
 

 

 

 

 

 

 

A WIRELESS SENSOR DATA FUSION FRAMEWORK 

FOR CONTAMINANT DETECTION 

 

 

 

 

 

 

 

 

 

 

 

by 

 

Joshua Kiepert 

 

 

 

 

 

 

 

 

 

 

A thesis 

 

submitted in partial fulfillment  

of the requirements of the degree of  

Master of Science in Computer Engineering  

Boise State University  

 

Summer 2009



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2009 

Joshua Kiepert 

ALL RIGHTS RESERVED 



 

 

iii 

 

BOISE STATE UNIVERSITY GRADUATE COLLEGE 
 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the thesis submitted by 

 

 

Joshua Kiepert 

 

 

Thesis Title: A Wireless Sensor Data Fusion Framework for Contaminant Detection 

 

Date of Final Oral Examination: 25 June 2009 

 

The following individuals read and discussed the thesis submitted by student Joshua 

Kiepert, and they also evaluated his presentation and response to questions during the 

final oral examination.  They found that the student passed the final oral examination, and 

that the thesis was satisfactory for a master’s degree and ready for any final modifications 

that they explicitly required. 

 

Sin Ming Loo, Ph.D.    Chair, Supervisory Committee 

 

Robert Davidson, Ph.D.   Member, Supervisory Committee 

 

Arvin Farid, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the thesis was granted by Sin Ming Loo, Ph.D., Chair of the 

Supervisory Committee.  The thesis was approved for the Graduate College by John R. 

Pelton, Ph.D., Dean of the Graduate College. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For My Wife 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

ACKNOWLEDGMENTS 

 

I would like to thank my thesis advisor Dr. Sin Ming Loo for both his guidance and 

friendship throughout the course of this research and academic pursuits.   

 Additionally, I would like to thank all of the people who have been involved with 

this research, as it would not have been possible without their significant contributions: 

Jon Bills, Mike Owen, Mike Pook, Derek Klein, Arlen Planting, Mike Martin, and 

Dereck Rasmussen. 

 Finally, I would like to thank my family for their love and support during this 

process and always, and in particular, my wife Araya, who has supported and cared for 

me despite the long hours I have been locked away working on my academic career.  My 

thanks seem hardly sufficient to convey my heartfelt appreciation for her love and 

support, which, in no small part, have been responsible for allowing me to complete this 

thesis.   

 

This work is funded by FAA Cooperative Agreement No. 04-C-ACE-BSU and 07-

C-RITE-BSU
1
. 

 

 

 

 

 

                                                 
1 Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research. 

The presentation of this information is in the interest of invoking technical community comment on the 

results and conclusions of the research. 



 

 

vi 

 

ABSTRACT 

A Wireless Sensor Data Fusion Framework for Contaminant Detection 

Joshua Kiepert 

Master of Science in Computer Engineering 

In the search for more effective instruments to collect data for the identification of threats 

to security, health, and safety, new tools must be designed to meet the challenges of a 

diverse set of possible applications. The extensive range of potential applications raises 

the need for a general purpose system capable of addressing a wide variety of deployment 

environments. This thesis focuses on a wireless sensor network framework for collecting 

environmental data in an effort to develop a sensing solution that fits within many design 

spaces. The framework includes reconfigurable wireless sensor node hardware, firmware, 

and software for interfacing sensor networks for upstream data aggregation and sensor 

data fusion.  The wireless sensor modules utilize mesh network architecture to allow low 

power radios to be effective even with low sensor module dispersion density, or in 

environments that have obstructions which prevent line-of-sight communications. In the 

current implementation, the software is designed to allow a computer to be used to 

monitor all sensor module activities as data is collected, request information as needed, 

and forward collected data to a database system for further analysis.  It also supports 

software modules to allow different sensor data fusion and analysis algorithms to be 

applied to the collected data in real-time. 
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CHAPTER 1: INTRODUCTION 

1.1 Wireless Sensor Networks 

As science advances there is a continual need to provide new tools to study the 

world around us.  Wireless technology, sensor data fusion, and microelectronics are just a 

few of the components that can be used to form tools, which may provide a large range of 

possible advancements.  Whether it is an early warning system for the detection of 

dangerous chemicals or a portable sensing system for diagnosing problems within 

complex machinery, the possible applications seems limited only by one's imagination. 

 Wireless sensor networks are comprised of many individual wireless sensor 

nodes (WSN).  Each node is a small embedded system that includes a microcontroller, 

sensors, and a radio system that allows the nodes to communicate with each other and the 

outside world.  This thesis focuses on a wireless sensor network framework for collecting 

environmental data in an effort to develop a sensing solution that fits within many design 

spaces. It includes the design and implementation of a highly portable, reconfigurable, 

and wireless sensor network for collecting environmental data over large areas, and in 

particular, the “back-end” interfacing, delivery, and storage such that different types of 

sensors can be interfaced to the sensor modules. With the use of different sensors based 

on different (orthogonal sensing technologies) detection technology, the data collected 

can be transferred to a central location and provide enough information for 

characterization and data fusion processing.  
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This system, additionally, utilizes mesh network architecture to allow low power 

radios to be effective even with low sensor dispersion density or in environments that 

have obstructions which prevent line-of-sight communications.    The software 

framework is designed to allow a computer to be used to monitor all sensor activities as 

data is collected as well as allowing a computer to request information as needed.  

1.2 History of Sensor Data Fusion 

Sensor data fusion, as it applies to this thesis, is the process by which many sensor 

inputs are combined and processed by algorithms to provide an improved representation 

of the data.  “Improved” may mean more accurate, more complete, or more reliable.  The 

goal of sensor data fusion is to provide a dataset that can more easily be processed and 

comprehended by human observers.   

Sensor data fusion research was started by the U.S. Department of Defense (DoD) 

when it began funding research for many different applications.  Some of the research 

projects included: automatic target recognition using many diverse sensors (radar, 

satellite, etc) in concert for identification-friend-foe-neutral (IFFN) systems, target 

tracking systems, situation assessment, and others.   One of the results of this research 

was the formation of the U.S. Joint Directors of Laboratories (JDL) Data Fusion Working 

Group in 1986 to develop common terminology to describe different processes within 

data fusion applications.  This eventually led to the design of a data fusion model that 

could be used as a common basis for discussion of many aspects of data fusion tools and 

processes.  Work in data fusion has since expanded to include many non-military 

applications as well, some of which include robotics, condition-based maintenance of 

structures or machines, medical diagnoses through medical imaging, and environmental 
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monitoring [1].   

 There are several ways data fusion can be used in concert with multi-sensor 

systems.  Data fusion algorithms may 1) directly fuse sensor data to provide data 

aggregation and thus reduce large data sets to a more easily managed collection, 2) fuse 

sensors to provide a virtual sensor entity on which higher level queries can be leveraged, 

or 3) utilize a wide range of common sensor inputs to make inferences or decisions that 

would not otherwise be possible by analyzing any of the sensors individually. 

 The work of this thesis focuses on the design and implementation of a framework 

(hardware and software) that can provide a means to apply data fusion algorithms both 

for data aggregation and for making inferences and decisions based on a wide range of 

data from wireless sensor networks.  With these goals in mind, it is necessary to design 

the framework to support many different types of sensors and provide as much flexibility 

as possible with regard to managing the data collected from sensor networks. 

1.3 General Purpose Hardware 

With universal applications in mind, it was important to build a system that 

utilizes standard device communication protocols, device power supply voltages, data 

storage formats, and standard general communication protocols to interact with outside 

computer systems.  In addition to the general purpose electronic design, a layered and 

highly abstracted design was required in the embedded operating software to enable 

control of any type of hardware that may be attached to the system. 

1.4 Software for Sensor Data Fusion 

By its very nature, sensor data fusion may require a large amount of processing to 
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identify abnormal events and help reduce false positives.  The system described in this 

thesis is designed to store received data in a database, which allows high powered 

computing systems to analyze the collected data as it becomes available. With the data 

available and accessible at one location, diffusion and pattern algorithms can process the 

data in near real-time, which may aid the detection of contaminants. 

Aside from the hardware and embedded software, the work of this thesis has also 

been the development of software for computers to not only serve as a data sink for 

networked sensor modules, but also provide a means to do real-time data analysis.  The 

software also allows fusion of sensor data to help users of the system to better identify 

important information the sensor system has collected. 

This goal has in turn resulted in the need for simulation software to help better 

characterize the fusion algorithms employed without setting up experiments, which 

would be difficult to control particularly when the testing environment must be spatially 

large.  

1.5 Contributions 

The primary contribution of this work is the implementation of a general purpose 

framework for sensor data fusion applications.  Much of the scientific community has 

focused on either the theoretical design of such a system or on creating very small sensor 

modules that are capable only of managing a limited collection of sensors, the idea being 

to minimize the cost of the sensor modules to allow for deployment of the maximum 

number of sensor modules.  The other end of the spectrum is to utilize a few highly 

capable sensor modules that have a limited number of high performance (and thus 

expensive) sensor modules to accurately monitor a modest area.  As was pointed out in 
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[2], with a sufficient number of low resolution sensors, a larger coverage area is 

achievable at the same cost, which can offset the benefits of high resolution sensor 

modules.  Our focus, in contrast, has been to look at the middle ground of this design 

space.  Is it possible to provide a sensor module design and supporting framework that 

offer an inexpensive solution that has good capabilities?  We believe, and will show, that 

it is possible to achieve most of the benefits of both inexpensive and expensive, high 

resolution sensor modules. Figure 1 shows a graphical representation of the design space 

we are targeting.  

 

Figure 1: Wireless Sensor Module Design Space 

As depicted in Figure 1, the design space of sensor module hardware falls into 

several categories.  In the far left area we have designs that range from limited and 

inexpensive to expensive and capable, with few sensors.  The far right area represents 

sensor nodes that are expensive, possibly with several high resolution sensors.  Our 

design is targeted to the center area of the figure, in that it is designed to be easily 

configured for applications that require either only low resolution sensors or high 

resolution sensors.  This provides a means to adapt the set of sensors installed on a sensor 
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node to meet the specific application requirements without re-engineering the hardware 

or firmware of the sensor module
2
. 

1.6 Overview 

In the following chapters we will discuss many of the topics surrounding sensor 

data fusion platforms as it applies to our work.  In Chapter 2 we will describe some of our 

previous work in sensor network technology as well as some of the existing technologies 

that are under development in the sensor networking field.  In Chapter 3 we will describe 

our sensor data fusion framework in terms of the design parameters that were considered 

and the general architecture of the system that we have designed.  Chapter 4 outlines the 

design and implementation of our sensor module hardware in terms of each feature that 

we believe are important to any general purpose sensor system.  In Chapter 5 we discuss 

the software development both for the embedded firmware that resides on the sensor 

modules and computer software that serves as a link between sensor networks and the 

outside world.  Chapter 5 also discusses some simulation software that has been 

developed in an effort to improve our ability to reliably test data fusion algorithms.  In 

Chapter 6 we discuss the need for time synchronization and some of the algorithms that 

may be used to accomplish synchronization. Chapter 7 discusses how data fusion 

algorithms can be utilized to manage the large amount of data collected by sensor 

networks or extract information that could not be otherwise gleaned from individual 

sensors.  Finally, Chapter 8 offers up some conclusions from this work as well as a brief 

description of some possibilities for future work. 

                                                 
2 Note: the terms “sensor node” and “sensor module” may be used interchangeably. 
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CHAPTER 2: PREVIOUS WORK AND EXISTING TECHNOLOGY 

2.1 Previous Research 

Previous to this research much work was done to design a modular, flexible, and 

reconfigurable hardware platform for taking sensor measurements.  This took the form of 

a small battery-powered device which could be configured with a wide range of 

environmental sensors.   The focus was to design a stand-alone sensor module with the 

capability to reconfigure the set of sensors on a sensor module with minimal re-

engineering.  The sensor data storage medium was removable Secure Digital (SD) flash 

memory card.   While there was hardware support for wireless communication, this 

feature was not fully explored [3], [4]. 

 In the previous work, the sensor modules were designed to act as standalone data 

loggers that could be configured with a wide range of sensors.  The data logging task did 

not require time synchronization or wireless capabilities as each module worked 

independently and data points collected only needed to be assigned a common time 

reference with regard to all other measurements taken on a particular logger for the data 

to easily be correlated. Our task was to investigate how we could leverage the previous 

low cost sensor module hardware in a more advanced system in which each module was 

a member of an ad-hoc wireless network, and therefore able to collect information about 

the environment that would not be possible with an individual sensor module.  Figure 2 

and Figure 3 show the network architecture and hardware design, respectively, of the 
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sensor modules that were developed in [3].   

 

Figure 2: Star Network Configuration 

 

Figure 3: Previous Sensor Node 

Prototype 

 

 In a star network, as depicted in Figure 2, there is a fundamental restriction on 

how far the sensor nodes may be from the base station.  This range is limited by the 

power of the transmitters and the size and type of obstructions between an individual 

sensor node and the base station.  For our new design, we needed a more robust network 

architecture that could perform well with obstructions to line-of-sight, and operate with 

larger distances between sensor nodes.  As seen in Figure 3, the previous sensor node 

design had individual circuit boards for the various components and many point-to-point 

connections between circuit boards.  This architecture, while reconfigurable, still requires 

re-engineering to change the sensor configuration, and is prone to failure in harsh 

environments due to the wiring scheme. 
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2.2 Existing Technology 

While there are several commercial and research sensor systems available that 

provide sensor hardware and networking capabilities, e.g.  [6], [7], and [8], there are few 

systems that provide a complete sensing solution targeted for sensor data fusion 

applications. There has been development of interface frameworks for sensor networks, 

e.g. [9], but few with sensor data fusion applications in mind.   

Perhaps some of the most notable existing systems are found with Crossbow 

Technologies Inc [6] and a system that has been developed at Carnegie Mellon University 

(CMU) [10].  Each of these systems provides some of the functionality that is 

implemented in our framework.  Therefore it is important to look at how these systems 

compare with the work discussed in this thesis. 

2.2.1 Crossbow Technologies 

Crossbow Technologies provides a range of wireless sensor modules that are 

capable of forming wireless mesh networks with a variety of sensors available to be 

connected to the modules (or motes, as they are called).  In general, their systems provide 

support for one sensor per sensor module.  They offer sensor boards with accelerometers, 

light detectors, pressure, temperature, global positioning system (GPS), sound, and 

magnetic field sensors [11].  Crossbow offers a software stack for operating their sensor 

systems and interfacing the sensor networks to a general network infrastructure such as 

Ethernet.  While their systems are capable, they do not offer a framework for managing 

the data acquired from sensor network with sensor data fusion applications in mind.  

These systems do not offer a large storage medium for logging data when a module is not 

connected to a network (though some media may be retrofitted).  Additionally, their 
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systems are cost-prohibitive when compared with our solution. 

2.2.3 Firefly WSN Platform 

CMU’s FireFly platform offers a similar solution in terms of the hardware and 

sensor options though this system is still targeted toward a limited number of sensors per 

mote.  This system does employ an out-of-band time synchronization mechanism through 

the land-based atomic clock broadcast signal (WWVB) though it is capable of in-band 

synchronization.  These nodes have been configured with sensor boards carrying several 

sensors such as light, temperature, audio, passive infrared motion, dual axis acceleration, 

and battery voltage sensors.  The FireFly platform also includes models with mini Secure 

Digital cards for facilitating local data storage [12].  CMU has also implemented an 

advanced embedded operating system for the Firefly platform (known as Nano-RK), that 

manages sensor measurements and time synchronization.  Some of the primary 

differences with this system are the set of sensors that have been integrated and a 

hardware architecture that is closely tied to the wireless network radio as well as 

hardware-assisted time synchronization. 

The hardware developed in this thesis does not offer capabilities beyond those 

that are currently available; it does provide a unique set of capabilities that are 

particularly conducive to sensor data fusion applications.  Many sensor systems, such as 

[6] or [7], approach sensor networks from the perspective of having many small sensor 

nodes with limited capabilities. Our system employs inexpensive, but capable sensor 

modules that can be outfitted with many sensors and function as a standalone sensing 

module or as a member of a larger network of sensor modules. 
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CHAPTER 3: SENSOR DATA FUSION FRAMEWORK 

There are many possible system architectures that may be used to collect and 

process sensor data.  The architecture of our system was chosen based on the idea that it 

should be flexible enough to allow other systems to utilize the collected sensor data, as 

well as allow on-site processing of the data (when the algorithms applied do not require 

significant computational power).  Figure 4 shows the overall architecture of the system 

that our framework has been designed to achieve.   

 

Figure 4: Overall System Architecture 

As seen in Figure 4, there are several primary components to this system.  At the 

front end, we have a sensor network that is capable of forming mesh networks.  Each 

sensor node in the network, which may have a variety of sensors, collects data and 

transmits it to a base receiver station.  The base station is connected to a small computer 
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system that may interact directly with the sensor network, both monitoring collected data, 

and potentially forwarding the data to a central database for further processing and 

analysis.  The computer system connected to the base station radio provides the gateway 

for data to be moved from the sensor network to a location that allows data fusion 

algorithms to be applied.  The computer system near the sensor network may also be used 

to directly control the sensor network and provide application of basic fusion algorithms 

that do not require significant computational power.  Our wireless sensor data fusion 

framework contains each of these core elements for building a wireless sensor data fusion 

system. The framework includes both hardware and software, which makes it possible to 

insert data fusion algorithms to process the sensor data or aggregate data to a central 

database for high-powered analysis. This framework has a highly flexible design such 

that different sensors can be integrated into the sensor nodes without re-designing the 

overall system. The general objective of this design is to provide an implementation of a 

framework (hardware and software) such that once a sensor has been selected for a 

particular sensing application the system can be deployed quickly, and sensor data fusion 

algorithms can be inserted into the framework to analyze the data as desired. The 

framework is shown in Figure 5. This diagram shows features that may be classified into 

three categories: (i) sensor node, (ii) communication and interface, (iii) database, 

visualization, and fusion. 
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Figure 5: Wireless Sensor Data Fusion Framework 

 

3.3 Sensor Node (level 1 to 4) 

Sensor nodes with the contaminant detectors are the frontend of a wireless sensor 

fusion system. It is the element of the system that passively or actively measures the 

contaminant levels and reports the findings in a timely manner. As shown in Figure 5, the 

sensor node provides circuitry to interface to sensors as well as power sources and power 

regulation for sensors. Once data is collected from a sensor, it is processed, stored, and 

transmitted. The data transmission requires connectivity to the server (or sink node) 

through a wireless link. 

To be effective, the sensor modules were required to meet many design 

constraints.  The primary objectives were to maintain a small physical size, have limited 

power requirements, and be highly reconfigurable.  Additionally, the sensor modules 

needed to provide high connectivity for connections with many sensors, and be visually 

inconspicuous. The sensor modules were required to not only send collected data to a 

remote location wirelessly, but also to enable the storage of collected data locally in case 

of network failure or applications that require limited network activity and thus send data 

only after long periods without wireless connectivity. 
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To meet the connectivity and re-configurability constraints, the hardware was 

required to have many input/output (I/O) ports and support for many communications 

protocols, to enable connections with numerous sensors as well as providing internal 

power supplies to meet a variety of sensor requirements. 

As with the hardware, the sensor module firmware was required to be highly 

reconfigurable in that it needed to have an architecture that minimizes re-engineering 

when adding or removing sensors from the sensor module.  To achieve this objective, the 

firmware design was required to exhibit data coupling and a functionally cohesive 

architecture. 

3.4 Communication and Interface (level 5 to 6) 

The communication link and interface are the critical infrastructure that delivers 

the sensed data to the proper destination. For sensor data fusion (residing in the backend 

to characterize and analyze the data) to work effectively, determining when the data 

arrives is critical. The delivery of sensor data depends on reliable wireless 

communication channels. The wireless hardware was required to have a reliable, 

redundant, and robust network architecture formed between sensor modules (e.g. mesh 

network architecture) to meet wireless connectivity objectives. The base station might not 

be reachable directly (one hop away), but the data could be delivered through 

intermediate nodes. More importantly, having multiple intermediate nodes will guarantee 

delivery of the data to the base station no matter what happens to any single node. 

3.5 Database, Visualization, and Fusion (level 7 to 9) 

Database, visualization and data fusion is the backend – where the heavy duty 
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processing happens. The sensed data (usually in significant quantities) is stored on a 

database server such that algorithms can be applied to “make sense” of the data. The raw 

data can be visualized, but with its intrinsic volume, visualization may be difficult; that is 

one area where sensor data fusion algorithms can help reduce the data set, allowing 

further attention to be placed on the reduced set. If effective analysis is to be done on the 

collected data, it must be organized such that relationships can easily be determined.   

Both centralized and distributed database architectures have benefits. It is our 

belief that the backend should have flexibility, i.e., new fusion algorithms can be written 

to process the data without fundamental changes to the system. The system should 

provide “hooks” such that a new algorithm can be used to analyze the data. The timely 

arrival of data to the database server is important; however, one will need to define the 

“real-time” expectation of delivery. The greater the responsiveness needed, the greater the 

hardware and design costs to implement the system.  

Once the data has been analyzed, the system will need to deliver the results to 

someone in a timely manner. The result could be a decision (e.g. yes, there is 

contaminant; or no, nothing is out there) or a series of plots and graphs for human 

analysis.  

The remaining portion of this thesis describes the prototype and implementation 

of this framework.  In particular, Chapter 4 discusses the design and implementation of 

the hardware associated with levels 1-4 of the framework.  Chapter 5 discusses the design 

and implementation of the software, which encompasses levels 5-9 of the framework.   
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CHAPTER 4: HARDWARE DESIGN 

4.1 General Purpose Sensor Modules 

 For this research, the sensor module hardware was further refined and the wireless 

communication capabilities were expanded to include mesh network architecture.   

Computer software was also developed to allow coordination of data collection and 

provide a facility to fuse the data collected across the network of sensor modules.  This 

software was also designed to store the collected data in a centralized database for post 

processing.   

4.2 Wireless Capabilities 

 There are many cases where it is difficult or impractical to effectively determine 

the state of an environment from a single measuring unit.  When the environment is large 

or its conditions vary greatly over space or time, it becomes necessary to use multiple 

measuring units to provide enough sensor density to gain a full perspective of the 

environment in question.  It is in these cases where a network of measuring units 

becomes important.  A network allows the measured data to be correlated with each 

measuring unit in the environment and transmitted to a centralized database for detailed 

analysis. With the prevalence of low-power and inexpensive wireless communication 

devices, the creation of high density sensor networks is more easily achieved than it has 

been historically. 

 There are two main network architectures employed by our sensor system: star 
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and mesh.  The star architecture requires that all nodes connect directly to a single master 

node.  This means that there is a fundamental limitation on how many members may be 

part of the network, as well as the maximum spacing between nodes.  This also requires 

that there be an unobstructed “view” to the master node. Our system will form this type 

of network provided that all remote nodes are within range of the master node; however, 

it may dynamically change to form a mesh architecture, if obstructions or distance begin 

to interfere with a remote node’s communication with the master node. 

 Mesh architecture, in contrast, has fewer constraints with regard to the layout of 

the remote measurement units.   This architecture allows for multi-hop communication; 

thus the master node may be located anywhere among the remote units and need only be 

within range of any one of the remote units.  Any messages addressed to the master will 

be relayed as required to deliver the message to the master.  This architecture is also far 

more robust in constrained environments where line-of-sight communication to all nodes 

directly is not possible.  The dynamic formation of the different network types is 

controlled by the radio hardware.  The radio used in our system has an embedded 

processor paired with a microcontroller, which manages all of the low level 

communications with the radio hardware, including network formation. 

 

4.3 Modular and Reconfigurable Design 

 Utilizing the previous work done in [3] and [4], the wireless sensor units were 

redesigned with a more modular and reconfigurable design.  This was accomplished by 

the design of a general purpose system board that provides a microcontroller, real-time 

clock, Secure Digital flash memory card, three to four step-up/down power supplies, and 
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many digital and analog I/O pins.  Figure 6 shows the main system board design. 

 

Figure 6: Sensor Module System Board 

4.4 Processor 

 The processor used in this system is a Microchip PIC18F8722 8-bit 

microcontroller.  This platform offers a generous amount of program and data space for 

embedded applications with 128 KB Flash, 4 KB SRAM and of 1 KB EEPROM.  In 

addition it offers 70 I/O pins, sixteen of which can function as inputs to a 10-bit analog-

to-digital converters (ADC).  For communication with various devices the unit has 

several facilities including two RS232 universal asynchronous receiver/transmitters 

(UART), and two master synchronous serial ports (MSSP) that support 2/3/4 wire serial 

peripheral interface (SPI) and inter-integrated circuit (I
2
C) master/slave functionality.  It 

also offers three capture/compare/pulse width modulation (PWM) modules and four 

hardware timers [5].  All of the features described above give the microcontroller 

significant versatility so that it may easily be adapted to a wide range of sensing 
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applications. 

 This microcontroller not only provides a wide range of protocols and I/O options, 

but reasonable computation power as well.  On this system, the microcontroller was set 

up to run at 8 MHz, but the microcontroller has an internal phase-locked-loop (PLL), 

which allows it to use the 8 MHz external crystal and internally run at four times the 

external crystal frequency.  The microcontroller is rated to run up to 40 MHz by use of a 

10 MHz external crystal and the internal PLL [5]. 

4.5 Power 

 There are many common voltages for sensors.  Some of the most common are 5 V 

and 3.3 V; however others may be necessary.  The system board (motherboard) of the 

module provides four power supplies running at 3.3 V, 5 V, 9 V and a custom supply that 

may be configured at build time.  The system uses two types of DC-DC converters: a 

Maxim MAX642 and MAX710.  The MAX642 is rated to output up to 18 V at 450 mA, 

whereas the MAX710 is rated to output up to 11.5 V at 700 mA.  The system board has 

space for two MAX710s and two MAX642s.  Both of these supplies have efficiencies of 

over 80% [13], [14].  In the current hardware configuration, the two MAX710 supplies 

are set up to output 3.3 V and 5 V.  One of the MAX642 chips is configured to output 9 V, 

whereas the fourth supply is not currently used. 

4.6 Sensor Integration  

 To provide a means to easily change the sensor set configured on the system, a 

secondary board or “breakout board” was designed for sensor integration with the main 

system board.  The breakout board currently provides an interface for seven sensors: 
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carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity, barometric 

pressure, GPS, and sound intensity.   The hardware has also been adapted to other form 

factors, which allow additional sensors to be connected externally to the enclosure.  The 

current sensor set was chosen as a means to test the overall framework, as the suite 

provided several standard sensors for general applications. 

4.7 Communications 

 While the microcontroller supports many communication protocols, the primary 

protocol used for external communication is UART.  This provides a standard protocol 

that interfaces with computers as well as other devices.  The microcontroller used in the 

system offers two UARTs.  One UART is used for controlling software system 

configuration via a computer while the second is used for wireless communication 

through use of a ZigBee® modem.  The second UART has also been used with a 

Bluetooth communication module to add link capabilities with PDAs to display sensor 

measurements. 

 Wireless communication is achieved with Digi XBee® ZigBee® modems that use 

the Industrial, Scientific & Medical (ISM) 2.4GHz band and support both the IEEE 

802.15.4 standard and proprietary DigiMesh™ protocols [15].  These units provide a 

simple UART modem interface to the microcontroller, and help offload much of the 

communications processing by managing nearly all of the network formation and routing 

needed for wireless communication.  The XBee® modems automatically create ad-hoc 

star or mesh networks at power-up and dynamically reroute packets when a destination 

node becomes out of range for direct communication.  
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4.8 Data Storage and Transmission 

 Local data storage is accomplished with an SD card reader built into the main 

system board.  This media was chosen based on its availability, compatibility, and form 

factor.  The small size of SD cards results in minimal space requirements on the system 

board.  Additionally, media card readers and laptop computers commonly support SD 

media.  The current system firmware supports SD cards up to 2GB, which would allow 

for approximately four years of data collection without removing the card (assuming 

measurements are taken every 30 seconds). 

 The data from sensor measurements is stored on the SD card in a human readable 

text format.  This not only allows users to easily view the data collected, but it results in 

simple programming to load data files into databases or generate plots.  The same format 

is also used in wireless transmission of the sensor measurements.  Each sensor 

measurement string is a collection of key-value pairs containing information such as the 

identification number of the sensor module on which the measurement was collected, the 

sensor identification number within the sensor module, the raw sensor reading, converted 

sensor reading, and a time stamp of when the measurement was taken.  Additional strings 

stored in the data files identify the type of sensors, each sensor's measurement units, 

model number, and description.  These strings provide a way to limit how much data is 

stored for each measurement.  By separating out the sensor information from the 

measurement data we prevent repeatedly transmitting or storing sensor information with 

each subsequent sensor measurement. Figure 7 shows the data format used by the sensor 

modules. 
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Figure 7: Example Identifier and Measurement Strings 

 As seen in Figure 7, the identifier string contains information about the sensor on 

a particular sensor module, whereas the measurement string contains information about a 

measurement from a sensor on a sensor module.  The use of two packet types helps 

reduce the amount of data sent with each sensor measurement.  The identifier strings are 

sent only at startup or when requested.  This allows the measurement strings to remain 

small, and only contain the data unique to the measurement.  The common sensor node 

global unique identification (GUID) number and sensor identification (SID) numbers are 

identical between a measurement strings and the identifier string for a respective sensor.  

This allows the two (identifier and measurement) to be related, and it avoids the need to 

send the sensor information (type, units of measurement, etc) with every measurement. 

 The data transmitted has the same format as the data stored to the flash memory 

on the system.  The plain text format requires more data to be transmitted than if 

formatted into binary packets, but it offers significant advantages in terms of versatility.   

The string structure of key/value pairs allows for only minor modification to the 

transmitter/receiver code to change the data fields transmitted or stored. 
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4.9 Time Management 

 Time keeping is an important part of any data logging device.  It is particularly 

important for a system that must correlate measurements among distinct, independent 

modules, such as a multi-sensor data fusion system.  While it is not strictly necessary to 

have perfect synchronization among the sensor modules, it is necessary to have the 

system self-consistent in that all sensor modules agree on the ordering of the events 

recorded by the system.  The sensor system described in this paper pushes most time 

management control to software.  We will discuss time synchronization in more detail in 

Chapter 6.   

 As for the time-keeping hardware, the system utilizes a Maxim DS1339 real-time 

clock.  This chip utilizes an external 32.768 KHz crystal oscillator and is controlled 

through an I
2
C interface.   It offers very low current operation (~450 µA) and accuracy 

which depends on the crystal used [16].  The typical crystal oscillators used have an 

accuracy of +/- 40 ppm which means that the crystal has a potential error that could result 

in up to +/- 10 minutes per year depending on the temperature variations. 

 While the DS1339 maintains real time, an internal hardware timer is used to 

manage system events.  The internal timer utilizes an additional external 32.768 KHz 

crystal to maintain system time.  This clock is synchronized with the DS1339 at startup 

and every 24 hours to insure accuracy. 

4.10 Systems Integration 

There were many areas where the current sensor modules were improved over the 

original design.  Most of the changes were related to minimizing the amount of re-

engineering required for adding or reconfiguring the suite of sensors attached to the 
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sensor modules, but other changes were made to make the sensor system more robust and 

modular.  Figure 8 shows a comparison between the original sensor module (left) and an 

early prototype (right) of the latest sensor module.  Both of the sensor modules shown in 

Figure 8 have the same sensor suite and functionality. 

 

Figure 8: Original Sensor Module Design, (a), vs. New Design (b) 

 From Figure 8 we see that the system cabling was substantially improved by 

using insulation displacement connector (IDC) cables and integrated circuit boards (b).  

The original prototype, (a), has significantly more point-to-point wiring, and individual 

circuit boards for each power supply.  The various power supplies were consolidated to 

reside on the main system board rather than relying on three discrete power supply 

boards.  Additionally, as discussed previously, the sensors are now consolidated to a 

modular circuit board that provides all of the available voltages and communications 

lines from the main system board.  Figure 9 shows one of the latest versions of the 

updated sensor module. 

a.    b. 
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Figure 9: Latest Sensor Module Hardware Design 

 As seen in Figure 9, the latest version of the sensor module takes advantage of the 

extra space garnered by the more modular design.  The newer breakout board was 

designed to allow the addition of a more accurate barometric pressure sensor (which 

contains an integrated temperature sensor) as well as a GPS unit.    The sound intensity 

sensor was also improved, redesigned to include a wider range of operation and a better 

form factor for integration with the system board. 
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CHAPTER 5: SOFTWARE DEVELOPMENT 

5.1 Sensor Module Firmware 

 As the sensor modules must be battery-powered and have limited resources, it is 

important to limit the amount of computation that occurs locally.  In addition, it is 

important that the software be designed such that it is easily reconfigurable to allow for a 

wide range of sensors to be connected to the system. This was generally accomplished by 

a layered and modular design.  At the lowest level, the code for each sensor must provide 

a consistent application programming interface (API) that “hides” the low level hardware 

communication from the higher levels of the software.  It is this area that will need to be 

created to add new sensors to the system, while only the sensor configuration table will 

need to be modified to include the new sensors at the top level. 

5.1.1 Implementation Details 

The software architecture of the firmware includes many different modules.  It 

provides a simple system to manage facilities, including sensors, time keeping, data 

storage, and communications. All system resources are abstracted to provide a hardware 

agnostic view of the system.  This allows for underlying hardware changes with little to 

no modification of the application level software.  Figure 10 shows a flow chart that 

summarizes the basic flow of control for the firmware. 
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Figure 10: Firmware Flow of Control (Simplified) 

As seen in Figure 10, the main execution loop of the firmware has four tasks.  It 

must 1) keep the internal clock synchronized with the external real-time clock, 2) process 

unsolicited requests received over the network,  3) take measurement data storing to SD 

and transmitting to the data sink, and 4) insure that the SD contains the latest data in case 

of power loss.   

The sensor related firmware is organized into five layers.  These layers include: 

low-level hardware communications, sensor specific drivers, sensor configurations, 

general sensor operations, and finally the application that utilizes the sensors.  The 
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architecture is layered as shown in Figure 11.   

 

Figure 11: Firmware Layered Architecture 

 The hardware communications layer provides the lowest level interaction with the 

sensor devices.  This layer provides communications protocol code that may be used by 

many different sensors.  The protocols used by the various sensors could be I
2
C, SPI, 

UART, or some other proprietary protocol.  Re-configurability is maintained in that the 

hardware communications layer is unchanged when adding a new sensor.  This assumes 

that the protocol is already supported.  If the hardware protocol used by a sensor is not 

already implemented in the hardware communications layer, a software module must be 

written to manage this type of protocol.  The benefit of this architecture is that after a 

module is added to the hardware communications layer, it is available for use by any 

other sensor that utilizes the same protocol.  

The sensor specific driver layer provides the interpretation of the data being 

accessed by the hardware.  This layer provides a unified interface for the upper levels of 

the system to work with and interacts with the hardware communications layer to access 

the hardware associated with a sensor.  A sensor driver software module must be designed 

for every sensor that is added to the system.  Each sensor driver provides three functions: 
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identify, measure, and convert.  This set of functions provides a means to request an 

identification string, take a measurement, and convert a raw sensor measurement to its 

corresponding unit value. The identification string describes a sensor’s type, measuring 

units, and model number that is included in the identify packet that is sent on 

initialization.   

With a unified interface to sensors available, the sensor configurations layer can 

easily table the function calls and manage many sensors with only a small amount of 

controlling code.  Figure 12 shows the sensor table used to configure the sensors that are 

active in the system. 

 

Figure 12: Sensor Table Structure 

As seen in Figure 12, each sensor in the system requires identify, measure, and 

convert functions that are registered in a sensor structure object. A registry of sensor 
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structures is maintained to provide a simple means to both manage the sensor that are 

connected to the system and directly access the sensor driver interfaces.  This table must 

be modified manually when adding or removing a sensor from the system. The size of the 

table is calculated dynamically so any sensor can be deactivated in the system by simply 

commenting the sensor entry in the sensor table code and recompiling.   

The general sensor operations layer provides high-level access to the sensors.  

This layer provides a simple interface for acquiring data from the sensors and requesting 

sensor details for identification purposes.  This code provides a way to form measurement 

and identifier packets for storage and transmission by simply referring to a sensor by its 

index.  Figure 13 and Figure 14 show some of the basic functions provided, which utilize 

the sensor structure objects in the sensor table to call the various sensor specific functions 

in each sensor driver. 
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Figure 13: Sensor Identify Function 

 As seen in Figure 13, the sensor identify function forms the ASCII identify string 

containing sensor module and sensor information.  Line 30 in Figure 13 shows how the 

identify function, which is part of the sensor driver, is called by accessing the sensor 

structure table by the sensor index.  This loads a character buffer with the associated 

sensor information from the sensor driver.   
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Figure 14: Sensor Measure Function 

The sensor measurement ASCII strings are formed by the code shown in Figure 

14.  As with the Sensor_Identify function, the Sensor_Measure function leverages the 

sensor structure table to gather the raw sensor measurement and convert the raw 

measurement to its corresponding unit value.  Lines 31 and 36 show the calls to the 

sensor driver associated with the specified sensor index in the sensor structure table. 

Finally, the application layer is the top-level code that could be considered to be 

the main operations as described previously in Figure 10.  Figure 15 shows the sensor 
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systems top level function calls, which identify all of the sensors and take measurements 

for all of the sensors. 

 

Figure 15: Top Level Identify and Measure Functions 

As seen in Figure 15, identifying or taking measurements from all of the active 

sensors on the system is as simple as looping through the sensor table.  The 

Sensor_Identify and Sensor_Measure functions load character buffers with the identify or 

measurement strings, respectively. Once the identify or measurement string is collected, it 

is both stored to the SD card and sent through the XBee® radio (if the radio is enabled). 
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5.2 Computer Software 

 As it was a goal to minimize the computation at each sensor node, computer 

software was required to both store and process the collected data.  The processing 

responsibilities range from graphically representing the data to make it simple to view the 

real-time state of the monitored variables, to applying algorithms to the received data.  

 The primary computer-based application developed as part of this thesis was the 

BSU Sensor Monitor (BSUSM) application.  This program was designed using the C# 

programming language as a general test-bed to provide an example of the types of 

interactions possible with the sensor system.  This software offers a wide range of 

capabilities, including data plotting, data sinking, sensor module device control, and 

sensor data fusion. 

5.2.1 Plotting 

 The program’s principle function is to allow a network of sensor modules to 

stream collected data to the application using a USB-XBee adapter connected to the 

computer.  This allows the data to be plotted as the data is received in real-time.  Each of 

the active sensor modules has a unique identifier that the BSUSM can use to allow users 

to select the data of interest.  Figure 16 shows the BSUSM as it plots data received from 

sensor modules. 
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Figure 16: BSU Sensor Monitor Data Plot 

5.2.2 Data Sink 

 In addition to plotting data, the BSUSM was designed to store collected data in a 

structured query language (SQL) database and subsequently export in a comma separated 

values (CSV) format compatible with common spreadsheet software.  Two versions of 

the software have been developed: one that relies on a SQL server service to be available 

and another that uses an internal database to manage the data that is presented in plots 

and data exportation.  Utilizing a computer to provide a data sink for a network of sensor 

modules allows the data to be stored in a central location for real-time or post processing. 

5.2.3 Sensor Module Control  

The BSUSM application was designed not only to have data “pushed” to it by the 
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sensor modules, but also to directly request data from any sensor unit within the network.  

This offers many possibilities for the sensor network configuration as the computer may 

be used to request specific sensor measurements before the sensor module would 

otherwise have provided it, or to remotely control the sensor module for some other 

purpose such as time synchronization.  Figure 17 shows the basic communication 

interface implemented. 

  

Figure 17: Two-Way Communication and Time Synchronization 

 

As seen in Figure 17, the command interface allows users to specify a command 

to send to a particular sensor module.  The commands currently implemented include get-

value, get-raw-value, get-time, set-time, self-identify, and synchronize-time.  The get-

value and get-raw-value commands allow the user to request the value of any sensor on 

the module, whereas get-value retrieves the converted user-readable sensor reading and 

get-raw-value retrieves the raw sensor reading.  The get-time and set-time commands, 

respectively, allow users to retrieve and set the time, while the synchronize-time 

command attempts to synchronize all sensor modules that are monitored by the BSUSM 
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program by multicasting a set-time command to all sensor modules connected. 

5.2.4 Real-Time Data Fusion 

Real-time sensor data fusion tools implemented in the BSUSM software allows 

various data fusion algorithms to be applied as data is received from each of the sensor 

modules connected.  The software was designed in a layered architecture to make the 

addition of new fusion algorithms straightforward.  Currently the software implements 

two fusion/data processing algorithms: averaging and peak detection.  Figure 18 shows 

the graph options associated with the sensor data fusion features of the BSUSM.   

 

Figure 18: Real-Time Sensor Data Fusion Dialog 

As seen in Figure 18, the software allows users to select the sensors to be fused, 

select a name to represent the curve, and choose the fusion algorithm to be applied to the 

selected sensors.  In this example three temperature sensors were selected (one from 

sensor module 012, 017, and 001, respectively), the averaging algorithm is applied, and 

the name of the curve generated is “FusedTemp.” Figure 19 shows a plot utilizing the 

averaging fusion algorithm with the three sensor modules. 
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5.2.5 Database 

In addition to the software created to interact with the sensor network, a relational 

database was designed using SQL to provide a simple means of both storing and 

analyzing sensor data collected by the sensor modules.  The database created has been 

utilized both for local and web-based applications to manage sensor data. 

5.2.6 Implementation Details 

There are many internal components associated with the functionality presented in 

the BSUSM.  To provide the most reconfigurable implementation, the architecture was 

split into a layered and modular design.  The primary components include: user interface, 

graphing utilities, communications, database manager, data fusion processor, and CSV 

file generator.  As the graphical interface has already been discussed in some detail, the 

following will focus on the remaining components.   

5.2.6.1 Graphing Utilities 

The graphing features of the BSUSM are accomplished with the use of the 

ZedGraph graphing library [17].  This is an open source library that provides the base 

graphing mechanics that is driven by the database system, whether it be a local or remote 

database. 

5.2.6.2 Communications 

The communication layers are perhaps the most complex part of the BSUSM 

software components.  There are several communication layers that provide the ability to 

connect with the XBee® wireless networks, and receive data as it is collected as well as 

providing a means to control the individual sensor modules within the sensor networks. 

 The BSUSM utilizes a double buffering system to manage all of the data received 
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on the UART.  This helps to prevent inadvertent loss of data that could arise if the 

computer was unable to service the UART while it is processing previously received data.  

The processing of the data is a fairly significant task, as each packet of data that is 

received must be parsed to identify a wide range of details.  Some of the details within 

the data packets are the originating address of the sensor node, the packet length, the 

packet type, and the packet payload.  There are two primary communication layers: 

ZigBee® XBee®, and payload processing.   

The XBee® radio’s communication protocol provides many different packet 

types, which aid in the identification and processing of the packets as they move through 

the sensor network.  These packets range from XBee® modem status indicators (e.g., 

“modem is associated with the network” or “modem has been reset”) to actual data 

packets which carry sensor measurement data.  Thus, for managing this area of 

identification and processing the BSUSM utilizes a packet handler layer.   

The packet handler assembles packets by “pulling” data off of the UART buffer 

and testing for packet type and packet integrity.  Once a packet has been formed, an event 

is raised to notify upper layers of the packet and allow the packet payload to be 

processed.  Some packets (such as status packets) may not cause events to be raised if the 

packet handler has a known response to such a packet.  Receipt of corrupt packets is also 

handled by raising an event to notify higher layers of the problem.  

An additional responsibility of the packet handler is to extract and store the active 

association of sensor identification numbers and sensor node network addresses.  This 

allows other entities to request the network address of a sensor module without having to 

broadcast a request on the network.  This is accomplished by maintaining a hash table 
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that maps sensor module identification numbers to their respective address. 

The packet payload processing layer parses the ASCII string packets in the format 

identified in Figure 7. The data processor extracts the key-value pairs utilizing the regular 

expressions library provided in C#.  Once a packet payload has been identified as either 

an identifier packet or a measurement packet, an event is raised to pass the data to the 

database and plotting layers. 

The final communications module resides in managing two-way messaging with 

the sensor nodes in the network and the BSUSM.  To improve communications reliability, 

all messages sent by the BSUSM require the target sensor module to return an 

acknowledgement in response.  The response may be the requested data, or it may be 

simply an acknowledgement if no data was requested from the sensor node.   

The two-way communications module is event driven.  When a message is sent 

out to a sensor module the calling module registers a callback.  At the time an 

acknowledgement is received from a sensor node, the callback is activated to notify the 

original software module that registered it. The packet handler works closely with the 

two-way communications module to allow processing of packets that are related to two-

way communications.  The messages are tracked in the two-way communications module 

by a packet identification number that is assigned when the packet is created and echoed 

by the sensor module in reply to the BSUSM.  The callback registration uses the packet 

identification number as a key to a hash table containing all outstanding callbacks. Thus, 

when a response is received from a sensor node, it can be tied to the callback function 

that was registered. 
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5.2.6.3 Database Manager 

The database manager module provides database connectivity by supplying a 

generalized API for the BSUSM to interact with database systems.  This allows the 

underlying database to be easily modified without changing any other part of the 

application.  Thus, the BSUSM can be configured to utilize an online database or a local 

one by simply making changes within the database manager module. The database 

manager module and the graphing utilities closely communicate to provide plots of data 

as it is added to the database. 

5.2.6.4 CSV File Generator 

The CSV file generator module provides a way to export database data to a 

comma separated value file format.  This format was chosen as it is easily imported to 

many spreadsheet applications, including Microsoft Office.  One of the primary benefits 

of this module is that it allows for fast, in-memory modification of all the data before 

committing to the file system. 

5.3 Sensor Network Simulation 

 In an effort to better understand the detection of patterns within large sensor grids, 

a sensor network simulator was created.  This provided a consistent way to test 

algorithms within the BSUSM software as well as a means to test very large sensor 

networks, which would be impractical to create either due to cost or setup complexity.  

The primary focus of the research done under the FAA funding has been environmental 

sensing, and as such, the simulator was designed principally to simulate environmental 

contamination diffusion through an area.  The simulator allows users to specify many 

parameters such as the contamination wave vector, wave properties, sensor grid size and 
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spacing.  The output of the simulator is sensor measurement packets of the same type 

normally generated by the sensor modules as well as a visualization tool to allow the user 

to view the progress of the simulation.  The simulated sensor measurement outputs can be 

directed to a file, a console window, or an XBee® radio.  Figure 20 and Figure 21 show 

the output of a simulation with an impulse wave of a finite width moving through a four-

by-four grid of sensor modules. 

 

Figure 20: Sensor Simulation Console Output 

 

Figure 21: Sensor Simulation Graphical View 
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The “Wave Visualization” window shown in Figure 21 indicates the progress of 

the wave (vertical bar) as it moves from left to right through the sensor nodes (numbered 

squares), while the console shown in Figure 20 displays some of the simulated sensor 

packets as they are generated.  Each virtual sensor module operates within its own 

execution thread to provide a measure of realistic autonomy.  The simulation can also be 

configured to independently adjust each virtual sensor node’s operating properties such as 

the measurement interval.  The simulation software is discussed in further detail in 

Chapter 7. 
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CHAPTER 6: TIME SYNCHRONIZATION  

6.1 Necessity of Time Synchronization 

 Time synchronization of computer systems has been of interest since computers 

were first connected to one another.  It is an old problem, but one of great importance 

none the less.  While time synchronization within a collection of computing systems 

connected via wires has been addressed at great length, many of these techniques are not 

applicable when the computing systems are connected via wireless links [18].  This is 

because the network topology is not as uniform or as reliable.  In this chapter, some of the 

various time synchronization techniques for wireless sensor networks will be explored.  

Additionally, the currently implemented clock synchronization technique in our system 

will be described and analyzed. 

6.2 Network Time Protocol  

 Perhaps one of the most pervasive time synchronization protocols in use today by 

computer systems is Mills’ Network Time Protocol (NTP).  Whereas NTP is highly 

effective in typical computer networks, it does not have features that are conducive to 

wireless sensor networks.  This is because NTP and similar algorithms make assumptions 

about the network and hardware environment that are not necessarily true in wireless 

sensor networks, such as: 

• The network can be continuously monitored for time data 

• The CPU is generally free to manage time synchronization utilities 
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• The network is continuously available for sending time data 

The primary issue with these assumptions is the energy required to maintain a continuous 

network connection on a likely battery powered-device [19].  Since the CPU and radio in 

wireless sensor systems may be put into a sleep mode for energy savings, neither the 

network nor the CPU can be guaranteed to be available to manage time synchronization. 

6.3 Single-Pulse Synchronization 

 One of the simplest techniques for time synchronization is implemented by 

periodically broadcasting a time reference to all nodes in the network.  This technique, 

known as single-pulse synchronization, can effectively provide synchronization in 

wireless networks in a star configuration.  Assuming that the latency of the nodes 

connected to the coordinator is similar (a safe assumption due to the homogeneous nature 

of the sensor nodes in the network), the resulting synchronization error will also be 

comparable.  This technique also requires the wireless network to support multicasting, 

because the synchronization pulse must be received by all members of the network 

simultaneously for it to be effective.  We expect that latency in the receipt and processing 

of the time broadcast at each of the sensor nodes will result in phase error in the clock 

equal to the total latency and processing time.  On the other hand, since we are dealing 

with homogeneous hardware and software on each of the sensor nodes, the latency is 

likely very similar between nodes.  This feature allows the sensor nodes to maintain time 

agreement with significant accuracy. 

 The single-pulse synchronization technique has limited effectiveness when the 

network involved has a mesh (and thus multi-hop) architecture.  If there are nodes in the 

network that are more than one hop away, the latency will be greater for those nodes, and 
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the time associated with the indirect path must be accounted for to achieve low 

synchronization error. 

 Despite the limitations of this technique, its primary benefit is that it requires little 

processing power or special hardware to be implemented.  Also as described above, node-

to-node time synchronization can be achieved with a small portion of phase error when 

similar hardware and software is present on each of the sensor nodes. 

6.3.1 Performance Characteristics 

As single-pulse synchronization was implemented in our system, we were able to 

directly characterize its performance.  The synchronization performance characterization 

required a specialized configuration of the sensor nodes and computer time reference.  

Capturing precise timing between events that occur in software can be a tricky prospect, 

especially when the events to be measured occur on multiple autonomous entities.  In this 

case, we needed to capture the time from the transmission of a packet from a computer to 

the receipt of the packet at multiple sensor nodes.  Additionally, it was important to 

characterize the time required to process the packets at the sensor node to gain an 

understanding of all contributors to latency.  To accomplish effective timing of such 

varied events on different entities, a collection of digital outputs were configured on each 

entity and monitored via a single oscilloscope to provide relative time differences on a 

common time scale.  Each of the sensor nodes utilized two digital outputs.  The first 

would be toggled high when a packet was received and toggled low when an 

acknowledgement was sent back in response to the packet received.  The second digital 

output was configured to be toggled high when a time packet was recognized and low 

when the new time was successfully stored to the real-time clock.  Figure 22 shows the 
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test configuration. 

 

Figure 22: Single-Pulse Synchronization Test Configuration 

The outputs of the sensor nodes were configured from unused GPIO pins.  For the 

computer (which does not normally have user accessible GPIO) a parallel port was 

configured to provide a user software controlled GPIO.  Controlling code for both the 

sensor nodes and the computer was added to adjust the state of the I/O pins when the 

software reached the states of interest.  It should be noted that since the computer system 

employed for this testing was utilizing a non-real-time preemptive operating system 

(Windows XP), we cannot depend on the control timing of the I/O pin to be deterministic.  

While this does not invalidate the test, it does potentially affect the measured initial 

response time, i.e., the time taken for the sensor nodes to acknowledge the receipt of a 

time packet following the transmission of the time packet from the computer.  Figure 23 

shows the result of the test.   
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Figure 23: Single-Pulse Synchronization Timing 

As expected, it was found that there is potentially significant (depending on the 

application) phase error with respect to the time reference.  In this case, the time from 

when a time synchronization packet is transmitted at the computer to when the sensor 

nodes apply the new time is 414 ms.  Since our current hardware is capable of one second 

resolution, the measured phase error is smaller than what can be represented on the 

sensor nodes’ real-time clock hardware.  While phase error was present with respect to 

the time reference, there was good agreement between sensor nodes.  Figure 24 shows the 

measured phase error between sensor nodes. 
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Figure 24: Time Phase Error between Sensor Nodes 

 As seen in Figure 24, the phase error between sensor nodes within the network 

was found to be 58 µs.  This raises the point that knowing the true wall time may not be 

as important as knowing the ordering of the events in the system.  When there is small 

phase error between sensor nodes, there can be general consensus about the ordering of 

events.  In some applications, absolute time may be completely unimportant if the 

relative time between all events is known.  An extreme implementation of relative time 

can be achieved through Lamport’s virtual clock system in which the clock state does not 

refer to time as we know it, but ticks only as events occur with respect to the system [20]. 

 One final area that single-pulse synchronization does not address is the inherent 

differences in the time keeping oscillator frequency on each of the sensors.  Even if the 
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clocks are synchronized after a reference pulse, they are unlikely to remain so for any 

significant duration.  This synchronization lifetime issue comes from the inherent 

irregularities in crystal oscillators.  Temperature and vibration can affect the frequency 

generated by crystal oscillators.  It is important to note that there are algorithms that can 

manage this issue and adjust to compensate for any frequency skew.   As a result of the 

skew, successful time synchronization would depend on how often the clocks are 

synchronized.   

 When accurate relative time between sensor nodes is not enough and oscillator 

skew must be managed, there are several time synchronization techniques available for 

use in a wireless sensor network that can provide better time synchronization than the 

single-pulse method that we have implemented.  These techniques may require more 

powerful hardware or, at the very least, high resolution time keeping hardware.  In the 

following section we will discuss another potential algorithm that would result in 

significantly better synchronization: reference broadcast synchronization.  

6.4 Reference Broadcast Synchronization 

 Reference Broadcast Synchronization (RBS) is an algorithm developed by Elson 

et al. in [21] and others.  This algorithm provides an interesting divergence from the most 

commonly used algorithms in that it does not require individual nodes to change their 

respective clocks during synchronization, but rather requires only that the nodes maintain 

the relative time scales associated with other members of the network.  In this way, a 

sensor node may convert its local time to any other timescale within the network.  This 

idea could greatly benefit the time keeping in our sensor system as a large portion of the 

processing time required to synchronize the clock on a particular sensor node was related 
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to changing the physical time on the RTC hardware. 

 RBS works with multiple messages passed between every node within the 

network.  The algorithm is a multi-setup process as follows: 

1. A sensor node or other device (perhaps with an absolute timescale) broadcasts m 

packets each of which is received nearly simultaneously at each node in the 

network (assuming single-hop network architecture) 

2. Each of the n receiving nodes records the time according to its local internal clock 

3. Each receiving node exchanges time of arrival with all other nodes in the network 

4. Each node i calculates its offset to node j by taking the average of the time 

differences associated with each of the m reference broadcasts as shown in 

Equation 6.1: 

  (6.1) 

This algorithm does not account for clock skew as discussed earlier.  Oscillator clock 

skew can be compensated for by using a least-square linear regression rather than an 

average for calculating the offsets [19].    

 Multi-hop network architectures can be accommodated by having multiple beacon 

transmitters that are within range of different domains (areas of the network that require 

at least one additional hop to be reached).  In this way, the algorithm is essentially the 

same in that each beacon node broadcasts and all nodes within range of the broadcast and 

each other exchange information.  Since some nodes will receive a broadcast from 

multiple beacon nodes, each logical domain will have enough information to build a 

timescale that relates it to all other domains. 
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6.5 Summary 

As a first degree solution, we have implemented a single-pulse synchronization 

system.  While this system does not provide the best synchronization possible, it does fit 

well with the current hardware precision.  In future work, higher performance 

synchronization will need to be implemented to allow for applications that must correlate 

measurement data across the network on an absolute time scale.  As we have shown, 

node-to-node synchronization is on the order of 58 µs, which is an accuracy that cannot 

be truly utilized due to the low resolution nature of the timekeeping hardware on the 

system.  It should also be noted that while it has not yet been implemented, it would be 

possible with the current hardware to utilize a virtual real-time clock by using an internal 

hardware timer on the microcontroller and extracting the wall time from the hardware 

real- time clock.  This scheme would offer a significant performance improvement over 

the currently implemented method, because there would not be latency associated with 

sending commands to the real-time clock hardware.  As soon as a time packet is received 

and identified, there would be little latency associated with updating a register within the 

microcontroller. 
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CHAPTER 7: SENSOR DATA FUSION AND APPLICATIONS 

7.1 Sensor Data Fusion 

 While a complete discussion of sensor data fusion is beyond the scope of this 

thesis, it is important to outline some of the issues involved when attempting to combine 

large quantities of sensor data to make inferences about an event or phenomenon.  Sensor 

data fusion can be leveraged in several ways; it may be used for data aggregation to 

reduce large data sets into a more manageable or concise set, to improve the accuracy of a 

single measurement variable utilizing a large set of sensor information that is known to 

be measuring the same phenomenon, or to provide a means to utilize multiple types of 

sensors to provide a more complete picture of the environment being monitored.  In this 

section, we will discuss some of the issues involved in leveraging sensor data fusion. 

 As discussed in Section 1.2, much research has been applied to formalizing the 

terminology and processes involved with multi-sensor data fusion.  This was originally 

inspired by funding from the Department of Defense (DoD) to aid in the use of multi-

sensor data fusion in military systems, such as target tracking systems that must utilize a 

variety of tracking sensors in concert.  With the need for military researchers to 

communicate effectively with regard to data fusion processes, the Joint Directors of 

Laboratories (JDL) Data Fusion Working Group was commissioned to develop a process 

model that could be used to effectively outline the various aspects of data fusion.  Figure 

25 shows a graphical representation of the JDL model. 
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Figure 25: JDL Data Fusion Model [1] 

 

 As seen in Figure 25, the model outlines four levels (or processes) of data fusion 

as well as database resources utilized by each of these processes.  As we move across the 

figure from left to right we see the translation of the data from the raw sensor inputs to an 

interface for human interaction with the system through application of each fusion 

process.  In the JDL model, as outlined in the Handbook of Multisensor Data Fusion by 

Liggins et al. (2009), these processes are defined as follows: 

 Level 0 processing (sub-object data association and estimation) is aimed at 

combining pixel or signal level data to obtain initial information about 

an observed target’s characteristics. 

 

 Level 1 processing (object refinement) is aimed at combining sensor data 

to obtain the most reliable and accurate estimate of an entity’s position, 

velocity, attributes, and identity (to support prediction estimates of 

future position, velocity, and attributes). 

 

 Level 2 processing (situation refinement) dynamically attempts to develop 

a description of current relationships among entities and events in the 

context of their environment. This entails object clustering and 

relational analysis in such as force structure and cross-force relations, 

communications, physical context, etc. 
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 Level 3 processing (significance estimation) projects the current situation 

into the future to draw inferences about enemy threats, friend and foe 

vulnerabilities, and opportunities for operations (and also consequence 

prediction, susceptibility, and vulnerability assessments).  

 

 Level 4 processing (process refinement) is a meta-process that monitors 

the overall data fusion process to assess and improve real-time system 

performance.  This is an element of resource management. 

 

 Level 5 processing (cognitive refinement) seeks to improve the interaction 

between a fusion system and one or more user/analysts. Functions 

performed include aids for visualization, cognitive assistance, bias 

remediation, collaboration, team-based decision making, course of 

action analysis, etc [22]. 

  

What is apparent by the definition above (though the definition is somewhat focused on 

military applications), is that data fusion is a multi-layered process of refining the sensor 

inputs,  first by collecting the raw data, then characterizing that data in the context of the 

some defined parameters, and finally applying algorithms to make judgments about the 

characteristics that were identified.  With so many aspects deeply related to specific 

applications, it is clear that providing a general purpose framework for utilizing data 

fusion is no small undertaking. 

 There are many ways to approach the characterization level of data fusion.  Each 

method has a different processing requirement to analyze the data.  Thus, in a wireless 

sensor system that is typically battery-powered, only minimal processing is possible at 

the sensor nodes.  Some of the techniques or methods of data fusion include: Bayesian 

and Dempster-Shafer inference, pattern recognition through signal processing, fuzzy 

logic, and many others [23].  The choice of algorithm would be based on their fit with the 

application in question. 

 For sensor data fusion of different sensor types, there must be some objective or 
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query to be answered for which knowing the values of the various sensors in combination 

will allow the question to be answered.  For instance, in a sensor system monitoring air 

quality, “is the average particulate matter concentration abnormal, thus requiring an 

alarm?”  This question can not necessarily be answered by looking only at the particulate 

matter concentration of a single sensor or even the combination of all sensors in the area.  

Has a vehicle been detected near the sensor that is reading a high value? Is the measured 

average higher than is typical during this period of the day?  Questions of this nature can 

be leveraged by smart fusion algorithms to answer the original query with good certainty 

and a low false positive rate.  As has been said, the nature of the algorithm chosen to deal 

with such a query is highly dependent on the characteristics of the application.  In the 

above example, an algorithm would need to take into account the average concentration 

associated with a particular time of the day, compare the inputs from vehicle tracking 

with the time of the increased concentration, and then make a decision.  This process 

could be implemented with a neural network or fuzzy logic. 

 Sensor data fusion may require the spatial and/or temporal relationship of the 

sensors to be known to a good certainty.  With enough sensors located across an area, it 

becomes possible to infer the spatial or temporal dependence of a variable, and thus form 

gradient plots or scalar field visualizations to aid human observers in understanding the 

behavior of the variable being monitored.  Again, sensor data fusion can provide a means 

to identify information that would not be possible with any single sensor, if the 

phenomenon is sufficiently large.  Suppose a large network of sensors is spatially 

distributed over such an area.  Each sensor provides a binary yes or no reading of a 

phenomenon.  With the spatial relationships and the sensor readings known for each 
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sensor at a particular instant, it is then possible to determine the shape of the detected 

phenomenon – a task that would not be possible with a single sensor.   Figure 26 is an 

illustration that outlines the power of fusing multiple sensor inputs and its ability to 

characterize an entity in a way not possible with a single sensor. 

     

Figure 26: Characterization of an Entity through Data Fusion 

 As is seen in Figure 26 (left), even if the sensors (represented as black dots) were 

only capable of a binary, yes/no detection of a phenomenon (irregular shape), the 

combination of all of the sensor inputs provides a more complete view of the 

phenomenon, namely its size, shape, position and velocity.  With a single sensor 

configuration (right) the sensor is able to detect the phenomenon, but the concept of size, 

shape, position, and velocity cannot be directly extracted. 

 Coordination of the sensor modules requires tight time synchronization to allow 

identification of events.  As each sensor module detects a phenomenon, it is possible that 

more than one module will “see” the same change, and having time agreement among the 

sensor nodes allows events to be associated.  This is particularly important when we are 

interested in tracking a dynamic phenomenon and determining its velocity, etc. 

 In summary, each application must be examined to determine what type of 

information is required to be collected by the sensor network, and how that information 
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should be leveraged by fusion algorithms to extract the needed decision or notifications 

based on the collected information.  Our focus in this work has not been on the 

algorithms employed for data fusion, but rather on how the design of a system may lend 

itself to providing the information needed to apply such algorithms, and making an 

analysis system capable of incorporating fusion algorithms as the application dictates.  

7.2 Applications 

 One of the primary applications that our hardware design has been tested with is 

the environmental monitoring of airliner cabins.  Security issues and potential passenger 

concerns related to conspicuous unattended electronics within the airliner cabin 

environment have, thus far, prevented the use of the networking capabilities. However, 

due to the local flash storage, sensor nodes have been used for single point 

measurements.  There are many potential applications for a complete sensor data fusion 

framework.  Of particular interest for security applications, is the deployment of large 

sensor networks to monitor environmental contamination. Such systems could be used to 

determine parameters such as threat-level to health, contaminant concentration, and point 

of origin of contaminants. Additionally, such systems may provide an early warning 

system that causes an alert if measured parameters exceed a defined level.  The flexibility 

and portability of the hardware and firmware allow a wide range of contaminant sensors 

to be fitted to the system without re-engineering the sensor modules.  The interfacing 

software and network connectivity allow large sensor networks to be managed both from 

a data processing standpoint and sensor module control. 

 One additional aspect of this research has been to develop a means to characterize 

how this sensor framework could be used to determine the point of origin for diffusive 
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contaminants as in [24].  As experiments with diffusive contaminant sources over large 

sensor networks can be difficult to implement, particularly with repeatability, some work 

has been done to develop a sensor network simulator.  This allows repeatable experiments 

to test the framework for identification of diffusive sources.  Figure 27 shows a 

visualization produced by the simulator as a wave front moves through a sensor network 

of 16 sensor nodes.  Figure 28 shows the output of the BSUSM while it monitors sensor 

nodes 0, 5, 10, and 15 during the simulation.  As seen in Figure 28, there is a distinctive 

detection peak associated with each sensor node as an environmental change “moves” 

across the sensor network from top left to bottom right. The magnitude, spatial, and 

temporal relationships of the measurements would allow a data fusion algorithm to 

project the source and direction of the change.  While this research is in early stages, it 

may provide a means to characterize the effectiveness of data fusion algorithms before 

they are deployed in the field. 

 

Figure 27: Simulator Visualization of a Wave Front 
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Figure 28: Sensor Output Patterns during Simulation 

Clearly, there are many aspects of data fusion and its application.  Choosing 

algorithms on a case-by-case basis is necessary to take advantage of data fusion.  Our 

framework has been designed to provide the base level data collection components, data 

centralization through database connectivity, and some software extensions that allow 

algorithms to be applied as the data is collected.  In terms of application, much work is 

still needed to enable the complete characterization of environmental contaminants; 

however, many of the tools required are provided with the framework developed. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

8.1 Summary and Conclusions 

Many parameters were considered during the design and implementation of a 

sensor data fusion framework. Each component of the framework was designed with 

modularity and re-configurability as primary objectives to better enable its use in a wide 

range of applications.  The sensor module hardware was developed to reduce re-

engineering and simplify sensor changes or application retargeting.  This inexpensive 

hardware was leveraged to provide data collection capabilities normally only possible 

with more costly systems.  The developed software provides many of the necessary 

components for both raw data collection and the application of real-time analysis or 

fusion algorithms.  Additionally, the software provides data centralization through 

database connectivity to aid in applications that require significant data processing 

schemes that would not be possible on a single computer connected to the sensor 

network.  Time synchronization implemented in the system provides a first degree 

solution for smaller networks in which mesh architecture is not needed. Further work in 

this area is planned.  The framework outlined by this thesis has been developed to 

provide a solution to many sensing applications, such as those for security or scientific 

research.   
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8.2 Future Work 

Many aspects of a general purpose framework implementation were addressed 

within this work; however, there are other aspects that have stood out during the course 

of this research that seem important to pursue.  These areas include the need for some 

further hardware refinements, expansion of time synchronization capabilities, and further 

field testing.   

8.2.1 Hardware Improvements 

While the sensor module hardware developed provides significant functionality, 

there are areas that could be improved or extended.  Improvements of particular note 

include the ZigBee® radio platform and microcontroller performance.   

As discussed in Section 4.2, the current radio utilized in the system uses a self 

contained radio system that offloads much of the processing required to maintain the 

network communications.  While this offers benefits to low power microcontrollers (and 

is needed for the microcontroller currently used in our system), it also creates a 

significant contribution to added communications latency as the data moves through a 

buffer on the ZigBee® module, and then is transferred via UART to the microcontroller.  

When high accuracy time synchronization is required, this scheme does not provide an 

ideal solution.  Perhaps a better solution would be to have the microcontroller directly 

control the radio chipset as has been done in other systems, discussed in Section 2.2.  The 

radio issue goes hand-in-hand with the limitations of the microcontroller platform.    

The radio system was, in part, chosen based on its ability to completely manage 

the networking tasks. However, if a higher performance microcontroller was used in the 

system, these network tasks could easily be managed along with the normal CPU 
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responsibilities.  Many new microcontrollers (particularly 32-bit versions) offer 

peripheral direct-memory-access (DMA) controllers, which allow the microcontrollers to 

multi-task during peripheral I/O, even though there is only a single CPU execution thread 

[25], [26].  These processors provide significantly greater raw processing power at 

similar or lower power consumption than our current microcontroller.   While this seems 

counter-intuitive, it is simply a result of the progression of technology since our system 

was originally designed.  Moving to a 32-bit processor in our system would provide 

several benefits.  It would enable direct management of the network stack, provide 

improvements in timekeeping resolution (higher CPU clock speeds), provide improved 

raw computing power for sensor node centric data processing, and maintain or improve 

the power consumption requirements of the CPU. 

8.2.2 RBS Implementation 

As discussed in Section 6.3, the single-pulse synchronization technique 

implemented in our system is not scalable or accurate enough for some applications, 

particularly those that rely on precise reference to wall time or require significant use of 

multi-hop network architecture. Some of the latency issues could be solved by some 

changes in the way time is managed on the system, e.g. internal hardware timers. 

Nevertheless, multi-hop synchronization needs to be more fully supported, a task (as 

outlined in Section 6.4) that can be addressed by reference broadcast synchronization. 

8.2.3 Advanced Sensor Node Operating System 

While the firmware developed for our sensor module hardware is modular and 

reconfigurable, there are some areas that could be improved.  Perhaps most notable 
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would be the addition of a real-time multitasking environment.   There are many ways to 

implement multitasking on a microcontroller; however, each has varied requirements in 

terms of the microcontroller’s performance and characteristics.  Our current system 

manages multiple tasks by establishing interrupts that notify the main execution thread to 

service another tasks.  This process works without problems when the number of tasks is 

small and each task takes a small amount of time. However, outside of those conditions, 

it is possible for a single task to require too much time of the main execution thread, and 

thus prevent other tasks from being serviced in a timely fashion.  These issues can be 

solved, in part, by using a real-time preemptive operating system.   

One such operating system that meets many of our design requirements is Nano-

RK, which was developed by Carnegie Mellon University [27].  According to their 

documentation, the operating system provides a “reservation based real-time operating 

system (RTOS)”  “…with multi-hop networking support for use in wireless sensor 

networks.[28]”   This operating system provides many features specifically targeted to 

wireless sensor networks including: 

• Classical Preemptive Operating System Multitasking Abstractions  

• Real-Time Priority Based Scheduling  

• Built-in Fault Handling  

o Task Timing Violations  

o Stack Integrity  

o Unexpected Node Restarts  

o Resource Over-Use  

o Low Voltage Detection  

o Watchdog Timer  

• Energy Efficient Scheduling based on a-prior task-set knowledge  

• Small Footprint (<2K RAM, 16K ROM, including link layer) [28] 

Implementation of this operating system in our sensor modules would require a different 

microcontroller platform that supports software control of the global stack pointer to 
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provide task context switching (a feature that is lacking in the PIC18F8722, which uses a 

hardware stack) [5]. 

The Nano-RK operating system supports power management, an area that we 

would also like to improve in our system.  While our current system supports powering 

down sensors when needed, the architecture does not provide significant power savings 

techniques with regard to the communications system.  This is mainly a software issue, as 

both the microcontroller and the ZigBee® radio are capable of entering into a low-power 

sleep mode.  As pointed out in [12], smart deactivation of the radios requires close time 

synchronization among sensor nodes to schedule when radios should be enabled or 

disabled.  This insures that there are not collisions with data packets and that the sensor 

nodes continue to have high availability.  

8.2.4 Field Testing 

It seems clear that there is no substitute for real-world testing. After making some 

of the aforementioned improvements, we hope to utilize our system in various 

applications.  Initially, this system is slated to be applied to a new study on the 

characterization of airflow within airliner cabins.  Another application of interest is an 

early warning system for detection of biological or chemical contaminates.  As discussed 

in Section 7.2, this application provides many issues to be solved that fit well with the 

research we have already started, e.g., the simulator that is being developed for testing the 

identification of contaminant diffusion patterns and locating point of origin.   Further 

work must be done to enable characterization of contaminants that would allow 

application of high-level data fusion algorithms for notifying authorities of potential 

problems.  
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