

A WIRELESS SENSOR DATA FUSION FRAMEWORK

FOR CONTAMINANT DETECTION

by

Joshua Kiepert

A thesis

submitted in partial fulfillment

of the requirements of the degree of

Master of Science in Computer Engineering

Boise State University

Summer 2009

© 2009

Joshua Kiepert

ALL RIGHTS RESERVED

iii

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Joshua Kiepert

Thesis Title: A Wireless Sensor Data Fusion Framework for Contaminant Detection

Date of Final Oral Examination: 25 June 2009

The following individuals read and discussed the thesis submitted by student Joshua

Kiepert, and they also evaluated his presentation and response to questions during the

final oral examination. They found that the student passed the final oral examination, and

that the thesis was satisfactory for a master’s degree and ready for any final modifications

that they explicitly required.

Sin Ming Loo, Ph.D. Chair, Supervisory Committee

Robert Davidson, Ph.D. Member, Supervisory Committee

Arvin Farid, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Sin Ming Loo, Ph.D., Chair of the

Supervisory Committee. The thesis was approved for the Graduate College by John R.

Pelton, Ph.D., Dean of the Graduate College.

iv

For My Wife

v

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Dr. Sin Ming Loo for both his guidance and

friendship throughout the course of this research and academic pursuits.

 Additionally, I would like to thank all of the people who have been involved with

this research, as it would not have been possible without their significant contributions:

Jon Bills, Mike Owen, Mike Pook, Derek Klein, Arlen Planting, Mike Martin, and

Dereck Rasmussen.

 Finally, I would like to thank my family for their love and support during this

process and always, and in particular, my wife Araya, who has supported and cared for

me despite the long hours I have been locked away working on my academic career. My

thanks seem hardly sufficient to convey my heartfelt appreciation for her love and

support, which, in no small part, have been responsible for allowing me to complete this

thesis.

This work is funded by FAA Cooperative Agreement No. 04-C-ACE-BSU and 07-

C-RITE-BSU
1
.

1 Although the FAA has sponsored this project, it neither endorses nor rejects the findings of this research.

The presentation of this information is in the interest of invoking technical community comment on the

results and conclusions of the research.

vi

ABSTRACT

A Wireless Sensor Data Fusion Framework for Contaminant Detection

Joshua Kiepert

Master of Science in Computer Engineering

In the search for more effective instruments to collect data for the identification of threats

to security, health, and safety, new tools must be designed to meet the challenges of a

diverse set of possible applications. The extensive range of potential applications raises

the need for a general purpose system capable of addressing a wide variety of deployment

environments. This thesis focuses on a wireless sensor network framework for collecting

environmental data in an effort to develop a sensing solution that fits within many design

spaces. The framework includes reconfigurable wireless sensor node hardware, firmware,

and software for interfacing sensor networks for upstream data aggregation and sensor

data fusion. The wireless sensor modules utilize mesh network architecture to allow low

power radios to be effective even with low sensor module dispersion density, or in

environments that have obstructions which prevent line-of-sight communications. In the

current implementation, the software is designed to allow a computer to be used to

monitor all sensor module activities as data is collected, request information as needed,

and forward collected data to a database system for further analysis. It also supports

software modules to allow different sensor data fusion and analysis algorithms to be

applied to the collected data in real-time.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT ... vi

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xii

CHAPTER 1: INTRODUCTION ... 1

1.1 Wireless Sensor Networks .. 1

1.2 History of Sensor Data Fusion .. 2

1.3 General Purpose Hardware ... 3

1.4 Software for Sensor Data Fusion .. 3

1.5 Contributions ... 4

1.6 Overview ... 6

CHAPTER 2: PREVIOUS WORK AND EXISTING TECHNOLOGY 7

2.1 Previous Research ... 7

2.2 Existing Technology .. 9

2.2.1 Crossbow Technologies .. 9

2.2.3 Firefly WSN Platform .. 10

CHAPTER 3: SENSOR DATA FUSION FRAMEWORK ... 11

3.3 Sensor Node (level 1 to 4) ... 13

3.4 Communication and Interface (level 5 to 6) ... 14

3.5 Database, Visualization, and Fusion (level 7 to 9) .. 14

viii

CHAPTER 4: HARDWARE DESIGN ... 16

4.1 General Purpose Sensor Modules ... 16

4.2 Wireless Capabilities ... 16

4.3 Modular and Reconfigurable Design .. 17

4.4 Processor ... 18

4.5 Power .. 19

4.6 Sensor Integration ... 19

4.7 Communications ... 20

4.8 Data Storage and Transmission ... 21

4.9 Time Management ... 23

4.10 Systems Integration ... 23

CHAPTER 5: SOFTWARE DEVELOPMENT .. 26

5.1 Sensor Module Firmware .. 26

5.1.1 Implementation Details .. 26

5.2 Computer Software ... 34

5.2.1 Plotting ... 34

5.2.2 Data Sink .. 35

5.2.3 Sensor Module Control .. 35

5.2.4 Real-Time Data Fusion .. 37

5.2.5 Database ... 39

5.2.6 Implementation Details .. 39

5.3 Sensor Network Simulation .. 42

CHAPTER 6: TIME SYNCHRONIZATION ... 45

ix

6.1 Necessity of Time Synchronization .. 45

6.2 Network Time Protocol ... 45

6.3 Single-Pulse Synchronization ... 46

6.3.1 Performance Characteristics ... 47

6.4 Reference Broadcast Synchronization .. 51

6.5 Summary ... 53

CHAPTER 7: SENSOR DATA FUSION AND APPLICATIONS 54

7.1 Sensor Data Fusion ... 54

7.2 Applications .. 59

CHAPTER 8: CONCLUSIONS AND FUTURE WORK .. 62

8.1 Summary and Conclusions .. 62

8.2 Future Work .. 63

8.2.1 Hardware Improvements .. 63

8.2.2 RBS Implementation .. 64

8.2.3 Advanced Sensor Node Operating System 64

8.2.4 Field Testing ... 66

REFERENCES .. 67

x

LIST OF FIGURES

Figure 1: Wireless Sensor Module Design Space ... 5

Figure 2: Star Network Configuration .. 8

Figure 3: Previous Sensor Node Prototype ... 8

Figure 4: Overall System Architecture .. 11

Figure 5: Wireless Sensor Data Fusion Framework .. 13

Figure 6: Sensor Module System Board ... 18

Figure 7: Example Identifier and Measurement Strings ... 22

Figure 8: Original Sensor Module Design, (a), vs. New Design (b) 24

Figure 9: Latest Sensor Module Hardware Design ... 25

Figure 10: Firmware Flow of Control (Simplified) .. 27

Figure 11: Firmware Layered Architecture ... 28

Figure 12: Sensor Table Structure ... 29

Figure 13: Sensor Identify Function ... 31

Figure 14: Sensor Measure Function .. 32

Figure 15: Top Level Identify and Measure Functions ... 33

Figure 16: BSU Sensor Monitor Data Plot ... 35

Figure 17: Two-Way Communication and Time Synchronization 36

Figure 18: Real-Time Sensor Data Fusion Dialog .. 37

Figure 19: Average Temperature Fusion Algorithm .. 38

Figure 20: Sensor Simulation Console Output ... 43

xi

Figure 21: Sensor Simulation Graphical View .. 43

Figure 22: Single-Pulse Synchronization Test Configuration ... 48

Figure 23: Single-Pulse Synchronization Timing ... 49

Figure 24: Time Phase Error between Sensor Nodes .. 50

Figure 25: JDL Data Fusion Model [17] ... 55

Figure 26: Characterization of an Entity through Data Fusion ... 58

Figure 27: Simulator Visualization of a Wave Front ... 60

Figure 28: Sensor Output Patterns during Simulation .. 61

xii

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BSUSM Boise State University Sensor Monitor

CO Carbon Monoxide

CO2 Carbon Dioxide

CSV Comma Separated Values

DoD Department of Defense

EEPROM Electrically Erasable Programmable Read-Only Memory

FAA Federal Aviation Administration

GPIO General Purpose Input/Output

GPS Global Positioning System

I/O Input/Output

I
2
C Inter-Integrated Circuit

IDC Insulation Displacement Connector

IFFN Identification-Friend-Foe-Neutral

ISM Industrial, Scientific, and Medical

JDL Joint directors of Laboratories

MMSP Master Synchronous Serial Port

NTP Network Time Protocol

PDA Personal Data Assistant

PLL Phase-Locked Loop

PWM Pulse Width Modulation

RBS Reference Broadcast Synchronization

SD Secure Digital

SPI Serial Peripheral Interface

SQL Structured Query Language

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver/Transmitter

WSN Wireless Sensor Node

WWVB National Institute of Standards and Technology time synchronization

radio station

1

CHAPTER 1: INTRODUCTION

1.1 Wireless Sensor Networks

As science advances there is a continual need to provide new tools to study the

world around us. Wireless technology, sensor data fusion, and microelectronics are just a

few of the components that can be used to form tools, which may provide a large range of

possible advancements. Whether it is an early warning system for the detection of

dangerous chemicals or a portable sensing system for diagnosing problems within

complex machinery, the possible applications seems limited only by one's imagination.

 Wireless sensor networks are comprised of many individual wireless sensor

nodes (WSN). Each node is a small embedded system that includes a microcontroller,

sensors, and a radio system that allows the nodes to communicate with each other and the

outside world. This thesis focuses on a wireless sensor network framework for collecting

environmental data in an effort to develop a sensing solution that fits within many design

spaces. It includes the design and implementation of a highly portable, reconfigurable,

and wireless sensor network for collecting environmental data over large areas, and in

particular, the “back-end” interfacing, delivery, and storage such that different types of

sensors can be interfaced to the sensor modules. With the use of different sensors based

on different (orthogonal sensing technologies) detection technology, the data collected

can be transferred to a central location and provide enough information for

characterization and data fusion processing.

2

This system, additionally, utilizes mesh network architecture to allow low power

radios to be effective even with low sensor dispersion density or in environments that

have obstructions which prevent line-of-sight communications. The software

framework is designed to allow a computer to be used to monitor all sensor activities as

data is collected as well as allowing a computer to request information as needed.

1.2 History of Sensor Data Fusion

Sensor data fusion, as it applies to this thesis, is the process by which many sensor

inputs are combined and processed by algorithms to provide an improved representation

of the data. “Improved” may mean more accurate, more complete, or more reliable. The

goal of sensor data fusion is to provide a dataset that can more easily be processed and

comprehended by human observers.

Sensor data fusion research was started by the U.S. Department of Defense (DoD)

when it began funding research for many different applications. Some of the research

projects included: automatic target recognition using many diverse sensors (radar,

satellite, etc) in concert for identification-friend-foe-neutral (IFFN) systems, target

tracking systems, situation assessment, and others. One of the results of this research

was the formation of the U.S. Joint Directors of Laboratories (JDL) Data Fusion Working

Group in 1986 to develop common terminology to describe different processes within

data fusion applications. This eventually led to the design of a data fusion model that

could be used as a common basis for discussion of many aspects of data fusion tools and

processes. Work in data fusion has since expanded to include many non-military

applications as well, some of which include robotics, condition-based maintenance of

structures or machines, medical diagnoses through medical imaging, and environmental

3

monitoring [1].

 There are several ways data fusion can be used in concert with multi-sensor

systems. Data fusion algorithms may 1) directly fuse sensor data to provide data

aggregation and thus reduce large data sets to a more easily managed collection, 2) fuse

sensors to provide a virtual sensor entity on which higher level queries can be leveraged,

or 3) utilize a wide range of common sensor inputs to make inferences or decisions that

would not otherwise be possible by analyzing any of the sensors individually.

 The work of this thesis focuses on the design and implementation of a framework

(hardware and software) that can provide a means to apply data fusion algorithms both

for data aggregation and for making inferences and decisions based on a wide range of

data from wireless sensor networks. With these goals in mind, it is necessary to design

the framework to support many different types of sensors and provide as much flexibility

as possible with regard to managing the data collected from sensor networks.

1.3 General Purpose Hardware

With universal applications in mind, it was important to build a system that

utilizes standard device communication protocols, device power supply voltages, data

storage formats, and standard general communication protocols to interact with outside

computer systems. In addition to the general purpose electronic design, a layered and

highly abstracted design was required in the embedded operating software to enable

control of any type of hardware that may be attached to the system.

1.4 Software for Sensor Data Fusion

By its very nature, sensor data fusion may require a large amount of processing to

4

identify abnormal events and help reduce false positives. The system described in this

thesis is designed to store received data in a database, which allows high powered

computing systems to analyze the collected data as it becomes available. With the data

available and accessible at one location, diffusion and pattern algorithms can process the

data in near real-time, which may aid the detection of contaminants.

Aside from the hardware and embedded software, the work of this thesis has also

been the development of software for computers to not only serve as a data sink for

networked sensor modules, but also provide a means to do real-time data analysis. The

software also allows fusion of sensor data to help users of the system to better identify

important information the sensor system has collected.

This goal has in turn resulted in the need for simulation software to help better

characterize the fusion algorithms employed without setting up experiments, which

would be difficult to control particularly when the testing environment must be spatially

large.

1.5 Contributions

The primary contribution of this work is the implementation of a general purpose

framework for sensor data fusion applications. Much of the scientific community has

focused on either the theoretical design of such a system or on creating very small sensor

modules that are capable only of managing a limited collection of sensors, the idea being

to minimize the cost of the sensor modules to allow for deployment of the maximum

number of sensor modules. The other end of the spectrum is to utilize a few highly

capable sensor modules that have a limited number of high performance (and thus

expensive) sensor modules to accurately monitor a modest area. As was pointed out in

5

[2], with a sufficient number of low resolution sensors, a larger coverage area is

achievable at the same cost, which can offset the benefits of high resolution sensor

modules. Our focus, in contrast, has been to look at the middle ground of this design

space. Is it possible to provide a sensor module design and supporting framework that

offer an inexpensive solution that has good capabilities? We believe, and will show, that

it is possible to achieve most of the benefits of both inexpensive and expensive, high

resolution sensor modules. Figure 1 shows a graphical representation of the design space

we are targeting.

Figure 1: Wireless Sensor Module Design Space

As depicted in Figure 1, the design space of sensor module hardware falls into

several categories. In the far left area we have designs that range from limited and

inexpensive to expensive and capable, with few sensors. The far right area represents

sensor nodes that are expensive, possibly with several high resolution sensors. Our

design is targeted to the center area of the figure, in that it is designed to be easily

configured for applications that require either only low resolution sensors or high

resolution sensors. This provides a means to adapt the set of sensors installed on a sensor

6

node to meet the specific application requirements without re-engineering the hardware

or firmware of the sensor module
2
.

1.6 Overview

In the following chapters we will discuss many of the topics surrounding sensor

data fusion platforms as it applies to our work. In Chapter 2 we will describe some of our

previous work in sensor network technology as well as some of the existing technologies

that are under development in the sensor networking field. In Chapter 3 we will describe

our sensor data fusion framework in terms of the design parameters that were considered

and the general architecture of the system that we have designed. Chapter 4 outlines the

design and implementation of our sensor module hardware in terms of each feature that

we believe are important to any general purpose sensor system. In Chapter 5 we discuss

the software development both for the embedded firmware that resides on the sensor

modules and computer software that serves as a link between sensor networks and the

outside world. Chapter 5 also discusses some simulation software that has been

developed in an effort to improve our ability to reliably test data fusion algorithms. In

Chapter 6 we discuss the need for time synchronization and some of the algorithms that

may be used to accomplish synchronization. Chapter 7 discusses how data fusion

algorithms can be utilized to manage the large amount of data collected by sensor

networks or extract information that could not be otherwise gleaned from individual

sensors. Finally, Chapter 8 offers up some conclusions from this work as well as a brief

description of some possibilities for future work.

2 Note: the terms “sensor node” and “sensor module” may be used interchangeably.

7

CHAPTER 2: PREVIOUS WORK AND EXISTING TECHNOLOGY

2.1 Previous Research

Previous to this research much work was done to design a modular, flexible, and

reconfigurable hardware platform for taking sensor measurements. This took the form of

a small battery-powered device which could be configured with a wide range of

environmental sensors. The focus was to design a stand-alone sensor module with the

capability to reconfigure the set of sensors on a sensor module with minimal re-

engineering. The sensor data storage medium was removable Secure Digital (SD) flash

memory card. While there was hardware support for wireless communication, this

feature was not fully explored [3], [4].

 In the previous work, the sensor modules were designed to act as standalone data

loggers that could be configured with a wide range of sensors. The data logging task did

not require time synchronization or wireless capabilities as each module worked

independently and data points collected only needed to be assigned a common time

reference with regard to all other measurements taken on a particular logger for the data

to easily be correlated. Our task was to investigate how we could leverage the previous

low cost sensor module hardware in a more advanced system in which each module was

a member of an ad-hoc wireless network, and therefore able to collect information about

the environment that would not be possible with an individual sensor module. Figure 2

and Figure 3 show the network architecture and hardware design, respectively, of the

8

sensor modules that were developed in [3].

Figure 2: Star Network Configuration

Figure 3: Previous Sensor Node

Prototype

 In a star network, as depicted in Figure 2, there is a fundamental restriction on

how far the sensor nodes may be from the base station. This range is limited by the

power of the transmitters and the size and type of obstructions between an individual

sensor node and the base station. For our new design, we needed a more robust network

architecture that could perform well with obstructions to line-of-sight, and operate with

larger distances between sensor nodes. As seen in Figure 3, the previous sensor node

design had individual circuit boards for the various components and many point-to-point

connections between circuit boards. This architecture, while reconfigurable, still requires

re-engineering to change the sensor configuration, and is prone to failure in harsh

environments due to the wiring scheme.

9

2.2 Existing Technology

While there are several commercial and research sensor systems available that

provide sensor hardware and networking capabilities, e.g. [6], [7], and [8], there are few

systems that provide a complete sensing solution targeted for sensor data fusion

applications. There has been development of interface frameworks for sensor networks,

e.g. [9], but few with sensor data fusion applications in mind.

Perhaps some of the most notable existing systems are found with Crossbow

Technologies Inc [6] and a system that has been developed at Carnegie Mellon University

(CMU) [10]. Each of these systems provides some of the functionality that is

implemented in our framework. Therefore it is important to look at how these systems

compare with the work discussed in this thesis.

2.2.1 Crossbow Technologies

Crossbow Technologies provides a range of wireless sensor modules that are

capable of forming wireless mesh networks with a variety of sensors available to be

connected to the modules (or motes, as they are called). In general, their systems provide

support for one sensor per sensor module. They offer sensor boards with accelerometers,

light detectors, pressure, temperature, global positioning system (GPS), sound, and

magnetic field sensors [11]. Crossbow offers a software stack for operating their sensor

systems and interfacing the sensor networks to a general network infrastructure such as

Ethernet. While their systems are capable, they do not offer a framework for managing

the data acquired from sensor network with sensor data fusion applications in mind.

These systems do not offer a large storage medium for logging data when a module is not

connected to a network (though some media may be retrofitted). Additionally, their

10

systems are cost-prohibitive when compared with our solution.

2.2.3 Firefly WSN Platform

CMU’s FireFly platform offers a similar solution in terms of the hardware and

sensor options though this system is still targeted toward a limited number of sensors per

mote. This system does employ an out-of-band time synchronization mechanism through

the land-based atomic clock broadcast signal (WWVB) though it is capable of in-band

synchronization. These nodes have been configured with sensor boards carrying several

sensors such as light, temperature, audio, passive infrared motion, dual axis acceleration,

and battery voltage sensors. The FireFly platform also includes models with mini Secure

Digital cards for facilitating local data storage [12]. CMU has also implemented an

advanced embedded operating system for the Firefly platform (known as Nano-RK), that

manages sensor measurements and time synchronization. Some of the primary

differences with this system are the set of sensors that have been integrated and a

hardware architecture that is closely tied to the wireless network radio as well as

hardware-assisted time synchronization.

The hardware developed in this thesis does not offer capabilities beyond those

that are currently available; it does provide a unique set of capabilities that are

particularly conducive to sensor data fusion applications. Many sensor systems, such as

[6] or [7], approach sensor networks from the perspective of having many small sensor

nodes with limited capabilities. Our system employs inexpensive, but capable sensor

modules that can be outfitted with many sensors and function as a standalone sensing

module or as a member of a larger network of sensor modules.

11

CHAPTER 3: SENSOR DATA FUSION FRAMEWORK

There are many possible system architectures that may be used to collect and

process sensor data. The architecture of our system was chosen based on the idea that it

should be flexible enough to allow other systems to utilize the collected sensor data, as

well as allow on-site processing of the data (when the algorithms applied do not require

significant computational power). Figure 4 shows the overall architecture of the system

that our framework has been designed to achieve.

Figure 4: Overall System Architecture

As seen in Figure 4, there are several primary components to this system. At the

front end, we have a sensor network that is capable of forming mesh networks. Each

sensor node in the network, which may have a variety of sensors, collects data and

transmits it to a base receiver station. The base station is connected to a small computer

12

system that may interact directly with the sensor network, both monitoring collected data,

and potentially forwarding the data to a central database for further processing and

analysis. The computer system connected to the base station radio provides the gateway

for data to be moved from the sensor network to a location that allows data fusion

algorithms to be applied. The computer system near the sensor network may also be used

to directly control the sensor network and provide application of basic fusion algorithms

that do not require significant computational power. Our wireless sensor data fusion

framework contains each of these core elements for building a wireless sensor data fusion

system. The framework includes both hardware and software, which makes it possible to

insert data fusion algorithms to process the sensor data or aggregate data to a central

database for high-powered analysis. This framework has a highly flexible design such

that different sensors can be integrated into the sensor nodes without re-designing the

overall system. The general objective of this design is to provide an implementation of a

framework (hardware and software) such that once a sensor has been selected for a

particular sensing application the system can be deployed quickly, and sensor data fusion

algorithms can be inserted into the framework to analyze the data as desired. The

framework is shown in Figure 5. This diagram shows features that may be classified into

three categories: (i) sensor node, (ii) communication and interface, (iii) database,

visualization, and fusion.

13

Figure 5: Wireless Sensor Data Fusion Framework

3.3 Sensor Node (level 1 to 4)

Sensor nodes with the contaminant detectors are the frontend of a wireless sensor

fusion system. It is the element of the system that passively or actively measures the

contaminant levels and reports the findings in a timely manner. As shown in Figure 5, the

sensor node provides circuitry to interface to sensors as well as power sources and power

regulation for sensors. Once data is collected from a sensor, it is processed, stored, and

transmitted. The data transmission requires connectivity to the server (or sink node)

through a wireless link.

To be effective, the sensor modules were required to meet many design

constraints. The primary objectives were to maintain a small physical size, have limited

power requirements, and be highly reconfigurable. Additionally, the sensor modules

needed to provide high connectivity for connections with many sensors, and be visually

inconspicuous. The sensor modules were required to not only send collected data to a

remote location wirelessly, but also to enable the storage of collected data locally in case

of network failure or applications that require limited network activity and thus send data

only after long periods without wireless connectivity.

14

To meet the connectivity and re-configurability constraints, the hardware was

required to have many input/output (I/O) ports and support for many communications

protocols, to enable connections with numerous sensors as well as providing internal

power supplies to meet a variety of sensor requirements.

As with the hardware, the sensor module firmware was required to be highly

reconfigurable in that it needed to have an architecture that minimizes re-engineering

when adding or removing sensors from the sensor module. To achieve this objective, the

firmware design was required to exhibit data coupling and a functionally cohesive

architecture.

3.4 Communication and Interface (level 5 to 6)

The communication link and interface are the critical infrastructure that delivers

the sensed data to the proper destination. For sensor data fusion (residing in the backend

to characterize and analyze the data) to work effectively, determining when the data

arrives is critical. The delivery of sensor data depends on reliable wireless

communication channels. The wireless hardware was required to have a reliable,

redundant, and robust network architecture formed between sensor modules (e.g. mesh

network architecture) to meet wireless connectivity objectives. The base station might not

be reachable directly (one hop away), but the data could be delivered through

intermediate nodes. More importantly, having multiple intermediate nodes will guarantee

delivery of the data to the base station no matter what happens to any single node.

3.5 Database, Visualization, and Fusion (level 7 to 9)

Database, visualization and data fusion is the backend – where the heavy duty

15

processing happens. The sensed data (usually in significant quantities) is stored on a

database server such that algorithms can be applied to “make sense” of the data. The raw

data can be visualized, but with its intrinsic volume, visualization may be difficult; that is

one area where sensor data fusion algorithms can help reduce the data set, allowing

further attention to be placed on the reduced set. If effective analysis is to be done on the

collected data, it must be organized such that relationships can easily be determined.

Both centralized and distributed database architectures have benefits. It is our

belief that the backend should have flexibility, i.e., new fusion algorithms can be written

to process the data without fundamental changes to the system. The system should

provide “hooks” such that a new algorithm can be used to analyze the data. The timely

arrival of data to the database server is important; however, one will need to define the

“real-time” expectation of delivery. The greater the responsiveness needed, the greater the

hardware and design costs to implement the system.

Once the data has been analyzed, the system will need to deliver the results to

someone in a timely manner. The result could be a decision (e.g. yes, there is

contaminant; or no, nothing is out there) or a series of plots and graphs for human

analysis.

The remaining portion of this thesis describes the prototype and implementation

of this framework. In particular, Chapter 4 discusses the design and implementation of

the hardware associated with levels 1-4 of the framework. Chapter 5 discusses the design

and implementation of the software, which encompasses levels 5-9 of the framework.

16

CHAPTER 4: HARDWARE DESIGN

4.1 General Purpose Sensor Modules

 For this research, the sensor module hardware was further refined and the wireless

communication capabilities were expanded to include mesh network architecture.

Computer software was also developed to allow coordination of data collection and

provide a facility to fuse the data collected across the network of sensor modules. This

software was also designed to store the collected data in a centralized database for post

processing.

4.2 Wireless Capabilities

 There are many cases where it is difficult or impractical to effectively determine

the state of an environment from a single measuring unit. When the environment is large

or its conditions vary greatly over space or time, it becomes necessary to use multiple

measuring units to provide enough sensor density to gain a full perspective of the

environment in question. It is in these cases where a network of measuring units

becomes important. A network allows the measured data to be correlated with each

measuring unit in the environment and transmitted to a centralized database for detailed

analysis. With the prevalence of low-power and inexpensive wireless communication

devices, the creation of high density sensor networks is more easily achieved than it has

been historically.

 There are two main network architectures employed by our sensor system: star

17

and mesh. The star architecture requires that all nodes connect directly to a single master

node. This means that there is a fundamental limitation on how many members may be

part of the network, as well as the maximum spacing between nodes. This also requires

that there be an unobstructed “view” to the master node. Our system will form this type

of network provided that all remote nodes are within range of the master node; however,

it may dynamically change to form a mesh architecture, if obstructions or distance begin

to interfere with a remote node’s communication with the master node.

 Mesh architecture, in contrast, has fewer constraints with regard to the layout of

the remote measurement units. This architecture allows for multi-hop communication;

thus the master node may be located anywhere among the remote units and need only be

within range of any one of the remote units. Any messages addressed to the master will

be relayed as required to deliver the message to the master. This architecture is also far

more robust in constrained environments where line-of-sight communication to all nodes

directly is not possible. The dynamic formation of the different network types is

controlled by the radio hardware. The radio used in our system has an embedded

processor paired with a microcontroller, which manages all of the low level

communications with the radio hardware, including network formation.

4.3 Modular and Reconfigurable Design

 Utilizing the previous work done in [3] and [4], the wireless sensor units were

redesigned with a more modular and reconfigurable design. This was accomplished by

the design of a general purpose system board that provides a microcontroller, real-time

clock, Secure Digital flash memory card, three to four step-up/down power supplies, and

18

many digital and analog I/O pins. Figure 6 shows the main system board design.

Figure 6: Sensor Module System Board

4.4 Processor

 The processor used in this system is a Microchip PIC18F8722 8-bit

microcontroller. This platform offers a generous amount of program and data space for

embedded applications with 128 KB Flash, 4 KB SRAM and of 1 KB EEPROM. In

addition it offers 70 I/O pins, sixteen of which can function as inputs to a 10-bit analog-

to-digital converters (ADC). For communication with various devices the unit has

several facilities including two RS232 universal asynchronous receiver/transmitters

(UART), and two master synchronous serial ports (MSSP) that support 2/3/4 wire serial

peripheral interface (SPI) and inter-integrated circuit (I
2
C) master/slave functionality. It

also offers three capture/compare/pulse width modulation (PWM) modules and four

hardware timers [5]. All of the features described above give the microcontroller

significant versatility so that it may easily be adapted to a wide range of sensing

19

applications.

 This microcontroller not only provides a wide range of protocols and I/O options,

but reasonable computation power as well. On this system, the microcontroller was set

up to run at 8 MHz, but the microcontroller has an internal phase-locked-loop (PLL),

which allows it to use the 8 MHz external crystal and internally run at four times the

external crystal frequency. The microcontroller is rated to run up to 40 MHz by use of a

10 MHz external crystal and the internal PLL [5].

4.5 Power

 There are many common voltages for sensors. Some of the most common are 5 V

and 3.3 V; however others may be necessary. The system board (motherboard) of the

module provides four power supplies running at 3.3 V, 5 V, 9 V and a custom supply that

may be configured at build time. The system uses two types of DC-DC converters: a

Maxim MAX642 and MAX710. The MAX642 is rated to output up to 18 V at 450 mA,

whereas the MAX710 is rated to output up to 11.5 V at 700 mA. The system board has

space for two MAX710s and two MAX642s. Both of these supplies have efficiencies of

over 80% [13], [14]. In the current hardware configuration, the two MAX710 supplies

are set up to output 3.3 V and 5 V. One of the MAX642 chips is configured to output 9 V,

whereas the fourth supply is not currently used.

4.6 Sensor Integration

 To provide a means to easily change the sensor set configured on the system, a

secondary board or “breakout board” was designed for sensor integration with the main

system board. The breakout board currently provides an interface for seven sensors:

20

carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity, barometric

pressure, GPS, and sound intensity. The hardware has also been adapted to other form

factors, which allow additional sensors to be connected externally to the enclosure. The

current sensor set was chosen as a means to test the overall framework, as the suite

provided several standard sensors for general applications.

4.7 Communications

 While the microcontroller supports many communication protocols, the primary

protocol used for external communication is UART. This provides a standard protocol

that interfaces with computers as well as other devices. The microcontroller used in the

system offers two UARTs. One UART is used for controlling software system

configuration via a computer while the second is used for wireless communication

through use of a ZigBee® modem. The second UART has also been used with a

Bluetooth communication module to add link capabilities with PDAs to display sensor

measurements.

 Wireless communication is achieved with Digi XBee® ZigBee® modems that use

the Industrial, Scientific & Medical (ISM) 2.4GHz band and support both the IEEE

802.15.4 standard and proprietary DigiMesh™ protocols [15]. These units provide a

simple UART modem interface to the microcontroller, and help offload much of the

communications processing by managing nearly all of the network formation and routing

needed for wireless communication. The XBee® modems automatically create ad-hoc

star or mesh networks at power-up and dynamically reroute packets when a destination

node becomes out of range for direct communication.

21

4.8 Data Storage and Transmission

 Local data storage is accomplished with an SD card reader built into the main

system board. This media was chosen based on its availability, compatibility, and form

factor. The small size of SD cards results in minimal space requirements on the system

board. Additionally, media card readers and laptop computers commonly support SD

media. The current system firmware supports SD cards up to 2GB, which would allow

for approximately four years of data collection without removing the card (assuming

measurements are taken every 30 seconds).

 The data from sensor measurements is stored on the SD card in a human readable

text format. This not only allows users to easily view the data collected, but it results in

simple programming to load data files into databases or generate plots. The same format

is also used in wireless transmission of the sensor measurements. Each sensor

measurement string is a collection of key-value pairs containing information such as the

identification number of the sensor module on which the measurement was collected, the

sensor identification number within the sensor module, the raw sensor reading, converted

sensor reading, and a time stamp of when the measurement was taken. Additional strings

stored in the data files identify the type of sensors, each sensor's measurement units,

model number, and description. These strings provide a way to limit how much data is

stored for each measurement. By separating out the sensor information from the

measurement data we prevent repeatedly transmitting or storing sensor information with

each subsequent sensor measurement. Figure 7 shows the data format used by the sensor

modules.

22

Figure 7: Example Identifier and Measurement Strings

 As seen in Figure 7, the identifier string contains information about the sensor on

a particular sensor module, whereas the measurement string contains information about a

measurement from a sensor on a sensor module. The use of two packet types helps

reduce the amount of data sent with each sensor measurement. The identifier strings are

sent only at startup or when requested. This allows the measurement strings to remain

small, and only contain the data unique to the measurement. The common sensor node

global unique identification (GUID) number and sensor identification (SID) numbers are

identical between a measurement strings and the identifier string for a respective sensor.

This allows the two (identifier and measurement) to be related, and it avoids the need to

send the sensor information (type, units of measurement, etc) with every measurement.

 The data transmitted has the same format as the data stored to the flash memory

on the system. The plain text format requires more data to be transmitted than if

formatted into binary packets, but it offers significant advantages in terms of versatility.

The string structure of key/value pairs allows for only minor modification to the

transmitter/receiver code to change the data fields transmitted or stored.

23

4.9 Time Management

 Time keeping is an important part of any data logging device. It is particularly

important for a system that must correlate measurements among distinct, independent

modules, such as a multi-sensor data fusion system. While it is not strictly necessary to

have perfect synchronization among the sensor modules, it is necessary to have the

system self-consistent in that all sensor modules agree on the ordering of the events

recorded by the system. The sensor system described in this paper pushes most time

management control to software. We will discuss time synchronization in more detail in

Chapter 6.

 As for the time-keeping hardware, the system utilizes a Maxim DS1339 real-time

clock. This chip utilizes an external 32.768 KHz crystal oscillator and is controlled

through an I
2
C interface. It offers very low current operation (~450 µA) and accuracy

which depends on the crystal used [16]. The typical crystal oscillators used have an

accuracy of +/- 40 ppm which means that the crystal has a potential error that could result

in up to +/- 10 minutes per year depending on the temperature variations.

 While the DS1339 maintains real time, an internal hardware timer is used to

manage system events. The internal timer utilizes an additional external 32.768 KHz

crystal to maintain system time. This clock is synchronized with the DS1339 at startup

and every 24 hours to insure accuracy.

4.10 Systems Integration

There were many areas where the current sensor modules were improved over the

original design. Most of the changes were related to minimizing the amount of re-

engineering required for adding or reconfiguring the suite of sensors attached to the

24

sensor modules, but other changes were made to make the sensor system more robust and

modular. Figure 8 shows a comparison between the original sensor module (left) and an

early prototype (right) of the latest sensor module. Both of the sensor modules shown in

Figure 8 have the same sensor suite and functionality.

Figure 8: Original Sensor Module Design, (a), vs. New Design (b)

 From Figure 8 we see that the system cabling was substantially improved by

using insulation displacement connector (IDC) cables and integrated circuit boards (b).

The original prototype, (a), has significantly more point-to-point wiring, and individual

circuit boards for each power supply. The various power supplies were consolidated to

reside on the main system board rather than relying on three discrete power supply

boards. Additionally, as discussed previously, the sensors are now consolidated to a

modular circuit board that provides all of the available voltages and communications

lines from the main system board. Figure 9 shows one of the latest versions of the

updated sensor module.

a. b.

25

Figure 9: Latest Sensor Module Hardware Design

 As seen in Figure 9, the latest version of the sensor module takes advantage of the

extra space garnered by the more modular design. The newer breakout board was

designed to allow the addition of a more accurate barometric pressure sensor (which

contains an integrated temperature sensor) as well as a GPS unit. The sound intensity

sensor was also improved, redesigned to include a wider range of operation and a better

form factor for integration with the system board.

CCCOOO CCCOOO222

PPPrrreeessssssuuurrreee

SSSooouuunnnddd

IIInnnttteeennnsssiiitttyyy

XXXBBBeeeeee®®®

GGGPPPSSS

GGGPPPSSS AAAnnnttteeennnnnnaaa TTTeeemmmpppeeerrraaatttuuurrreee///HHHuuummmiiidddiiitttyyy

26

CHAPTER 5: SOFTWARE DEVELOPMENT

5.1 Sensor Module Firmware

 As the sensor modules must be battery-powered and have limited resources, it is

important to limit the amount of computation that occurs locally. In addition, it is

important that the software be designed such that it is easily reconfigurable to allow for a

wide range of sensors to be connected to the system. This was generally accomplished by

a layered and modular design. At the lowest level, the code for each sensor must provide

a consistent application programming interface (API) that “hides” the low level hardware

communication from the higher levels of the software. It is this area that will need to be

created to add new sensors to the system, while only the sensor configuration table will

need to be modified to include the new sensors at the top level.

5.1.1 Implementation Details

The software architecture of the firmware includes many different modules. It

provides a simple system to manage facilities, including sensors, time keeping, data

storage, and communications. All system resources are abstracted to provide a hardware

agnostic view of the system. This allows for underlying hardware changes with little to

no modification of the application level software. Figure 10 shows a flow chart that

summarizes the basic flow of control for the firmware.

27

Figure 10: Firmware Flow of Control (Simplified)

As seen in Figure 10, the main execution loop of the firmware has four tasks. It

must 1) keep the internal clock synchronized with the external real-time clock, 2) process

unsolicited requests received over the network, 3) take measurement data storing to SD

and transmitting to the data sink, and 4) insure that the SD contains the latest data in case

of power loss.

The sensor related firmware is organized into five layers. These layers include:

low-level hardware communications, sensor specific drivers, sensor configurations,

general sensor operations, and finally the application that utilizes the sensors. The

28

architecture is layered as shown in Figure 11.

Figure 11: Firmware Layered Architecture

 The hardware communications layer provides the lowest level interaction with the

sensor devices. This layer provides communications protocol code that may be used by

many different sensors. The protocols used by the various sensors could be I
2
C, SPI,

UART, or some other proprietary protocol. Re-configurability is maintained in that the

hardware communications layer is unchanged when adding a new sensor. This assumes

that the protocol is already supported. If the hardware protocol used by a sensor is not

already implemented in the hardware communications layer, a software module must be

written to manage this type of protocol. The benefit of this architecture is that after a

module is added to the hardware communications layer, it is available for use by any

other sensor that utilizes the same protocol.

The sensor specific driver layer provides the interpretation of the data being

accessed by the hardware. This layer provides a unified interface for the upper levels of

the system to work with and interacts with the hardware communications layer to access

the hardware associated with a sensor. A sensor driver software module must be designed

for every sensor that is added to the system. Each sensor driver provides three functions:

29

identify, measure, and convert. This set of functions provides a means to request an

identification string, take a measurement, and convert a raw sensor measurement to its

corresponding unit value. The identification string describes a sensor’s type, measuring

units, and model number that is included in the identify packet that is sent on

initialization.

With a unified interface to sensors available, the sensor configurations layer can

easily table the function calls and manage many sensors with only a small amount of

controlling code. Figure 12 shows the sensor table used to configure the sensors that are

active in the system.

Figure 12: Sensor Table Structure

As seen in Figure 12, each sensor in the system requires identify, measure, and

convert functions that are registered in a sensor structure object. A registry of sensor

30

structures is maintained to provide a simple means to both manage the sensor that are

connected to the system and directly access the sensor driver interfaces. This table must

be modified manually when adding or removing a sensor from the system. The size of the

table is calculated dynamically so any sensor can be deactivated in the system by simply

commenting the sensor entry in the sensor table code and recompiling.

The general sensor operations layer provides high-level access to the sensors.

This layer provides a simple interface for acquiring data from the sensors and requesting

sensor details for identification purposes. This code provides a way to form measurement

and identifier packets for storage and transmission by simply referring to a sensor by its

index. Figure 13 and Figure 14 show some of the basic functions provided, which utilize

the sensor structure objects in the sensor table to call the various sensor specific functions

in each sensor driver.

31

Figure 13: Sensor Identify Function

 As seen in Figure 13, the sensor identify function forms the ASCII identify string

containing sensor module and sensor information. Line 30 in Figure 13 shows how the

identify function, which is part of the sensor driver, is called by accessing the sensor

structure table by the sensor index. This loads a character buffer with the associated

sensor information from the sensor driver.

32

Figure 14: Sensor Measure Function

The sensor measurement ASCII strings are formed by the code shown in Figure

14. As with the Sensor_Identify function, the Sensor_Measure function leverages the

sensor structure table to gather the raw sensor measurement and convert the raw

measurement to its corresponding unit value. Lines 31 and 36 show the calls to the

sensor driver associated with the specified sensor index in the sensor structure table.

Finally, the application layer is the top-level code that could be considered to be

the main operations as described previously in Figure 10. Figure 15 shows the sensor

33

systems top level function calls, which identify all of the sensors and take measurements

for all of the sensors.

Figure 15: Top Level Identify and Measure Functions

As seen in Figure 15, identifying or taking measurements from all of the active

sensors on the system is as simple as looping through the sensor table. The

Sensor_Identify and Sensor_Measure functions load character buffers with the identify or

measurement strings, respectively. Once the identify or measurement string is collected, it

is both stored to the SD card and sent through the XBee® radio (if the radio is enabled).

34

5.2 Computer Software

 As it was a goal to minimize the computation at each sensor node, computer

software was required to both store and process the collected data. The processing

responsibilities range from graphically representing the data to make it simple to view the

real-time state of the monitored variables, to applying algorithms to the received data.

 The primary computer-based application developed as part of this thesis was the

BSU Sensor Monitor (BSUSM) application. This program was designed using the C#

programming language as a general test-bed to provide an example of the types of

interactions possible with the sensor system. This software offers a wide range of

capabilities, including data plotting, data sinking, sensor module device control, and

sensor data fusion.

5.2.1 Plotting

 The program’s principle function is to allow a network of sensor modules to

stream collected data to the application using a USB-XBee adapter connected to the

computer. This allows the data to be plotted as the data is received in real-time. Each of

the active sensor modules has a unique identifier that the BSUSM can use to allow users

to select the data of interest. Figure 16 shows the BSUSM as it plots data received from

sensor modules.

35

Figure 16: BSU Sensor Monitor Data Plot

5.2.2 Data Sink

 In addition to plotting data, the BSUSM was designed to store collected data in a

structured query language (SQL) database and subsequently export in a comma separated

values (CSV) format compatible with common spreadsheet software. Two versions of

the software have been developed: one that relies on a SQL server service to be available

and another that uses an internal database to manage the data that is presented in plots

and data exportation. Utilizing a computer to provide a data sink for a network of sensor

modules allows the data to be stored in a central location for real-time or post processing.

5.2.3 Sensor Module Control

The BSUSM application was designed not only to have data “pushed” to it by the

36

sensor modules, but also to directly request data from any sensor unit within the network.

This offers many possibilities for the sensor network configuration as the computer may

be used to request specific sensor measurements before the sensor module would

otherwise have provided it, or to remotely control the sensor module for some other

purpose such as time synchronization. Figure 17 shows the basic communication

interface implemented.

Figure 17: Two-Way Communication and Time Synchronization

As seen in Figure 17, the command interface allows users to specify a command

to send to a particular sensor module. The commands currently implemented include get-

value, get-raw-value, get-time, set-time, self-identify, and synchronize-time. The get-

value and get-raw-value commands allow the user to request the value of any sensor on

the module, whereas get-value retrieves the converted user-readable sensor reading and

get-raw-value retrieves the raw sensor reading. The get-time and set-time commands,

respectively, allow users to retrieve and set the time, while the synchronize-time

command attempts to synchronize all sensor modules that are monitored by the BSUSM

37

program by multicasting a set-time command to all sensor modules connected.

5.2.4 Real-Time Data Fusion

Real-time sensor data fusion tools implemented in the BSUSM software allows

various data fusion algorithms to be applied as data is received from each of the sensor

modules connected. The software was designed in a layered architecture to make the

addition of new fusion algorithms straightforward. Currently the software implements

two fusion/data processing algorithms: averaging and peak detection. Figure 18 shows

the graph options associated with the sensor data fusion features of the BSUSM.

Figure 18: Real-Time Sensor Data Fusion Dialog

As seen in Figure 18, the software allows users to select the sensors to be fused,

select a name to represent the curve, and choose the fusion algorithm to be applied to the

selected sensors. In this example three temperature sensors were selected (one from

sensor module 012, 017, and 001, respectively), the averaging algorithm is applied, and

the name of the curve generated is “FusedTemp.” Figure 19 shows a plot utilizing the

averaging fusion algorithm with the three sensor modules.

sensor modules h

only included i

interval.

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

algo

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

sensor modules h

only included i

interval.

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

algo

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

sensor modules h

only included i

interval.

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

algo

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

sensor modules h

only included i

interval.

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

algo

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

sensor modules h

only included i

interval.

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

algorithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

sensor modules h

only included i

interval.

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

It is clear from

sensor modules h

only included i

interval.

There are many possible fusion

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

It is clear from

sensor modules h

only included i

interval.

There are many possible fusion

requires

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

It is clear from

sensor modules h

only included i

There are many possible fusion

requires very specific questions

used in co

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

It is clear from

sensor modules h

only included i

There are many possible fusion

very specific questions

used in concert.

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

It is clear from

sensor modules h

only included i

There are many possible fusion

very specific questions

ncert.

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application.

It is clear from

sensor modules h

only included i

There are many possible fusion

very specific questions

ncert.

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

application. This concept will be explored further in Chapter 7.

It is clear from

sensor modules h

only included i

There are many possible fusion

very specific questions

ncert.

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

It is clear from

sensor modules h

only included i

There are many possible fusion

very specific questions

ncert.

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

It is clear from

sensor modules h

only included in the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

ncert.

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

It is clear from

sensor modules h

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

 The simple average fusion algorithm was implemented, because it is a

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

It is clear from

sensor modules have

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

It is clear from

ave

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

It is clear from

ave

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

general purpose tool

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

It is clear from

ave

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

general purpose tool that

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

It is clear from

 equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

that

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

It is clear from Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

that

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

that

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

that can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure

Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

Figure 19

Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

rithm was implemented

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

19

Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

rithm was implemented,

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

19: Average Temperature Fusion Algorithm

Figure

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

 as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

Figure 19

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

19

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

very specific questions

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

19 that each of the temperature readings from the various

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

 to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

 that each of the temperature readings from the various

equal weight

n the average when the measurements are defined over the same time

There are many possible fusion

to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

equal weight in

n the average when the measurements are defined over the same time

There are many possible fusion

to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

in

n the average when the measurements are defined over the same time

There are many possible fusion

to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

in

n the average when the measurements are defined over the same time

There are many possible fusion

to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

in the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

There are many possible fusion

to be answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

There are many possible fusion algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

algorithms;

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

 however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

however,

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

 data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM.

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

example for testing integration of algorithms into the BSUSM. O

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

This concept will be explored further in Chapter 7.

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

O

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

Only the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

: Average Temperature Fusion Algorithm

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

data fusion typically

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

nly the averaging

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

n the average when the measurements are defined over the same time

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

that each of the temperature readings from the various

the average curve, and sensor measurements are

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

38

that each of the temperature readings from the various

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

38

that each of the temperature readings from the various

answered, particularly if dissimilar sensors are to be

The simple average fusion algorithm was implemented, because it is a

can be applied to any group of like sensors. It also serves as an

as the focus of this research was providing the framework to

manage algorithms rather than designing specific algorithms that depend greatly on the

38

answered, particularly if dissimilar sensors are to be

can be applied to any group of like sensors. It also serves as an

as the focus of this research was providing the framework to

38

answered, particularly if dissimilar sensors are to be

as the focus of this research was providing the framework to

39

5.2.5 Database

In addition to the software created to interact with the sensor network, a relational

database was designed using SQL to provide a simple means of both storing and

analyzing sensor data collected by the sensor modules. The database created has been

utilized both for local and web-based applications to manage sensor data.

5.2.6 Implementation Details

There are many internal components associated with the functionality presented in

the BSUSM. To provide the most reconfigurable implementation, the architecture was

split into a layered and modular design. The primary components include: user interface,

graphing utilities, communications, database manager, data fusion processor, and CSV

file generator. As the graphical interface has already been discussed in some detail, the

following will focus on the remaining components.

5.2.6.1 Graphing Utilities

The graphing features of the BSUSM are accomplished with the use of the

ZedGraph graphing library [17]. This is an open source library that provides the base

graphing mechanics that is driven by the database system, whether it be a local or remote

database.

5.2.6.2 Communications

The communication layers are perhaps the most complex part of the BSUSM

software components. There are several communication layers that provide the ability to

connect with the XBee® wireless networks, and receive data as it is collected as well as

providing a means to control the individual sensor modules within the sensor networks.

 The BSUSM utilizes a double buffering system to manage all of the data received

40

on the UART. This helps to prevent inadvertent loss of data that could arise if the

computer was unable to service the UART while it is processing previously received data.

The processing of the data is a fairly significant task, as each packet of data that is

received must be parsed to identify a wide range of details. Some of the details within

the data packets are the originating address of the sensor node, the packet length, the

packet type, and the packet payload. There are two primary communication layers:

ZigBee® XBee®, and payload processing.

The XBee® radio’s communication protocol provides many different packet

types, which aid in the identification and processing of the packets as they move through

the sensor network. These packets range from XBee® modem status indicators (e.g.,

“modem is associated with the network” or “modem has been reset”) to actual data

packets which carry sensor measurement data. Thus, for managing this area of

identification and processing the BSUSM utilizes a packet handler layer.

The packet handler assembles packets by “pulling” data off of the UART buffer

and testing for packet type and packet integrity. Once a packet has been formed, an event

is raised to notify upper layers of the packet and allow the packet payload to be

processed. Some packets (such as status packets) may not cause events to be raised if the

packet handler has a known response to such a packet. Receipt of corrupt packets is also

handled by raising an event to notify higher layers of the problem.

An additional responsibility of the packet handler is to extract and store the active

association of sensor identification numbers and sensor node network addresses. This

allows other entities to request the network address of a sensor module without having to

broadcast a request on the network. This is accomplished by maintaining a hash table

41

that maps sensor module identification numbers to their respective address.

The packet payload processing layer parses the ASCII string packets in the format

identified in Figure 7. The data processor extracts the key-value pairs utilizing the regular

expressions library provided in C#. Once a packet payload has been identified as either

an identifier packet or a measurement packet, an event is raised to pass the data to the

database and plotting layers.

The final communications module resides in managing two-way messaging with

the sensor nodes in the network and the BSUSM. To improve communications reliability,

all messages sent by the BSUSM require the target sensor module to return an

acknowledgement in response. The response may be the requested data, or it may be

simply an acknowledgement if no data was requested from the sensor node.

The two-way communications module is event driven. When a message is sent

out to a sensor module the calling module registers a callback. At the time an

acknowledgement is received from a sensor node, the callback is activated to notify the

original software module that registered it. The packet handler works closely with the

two-way communications module to allow processing of packets that are related to two-

way communications. The messages are tracked in the two-way communications module

by a packet identification number that is assigned when the packet is created and echoed

by the sensor module in reply to the BSUSM. The callback registration uses the packet

identification number as a key to a hash table containing all outstanding callbacks. Thus,

when a response is received from a sensor node, it can be tied to the callback function

that was registered.

42

5.2.6.3 Database Manager

The database manager module provides database connectivity by supplying a

generalized API for the BSUSM to interact with database systems. This allows the

underlying database to be easily modified without changing any other part of the

application. Thus, the BSUSM can be configured to utilize an online database or a local

one by simply making changes within the database manager module. The database

manager module and the graphing utilities closely communicate to provide plots of data

as it is added to the database.

5.2.6.4 CSV File Generator

The CSV file generator module provides a way to export database data to a

comma separated value file format. This format was chosen as it is easily imported to

many spreadsheet applications, including Microsoft Office. One of the primary benefits

of this module is that it allows for fast, in-memory modification of all the data before

committing to the file system.

5.3 Sensor Network Simulation

 In an effort to better understand the detection of patterns within large sensor grids,

a sensor network simulator was created. This provided a consistent way to test

algorithms within the BSUSM software as well as a means to test very large sensor

networks, which would be impractical to create either due to cost or setup complexity.

The primary focus of the research done under the FAA funding has been environmental

sensing, and as such, the simulator was designed principally to simulate environmental

contamination diffusion through an area. The simulator allows users to specify many

parameters such as the contamination wave vector, wave properties, sensor grid size and

43

spacing. The output of the simulator is sensor measurement packets of the same type

normally generated by the sensor modules as well as a visualization tool to allow the user

to view the progress of the simulation. The simulated sensor measurement outputs can be

directed to a file, a console window, or an XBee® radio. Figure 20 and Figure 21 show

the output of a simulation with an impulse wave of a finite width moving through a four-

by-four grid of sensor modules.

Figure 20: Sensor Simulation Console Output

Figure 21: Sensor Simulation Graphical View

44

The “Wave Visualization” window shown in Figure 21 indicates the progress of

the wave (vertical bar) as it moves from left to right through the sensor nodes (numbered

squares), while the console shown in Figure 20 displays some of the simulated sensor

packets as they are generated. Each virtual sensor module operates within its own

execution thread to provide a measure of realistic autonomy. The simulation can also be

configured to independently adjust each virtual sensor node’s operating properties such as

the measurement interval. The simulation software is discussed in further detail in

Chapter 7.

45

CHAPTER 6: TIME SYNCHRONIZATION

6.1 Necessity of Time Synchronization

 Time synchronization of computer systems has been of interest since computers

were first connected to one another. It is an old problem, but one of great importance

none the less. While time synchronization within a collection of computing systems

connected via wires has been addressed at great length, many of these techniques are not

applicable when the computing systems are connected via wireless links [18]. This is

because the network topology is not as uniform or as reliable. In this chapter, some of the

various time synchronization techniques for wireless sensor networks will be explored.

Additionally, the currently implemented clock synchronization technique in our system

will be described and analyzed.

6.2 Network Time Protocol

 Perhaps one of the most pervasive time synchronization protocols in use today by

computer systems is Mills’ Network Time Protocol (NTP). Whereas NTP is highly

effective in typical computer networks, it does not have features that are conducive to

wireless sensor networks. This is because NTP and similar algorithms make assumptions

about the network and hardware environment that are not necessarily true in wireless

sensor networks, such as:

• The network can be continuously monitored for time data

• The CPU is generally free to manage time synchronization utilities

46

• The network is continuously available for sending time data

The primary issue with these assumptions is the energy required to maintain a continuous

network connection on a likely battery powered-device [19]. Since the CPU and radio in

wireless sensor systems may be put into a sleep mode for energy savings, neither the

network nor the CPU can be guaranteed to be available to manage time synchronization.

6.3 Single-Pulse Synchronization

 One of the simplest techniques for time synchronization is implemented by

periodically broadcasting a time reference to all nodes in the network. This technique,

known as single-pulse synchronization, can effectively provide synchronization in

wireless networks in a star configuration. Assuming that the latency of the nodes

connected to the coordinator is similar (a safe assumption due to the homogeneous nature

of the sensor nodes in the network), the resulting synchronization error will also be

comparable. This technique also requires the wireless network to support multicasting,

because the synchronization pulse must be received by all members of the network

simultaneously for it to be effective. We expect that latency in the receipt and processing

of the time broadcast at each of the sensor nodes will result in phase error in the clock

equal to the total latency and processing time. On the other hand, since we are dealing

with homogeneous hardware and software on each of the sensor nodes, the latency is

likely very similar between nodes. This feature allows the sensor nodes to maintain time

agreement with significant accuracy.

 The single-pulse synchronization technique has limited effectiveness when the

network involved has a mesh (and thus multi-hop) architecture. If there are nodes in the

network that are more than one hop away, the latency will be greater for those nodes, and

47

the time associated with the indirect path must be accounted for to achieve low

synchronization error.

 Despite the limitations of this technique, its primary benefit is that it requires little

processing power or special hardware to be implemented. Also as described above, node-

to-node time synchronization can be achieved with a small portion of phase error when

similar hardware and software is present on each of the sensor nodes.

6.3.1 Performance Characteristics

As single-pulse synchronization was implemented in our system, we were able to

directly characterize its performance. The synchronization performance characterization

required a specialized configuration of the sensor nodes and computer time reference.

Capturing precise timing between events that occur in software can be a tricky prospect,

especially when the events to be measured occur on multiple autonomous entities. In this

case, we needed to capture the time from the transmission of a packet from a computer to

the receipt of the packet at multiple sensor nodes. Additionally, it was important to

characterize the time required to process the packets at the sensor node to gain an

understanding of all contributors to latency. To accomplish effective timing of such

varied events on different entities, a collection of digital outputs were configured on each

entity and monitored via a single oscilloscope to provide relative time differences on a

common time scale. Each of the sensor nodes utilized two digital outputs. The first

would be toggled high when a packet was received and toggled low when an

acknowledgement was sent back in response to the packet received. The second digital

output was configured to be toggled high when a time packet was recognized and low

when the new time was successfully stored to the real-time clock. Figure 22 shows the

48

test configuration.

Figure 22: Single-Pulse Synchronization Test Configuration

The outputs of the sensor nodes were configured from unused GPIO pins. For the

computer (which does not normally have user accessible GPIO) a parallel port was

configured to provide a user software controlled GPIO. Controlling code for both the

sensor nodes and the computer was added to adjust the state of the I/O pins when the

software reached the states of interest. It should be noted that since the computer system

employed for this testing was utilizing a non-real-time preemptive operating system

(Windows XP), we cannot depend on the control timing of the I/O pin to be deterministic.

While this does not invalidate the test, it does potentially affect the measured initial

response time, i.e., the time taken for the sensor nodes to acknowledge the receipt of a

time packet following the transmission of the time packet from the computer. Figure 23

shows the result of the test.

49

Figure 23: Single-Pulse Synchronization Timing

As expected, it was found that there is potentially significant (depending on the

application) phase error with respect to the time reference. In this case, the time from

when a time synchronization packet is transmitted at the computer to when the sensor

nodes apply the new time is 414 ms. Since our current hardware is capable of one second

resolution, the measured phase error is smaller than what can be represented on the

sensor nodes’ real-time clock hardware. While phase error was present with respect to

the time reference, there was good agreement between sensor nodes. Figure 24 shows the

measured phase error between sensor nodes.

50

Figure 24: Time Phase Error between Sensor Nodes

 As seen in Figure 24, the phase error between sensor nodes within the network

was found to be 58 µs. This raises the point that knowing the true wall time may not be

as important as knowing the ordering of the events in the system. When there is small

phase error between sensor nodes, there can be general consensus about the ordering of

events. In some applications, absolute time may be completely unimportant if the

relative time between all events is known. An extreme implementation of relative time

can be achieved through Lamport’s virtual clock system in which the clock state does not

refer to time as we know it, but ticks only as events occur with respect to the system [20].

 One final area that single-pulse synchronization does not address is the inherent

differences in the time keeping oscillator frequency on each of the sensors. Even if the

51

clocks are synchronized after a reference pulse, they are unlikely to remain so for any

significant duration. This synchronization lifetime issue comes from the inherent

irregularities in crystal oscillators. Temperature and vibration can affect the frequency

generated by crystal oscillators. It is important to note that there are algorithms that can

manage this issue and adjust to compensate for any frequency skew. As a result of the

skew, successful time synchronization would depend on how often the clocks are

synchronized.

 When accurate relative time between sensor nodes is not enough and oscillator

skew must be managed, there are several time synchronization techniques available for

use in a wireless sensor network that can provide better time synchronization than the

single-pulse method that we have implemented. These techniques may require more

powerful hardware or, at the very least, high resolution time keeping hardware. In the

following section we will discuss another potential algorithm that would result in

significantly better synchronization: reference broadcast synchronization.

6.4 Reference Broadcast Synchronization

 Reference Broadcast Synchronization (RBS) is an algorithm developed by Elson

et al. in [21] and others. This algorithm provides an interesting divergence from the most

commonly used algorithms in that it does not require individual nodes to change their

respective clocks during synchronization, but rather requires only that the nodes maintain

the relative time scales associated with other members of the network. In this way, a

sensor node may convert its local time to any other timescale within the network. This

idea could greatly benefit the time keeping in our sensor system as a large portion of the

processing time required to synchronize the clock on a particular sensor node was related

52

to changing the physical time on the RTC hardware.

 RBS works with multiple messages passed between every node within the

network. The algorithm is a multi-setup process as follows:

1. A sensor node or other device (perhaps with an absolute timescale) broadcasts m

packets each of which is received nearly simultaneously at each node in the

network (assuming single-hop network architecture)

2. Each of the n receiving nodes records the time according to its local internal clock

3. Each receiving node exchanges time of arrival with all other nodes in the network

4. Each node i calculates its offset to node j by taking the average of the time

differences associated with each of the m reference broadcasts as shown in

Equation 6.1:

 (6.1)

This algorithm does not account for clock skew as discussed earlier. Oscillator clock

skew can be compensated for by using a least-square linear regression rather than an

average for calculating the offsets [19].

 Multi-hop network architectures can be accommodated by having multiple beacon

transmitters that are within range of different domains (areas of the network that require

at least one additional hop to be reached). In this way, the algorithm is essentially the

same in that each beacon node broadcasts and all nodes within range of the broadcast and

each other exchange information. Since some nodes will receive a broadcast from

multiple beacon nodes, each logical domain will have enough information to build a

timescale that relates it to all other domains.

53

6.5 Summary

As a first degree solution, we have implemented a single-pulse synchronization

system. While this system does not provide the best synchronization possible, it does fit

well with the current hardware precision. In future work, higher performance

synchronization will need to be implemented to allow for applications that must correlate

measurement data across the network on an absolute time scale. As we have shown,

node-to-node synchronization is on the order of 58 µs, which is an accuracy that cannot

be truly utilized due to the low resolution nature of the timekeeping hardware on the

system. It should also be noted that while it has not yet been implemented, it would be

possible with the current hardware to utilize a virtual real-time clock by using an internal

hardware timer on the microcontroller and extracting the wall time from the hardware

real- time clock. This scheme would offer a significant performance improvement over

the currently implemented method, because there would not be latency associated with

sending commands to the real-time clock hardware. As soon as a time packet is received

and identified, there would be little latency associated with updating a register within the

microcontroller.

54

CHAPTER 7: SENSOR DATA FUSION AND APPLICATIONS

7.1 Sensor Data Fusion

 While a complete discussion of sensor data fusion is beyond the scope of this

thesis, it is important to outline some of the issues involved when attempting to combine

large quantities of sensor data to make inferences about an event or phenomenon. Sensor

data fusion can be leveraged in several ways; it may be used for data aggregation to

reduce large data sets into a more manageable or concise set, to improve the accuracy of a

single measurement variable utilizing a large set of sensor information that is known to

be measuring the same phenomenon, or to provide a means to utilize multiple types of

sensors to provide a more complete picture of the environment being monitored. In this

section, we will discuss some of the issues involved in leveraging sensor data fusion.

 As discussed in Section 1.2, much research has been applied to formalizing the

terminology and processes involved with multi-sensor data fusion. This was originally

inspired by funding from the Department of Defense (DoD) to aid in the use of multi-

sensor data fusion in military systems, such as target tracking systems that must utilize a

variety of tracking sensors in concert. With the need for military researchers to

communicate effectively with regard to data fusion processes, the Joint Directors of

Laboratories (JDL) Data Fusion Working Group was commissioned to develop a process

model that could be used to effectively outline the various aspects of data fusion. Figure

25 shows a graphical representation of the JDL model.

55

Figure 25: JDL Data Fusion Model [1]

 As seen in Figure 25, the model outlines four levels (or processes) of data fusion

as well as database resources utilized by each of these processes. As we move across the

figure from left to right we see the translation of the data from the raw sensor inputs to an

interface for human interaction with the system through application of each fusion

process. In the JDL model, as outlined in the Handbook of Multisensor Data Fusion by

Liggins et al. (2009), these processes are defined as follows:

 Level 0 processing (sub-object data association and estimation) is aimed at

combining pixel or signal level data to obtain initial information about

an observed target’s characteristics.

 Level 1 processing (object refinement) is aimed at combining sensor data

to obtain the most reliable and accurate estimate of an entity’s position,

velocity, attributes, and identity (to support prediction estimates of

future position, velocity, and attributes).

 Level 2 processing (situation refinement) dynamically attempts to develop

a description of current relationships among entities and events in the

context of their environment. This entails object clustering and

relational analysis in such as force structure and cross-force relations,

communications, physical context, etc.

56

 Level 3 processing (significance estimation) projects the current situation

into the future to draw inferences about enemy threats, friend and foe

vulnerabilities, and opportunities for operations (and also consequence

prediction, susceptibility, and vulnerability assessments).

 Level 4 processing (process refinement) is a meta-process that monitors

the overall data fusion process to assess and improve real-time system

performance. This is an element of resource management.

 Level 5 processing (cognitive refinement) seeks to improve the interaction

between a fusion system and one or more user/analysts. Functions

performed include aids for visualization, cognitive assistance, bias

remediation, collaboration, team-based decision making, course of

action analysis, etc [22].

What is apparent by the definition above (though the definition is somewhat focused on

military applications), is that data fusion is a multi-layered process of refining the sensor

inputs, first by collecting the raw data, then characterizing that data in the context of the

some defined parameters, and finally applying algorithms to make judgments about the

characteristics that were identified. With so many aspects deeply related to specific

applications, it is clear that providing a general purpose framework for utilizing data

fusion is no small undertaking.

 There are many ways to approach the characterization level of data fusion. Each

method has a different processing requirement to analyze the data. Thus, in a wireless

sensor system that is typically battery-powered, only minimal processing is possible at

the sensor nodes. Some of the techniques or methods of data fusion include: Bayesian

and Dempster-Shafer inference, pattern recognition through signal processing, fuzzy

logic, and many others [23]. The choice of algorithm would be based on their fit with the

application in question.

 For sensor data fusion of different sensor types, there must be some objective or

57

query to be answered for which knowing the values of the various sensors in combination

will allow the question to be answered. For instance, in a sensor system monitoring air

quality, “is the average particulate matter concentration abnormal, thus requiring an

alarm?” This question can not necessarily be answered by looking only at the particulate

matter concentration of a single sensor or even the combination of all sensors in the area.

Has a vehicle been detected near the sensor that is reading a high value? Is the measured

average higher than is typical during this period of the day? Questions of this nature can

be leveraged by smart fusion algorithms to answer the original query with good certainty

and a low false positive rate. As has been said, the nature of the algorithm chosen to deal

with such a query is highly dependent on the characteristics of the application. In the

above example, an algorithm would need to take into account the average concentration

associated with a particular time of the day, compare the inputs from vehicle tracking

with the time of the increased concentration, and then make a decision. This process

could be implemented with a neural network or fuzzy logic.

 Sensor data fusion may require the spatial and/or temporal relationship of the

sensors to be known to a good certainty. With enough sensors located across an area, it

becomes possible to infer the spatial or temporal dependence of a variable, and thus form

gradient plots or scalar field visualizations to aid human observers in understanding the

behavior of the variable being monitored. Again, sensor data fusion can provide a means

to identify information that would not be possible with any single sensor, if the

phenomenon is sufficiently large. Suppose a large network of sensors is spatially

distributed over such an area. Each sensor provides a binary yes or no reading of a

phenomenon. With the spatial relationships and the sensor readings known for each

58

sensor at a particular instant, it is then possible to determine the shape of the detected

phenomenon – a task that would not be possible with a single sensor. Figure 26 is an

illustration that outlines the power of fusing multiple sensor inputs and its ability to

characterize an entity in a way not possible with a single sensor.

Figure 26: Characterization of an Entity through Data Fusion

 As is seen in Figure 26 (left), even if the sensors (represented as black dots) were

only capable of a binary, yes/no detection of a phenomenon (irregular shape), the

combination of all of the sensor inputs provides a more complete view of the

phenomenon, namely its size, shape, position and velocity. With a single sensor

configuration (right) the sensor is able to detect the phenomenon, but the concept of size,

shape, position, and velocity cannot be directly extracted.

 Coordination of the sensor modules requires tight time synchronization to allow

identification of events. As each sensor module detects a phenomenon, it is possible that

more than one module will “see” the same change, and having time agreement among the

sensor nodes allows events to be associated. This is particularly important when we are

interested in tracking a dynamic phenomenon and determining its velocity, etc.

 In summary, each application must be examined to determine what type of

information is required to be collected by the sensor network, and how that information

59

should be leveraged by fusion algorithms to extract the needed decision or notifications

based on the collected information. Our focus in this work has not been on the

algorithms employed for data fusion, but rather on how the design of a system may lend

itself to providing the information needed to apply such algorithms, and making an

analysis system capable of incorporating fusion algorithms as the application dictates.

7.2 Applications

 One of the primary applications that our hardware design has been tested with is

the environmental monitoring of airliner cabins. Security issues and potential passenger

concerns related to conspicuous unattended electronics within the airliner cabin

environment have, thus far, prevented the use of the networking capabilities. However,

due to the local flash storage, sensor nodes have been used for single point

measurements. There are many potential applications for a complete sensor data fusion

framework. Of particular interest for security applications, is the deployment of large

sensor networks to monitor environmental contamination. Such systems could be used to

determine parameters such as threat-level to health, contaminant concentration, and point

of origin of contaminants. Additionally, such systems may provide an early warning

system that causes an alert if measured parameters exceed a defined level. The flexibility

and portability of the hardware and firmware allow a wide range of contaminant sensors

to be fitted to the system without re-engineering the sensor modules. The interfacing

software and network connectivity allow large sensor networks to be managed both from

a data processing standpoint and sensor module control.

 One additional aspect of this research has been to develop a means to characterize

how this sensor framework could be used to determine the point of origin for diffusive

60

contaminants as in [24]. As experiments with diffusive contaminant sources over large

sensor networks can be difficult to implement, particularly with repeatability, some work

has been done to develop a sensor network simulator. This allows repeatable experiments

to test the framework for identification of diffusive sources. Figure 27 shows a

visualization produced by the simulator as a wave front moves through a sensor network

of 16 sensor nodes. Figure 28 shows the output of the BSUSM while it monitors sensor

nodes 0, 5, 10, and 15 during the simulation. As seen in Figure 28, there is a distinctive

detection peak associated with each sensor node as an environmental change “moves”

across the sensor network from top left to bottom right. The magnitude, spatial, and

temporal relationships of the measurements would allow a data fusion algorithm to

project the source and direction of the change. While this research is in early stages, it

may provide a means to characterize the effectiveness of data fusion algorithms before

they are deployed in the field.

Figure 27: Simulator Visualization of a Wave Front

61

Figure 28: Sensor Output Patterns during Simulation

Clearly, there are many aspects of data fusion and its application. Choosing

algorithms on a case-by-case basis is necessary to take advantage of data fusion. Our

framework has been designed to provide the base level data collection components, data

centralization through database connectivity, and some software extensions that allow

algorithms to be applied as the data is collected. In terms of application, much work is

still needed to enable the complete characterization of environmental contaminants;

however, many of the tools required are provided with the framework developed.

62

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

8.1 Summary and Conclusions

Many parameters were considered during the design and implementation of a

sensor data fusion framework. Each component of the framework was designed with

modularity and re-configurability as primary objectives to better enable its use in a wide

range of applications. The sensor module hardware was developed to reduce re-

engineering and simplify sensor changes or application retargeting. This inexpensive

hardware was leveraged to provide data collection capabilities normally only possible

with more costly systems. The developed software provides many of the necessary

components for both raw data collection and the application of real-time analysis or

fusion algorithms. Additionally, the software provides data centralization through

database connectivity to aid in applications that require significant data processing

schemes that would not be possible on a single computer connected to the sensor

network. Time synchronization implemented in the system provides a first degree

solution for smaller networks in which mesh architecture is not needed. Further work in

this area is planned. The framework outlined by this thesis has been developed to

provide a solution to many sensing applications, such as those for security or scientific

research.

63

8.2 Future Work

Many aspects of a general purpose framework implementation were addressed

within this work; however, there are other aspects that have stood out during the course

of this research that seem important to pursue. These areas include the need for some

further hardware refinements, expansion of time synchronization capabilities, and further

field testing.

8.2.1 Hardware Improvements

While the sensor module hardware developed provides significant functionality,

there are areas that could be improved or extended. Improvements of particular note

include the ZigBee® radio platform and microcontroller performance.

As discussed in Section 4.2, the current radio utilized in the system uses a self

contained radio system that offloads much of the processing required to maintain the

network communications. While this offers benefits to low power microcontrollers (and

is needed for the microcontroller currently used in our system), it also creates a

significant contribution to added communications latency as the data moves through a

buffer on the ZigBee® module, and then is transferred via UART to the microcontroller.

When high accuracy time synchronization is required, this scheme does not provide an

ideal solution. Perhaps a better solution would be to have the microcontroller directly

control the radio chipset as has been done in other systems, discussed in Section 2.2. The

radio issue goes hand-in-hand with the limitations of the microcontroller platform.

The radio system was, in part, chosen based on its ability to completely manage

the networking tasks. However, if a higher performance microcontroller was used in the

system, these network tasks could easily be managed along with the normal CPU

64

responsibilities. Many new microcontrollers (particularly 32-bit versions) offer

peripheral direct-memory-access (DMA) controllers, which allow the microcontrollers to

multi-task during peripheral I/O, even though there is only a single CPU execution thread

[25], [26]. These processors provide significantly greater raw processing power at

similar or lower power consumption than our current microcontroller. While this seems

counter-intuitive, it is simply a result of the progression of technology since our system

was originally designed. Moving to a 32-bit processor in our system would provide

several benefits. It would enable direct management of the network stack, provide

improvements in timekeeping resolution (higher CPU clock speeds), provide improved

raw computing power for sensor node centric data processing, and maintain or improve

the power consumption requirements of the CPU.

8.2.2 RBS Implementation

As discussed in Section 6.3, the single-pulse synchronization technique

implemented in our system is not scalable or accurate enough for some applications,

particularly those that rely on precise reference to wall time or require significant use of

multi-hop network architecture. Some of the latency issues could be solved by some

changes in the way time is managed on the system, e.g. internal hardware timers.

Nevertheless, multi-hop synchronization needs to be more fully supported, a task (as

outlined in Section 6.4) that can be addressed by reference broadcast synchronization.

8.2.3 Advanced Sensor Node Operating System

While the firmware developed for our sensor module hardware is modular and

reconfigurable, there are some areas that could be improved. Perhaps most notable

65

would be the addition of a real-time multitasking environment. There are many ways to

implement multitasking on a microcontroller; however, each has varied requirements in

terms of the microcontroller’s performance and characteristics. Our current system

manages multiple tasks by establishing interrupts that notify the main execution thread to

service another tasks. This process works without problems when the number of tasks is

small and each task takes a small amount of time. However, outside of those conditions,

it is possible for a single task to require too much time of the main execution thread, and

thus prevent other tasks from being serviced in a timely fashion. These issues can be

solved, in part, by using a real-time preemptive operating system.

One such operating system that meets many of our design requirements is Nano-

RK, which was developed by Carnegie Mellon University [27]. According to their

documentation, the operating system provides a “reservation based real-time operating

system (RTOS)” “…with multi-hop networking support for use in wireless sensor

networks.[28]” This operating system provides many features specifically targeted to

wireless sensor networks including:

• Classical Preemptive Operating System Multitasking Abstractions

• Real-Time Priority Based Scheduling

• Built-in Fault Handling

o Task Timing Violations

o Stack Integrity

o Unexpected Node Restarts

o Resource Over-Use

o Low Voltage Detection

o Watchdog Timer

• Energy Efficient Scheduling based on a-prior task-set knowledge

• Small Footprint (<2K RAM, 16K ROM, including link layer) [28]

Implementation of this operating system in our sensor modules would require a different

microcontroller platform that supports software control of the global stack pointer to

66

provide task context switching (a feature that is lacking in the PIC18F8722, which uses a

hardware stack) [5].

The Nano-RK operating system supports power management, an area that we

would also like to improve in our system. While our current system supports powering

down sensors when needed, the architecture does not provide significant power savings

techniques with regard to the communications system. This is mainly a software issue, as

both the microcontroller and the ZigBee® radio are capable of entering into a low-power

sleep mode. As pointed out in [12], smart deactivation of the radios requires close time

synchronization among sensor nodes to schedule when radios should be enabled or

disabled. This insures that there are not collisions with data packets and that the sensor

nodes continue to have high availability.

8.2.4 Field Testing

It seems clear that there is no substitute for real-world testing. After making some

of the aforementioned improvements, we hope to utilize our system in various

applications. Initially, this system is slated to be applied to a new study on the

characterization of airflow within airliner cabins. Another application of interest is an

early warning system for detection of biological or chemical contaminates. As discussed

in Section 7.2, this application provides many issues to be solved that fit well with the

research we have already started, e.g., the simulator that is being developed for testing the

identification of contaminant diffusion patterns and locating point of origin. Further

work must be done to enable characterization of contaminants that would allow

application of high-level data fusion algorithms for notifying authorities of potential

problems.

REFERENCES

[1] Martin E. Liggins, David L. Hall, and James Llinas, Handbook of Multisensor Data

Fusion: Theory and Practice, 2
nd

 ed. Boca Raton: CRC Press, 2009.

[2] A. Norige, “Distributed sensing for chemical and biological defense,” presented at

IEEE Homeland Security Technology Conference, Waltham, MA 2009.

[3] M. Owen, "Portable Wireless Multipurpose Sensor System for Environmental

Monitoring," M.S. thesis, Boise State University, Boise, ID, 2007.

[4] Sin Ming Loo, Mike Owen, and Josh Kiepert, “Modular, Portable, Reconfigurable,

and Wireless Sensing System,” Journal of ASTM International, Vol. 5, No. 4, May

2008.

[5] Microchip Technology Inc., Microchip PIC18F8722 Family Data Sheet, 2008.

[6] Crossbow Technology, “Wireless Module Portfolio,” March 2009,

https://www.xbow.com/Products/productdetails.aspx?sid=156.

[7] Dust Networks Inc., “SmartMesh XT 2.4 GHz”, March 2009,

http://www.dustnetworks.com/products/ SmartMesh_XT_2_4_GHz.

[8] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The

platforms enabling wireless sensor networks. 2004. Communications of the

ACM 47, no. 6: 41-46.

[9] Xianghui Cao, Jiming Chen, and Youxian Sun, “An interface designed for

networked monitoring and control in wireless sensor networks,” Computer

Standards & Interfaces, Volume 31, Issue 3, Industrial Networking Standards for

Real-time Automation and Control, March 2009, pg. 579-585.

[10] R. Mangharam, A. Rowe, R. Rajkumar, “FireFly: A Cross-Layer Platform for

Wireless Sensor Networks”, Real Time Systems Journal, Special Issue on Real-

Time Wireless Sensor Networks, Nov. 2006.

[11] Crossbow Technologies Inc., “Product Feature Reference Chart,” June 2009,

https://www.xbow.com/Support/Support_pdf_files/Product_Feature_Reference_Ch

art.pdf

[12] Carnegie Mellon University. “FireFly WSN Platform,” June 2009,

http://www.nanork.org/wiki/FireFly

[13] Maxim Integrated Products, Inc. Technical Staff, MAXIM Fixed Output 10W CMOS

Step-Up Switching Regulators, 1990.

[14] Maxim Integrated Products, Inc. Technical Staff, MAXIM 3.3V/5V or Adjustable,

Step-Up/Down DC-DC Converters, 1997.

[15] Digi International Inc. Technical Staff, XBee/XBee PRO DigiMesh 2.4 OEM RF

Modules, Digi International Inc., 2008.

[16] Maxim/Dallas Semiconductor Technical Staff, MAXIM DS1339 I
2
C Serial Real-

Time Clock, 2008.

[17] ZedGraph. “ZedGraph Wiki,” June 2009,

http://zedgraph.org/wiki/index.php?title=Main_Page

[18] F. Sivrikaya, and B. Yener, "Time synchronization in sensor networks: a survey,"

Network, IEEE , vol.18, no.4, pp. 45-50, July-Aug. 2004.

[19] Jeremy Elson, “Time synchronization in wireless sensor networks,” Ph.D.

dissertation, University of California, 2003.

[20] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system.”

Communications of the ACM, 21(7):558-65, 1978.

[21] Jeremy Elson, “Time synchronization in wireless sensor networks,” presented at the

International Parallel and Distributed Processing Symposium (IPDPS), San

Francisco, CA, April 2001.

[22] Martin E. Liggins, David L. Hall, and James Llinas, Handbook of Multisensor Data

Fusion: Theory and Practice, 2nd ed. Boca Raton: CRC Press, pg 8-9, 2009.

[23] Lawrence A. Klein, Sensor and Data Fusion: A Tool for Information and Decision

Making. SPIE, July 2004.

[24] Tong Zhao, Nehorai, A., "Distributed Sequential Bayesian Estimation of a

Diffusive Source in Wireless Sensor Networks," Signal Processing, IEEE

Transactions on, vol.55, no.4, pp.1511-1524, April 2007.

[25] Microchip Technology Inc. PIC32MX3XX/4XX Family Datasheet, June 2009.

[26] Atmel. AVR®32 32-bit Microcontroller Preliminary, March, 2009.

[27] Carnegie Mellon University. “Nano-RK: A Wireless Sensor Network Real-Time

Operating System,” June 2009, http://www.nanork.org/

[28] Carnegie Mellon University. “Nano-RK,” June 2009, http://www.nanork.org/

