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ABSTRACT 

Flash memory can be found in media players, cameras, cell phones and portable 

storage. These consumer items have universally compatible storage devices. However, 

what is their longevity and what is the long-term data retention reliability? This thesis 

will explore and attempt to answer these questions. Predicting accurate endurance ratings 

and long-term storage reliability is problematic; a storage card in a cell phone will simply 

wear differently if used for personal computer backup. Advertised longevity ratings can 

also be ambiguous, specified in a number of years of ‘typical’ and ‘average’ use. 

This thesis begins by exploring the operation of flash technology used in managed 

NAND devices. Operational and hidden byproducts of controlling flash memory were 

identified then directly observed on a sampled MultiMediaCard (MMC) card. The 

collected data was graphed to calculate the life span of the product for several synthetic 

data transfer categories. Combined with the total storage capacity, the factors used in 

longevity calculations are shown to be dependent upon the transfer method. 

To answer the original question, a hypothetical camera file storage usage model 

was contrasted against measured wear data to calculate longevity. When changing the 

addressing randomness of writing data to fifty percent of total transfers, the 10-year 

advertised longevity was shown diminished by half. This demonstrated how data storage 

randomness of the usage model influences device longevity. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

What is the longevity of a portable flash memory storage device? That is the 

question this thesis will attempt to answer. Portable flash memory storage devices have 

become popular due to their small form factor and low cost. They are usually based on 

NAND flash memory technology. Increasing demand driven by product interoperability 

has been instrumental in the inclusion of flash with an embedded controller (referred to as 

managed NAND). The result is a standard interface compatible across many different 

personal computer hardware platforms and portable electronic products (e.g. cell phone, 

GPS, music players, embedded systems, photography, and personal data storage). At the 

writing of this thesis, there are various types of NAND flash devices on the market. They 

include USB thumb drives, MultiMediaCard (MMC), Sony Pico, Memory Stick, 

Compact Flash (CF), and Secure Digital (SD). They offer consumers a modest storage 

capacity while maintaining a portable, removable and convenient form factor. However, 

due to the constraints of the physical interface, non-standardized endurance specifications 

and low manufacturing cost, these devices satisfy a modest performance requirement.  

NAND flash memory used in portable storage devices have operational 

restrictions and temporary or permanent failures [1].  Because of these issues, external 

management of NAND flash is required to extend the life of the memory and guarantee
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data reliability. However, the algorithms used for management introduce the byproduct of 

Write Amplification (WA). The definition of WA and methods to measure it vary and 

accuracy may be influenced by hidden NAND management effects. The equations for 

end of life, or longevity, use WA and the Long term Data Endurance (LDE) rating or 

Terabytes Written (TBW) capacity of the flash. The thesis demonstrates how the data 

transfer usage model significantly affects WA and the longevity of a Managed NAND 

storage device.  

A modified MMC managed NAND device with all internal NAND flash signals 

bonded to the external package is used. A method was developed to directly measure WA 

on the NAND flash die components. Data transfers on the MMC interface were 

performed to create a correlation between the data (usage model) to the effects of WA 

(NAND wear). The measured WA was used to calculate longevity and demonstrate how 

storage randomness directly influences the life span of the MMC device. Without this 

direct observation or a method to retrieve WA information, it appears to be nearly 

impossible to determine the life span and remaining data retention capability of the MMC 

device. Within this thesis, two techniques are presented on how to validate a 

manufacturer’s claim of endurance without direct observation. 

1.2 Contributions of This Thesis 

Predicting long-term data storage reliability on portable and removable managed 

NAND devices is difficult. Without a mechanism to directly measure the wear on these 

devices, relying on ambiguous longevity ratings may be risky for long-term data storage 

expectations. The thesis explores the technology and reasons behind the finite life span of 

these devices. Subjecting a MultiMediaCard to various data transfer models demonstrated 
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how using the device may affect long term data retention. Using this data and discussing 

methods to calculate end of life, this thesis exposes how interpretations of predicting a 

life span can vary significantly. This thesis provides a better understanding and exposing 

the risk of assuming reliable long term data retention on managed NAND storage 

devices. 

1.3 Thesis Organization 

A description of flash cell operation and the source of errors inherent in the 

technology are described in Chapter 2. The operational restrictions of NAND memory 

configurations are also presented. Chapter 3 and 4 introduce NAND memory wear 

leveling and methods to represent the byproduct of write amplification (WA). In Chapter 

5, a summary of equations shows how WA is used to calculate longevity, or device life, 

by determining the total write bytes capacity with a usage model. A MultiMediaCard 

device and a tester hardware platform developed for WA analysis is presented in Chapter 

6. Test flows are defined to directly measure WA using various data transfer methods. The 

data was graphed and presented in Chapter 7. Using equations presented in Chapter 5 and 

data in Chapter 7, end of life (of the sampled MMC device) when exposed to a 

hypothetical file storage usage model is shown in Chapter 8. The conclusion contains the 

thesis summary and future research. 
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CHAPTER 2 PRELIMINARIES AND BACKGROUND 

This chapter provides background material on flash memory to enhance the 

understanding of the material presented in this work. 

2.1 The Flash Memory Cell 

Nonvolatile flash memory cells retain data for extended periods of time without 

power or an erase and program (E/P) cycle refresh (refer to as data retention [2]). A 

conventional flash cell consists of a single N-Channel MOSFET transistor with an 

isolated floating gate in addition to the control gate as shown in Figure 2.1 [3]. Charged 

electronics are trapped or removed on the floating gate [4]. This isolated gate provides a 

mechanism to change the threshold value of the MOSFET transistor cell, Vt. 

 
Figure 2.1 Flash Memory Cell 
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The process called Fowler-Nordheim tunneling moves electrons onto or from the 

floating gate [5]. The charges on the floating gate directly determine if the cell state is 

programmed or erased.  The dielectric material surrounding the floating gate is degraded 

by repeated E/P cycles. The resulting dielectric leakage of Vt diminishes the floating gates 

ability to maintain the programmed charge over time (refer to as wear).  

When determining the state of the cell, a reference voltage Vg applied to the 

control gate is set between the fully programmed and erased Vt of the floating gate. If Vg 

exceeds Vt, the MOSFET will saturate and is detected as programmed or “0” state. If Vt is 

greater than Vg, the MOSFET will not conduct to create the erased, or “1”, state. 

Single Level Cell (SLC) flash memory defines two detectable threshold states. 

The two programmed Vt thresholds then represent one bit of information. Multiple level 

cell (MLC) flash memory extends the Vt threshold programming and detection 

technology to support additional states as illustrated Figure 2.2 [6]. 

 

 
 

Figure 2.2 SLC and MLC Thresholds 
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SLC flash offers greater E/P endurance and data reliability. This was the favored 

technology used in Solid State Drive (SSD) [7]. Fabrication advances in MLC flash 

technology have increased cell density and have reduced the cost-per-bit. It is the current 

choice for SSD and consumer portable storage devices. As MLC fabrication geometries 

shrink to produce greater densities, the endurance, data retention and storage reliability 

has been suffering [8].  

There are two types of flash cell failure: permanent or temporary. Permanent 

failures are cells stuck in a “0” or “1” state and cannot be refreshed. The defective cell is 

detected during an E/P cycle and typically retired from use permanently. Temporary 

failures occur during reading the state of a cell and detecting a stuck or bit-flipped 

condition. The original state may be logically determined using error correction code 

(ECC) algorithms and/or physically repaired by an E/P refresh.  

2.2 Flash Cell Organization of NOR and NAND 

Two common configurations of flash memory cells are NOR and NAND. The 

advantages and disadvantages of each configuration constrain their target application [9].  

2.2.1 NOR Flash 

When connected as a two-dimensional array in parallel, NOR flash is created 

which simulates the logic of a NOR gate. Each memory cell in a NOR device is 

connected to a common bit line as shown in Figure 2.3. The structure is well suited for 

random data accessing where each bit can be individually read, erased or programmed. 

The slower performance of NOR flash sequential accessing is unfavorable for a file data 

storage device [10]. 
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Figure 2.3 NOR Flash Structure 

 

 

Individual cells of the array are selected by word lines decoded from an external 

address bus. The resulting cell state is detected on the bit line and applied to an external 

data bus. There is an inherent accumulating capacitive load effect each cell transistor has 

on the bit lines. Compared to NAND configurations, a larger transistor, and DIE size, to 

drive the extra bit-line current is required. The amount of time to write and erase NOR 

memory is also greater; however an E/P cell endurance rating of 10,000 to over 1,000,000 

is typical. NOR flash manufacturers guarantee fault free operation over a specified data 

retention and endurance rating. This is accomplished by creating redundant row and 

columns of cells that can be substituted during the fabrication process. NOR applications 

include a replacement of EPROM or where a processor can execute directly from the 

nonvolatile memory. 

2.2.2 NAND Flash 

Flash cells connected in series create a NAND flash configuration which logically 

operates as a NAND gate. Each array has a single cell transistor connected to a bit line 
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which minimizes capacitance and transistor die size compared to NOR configurations. 

NAND flash features greater density, less die cost and faster E/P cycle performance 

however fabrication tolerances do not guarantee all cells fault free [11]. While efficient 

for sequential data performance, such as file storage applications, NAND performance 

suffers during random accesses. NAND cell endurance ratings are typically 10,000 E/P 

cycles or less. 

NAND flash cell arrays are organized into pages, blocks and planes. A page 

consists of a series of flash cells selected by an address decoded onto word lines as shown 

in Figure 2.4. 

 

 
 

Figure 2.4 NAND Flash Structure 

 

 

A page of cells includes reserved storage for Error Correction Code (ECC) 

information. ECC is calculated from the written data and programming into the reserved 

storage area. It is required by all NAND flash, RAM, hard disks or any other device 
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susceptible to errors such as random (soft), permanent (hard), temporary (retention and 

read disturb) and programming (disturb) errors.  

Multiple pages are combined together to form a block of data. Programming one 

or more pages must be preceded by erasing the entire parent block of pages. This is the 

principle mechanism in causing write amplification (WA) effects. Multiple blocks of 

flash data create a plane. Multiple planes may exist on each NAND die.  

A multiplexed interface of addresses, commands, and data sharing pins under a 

packet based communication protocol is used. The Open NAND Flash Interface standard 

(ONFI) attempts to maintain pin and controller consistency over part densities, 

manufacturers, etc [12]. 

2.3 NAND Operational Restrictions and Failures 

NAND flash memory used in portable storage devices have operational 

restrictions and temporary or permanent failures.  Temporary errors include program 

disturb, read disturb, over programming, random read bit errors, data loss from 

diminishing data reliability and retention over time. Permanent errors include bad blocks 

of data and failures caused by a limited cell erase and programming (E/P) endurance. 

Because of these issues, external management of NAND flash is required to extend the 

life of the memory and guarantee data reliability. The algorithms used during 

management compensated for the following operation restrictions and failures. 

The NAND cell configuration and control logic restricts a minimum program size 

to one sequentially written page of cells within a parent block. Partial page programming 

is typically not permitted although pages may be left erased and skipped within the block. 

A page within a block cannot be reprogrammed or individually erased. During 
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programming, temporary Program Disturb errors occur when an unintended Vt charge 

collects in an unrelated cell, changing from a ‘1’ state to a ‘0’ state. Programming new 

data on a previously programmed page, including leaving cells at the erased state of ‘1’, 

introduce write disturb errors on upper erased pages. Over Programming errors occur 

when a cell threshold gate voltage on a bit-line within a block is excessive, preventing the 

cell to be read.  

Read disturb errors are caused when repetitive read operations on a page induces 

a Vt change in one of the other addressed cells within the page. Typically hundreds of 

thousands or more read operations are required. Random Read bit errors are caused by 

several mechanisms including Vt threshold interpretation errors from the sense logic on 

the bit lines. This is primarily due to cell wearing causing leakage to violate initial 

programming tolerances for correct cell state detection.  

Repeated E/P cycles rapidly deteriorate cells by diminishing their ability to 

reliably maintain their programmed state over time without a refresh (referred as 

endurance). Hard bit failures occur when the cell failed to program after internally 

trimmed timeouts conditions are reached. When this failure status is detected, the parent 

block must be retired after moving any remaining page data to a functioning block.  

The Joint Electron Devices Engineering Council (JEDEC) specifies a relationship 

between endurance and data retention measured in years [13]. It states that 100% of 

device endurance is the number of E/P cycles considered to be fully worn or guarantee a 

1 year data retention capacity. At 10% of device endurance, the minimum number of E/P 

cycles that still guarantee a 10 year data retention is specified. This standard may not be 

fully implemented by the Manufacture, offering a 10 year data retention initially until 
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10% of the rated E/P cycles are reached before accepting a 1 year retention rating. 

Manufacturers determine the number of E/P cycles a NAND flash can be exposed to and 

guarantee data retention by taking a sample of devices and wearing under a chosen usage 

model. By exposing it to high temperature over a determined amount of time to stress the 

part, the device is read to verify the data and check for ECC failures. This standard is 

called distributed testing. 
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CHAPTER 3 MANAGED NAND 

A standard NAND flash interface includes control and data bus signals directly 

communicating to the memory. In addition to the physical signals, communication 

algorithms using the packet protocol of the NAND flash must be implemented. ECC, 

wear leveling and bad block management activities are the responsibility of the host 

processor. Portable consumer storage devices such as MMC use an embedded processor 

to manage the NAND flash memory. The controller uses proprietary algorithms to wear 

the cells evenly (to extend longevity), retire failed cells and correct read bit errors. The 

controller implements a standardized interface protocol to the host regardless of internal 

NAND configuration, size, and operation. The MMC interface and protocol standard is 

defined by JEDEC [14]. The external interface may be completely abstracted from all 

internal management activities. Figure 3.1 shows the differences between a standard 

NAND flash interface and the MMC managed NAND memory. 
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Figure 3.1 NAND Memory Bus VS Managed NAND Interface Bus 

 

The MMC interface protocol was optimized for data transactions consisting of 

512 byte sectors, a common size used in hard drives [15]. The storage device is 

represented as a sequential address range of sectors defined by a logical block address 

(LBA) table. The host processor application may read or write any LBA sector in any 

valid order or range; repeatedly, randomly or sequentially. Internally, the data is written 

and moved over the entire device to evenly distribute E/P cycles on every available and 

spare area block  (referred to as Wear Leveling). Figure 3.2 shows the abstraction 

between the MMC host interface (LBA Table) and the distributed storage on the internal 

NAND flash. 
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Figure 3.2 MMC Controller LBA Translation 

 

 

Managed NAND controllers incorporate ECC to correct read-bit failures 

transparent to the host processor. The ECC information is programmed into the dedicated 

spare bytes of each page. There are two major factors (error detection ability and error 

correction ability) in measuring the effectiveness of an ECC algorithm. Hamming (SLC), 

Reed Solomon (MLC) and Bose-Chaudhuri-Hochquenghem (BCH for MLC) are the 

most popularly used ECC algorithms [16]. 

One method to increase endurance (by reducing E/P cycles and improving random 

data performance) is using cache memory. Fragmented LBA transfers written by the host 

are collected, organized then written to the NAND memory as illustrated in Figure 3.3 
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[17]. However, there is little to gain from this architecture because of the modest 

performance and low cost requirement of flash storage devices. 

 

 
 

Figure 3.3 Cache Operation 

 

3.1 Wear Leveling and Flash Management 

 

To extend device longevity, writing to NAND flash requires a method to reduce 

the number of E/P cycles on any one individual block. The controller algorithms erase, 

program and move data across the NAND flash as needed to evenly wear all blocks of 

memory. Unfortunately, moving data may trigger additional E/P cycles that increase write 

amplification effects. As data is moved, temporary errors may occur on previously 

programmed data. If the ECC algorithm fails to correct the page data during a read, the 

block may be marked as bad (referred to as ECC retirement). Two common methods of 

wear-leveling techniques are summarized in Figure 3.4. They consist of Dynamic and 

Static wear leveling. 
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Figure 3.4 Dynamic VS Static Areas 

 

 

Dynamic wear leveling is the simplest form of block management and is heavily 

influenced by the host. It consists of rotating E/P cycles through frequently used data 

blocks (referred to as dynamic area). Rarely or unused blocks of data are left untouched 

(referred to as static data).  The wear on the dynamic area, including spare blocks, 

increases as more data is written to the static area. As the density of MLC NAND flash 

technology increases, the cell endurance is decreasing, reducing the number of E/P 

cycles. Because of this, dynamic wear leveling on MLC flash may not be reliable. 

Static wear leveling uses all available data and spare blocks in the device. More 

complex algorithms move data, erases blocks and programs new data over the entire 

device in an attempt to wear every block evenly.  
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All NAND devices have or will have one or more bad blocks marked as unusable. 

Manufacture yield considerations including process, die cost and testing together permit 

bad blocks to be randomly scattered over the die. Initial failures of cells are determined 

though factory testing phases to mark blocks as bad for management algorithms to avoid. 

As blocks are cycled during operation, they eventually reach their specified E/P rating or 

fail to program and must be retired. Bad blocks are marked as unusable by the controller, 

total memory capacity may become reduced over time. The more recent ONFI standard 

attempts to unify the industry bad block reporting of NAND flash devices. 

3.2 Hiding the Issues 

The host processor using the MMC device has limited visibility of the quality of 

the wear leveling, data retention capability, and current or future lifespan of the product. 

At the writing of this thesis, no standard MMC protocol command or method exists for 

the host to mark previously written LBA sectors as unused. This creates blind wear 

leveling activities across all LBA sectors regardless of the data no longer required by the 

host. MMC commands are available to erase sections of memory but the standard is 

vague in the definition of recovering used sectors. Wear leveling algorithms begin to 

move and clean blocks when the NAND reaches, or approaches, full capacity. When full, 

write performance may decrease along with an increase in WA due to the overhead of 

wear leveling retired data. Until all sectors are used, the initial WA and write performance 

measurements may be inaccurate. When initial WA values are used in calculating 

longevity, the end of life estimations may be inaccurate.
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CHAPTER 4 FACTORS MEASURING ENDURANCE AND LONGEVITY 

This chapter examines equations for Write Amplification (WA) and Page Program 

Ratio (PPR). These factors are used to calculate longevity. The Page Erase Ratio (PER) is 

introduced to represent page utilization 

4.1 Write Amplification (WA) Ratio Methods 

The value of WA is represented as a constant. Several definitions of WA are 

presented by manufacturers of NAND storage devices. However, WA does not take into 

account flash endurance (E/P cycles), over provisioning capacity or the effects of flash 

operating in SLC or MLC modes.  

4.1.1 WA Ratio Using Pages Erased to Pages Written 

WA can be represented as the ratio of pages erased on the NAND flash to pages of 

data written from the host. Each page written by the host is defined as a transfer of data 

equal in size to one NAND page size. The ratio of the total pages erased to pages written 

is ideally 1. This indicates no unused pages remain in a block of flash memory after 

erasing and programming. Equation 4.1 shows this representation of WA. 

 

ByHostgesWrittenNumberOfPa

BlockEraseockPagesPerBlNANDNumber
WA

×
=                            (4.1) 



19 

 

A widely used file storage protocol is the FAT-32 file system. It is commonly used 

on file systems for PCs, laptops and portable electronic devices. It consists of a data 

transfer size of 4 KByte clusters. Let’s consider a NAND device with a page size of 4 

KBytes with 128 pages per block. If the host wrote 128 transfers of 4KByte data, the WA 

value of 1 (the ideal WA) would indicate a single block erase occurred. This indicates that 

every page in each block was programmed. Conversely, a WA value of 128 would 

indicate that on average one page, the minimum was programmed over the erased blocks. 

Wear leveling activities may create additional E/P cycles to occur, increasing WA 

4.1.2 WA Ratio Using Total Bytes Programmed to Bytes Written 

Perhaps a more accurate representation of WA may be the ratio of total bytes 

erased on the NAND to the total bytes written by the host. Equation 4.2 includes the 

overhead of erasing unused pages in calculating WA. The equation assumes that erasing 

unused pages wear the cells equally to those programmed. The ideal WA value of 1 

indicates that all erased pages were fully programmed. 

 

WrittenTotalBytes

ockPagesPerBlgeBytesPerPaasesNumberOfEr
WA

××
=                  (4.2) 

 

4.2 Page Program Ratio (PPR) 

Page Program Ratio (PPR) may be used in calculating longevity. PPR represents 

the ratio of NAND pages programmed to bytes written from the host. Equation 4.3 can be 

used to calculate PPR. The wear from erasing unused pages is not considered. The ideal 

PPR value of 1 represents no additional pages were programmed than pages of data 

written from the host. 
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ostWrittenByHTotalBytes

BytesPageSizeInWrittenTotalPages
PPR

×
=                           (4.3) 

 

4.3 Page Erase Ratio (PER) 

Page Erase Ratio (PER) is a ratio of how many pages are programmed on each 

block between E/P cycles. Using equation 4.4 and considering a NAND with 128 pages 

per block, the ideal value is 128. This represents all pages within the block were 

programmed for a block erase. PER may be an indicator of wear leveling algorithm 

efficiency. 

asesrOfBlockErTotalNumbe

WrittenTotalPages
PER =                                     (4.4) 

 

When calculating longevity accurately, a WA value considering all NAND pages 

(bytes) worn by E/P cycles may be more accurate. As seen in equation 4.2. The 

calculation uses the total number of NAND bytes erased and bytes transferred from the 

host. WA is affected by wear leveling and block management activities of managed 

NAND controllers. The value will also be dependent upon the transfer size and LBA 

randomness of the written data. 
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CHAPTER 5 ESTIMATING END OF LIFE 

In order to calculate longevity, a Long Term data Endurance (LDE) specification 

was created [18].  LDE is the amount of data that can be written over the lifespan of the 

NAND storage device. It is specified in Terabytes Written (TBW). The endurance of the 

NAND flash was defined as the number of E/P cycles for each block to reach 100% wear. 

The TBW calculation of equation 5.1 uses the total size of the NAND flash and 

endurance rating. The spare area and reserved storage used by the controller is included. 

 

EnduranceockBytesPerBlocksNumberOfBlTBW ××=                (5.1) 

 

An alternative calculation of TBW considers the available storage capacity as 

reported by the managed NAND controller. The controller divides the available storage 

area into sectors, each represented by a Logical Block Address (see Chapter 6). Equation 

5.2 considers the number of LBA addresses available and sector size to determine TBW. 

 

              EndurancebytesSectorSizerOfLBATotalNumbeTBW ××= )(            (5.2) 

 

Manufacturers may specify their average TBW over best, typical and worst case 

transfer conditions to include the effects of WA. These include write transfer size, 

sequential or random distribution and percentage of re-written sectors. Equation 5.3 

shows TBW including WA. 
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WA

EndurancebytesSectorSizerOfLBATotalNumbe
TBW

××
=

)(
                 (5.3) 

 

5.1 Equations Using Total Program/Erase Endurance without WA 

The life span calculation of equation 5.4 represents a simple relationship between 

the Terabytes Written (TBW) capacity and the transfer rate of write data. This represents 

the ideal life (in years) of the device without considering WA. 

 

365
)(

××

=

erDayTransfersPytesferSizeInBWriteTrans

TBW
yearsLife                 (5.4) 

 

5.2 Equations Using Total Program/Erase Endurance with WA 

The life estimate of equation 5.3 was modified to include the WA constant. The 

life calculated by equation 5.5 reflects the inclusion of flash wear. 

 

WAerDayTransfersPytesferSizeInBWriteTrans

TBW
yearsLife

×××

=

365
)(             (5.5) 

 

5.3 Equations Using IOPS, Endurance and Drive Capacity 

Input-Output-Per-Second (IOPS) is a performance benchmark for storage media 

[19]. A device life span in years may be estimated using TBW and the write IOPS 

measured (streaming data). A conversion factor constant generated by equation 5.6 is 

required to convert IOPS from seconds to years. 
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36524600,3)( ××=SecondsCF                                   (5.6) 

 

Equation 5.7 calculates life using a measured IOPS rating for streaming write 

transfers. This includes a duty cycle or the percentage of time spent writing to the device. 

The equation determines the number of years of continuous write transfers before 

reaching TBW. 

 

 
WAycleWriteDutyCIOPSWriteSpeed

CFTBW
yearsLife

××

×
=)(                     (5.7) 

 

Life estimation may be represented by the number of file transfers instead of 

streaming data. The file transfers may be burst or sustained, small or large, random or 

sequential. Manufacturers have created a software benchmark called IOMETER [20]. By 

choosing the file transfer size and LBA addressing randomness, this application measures 

real time write IOPS. Equation 5.8 may be used to calculate life with the measured IOPS 

value. 

 

WADutyCycleBytesFileSizeInWriteIOPS

CFTBW
yearsLife

×××

×
=)(                (5.8) 

 

5.4 Equations Using PPR 

Equation 5.9 uses PPR to measure life in years. The estimation is in terms of data 

transfers per day. The value of PPR, and resulting life estimate, does not consider the 

wear caused by erasing unused pages. 
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PPRerDayTransfersPytesferSizeInBWriteTrans

TBW
yearsLife

×××

=

365
)(            (5.9) 

 

 

The equations using TBW assume a constant write transfer model, duty cycle and 

WA value over the life of the device. The original transfer conditions used to determine 

WA may differ from those used in the equations. Using a constant WA value may then be 

inaccurate. Equations using IOPS may use measured write performance at a known 

(average) file transfer model. However, without a corresponding WA value the equations 

may not be accurate. The most accurate method to measure life is by measurement and 

analysis of NAND wear under real time write transfers.
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CHAPTER 6 ANALYSIS BACKGROUND AND TESTBENCH 

In this chapter, the sampled test device and test platform are described. This 

includes the hardware, software, firmware, algorithm and test definitions. 

6.1 MMC Managed NAND Device 

JEDEC MMC V4.4 describes the physical interface, commands and protocol to 

communicate to the device. The MMC controller divides the total (reported) storage 

capacity of the device into 512-byte sectors (the minimum transfer size). Each sector is 

represented by a Logical Block Address (LBA). Write and Read commands specify the 

starting LBA address for sequential or randomly written sectors. Data transfers can be a 

single, a predetermined number, or open ended stream of sectors. Open ended transfer 

modes allow continuous transfers until interrupted by a MMC command. Predetermine 

and open-ended transfers require the MMC controller to auto-increment the starting LBA. 

Dynamic and static LBA ranges are determined by the host application. 

6.2 DUT Sampled Device Specifications 

The Managed NAND device chosen for this analysis is a 4 GB High Capacity 

(HC) MultiMediaCard with an 8-bit data interface. The MMC interface clock is 30 MHz. 

The device consists of 4-die MLC flash components, 4,096 blocks per die, 128 pages per 

block, and 2,048 bytes per page. The NAND flash endurance was given by the 

manufacturer at 10,000 E/P cycles. This represents 100% wear or the number of E/P 



26 

 

cycles on each block to diminish data retention to one year. Using equation 6.1, the total 

flash size was calculated at 4,294,967,296 bytes including bad blocks. 

 

296bytes4,294,967,)20481284096(4 =××× BytesPagesBlocksDie       (6.1) 

 

The MMC controller reported a total capacity of the device to be 4,112,515,072 

bytes (equation 6.2). The advertised capacity of the device was 4 Gigabytes, a difference 

of 356,352 bytes.  

 

bytesctorBytesPerSeLBA 072,515,112,45128232256 =×                (6.2) 

 

 

6.3 Tester Hardware Configuration 

The test platform block diagram is shown in Figure 6.1. Due to the internal 

NAND flash signals of the sampled MMC device bonded to the device package, a custom 

socket was necessary. The NAND and MMC interface signals of the device were routed 

to the tester platform. A MMC controller with test flow algorithms was designed in an 

Altera© FPGA with embedded NIOS II© soft-core processor.  The FPGA provided a 

means to create custom Verilog Hardware Description Language (HDL) modules to 

interface to the MMC device. The embedded CPU uses the C programming language to 

write test flows and communicate to a host PC application. 
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Figure 6.1 Tester Platform Hardware 

 

The erase capture logic detects a NAND block erase command sequence. Upon 

detection of a completed cycle, the erase event was counted. The page program capture 

logic detects all NAND page program commands. These include program page, program 

page cache mode, program for internal data move, and dual plane page program 

commands. When any of the commands are detected, a page program counter is 

incremented. The FPGA logic includes timers to measure test duration and write transfer 

IOPS performance on the MMC interface. 
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Communication between the FPGA firmware and host PC is accomplished using 

a USB interface. A Java GUI application on the PC (see Figure 6.3) was written to select 

the test flow to perform and specify the test parameters. Upon test completion, the erase 

and page counter values, write IOPS timers and test flow time were retrieved and logged. 

6.4 Tester Firmware Algorithm 

The test algorithm is shown in Figure 6.2. A test consists of writing clusters of 

sectors (512 bytes) to the MMC device. The total number of clusters written to complete 

a transfer is determined by the test flow. Upon reaching the total number of cluster 

transfers, the test is terminated and results are retrieved. Power was cycled on the MMC 

device is required at the start of each test flow. 

The test flow consists of specifying the size of the write data cluster, number of 

clusters per transfer, the MMC write mode, starting LBA address and if using sequential 

or random LBA addressing. The tester calculates the next sequential or random LBA 

address for each cluster during the transfer. Two MMC write commands were used; open 

ended and predetermine. 

The MMC device was first initialized with an “AA” HEX pattern. This assured all 

MMC device sectors and spare blocks are written. A random data pattern is used for all 

test flow transfers.  
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Figure 6.2 Tester Firmware Algorithm 

 

6.5 Test Definitions 

Two tests of streaming write transfers were used (Type I and Type II). In Type I 

streaming write transfer, 100% of the all LBA data sectors are written (4 Gigabytes). For 

Type II streaming write transfer, the lower 30% of LBA data sectors were written (1.2 
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Gigabytes). Type II test represents a 30% dynamic area (70% static). Each test required 

writing clusters of sectors to complete the total transfer size. The cluster sizes of 1, 4, 8, 

16, 32, 64 and 128 sectors were chosen. This represented 512, 2048, 4096, 8192, 16384, 

32767 and 65536 bytes per cluster, respectively. Upon each test completion, the measured 

number of erase and page program commands is used to calculate WA, PER and PPR. 

The results include write IOPS performance and are presented in Chapter 7. 

 

 

Figure 6.3 Host PC Application (JAVA)
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CHAPTER 7 MEASURED DATA AND RESULTS 

This chapter determines endurance from test results observed using the hardware 

test platform and algorithms as presented in chapter 6. The equations presented in 

Chapters 4 and 5 are used to determine different means of calculating endurance. Each 

test flow measures WA, PPR and IOPS for each cluster size. Using these values, TBW is 

calculated. Each graph presented in this chapter requires hours to days to capture the data. 

For readers interested in the raw data, it is include in the Appendix. For some cases, due 

to amount of time required to collect the data, we trade-off cluster size against LBA 

range. For example, since random LBA transfers using small cluster sizes required very 

long transfer periods, a smaller LBA range was used to collect a representative sample of 

P/E cycle data. 

7.1 Measurement of Write Amplification (WA) 

The WA calculation considers the ratio of total bytes erased on the NAND die to 

total bytes written by the host (equation 4.2). The wear caused by erasing unused pages 

during wear leveling is included. 

7.1.1 Cluster Size VS WA Using Sequential LBA 

Figure 7.1 compares WA for Type I and Type II transfers using cluster size and 

write modes (open ended or predetermined). The calculated WA for each cluster size and 

type of transfer is shown in Table 7.1. Larger sequential cluster sizes of 4 KBytes or more 
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appear to exhibit the least WA. The controller appears to perform a significant increase of 

wear leveling activity for the single sector cluster of 512 bytes (less than the NAND page 

size). The data for the MMC write modes of open ended and predetermine indicate no 

significant WA performance difference. 

 

Table 7.1 Cluster Size VS WA Using Sequential LBA 

 

Cluster Size VS WA Using Sequential LBA 

Open Ended  Predetermine  Cluster 

Size Type 1 Type 2 Type 1 Type 2 

512 44.21 44.22 44.21 44.22 

2048 8.29 14.27 8.28 14.27 

4096 2.33 8.28 2.33 8.28 

8192 2.33 5.28 2.33 5.28 

16384 2.33 3.79 2.33 3.80 

32768 2.33 3.04 2.33 3.06 

65536 2.34 2.67 2.34 2.68 

 

 
 

Figure 7.1 Cluster Size VS WA Using Sequential LBA 
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7.1.2 Cluster Size VS WA Using Random LBA 

Type I and Type II transfers using random LBA addresses increased WA 

compared to sequential addressing (Table 7.1). Using random LBA addresses with a 

cluster size of 4 KBytes, the WA increased from 2.33 to 2049. The MMC write modes of 

open ended and predetermine show a small WA performance difference (Figure 7.2). The 

results shown in Table 7.2 suggest that random LBA transfers with a cluster size smaller 

than the NAND page size are problematic, creating a high WA value. 

 

 

 
 

Figure 7.2 Cluster Size VS WA Using Random LBA 
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Table 7.2 Cluster Size VS WA Using Random LBA 

 

Cluster Size VS WA Using Random LBA 

Open Ended Predetermine Cluster 

Size Type 1 Type 2 Type 1 Type 2 

512 16374.99 16240.23 16388.40 16259.48 

2048 4098.71 4075.52 4094.31 4075.11 

4096 2049.02 2038.58 2307.06 2305.73 

8192 1024.99 1024.19 1153.24 1154.57 

16384 512.79 514.362 576.55 579.41 

32768 256.94 259.74 288.2 292.02 

65536 128.94 132.16 144.06 147.73 

 

7.2 Measurement of Page Program Ratio (PPR) 

Page Program Ratio may be used to calculate longevity. It considers the number 

of pages programmed on the NAND to the number of bytes written by the host. However, 

the overhead of erasing unused pages is not considered. The results are compared to the 

WA in the previous section.  

7.2.1 Cluster Size VS PPR Using Sequential LBA 

Calculated PPR values for sequential LBA transfers are shown in Table 7.3. The 

PPR values for each cluster size (Figure 7.3) show a similar trend to WA (Figure 7.1), but 

the PPR valued are smaller. This suggests that a greater TBW for sequential LBA 

transfers would be calculated using PPR caused by not including wear from erasing 

unused pages. Cluster sizes smaller than the NAND page size appeared to increase PPR. 
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Table 7.3 Cluster Size VS PPR Using Sequential LBA 

 

Cluster Size VS PPR Using Sequential LBA 

Open Ended Predetermine Cluster 

Size Type 1 Type 2 Type 1 Type 2 

512 8.56 8.56 8.56 8.56 

2048 2.57 3.57 2.57 3.57 

4096 1.07 2.57 1.07 2.57 

8192 1.07 1.82 1.07 1.82 

16384 1.07 1.45 1.07 1.45 

32768 1.07 1.26 1.07 1.26 

65536 1.07 1.17 1.07 1.17 

 

 
 

Figure 7.3 Cluster Size VS PPR Using Sequential LBA 
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7.2.2 Cluster Size VS PPR Using Random LBA 

PPR calculated for random LBA transfers for each cluster size and for Type I and 

Type II cluster sizes are shown in Table 7.4. The PPR values for each cluster size (Figure 

7.4) show a similar trend to the WA values (Table 7.2) for random LBA addressing. 

Smaller cluster sizes during each transfer type generated a greater PPR, but the value is 

smaller than the WA. This would suggest using PPR in calculating TBW for random LBA 

transfers may not be as accurate because of not including erased pages as part of wear. 

Cluster sizes smaller than the NAND page size appeared to increase PPR significantly. 

 

 
 

Figure 7.4 Cluster Size VS PPR Using Random LBA 
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Table 7.4 Cluster Size VS PPR Using Random LBA 

 

Cluster Size VS PPR Using Random LBA 

Open Ended Predetermine Cluster 

Size Type 1 Type 2 Type 1 Type 2 

512 4112.30 4092.00 4115.99 4096.91 

2048 1029.29 1027.91 1028.37 1027.81 

4096 514.37 514.68 580.08 281.41 

8192 257.18 259.04 289.94 291.66 

16384 128.56 130.59 144.98 146.87 

32768 64.79 66.45 72.99 74.54 

65536 32.90 34.30 36.98 38.20 

 

7.3 Measurement of Initial (new) WA, IOPS and PER Performance 

The MMC device used for this thesis was brand new (unwritten). The full LBA 

range of the MMC device was first sequentially written to initialize all sectors and spare 

block area. Using the maximum sequential cluster size of 64 KBytes, the PER for the 

device was measured at 127/128 (Ideal 128/128). The IOPS performance was measured 

at 8.3 MBytes/sec. The calculated WA using equation (4.2) was 1.01. Once the MMC 

device was completely written, a second identical transfer was performed. A PER of 58 

was observed (58/128). The IOPS performance decreased to 7.6 MBytes/sec, or 8% 

slower. The calculated WA increased to 2.34. The data is shown in  

Table 7.5 and may suggest the device does not begin to wear level significantly 

until all NAND blocks including spare block area are used. The three measurements are 

compared in Figure 7.5. Using the initial (new) WA and PPR values may suggest 

inaccurate device longevity calculations. 

Table 7.5 PER, IOPS and WA Measured Unwritten (new) VS Written (used) 

 

PER IOPS WA (equation 4.2) 

PER New PER Used IOPS New IOPS Used WA (New) WA (Used) 

127 58 8.3 Byte/sec 7.6 Byte/sec 1.01 2.34 
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Figure 7.5 PER, IOPS and WA Measured Unwritten (new) VS Written (used) 

7.4 Measurement of Input Output Per Second (IOPS) 

Input Output Per Second (IOPS) was measured during each test flow. Data was 

collected to suggest a relationship between longevity (WA) and IOPS performance. 

7.4.1 Cluster Size VS IOPS Using Sequential LBA 

IOPS performance was observed to increase with cluster size on sequential 

transfers (see Table 7.6). Figure 7.6 compares the cluster size to IOPS for both Type I and 

Type II tests. The average IOPS write performance improves with full device transfers. 

The WA of Table 7.1 follows this trend. This may suggest that greater IOPS performance 

is an indicator of less WA overhead for sequential LBA transfers. 
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Figure 7.6 Cluster Size VS IOPS Using Sequential LBA 

 

Table 7.6 Cluster Size VS IOPS Using Sequential LBA 

 

Cluster Size VS IOPS (KBytes/sec) Using Sequential LBA 

Open Ended Predetermine Cluster 

Size Type 1 Type 2 Type 1 Type 2 

512 324 326.4 327.5 331.4 

2048 1000 821.8 1100 804.8 

4096 2800 1100 2700 1100 

8192 4200 1700 4000 1700 

16384 5800 2800 5700 2800 

32768 6800 4100 6600 4100 

65536 7700 5100 7600 5000 

 

7.4.2 Cluster Size VS IOPS Using Random LBA 

The IOPS performance increased with larger clusters on random LBA transfers 

(see Table 7.7). The performance was considerably slower than sequential LBA transfers. 
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Figure 7.7 shows the IOPS performance of random LBA addressing for each cluster size. 

The WA of Table 7.2 shows a similar trend. This may suggest a relationship between 

IOPS and WA overhead for random LBA transfers. 

 

Table 7.7     Cluster Size VS IOPS Using Random LBA 

 

Cluster Size VS IOPS (KBytes/sec) Using Random LBA 

Open Ended Predetermine Cluster 

Size Type 1 Type 2 Type 1 Type 2 

512 2.4 2.4 2.4 2.4 

2048 9.5 9.6 9.5 9.7 

4096 19.3 19.1 16.8 17.5 

8192 38.5 38.6 33.9 34.1 

16384 77.1 76.3 67.7 66.7 

32768 152.1 149.5 134.2 133.5 

65536 296.9 283.1 262.6 252.7 

 

 
 

Figure 7.7 Cluster Size VS IOPS Using Random LBA 
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7.5 Measurement of Terabytes Written (TBW) 

Using the measured values of WA and PPR, the calculated TBW capacity of the 

MMC device is compared in the following sections. 

7.5.1 TBW Using WA 

The Terabytes Written (TBW) capacity of the MMC device can be calculated 

using equation 5.3 and WA from Tables 7.1 and 7.2. Figure 7.8 shows the TBW using 

random and sequential LBA transfers for Type I and Type II tests and each cluster size. 

The data is scaled to Gigabytes Written (log scale has been used in x-axis). The data 

(Table 7.8) shows sequential LBA transfers of 4 KBytes or larger clusters produce similar 

TBW results. This may suggest the controller was optimized for sequential 4 KByte 

clusters. Random LBA transfers produced significantly smaller TBW capacity. 

 

Table 7.8     TBW (Gigabytes) VS Cluster Size Using WA and Type I Test 

 

TBW (Gigabytes) VS Cluster Size With WA and Type I Test 

Open Ended Predetermine Cluster 

Size Random Sequential Random Sequential 

512 2.5 930.2 2.5 930.1 

2048 10 4961.6 10 4965.0 

4096 20.1 17662.4 17.8 17619.1 

8192 40.1 17616.1 35.7 17619.9 

16384 80.2 17654.6 71.3 17619.9 

32768 160.1 17623.8 142.7 17631.5 

65536 318.9 17612.2 285.5 17604.5 
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Figure 7.8 TBW (Gigabytes) VS Cluster Size Using WA and Type I Test 

 

7.5.2 TBW Using PPR 

The Terabytes Written (TBW) of the MMC device can also be calculated using 

equation 5.3 and measured PPR. Table 7.9 shows the TBW for random and sequential 

Type I transfers for each cluster size. The results are compared in Figure 7.9 and scaled to 

Gigabytes Written (log scale has been used in x-axis). A doubled TBW rating was 

observed using PPR compared to WA (Table 7.8).  This may suggest an inaccurate TBW 

calculation (double) using PPR caused by including the wear of erasing unused pages. 
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Figure 7.9 TBW (In Gigabytes) VS Cluster Size Using PPR and Type I Test 

 

Table 7.9     TBW (In Gigabytes) VS Cluster Size Using PPR and Type I Test 

 

TBW (Gigabytes) VS Cluster Size Using PPR and Test I Test 

Open Ended Predetermine Cluster 

Size Random Sequential Random Sequential 

512 10.0 4804.3 10.0 4804.3 

2048 40.0 16002.0 40.0 16002.0 

4096 80.0 38434.7 70.9 38434.7 

8192 159.9 38434.7 141.8 38434.7 

16384 319.9 38434.7 283.7 38434.7 

32768 634.7 38434.7 563.4 38434.7 

65536 1250.0 38437.7 1112.1 38437.7 

 

7.5.3 TBW and IOPS 

Shown in Figure 7.10 is the relationship between TBW to IOPS performance for 

Type I test using random and sequential LBA transfers (log scale has been used in x-

axis). The TBW data is scaled to Gigabytes (see Table 7.10).  Cluster sizes greater than 
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4K during sequential transfers show small increases in IOPS performance. This may 

suggest limitations of the MMC interface clock frequency the tester used for the analysis. 

The graph suggests that slower IOPS performance represents greater WA. This may be 

used to generalize how longevity may be represented by IOPS without direct observation. 

 

 
 

Figure 7.10 TBW VS IOPS VS Cluster Size Using WA and Type I Test 

 

Table 7.10   TBW VS IOPS VS Cluster Size Using WA and Type I Test 

 

TBW VS IOPS VS Cluster Size Using WA and Type I 

IOPS (KBytes/sec) TBW (Gigabytes) Cluster 

Size Random Sequential Random Sequential 

512 2.4 328 2.5 930.1 

2048 9.5 1100 10.0 4965.0 

4096 16.8 2700 17.8 17619.9 

8192 33.9 4000 35.7 17619.9 

16384 67.7 5700 71.3 17619.9 

32768 134.2 6600 142.7 17631.5 

65536 262.6 7600 285.5 17604.5 
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7.5.4 TBW Comparison of WA and PPR  

The TBW for both methods for each cluster size is shown in Table 7.11. They are 

compared in Figure 7.11 to the ideal TBW of equation 5.1 (log scale has been used in x-

axis). The results suggest that by not including the wear caused by erasing unused pages, 

PPR results in a doubling of TBW. Sequential transfers of 4 KByte or larger clusters 

appear to show TBW (PPR) approaching the ideal value of equation 5.1. 

 

Table 7.11   Comparing TBW Using WA and PPR VS Cluster Size For Type I Test 

 

TBW (Gigabytes) from WA and PPR and Type I Test 

TBW (WA) TBW (PPR) Cluster 

Size Random Sequential Random Sequential 

512 2.5 930.1 10.0 4804.3 

2048 10.0 4965.0 40.0 16002.0 

4096 17.8 17619.9 70.9 38434.7 

8192 35.7 17619.9 141.8 38434.7 

16384 71.3 17619.9 283.7 38434.7 

32768 142.7 17631.5 563.4 38434.7 

65536 285.5 17604.5 1112.1 38434.7 
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Figure 7.11 TBW Comparing WA VS Cluster Size Using Type I Test 
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CHAPTER 8 CALCULATING AND ESTIMATING END OF LIFE 

The observed wear leveling data demonstrated how random LBA transfers and 

cluster sizes affect WA. Consider TBW at the 4 KByte cluster size (FAT-32). The 

calculation of TBW using WA (Table 7.11) appears to vary between 17 Gigabytes 

(random) and 17 Terabytes (sequential). This represents the extreme TBW values if using 

complete random or sequential LBA transfers over the life of the MMC device. However, 

the real life usage of flash device is somewhere in between. In this chapter, different 

combinations of random and sequential LBA transfers are used to determine endurance 

and end of life. 

8.1 TBW Using a Ratio of Random and Sequential LBA Transfers 

Depending upon the host application, the ratio of random and sequential LBA 

transfers over the life of the device may vary. Each type of LBA transfer is represented by 

a different WA constant. Consider calculating the TBW value as a summation of two 

parts.  The first part is calculated using the number of random LBA transfers and WA 

constant. The second part is calculated using the number of the sequential LBA transfers 

and WA constant. Modified to reflect these changes, equation 5.3 yields equation 8.1 and 

shows the TBW for each transfer type and WA constant.  

 

 )(%
)(

)(
)(%

)(

)(
Sequential

SequentialWA

LBALDE
Random

randomWA

LBALDE
TBW ×+×=          (8.1) 
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The TBW shown in Table 8.1 was calculated using equation 8.1 and the TBW 

from Table 7.11. The LDE value was calculated from equation 5.2. The data shows TBW 

for nine combinations of random to sequential LBA transfers. The table reflects an earlier 

range between 17 Gigabytes (random) and 17 Terabytes (sequential) using WA. Take the 

case when the ratio of random and sequential LBA transfers is equal (50% each), the 

TBW for WA is 8.8 Terabytes. This is nearly half of the capacity compared to purely 

sequential LBA transfers. When considering PPR and the same equal ratio of random and 

sequential LBA transfers, TBW is reduced by half from 38.4 Terabytes to 19.2 Terabytes.  

Table 8.1 shows us that depending on how the flash device is used (ratio of 

random versus sequential transfers) it will influence the amount of data that can be 

transferred in and out of the flash memory (for the life of the device). 

 

Table 8.1 TBW (Gigabytes) Comparing WA and PPR 

 

TBW Considering The Percentage of 

Random and Sequential Transfers 

Total Transfers TBW (Gigabytes) 

% Random % Sequential WA PPR 

0 100 17620 38435 

5 95 16740 36517 

10 90 15860 34598 

25 75 13219 38844 

50 50 8819 19253 

75 25 4418 9662 

90 10 1778 3907 

95 5 898 1989 

100 0 17 71 

 

8.2 Example of Longevity Using A Hypothetical File Storage Application 

Let’s consider a 4 Gigabytes flash storage device for a digital camera. The transfer 

model consists of writing 4000 clusters of 4 KByte size (FAT-32), representing one 
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16MByte transfer (one picture). The user completely writes all LBA addresses daily (4 

Gigabytes, equivalent to 256 pictures). It is assumed that each file transfer consists of a 

50% ratio of sequential to random cluster transfers to represent FAT-32 file fragmentation 

and table updates. The TBW capacity was shown as 8.819 Terabytes (Table 8.1). Using 

equation 8.2, the life capacity of the device is calculated at 5.6 years. Life may be 

extended by changing the frequency and duty cycle of the file transfers however. 

 

Years
daysdayfilesBytesfilesizeIn

bytesTBW
6.5

)(365)/(256)(16777216

)(000,000,000,819,8
=

××

        (8.2) 

 

For comparison, the life calculation was performed using PPR. The TBW data 

from Table 7.9 was calculated life expectancy at 12.2 years. (see equation 8.3). This was 

twice the life time compared to using the WA value.  

 

Years
daysdayfilesBytesfilesizeIn

bytesTBW
2.12

)(365)/(256)(16777216

)(000,000,000,253,19
=

××

        (8.3) 

 

 The data indicates that the life rating of an MMC device is affected by the size 

and ratio of random to sequential write transfers and the method used to determine write 

amplification. The life calculations suggest that using WA (total erased bytes to written 

bytes) is more accurate compared to PPR (NAND pages programmed to data written). 
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CHAPTER 9 CONCLUSION AND FUTURE RESEARCH 

9.1 Conclusions 

The thesis attempts to answer the question, “How long will my flash storage 

devices last?” At the writing of this thesis, the MultiMediaCard interface specification 

appears to have no method of retrieving wear leveling information. This may suggest that 

it is impossible to query the MMC device to determine remaining longevity. The answer 

to the original question may remain unresolved. Consider what is more important, end of 

life estimations or data retention capability? More than simply a catastrophic or cascading 

failure point, the question becomes “how reliable is long term storage backup on 

managed NAND devices?” 

Without direct observation or methods to retrieve wear information, at least two 

approaches exist on how to determine device longevity.  The first approach uses supplied 

performance data, such as Write Amplification (WA) and Terabytes Written (TBW), from 

the manufacturer. However, the customer may either be unable to obtain this information 

or reproduce and verify accuracy when applied to their usage model. The second 

approach is to verify the device using a black box approach. By stressing the device 

writing their usage model, the customer performs distributed testing on the device and 

verifies data retention.  
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The thesis measures and predicts the longevity of a MMC device by direct 

observation of wear directly on the NAND die component. Two methods to represent 

Write Amplification have been presented. The first method considered the total bytes 

erased on the NAND flash to the total bytes written by the host. The observed wear 

leveling data suggested this to be the most accurate representation of WA. The second 

method considers the ratio of the total NAND pages programmed to the pages written by 

the host (PPR). This method does not consider the wear overhead of erasing unused 

pages during wear leveling. The results suggests that using PPR to calculate longevity 

may not be representative of all flash cell wear.  

Device longevity is represented by TBW (Terabytes Written) capacity and 

considers the effects of Write Amplification. This measures the total number of bytes the 

device may accept before reaching end of life. Using TBW, equations to calculate device 

life (in years) were presented. The equations consider a usage model determined by a 

relationship between transfer frequency, percentage of write to read transfers and write 

duty cycle. The result of the life equations is to represent the longevity of the device, in 

years of use, until a one year data retention capability is reached. 

In this thesis, to obtain WA information on a MMC device, direct observation of 

erase and program cycles (E/P) and pages programmed on the NAND die was performed. 

Two MMC write modes were used; open ended and predetermine. The measured data 

suggests that the MMC predetermine write mode has a minor WA advantage. A 

relationship was observed between the test platform MMC driver interface IOPS 

performance and WA. An increase in IOPS performance generally indicated a decrease in 
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WA. The results suggests that write data transfers less than the NAND page size, 

especially random LBA addressing, significantly reduced IOPS and increased WA.  

The collected data was applied to a hypothetical file storage application usage 

model. The model consisted of 256 file transfers to completely write a 4 Gigabyte MMC 

device. Each file transfer consisted of writing 4000 4 KByte clusters. Each transfer has a 

50 percentage ratio of random to sequential LBA addresses. Using the measured WA, life 

was calculated to be 5.6 years before end of life was reached.  By measuring the ratio of 

random and sequential LBA addressing on the MMC interface for other usage models, 

the calculated WA values may be used to calculate the life of the device. This may be 

more accurate than using a single WA constant to represent (average) all combinations of 

LBA addressing ratios over the life of the device. 

The results suggest that applications stressing the device, such as a daily file 

backup, may diminish longevity more quickly. However, as determined by this thesis, 

infrequent file storage use may approach the 10 year advertised rating. The thesis 

concludes that when used for file storage, a managed NAND device can be reliable, but 

perhaps only when long term file storage is not required. A larger storage device will 

have an increase in TBW, applying the same usage model may increase life. However, the 

results suggests that using the MMC device for non file storage application, such as 

embedded systems writing frequent small randomly addressed transfers, may wear the 

device quickly.  

9.2 Future Research 

At the writing of this thesis, new technologies in non volatile memory storage are 

in consideration. Floating gate technology may quickly be replaced by more efficient 
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methods. These new technologies may redefine methods to determine longevity and be 

more difficult to standardize. 

To accurately determine longevity, a method to directly measure device wear on 

portable Managed NAND devices may be necessary. An alternative to direct 

measurement may be a software application monitoring transfer size and LBA addressing 

randomness on portable storage devices. The application may calculate life using WA 

values based upon standardized usage models from industry. The models may include file 

storage applications such as Camera, GPS, Cell phone, File backup, etc. 

New protocol commands, called TRIM, are being supported on Intel© SSD 

products in conjunction with Microsoft Windows 7 operating system [21]. These 

commands address, and mostly eliminate, the performance penalty of wear leveling 

unwanted sectors of data. A method may be explored to extend the MMC interface 

specification to include TRIM commands on portable managed NAND devices. 

The emerging MMC V4.4 specification allows dynamic allocation of storage, 

similar to partitioning. These new MMC commands may also introduce high reliability 

‘boot’ sections using a combination of SLC and MLC modes. The definition how to 

measure WA and determine longevity may be investigated.
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