
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Tensor shape search for efficient compression of tensorized data and neural networks

Permalink
https://escholarship.org/uc/item/5ng1r22f

Authors
Solgi, Ryan
He, Zichang
Liang, William Jiahua
et al.

Publication Date
2023-12-01

DOI
10.1016/j.asoc.2023.110987

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ng1r22f
https://escholarship.org/uc/item/5ng1r22f#author
https://escholarship.org
http://www.cdlib.org/

Applied Soft Computing Journal 149 (2023) 110987

A
1
n

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Tensor shape search for efficient compression of tensorized data and neural
networks
Ryan Solgi a,b,∗, Zichang He a, William Jiahua Liang c, Zheng Zhang a, Hugo A. Loaiciga b

a Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
b Department of Geography, University of California Santa Barbara, Santa Barbara, CA, USA
c School of Engineering, Applied Science, University of Pennsylvania, Philadelphia, PA, USA

A R T I C L E I N F O

Keywords:
Data compression
Tensor train decomposition
Tensor compression
Genetic algorithm
Tensorized neural networks

A B S T R A C T

Compressing big data and model parameters via tensor decomposition such as the tensor train (TT) format has
gained great success in recent years. The application of tensor compression methods requires the data be high
dimensional. However, not all the real-world data primarily are high-dimensional, and sometimes reshaping
is necessary before the application of tensor compression methods. Meantime, reordering and reshaping data
may affect the efficiency of the compression. This work utilizes tensor reshaping to improve the efficiency of
tensor compression using the TT format. An optimization model is proposed that maximizes the space-saving
of tensor compression with respect to the shape of a given tensor while the compression error is bounded.
The study is narrowed down to the TT decomposition and the TT-SVD algorithm is linked with a genetic
algorithm (GA) to find an optimal tensor shape. The proposed method is applied to compress RGB images and
a neural network to exemplify its capability. The results of the proposed tensor shape search using the GA are
also compared with a purely random search. The results demonstrate that the proposed tensor shape search
method significantly improves the space-saving and compression ratio of the data compression and enhances
the efficiency of tensorized neural networks using the TT decomposition.
1. Introduction

Processing high-dimensional data is a necessity across various dis-
ciplines. The tensor decomposition methods have been proposed for
high dimensional data analysis [1,2]. A tensor is usually defined as a
high-dimensional array (i.e., an array of three or more dimensions). For
instance, red, green, blue (RGB), or hyperspectral images are examples
of tensors. A tensor may also represent a model where the parameters of
the model are a multi-way array. For example, the parameters of a deep
neural network can be represented as a tensor. Tensor decomposition
(e.g. the tensor train decomposition) refers to factorizing a tensor
(i.e. a high dimensional array) to a low-rank factor space. Tensor
decomposition is functional in dimensionality reduction or data and
models compression.

Compressing big data via tensor decomposition has gained great
success in recent years. For instance, using tensor decomposition, a
massive amount of data with millions of elements can be decomposed
to its factors that might be of the order of thousands reducing the
required storage space significantly. This can be used for compress-
ing both raw data and model parameters. The tensor decomposition

∗ Corresponding author at: Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA.
E-mail addresses: Solgi@ucsb.edu (R. Solgi), zichanghe@ucsb.edu (Z. He), wjhliang@seas.upenn.edu (W.J. Liang), zhengzhang@ece.ucsb.edu (Z. Zhang),

hugo@geog.ucsb.edu (H.A. Loaiciga).

methods have been applied to approximate high dimensional problems
in different domains, including data-mining and knowledge discovery,
dimensionality reduction, scientific computation, machine learning,
and signal processing [3–9]. Different methods have been successfully
applied to decompose a higher-order tensor to low-dimensional param-
eters, including the CANDECOMP/PARAFAC (CP) decomposition [10],
the Tucker decomposition [11], and the tensor train (TT) decomposi-
tion [12]. Tensor decomposition was also extended to a more general
form called tensor networks, which leads to various decomposition for-
mats [13]. In recent years Bayesian methods have also been developed
for automatic rank determination in various tensor problems, including
tensor completion and tensorized neural network training [14–16].

Regardless of the specific choice of a tensor decomposition method
the data or the model parameters are represented as a 𝑑-way tensor
prior to the decomposition. Sometimes, the given data has a high
dimensional format and it is important that the original shape of the
data be preserved. However, there are many cases where the original
data is of a lower dimension (e.g. one-dimensional or two-dimensional
arrays) and the data have to be reshaped to be presented as a tensor
vailable online 30 October 2023
568-4946/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.asoc.2023.110987
Received 16 June 2023; Received in revised form 17 October 2023; Accepted 26 O
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ctober 2023

https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
mailto:Solgi@ucsb.edu
mailto:zichanghe@ucsb.edu
mailto:wjhliang@seas.upenn.edu
mailto:zhengzhang@ece.ucsb.edu
mailto:hugo@geog.ucsb.edu
https://doi.org/10.1016/j.asoc.2023.110987
https://doi.org/10.1016/j.asoc.2023.110987
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110987&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Applied Soft Computing 149 (2023) 110987R. Solgi et al.
prior to tensor decomposition or the shape of data can be changed as
long as an invertible mapping be applied. Such cases often involve
a reshaping step that changes a tensor’s dimension and mode size
using a bijective mapping. The shape of a tensor affects the rank
and, subsequently, the accuracy and compression efficiency (i.e., space
saving and compression ratio) of the subsequent tensor decomposition.
Consequently, one may ask what shape or mode size should be used
for a given data for tensor decomposition. Despite the importance of
finding an optimum shape for tensor decomposition, studies on this
domain remain very sparse. This empirical study attempts to answer
the aforementioned question.

This study investigates the effect of the tensor shape on tensor
compression and proposes an optimization model that maximizes the
space saving with respect to the shape of the tensor. The applied
reshaping method is a bijection that allows the original data with
their characteristics to be retrieved. The study is narrowed down to
the TT decomposition, but the proposed technique can be extended
to other tensor decomposition methods. A genetic algorithm (GA) is
presented for solving the optimization problem. The proposed method
is applied to compress RGB images and a neural network to study
its performance. The results of the optimization model are compared
with random shapes to demonstrate the effectiveness of the proposed
method.

2. Related works

2.1. Tensor decomposition and applications

A detailed review of tensor decomposition and its application in
different applications such as data mining and knowledge discovery,
signal processing, computer vision, scientific computing, and neuro-
science is provided in [3]. Applications of tensor decomposition for
data mining were reviewed in previous studies [17]. Memory effi-
cient Tucker (MET) decomposition was proposed for data mining of
sparse multi-way data [18]. Tensor decomposition was used for text
mining [19]. A tensor decomposition-based machine learning approach
was developed and applied for health data mining [20]. Furthermore,
tensor decomposition and representation have been applied for uncer-
tainty quantification [4–6,21], and high dimensional data recovery [14,
22,23] and imaging [24,25], quantum simulation and computation
simulation [26–29], to name a few.

Tensor decomposition has been recently shown to be promising
for model parameters compression in machine learning [30]. For in-
stance, tensor decomposition has been applied for running compressed
convolutional neural networks (CNNs) on mobile devices [31]. The
aforementioned study demonstrated that a significant memory storage
reduction and energy usage could be achieved while compressing vari-
ous CNN architectures using the Tucker decomposition [31]. Also, the
CP decomposition was used to compress kernels of CNNs which resulted
in a significant speedup of the run time of the studied networks with
negligible drop in accuracy [32]. Compression of fully connected neural
networks using tensor decomposition was studied by [33]. In another
study, tensor decomposition was applied to study the generalizability
of neural networks [34]. Tensor ring network was proposed by [35]
in which neural networks were compressed using the Tensor Ring
decomposition.

Among the tensor decomposition formats, tensor train [12] is one
of the most popular ones. Due to its great power of representing high
dimensional data it has been widely applied for various applications
including radar data [36], hyperspectral imaging [24], neural architec-
ture search [37], deep learning model compression [38–40], quantum
dynamics simulation [29], and quantum computation simulation [27,
2

28].
2.2. Tensor decomposition and hyperparameter tuning

In many real-world applications deciding about some hyper-
parameters (such as tensor ranks and tensor shapes) of tensor de-
composition can be challenging. There have been some recent studies
that addressed the tensor rank determination problem. The recent
works [15,16] determined the tensor ranks automatically in neural
network training, enabling on-device training of neural networks with
limited computing resources [7]. A tensor regression method was
proposed for automatic rank determination and applied for uncertainty
quantification [21]. Bayesian tensor decomposition was also applied
to automatic rank determination for tensor completion and dimension
reduction [14,23]. However, the study of the effect of the shape on
tensor decomposition has rarely been reported in the literature. In a
previous study [41] we applied an evolutionary tensor shape search
for remotely sensed hyperspectral data compression. The present study
generalizes the tensor shape search formulation, apply it to RGB images
and neural networks, and compare the results of the GA with a random
search (RS). The primarily goal is to investigate how reshaping may
affect the result of tensor compression and how an optimal shape can
be found if there exists one.

2.3. Evolutionary algorithms

The origin of evolutionary computation dates back to the mid
1950s when it was applied in mathematical programming, machine
learning, and industrial manufacturing and notably the invention of
evolutionary strategies (ES), evolutionary programming (EP), and ge-
netic algorithms (GAs) [42]. The early version of the genetic algorithm
(GA) was presented by [43]. Over the past years, variations of evo-
lutionary algorithms (i.e., GAs) have been developed and have been
extensively applied to solve problems in various fields where the prob-
lems were not approachable with other optimization methods [44–47].
A wide range of evolutionary algorithms, including GAs and their
applications in engineering domains, have been studied in the litera-
ture [48]. Particularly, [49] applied an evolutionary algorithm to find
optimal hyperparameters of the singular value decomposition for the
neural network compression.

2.4. Evolutionary algorithms and tensor decomposition

A study at the intersection of evolutionary algorithms and tensor de-
compositions proposed the application of tensor decomposition-based
mutation to the neuroevolution of augmenting topologies (NEAT) algo-
rithm [50]. The CP decomposition was applied to reduce the dimen-
sionality of solutions to solve high-dimensional optimization problems
with evolutionary algorithms [51]. A study formulated the CP decom-
position of non-negative tensors as a stochastic problem and solved
it using an evolutionary algorithm [52]. Also, an evolutionary search
was applied to determine an optimum tensor network topology [13].
To the best of these authors’ knowledge the present study is the first
endeavor that applies an evolutionary tensor shape search with a tensor
decomposition to optimize data and neural networks compression.

3. Background

Throughout this manuscript capital calligraphic letters (e.g., ) are
used to denote tensors, boldface capital letters (e.g., 𝐀) are used for
matrices, boldface lower case letters (e.g., 𝒂) are used for vectors, and
Roman (e.g., 𝑎) or Greek (e.g., 𝛼) letters are used for scalars. [𝑖1,… , 𝑖𝑑]
refers to the element 𝑖1,… , 𝑖𝑑 of the tensor .

3.1. Tensor shape and reshaping

An order-𝑘 (𝑘-way) tensor  ∈ R𝐼1×⋯×𝐼𝑘 denotes a 𝑘-dimensional

data array. The order of a tensor is the number of its dimensions. The

Applied Soft Computing 149 (2023) 110987R. Solgi et al.
Fig. 1. A schematic of the TT format.
shape of a tensor determines the order and the number of elements
of each dimension. Throughout the manuscript, 𝜽 = (𝐼1, 𝐼2,… , 𝐼𝑘)
specifies the shape of a tensor, where 𝐼𝑗 ∈ N is the size of dimension 𝑗
and 𝑘 is the order.

Reshaping refers to changing the order and the number of elements
of each dimension. For example, a 𝑘-way tensor  ∈ R𝐼1×⋯×𝐼𝑘 may be
reshaped to a 𝑑-way tensor like  ∈ R𝑛1×⋯×𝑛𝑑 . Cardinality of tensor 
∈ R𝐼1×⋯×𝐼𝑘 is defined as || = 𝐼1 × ⋯ × 𝐼𝑘. Reshaping a tensor may
change its cardinality if the cardinality of  , ||, is greater than that
of  (|| > ||), then dummy elements (e.g., zeros) are entered.

Throughout the manuscript two different functions are applied for
reshaping: (1) reshape( ,𝜽) is used when reshaping does not change the
cardinality, and (2) 𝛷( ,𝜽) is used to denote reshaping a given tensor
 to a new shape 𝜽 if reshaping may change the cardinality. Note that
both reshaping functions are invertible mappings. This work applies
a C-like index ordering for reshaping functions where the greater the
axis index is, the higher the priority of reordering. Function 𝛷 fills the
reshaped tensor with zeros if its cardinality is larger than that of the
original tensor.

3.2. Tensor train (TT) decomposition

In the tensor train (TT) format [12] a 𝑑-way tensor ∈ R𝑛1×⋯×𝑛𝑑

is approximated with a set of 𝑑 cores ̄ = {1,2,… ,𝑑} where 𝑗 ∈
R𝑟𝑗−1×𝑛𝑗×𝑟𝑗 , 𝑟𝑗 ’s for 𝑗 = 1,… , 𝑑 − 1 are the ranks, 𝑟0 = 𝑟𝑑 = 1, and each
element of  is approximated by Eq. (1).

̂[𝑖1,… , 𝑖𝑑] =
∑

𝑙0 ,…,𝑙𝑑

1[𝑙0, 𝑖1, 𝑙1]2[𝑙1, 𝑖2, 𝑙2]⋯𝑑 [𝑙𝑑−1, 𝑖𝑑 , 𝑙𝑑] (1)

Fig. 1 depicts the TT format. Given an error bound (𝜖 = ‖−̂‖𝐹
‖‖𝐹

), the
core factors, 𝑗 ’s, are computed using (𝑑 − 1) sequential singular value
decomposition (SVD) of the auxiliary matrices formed by unfolding
tensor  along different axes. This decomposition process, which is
called the TT-SVD is presented in Algorithm 1.

Algorithm 1 TT-SVD
Require: 𝑑-way tensor  , error bound 𝜖.
1: 𝜎 = 𝜖

𝑑−1‖‖𝐹
2: 𝑟0 = 1
3: 𝑟𝑑 = 1
4: W = reshape( , (𝑛1,

||

𝑛1
))

5: for 𝑗 = 1 to 𝑗 = 𝑑 − 1 do
6: W = reshape(W, (𝑟𝑗−1𝑛𝑗 ,

|W|

𝑟𝑗−1𝑛𝑗
))

7: Compute 𝜎-truncated SVD: W = USV𝑇 + E, where ‖E‖𝐹 ≤ 𝜎
8: 𝑟𝑗 = the rank of matrix W based on 𝜎-truncated SVD
9: 𝑗 = reshape(U, (𝑟𝑗−1, 𝑛𝑗 , 𝑟𝑗))

10: W = SV𝑇

11: end for
12: 𝑑 = reshape(W, (𝑟𝑑−1, 𝑛𝑑 , 𝑟𝑑))
13: Return ̄ = {1,2,⋯ ,𝑑}

This work applies the proposed tensor shape search to the TT-
SVD. However, it is possible to extend this framework to other tensor
decomposition methods such as the CP decomposition, the Tucker
decomposition, and generally to the tensor networks.
3

4. Problem statement

The current study proposes a search algorithm to find a shape that
maximizes the space saving of the compression using the TT decom-
position. The TT decomposition is used for big data compression and
dimensionality reduction. Representing a given tensor ∈ R𝑛1×⋯.×𝑛𝑑

in the explicit original format requires ∏𝑑
𝑗=1 𝑛𝑗 elements to be stored.

However, the TT format requires ∑𝑑
𝑗=1 𝑟𝑗−1 × 𝑛𝑗 × 𝑟𝑗 parameters to be

stored. We can use the TT factors as an estimation of the original tensor
by applying Eq. (1). The efficiency of the compression depends on the
value of the ranks of the TT format. The space saving is significant when
ranks are small. In real world applications high order data usually have
low ranks that make compression using TT format to be functional.

One application of the proposed method is changing the order of
data to facilitate the application of tensor decomposition (i.e., the TT
compression). In practice, there exist plenty of big data that are in
the form of vectors and matrices, and they are not primarily high
dimensional. Applying the TT decomposition on vectors results in no
compression, and applying the TT decomposition on matrices results
in a plain SVD decomposition that limits compression capability [33].
Therefore, the application of the TT format on 1D (i.e., vectors) and
2D (i.e., matrices) arrays requires reshaping the given data to a higher
dimension (i.e., 3D or more) prior to decomposition. The aforemen-
tioned bottleneck can be addressed by the proposed tensor shape
search. Besides, this study empirically demonstrates that reshaping
may improve compression efficiency even without changing the order,
which extends the application of the proposed method for data arrays
that are already of dimension three and higher. Therefore the proposed
method is formulated for a general tensor with an arbitrary dimension.

Let  ∈ R𝐼1×⋯×𝐼𝑘 be the original data given to be compressed using
the TT decomposition and ̂ ∈ R𝐼1×⋯×𝐼𝑘 is the approximation of the
given  using the TT format. For example,  can be an RGB image
where 𝑘 = 3. To compress the given data first reshape the given  into
a 𝑑-way tensor (usually 𝑑 ≥ 𝑘) like 𝜽 ∈ R𝑛1×⋯×𝑛𝑑 as shown below.

𝜽 = 𝛷( ,𝜽) (2)

where 𝜽 = (𝑛1, 𝑛2,… , 𝑛𝑑) refers to the new shape. Function 𝛷( ,𝜽)
reshapes the given tensor  to the new shape 𝜽 and enter zero values
(dummy elements) if |𝜽| > || to fill the rest of the reshaped tensor.
Next, 𝜽 is approximated using the TT decomposition where ̂𝜽 ∈
R𝑛1×⋯×𝑛𝑑 is the approximation of 𝜽 using algorithm 1. Note that there
exist a bijection between  and ̂𝜽 that allows elements of ̂ to be
accessed directly from ̂𝜽 as shown below:

̂ = 𝛷−1(̂𝜽) (3)

where 𝛷−1 refers to the inverse of reshaping function 𝛷 that consists
of reshaping and removing the added dummy elements.

Considering a reshaping stage before applying the TT decomposition
on a given data array like  ∈ R𝐼1×⋯×𝐼𝑘 and 𝜽 = (𝑛1, 𝑛2,… , 𝑛𝑑),
space-saving of the TT format using the shape 𝜃 is defined as shown
below.

𝐶(𝜃) = 1 −

∑𝑑
𝑗=1 𝑟𝑗−1 × 𝑛𝑗 × 𝑟𝑗

∏𝑘
𝑗=1 𝐼𝑗

(4)

where 𝑛𝑗 refers to the size of dimension 𝑗 of reshaped tensor ̂𝜽 ∈
R𝑛1×⋯×𝑛𝑑 and 𝑟 refers to the ranks of TT decomposition of reshaped
𝑗

Applied Soft Computing 149 (2023) 110987R. Solgi et al.



a
w
t

a
𝑙
o
T
d

d
S
t
|

i
i
a
s
b
d
t
t
t
h

f

𝐸

d
t
S

‖

𝑗
s

6

a

𝛱

l
a
(
s
p
o
i

6

f
a
n
s

𝜽

w
t
s
r
I
t
m
c
t
s

6

tensor 𝜽. 𝐼𝑗 refers to the size of dimension 𝑗 of original data array
 ∈ R𝐼1×⋯×𝐼𝑘 . In other words, to calculate the space-saving the size of
the factor cores resulting from the decomposition of a reshaped tensor
is compared with the size of the original tensor. The ratio of the size
of the original data to the size of compressed factors is defined as the
compression ratio. Given the space-saving of a shape 𝜃 the compression
ratio is defined as shown below.

𝑅(𝜃) = (1 − 𝐶(𝜃))−1 (5)

where 𝑅(𝜃) refers to the compression ratio of the shape 𝜃.

5. Methodology: Tensor shape optimization

This study proposes a tensor shape search for data compression
using the TT decomposition. As described above given a tensor  ∈
R𝐼1×⋯×𝐼𝑘 ,  can be reshaped to a tensor 𝜽 ∈ R𝑛1×⋯×𝑛𝑑 . Instead of

, 𝜽 is decomposed and its factors are stored. To retrieve ̂ , first
̂𝜽 is reconstructed using factors of 𝜽 and elements of ̂ can be
ccessed directly from bijection between 𝜽 and ̂ by Eq. (3). This
ork proposes an optimization model to maximize the space saving by

he TT decomposition with respect to the tensor shape 𝜃.
Given 𝑑 (the order of ), 𝜽 = (𝑛1, 𝑛2,… , 𝑛𝑑) is a possible shape;

nd let 𝑆 be the space made of all possible 𝜽’s such that 𝑛𝑖 ∈ N and
≤ 𝑛𝑖 ≤ 𝑢 for 𝑖 = 1, 2,… , 𝑑 and 𝑙, 𝑢 ∈ N. If 𝑙 = 1, 𝑑 is the maximal
rder because when 𝑛𝑖 = 1 dimension 𝑖 becomes ineffective, practically.
he proposed optimization model maximizes the space saving of the TT
ecomposition given an error bound 𝜖 as defined below.

max
∀𝜽∈𝛩

𝐶(𝜽) = 1 −
|̄𝜽|
||

subject to
̄𝜽 = 𝑓 (𝜽, 𝜖)

𝜽 = 𝛷( ,𝜽)

𝛩 = {𝜽|𝜽 ∈ 𝑆, |𝜽| ≥ ||}

𝑆 = {𝜽 = (𝑛1, 𝑛2,… , 𝑛𝑑)|𝑛𝑖 ∈ N, 𝑙 ≤ 𝑛𝑖 ≤ 𝑢} (6)

where 𝛩 ⊂ 𝑆 and the sub-space 𝛩 refers to the feasible domain of the
ecision space 𝑆. 𝑓 (𝜽, 𝜖) generates the factors of 𝜽, ̄𝜽, using the TT-
VD algorithm based on the error bound 𝜖. 𝛷( ,𝜽) resizes the given
ensor  to the shape 𝜽 and enter zero values (dummy elements) if
𝜽| > || to fill the rest of the reshaped tensor. The upper limit of

the 𝐶(𝜽) is 1. When 0 < 𝐶(𝜽) < 1 the cardinality of the factors is less
than that of the data, but when 𝐶(𝜽) ≤ 0 the memory requirement is
inflated, and there is no data compression.

Any shape that results in a tensor 𝜽 whose cardinality is smaller
than the cardinality of the original given data  (|𝜽| < ||) is
nfeasible because some data is missed. Furthermore, the resized tensor
s filled with dummy elements (e.g., zeros) when a possible 𝜽 results in
tensor whose cardinality is greater than that of the original data. Any

hape which results in an unnecessarily large cardinality is undesirable
ecause it makes the compression less efficient. The objective function
efined in Eq. (6) maximizes the space saving considering the effect of
he added dummy elements. Therefore, the objective function guides
he search toward a shape whose cardinality is the closest to that of
he data. The definition of the feasible subspace 𝛩 prevents shapes that
ave a cardinality smaller than that of the original tensor.

Let 𝐸(𝜽) be the relative error measured by the Frobenius norm as
ollows.

(𝜽) =
‖ − ̂‖𝐹
‖‖𝐹

, with ̂ = 𝛷−1(̂𝜽) and ̂𝜽 = 𝛹 (̄𝜽) (7)

where 𝛷(⋅)−1 resizes the tensor to the original shape and removes
ummy elements if there are any, 𝛹 (⋅) generates the approximation
ensor ̂𝜽 from the factors, and ̄𝜽 refers to the decomposed factors.
ince the added dummy elements are zero, then ‖‖ = ‖‖ and
4

𝐹 𝐹 T
−̂‖𝐹 ≤ ‖−̂‖𝐹 . Also, the TT-SVD guarantees that ‖−̂‖𝐹
‖‖𝐹

≤ 𝜖.
Therefore, if the TT-SVD (described in Algorithm 1) is applied for the
decomposition of the reshaped tensor, 𝐸(𝜽) ≤ 𝜖 and it is not required
to consider the error bound as a constraint in the optimization model.

6. Genetic algorithm for tensor shape search

The proposed optimization model (6) is a challenging combinatorial
problem. When the data are reordered and reshaped the TT ranks of the
rearranged data need to be determined for calculation of the space sav-
ing of tensor compression. Determining the ranks of a tensor is known
to be NP-complete [53]. Therefore, a genetic algorithm (GA) is applied
to solve the defined optimization model and find the optimal tensor
shape. The GA and evolutionary algorithms in general are usually used
where the problem is combinatorial and non-convex, and the GA is an
effective and common approach for solving this kind of problem. A
pseudo-code of the GA for tensor shape search is presented in Algorithm
2, and its key steps are described below.

6.1. Initialization

The GA starts with generating a set of random shapes (solutions)
 = {𝜽1,𝜽2,… ,𝜽𝑚} as an initial population. The initial population
is generated by applying a discrete uniform distribution [specifically,
𝐮𝐧𝐢𝐟 (𝑙, 𝑢)] on each variable (𝑛𝑖, 𝑖 = 1, 2,… , 𝑑) of 𝜽𝑗 = (𝑛1, 𝑛2,… , 𝑛𝑑) for
= 1, 2,… , 𝑚. Next for each shape 𝜽𝑗 , the TT-SVD is called, and the

pace saving 𝐶(𝜽𝑗) is calculated by Eq. (6).

.2. Selection

Proportional to the space saving of each solution, a selection prob-
bility is assigned to each shape as below.

(𝜽𝑗) =
𝐶(𝜽𝑗)

∑𝑚
𝑗=1 𝐶(𝜽𝑗)

, 𝑗 = 1, 2,… , 𝑚 (8)

where 𝛱(𝜽𝑗) is the selection probability of shape 𝜽𝑗 . In the selection
process of the GA, 𝑝 (𝑝 < 𝑚) shapes are selected as parents. (𝑝 − 1) so-
utions are selected based on the probability distribution 𝛱 (calculated
bove) with replacement such that the shapes with higher probability
𝛱) have more chance to be selected to enter to the parent set. If a
olution is selected several times, then several copies of that exist in the
arent set. An elitism operation is also applied so that the best shape
f the current population (the shape with the maximum compression)
s moved to the parent set with probability 1.

.3. Reproduction

During the reproduction process the crossover operator is applied
irst. Based on the crossover operator two shapes like 𝜽 = (𝑛1,… , 𝑛𝑑)
nd 𝜽′ = (𝑛′1,… , 𝑛′𝑑) are randomly selected from the parent set, and a
ew trial shape is generated by exchanging the variables of the two
elected solution as shown below.
new = (𝑛1,… , 𝑛𝑐 , 𝑛

′
𝑐+1,… , 𝑛′𝑑) (9)

here 𝑐 is the crossover point. Next, the mutation operator is applied
o the newly generated solution. Based on the mutation operator,
ome of the dimensions (variables) of the newly generated shapes are
andomly replaced by applying a discrete uniform distribution 𝐮𝐧𝐢𝐟 (𝑙, 𝑢).
f 𝜽 = (𝑛1,… , 𝑛𝑖,… , 𝑛𝑑) is a newly generated shape by the crossover,
he muted shape is 𝜽new = (𝑛1,… , 𝑛′′𝑖 ,… , 𝑛𝑑) where dimension 𝑖 is
uted. The procedure of selecting parents and generating new solutions

ontinues until 𝑚 − 𝑝 new shapes are generated. The space saving of
he newly generated shapes (new population) is calculated and the
election probabilities are updated.

.4. Iteration and convergence

The process of selection and reproduction repeats for 𝑇 iterations.
he best final shape is reported as the best (optimal) solution. There

Applied Soft Computing 149 (2023) 110987R. Solgi et al.

p

r

T
e
i
t

is no guarantee that the GA will find an optimal solution, but experi-
mental results have shown the effectiveness of the GA in finding a near
optimal solution [48]. [54] presented the stochastic convergence of the
elitist GA.

Algorithm 2 The genetic algorithm for the tensor shape search with
the tensor train compression
Require: 𝑇 , 𝑚, 𝑝

Generate 𝑚 tentative shapes
for 𝑗 = 1 to 𝑚 do

Run the TT-SVD algorithm and Calculate 𝐶(𝜽𝑗)
end for
𝜽∗ = the best shape in the current population
for 𝑡 = 1 to 𝑇 do

for 𝑗 = 1 to 𝑚 do
Calculate 𝛱(𝜽𝑗)

end for
for 𝑗 = 1 to 𝑝 − 1 do

Select one shape using the distribution 𝛱
Copy the selected shape to the parent set

end for
Copy the best solution to the parent set
for 𝑗 = 1 to 𝑚 − 𝑝 do

Generate a new solution using the crossover operator
Mute the newly generated solution using the mutation

operator
Run the TT-SVD algorithm for the new shape 𝜽𝑗 and Calculate

𝐶(𝜽𝑗)
end for
New population = parent set + new solutions
𝒃 = the best shape in the current population
if 𝐶(𝒃) > 𝐶(𝜽∗) then

𝜽∗ = 𝒃
end if

end for

7. Random shape search

In addition to the genetic algorithm (GA) that searches a near-
optimal shape, a random search (RS) is also applied in this work. The
best solution found by the RS, 𝜽𝑟, is compared with the near optimal
shape found by the GA. Hence the number of randomly generated
shapes is the same as the total number of solutions examined by the
GA. Algorithm 3 represents the applied random shape search.

Algorithm 3 Random shape search algorithm
Require: 𝑇 , 𝑑, 𝑙, ||

𝐶(𝜽𝑟) = 0
for 𝑡 = 1 to 𝑇 do

𝑢 = ⌈

||

𝑙𝑑−1
⌉

for 𝑗 = 1 to 𝑑 − 1 do
𝑛𝑗 = 𝑅𝑎𝑛𝑑𝐼𝑛𝑖𝑡(𝑙, 𝑢)
𝑢 = ⌈

𝑙×𝑢
𝑛𝑗

⌉

end for
𝑛𝑑 = ⌈

||

∏𝑑−1
𝑗=1 𝑛𝑗

⌉

𝜃 = (𝑛1, 𝑛2,⋯ , 𝑛𝑑)
Run the TT-SVD algorithm for the shape 𝜃 and Calculate 𝐶(𝜃)
if 𝐶(𝜃) > 𝐶(𝜽𝑟) then

𝜽𝑟 = 𝜃
end if

end for

In Algorithm 3, given the cardinality of the data, ||, where a
ossible shape is defined as 𝜃 = (𝑛 , 𝑛 ,… , 𝑛), there are 𝑑−1 degrees of
5

1 2 𝑑 i
Table 1
The result of the compression of the studied images with their original shape (𝜽𝑜) and
the optimal shape (𝜽∗) for 𝜖 = 0.05.

Image 𝐶(𝜽𝑜)% 𝐸(𝜽𝑜) Optimal shape (𝜽∗) 𝐶(𝜽∗)% 𝐸(𝜽∗)

1 48.45 0.0349 (1903,3,36) 67.50 0.0345
2 57.33 0.0264 (230,10,96) 72.13 0.0341
3 82.54 0.0313 (116,60,30) 88.05 0.0332
4 50.09 0.0249 (448,20,24) 75.02 0.0351
5 22.28 0.0247 (3493,2,30) 56.87 0.0345
6 −4.17 0.0248 (3200,4,18) 33.47 0.0346
7 12.46 0.0246 (3770,3,18) 40.00 0.0331
8 86.65 0.0253 (430,20,24) 92.67 0.0340
9 59.58 0.0348 (1975,5,21) 62.44 0.0340
10 65.62 0.0270 (320,10,72) 74.47 0.0343

freedom, and the last dimension is determined such that the cardinality
of the randomly generated shape is immediately greater than or equal
to the cardinality of the given data to be compressed. Meantime,
to generate a random shape, the lower boundary of the size of all
dimensions 𝑙 is fixed, but the upper boundary, 𝑢, dynamically changes
according to the previously determined dimensions. Note that the same
approach described in Algorithm 3 is applied for the initialization of the
GA, too.

8. Experimental results

The proposed tensor shape search using the TT-SVD algorithm is
applied to decompose some arbitrary RGB images from the Microsoft
common objects in context (COCO) data set [55] depicted in Fig. 2.
Note that using the proposed method to compress the RGB images is
only done for experimental purposes and for demonstrating the capabil-
ity of the method for signal compression and dimensionality reduction
while studying the method’s performance but the application of the
proposed method is beyond just compressing the RGB images. The
images are resized in the experiments such that the longest dimension
has 320 pixels with a fixed aspect ratio of the original image. Fig. 2
also shows the original shape (height, width, depth) of the data arrays
of the images below them.

8.1. Optimal shape versus original shape

The decomposition results of the reshaped data are compared with
that of the original shapes. The largest number of dimensions and the
lower boundary for the dimension size are set to have a fair comparison
such that all the optimum shapes are of order three, similar to the
original shapes (i.e., 𝑑 = 3 and 𝑙 = 2). For each image the GA runs
for 50 iterations with a population size of 20. Note that reducing
the error bound 𝜖 for TT decomposition reduces the space saving and
compression efficiency because reducing the error increases the ranks
and requires more factors to be stored. In this study the performance of
the proposed method was studied using different error bounds varying
from 𝜖 = 0.01 to 𝜖 = 0.2. Fig. 3 shows the convergence curve of the GA
uns for the studied images with 𝜖 = 0.1. Tables 1–3 lists the results of

the compression of the studied images with their original shapes and
the optimal shapes found by the GA for different error bounds including
𝜖 = 0.05, 𝜖 = 0.1, and 𝜖 = 0.2, respectively. In Tables 1–3, 𝜽∗ refers to
the optimal shape found by the GA, and 𝜽𝑜 refers to the original shape
of the images.

It is seen in Tables 1–3 that for all images the space saving of the
optimal shape (𝜽∗) found by the GA is superior to that of the original
shape (𝜽𝑜). Also, all the errors are smaller than the error bound 𝜖.

he change in the error is negligible and is bounded although the
rror slightly increases by improving the space saving, whereas the
mprovement in the space saving is significant. It is also seen that
he space saving of the studied images varies, and it is because the
mages have different ranks. Regardless of the ranks of the images the

Applied Soft Computing 149 (2023) 110987R. Solgi et al.
Fig. 2. The arbitrary selected images form the COCO data set (the images are not depicted to their correct scale and the numbers written in parenthesis (height, width, depth)
refer to the original shape, 𝜽𝑜, of the image’s data array).
Fig. 3. The convergence curve of the GA runs.

Table 2
The result of the compression of the studied images with their original shape (𝜽𝑜) and
the optimal shape (𝜽∗) for 𝜖 = 0.1.

Image 𝐶(𝜽𝑜)% 𝐸(𝜽𝑜) Optimal shape (𝜽∗) 𝐶(𝜽∗)% 𝐸(𝜽∗)

1 72.98 0.0553 (222,16,60) 89.78 0.0694
2 75.14 0.0505 (437,8,60) 88.88 0.0701
3 94.18 0.0526 (428,10,48) 98.31 0.0680
4 82.89 0.0559 (107,16,120) 92.35 0.0696
5 62.58 0.0646 (471,8,60) 75.46 0.0702
6 17.70 0.0495 (1920,4,30) 58.46 0.0694
7 36.07 0.0499 (2270,3,30) 65.71 0.0697
8 97.13 0.0583 (71,320,9) 98.65 0.0695
9 79.61 0.0505 (193,51,21) 85.61 0.0694
10 80.21 0.0504 (349,12,60) 88.52 0.0685

proposed method improved the space saving of all the studied images.
For instance, for image 7, the space saving has increased from 12.46%,
36.07%, and 76.14% to 40.00%, 65.71%, and 87.91% for error bounds
0.05, 0.1, and 0.2, respectively. In Table 1 image 6 has a negative
space saving when its original shape is used. That means there was
no compression and the factors require more space than the original
data. However, the space saving achieved by using the shape search
algorithm improved from −4.17% to 33.47%. Considering all of the
studied images, on average, the space saving improved by about 18.5%,
14.3%, and 4.6% for error bounds 0.05, 0.1, and 0.2, respectively
6

Table 3
The result of the compression of the studied images with their original shape (𝜽𝑜) and
the optimal shape (𝜽∗) for 𝜖 = 0.2.

Image 𝐶(𝜽𝑜)% 𝐸(𝜽𝑜) Optimal shape (𝜽∗) 𝐶(𝜽∗)% 𝐸(𝜽∗)

1 96.88 0.1370 (98,28,75) 98.32 0.1383
2 95.59 0.1149 (108,15,128) 98.15 0.1383
3 98.33 0.0999 (70,28,108) 99.65 0.1374
4 94.99 0.1032 (92,44,51) 97.15 0.1399
5 90.12 0.1202 (437,16,30) 92.91 0.1365
6 63.33 0.1145 (2575,3,30) 78.39 0.1378
7 76.14 0.1218 (433,5,96) 87.91 0.1377
8 99.48 0.1012 (161,17,75) 99.88 0.1279
9 94.54 0.0990 (81,45,57) 98.52 0.1366
10 92.71 0.1005 (214,30,36) 96.76 0.1387

(referring to the difference between columns 2 and 5 of Tables 1–3). We
can conclude that the compression results of the optimal shapes were
significantly improved in comparison with that of the original shapes.

Table 4 lists the ratio between the compression ratio of the optimal
shape, 𝑅(𝜽∗), and the compression ratio of the original shape, 𝑅(𝜽𝑜) for
different error bounds from 𝜖 = 0.01 up to 𝜖 = 0.2. In other words,
Table 4 refers to the ratio of the size of the compressed data using
the original shape to the size of the compressed data using the optimal
shape. Therefore, the larger the ratio, the higher the efficiency of the
optimal shape. Remember that the compression ratio, 𝑅(𝜃), is defined
in Eq. (5). In Table 4, it is seen that by increasing the error bound, on
average, 𝑅(𝜽∗)∕𝑅(𝜽𝑜) increases while the variance also increases. This
is visualized in Fig. 4, which depicts the minimum, mean, maximum,
and variance of 𝑅(𝜽∗)∕𝑅(𝜽𝑜) for all images versus the error bound.
According to Table 4 and Fig. 4, for the small error bounds variance is
close to zero and the compression ratio for the optimal shape is about
a factor of 1.5 greater than that of the original shape. By relaxing the
error bound on average the compression ratio of the optimal shape is
about 2.6 times that of the original shape. Compression is usually more
challenging when the error bound is very tight because the accuracy
of the data is well preserved. According to Table 1 the space saving
for the original shape is about 47% on average for an error bound of
5% while the space saving for the optimal shape increases to about
66% on average over all studied images. It is seen in Table 3 that
for 𝜖 = 0.2 the TT compression using the original shape achieved a
space saving of 90% on average that represents an increment of up
to 94% on average using the tensor shape search (i.e., the optimal
shape). The improvement in the space saving from 90% to 94% may
not seem as significant as the raise in the space saving from 47 to 66 for
the smaller error bound. However, studying the compression ratios as

Applied Soft Computing 149 (2023) 110987R. Solgi et al.
Table 4
𝑅(𝜽∗)∕𝑅(𝜽𝑜) for different error bounds.

Image 𝜖 = 0.01 𝜖 = 0.05 𝜖 = 0.1 𝜖 = 0.15 𝜖 = 0.2

1 1.63 1.51 2.64 3.21 1.86
2 1.51 1.53 2.24 1.49 2.38
3 1.27 1.46 3.44 5.29 4.77
4 1.65 1.65 2.24 2.43 1.76
5 1.17 1.80 1.52 1.07 1.39
6 1.24 1.57 1.98 1.60 1.70
7 1.17 1.46 1.86 1.53 1.97
8 1.36 1.82 2.13 2.97 4.33
9 1.32 1.08 1.42 1.82 3.69
10 1.41 1.70 1.72 1.53 2.25

Fig. 4. Comparison of 𝑅(𝜽∗)∕𝑅(𝜽𝑜) for different error bounds including 𝜖 = 0.01,
𝜖 = 0.05, 𝜖 = 0.10, 𝜖 = 0.15, and 𝜖 = 0.20.

shown in Fig. 4 along side the space saving, it becomes more clear that
the proposed tensor shape search improved the compression efficiency
for both tight and loose error bounds significantly.

The original data are restored using the TT factors. Normally the
retrieval of the original data only includes the multiplication of the
TT core factors as specified in Eq. (1). Concerning the GA solution
the reshaping may add dummy variables during the reshaping process.
However, the reshaping is a bijection mapping that simply allows the
original data to be restored. Fig. 5 visualizes an estimation of image 4
for different error bounds for both GA’s optimal shape and the original
shape. It is seen in Fig. 5 for 𝜖 = 0.05 the restored image is almost
identical to the original image. However, by relaxing the error bound,
the accuracy reduces and the restored image is blurry for 𝜖 = 0.2 for
both original shape and the optimal shape. The error bound, 𝜖 was set
to be the same for both the original shape and the optimal shape as
it is reported in Tables 1–3, yet, the actual error of the optimal shape
was mostly higher than that of the original shape. This difference is
visible in Fig. 5 comparing the restored images for 𝜖 = 0.2. Therefore,
improving the compression efficiency of the TT decomposition using
the GA may slightly result in a lower accuracy, although the error is
bounded.

8.2. Random search versus GA

A random search (RS) is applied in addition to the GA. The total
number of randomly generated shapes was 1000, which is equal to
the total number of solutions examined by the GA. This keeps the
computational cost almost the same between the two methods since
the major computational burden belongs to simulating the TT decom-
position and the related SVDs for each possible shape. The best solution
among all the randomly generated solutions is selected and the space
savings are reported in Table 5. Table 6 compares the space saving and
compression ratios between the optimal shape found by the GA and the
best shape found by the random search. The results demonstrate that
7

Table 5
The space saving of the best shapes found by the random search, 𝐶(𝜽𝑟)%, for different
error bounds.

Image 𝜖 = 0.05 𝜖 = 0.10 𝜖 = 0.20

1 66.41 87.50 97.62
2 68.24 85.82 97.41
3 86.98 97.37 98.52
4 72.77 87.66 96.10
5 55.57 72.18 91.13
6 30.51 57.76 77.97
7 39.04 64.02 85.84
8 91.19 98.07 99.65
9 62.16 82.88 96.51
10 63.17 78.80 95.00

Table 6
Comparing the results of the GA and the RS including the differences in space savings
(%) and the ratio between compression ratios.

Image 𝐶(𝜽∗) − 𝐶(𝜽𝑟)% 𝑅(𝜽∗)∕𝑅(𝜽𝑟)

𝜖 = 0.05 𝜖 = 0.10 𝜖 = 0.20 𝜖 = 0.05 𝜖 = 0.10 𝜖 = 0.20

1 1.09 2.28 0.70 1.03 1.22 1.42
2 3.89 3.06 0.74 1.14 1.28 1.4
3 1.07 0.94 1.13 1.09 1.56 4.23
4 2.25 4.69 1.05 1.09 1.61 1.37
5 1.3 3.28 1.78 1.03 1.13 1.25
6 2.96 0.70 0.42 1.04 1.02 1.02
7 0.96 1.69 2.07 1.02 1.05 1.17
8 1.48 0.58 0.23 1.20 1.43 2.92
9 0.28 2.73 2.01 1.01 1.19 2.36
10 11.3 9.72 1.76 1.44 1.85 1.54

Min 0.28 0.58 0.23 1.01 1.02 1.02
Mean 2.66 2.97 1.19 1.11 1.33 1.87
Max 11.30 9.72 2.07 1.44 1.85 4.23

the optimal shapes found by the GA are all superior to those found
by the RS. In Table 6 it is seen that on average the GA improved the
space saving by 2.66%, 2.97%, and 1.19% for error bounds 0.05, 0.10,
and 0.2, respectively. There are cases like image 10, where the GA’s
solution is 11.30% better than that of the RS. In Table 6 it is also
seen that the ratio between compression ratios is also always larger
than 1 meaning that the shape found by the RS results in a greater
cardinality of factors in comparison to that of the GA’s solution. Note
that the ratio between compression ratios compares the cardinality
of the factors head to head regardless of the initial size of the data.
Therefore, the GA performed better. However, the random search also
found solutions better than the initial shape. In fact, the random search
is also successful in improving the compression efficiency although the
GA may provide a better solution.

The average wall time of the GA spent using a 2.3 GHz Quad-Core
Intel Core i5 processor for error bounds 0.05, 0.1, and 0.2 was about
49, 35, and 25 s, respectively. The average wall time of the RS for error
bounds 0.05, 0.1, and 0.2 were about 30, 23, and 17 s, respectively. The
compression efficiency of the GA was higher even though the RS was
slightly faster.

8.3. Neural network compression

One of the common applications of tensor compression is to ten-
sorize neural networks. Tensorizing neural networks refers to com-
pressing parameters of a neural network using tensor decomposition
that allows efficient use of the memory and computation, specially
when the hardware resources are limited. In the tensorized network
the tensorized factors are stored in the memory instead of storing
the raw parameters. To apply tensor decomposition the parameters
must be a high dimensional array (tensor), but not all neural network
parameters are initially high dimensional. For example, the parameters
of a fully connected layer are initially represented as a matrix or 2D
array. The parameters of fully connected layers must be represented as

Applied Soft Computing 149 (2023) 110987R. Solgi et al.
Fig. 5. Restoration of image 4 from the compressed data using the optimal shape found by the GA and the original shape.
a higher dimensional data (at least 3D) for tensor decomposition to be
applicable. Here we study the performance of the tensor shape search
for tensorized neural networks.

In this experiment a network is implemented to solve the MNIST
data set [56]. The network consists of two dense layers. The MNIST
images are 28 by 28 pixels posing 784 inputs to the network. The first
dense layer has 512 neurons with rectifier linear unit (relu) activation
functions and consequently has a weight matrix of size 784 by 512. The
last layer is also a dense layer with 10 softmax units. The total number
of parameters of the network is 407,050 out of which almost 99% are
the weights of the first relu layer. Therefore, we only compressed the
weight matrix of the first fully connected layer for compression of the
network. This work applied a post-training compression technique in
which the parameters of the network were initially optimized in their
raw format. After initialization the parameters of the first layer were
reshaped and compressed using the proposed method. The accuracy
of the network might be reduced due to the error of the compression.
Therefore, a retraining was applied. 𝑑 was set to be 4 and 𝑙 was set to
be 1. Therefore, the GA and random search (RS) explored shapes with
dimension 3 and 4. Like the previous experiments the population size
and the number of iterations of the GA were 20 and 50, respectively.
For the RS, 1000 randomly trial solutions were examined.

Table 7 lists the results for the network accuracy before and after
compression. Table 8 lists the optimum shape found by the GA and RS
for compressing the first dense layer. It is seen in Table 7 that using
the proposed shape search by the GA the network can be compressed
up to about 300 times while the accuracy of the network is slightly
affected for 𝜖 = 1. For a more conservative error bound, 𝜖 = 0.8,
the accuracy of the network compressed by the GA is closer to the
uncompressed network and the memory requirement of the network
reduces to 11 times. Comparing the RS with the GA, the GA provides a
more efficient compression for both error bounds. In Table 8, it is seen
that the RS preferred a 3D array while the GA preferred a 4D array for
the reshaping. The compression efficiency depends on both shape and
the resulting TT-ranks, therefore the TT ranks for each shape is also
reported in Table 8.

The weights of the first layer are compressed for which the maxi-
mum, average, and minimum space saving of 1000 random trial shapes
examined by the RS are 99.03%, 51.96%, and −48.26%, respectively,
for 𝜖 = 1.0. Also, for 𝜖 = 0.8 the maximum, average, and minimum
space saving of 1000 random trial shapes for the weights of the first
layer are 75.73%, 4.73%, and −97.36%, respectively. For the GA, the
space saving of the best found shape is 99.79% and 91.12% for 𝜖 = 1
and 𝜖 = 0.8, respectively. The wide range of space savings across 1000
randomly generated shapes demonstrates the effect of the shape of the
8

Table 7
The accuracy and compression of the GA and the random search (RS) for MNIST in
comparison to the base uncompressed model.

Network Train (%) Validation (%) #Parameters

Base (Uncompressed) 98.65 90.08 401,408

GA (𝜖 = 1.0) 95.92 88.62 1353 (297×)
RS (𝜖 = 1.0) 95.41 88.10 4425 (91×)

GA (𝜖 = 0.8) 98.13 89.30 36,170 (11×)
RS (𝜖 = 0.8) 97.65 88.60 97,916 (4×)

Table 8
The optimum shapes and the TT ranks for the compressed layer of the MNIST
network.

Network Shape TT Ranks

GA (𝜖 = 1.0) (221,303,2,3) (1,1,2,2,1)
RS (𝜖 = 1.0) (3858,53,2) (1,1,1,1)

GA (𝜖 = 0.8) (522,4,16,16) (1,29,66,12,1)
RS (𝜖 = 0.8) (506,3,300) (1,63,134,1)

tensor on the compression efficiency and justifies the need for a shape
search before transforming a 2D parameter array to a higher dimension
for tensor compression. Note that the results listed in Tables 7 and 8
correspond to the largest space savings.

On a 2.6 GHz Intel Core i7 processor, the wall time of the GA for
error bounds 1 and 0.8 were about 116 and 247 s, respectively. On
the same processor, the wall time of the RS for error bounds 1 and 0.8
were about 31 and 43 s, respectively. Although the RS is faster, the
compression efficiency of the shape found by the GA is better.

The results of the compressing the MNIST network using the pro-
posed tensor shape search demonstrate that the shape of the tensor
significantly affects the compression efficiency. Therefore, it is neces-
sary to explore the tensor shapes before applying tensor compression on
neural networks. Also, the proposed tensor shape search using the GA
successfully improved the space saving in comparison to the random
search.

9. Discussion

Despite the success of the tensor decomposition methods such
as tensor train (TT) decomposition in data compression and dimen-
sionality reduction not all of the real-world data primarily are high-
dimensional, and sometimes a reshaping is necessary prior to tensor
compression. For instance, a low-dimensional (i.e., 1D or 2D) data
array is required to be transformed to a higher dimension for tensor

Applied Soft Computing 149 (2023) 110987R. Solgi et al.

i

compression to be applicable. Meantime, reordering and reshaping data
may affect the efficiency of the compression. This work proposed a
tensor shape optimization paradigm for data compression using TT de-
composition, and a GA was applied to solve the proposed optimization
model.

The results demonstrated that the compression efficiency can be
practically improved using the proposed method. The proposed ten-
sor shape search method significantly improved the space saving and
compression ratio in comparison to the original shape of the data.
Furthermore, a comparison of the GA with the pure random search
revealed that the shapes found by the GA were superior to those found
by the random search but the random search also may improve the
compression efficiency in comparison to the original shape of the data.
The proposed tensor shape search method bounds the error, but in a
head-to-head comparison between the optimal shape and the original
shape, It was observed that improving the space saving of the TT
decomposition using the proposed tensor shape search may slightly
increase the error. However, the gained space savings were significant
while the error differences were mostly negligible.

The effect of tensor reshaping on tensor decomposition has been
rarely studied in the literature. This study demonstrates the importance
of the topic and justifies that further research and more attention to this
topic are required. Obviously, any reformatting of a data array may
affect its decomposition, and it was not the purpose of this work to
show that reshaping affects the decomposition but the main objective of
this work was to formulate reshaping as a practical method to improve
the efficiency of tensor compression methods where such reshaping
is necessary or where it is viable. Reshaping may not be feasible for
some of tensor decomposition applications if the original structure
of the data must be preserved. In such cases the application of the
proposed method may be limited. Another limitation of the current
study is solving the posed optimization model using the GA requires
hierarchical SVDs for every potential shape to be conducted that is
time consuming and limits the application of tensor shape search.
The proposed methodology was only applied for the TT format. The
study of the effectiveness of the proposed tensor shape search for other
decomposition methods including the Tucker and CP decomposition,
and improving the efficiency of the optimization algorithm are the
subjects of future studies.

10. Conclusion

This work empirically studied the possible effect of the shape of a
tensor in the compression of tensorized signals and neural networks.
The study was narrowed down to the TT decomposition. The task of
finding the optimum shape for the tensor train (TT) decomposition
was formulated as an optimization model which maximizes the space
saving with respect to the shape of a given tensor subject to an error
bound. A genetic algorithm (GA) linked with the TT-SVD algorithm was
presented to solve the proposed optimization model. The performance
of the GA was also compared with the random search. The capability
of the proposed method was exemplified by compressing RGB images
and a neural network for the MNIST data set. The results demonstrated
that the efficiency of tensor compression was improved using the
proposed tensor shape search method. The study demonstrated that
the tensor shape had a significant effect in the compression efficiency
of the tensorized data and neural networks. Therefore, the proposed
optimization paradigm can be applied to utilize the shape effect for
enhancing the efficiency of both data and model compression using the
TT decomposition.

CRediT authorship contribution statement

Ryan Solgi: Conceptualization, Methodology, Software, Writing –
original draft, Writing – review & editing. Zichang He: Conceptual-
zation, Writing – original draft, Writing – review & editing. William
Jiahua Liang: Visualization. Zheng Zhang: Conceptualization, Writing
9

– review & editing. Hugo A. Loaiciga: Writing – review & editing.
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Zheng Zhang, Zichang He reports was provided by National Science
Foundation.

Data availability

This study applied the publicly available COCO [55] and MNIST
[56] data sets.

Acknowledgments

This work is partially supported by NSF, USA Grants CCF-1817037
and CCF-1763699, and the Department of Geography, University of
California Santa Barbara, USA.

References

[1] J. Jang, U. Kang, Fast and memory-efficient tucker decomposition for answering
diverse time range queries, in: ACM SIGKDD Conference on Knowledge Discovery
and Data Mining 2021, 2021.

[2] S. Zhou, N.X. Vinh, J. Bailey, Y. Jia, I. Davidson, Accelerating online CP decom-
positions for higher order tensors, in: ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 2016, 2016.

[3] T.G. Kolda, B.W. Bader, A fast learning algorithm for deep belief nets, SIAM Rev.
51 (3) (2009) 455–500.

[4] Z. Zhang, X. Yang, I.V. Oseledets, G.E. Karniadakis, L. Daniel, Enabling high-
dimensional hierarchical uncertainty quantification by ANOVA and tensor-train
decomposition, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34 (1)
(2015) 63–76.

[5] Z. Zhang, W.T. Weng, L. Daniel, Big-data tensor recovery for high-dimensional
uncertainty quantification of process variations, IEEE Trans. Compon. Packag.
Manuf. Technol. 7 (5) (2017) 687–697.

[6] Z. Zhang, K. Batselier, H. Liu, L. Daniel, N. Wong, Tensor computation: a new
framework for high-dimensional problems in EDA, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 36 (4) (2017) 521–536.

[7] K. Zhang, C. Hawkins, X. Zhang, C. Hao, Z. Zhang, On-FPGA training with
ultra memory reduction: A low-precision tensor method, 2021, arXiv preprint
arXiv:2104.03420.

[8] C. Dai, X. Liu, Z. Li, C. Mu-Yen, A tucker decomposition based knowledge
distillation for intelligent edge applications, Appl. Soft Comput. 101 (2021).

[9] D. Peddireddy, V. Bansal, V. Aggarwal, Classical simulation of variational
quantum classifiers using tensor rings, Appl. Soft Comput. 141 (2023).

[10] R. Bro, Parafac. Tutorial and applications, Intell. Lab. Syst. 38 (2) (1997)
149–171.

[11] L.R. Tucker, Some mathematical notes on three-mode factor analysis,
Psychometrika 31 (3) (1966) 279–311.

[12] V. Oseledets, Tensor train decomposition, SIAM J. Sci. Comput. (SISC) 33 (5)
(2011) 2295–2317.

[13] C. Li, Z. Sun, Evolutionary topology search for tensor network decomposition,
in: Proc. International Conference on Machine Learning, Vol. 119, 2020, pp.
5947–5957.

[14] Q. Zhao, L. Zhang, A. Cichocki, Bayesian CP factorization of incomplete tensors
with automatic rank determination, IEEE Trans. Pattern Anal. Mach. Intell. 37
(9) (2015) 1751–1763.

[15] C. Hawkins, X. Liu, Z. Zhang, Towards compact neural networks via end-to-end
training: A Bayesian tensor approach with automatic rank determination, 2020,
arXiv preprint arXiv:2010.08689.

[16] C. Hawkins, Z. Zhang, Bayesian tensorized neural networks with automatic rank
selection, Neurocomputing 453 (2021) 172–180.

[17] M. Mørup, Applications of tensor (multiway array) factorizations and de-
compositions in data mining, WIRES Data Min. Knowl. Discov. 1 (2011)
24–40.

[18] T.G. Kolda, J. Sun, Scalable tensor decompositions for multi-aspect data mining,
in: IEEE International Conference on Data Mining (ICDM), 2008, pp. 363–372.

[19] E. Sobhani, P. Comon, M. Babaie-Zadeh, Data mining with tensor decompositions,
in: GRETSI 2019 - XXVIIème Colloque Francophone De Traitement Du Signal Et
Des Images, 2019.

[20] J. Fang, Tightly integrated genomic and epigenomic data mining using tensor
decomposition, Bioinformatics 35 (2019) 112–118.

[21] Z. He, Z. Zhang, High-dimensional uncertainty quantification via tensor re-
gression with rank determination and adaptive sampling, IEEE Trans. Compon.
Packag. Manuf. Technol. 11 (9) (2021) 1317–1328.

http://refhub.elsevier.com/S1568-4946(23)01005-0/sb1
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb1
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb1
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb1
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb1
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb2
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb2
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb2
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb2
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb2
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb3
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb3
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb3
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb4
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb5
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb5
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb5
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb5
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb5
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb6
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb6
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb6
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb6
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb6
http://arxiv.org/abs/2104.03420
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb8
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb8
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb8
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb9
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb9
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb9
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb10
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb10
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb10
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb11
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb11
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb11
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb12
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb12
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb12
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb13
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb13
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb13
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb13
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb13
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb14
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb14
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb14
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb14
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb14
http://arxiv.org/abs/2010.08689
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb16
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb16
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb16
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb17
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb17
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb17
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb17
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb17
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb18
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb18
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb18
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb19
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb19
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb19
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb19
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb19
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb20
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb20
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb20
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb21
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb21
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb21
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb21
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb21

Applied Soft Computing 149 (2023) 110987R. Solgi et al.
[22] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, L. Carin, Scalable Bayesian low-
rank decomposition of incomplete multiway tensors, in: Proceedings of the 31st
International Conference on Machine Learning, Vol. 32, 2014, pp. 1800–1808,
(2).

[23] Q. Zhao, L. Zhang, A. Cichocki, Bayesian sparse Tucker models for dimension
reduction and tensor completion, 2015, arXiv:1505.02343.

[24] R. Dian, S. Li, L. Fang, Learning a low tensor-train rank representation for
hyperspectral image super-resolution, IEEE Trans. Neural Netw. Learn. Syst. 30
(9) (2019) 2672–2683.

[25] Z. He, B. Zhao, Z. Zhang, Active sampling for accelerated MRI with low-rank
tensors, in: 2022 44th Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC), IEEE, 2022, pp. 3024–3028.

[26] C. Ibrahim, D. Lykov, Z. He, Y. Alexeev, I. Safro, Constructing optimal contrac-
tion trees for tensor network quantum circuit simulation, in: 2022 IEEE High
Performance Extreme Computing Conference (HPEC), IEEE, 2022, pp. 1–8.

[27] J. Biamonte, V. Bergholm, Tensor networks in a nutshell, 2017, arXiv preprint
arXiv:1708.00006.

[28] J. Dborin, F. Barratt, V. Wimalaweera, L. Wright, A. Green, Matrix product state
pre-training for quantum machine learning, Quantum Sci. Technol. (2022).

[29] M.B. Soley, P. Bergold, A.A. Gorodetsky, V.S. Batista, Functional tensor-train
Chebyshev method for multidimensional quantum dynamics simulations, J.
Chem. Theory Comput. 18 (1) (2021) 25–36.

[30] M. Gabor, R. Zduneck, Compressing convolutional neural networks with
hierarchical tucker-2 decomposition, Appl. Soft Comput. 132 (2023).

[31] Y.D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep
convolutional neural networks for fast and low power mobile applications, 2015,
arXiv:1511.06530.

[32] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V. Lempitsky, Speeding-up
convolutional neural networks using fine-tuned CP-decomposition, 2015, arXiv:
1412.6553.

[33] A. Nikov, D. Podoprikhin, A. Osokin, D. Vetrov, Tensorizing neural networks,
2015, arXiv:1509.06569.

[34] J. Li, Y. Sun, J. Su, T. Suzuki, F. Huang, Understanding generalization in
deep learning via tensor methods, in: International Conference on Artificial
Intelligence and Statistics, 2020, pp. 504–515.

[35] W. Wang, Y.E.B. Sun, W. W., Wide compression: tensor ring nets, 2018, arXiv:
1802.09052.

[36] H. Chen, F. Ahmad, S. Vorobyov, F. Porikli, Tensor decompositions in wireless
communications and MIMO radar, IEEE J. Sel. Top. Sign. Proces. 15 (3) (2021)
438–453.

[37] J. Su, J. Li, X. Liu, T. Ranadive, C. Coley, T.-C. Tuan, F. Huang, Compact neural
architecture designs by tensor representations, Front. Artif. Intell. 5 (2022).

[38] C. Yin, B. Acun, C.-J. Wu, X. Liu, TT-rec: Tensor train compression for deep
learning recommendation models, Proc. Mach. Learn. Syst. 3 (2021) 448–462.

[39] Y. Yang, D. Krompass, V. Tresp, Tensor-train recurrent neural networks for video
classification, in: International Conference on Machine Learning, PMLR, 2017,
pp. 3891–3900.
10
[40] A. Obukhov, M. Rakhuba, A. Liniger, Z. Huang, S. Georgoulis, D. Dai, L.
Van Gool, Spectral tensor train parameterization of deep learning layers, in:
International Conference on Artificial Intelligence and Statistics, PMLR, 2021,
pp. 3547–3555.

[41] R. Solgi, H.A. Loaiciga, Z. Zhang, Evolutionary tensor train decomposition for
hyper-spectral remote sensing images, in: IGARSS 2022 - 2022 IEEE International
Geoscience and Remote Sensing Symposium, 2022.

[42] R. Solgi, H.A. Loaiciga, Bee-inspired metaheuristics for global optimization: a
performance comparison, Artif. Intell. Rev. (2021).

[43] J.H. Holland, Adaptations in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI, 1975.

[44] G. Acampora, A. Chiatto, A. Vitiello, Genetic algorithms as classical optimizer
for the quantum approximate optimization algorithm, Appl. Soft Comput. 142
(2023).

[45] M. Wang, A.A. Heidari, H. Chen, A multi-objective evolutionary algorithm with
decomposition and the information feedback for high-dimensional medical data,
Appl. Soft Comput. 136 (2023).

[46] C. Xing, W. Gong, S. Li, Adaptive archive-based multifactorial evolutionary
algorithm for constrained multitasking optimization, Appl. Soft Comput. 143
(2023).

[47] M. Solgi, O. Bozorg-Haddad, H.A. Loaiciga, The enhanced honey-bee mating
optimization algorithm for water resources optimization, Water Resour. Manag.
31 (2016) 885—901.

[48] O. Bozorg-Haddad, M. Solgi, H.A. Loaiciga, Meta-Heuristic and Evolutionary
Algorithms for Engineering Optimization, Wiley, 2017.

[49] J. Huang, W. Sun, L. Huang, Deep neural networks compression learning
based on multiobjective evolutionary algorithms, Neurocomputing 378 (2020)
260–269.

[50] A. Marzullo, C. Stamile, G. Terracina, F. Calimeri, S. Van Huffel, A tensor-based
mutation operator for neuroevolution of augmenting topologies (NEAT), in: 2017
IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 681–687.

[51] Q. Wang, L. Zhang, S. Wei, B. Li, Tensor decomposition-based alternate sub-
population evolution for large-scale many-objective optimization, Inform. Sci.
569 (2021) 376–399.

[52] S. Laura, C. Prissette, S. Maire, N. Thirion-Moreau, A parallel strategy for
an evolutionary stochastic algorithm: application to the CP decomposition of
nonnegative N-th order tensors, in: 28th European Signal Processing Conference
(EUSIPCO), 2021, pp. 1956–1960.

[53] J. Hastad, Tensor rank is NP-complete, J. Algorithms 11 (4) (1990) 644–654.
[54] R.R. Sharapov, A.V. Lapshin, Convergence of genetic algorithms, Pattern

Recognit. Image Anal. 16 (2006) 392–397.
[55] T.Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.

Ramanan, C.L. Zitnick, A. Dollar, Microsoft COCO: common objects in context,
2015, arXiv:1405.0312.

[56] L. Deng, The mnist database of handwritten digit images for machine learning
research, IEEE Signal Process. Mag. 29 (6) (2012) 141–142.

http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb22
http://arxiv.org/abs/1505.02343
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb24
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb24
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb24
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb24
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb24
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb25
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb25
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb25
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb25
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb25
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb26
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb26
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb26
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb26
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb26
http://arxiv.org/abs/1708.00006
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb28
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb28
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb28
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb29
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb29
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb29
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb29
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb29
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb30
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb30
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb30
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1509.06569
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb34
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb34
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb34
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb34
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb34
http://arxiv.org/abs/1802.09052
http://arxiv.org/abs/1802.09052
http://arxiv.org/abs/1802.09052
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb36
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb36
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb36
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb36
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb36
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb37
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb37
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb37
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb38
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb38
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb38
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb39
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb39
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb39
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb39
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb39
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb40
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb41
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb41
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb41
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb41
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb41
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb42
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb42
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb42
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb43
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb43
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb43
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb44
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb44
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb44
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb44
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb44
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb45
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb45
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb45
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb45
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb45
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb46
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb46
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb46
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb46
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb46
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb47
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb47
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb47
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb47
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb47
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb48
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb48
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb48
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb49
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb49
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb49
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb49
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb49
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb50
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb50
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb50
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb50
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb50
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb51
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb51
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb51
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb51
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb51
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb52
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb53
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb54
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb54
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb54
http://arxiv.org/abs/1405.0312
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb56
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb56
http://refhub.elsevier.com/S1568-4946(23)01005-0/sb56

	Tensor shape search for efficient compression of tensorized data and neural networks
	Introduction
	Related works
	Tensor decomposition and applications
	Tensor decomposition and hyperparameter tuning
	Evolutionary algorithms
	Evolutionary algorithms and tensor decomposition

	Background
	Tensor shape and reshaping
	Tensor train (TT) decomposition

	Problem statement
	Methodology: Tensor shape optimization
	Genetic algorithm for tensor shape search
	Initialization
	Selection
	Reproduction
	Iteration and convergence

	Random shape search
	Experimental results
	Optimal shape versus original shape
	Random search versus GA
	Neural Network Compression

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

