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CHAPTER 1: INTENSE SEED PREDATION 

BY OWYHEE HARVESTER ANTS (POGONOMYRMEX SALINUS) 
ON A RARE MUSTARD (LEPIDIUM PAPILLIFERUM) 

ENDEMIC TO IDAHO 
 

Abstract 

(1) Seed predation can significantly restrict the reproductive output and individual 

fitness of plants, particular those plants that are rare or endangered.  In some 

cases the total seed loss can reach 100%.  Owyhee harvester ants, Pogonomyrmex 

salinus, actively remove the fruits and seeds of slickspot peppergrass, Lepidium 

papilliferum, a rare mustard endemic to southwest Idaho.   

(2) Several experiments were conducted to quantify seed predation on L. papilliferum 

located within the foraging distance of P. salinus.  Individuals exposed to 

harvester ants experienced a direct loss of fruits and seeds (> 40%), whereas 

plants shielded from ants suffered almost no seed loss.  Harvester ants were also 

effective scavengers of seeds on the ground (removing > 90% of seeds from the 

ground).   

(3) All fruits and seeds collected by ants were returned to their nests and taken below 

ground.  Of 100 successful foragers monitored all returned the fruit or seeds to 

the nest.  A search of 30 middens revealed many empty L. papilliferum fruit 

husks but no intact seeds.  Thus, it does not appear that the ants benefit L. 

papilliferum by dispersing their seeds.   
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(4) Pogonomyrmex salinus is the main seed predator of L. papilliferum and in some 

cases can remove and destroy complete seed sets of individuals.  Seed removal of 

this magnitude suggests that P. salinus may significantly limit recruitment of new 

individuals of L. papilliferum and lead to further decline of this rare plant species.   

 

Introduction 

 

Individual plants are often faced with the consequences of herbivory, including 

reductions in growth, survival, and reproductive performance, all of which may impact 

their fitness (Harper, 1977; Maron, 1998; Mueller et al., 2005).  Loss of leaf and flower 

tissue can lead to reductions in the resources plants require for growth and chemical 

defenses, and it can create alterations to floral and vegetative structures, which adversely 

affect pollinator visitations (Herms & Mattson, 1992; Agrawal et al., 1999; Leavitt & 

Robertson, 2006).  An individual plant’s fitness is affected directly when herbivory is 

focused on seeds or fruits because such actions cause an immediate reduction in the 

plant’s reproductive success (Janzen, 1971; Castro et al., 1999; Louda & Potvin, 1995; 

Weppler & Stocklin, 2006).  Over time, the selective pressure of seed loss may result in 

changes to the timing of reproduction as well as alteration of floral morphology and 

abundance (Brody, 1997; Parachnowitsch & Caruso, 2008).  Seed predation can also 

affect biotic communities by altering a species’ demographics, recruitment, and 

composition (Harmon & Stamp, 1992; Louda & Potvin, 1995; Weppler & Stocklin, 

2006).   
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The population-level consequences of seed predation are likely to be most evident 

in rare plants (i.e., species with small population sizes, high habitat specificity, and 

restricted geographic distributions [Rabinowitz, 1981]) because these plants are often 

reside in small, isolated populations with low reproductive potential and high risks of 

extinction (Fischer & Matthies, 1998).  However, despite the heightened vulnerability of 

rare plants to seed predation, relatively few studies have examined the effects of seed 

removal on rare or threatened plants (but see Albert et al., 2005).  Nevertheless, because 

seed predation may accelerate a rare plant’s decline, from a conservation perspective it is 

critical to assess whether seed predation is occurring, and if so, measure the magnitude of 

seed loss in order to gain a better understanding of how seed predation affects the 

species’ population processes.  The present study examined the occurrence and 

magnitude of seed predation by Owyhee harvester ants, Pogonomyrmex salinus Olsen 

(Hymenoptera: Formicidae), on slickspot peppergrass, Lepidium papilliferum [(L. 

Henderson) A. Nels. & J.F. Macbr.] (Capparales: Brassicaceae), a rare mustard endemic 

to sagebrush-steppe habitat in southwestern Idaho.   

Within sagebrush-steppe habitat, L. papilliferum is restricted to micro-sites known 

as slick spots – shallow depressions of soil devoid of most other plants and characterized 

by high levels of clay and salt, as well as subsurface water retention that is higher than 

that of surrounding areas (Fisher et al., 1996).  Two main life history patterns have been 

described for the species - annual and biennial (Meyer et al., 2005).  Annuals germinate, 

grow, reproduce and die in one season, whereas biennials germinate and grow in the first 

summer, over-winter as vegetative rosettes, and then reproduce and die the following 

season.  White and Robertson (unpublished data) identify a third, albeit uncommon, life 
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history pattern in which individuals flower to a limited extent late in their first year, and 

then again in their second year if they survive the winter.  The life history trajectory an 

individual takes is influenced by environmental cues and an individual’s physical state 

(Meyer et al., 2005); however, no specific mechanisms controlling this pattern have been 

identified. 

Lepidium papilliferum populations have experienced declines in number per 

population as well as the number of individual populations over the past century 

(Moseley, 1994).  These declines have been attributed in large part to the degradation and 

fragmentation of suitable sagebrush-steppe habitat caused by wildfire, livestock grazing, 

rural development, and exotic species invasion (Moseley, 1994).  However, to date 

researchers have not considered the possible role of seed predation on offspring 

recruitment and the long-term viability of the plant, even though throughout much of its 

range L. papilliferum shares habitat with the Owyhee harvester ant, P. salinus, a member 

of a genus known to be voracious consumers of plant seeds (MacMahon et al., 2000).  

Until recently it was thought that P. salinus had little ecological relevance to L. 

papilliferum apart from being a minor contributor to pollination of its flowers (Leavitt, 

2006).  However, further observations revealed that P. salinus becomes a seed predator of 

L. papilliferum once flowering is complete and fruits are maturing on the plant.  A study 

was therefore conducted to explore the extent to which P. salinus removes seeds from L. 

papilliferum, and to determine the fates of those seeds once they are removed from 

plants.   
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Materials and Methods 

 

Study sites   

The study was conducted in 2007 at three populations of L. papilliferum located 

near Boise, Idaho: Big Gulch (BG: 43°44’13.34”N / 116°26’22.66”W), Kuna Butte (KB: 

43°23’14.49”N / 116°28’44.59”W), and Powerline (PL: 43°22’15.34” / 

116°10’35.68”W).  Within the last 10-15 years both BG and KB have experienced 

livestock grazing and disturbance by fire, and both sites are dominated by Artemisia 

tridentata (big sagebrush), Poa secunda (Sandberg bluegrass), Ranunculus testiculatus 

(bur buttercup), and the invasive grass Bromus tectorum (cheatgrass).  By contrast, PL is 

considered to be in a more natural state because it is dominated by A. tridentata and P. 

secunda, with little or no R. testiculatus and B. tectorum present. 

 

Seed predation experiment 

Experiments were conducted to quantify seed loss caused by P. salinus.  At each 

study site up to five slick spots with flowering L. papilliferum were selected, each being 

located within 10 m of an active P. salinus colony.  Within each slick spot two plants 

were selected and matched for size, flowering phenology, and distance from the ant 

colony.  One plant was randomly assigned to the treatment group and the other to the 

control group.  Early in the flowering season, prior to the formation of fruits, a 15 cm 

high, 60-75 cm diameter plastic barrier was placed 2 cm deep in the soil around the base 

of each treatment plant.  Ants could not ascend the barriers or travel beneath them, and  
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thus were denied access to treatment plants.  The barriers were open at the top to allow 

access by insects that pollinate the plant (Fig. 1.1).  No barrier was placed around control 

plants.   

The treatment and control plants were visited weekly for the duration of the 

experiment.  Because the large numbers of fruits produced by each plant made it 

impractical to assess total seed loss to predation, each plant was divided into six equal 

quadrants from above, and a random number table was used to select two inflorescences 

from each quadrant based on their height from the ground.  Using these 12 

inflorescences, the number of flowers, fruits, depredated fruits, and dehisced fruits were 

counted.  Distinguishing between depredated fruits and a dehisced fruit was easy early in 

the season.  When ants removed fruits they snipped the entire fruit from the plant, leaving 

behind a cleanly cut pedicel (Fig. 1.2a).  By contrast, in the case of naturally dehisced 

fruits either the fruit husk and/or ovary remained attached to the pedicel, or the entire 

pedicel withered and broke free from the plant.  However, later in the season it became 

increasingly difficult to distinguish depredated fruits from dehisced fruits.  As fruits 

matured and dried out, ants changed their foraging behavior by opening the fruit and 

removing the seeds directly, leaving behind the husk and/or ovary in a manner similar to 

that found for naturally dehisced fruits.  At this point no inference about the fate of seeds 

was possible based on the appearance of plants, so the quantitative aspect of the 

experiment was replaced by direct observations of ants removing seeds from the plants.  

 The effect of site (BG, KB, PL) and treatment (exposed to ants [controls] versus 

shielded from ants) on amount of seed predation was analyzed using ANOVA with 3 x 2 

factorial treatment structure (JMP in 5.1 SAS Institute Inc., 2004).  The data for the three 
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sites and two treatments met all assumptions of the ANOVA, except in the case of the 

control group at KB, which was not normally distributed (Wilkes λ, p = 0.007).  In that 

particular instance, the control plant of one pair was discovered by P. salinus 

approximately three weeks later than other plants at the site.  As a result, this plant had 

only lost a small proportion of seed when the experiment was stopped.  Because ants 

discovered this plant late in the experiment, both plants in the pair were excluded from 

the analysis, and all assumptions of the ANOVA were then met. 

To establish whether animals other than P. salinus remove fruits from L. 

papilliferum, five fruiting L. papilliferum more than 25 m from the nearest P. salinus nest 

were selected at KB.  (According to Jorgensen and Porter [1982] and Burris [2004], 

harvester ants will travel a maximum of 15-20 m from their colonies to forage.)   These 

plants were monitored weekly for signs of fruit loss to predators.  Statistical comparisons 

of seed loss between these plants and five plants that were surrounded by ant proofs 

barriers at the same site were made using a Mann Whitney U Test (JMP in 5.1, SAS 

Institute Inc., 2004).   

 

Seed removal from the ground 

Because L. papilliferum seeds that drop to the ground can also be harvested, an 

experiment was conducted at BG and KB to quantify how many seeds on the ground ants 

remove.  Using the same treatment and control plants from the experiment described 

above (n = 10 pairs), 10 L. papilliferum seeds were placed on the ground in a 10 cm x 10 

cm grid beneath each plant.  The seeds were added early in the morning, prior to active 

foraging by P. salinus.  The numbers of seeds remaining 3 h later were counted.  The 
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experiment was repeated several weeks later at the same locations.  Any differences in 

seed number between control and treatment plants were attributed to harvester ant 

foraging because no other insects were ever observed carrying or consuming L. 

papilliferum seeds.  Statistical comparisons were made using a Mann-Whitney U test 

(JMP in 5.1, SAS Institute Inc., 2004). 

 

Fate of depredated seeds 

 To determine the fate of seed-bearing fruits collected by P. salinus, 50 ants each 

at Big Gulch and Kuna Butte were observed from the time they collected a mature fruit 

on a plant until the fruit was either discarded or taken inside the ant nest (Fig. 1.2b).  In 

addition, the middens of 15 ant colonies at these two sites were examined for signs of L. 

papilliferum seed predation (i.e., discarded fruit husks), as well as for the presence of 

intact fruits or seeds.  Intact L. papilliferum seeds found in middens were to be returned 

to the laboratory to determine whether they were capable of germination; however, none 

were found. 

 

Results 

 

Seed predation experiment 

 Data collected in this study showed that plants exposed to harvester ants suffered 

higher levels of fruit loss than plants shielded from ants.  The differences in total percent 

fruit loss between treatment and control plants were statistically significant (Fig. 1.3, 

table 1.1; two-factor ANOVA F1,18 = 71.03, p < 0.0001).  There was no significant 
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interaction between the site and treatment group (F2,18 = 0.28, p = 0.79), nor was there a 

significant effect of site on seed predation (F2,18 = 0.75, p = 0.49).  Determining the fate 

of seeds after they dehisced from plants was hampered when ants changed their foraging 

behavior (see Methods).  Therefore, direct assessment of seed loss caused by harvester 

ant foraging was concluded as soon as this change in behavior was observed.  The 40% 

cumulative fruit loss shown in Fig. 1.3 is conservative because ants continued to remove 

fruits from plants after quantitative measurements were stopped.    

Lepidium papilliferum located at least 25 m from a P. salinus nest showed no 

signs of seed predation, and there was no significant difference in seed loss between 

plants that were more than 25 m from an ant nest and those that were surrounded by ant-

proof barriers (Mann-Whitney U test, n = 10, p = 0.91).  Thus, at KB at least, P. salinus 

was the only major seed predator of L. papilliferum.  

 

Seed removal from the ground 

Ants were efficient scavengers of L. papilliferum seeds placed on the ground.  

More than 90% of seeds placed on the ground and exposed to ants disappeared within 3 

h, whereas less than 10% of seeds placed on the soil within ant-proof barriers went 

missing over the same period of time (Fig. 1.4; Mann Whitney U Test, n = 20, p < 

0.0001).  Wind cannot explain the difference between treatment and control because the 

experiment was conducted on calm days.  
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Fate of depredated seeds 

Of the 100 ants observed carrying an L. papilliferum fruit from a plant, 10 

dropped the fruit at some point before reaching their nest.  However, in all 10 cases the 

fruits were quickly recovered and successfully transported to the nest.  Ultimately, all 100 

ants carried the fruits into their nests, after which time the fate of the fruits is unknown.  

Ants were frequently observed leaving their nests and depositing empty L. papilliferum 

fruit husks on the midden, along with debris from other plants.  Despite intensive 

searching, no intact fruits or L. papilliferum seeds were found in any of the 30 middens 

sampled. 

 

Discussion 

 

Harvester ants are widely recognized as important seed consumers in low nutrient 

and dry environments (Morton, 1985; Beattie & Hughes, 2002).  Their influence may 

become particularly relevant for rare and endangered plant species where high predation 

rates can have a major influence on a species’ survival (Albert et al., 2005).  Indeed, the 

high rates of seed predation imposed by Pogonomyrmex salinus on the rare mustard 

Lepidium papilliferum may represent a significant threat to the plant’s long-term 

viability.  Harvester ant colonies are a prominent feature of many L. papilliferum 

populations, and this study has shown that P. salinus are capable of removing large 

numbers of fruit and seed, leaving affected plants with few seeds to contribute to the next 

generation.  
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At least 40% of seed-bearing fruits were removed directly from L. papilliferum 

before it became difficult to distinguish between depredated seeds and those that had 

dehisced naturally from their fruits.  However, seed loss attributable to P. salinus was not 

completely reflected in the amount of fruits or seeds removed from plants; the ants also 

collected and returned to their nests many fruits and seeds lying on the ground.  More 

than 90% of L. papilliferum seeds placed on the ground were lost within 3 h when P. 

salinus were allowed access to them.  By contrast, almost no seeds were lost over the 

same period of time when P. salinus were denied access to the seeds, suggesting that P. 

salinus are efficient scavengers.  The direct loss of seeds from plants, combined with 

those scavenged off the ground, suggest that at least some L. papilliferum experience 

nearly complete seed loss to P. salinus.  Such a high level of seed predation by harvester 

ants is not unprecedented when a particular plant species is a preferred food source, as is 

the case for P. occidentalis foraging on the seeds of Alyssum desertorum (Crist & 

MacMahon, 1992).  The intensity of seed predation by P. salinus on L. papilliferum may 

be exacerbated by the plant’s clumped distributions within sagebrush-steppe habitat.  

Because L. papilliferum is more-or-less restricted to growing within the boundaries of 

slick spots, dense aggregations of seeds are created.  By creating a  

profitable and predictably available resource, dense aggregations of seeds create resource 

rich patches that may facilitate rapid removal by harvester ants (Hughes & Westoby, 

1990; Gorb & Gorb, 2000). 

High levels of seed loss may be sufficient to drive a rare species such as L. 

papilliferum to extinction (see Carlson and Whitford [1991] for other examples), or it 

may put such species at a competitive disadvantage to species less affected by seed 
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predation (Inouye et al., 1980).  In arid environments, seed predation may alter the local 

abundance and distribution of semelparous species (Beattie & Hughes, 2002).  For 

example, Brown et al. (1979) documented a 50% increase in desert annuals within two 

years of excluding harvester ants from the area, demonstrating that these ants can play a 

significant role in determining local plant abundance.  Given the limited distribution, 

specific habitat requirements, and declining numbers of L. papilliferum, similar efforts to 

limit seed predation by P. salinus may be warranted. 

Although seed removal by predators is generally viewed as being detrimental to 

plants, in some cases it may also serve as an effective seed dispersal mechanism (Janzen, 

1971; Crawley, 2000), including instances when secondary dispersers move seeds 

abandoned by seed predators (Dean & Yeaton, 1992).  However, in the case of L. 

papilliferum it is unlikely that harvester ants or some secondary mechanism serve as 

effective seed dispersers.  Of the 100 ants observed carrying fruits to their nests, all 

arrived at their nests successfully and carried the fruit below ground.  Although the 

ultimate fates of those seeds are not known, harvester ants are granivores and thus likely 

consumed them.  Although others have reported that viable seeds collected by harvester 

ants sometimes escape consumption and end up in middens (MacMahon et al., 2000), no 

intact L. papilliferum fruits or seeds were found in P. salinus middens in our study.  

Moreover, even if L. papilliferum seeds are occasionally lost or discarded by ants, the 

narrow habitat requirements of L. papilliferum, combined with the nest-clearing habits of 

P. salinus, make the likelihood of successful germination and survival unlikely.  Any 

plant that germinates on a midden would be quickly destroyed because Pogonomyrmex 

ants clear all herbaceous vegetation growing within approximately 1 m of their nests 
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(MacMahon et al., 2000; personal observations).  Moreover, although many types of 

plants germinate and grow on the middens of abandoned Pogonomyrmex colony mounds 

(Coffin & Lauenroth, 2000; Gordon, 2000), most P. salinus colonies lie outside of slick 

spots and thus would not offer the proper habitat for L. papilliferum to thrive.  The same 

constraint on survival would be true for seeds dropped in transit to ant colonies once the 

ants left slick spots. 

Owyhee harvester ants appear to be the only seed predators of L. papilliferum.  

There was no evidence of seed predation occurring beyond 20 m from a P. salinus 

colony, which is consistent with the maximum foraging distance previously described for 

harvester ants (Burris, 2004).  Moreover, during eight years of study no other animals 

have been observed removing or consuming L. papilliferum fruits or seeds (personal 

observations).  Although L. papilliferum is susceptible to other forms of herbivory, these 

do not appear to have significant population-level consequences for the plant.  For 

example, florivory by chrysomelid beetles reduces the effectiveness of insect-mediated 

pollination by up to 50% (Leavitt & Robertson, 2006); however, these beetles are usually 

found only late in the season when most pollination has already taken place (Robertson et 

al., 2004).  Likewise, plutellid moth larvae feed on the leaves of L. papilliferum, but they 

are patchily distributed and seldom encountered (Robertson et al., 2004).  Thus, P. 

salinus appears to be the only numerically significant herbivore, seed predator or 

otherwise, of L. papilliferum.  Nevertheless, one should be mindful that herbivore 

numbers often fluctuate, so species that currently seem innocuous may become 

problematic in the future.   
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The overall significance of seed predation for L. papilliferum populations remains 

an open question.  Although P. salinus can exact a large toll on offspring production by 

individual L. papilliferum, the implications of seed predation to the long term viability of 

the plant requires information about the extent to which P. salinus and L. papilliferum 

overlap throughout the plant’s range, and whether specific habitat attributes provide 

conditions that would promote further proliferation of ants in the future.  Throughout the 

plant’s range, as well as the western United States in general, disturbance events such as 

fire are facilitating the replacement of natural sagebrush-steppe habitat with annual 

grassland (Rosentreter, 1992; Hilty et al., 2003).  While we are unsure about historical 

distributions of harvester ant colonies and how disturbance may affect them, the shift in 

vegetation may allow harvester ants to colonize or expand their numbers within areas that 

historically were not favorable for nesting.  For example, habitat disturbance by humans 

has contributed to the expansion of both range and nesting densities in P. occidentalis 

(DeMers, 1993), a close relative of P. salinus according to Shattuck (1987).  

Understanding the factors that contribute to colonization and nesting success by P. 

salinus in areas where L. papilliferum grows may prove critical to the development of a 

meaningful approach for managing and conserving this rare mustard endemic to 

southwestern Idaho. 
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Figure 1.1.  Design of the seed predation experiment.  A plastic barrier was 

placed around treatment plants to prevent access by harvester ants.  By contrast, control 

plants were vulnerable to seed predation by ants. 
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 Figure 1.2. (a) P. salinus removing a mature fruit from L. papilliferum.  The 

arrows show locations of fruits that were excised earlier by ants.  (b) P. salinus returning 

an L. papilliferum fruit to its colony. 
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Figure 1.3.  Graph showing the results of the seed predation experiment.  The 

points represent the mean percent fruit loss to harvester ants ± SE.    Circles represent 

plants exposed to ants, whereas squares represent plants with an ant barrier surrounding 

them.  Sample sizes are shown in parenthesis.  There was a significant difference in fruit 

loss when comparing the total amount lost between the two groups (F1,18 = 71.03, p < 

0.0001) the treatment group lost less than 1% of its fruits (and seeds) while the control 

group lost > 40% of its fruits and seeds. 
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 Figure 1.4.  Box plot chart showing the difference between the numbers of seeds 

foraged from the ground in both the treatment and control groups.  Less than 1 out of 10 

seed was remaining in the control group while more than 9 out of 10 were left in the 

treatment group.  This difference is significant using the non-parametric Mann-Whitney 

U test (n = 20, p < 0.0001). 
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Table 1.1.  Source Table for the Two-factor ANOVA Examining Differences in Seed 

Loss from the Individual Plants. 

Source         DF        Sum of Squares       Mean Square F Value P Value 

Treatment 1      0.61172366        0.61172366 71.03  <0.0001 
 
Site                2      0.01286296        0.00643148 0.75    0.4880 
 
Treatment  
X Site            2      0.00480474              0.00240237    0.28    0.7598 
 
Error  18    0.15501028              0.00861168     
 
Total  23    0.78882342 
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CHAPTER 2: INCREASED SEED PREDATION  
BY OWYHEE HARVESTER ANTS THREATENS  

THE SURVIVAL OF SLICKSPOT PEPPERGRASS, A RARE  
MUSTARD IN SOUTHWEST IDAHO 

         
Abstract 

(1) Anthropogenic disturbance is responsible for shifts in the composition and 

structure of many biotic communities.  Disruptions to communities can promote 

the success of non-indigenous species, and they can shift the roles of native 

species in ways that parallel exotic species invasions.  Within southwest Idaho, 

the conversion of sagebrush-steppe habitat to areas dominated by grasses may be 

fueling the expansion of the Owyhee harvester ant, Pogonomyrmex salinus, a 

native granivore that can remove and destroy large quantities of seed from many 

plant species, including the rare mustard slickspot peppergrass, Lepidium 

papilliferum.  

(2) Ten sites with flowering L. papilliferum were mapped to show the distribution of 

P. salinus colonies relative to slick spots occupied by L. papilliferum.  In total, 

110 slick spots contained L. papilliferum, 69 of which were located within 20 m 

of a P. salinus colony.  Of those 69 slick spots, 52 (75%) showed signs of seed 

loss to the ants. 

(3) Across 29 L. papilliferum populations there was a significant inverse relationship 

between the number of P. salinus colonies and the abundance of big sagebrush, 

Artemisia tridentata (β = -1.07, p = 0.0017).  Conversely, there was a positive 
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correlation between the number of P. salinus colonies and Sandberg bluegrass, 

Poa secunda (β = 39.73, p = 0.036).   

(4) Given the large amount of overlap in habitat between P. salinus and L. 

papilliferum across the plant’s range, and the extent to which P. salinus eliminates 

L. papilliferum seeds from contributing to future generations, the presence of big 

sagebrush appears critical to the plant’s prospects for survival.  Therefore, a 

premium must be placed on restoration and rehabilitation of sagebrush steppe to 

conserve the natural community structure and minimize the risk to native plants 

from seed predation by harvester ants. 

 

Introduction 

 

Anthropogenic disturbances can cause dramatic changes in the composition and 

structure of biological communities (Hannah et al., 1994; Laurance et al., 1998; Hooper 

et al., 2005).  Human development and agriculture, altered fire regimes, as well as the 

introduction of exotic species can affect the species composition of many communities, 

shifting them to a less diverse state (D’Antonio & Vitousek, 1992; Vitousek et al., 1997; 

Smart et al., 2006; Krezewski & Waller, 2008).  This modification of community 

structure, known as biotic homogenization (McKinney and Lockwood, 1999), is 

characterized by a decrease in diversity and abundance of native species (D’Antonio & 

Vitousek, 1992; Fukami et al., 2001), and an increase in exotic invasive species (Elton, 

1958; Levine & D’Antonio, 1999).  Disruptions to communities can also result in shifts 

in the role of native species in ways that parallel exotic species invasions (Knops et al., 
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1999; Naeem et al., 2000).  The benefactors of such releases have been termed “winning” 

species because of specific characteristics that allow them to succeed in disturbed 

homogenized communities (McKinney & Lockwood, 1999).  Winning species often 

effect changes in disturbed communities in ways that resemble those of exotic species, 

including increased predation, competition, and habitat alteration, all of which may serve 

to further degrade the natural composition of the community (Goodrich and Buskirk 

1995). 

Biotic homogenization is occurring at an unprecedented rate in the Great Basin of 

the western United States (West, 1999; Hemstrom et al., 2002; Dahlgren et al., 2006; 

Hemstrom et al., 2007).  Less than 20% of natural sagebrush-steppe habitat within this 

region remains unaltered by human activity (West, 1999).  Sagebrush dominated habitat 

in many areas has given way to herbaceous grasses such as cheatgrass, Bromus tectorum, 

an invasive exotic species (Mack, 1981; Rosentreter, 1992; Prater & DeLucia, 2006).  

Such shifts in community composition and structure, while detrimental to sagebrush-

obligate species like the greater sage grouse (Centrocercus urophasianus) and pygmy 

rabbit (Brachylagus idahoensis) (Crawford et al., 2004; Gabler et al., 2001), may provide 

other native species with opportunities for expansion.  The Owyhee harvester ant, 

Pogonomyrmex salinus Olsen, may be a species that is “winning” in response to biotic 

homogenization.  Grasslands provide these ants with a large seed base for foraging, as 

well as ideal habitat for nesting because the Pogonomyrmex ants can easily clear all 

herbaceous vegetation in a 1-2 m radius around their nests (MacMahon et al., 2000).  The 

removal of vegetation is critical to colony success, perhaps through its effects on the  
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temperature of colonies (Cole, 1994; Bucy & Breed, 2006), the reduction of cover for 

predators (Mackay, 1982), and/or the reduction of roots that break up underground 

chambers (Wu, 1990). 

The success of P. salinus may represent a threat to the long-term viability of 

native plant species, including slickspot peppergrass, Lepidium papilliferum [(L.F. Hend.) 

A. Nels. and J.F. Macbr], a rare mustard (Brassicaceae) endemic to sagebrush-steppe 

habitat in southwest Idaho.  Within sagebrush-steppe habitat, as well as the grasslands 

that have supplanted sagebrush in many areas, L. papilliferum is restricted to microsites 

known as slick spots.  Slick spots have higher levels of clay, salt, and water retention than 

surrounding areas, and are generally devoid of other plant species (Meyer, 1995; 

Quinney, 1998).  Flowering in L. papilliferum typically extends from early May to late 

June.  The plant reaches 10 to 40 cm in height and has numerous, multi-flowered 

inflorescences that terminate at the branches.  Its small, white cruciferous flowers, which 

number from a dozen or so to several thousand per plant, are reliant on insects for 

pollination (Robertson & Klemash, 2003).  Mature fruits dehisce their seeds to the 

substrate below in late summer, and may persist in a seed bank for up to 12 years (Meyer 

et al., 2005).  Over the past several decades, L. papilliferum has declined dramatically in 

numbers in response to habitat fragmentation, human disturbance, fire, and invasion by 

exotic plant species (Moseley, 1994).  High levels of seed predation by Owyhee harvester 

ants may compound the problems for survival already faced by L. papilliferum.  When P. 

salinus colonies are located within 20 m of fruiting L. papilliferum, the ants are capable 

of collecting, removing, and destroying more than 90% of an individual plant’s fruits and 

seeds (Chapter 1).   
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 Although it is clear that P. salinus can collect and destroy large numbers of L. 

papilliferum seeds, it is less certain whether the ants represent a significant threat to the 

plant’s survival because the extent to which the two species overlap has not been clearly 

established.  Therefore, in the present study I surveyed L. papilliferum populations 

throughout the plant’s range and measured the abundance of P. salinus colonies within 

each population.  Also, within all populations I measured under-story and over-story 

vegetation in relation to the abundance of harvester ant colonies.  Because harvester ants 

clear vegetation from the vicinity of their nest mounds, I hypothesized that the ants would 

be more abundant in areas with herbaceous vegetation that could easily be cleared than in 

areas with woody vegetation such as sagebrush.  Finally, because seed predation may  

have a significant influence on L. papilliferum’s prospects for survival, I examined the 

spatial relationships among L. papilliferum and P. salinus colonies to establish, at a local 

scale, the extent to which L. papilliferum are currently at risk of seed predation. 

 

Materials and Methods 

 

Site selection and mapping 

The study was conducted from June through mid August 2008.  I selected a total 

of 29 L. papilliferum populations located throughout that plant’s range (Fig. 2.1).  Within 

each of the selected sites I conducted a thorough, systematic search for active P. salinus 

colonies and for slick spots with flowering L. papilliferum.  A hand-held GPS was used 

to record the locations of ant colonies and L. papilliferum at each site.  In populations 

where Owyhee harvester ants and slickspot peppergrass co-occurred, I searched for signs 
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of L. papilliferum seed predation by noting instances in which ants were seen carrying the 

plant’s fruits, and by noting the presence of discarded L. papilliferum fruit husks in the 

middens (refuse piles) of ant colonies.  Using the locations of L. papilliferum and P. 

salinus mounds I used ARC-Map (ARC GIS 9.1) to create a map of each site.  The 

boundaries of sites were chosen to ensure that they encompassed all slick spots populated 

by L. papilliferum, and that the site encompassed an area of at least 10,000 m2.  

 

Vegetation analysis 

I used the line-intercept method (Canfield, 1941; Bonham, 1989) to measure 

percent coverage of big sagebrush, Artemisia tridentata, at each of my study sites.  Big 

sagebrush is the dominant over story species throughout much of the region especially in 

areas inhabited by L. papilliferum (personal observation).  At each site I conducted 10, 

100 m long parallel transects spaced equidistant within each study area to ensure 

complete coverage.  Along each transect I recorded the cumulative distance occupied by 

sagebrush.  Percent over-story coverage at a site was calculated as the mean percent 

coverage across the 10 transects. 

To measure percent under-story canopy coverage at each of the sites I used the 

quadrat plot frame technique (Gauch, 1982; Scheller & Mladenoff, 2002).  Using a 1 m2 

qaudrat frame, sectioned into smaller squares (20 cm2), at a randomly determined 

location along each line transect.  I visually estimated the percent coverage for each 

herbaceous plant species as the amount of the plot frame covered by each species.  

Percent under-story coverage was calculated as the mean percent that each species 

covered within the plot frame across the 10 samples taken at a site.    
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Statistical analysis 

Analysis of the relationship between ant mound abundance and habitat attributes 

was conducted using the Fit Model platform in JMP in 5.1 (SAS Institute Inc. 2004).  For 

the model I considered three kinds of vegetation: big sagebrush, Artemisia tridentata 

(over-story percent cover), Sandberg bluegrass, Poa secunda (under-story percent cover), 

and cheatgrass, Bromus tectorum (under-story percent cover).  Other types of under-story 

vegetation were excluded from the analysis because they were numerically rare relative 

to the two dominant grasses.  Variables retained in the model were selected using a 

stepwise forward procedure.  The probability to enter the model was set at 0.250 and the 

probability to exit the model was set at 0.100.   Before running the model I tested the 

assumptions of non-correlation between variables and multi-collinearity using JMP in 

5.1.   

 

Results 

 

Of the 29 sites included in this analysis, only 10 contained slick spots with 

flowering L. papilliferum in 2008.  These 10 sites, which contained a total of 110 slick 

spots occupied by flowering L. papilliferum, were mapped to show the spatial 

relationships among P. salinus colonies and L. papilliferum (refer to Appendices A1-A10 

for a map of each site).  Although each site was unique in terms of the abundance and 

distribution of ant colonies and flowering L. papilliferum, a clear pattern emerged from 

the data: few slick spots located within 20 m of an Owyhee harvester ant colony (or 

colonies) escaped seed predation.  Of the 110 slick spots across the 10 sites that contained 

flowering L. papilliferum, 69 were located within 20 m of an ant colony (Table 2.1).  Of 



 

 

31
 

 

those 69 slick spots, 52 (75%) showed direct evidence of seed predation by P. salinus.  It 

is also clear from the data that P. salinus colonies do not require L. papilliferum seeds in 

order to survive.  Many successful ant colonies were situated more than 20 m from L. 

papilliferum and showed no evidence of L. papilliferum seeds in their middens (e.g., Fig 

2.2).  Seeds from Sandberg bluegrass and cheatgrass dominated the middens of all 

Owyhee harvester ant colonies, regardless of their proximity to L. papilliferum.   

The abundance of ant colonies was significantly correlated with both over-story 

and under-story vegetation as described by the equation: 

 

AB = 39.63 – OSC(1.07) + USC(39.73)   [Eqn. 1], 

 

where AB is the number of ant mounds per ha, OSC is percent over-story cover, and USC 

is percent under-story cover represented by Sandberg bluegrass (F2,26 = 18.59, r2 = 0.42, p 

< 0.05).  The abundance of ant colonies showed a significant inverse correlation with the 

abundance of big sagebrush (Fig. 3, β = -1.07, p = 0.0017) and a significant positive 

correlation with Sandberg bluegrass (Fig. 4, β = 39.73, p = 0.036).  Cheatgrass was not 

retained by the model likely because of its significant inverse correlation with sagebrush 

(Spearman’s Rank Correlation, Rho = -0.416, p = 0.025) which violates an assumption of 

the model.  Details of the over-story and under-story vegetation coverage at each of the 

29 sites sampled are provided in Appendix B. 
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Discussion 

Human mediated habitat disturbance can alter biological communities by 

upsetting the balance among native species (Hobbs & Huenneke, 1992).  In the case of 

the Owyhee harvester ant, loss of big sagebrush appears to create ideal habitat for 

successful colony formation, perhaps exemplifying McKinney and Lockwood’s (1999) 

notion of a native species that is “winning” in the face of biotic homogenization.  For L. 

papilliferum, habitat shifts that promote the expansion and success of a seed predator like 

P. salinus add to the list of problems faced by the plant as a result of habitat degradation.  

Given the large amount of overlap in habitat between P. salinus and L. papilliferum 

across the plant’s range, and the extent to which P. salinus eliminates L. papilliferum 

seeds from contributing to future generations (Chapter 1; Table 2.1), the presence of big 

sagebrush may be critical to the plant’s continued survival.   

The significant inverse relationship between big sagebrush and the abundance of 

ant colonies is consistent with the general observation that ants in the genus 

Pogonomyrmex prefer to nest in areas where vegetation and debris can be cleared from 

the immediate vicinity of nests (MacMahon et al., 2000).  Harvester ants obviously are 

ill-equipped to remove sagebrush, so either they are avoiding nesting in areas with 

sagebrush or they are failing in their attempts to nest there.  In the few cases in which ant 

colonies were found in sagebrush-dominated habitat, the colonies were located in 

relatively open areas (personal observation). 

While the loss of sagebrush removes a structural impediment to colonization by 

harvester ants, the subsequent transition to grasses presents the ants with little structural 

barriers and an abundant food source.  Sandberg bluegrass was the dominant plant 
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species in the under-story at many of our study sites, reaching coverages of up to 75%. 

This species is often included in native plant seed mixes (Biondini & Redente, 1986; 

Cotts et al., 1991) for reclamation of disturbed sagebrush habitat and the restoration of 

native rangeland.  However, because disturbance (e.g., rangeland fires) generally benefits 

P. secunda, the amount of this grass may be increasing (Tueller, 1962; Daubenmeyer 

1975).  An unintended consequence of this action is that P. secunda may provide 

harvester ants with an abundant source of food that will not affect the ant’s ability to clear 

the area around nest mounds.  Further, Downs et al. (1995) found that post-fire 

restoration of sagebrush from seed was more successful when sites were pretreated with 

herbicide to remove herbaceous vegetation like P. secunda, and that the early 

germination and growth of sagebrush may be restricted by large amounts of under-story 

vegetation.  Thus, the seeding of Sandberg bluegrass may be an impediment to sagebrush 

restoration and lead to an increase in harvester ant colonies.  On the other hand, in the 

absence of Sandberg bluegrass the sites would likely become dominated with B. 

tectorum, which would probably also serve the needs of Owyhee harvester ants.  The 

more pressing problem is the lack of sagebrush recovery following disturbance. 

Within habitats dominated by grasses, P. salinus colonies ranged from uncommon 

to very common.  Sites dominated by grasses but with low numbers of P. salinus likely 

represent areas recently disturbed where ants have yet to fully colonize.  Alternatively, 

these sites maybe unsuitable for P. salinus for reasons other than vegetation.  Regardless, 

it is clear that at least some areas without sagebrush, in contrast to those with sagebrush, 

have the capacity to sustain large numbers of harvester ant colonies.  This relationship 

raises a concern for the conservation of L. papilliferum because throughout the plant’s 
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range, as well as the western United States in general, disturbance events such as fire are 

causing natural sagebrush steppe habitat to be replaced by grasslands (Rosentreter, 1992; 

Hilty et al., 2003).  The shift from sagebrush to grasses may allow harvester ants to 

colonize areas that historically were not suitable for nesting.  Such influxes of ants could 

have a profound effect on the plants remaining in those areas because the ants can 

remove and destroy large numbers of seeds.  Seed predation has been linked to  

significant decreases in both abundance and species richness within plant communities 

(Inouye et al., 1980; Carlson & Whitford, 1991; Samson et al., 1992), which can spell 

disaster for native species that are already rare or in decline (Albert et al., 2005).   

To illustrate the risk that harvester ants pose even to populations of L. 

papilliferum that currently suffer little or no seed predation, consider the “Red Tie” 

population shown in Fig. 2.5.  This population is dominated by basin big sagebrush, with 

L. papilliferum interspersed throughout.  There is little contact between L. papilliferum 

and P. salinus throughout most of the site.  However, at the eastern edge of the site the 

vegetation transitions from sagebrush to more open, grassy areas.  Three P. salinus 

colonies are located in this area.  Given the proximity of these ant colonies to L. 

papilliferum, a fire or other disturbance event that removes sagebrush and promotes 

growth of herbaceous vegetation may create suitable conditions for the rapid expansion 

of P. salinus into the ant-free areas currently occupied by L. papilliferum.  Because 

similar scenarios are likely repeated throughout L. papilliferum’s range, resource 

managers should place a premium on preserving and rehabilitating sagebrush habitat 

within L. papilliferum populations to keep P. salinus numbers in check, and they should 

monitor areas surrounding L. papilliferum habitat that may serve as sources of harvester 
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ants when conditions favor expansion.  Goodrich and Buskirk (1995) suggest that habitat 

restoration should be the focus of efforts to control pest species within disturbed habitats, 

while active control measures (such as eradication and exclusion) should only be 

considered to buy time in the short term or as a final option because of monetary costs,  

possible unacceptable social responses, and unpredicted affects on native community 

structure.  Active control measures should only be attempted after there has been careful 

assessment of the possible consequences for non-target organisms. 

It should be noted that although P. salinus has the capacity to remove substantial 

amounts of seed from L. papilliferum (Chapter 1), the consequences for L. papilliferum 

recruitment may be difficult to detect in the short term if the overlap in habitat between 

P. salinus and L. papilliferum is a relatively new phenomenon, or if the high intensity of 

predation is new owing to recent increases in ant populations.  (Although P. salinus is 

native to southwest Idaho, it is unclear whether their numbers have increased 

dramatically in recent years in response to altered habitat.)   Because L. papilliferum 

within slick spots produce seed banks that can last up to 12 years (Meyer et al., 2005), 

new plants may continue to germinate for some time even if seed predation is preventing 

the seed bank from being replenished.  In areas where predation pressure on seeds 

remains high year after year, L. papilliferum numbers will likely decline drop 

precipitously once the seed bank is depleted – analyses of population structure suggest 

that the plant has limited capacity for seed dispersal among slick spots (Robertson & 

Ulappa, 2004; Billinge & Robertson, 2008).  Thus, although rehabilitation of basin big 

sagebrush should remain the ultimate goal of conservation efforts, in the short term it  
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may be necessary to consider the control of P. salinus colonies located within 20 m of 

flowering L. papilliferum because these ants represent an immediate danger to the plant’s 

survival. 
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Figure 2.1.  Map of Southwest Idaho showing 29 study sites.  MA’s are 

management areas as delineated by the Idaho Conservation Data Center 2005. 
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Figure 2.2.  Map showing the abundance of harvester ant nests within a L. 

papilliferum site (Big Gulch).  As is evident from this figure harvester ants survive well 

even without proximity to L. papilliferum.    
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 Figure 2.3.  The relationship between percent cover of big sagebrush and 

harvester ant colony abundance at 29 element occurrences of L. papilliferum.  There is a 

significant inverse relationship (β = -1.07, p = 0.0017) between amount of sagebrush 

cover and harvester ant nest abundance showing that as sagebrush cover decreases the 

number of harvester ant nest mounds increases. 
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 Figure 2.4.  The relationship between percent cover of Sandberg bluegrass and 

harvester ant colony abundance at 29 element occurrences of L. papilliferum.  There is a 

significant positive relationship (β = 39.73, p = 0.036) between harvester ant nest 

abundance and under-story cover of Sandberg bluegrass showing that as cover of 

Sandberg bluegrass increases so does the number of harvester ant nest mounds. 
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            Figure 2.5.  Map showing the abundance of harvester ants within a L. 

papilliferum site.  This site (Red Tie) is one of the most pristine and undisturbed sites in 

this study.  Note the low numbers of harvester ants within this site, and the few colonies 

near the Southeastern boundary (shown by the black arrows).  Within 100 m of this 

boundary the habitat changes from a sagebrush dominated one to a community dominated 

by herbaceous grass.  It is from this direction that expansion of harvester ants into this 

site will likely come.  
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Table 2.1.  Table Showing the Site-Specific Vulnerability of L. papilliferum to 

Seed Predation by Harvester Ants. 

 
 

Site (Element 
Occurrence) 

 
Number 
of ant 

colonies  

 
Number of 
Slick spots 

with 
flowering 

L. 
papilliferu

m 

 
Number of slick spots 
with flowering L. 

papilliferum as a function 
of distance from a 

harvester ant colony.  
(Number of slick spots 
with signs of seed 

predation†) 

 
Percentage 
of slick 
spots 

≤20m from 
an ant 
colony 

 
Total 

percentage 
of slick 

spots with 
signs of 
seed 

predation 

   ≤≤≤≤20 m >20 m   
Big Gulch (076) 129 11 11 (11) 0 (0) 100 100  
Red Tie (027) 5 21 2 (1) 19 (0) 10 5 
Powerline (067) 12 5 2 (2) 3 (0) 40 40  
Glenn’s Ferry (058)δ 9 9 1 (1) 8 (0) 11 11 

Christmas Mtn. (053) 5 8 2 (1) 6 (0) 25 13 
Initial Point (019) 10 6 5 (3) 1 (0) 83 50 
Kuna Butte (018) 96 27 23 (18) 4 (0) 85 67 
Mountain Home (061) 36 11 11 (3) 0 (0) 100 27 
Nicholson Road  2 1 1 (1) 0 (0) 100 100 
Simco Road (015) 57 11 11 (11) 0 (0) 100 100 

TOTALS 361 110 69 (52) 41 (0) Mean=65.4 Mean=51.3 
†  based on direct observations of ants removing fruits from slick spots, or the presence of L.                                           

papilliferum fruit in the midden of the closest harvester ant colony. 
δ  because of the large size of this element occurrence, only a section was surveyed. 
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APPENDIX A 
 

Gis Maps Showing the Spatial Relationships 
Between Occupied Slick Spots 
and  Harvester Ant Colonies 

within Lepidium papilliferum Population
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Figure A.1.  Map of slick spots and ant colonies at Big Gulch (EO 076) 
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Figure A.2.  Map of slick spots and ant colonies at Red Tie (EO 027) 
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Figure A.3.  Map of slick spots and ant colonies at Powerline (EO 067) 
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Figure A.4.  Map of slick spots and ant colonies at Glenns Ferry (EO 054) 
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Figure A.5.  Map of slick spots and ant colonies at Christmas Mountain (EO 053) 
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Figure A.6.  Map of slick spots and ant colonies at Initial Point (EO 019) 
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Figure A.7.  Map of slick spots and ant colonies at Kuna Butte (EO 018A) 
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Figure A.8.  Map of slick spots and ant colonies at Mountain Home (EO 068) 
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Figure A.9.  Map of slick spots and ant colonies at Nicholson Road (EO unknown) 
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Figure A.10.  Map of slick spots and ant colonies at Simco Road (EO 015) 
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APPENDIX B 
 

Harvester Ant and Vegetative Data 
for 29 Lepidium papilliferum sites 
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Table B.1.  Vegetative characteristics of each of the 29 sites examined.  The plants 
measured were for the over-story sagebrush (Artemsia tridentata); and for the under-story 
the plants were cheatgrass (Bromus tectorum), sandberg’s bluegrass (Poa secunda), 
tumble mustard (Sisymbrium altissimum), blue bunch wheatgrass (Agropyron spicatum), 
and clasping peppergrass (Lepidium perfoliatum).  Ant density is measured as the number 
of active ant colonies per hectare. 
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Site  Ant  
Density  

Overstory  
Coverage 

Understory  
Coverage 

     

 EO#*  Artemesia 
tridentata 

Bromus 
tectorum 

Poa 
secunda 

Sisymbrium 
altissimum 

Agroypyron 
spicatum 

Lepidium 
perfoliatum 

Total 
Under-story 

Bennett 008 16 35.04% 0.00% 0.50% 1.40% 0.00% 0.00% 1.90% 
BG/Hartley  076 112 8.48% 1.10% 70.40% 8.90% 0.00% 0.00% 80.40% 
Chalk flats 010 38 18.84% 80.80% 5.70% 0.00% 0.00% 0.00% 86.50% 
Christmas Mtn 053 36 20.48% 17.60% 48.80% 3.60% 0.00% 0.00% 70.00% 
Christmas Mtn N 028 10 30.26% 0.00% 5.80% 3.80% 0.00% 0.20% 9.80% 
Crater ring 002 46 0.25% 0.00% 10.50% 3.70% 0.00% 54.00% 68.20% 
Emerald city wash 027E 2 41.32% 21.20% 1.30% 8.20% 0.00% 2.40% 33.10% 
Fake raptor rock 059A 4 28.22% 2.80% 75.60% 0.00% 0.00% 8.80% 87.20% 
Flat draw res 703 4 24.34% 0.00% 20.80% 0.00% 15.70% 0.00% 36.50% 
Fraser res. E 021 22 26.54% 72.40% 2.80% 3.30% 0.00% 0.00% 78.50% 
Glenns Ferry NW 058 6 28.62% 79.20% 5.00% 1.80% 0.00% 3.00% 89.00% 
Hot creek 051 4 34.94% 0.00% 1.70% 0.70% 0.80% 20.40% 23.60% 
Initial point 019 2 0.00% 68.40% 2.80% 4.80% 0.00% 0.00% 76.00% 
Juniper butte S 707 10 39.51% 0.00% 14.40% 0.00% 9.60% 0.00% 24.00% 
Juniper butte W 709 4 34.72% 0.00% 13.20% 0.00% 8.00% 0.00% 21.20% 
Kuna butte N 024 10 0.00% 43.60% 26.00% 3.80% 0.00% 0.00% 73.40% 
Kuna butte SW 018 26 2.24% 30.80% 24.40% 10.80% 0.00% 0.00% 66.00% 
Orchard corner 027B 78 3.38% 33.20% 0.00% 14.00% 0.00% 51.60% 98.80% 
Orchard SW 035A 2 21.12% 27.20% 68.40% 1.10% 2.70% 0.00% 99.40% 
Nicholson ? 1 0.00% 48.20% 3.90% 0.00% 0.00% 0.00% 52.10% 
Powerline 067 16 31.04% 1.40% 2.80% 1.10% 0.70% 0.90% 6.90% 
Red tie 027A 6 35.94% 0.00% 5.10% 1.40% 1.37% 0.00% 7.87% 
Mountain Home 061 2 18.42% 1.20% 13.00% 0.00% 12.00% 0.00% 26.20% 
Simco Rd 015 36 1.02% 74.80% 0.00% 4.60% 8.80% 0.00% 88.20% 
Soles rest Cr 030 56 18.56% 14.40% 42.00% 0.60% 2.50% 0.00% 59.50% 
South cole pl 048B 60 23.02% 56.80% 0.00% 2.00% 2.00% 3.60% 64.40% 
South cole tm 048A 10 24.60% 77.20% 1.60% 0.00% 1.60% 1.00% 81.40% 
Ten mile 032 8 29.30% 48.20% 0.00% 6.00% 2.40% 0.00% 56.60% 

West side canal 050 4 10.10% 46.80% 0.00% 11.00% 0.00% 0.00% 57.80% 
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