density[num_lines];

int line_length[num_lines];

int longest_line = 0;

for (i=0; i<num_lines; i++){

if ((line_length[i] = xmax[i] - xmin[i]) > longest_line)

longest_line = line_length[i];

if (line_length[i] > 0)

density[i] = (float)compacted_line_length[i] / (float)line_length[i];

else

density[i] = 0;

}

// Adjust the number of lines if some have zero length

// and tally how many are full length.

int zero_length_lines = 0;

int full_length[num_lines];

for (i=0; i<num_lines; i++) {

if (compacted_line_length[i] == 0)

zero_length_lines++;

if (line_length[i] > 0.8 * longest_line)

full_length[i] = 1;

else

full_length[i] = 0;

}

int actual_num_lines = num_lines - zero_length_lines;

// Count the number of good lines.

int num_good_lines = 0;

for (i=0; i<num_lines; i++)

if (density[i] > 0.5) { num_good_lines++; }
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// If three in a row are not full length assume

// it’s a wrap around text block.

for (i=2; i<num_lines; i++)

if ((full_length[i] == 0) && (full_length[i-1] == 0)

&& (full_length[i-2] == 0)) {

wrap_around[zone_num] = 1;

i = num_lines;

}

// Return true or false depending on what fraction of the lines are good.

switch (actual_num_lines) {

case 2 : if (num_good_lines >= 1) { return true; }

else { return false; }

case 3 : if (num_good_lines >= 2) { return true; }

else { return false; }

case 4 : if (num_good_lines >= 3) { return true; }

else { return false; }

default : if (num_good_lines >= (0.8 * actual_num_lines))

return true;

else

return false;

}

}




