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Introduction
Medical imaging is a pivotal tool for diagnosing a pleth-
ora of diseases, with lung cancer being one of the most 
critical due to its high mortality rate worldwide. Lung 
cancer, characterized by the uncontrolled growth of 
abnormal cells in one or both lungs, typically presents 
through various radiographic manifestations such as 
nodules, masses, or unusual opacities. The early detec-
tion and accurate classification of these manifestations 
into benign (non-cancerous) or malignant (cancerous) 
categories are crucial for effective treatment planning 
and improved patient outcomes [1, 2].
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Abstract
Medical imaging stands as a critical component in diagnosing various diseases, where traditional methods often 
rely on manual interpretation and conventional machine learning techniques. These approaches, while effective, 
come with inherent limitations such as subjectivity in interpretation and constraints in handling complex image 
features. This research paper proposes an integrated deep learning approach utilizing pre-trained models—VGG16, 
ResNet50, and InceptionV3—combined within a unified framework to improve diagnostic accuracy in medical 
imaging. The method focuses on lung cancer detection using images resized and converted to a uniform format 
to optimize performance and ensure consistency across datasets. Our proposed model leverages the strengths 
of each pre-trained network, achieving a high degree of feature extraction and robustness by freezing the early 
convolutional layers and fine-tuning the deeper layers. Additionally, techniques like SMOTE and Gaussian Blur 
are applied to address class imbalance, enhancing model training on underrepresented classes. The model’s 
performance was validated on the IQ-OTH/NCCD lung cancer dataset, which was collected from the Iraq-Oncology 
Teaching Hospital/National Center for Cancer Diseases over a period of three months in fall 2019. The proposed 
model achieved an accuracy of 98.18%, with precision and recall rates notably high across all classes. This 
improvement highlights the potential of integrated deep learning systems in medical diagnostics, providing a more 
accurate, reliable, and efficient means of disease detection.
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Existing automated models primarily use basic 
machine learning algorithms that lack the depth neces-
sary to understand complex image patterns fully. These 
models are also hindered by significant issues such as 
imbalanced datasets where certain disease manifestations 
are underrepresented, leading to biased predictions and 
reduced accuracy. Moreover, many of these systems do 
not effectively integrate the advancements in deep learn-
ing that have been proven to enhance feature extraction 
and classification tasks [3]. In Fig. 1 sample images from 
the dataset has been shown for better visual insights.

This study proposes an integrated deep learning 
approach that harnesses the capabilities of three state-
of-the-art pre-trained models: VGG16, ResNet50, and 
InceptionV3. By utilizing a combination of these mod-
els, our approach aims to extract a richer set of features 
from medical images, which are crucial for accurate 
disease detection. The integration of multiple models is 
expected to leverage the unique strengths of each archi-
tecture, thereby providing a more robust analysis than 

could be achieved by any single model. Furthermore, 
the application of the Synthetic Minority Over-sampling 
Technique (SMOTE) addresses the issue of class imbal-
ance, enhancing the model’s training process and its 
sensitivity towards less frequent conditions. Table 1 pro-
vides insights of different types of lung tissue and their 
characteristics.

Motivation of the study
The research outlined in this manuscript addresses 
critical challenges in medical diagnostics, specifically 
enhancing the accuracy and reliability of lung cancer 
detection through imaging using deep learning. Inte-
grating multiple pre-trained networks such as VGG16, 
ResNet50, and InceptionV3 presents technical challenges 
in harmonizing outputs and maintaining model stability. 
This raises the question of how to combine these archi-
tectures to enhance feature extraction without com-
promising generalizability. Additionally, handling class 
imbalances in medical datasets is essential to ensure fair 
representation and accuracy across all classes, prompt-
ing an investigation into the most effective methods for 
this. The adaptability of deep learning models to differ-
ent types of medical imaging data is another challenge, 
as models need to maintain high accuracy and reliabil-
ity across varying formats and resolutions. The usability 
and interpretability of these models in clinical settings 
are also crucial for assisting radiologists and improving 
clinical workflows, necessitating strategies to enhance 
these aspects. Finally, rigorous validation and verification 
processes are required to ensure that the models perform 
consistently across various datasets and real-world con-
ditions, ensuring robustness, reliability, and safety for 
clinical use. Addressing these research questions is moti-
vated by the potential of deep learning to significantly 
improve the accuracy, efficiency, and reliability of lung 
cancer diagnostics, ultimately leading to earlier detection 
and more effective treatment, and thereby pushing the 

Table 1 Characteristics of different types of tissues
Characteristic Benign lung 

cancer
Malignant lung 
cancer

Normal 
lung tissue

Growth pattern Slow, controlled 
growth

Rapid, uncon-
trolled growth

Balanced, 
regulated 
growth

Cell 
characteristics

Resemble normal 
cells

Abnormal, often 
with pleomorphic 
features

Normal 
appearance

Metastasis Rarely 
metastasizes

Likely to metas-
tasize to other 
organs

Does not 
metastasize

Prognosis Generally good, 
less likely to be 
life-threatening

Poor, can be 
life-threatening

Normal, 
no cancer 
present

Treatment Often requires 
monitoring, 
may not require 
aggressive 
treatment

Typically requires 
aggressive treat-
ment (surgery, 
chemotherapy, 
radiation)

No treat-
ment 
needed

Fig. 1 Sample images of different phases of lung cancer. (a) Benign. (b) Malignant. (c) Normal
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boundaries of current technologies to create a standard-
ized, objective, and reliable diagnostic tool.

Objective of the research
The objectives of this research paper are summarized as 
follows:

  • To construct a model using VGG16, ResNet50, and 
InceptionV3 to improve feature extraction for lung 
cancer image classification.

  • To achieve superior accuracy, precision, and recall in 
classifying lung cancer images to improve diagnostic 
reliability along with interpretability through 
techniques like grad-cam.

  • To implement techniques like SMOTE and Gaussian 
Blur to balance class distribution in medical imaging 
datasets.

  • To design the model for ease of use and 
interpretability in clinical settings to support 
radiologists and enhance diagnostic workflows.

The remainder of the paper is organized as follows: Sec-
tion II reviews related work in the field of medical image 
analysis, highlighting previous approaches and their limi-
tations. Section III describes the methodology, including 
the dataset used, the preprocessing steps undertaken, 
the architecture of the integrated model, and the train-
ing process. Section IV presents the results of our experi-
ments, including performance metrics such as accuracy, 
precision, and recall. Section V discusses the implications 
of our findings, the advantages of our approach over 
existing methods, and potential areas for future research. 
Finally, Section VI concludes the paper by summarizing 
the key outcomes and the impact of this study on the 
field of medical diagnostics.

Related work
The analysis of lung cancer through medical imaging has 
been an area of extensive research, where diverse meth-
odologies have been explored to enhance the accuracy 
and efficiency of diagnoses. This section reviews several 
prominent approaches employed in the automated anal-
ysis of lung cancer images, detailing the techniques and 
their respective advantages and limitations.

Initially, traditional machine learning algorithms such 
as Support Vector Machines (SVM), Decision Trees, and 
k-Nearest Neighbors (k-NN) were widely used. These 
methods often required extensive feature engineering, 
where domain experts manually identified and extracted 
relevant features from the images before classification [4]. 
While these methods were somewhat effective, they were 
heavily reliant on the quality of feature extraction and 
suffered from poor generalizability when faced with data 
from different imaging sources or patient demographics 

[5, 6]. With the advent of deep learning, Convolutional 
Neural Networks (CNNs) have become the cornerstone 
for medical image analysis, including lung cancer detec-
tion [7]. CNNs automatically learn to identify relevant 
features without the need for manual extraction, provid-
ing a significant leap in performance and adaptability [8].

More recently, transfer learning has gained traction 
where pre-trained models developed for general image 
recognition tasks are fine-tuned for specific medical 
imaging applications. This approach utilizes the learned 
features from vast and varied datasets like ImageNet to 
improve learning efficiency and accuracy in medical 
image analysis [9]. Ensemble methods that combine the 
predictions of multiple models to improve accuracy and 
robustness have also been explored [10]. Advanced meth-
ods like Synthetic Minority Over-sampling Technique 
(SMOTE) have been integrated into the training process 
to synthetically augment the minority classes by generat-
ing plausible examples. This approach helps in balancing 
the dataset, allowing models to learn more generalized 
features across all classes [11]. Table  2 presents several 
notable studies in the field of lung cancer classification.

Furthermore, multiscale approaches that analyze 
images at various resolutions help capture both macro-
scopic and microscopic features, crucial for identifying 
lung cancer stages and types [22].

While significant progress has been made in the auto-
mated analysis of lung cancer images through advanced 
machine learning and deep learning techniques, chal-
lenges remain in terms of generalizability, efficiency, and 
integration into clinical workflows. The proposed study 
aims to address these issues by leveraging an integrated 
deep learning model that combines the strengths of mul-
tiple architectures and advanced techniques for handling 
class imbalance.

Methodology
The methodology adopted for this research focuses on 
a comprehensive approach to analyzing lung cancer 
images, addressing challenges in image variation and data 
imbalance. The process spans several stages, from data 
preprocessing and augmentation to advanced feature 
extraction and visualization techniques. Figure 2 demon-
strates the proposed model’s workflow.

Dataset description
The dataset utilized in this study comprises a collection 
of lung cancer images categorized into three distinct case 
types: Benign, Malignant, and Normal. These images 
were sourced from the IQ-OTHNCCD lung cancer 
dataset [23], a well-documented and publicly accessible 
resource. The images exhibit variations not only in label-
ing but also in their dimensions, which introduces a layer 
of complexity in automated analysis. The most common 
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image size across the dataset is 512 × 512 pixels, although 
there are notable exceptions with sizes such as 512 × 623, 
512 × 801, and a few others that deviate significantly from 
the norm, such as 404 × 511.

Table 3 represents the distribution of the dataset.
Figure  3 demonstrated the above tabular data into 

visual form providing insights.
The dataset contains 120 Benign cases, all sized 

512 × 512; Malignant cases are more varied with 501 
images of size 512 × 512, along with 31 images of size 

512 × 623, 28 images of size 512 × 801, and one image of 
size 404 × 511; Normal cases predominantly feature 415 
images of size 512 × 512 with one outlier of size 331 × 506. 
This distribution is crucial for tailoring the preprocess-
ing steps and ensures uniformity in input data for model 
training. This structured breakdown assists in the empiri-
cal analysis of the dataset and sets the foundation for 
subsequent image processing and analysis steps outlined 
in the methodology.

The IQ-OTH/NCCD lung cancer dataset, like many 
medical imaging datasets, is subject to potential biases 
that could affect the generalizability of any models 
trained on it. One significant concern is the dataset com-
position in terms of diversity—both in patient demo-
graphics (such as age, gender, and ethnicity) and in the 
range of medical imaging equipment used. If the dataset 

Table 2 Studies on lung cancer classification
Study Summary Remarks
Shah, Asghar Ali 
et al. (2023) [12]

Deep learning ensemble 2D CNN for lung nodule detection achieves 
95% accuracy, surpassing baseline methods.

Ensemble CNNs enhance lung nodule detection accuracy, 
showcasing deep learning’s potential in medical imaging.

Mikhael, Peter G. 
et al. (2023) [13]

Sybil model predicts individual lung cancer risk from LDCT scans with 
high accuracy, aiding in personalized screening.

Sybil facilitates personalized lung cancer screening, utiliz-
ing LDCT scans for early risk prediction.

Wankhade, Shalini 
& Vigneshwari 
(2023) [14]

CCDC-HNN combines deep learning and 3D-CNN for accurate early 
lung cancer diagnosis from CT scans, distinguishing benign and 
malignant tumors.

CCDC-HNN enhances early lung cancer detection, utiliz-
ing advanced deep learning techniques for improved 
accuracy.

Said, Yahia et al. 
(2023) [15]

Proposed system combines UNETR and self-supervised networks 
for accurate lung cancer diagnosis from CT scans, achieving high seg-
mentation and classification rates.

Proposed system offers robust solution for early lung 
cancer diagnosis, leveraging advanced networks for 
improved accuracy.

Wani, Niyaz 
Ahmad et al. 
(2024) [16]

“DeepXplainer” hybrid model combines CNN and XGBoost for lung 
cancer detection, achieving high accuracy and interpretability.

“DeepXplainer” offers accurate lung cancer detec-
tion with transparent explanations, aiding in informed 
decision-making.

Chae, Kum Ju et 
al. (2023) [17]

Deep learning-based texture analysis detects interstitial lung abnor-
malities in CT scans, offering potential for improved assessment and 
management.

Deep learning-based texture analysis enhances ILA detec-
tion, providing insights for clinical practice improvement.

Guan, Peiyuan et 
al. (2023) [18]

Automated framework for PET image analysis using differential 
activation filter and CNN achieves superior performance, promising 
applications in medical imaging.

Proposed framework offers comprehensive solution for 
PET image analysis, addressing challenges in screening 
and segmentation.

Mohamed, 
Tehnan IA et al. 
(2023) [19]

EOSA-CNN hybrid algorithm achieves high accuracy in lung cancer 
classification, demonstrating potential for improved diagnosis in CT 
images.

EOSA-CNN offers promising approach for accurate lung 
cancer diagnosis, utilizing hybrid metaheuristic and CNN 
algorithms.

Rajasekar, Vani et 
al. (2023) [20]

Deep learning models analyze histopathological slides for improved 
lung cancer detection, offering potential advancements in early 
diagnosis.

Deep learning models enhance lung cancer detection ac-
curacy, particularly in analyzing histopathological images.

Deepapriya, B. S. 
et al. (2023) [21]

Deep learning techniques predict lung diseases from X-ray and CT 
images, aiming for effective early diagnosis.

Deep learning-based lung disease prediction offers po-
tential for early diagnosis, aiding medical practitioners.

Table 3 Dataset distribution
Type Number of Samples
Benign 120
Malignant 561
Normal 416

Fig. 2 Proposed Model
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predominantly contains images from patients of a spe-
cific demographic or images captured using particular 
types of imaging technology, the model may not perform 
as well when exposed to data from broader, more diverse 
populations or different medical equipment. Addition-
ally, the presence of class imbalance, where some classes 
(like benign, malignant, or normal cases) are underrep-
resented, could skew the model’s learning, leading it to 
overfit to the more frequently represented classes. This 
can result in poorer predictive performance on under-
represented classes, which is a critical issue in medical 
diagnostics where accuracy across all classes is vital. To 
mitigate these biases and enhance model robustness, it’s 
essential to use techniques such as data augmentation 
and advanced sampling methods like SMOTE for overs-
ampling minority classes during training, and to validate 
the model across external datasets that are representative 
of the wider population.

Dataset pre-processing
In the data preprocessing phase of our research, the ini-
tial step involved meticulously resizing each image within 
the lung cancer dataset to a standardized dimension 
of 256 × 256 pixels. This resizing is crucial as it ensures 
uniformity across all inputs, which is vital for consistent 
processing and analysis by the neural network models. 
The choice of 256 × 256 as a target size strikes a balance 
between retaining sufficient image detail for diagnos-
tic purposes and reducing the computational load, thus 
enhancing the efficiency of the model training process. 
Some of the images after pre-processing have been 
shown in Fig. 4.

Following the resizing, we converted all images from 
their original RGB (red, green, and blue) color format 
to grayscale. Equation 1 resizes each original image to a 
standardized dimension of 256 × 256 pixels.

 Iresized = resize (Ioriginal, 256 × 256) (1)

This conversion simplifies the input data by reducing it 
from three color channels to a single channel, focusing 
the model’s learning capacity on extracting relevant fea-
tures from the textural and structural information pres-
ent in the images, rather than color variations. Grayscale 
conversion is particularly beneficial in medical image 
analysis where color may not carry significant diagnostic 
information compared to texture and shape. Equation 2 
converts resized images from RGB to grayscale format to 
simplify the input data.

 Igray = convert_to_gray (Iresized) (2)

The final step in the preprocessing routine involved nor-
malizing the pixel values of the grayscale images. Nor-
malization is a critical process that scales down the pixel 
values to a range of 0 to 1. This is achieved by dividing 
each pixel value by 255, the maximum possible value in 
an 8-bit grayscale image. Equation 3 normalizes the pixel 
values of grayscale images to the range [0, 1] by dividing 
each pixel value by 255.

 
Inormalized =

Igray

255
 (3)

Normalizing the data to this range is a widely recog-
nized best practice in machine learning as it ensures that 
all input features (pixel values, in this case) contribute 
equally to the learning process, preventing any single 
feature from dominating the model’s learning due to its 
scale. Furthermore, this normalization helps stabilize 
the neural network’s training phase by smoothing the 
landscape of the optimization function, thus facilitating 
quicker and more reliable convergence during the learn-
ing process. This comprehensive preprocessing approach 
not only aids in the homogenization of the input data but 
also significantly boosts the efficiency and effectiveness 
of the subsequent model training stages.

The preprocessing of the lung cancer dataset images is 
a crucial step in our methodology to ensure that the input 
data is uniform and suitable for effective model training. 
We resize all images to 256 × 256 pixels, a decision based 
on balancing computational efficiency with the preserva-
tion of essential diagnostic details. This uniform dimen-
sion allows our convolutional neural network (CNN) 
to process the images more efficiently and ensures con-
sistency across all inputs, which is vital for the learning 

Fig. 3 Distribution of dataset
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process. Additionally, each image undergoes grayscale 
conversion to reduce complexity and focus the model 
on textural and shape-related features rather than color, 
which is less relevant in this medical imaging context. 
The resizing is performed using OpenCV’s interpolation, 
which helps in preserving the quality of images during 
the size reduction. This standardization of image size and 
color simplifies the network architecture requirements 
and reduces the computational demand, crucial for the 
practical deployment of the model in medical diagnostics 
where resources may be limited.

Data augmentation and data handling
In our study, we employed a comprehensive suite of data 
augmentation techniques aimed at enhancing the model’s 
robustness and mitigating the risk of overfitting, thereby 
ensuring better generalization across new and unseen 
data. The augmentation process included various trans-
formations such as rotations, translations, horizontal 
flipping, and Gaussian blurring, each carefully chosen 
to mimic real-world variations encountered in medical 
imaging. Specifically, images were randomly rotated by 

angles between − 10 and 10 degrees to account for the 
different orientations that lung structures can assume 
during scanning. Equation 4 randomly rotates images by 
angles between − 10 and 10 degrees to simulate different 
orientations encountered in medical imaging.

 Irotated = rotate (Ioriginal, θ) , −10 ≤ θ ≤ 10 (4)

We also applied translations, shifting images horizontally 
and vertically by up to 10% of the image size, which helps 
the model adapt to variations in lung positioning within 
the scanner field. Equation 5 applies translations to shift 
images horizontally and vertically by up to 10% of the 
image size to simulate variations in lung positioning.

 

Itranslated =translate (Ioriginal, dx, dy)
, |dx| , |dy| ≤ 0.1 × image_size

 (5)

Horizontal flipping was used to further augment the 
dataset by creating mirror images, representing the natu-
ral variability in how images might be presented or pro-
cessed clinically. Equation  6 flips images horizontally to 

Fig. 4 Basic pre-processed images
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create mirror images, introducing natural variability in 
how images might be presented or processed clinically.

 Iflipped = flip (Ioriginal) (6)

Additionally, Gaussian blurring was introduced as a 
technique to simulate the effect of slight focus variations 
that can occur in real diagnostic settings, where blurring 
can affect the clarity of structural boundaries within the 
images. This approach not only diversifies the training 
data but also conditions the model to effectively handle 
practical diagnostic challenges by learning from data that 
closely mimics the variability seen in actual clinical envi-
ronments. Equation 7 applies Gaussian blurring to simu-
late slight focus variations encountered in real diagnostic 
settings, enhancing the model’s ability to handle practical 
diagnostic challenges.

In our image preprocessing pipeline, Gaussian Blur 
is critical for reducing noise and emphasizing relevant 
structures. We used a 5 × 5 kernel size, providing mod-
erate blurring to smooth out noise without distorting 
essential lung tissue details. The blur intensity, or stan-
dard deviation, was set to zero, allowing automatic cal-
culation based on the kernel size. This ensures optimal 
blurring tailored to the kernel size.

 Iblurred = blur (Ioriginal)  (7)

In terms of addressing the issue of imbalanced data, 
our initial examination of the dataset revealed a pro-
nounced disparity in the distribution of classes, with 
‘Malignant’ cases being substantially more prevalent 
than ‘Benign’ and ‘Normal’ cases. Such an imbalance 
can skew the model’s predictions towards the majority 

class. To counteract this, we employed the Synthetic 
Minority Over-sampling Technique (SMOTE), which is 
designed to balance the dataset by artificially synthesiz-
ing new examples in the minority classes. SMOTE works 
by identifying feature space similarities between existing 
examples in the minority class and generating new, syn-
thetic samples that combine features of these close neigh-
bors, effectively enriching the dataset with more diverse 
examples of underrepresented classes. Table 4 shows the 
before and after SMOTE data.

Figure 5 shows the analysis of the data before and after 
smote.

This ensures that all classes have equal representation 
in the training process, allowing the model to learn to 
recognize and differentiate features associated with all 
categories with the same level of accuracy, thereby reduc-
ing bias in the model’s predictions and enhancing its 
diagnostic reliability across all types of cases.

Feature extraction and mapping
In our research, the process of feature mapping and 
extraction is crucial for enhancing the efficiency and 
accuracy of our predictive models. We utilized Princi-
pal Component Analysis (PCA) as a primary technique 
for dimensionality reduction and feature extraction. PCA 
assists in identifying the most relevant features from the 
large sets of image data by transforming the original data 
into a new set of variables, which are linear combinations 
of the original variables and are ordered so that the first 
few retain most of the variation present in all of the origi-
nal variables. The decision on the number of components 
in PCA was strategically made based on the cumulative 
explained variance ratio, which guides us to choose a 
number of principal components that capture a substan-
tial amount of information, while significantly reducing 
the dimensionality of the data. This approach not only 
simplifies the model but also speeds up subsequent train-
ing processes without sacrificing critical information. 
Figure 6 shows the feature extraction of the models.

Alongside PCA, we leveraged the power of pre-trained 
deep learning models—specifically VGG16, ResNet50, 
and InceptionV3—to extract deep features from the 
images. In our methodology, the VGG16, ResNet50, and 
InceptionV3 models were leveraged as the backbone 
for feature extraction, harnessing their powerful, pre-
trained convolutional bases. Specifically, we employed 
these models up to their respective convolutional lay-
ers while keeping their initial weights intact to utilize 
the rich feature representations they have learned from 
extensive ImageNet datasets. For instance, for VGG16, 
we extracted features up to the fifth convolutional block 
(block5_conv3), which is known for capturing high-level 
features. Similarly, for ResNet50 and InceptionV3, we uti-
lized outputs up to the activation layers just before their 

Table 4 Before and after SMOTE
Type Before SMOTE After SMOTE
Benign 420 420
Malignant 312 420
Normal 90 420

Fig. 5 Before and after SMOTE
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respective global pooling, ensuring a broad yet relevant 
spectrum of features are used. This approach allows the 
network to benefit from deep and complex architectures, 
ensuring robust feature extraction which is critical for 
the accuracy of classifying lung cancer images. By freez-
ing these pre-trained layers, we significantly reduce the 
computational overhead during training, focusing the 
learning process on the new data-specific layers added 
atop the frozen architecture, which were fine-tuned to 
our specific lung cancer dataset.

Model architecture
The composite model developed for this research inte-
grates features from three state-of-the-art pre-trained 
convolutional neural networks (CNNs): VGG16, 
ResNet50, and InceptionV3. Each of these models has 
been extensively validated in the field of computer vision, 
particularly in tasks involving image classification and 
recognition. The choice to combine these networks stems 
from their unique architectural merits, which when com-
bined, enhance the model’s feature extraction capabilities 
and robustness.

VGG16: Developed by Visual Graphics Group at 
Oxford, VGG16 is characterized by its simplicity, using 
only 3 × 3 convolutional layers stacked on top of each 
other in increasing depth. Reducing volume size is han-
dled by max pooling. VGG16 is very effective in extract-
ing low-level features from images but comes with a large 
number of trainable parameters, which makes it compu-
tationally intensive.

ResNet50: Short for Residual Network, ResNet50 uti-
lizes skip connection, or shortcut connections, that allow 
it to skip one or more layers. The primary advantage of 
ResNet structures is their ability to enable very deep 
networks by addressing the vanishing gradient problem 
through these residual links. This allows the network to 
learn an identity function, ensuring that the higher lay-
ers will perform at least as good as the lower layers, and 
potentially better.

InceptionV3: This model is known for its efficiency in 
computing resources, utilizing a factorization concept 

into smaller convolutions. InceptionV3 layers apply mul-
tiple filters to an input and then concatenate the outputs. 
This setup allows the model to look at the same data in 
different ways, capturing cross-channel correlations and 
spatial correlations effectively.

In our model, each pre-trained network serves as a fea-
ture extractor where the final fully connected layers are 
removed, and the output feature maps are flattened and 
concatenated. This concatenated feature vector contains 
comprehensive information captured by different archi-
tectures. It feeds into a dense layer with a high degree of 
non-linearity to integrate these features effectively, fol-
lowed by a final output layer with a softmax function for 
classification into three classes: Benign cases, Malignant 
cases, and Normal cases. The choice of using a softmax 
activation function in the final layer of our lung cancer 
detection model is pivotal for accurate classification and 
decision-making, especially in borderline cases. Softmax 
is ideal for our multi-class task—classifying images into 
Benign Cases, Malignant Cases, or Normal Cases—by 
converting raw predictions into probabilities. This trans-
formation offers a clear probability distribution across 
classes, aiding in nuanced assessments where distinctions 
between classes are less clear. This probabilistic approach 
supports clinical decision-making by indicating the mod-
el’s confidence in each classification and allowing for cau-
tious handling of uncertain cases through thresholding. 
It enhances interpretability by providing clinicians with 
transparent reasoning behind the model’s predictions, 
crucial for trust and adoption in medical settings. Table 5 
shows the layers and description of the proposed model. 
The Fig. 7 shows the architecture of the proposed model 
in detail.

The extracted features from each of the pre-trained 
models are flattened and concatenated to form a single 
feature vector. This concatenated vector forms the input 
to a dense layer followed by the final classification layer. 
The rationale behind using a concatenated model lies in 
its ability to leverage diverse feature representations from 
multiple architectures, thereby enhancing the model’s 

Fig. 6 Feature extraction of the models. (a) Normal, (b) Benign, (c) Malignant
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ability to generalize across different visual representa-
tions of lung cancer cases.

The final layer of the model is a dense layer with soft-
max activation function that classifies an image into 
one of three categories: Benign cases, Malignant cases, 
or Normal cases. The softmax function is used because 
it outputs the probability distribution over the three 
classes, which is useful for classification.

Before training, all images were resized to match the 
input size requirements of the largest model (Incep-
tionV3 requires 299 × 299 pixels, whereas VGG16 and 
ResNet50 require 224 × 224 pixels). Data augmentation 
techniques such as random rotations, shifts, zoom, and 

horizontal flipping were applied to create a robust model 
less prone to overfitting. Algorithm 1details about the 
methodology used in the proposed study.

Table 5 Layers of the proposed model
Layer Description
input_4 Input layer for images
vgg16 VGG16 model output
resnet50 ResNet50 model output
inception_v3 InceptionV3 model output
flatten Flatten layer for VGG16 model output
flatten_1 Flatten layer for ResNet50 model output
flatten_2 Flatten layer for InceptionV3 model output
concatenate_2 Concatenation of flattened features from 

all three models
dense Dense layer with 4096 neurons
dense_1 Dense layer with 4096 neurons
dense_2 Output layer with 3 neurons for classifica-

tion (Benign, Malignant, Normal)

Algorithm 1 Algorithm of proposed model
Input: Image for Classification
Output: Classified into Benign, Malignant and Normal
Step 1: Data Preparation

1.  Load dataset containing lung images categorized into Benign,  
Malignant, and Normal cases.

2.  Preprocess images: Resize to 299 × 299 (InceptionV3), convert to 
grayscale if needed, and normalize pixel values.

3.  Augment data: Apply rotation, shifting, zoom, flipping, SMOTE, and 
Gaussian Blurring.

Step 2: Feature Extraction with Pre-trained Models
1. Load Pre-trained Models: VGG16, ResNet50, InceptionV3.
2.  Extract Features: Pass preprocessed images through models, flat- 

ten outputs.
Step 3: Feature Concatenation and Model Architecture

1. Concatenate Features: Combine flattened features from all models.
2.  Build Composite Model: Add dense layer (512 neurons, ReLU), 

dropout (0.5), and output layer (softmax).
Step 4: Model Compilation

1.  Compile Model: Loss - sparse categorical crossentropy, Optimizer - 
Adam (lr = 0.001), Metrics - accuracy, precision, recall, F1-score.

Step 5: Model Training
1. Split Data: Training, validation, test sets.
2.  Train Model: Define batch size, epochs. Use callbacks (Early Stop- 

ping, LR Scheduler).

Fig. 7 Architecture of the proposed model

 



Page 10 of 19Kumaran S et al. BMC Medical Imaging          (2024) 24:176 

The composite model was compiled using the Adam 
optimizer, which adjusts the learning rate throughout 
training, and sparse categorical cross entropy as the loss 
function, ideal for multi-class classification of mutually 
exclusive classes. We chose the Adam optimizer for its 
robust performance in handling complex medical image 
datasets. Adam adapts learning rates for each parameter 
based on gradient estimates, making it efficient for sparse 
and noisy data typical in medical imaging. It offers advan-
tages such as adaptive learning rates, computational effi-
ciency, and robustness to gradient scaling. While Adam 
excels in initial convergence, comparing it with alterna-
tives like SGD, RMSprop, and Nesterov Accelerated Gra-
dient can reveal optimal choices for specific operational 
needs, such as generalization and stability on unseen 
data. This evaluation ensures our model is finely tuned 
for clinical application, balancing performance and effi-
ciency in training. Table 6 shows the training parameters.

Dropout layers with a rate of 50% were interspersed 
between dense layers to reduce overfitting by randomly 
deactivating certain neurons during training.

Alongside monitoring the accuracy during train-
ing, validation was rigorously performed using metrics 
such as precision, recall, and F1-score to understand the 
model’s performance across different classes, provid-
ing insights into any class imbalances handling. Figure 8 
shows the training and validation loss of the proposed 
model.

Equation  8 represents loss function measures the dif-
ference between the true distribution y and the predicted 
distribution  ̂y  for multi-class classification tasks where 
the classes are mutually exclusive.

 
L (y, ŷ) = −

∑n

i=1
yilog (ŷi) (8)

Where,

  • 𝑦𝑖  represents the true probability distribution of the 
𝑖th class.

  • ŷ  represents the predicted probability that the input 
belongs to the 𝑖th class.

Equation 9 to 11 represents the adam which is an adap-
tive learning rate optimization algorithm that computes 
adaptive learning rates for each parameter. It combines 
the advantages of AdaGrad and RMSProp algorithms.

 m ← β1m + (1 − β1) g  (9)

 v ← β2v + (1 − β2) g2 (10)

 
θ ← θ − α√

v+ ∈
m  (11)

where:

  • 𝑚 and v are exponentially moving averages of the 
gradients and the squared gradients respectively.

  • 𝑔 is the gradient of the objective function with 
respect to the parameters.

  • 𝜃 represents the model parameters.
  • 𝛼 is the learning rate.
  • 𝛽1  and 𝛽2  are exponential decay rates for the moment 

estimates.
  • 𝜖 is a small constant to prevent division by zero.

Equation 12 presents the Softmax function that converts 
the raw scores (logits) of each class into probabilities. It 
ensures that the sum of the probabilities of all classes is 
equal to 1, making it suitable for multi-class classification 
tasks.

 
softmax(x)i =

exi

∑
je

xj  (12)

Where,

Table 6 Training parameters
Parameters Value
Batch Size 8
Epochs 20
Learning Rate 0.001
Decay 0.1

Fig. 8 Accuracy and Loss over Epochs. (a) Accuracy, (b) Loss
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  • xi  is the raw score (logit) for the 𝑖th class.

This detailed methodology ensures a deep understand-
ing and harnessing of each model’s strengths, leading to 
a robust and highly accurate system for classifying lung 
cancer images.

Model evaluation metrics
The evaluation of model performance is critical to under-
standing its effectiveness and usability in practical sce-
narios. This section outlines various metrics used to 
assess the model developed for classifying lung cancer 
images into benign, malignant, and normal categories. 
These metrics provide a comprehensive understanding of 
the model’s accuracy, reliability, and diagnostic ability.

Accuracy measures the overall correctness of the 
model and is defined as the ratio of correctly predicted 
observations to the total observations. It provides a quick 
indication of performance, especially in balanced datas-
ets [24]. It is given in Eq. 13.

 
Accuracy =

True Positives + True Negatives
Total Observations

 (13)

Precision (Positive Predictive Value) measures the accu-
racy of positive predictions. It is defined as the ratio of 
true positive predictions to the total predicted positives. 
High precision relates to a low rate of false positives [25]. 
It is given in Eq. 14.

 
Precision =

True Positives
True Positives + False Positives

 (14)

Recall (Sensitivity) indicates the ability of the model to 
find all relevant cases within a dataset. It is defined as the 
ratio of true positives to the actual number of positives. 
High recall relates to a low rate of false negatives. It is 
given in Eq. 15.

 
Recall =

True Positives
True Positives + False Negatives

 (15)

The F1-score is the harmonic mean of precision and 
recall. It is particularly useful when the class distribu-
tion is uneven. The score takes both false positives and 
false negatives into account and is a better measure of the 
incorrectly classified cases than the Accuracy Metric. It is 
given in Eq. 16.

 
Recall =

True Positives
True Positives + False Negatives

 (16)

The ROC curve is a graphical plot that illustrates the 
diagnostic ability of a binary classifier system as its 

discrimination threshold is varied. The AUC represents 
a degree of separability. It tells how much the model is 
capable of distinguishing between classes. Higher the 
AUC, better the model is at predicting 0s as 0s and 1s as 
1s [26]. It is given in Eq. 17.

 
AUC =

∫ 1

0
TPR

(
FPR−1) d

(
FPR−1) (17)

A confusion matrix is a table that is often used to 
describe the performance of a classification model on a 
set of test data for which the true values are known. It 
allows visualization of the performance of an algorithm. 
Each row of the matrix represents the instances in a pre-
dicted class, while each column represents the instances 
in an actual class (or vice versa) [27].

Precision-Recall Curve curve plots the precision 
(y-axis) and the recall (x-axis) for different probability 
thresholds. It helps in identifying the trade-off between 
recall and precision for different thresholds. A higher 
area under the curve represents both high recall and high 
precision.

Cohen’s Kappa is used to measure inter-rater reliabil-
ity (and also intra-rater reliability) for qualitative (cate-
gorical) items. It is generally thought to be a more robust 
measure than simple percent agreement calculation since 
Kappa takes into account the agreement occurring by 
chance. Cohen’s Kappa is a better measure when you are 
dealing with imbalanced classes. It is given by Eq. 18.

 
κ =

P (A) − P (E)
1 − P (E)

 (18)

Matthews Correlation Coefficient (MCC) is used in 
machine learning as a measure of the quality of binary 
classifications. It takes into account true and false posi-
tives and negatives and is generally regarded as a bal-
anced measure which can be used even if the classes are 
of very different sizes. It is given by Eq. 19.

 
MCC =

TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

 (19)

F2 score weighs recall higher than precision (by plac-
ing more emphasis on false negatives). It is a measure of 
a test’s accuracy. It considers both the precision and the 
recall to compute the score. The F2 score can be partic-
ularly useful when you are more concerned about mini-
mizing false negatives than false negatives. It is given by 
Eq. 20.

 
Fβ =

(
1 + β2) · Precision × Recall

β2 · Precision + Recall (20)
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Incorporating these metrics provides a robust analysis 
of the model’s performance across various dimensions, 
essential for validating the effectiveness of the predictive 
model in a clinical setting. Each metric is computed using 
the validation data set to ensure the model’s generaliz-
ability to new, unseen data.

Advanced visualization techniques
To enhance the interpretability of the deep learning mod-
els used for lung cancer image classification, advanced 
visualization techniques such as Gradient-weighted Class 
Activation Mapping (Grad-CAM) and Feature Map Visu-
alization are employed. These techniques help in under-
standing what the model sees and which parts of the 
image are being focused on to make the predictions.

Grad-CAM (Gradient-weighted Class Activation Map-
ping) provides insights into which areas of the input 
image influenced the model’s decision. This method uses 
the gradients of any target concept (output of the model 
for a given class), flowing into the final convolutional 
layer to produce a coarse localization map highlighting 
important regions in the image for predicting the con-
cept. The final convolutional layer is chosen because it 
captures high-level features in the image that are crucial 
for making predictions. Using TensorFlow’s Gradient-
Tape, the gradients of the target class (decided based on 
the model’s prediction) with respect to the output fea-
ture map of the selected layer are computed. These gra-
dients indicate how much each neuron’s activity should 
change to affect the output class score. These gradients 
are pooled (using global average pooling) to obtain the 
neuron importance weights. The feature maps are then 
weighted by these importance values. The weighted fea-
ture maps are summed along the channel dimension and 
followed by a ReLU function to obtain a heatmap. This 
heatmap is then resized to the dimensions of the input 
image to show the focus areas. The heatmap is super-
imposed on the original grayscale image to visualize the 
areas most relevant to the model’s prediction. This helps 
in understanding why the model predicts certain cases as 
benign, malignant, or normal.

Feature Map Visualization allows us to see the output 
of individual convolutional layers and understand what 
features the model is extracting at different stages of the 
network. This is particularly useful to check whether 
the model is learning relevant patterns from the images. 

Depending on the architecture, several layers can be 
chosen to visualize the feature maps. Typically, earlier 
layers capture basic features like edges, while deeper lay-
ers capture more complex features like textures or spe-
cific shapes relevant to lung cancer patterns. The model 
is run forward with an input image up until the selected 
layers, and the outputs (feature maps) of these layers are 
extracted. Each feature map is visualized as an individual 
image. In practice, due to a large number of feature maps, 
only a subset may be visualized. For example, the first few 
feature maps might be displayed to show the variety of 
features detected by the layer. By analyzing these feature 
maps, researchers can determine if the model is focusing 
on meaningful information in the images (like tumors or 
irregular growths) or if it is being distracted by noise and 
irrelevant information.

Together, Grad-CAM and Feature Map Visualization 
provide powerful tools for understanding and debug-
ging deep learning models, ensuring that the models are 
indeed learning to identify meaningful patterns in medi-
cal images rather than being influenced by confounding 
factors.

Results
In this study, the development of a composite model uti-
lizing features extracted from VGG16, ResNet50, and 
InceptionV3 has demonstrated outstanding performance 
in the classification of lung cancer images into Benign, 
Malignant, and Normal categories. This model achieved 
an overall accuracy of 98.18%, which underscores its 
effectiveness in clinical diagnostics, particularly in distin-
guishing subtle nuances between different types of lung 
conditions.

The model displayed exceptionally high precision and 
recall across all categories. Specifically, it achieved per-
fect precision for Malignant cases (1.0000) and nearly 
perfect recall (0.9929) for the same. For Benign cases, 
both precision and recall were 0.9333, and for Normal 
cases, the model scored 0.9714 in precision and 0.9808 
in recall. These results highlight the model’s capability to 
correctly identify positive cases as such (precision) and 
its effectiveness in identifying all actual positive cases 
(recall). This balance is critical in medical imaging, where 
the cost of false negatives or false positives can be high. 
Table 7 presents the classification report.

The F1-score, which harmonizes the precision and 
recall, was notably high across the board, reinforcing 
the model’s balanced performance under various condi-
tions. With scores such as 0.9333 for Benign, 0.9964 for 
Malignant, and 0.9761 for Normal, the model proves its 
consistent reliability and accuracy across diverse lung 
conditions. Figure  9 demonstrates the heatmap of the 
classification report.

Table 7 Classification report
Class Precision Recall F1-Score
Benign (0) 0.9333 0.9333 0.9333
Malignant (1) 1.0000 0.9929 0.9964
Normal (2) 0.9714 0.9808 0.9761
Macro Avg 0.9683 0.9690 0.9686
Weighted Avg 0.9819 0.9818 0.9819
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The Matthews Correlation Coefficient (MCC) of 
0.9688, almost at the perfect score, illustrates the quality 
of binary classifications performed by the model, indicat-
ing strong correlations between observed and predicted 
classifications. The Balanced Accuracy and Cohen’s 
Kappa Score, both around 0.969, signify the model’s 
uniform effectiveness across classes, particularly impor-
tant in datasets where class distribution might not be 
uniform.

Error metrics provided further insights into the model’s 
performance: the Mean Squared Error (MSE) at 0.0618 
and the Root Mean Squared Error (RMSE) at 0.2486 
were particularly low, indicating that the model’s predic-
tions were closely aligned with the actual data, with mini-
mal average errors. The Mean Absolute Error (MAE) of 
0.0327 highlighted that the model’s average predictions 
deviated only slightly from the true values, attesting to 
its precise predictive capabilities. Table  8 presents the 
advanced metrics and error metrics.

Figure 10 represents the visual of this metrics.

The ROC-AUC and Precision-Recall curves, with 
near-perfect scores, effectively demonstrated the mod-
el’s diagnostic power. These curves are crucial in a clini-
cal context as they provide a visual representation of 
the trade-off between sensitivity (true positive rate) and 
specificity (false positive rate), as well as between preci-
sion and recall. High values in these metrics reassure the 
model’s ability to serve as a reliable diagnostic tool. Fig-
ure 11 presents the roc-auc curve.

Figure 12 presents the precision and recall curve of the 
proposed model.

Figure  13 presents the confusion matrix for the pro-
posed model.

The model achieved high accuracy in identifying 
Benign Cases, correctly classifying 28 out of 30 cases, 
with 2 cases misclassified as Normal Cases, highlight-
ing a strong true positive rate but indicating a need for 
improvement in distinguishing benign from normal pre-
sentations, possibly due to overlapping features.

For Malignant Cases, the model performed exception-
ally well, accurately classifying 140 out of 141 cases, with 
only one misclassification where a Malignant Case was 
predicted as Normal. This near-perfect detection under-
scores the model’s effectiveness in identifying distinct 
pathological features indicative of malignancy.

In Normal Cases, the model showed strong perfor-
mance, correctly classifying 102 out of 104 cases, with 2 
cases misclassified as Benign. This suggests challenges in 
fully excluding pathology in what are otherwise normal 

Table 8 Advanced and error metrics
Metric Value
Matthews Correlation Coefficient 0.9688
Balanced Accuracy 0.9690
Cohen’s Kappa Score 0.9688
Mean Squared Error (MSE) 0.0618
Root Mean Squared Error (RMSE) 0.2486
Mean Absolute Error (MAE) 0.0327

Fig. 9 Classification report
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imaging findings, potentially due to benign features mim-
icking normal variations.

Types of Errors observed include minimal False Posi-
tives, mainly benign and malignant cases occasionally 
misclassified as normal, indicating conservative predic-
tions of normalcy. False Negatives, however, are more 
prevalent, primarily benign and normal cases being mis-
classified as each other, posing clinical implications such 
as unnecessary procedures or missed follow-up.

Finally, the application of Gradient-weighted Class 
Activation Mapping (Grad-CAM) provided a visual 
explanation of which areas in the images influenced the 
model’s predictions. These visualizations are invaluable 
as they allow clinicians to see which features in the lung 
scans are most indicative of specific classifications, add-
ing an additional layer of interpretability to the model’s 

decision-making process. This can enhance trust in auto-
mated systems and assist in further diagnostic reasoning. 
Figure  14 represents the grad Cam visualization of the 
proposed model.

In our model, Grad-CAM is utilized to generate heat-
maps that highlight influential regions in lung scans for 
classification. It captures gradients flowing into final con-
volutional layers relative to specific output classes like 
malignant or benign nodules. These gradients are pooled 
channel-wise to derive a localization map, emphasizing 
critical regions for class prediction. This process involves 
forward passing an image through the network, comput-
ing gradients with respect to feature maps, pooling gra-
dients spatially, and combining weights with activation 
maps to produce heatmaps. Clinically, these heatmaps 
provide visual validation of the model’s focus on relevant 

Fig. 11 ROC-AUC Curve

 

Fig. 10 Advanced and error metrics
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areas, aiding in distinguishing pathologically significant 
features from potential artifacts or irrelevant regions. 
Grad-CAM enhances transparency and validation in AI-
driven diagnostic assessments, supporting clinicians in 
making informed decisions.

Although it has several limitations that affect its util-
ity in interpreting deep learning models. It primarily 
focuses on high-level features from later layers of the 
model, providing insights into major image features 
but lacking details on how mid or early-level features 

Fig. 13 Confusion matrix

 

Fig. 12 Precision and recall curve
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influence decisions. Spatial localization is constrained 
by the resolution of output feature maps, resulting in 
coarse heatmaps that may not accurately pinpoint small 
or subtle image features, crucial in clinical contexts. 
Additionally, Grad-CAM’s effectiveness varies with dif-
ferent neural network architectures, limiting its applica-
tion across diverse models. The interpretative nature of 
heatmaps can lead to ambiguity, showing relevant areas 
without explaining their clinical significance or causal 
relationship. Over-reliance on Grad-CAM could foster 
false confidence in model interpretations, potentially 
misleading clinicians relying on these visualizations for 
decision-making.

This detailed performance breakdown showcases not 
only the model’s high accuracy but also its robustness 
and reliability across various metrics, making it an effec-
tive tool for enhancing diagnostic procedures in lung 
cancer detection.

Discussion
The integration of convolutional neural networks (CNNs) 
such as VGG16, ResNet50, and InceptionV3 to form a 
composite model for lung cancer image classification has 
demonstrated notable success, achieving an accuracy of 
98.18%. This achievement is significant, considering the 
critical nature of timely and accurate lung cancer diag-
nosis. The findings from this study illuminate several 
key advantages and implications that extend beyond the 
immediate results, pointing to broader impacts on the 
field of medical image analysis and potential pathways for 
future research.

The high precision and recall scores obtained by the 
composite model, particularly the perfect precision in 
classifying malignant cases, underscore its potential to 
serve as a reliable diagnostic aid. The ability of the model 
to correctly identify and classify lung cancer cases with 
minimal error could lead to earlier detection rates and 
better patient outcomes, especially in malignant cases 

Fig. 14 Grad-Cam and Superimposed Visualization. (a) Normal, (b) Malignant Case, (c) Benign Case
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where early intervention is crucial. Moreover, the appli-
cation of advanced metrics like the Matthews Correla-
tion Coefficient (MCC) and Balanced Accuracy not only 
confirms the model’s efficacy but also its consistency and 
reliability across varied cases, making it a robust tool for 
clinical use.

Compared to traditional diagnostic methods, which 
rely heavily on the expertise of radiologists and can be 
subjective, the use of a composite CNN model intro-
duces a level of standardization and objectivity into the 
diagnostic process. One of the primary advantages of this 
approach is the reduction in human error and variability, 
which is often a challenge in medical imaging diagnos-
tics. Additionally, existing single-model CNN approaches 
may not capture the full complexity of medical images 
due to their limited architectures. By integrating multiple 
pre-trained networks, our model leverages the strengths 
of each—VGG16’s texture sensitivity, ResNet50’s depth 
for feature extraction without gradient loss, and Incep-
tionV3’s efficiency in processing different scales of image 
features. This integration allows for a more comprehen-
sive analysis of lung images, enhancing the model’s ability 
to detect nuanced patterns indicative of various types of 
lung conditions. Table 9 presents the comparative study 
of the proposed model with the existing models.

Moreover, the computational efficiency of using pre-
trained models allows for quicker adaptation and imple-
mentation in clinical settings, where computational 
resources and time are often at a premium. The abil-
ity to use transfer learning also significantly reduces the 
amount of data required to train effective models, an 
important consideration given the difficulties in acquir-
ing large annotated medical datasets.

To prevent overfitting and ensure our model’s reliability 
despite achieving high accuracy rates, we implemented 
several strategies. Data augmentation techniques such 
as rotations, flips, and zooms diversified the training set, 
enabling the model to learn general features effectively. 
Dropout layers were utilized to introduce redundancy 
by randomly deactivating neurons during training, pro-
moting better generalization. Early stopping criteria were 
applied to halt training if validation accuracy plateaued, 
thereby preventing the model from overfitting to noise 
in the data. Cross-validation was employed to assess 
performance across different subsets of the dataset, 
ensuring robustness. Regular evaluation on a separate 
validation set further validated the model’s ability to gen-
eralize well to new data, affirming its practical reliability. 
Assessing computational costs for our model, which uti-
lizes VGG16, ResNet50, and InceptionV3 architectures, 
is crucial for feasibility in clinical deployment. Training 
demands significant GPU resources, while efficient infer-
ence for real-time diagnostics is essential. Techniques 
like model quantization and pruning were explored to 
reduce model size without sacrificing performance, 
making it suitable for deployment on limited hardware. 
Cloud-based solutions were considered to offload heavy 
computations, optimizing clinical deployment despite 
initial costs. Deploying our lung cancer detection model 
in clinical settings necessitates seamless technologi-
cal integration and overcoming various barriers. Ideal 
cloud-based platforms would manage large datasets and 
support real-time analysis, integrating smoothly with 
Electronic Health Records (EHR) for enhanced patient 
care continuity. Key challenges include compliance with 
regulations such as HIPAA or GDPR to ensure data pri-
vacy and security, gaining clinical acceptance through 
rigorous training and validation, addressing technological 
limitations stemming from input data quality, and man-
aging cost implications effectively. By addressing these 
challenges with robust, scalable solutions, our model 
can significantly improve diagnostics, reduce healthcare 
professionals’ workload, and enhance patient outcomes 
through quicker and more accurate diagnoses.

Conclusion
This study successfully developed and validated a com-
posite model for lung cancer image classification, lever-
aging the combined strengths of three preeminent 
convolutional neural networks—VGG16, ResNet50, and 
InceptionV3. This integration facilitated a robust and 
highly accurate model, achieving an overall accuracy of 
98.18%. The model demonstrated exceptional precision, 
recall, and F1-scores across three categories: Benign, 
Malignant, and Normal cases, underscoring its poten-
tial as a reliable diagnostic tool. The use of multiple pre-
trained networks allowed the model to extract a diverse 

Table 9 Comparative study
Author (Year) Study Technique Accuracy
Kusuma, S. (2024) 
[28]

Hybrid CNN-RNN Model with Pelican 
Optimization Algorithm

97.3%

Reshma, G. (2024) 
[29]

Deep Convolutional Neural Network 
(Deep CNN) and CNN

95%

Mohana Krishna, N. 
(2024) [30]

ResNet-50 and Inception V3 CNN 
Models

93.09%

Safta, Wiem (2024) 
[31]

Integration of 3D-LOP Descriptor, 3D-
CNN, and Geometric Feature Analysis

97.84%

Mohmmad, Sallaud-
din (2024) [32]

Denoising Techniques with Classifica-
tion using U-Net Architecture

97.15%

Pacal, Ishak (2024) 
[33]

Swin Transformer Architecture for 
Lung Cancer Detection

97.58%

Princy Magdaline, P. 
(2023) [34]

Attention Gate Residual U-Net Model, 
CNN, and KNN Classifier

97%

Ahnaf, Kern Cesarean 
(2023) [35]

GLCM and LBP Feature Extraction, 
SVM and Gaussian Naive Bayes

93%

Proposed Model Integrated Deep Learning Approach 
utilizing Pre-trained Models, SMOTE, 
and Gaussian Blur

98.18
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set of features from lung images, enhancing its ability to 
discern subtle patterns indicative of various lung condi-
tions. This approach significantly surpasses the capa-
bilities of traditional single-model methods, providing a 
more comprehensive analysis with reduced human error 
and variability. Additionally, the application of advanced 
metrics like the Matthews Correlation Coefficient and 
Balanced Accuracy confirmed the model’s efficacy, con-
sistency, and reliability in clinical scenarios. This research 
contributes to the ongoing evolution of AI in medicine, 
promising enhancements in the speed, accuracy, and 
efficiency of disease diagnostics. As AI continues to 
integrate into clinical workflows, it holds the promise 
of supporting medical professionals by providing reli-
able, timely, and accessible diagnostic information, thus 
improving patient outcomes and the overall efficiency of 
healthcare services.

Adapting our lung cancer detection model for other 
cancers involves leveraging pre-trained networks like 
VGG16, ResNet50, and InceptionV3, which provide 
robust feature representations learned from diverse data-
sets. Fine-tuning with specific datasets for new cancers 
such as breast, skin, or prostate cancer is crucial, neces-
sitating comprehensive datasets that encompass vari-
ous disease stages, imaging perspectives, and specific 
condition details. Each cancer type requires tailored 
adjustments during model training to ensure accurate 
identification, emphasizing the importance of careful 
machine learning strategies to distinguish common fea-
tures from those unique to each condition. Fine-tuning 
with specific datasets for new cancers such as breast, 
skin, or prostate cancer is essential, requiring compre-
hensive datasets that encompass various disease stages, 
imaging perspectives, and specific condition details. 
Each cancer type presents unique features that necessi-
tate tailored adjustments during model training to ensure 
accurate identification. Future research to enhance model 
generalizability could focus on incorporating diverse 
datasets covering broader demographics, varied imag-
ing technologies, and different stages of cancer pathol-
ogy. Integrating multimodal data, including clinical 
and genetic information alongside imaging data, could 
enhance diagnostic accuracy. Improving model explain-
ability beyond current tools like Grad-CAM is essential 
for clinician trust, while optimizing computational effi-
ciency for real-time diagnostics and developing adap-
tive learning models are critical to maintaining relevance 
amidst evolving diagnostic technologies.
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