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Abstract

Background: Liver steatosis and fibrosis are emerging as risk factors for multiple extrahepatic 

health conditions; however, their relationship with Alzheimer’s disease pathology is unclear.

Objective: To examine whether non-alcoholic fatty liver disease (NAFLD) and FIB-4, a non-

invasive index of advanced fibrosis, are associated with brain amyloid-β (Aβ) and tau pathology.

Methods: The study sample included Framingham Study participants from the Offspring and 

Third generation cohorts who attended exams 9 (2011–2014) and 2 (2008–2011), respectively. 

Participants underwent 11C-Pittsburgh Compound-B amyloid and 18F-Flortaucipir tau positron 

emission tomography (PET) imaging and abdomen computed tomography, or had information on 

all components of the FIB-4 index. Linear regression models were used to assess the relationship 
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of NAFLD and FIB-4 with regional tau and Aβ, adjusting for potential confounders and multiple 

comparisons.

Results: Of the subsample with NAFLD information (N = 169; mean age 52 ± 9 y; 57% males), 

57 (34%) had NAFLD. Of the subsample with information on liver fibrosis (N = 177; mean 

age 50 ± 10 y; 51% males), 34 (19%) had advanced fibrosis (FIB-4 > 1.3). Prevalent NAFLD 

was not associated with Aβ or tau PET. However, FIB-4 index was significantly associated with 

increased rhinal tau (β = 1.03 ± 0.33, p = 0.002). Among individuals with prevalent NAFLD, 

FIB-4 was related to inferior temporal, parahippocampal gyrus, entorhinal and rhinal tau (β = 2.01 

± 0.47, p < 0.001; β = 1.60 ± 0.53, p = 0.007, and β = 1.59 ± 0.47, p = 0.003 and β = 1.60 

± 0.42, p = 0.001, respectively) and to Aβ deposition overall and in the inferior temporal and 

parahippocampal regions (β = 1.93 ± 0.47, p < 0.001; β = 1.59 ± 0.38, p < 0.001, and β = 1.52 ± 

0.54, p = 0.008, respectively).

Conclusion: This study suggests a possible association between liver fibrosis and early 

Alzheimer’s disease pathology, independently of cardio-metabolic risk factors.

Keywords

Alzheimer’s disease; amyloid-β; liver fibrosis; non-alcoholic fatty liver disease; positron emission 
tomography

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition, 

affecting approximately 25% of the population in the developed world [1]. Metabolic 

dysregulation, including type 2 diabetes, insulin resistance, and hyperlipidemia are closely 

associated with NAFLD in a bidirectional manner [2]. Thus, NAFLD prevalence may reach 

68% in individuals with type 2 diabetes [3] and up to 80% in those with morbid obesity 

[4]. Evidence suggests that NAFLD may be directly related to multiple extra hepatic health 

conditions [5], which include measures of vascular dysfunction [6–8], and cardiovascular 

morbidity and mortality [9, 10]. Furthermore, an increasing amount of evidence suggests 

that NAFLD is independently associated with measures of brain health. Indeed, NAFLD has 

been previously related to smaller brain volume in the Framingham Study’s Offspring cohort 

[11] as well as in other populations [12]. In addition, individuals with NAFLD demonstrated 

poorer cognitive function [13] and reduced brain activity [14]. In contrast, other studies have 

failed to identify a link of NAFLD with cognitive function [15] and incident dementia [16].

The natural history of NAFLD is diverse and can include various stages of liver fibrosis 

[17]. Histologically, NAFLD encompasses a broad range of pathologies ranging from 

simple steatosis, with no or minimal inflammation, to nonalcoholic steatohepatitis that is 

characterized by necroinflammation and an increased progression of fibrosis [18]. Similarly 

to NAFLD, liver fibrosis is often clinically silent, and is present in up to 9% of individuals 

without known liver disease [19]. It is increasingly recognized that liver fibrosis, rather 

than the existence of hepatic steatosis per se, is a strong prognostic factor for long-term 

complications including liver-related outcomes, cardiovascular mortality [20] and stroke 
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[21]. Recent evidence also stresses the possible important role of liver fibrosis in cognitive 

function and dementia risk [22, 23].

Despite the growing support for the implications of NAFLD and liver fibrosis to brain 

health, the connection with Alzheimer’s disease (AD) is unknown. In vivo quantification of 

amyloid-β (Aβ) and tau deposition are valid biomarkers for prodromal AD and can emerge 

decades prior to AD clinical diagnosis [24]. Thus, in the current study, we utilized data 

from PET imaging to examine the association of NAFLD and liver fibrosis with regional 

Aβ and tau deposition. We hypothesized that NAFLD and liver fibrosis will be associated 

with increased Aβ and tau PET retention in brain regions in which AD pathology initially 

emerges, and that these associations will be independent of cardio-metabolic measures.

METHODS

Study sample

The study sample is based on participants from the Offspring [25] and third generation 

[26] of the Framingham Heart Study (FHS). Figure 1 presents a flow chart of the study 

sample. We included a total of 5,841 participants, of them 2,430 Offspring and 3,411 

third generation, who attended exams 9 (2011–2014) and 2 (2008–2011), respectively. Of 

these, 4,991 participated in the multi-detector CT 2 sub-study for evaluation of ectopic 

fat, including liver fat, between September 2008 and December 2011 or had information 

on all components of the liver fibrosis score (FIB-4). We excluded 803 participants with 

excessive alcohol consumption defined as self-report of >14 alcoholic drinks/week for men 

and >7 alcoholic drinks/week for women because we were interested in non-alcoholic 

fatty liver disease. Thus, 4,188 were eligible for inclusion, among them PET imaging 

was obtained for a representative sample (with respect to vascular risk) of 230 eligible 

participants. Of them, 169 (73%) had information on NAFLD, 177 (77%) had information 

on all components of FIB-4, and 116 (50%) had information on both NAFLD and 

all components of FIB-4. Eligibility for the PET imaging sub-study included absence 

of significant neurological conditions including clinical stroke, dementia, and multiple 

sclerosis. As previously described, FHS participants undergo routine cognitive screening 

and comprehensive monitoring for continual surveillance of dementia [27], which was 

exclusionary for participation in the PET imaging sub-study and therefore also in the current 

study. Data were obtained under a protocol approved by the institutional review board of 

the Boston University Medical Center, and written informed consent was obtained from all 

participants.

Assessment of fatty liver

Multi-detector CT was performed using 8-slice MDCT technology (LightSpeed Ultra, 

General Electric, Milwaukee, WI, USA). A calibration phantom (Image Analysis, 

Lexington, KY, USA) with a water equivalent compound (CT-Water, Light Speed Ultra, 

General Electric, Milwaukee, WI, USA) and calcium hydroxyapatite at 0, 75, and 150 

mg/cm3 was placed under each participant [28]. Three areas from the liver and one from an 

external phantom were measured, and the average of the liver measures were then calculated 

and used to create liver/phantom ratios. NAFLD was defined as having a liver/phantom ratio 

Weinstein et al. Page 3

J Alzheimers Dis. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



≤0.33, consistent with prior FHS publications [29]. Additional details on multi-detector CT 

scan protocol and measurement of fatty liver can be found elsewhere [29].

Assessment of liver fibrosis

The FIB-4 index was calculated using the following formula: age(years) x AST[U/L]/

(platelets [109/L] x (ALT[U/L])1/2) [30]. The components of the FIB-4 index derive from 

readily available blood tests that are routinely measured [31]. FIB-4 index have been shown 

high validity compared to liver biopsy [31]. In addition, FIB-4 have also been demonstrated 

in a general population to predict cardiovascular disease [32, 33] and increased overall and 

liver disease-specific mortality [34]. FIB-4 score is categorized into three categories (low, 

inconclusive, and advanced), according to NAFLD recommended cut-off values of ≤1.3 to 

rule out advanced fibrosis, >1.3 and <2.67 as intermediate, and ≥2.67 to suggest advanced 

fibrosis [35].

Assessment of Aβ and tau pathology

Consented participants underwent Aβ and tau PET imaging using 11C-Pittsburgh Compound 

B (PiB) and 18F-Flortaucipir (FTP), respectively. PET data were acquired using either a 

Siemens/CTI ECAT HR+ scanner (3D mode; 63 image planes; 15.2 cm axial field of view; 

5.6 mm transaxial resolution; 2.4 mm slice interval) or a Discovery MI (GE Healthcare) 

PET/CT scanner. For the latter, the full width half maximum spatial resolutions measured at 

the center of the axial field of view (radial position = 1 cm) were 4.3 mm and 5.1 mm in 

transverse and axial directions respectively. 10-min transmission scans were collected at the 

beginning of each HR+ scan for attenuation correction, and low-dose CT acquisitions were 

performed before each Discovery MI scan for the same purpose. After injection of 8.5–15 

mCi of PiB, 60 min of dynamic data were acquired in 3D acquisition mode. These data were 

reconstructed in 39 frames (8 × 15s, 4 × 60s, and 27 × 120 s). FTP was prepared with a 

mean radiochemical yield of 14 ± 3% and specific activity of 216 ± 60 GBq/mol (5837 ± 

1621 mCi/mol) at the end of synthesis (60 min) and validated for human use [36]. After a 

10.0 ± 1.0 mCi bolus injection, images were acquired from 80 to 100 minutes in 4 × 5 min 

frames.

All PET data was co-registered to the corresponding T1 images for each participant using 

SPM12. FreeSurfer v6.0 was used to derive 215 regions of interest (ROIs) [37]. Images 

were inspected for adequate count statistics, and head motion between frames, if any, were 

compensated in the software. PET data were evaluated without partial volume correction 

given the relatively young age of the sample with minimal atrophy. PiB retention was 

expressed as the distribution volume ratio (DVR) using the cerebellar cortex as a reference. 

A PiB summary measure, frontal, lateral, and retrosplenial cortices (FLR), was derived from 

the mean of superior frontal, inferior frontal, rostral middle frontal, rostral anterior cingulate, 

medial orbitofrontal, inferior and middle temporal, inferior parietal, and precuneus regions 

[38]. Tau measurement parameters were expressed as the standardized uptake value ratio 

(SUVr) and included assessment of uptake at pre-defined ROIs in the entorhinal cortex, 

inferior temporal lobe and parahippocampal gyrus (compared to cerebellar cortex) [39]. A 

rhinal region that overlaps the entorhinal region was included because it has been shown to 

more accurately assess the earliest stage of temporal lobe tauopathy [40].
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Covariate assessment

Covariates were chosen based on prior knowledge on their associations both with liver 

traits and AD risk. All covariates were assessed at the second examination cycle (May 

2008 to March 2011) for the Third Generation and the ninth examination cycle (April 

2011- March 2014) for the Offspring Cohort participants. Serum ALT, AST, platelets, 

HDL and total cholesterol levels were obtained from fasting morning samples using an 

automated Roche method (Roche cobas 501). The HDL to total cholesterol ratio rather 

than the inclusion of each measure separately was used as a covariate to avoid collinearity 

in the regression models and due to the high correlation of the ratio with cardiometabolic 

risk [41]. Alcohol use and smoking status were assessed using physician-administrated 

questionnaires. Participants were considered current smokers if they had smoked at least 

one cigarette per day in the year preceding the FHS examination. Using standard protocols, 

trained technicians measured blood pressure, height, and weight in all participants as has 

been previously reported [42]. Body mass index (BMI) was defined as weight (kg)/height2 

(m2). The physical activity index (PAI) is a composite score of self-reported total physical 

activity, constructed for each participant by weighting each hour in a typical day based 

on their activity level [43]. Diabetes was defined as a fasting plasma glucose ≥126 mg/dL 

or treatment with a hypoglycemic agent or insulin. Hypertension was defined as systolic 

blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or on treatment with an 

antihypertensive agent. Volume of visceral adipose tissue was assessed using a 8-slice supine 

multidetector CT as previously described [44]. Serum C-reactive protein was measured 

using high-sensitivity assay. Cardiovascular disease was considered as present (yes versus 

no) if a person had at least one of the following conditions: cardiovascular death, fatal or 

nonfatal myocardial infarction, stroke, angina pectoris, unstable angina (prolonged ischemic 

episode with documented reversible ST-segment changes), transient ischemic attack, heart 

failure and intermittent claudication.

Statistical analysis

Statistical analysis was performed using SAS version 9.4 between February 25, 2021 

and April 1, 2021. Descriptive statistics were calculated in the total sample and stratified 

by prevalent NAFLD, with values presented as mean and SD, median and interquartile 

range (IQR) or frequency and percent for continuous, skewed continuous, and categorical 

variables, respectively. p-values comparing characteristics between participants with and 

without prevalent NAFLD are presented from a t-test, non-parametric Wilcoxon rank 

sum test, or Chi-square test. Linear regression models were constructed to estimate beta 

coefficients and SE for the association between prevalent NAFLD (exposure) and amyloid 

and tau PET (outcome). Similarly, we assessed liver fibrosis as both a continuous, log-

transformed measure, and as a dichotomous predictor in linear regression models. A FIB-4 

cutoff of 1.3 was chosen because it is an established threshold for which values below it 

indicate the lack of advanced fibrosis in NAFLD patients who are under the age of 65 

years [45, 46]. First, the associations between liver fibrosis and Aβ and tau deposition were 

tested in the total sample. All models were adjusted for age, sex, time between exposure and 

PET, and camera (Model 1). An additional model (Model 2) also adjusted for BMI, alcohol 

consumption, smoking, cardiovascular disease, C-reactive protein, total to HDL cholesterol 

ratio, diabetes, and hypertension. Second, we examined the association between fibrosis 
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and PET in a subsample of individuals with prevalent NAFLD. Due to the small sample 

size of this analysis, only covariates included in model 1 were adjusted for. In all models, 

FLR and inferior temporal amyloid were log transformed due to skewness. As sensitivity 

analyses, we 1) reran the association between fibrosis and PET but excluded subjects with 

missing information on prevalent NAFLD; 2) reran the association of NAFLD and fibrosis 

with PET while additionally adjusting for visceral adipose tissue; and 3) examined the 

relationships between liver fibrosis and Aβ deposition in additional brain regions (i.e., 

caudal anterior cingulate, isthmus cingulate, medial orbitofrontal, posterior cingulate and 

rostral anterior cingulate). The selection of these regions was based on recent evidence 

suggesting that Aβ pathology appears in these regions at early disease stages [47], and all 

were log transformed due to skewness. A p-value below 0.05 was considered statistically 

significant. We also applied correction for multiple testing using the Benjamini-Hochberg 

False Discovery Rate (FDR) procedure [48], which controls for the expected proportion of 

falsely rejected hypotheses. We indicated those considered statistically significant using the 

FDR method (FDR p-value < 0.05) in the table footnotes.

RESULTS

The characteristics of the total study sample (N = 230) and of those who were not included 

in our analyses are presented in Supplementary Table 1, and the characteristics of subgroups 

with NAFLD, fibrosis and both conditions are presented in Supplementary Table 2. The age 

of the participants in the study sample who had information on NAFLD or fibrosis (n = 230) 

was 50 ± 10 years, and 112 (49%) were women. The prevalence of NAFLD was 34% (57 

out of 169). Intermediate or high risk for advanced fibrosis (FIB-4 > 1.3) was present in 19% 

of the total sample with FIB-4 information (34 of 177) and in 17% in those with prevalent 

NAFLD (7 out of 41).

Table 1 presents the characteristics of participants with and without NAFLD. Those 

with NAFLD were more likely to be men and to have diabetes, insulin resistance, and 

hypertension. In addition, compared to individuals without NAFLD, those with NAFLD had 

higher BMI and visceral adipose tissue volume, as well as increased systolic blood pressure 

and higher levels of total and HDL cholesterol, serum C-reactive protein and ALT and AST. 

There were no significant differences in liver fibrosis index between those with and without 

NAFLD (Table 1). Additionally, individuals with intermediate or high risk for advanced 

fibrosis (FIB-4 > 1.3) were older, had lower C-reactive protein levels, and as expected, had 

higher ALT and AST, lower platelets levels and higher fibrosis score compared to those with 

lower risk for advanced fibrosis (Supplementary Table 3).

The association between NAFLD prevalence and PET Aβ and tau

In our sample, there were no differences in Aβ and tau PET deposition between participants 

with and without NAFLD (Table 2).

The association between liver fibrosis and PET Aβ and tau in the general sample

After adjusting for all the study’s covariates, each 1-unit increment in FIB-4 index was 

significantly associated with increased tau deposition in the inferior temporal (β = 0.80 ± 
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0.31; p = 0.01), parahippocampal (β = 0.88 ± 0.32; p = 0.01), entorhinal (β = 0.82 ± 0.35; 

p = 0.02), and rhinal brain regions (β = 1.03 ± 0.33; p = 0.002). The association with 

Rhinal tau remained also after accounting for multiple comparisons (Table 3, Model 2). 

No significant differences were observed when individuals with increased risk for fibrosis 

(FIB-4 > 1.3) were compared with those with lower risk. In a sensitivity analysis restricting 

the sample to participants who had information on NAFLD we found similar findings (n = 

116; Supplementary Table 4). Results were also similar after controlling for visceral adipose 

tissue in addition to previously mentioned covariates (Supplementary Table 5). There was 

no significant relationship between liver fibrosis and Aβ deposition overall and in the 

inferior temporal, parahippocampal and entorhinal regions (Table 3, Supplementary Tables 

4 and 5). In addition, no significant associations were found between liver fibrosis and Aβ 
deposition in the caudal anterior cingulate, isthmus cingulate, medial orbitofrontal, posterior, 

and rostral cingulate regions (Supplementary Table 6).

The association between liver fibrosis and PET Aβ and tau in persons with prevalent 
NAFLD

After adjustment for age, sex, time between assessment of fibrosis and PET and camera, 

increased FIB-4 index was significantly associated with higher levels of amyloid in FLR 

(β = 1.93 ± 0.47; p < 0.001), inferior temporal amyloid (β = 1.59 ± 0.38; p < 0.001), 

parahippocampal regions (β = 1.52 ± 0.54; p = 0.008), and tau in inferior temporal (β = 

2.01 ± 0.47; p < 0.001), parahippocampal (β = 1.60 ± 0.53; p = 0.007), entorhinal (β = 

1.59 ± 0.47; p = 0.003), and rhinal regions (β = 1.60 ± 0.42; p = 0.001) in individuals 

with prevalent NAFLD (Table 4). Similarly, increased Aβ and tau levels were observed in 

individuals with intermediate/high versus low risk for advanced fibrosis (β = 1.33 ± 0.44; 

p = 0.005, β = 1.10 ± 0.36; p = 0.005, β = 2.57 ± 0.56; p < 0.001, β = 1.72 ± 0.70; p = 

0.02, β = 1.97 ± 0.58; p = 0.003, and β = 1.59 ± 0.59; p = 0.01, for FLR amyloid, interior 

temporal amyloid, inferior temporal tau, parahippocampal tau, entorhinal tau and rhinal tau, 

respectively). Visceral adipose tissue volume was strongly correlated with BMI (r = 0.67; 

p < 0.001), and similar results were obtained after further adjustment for visceral adipose 

tissue volume (Supplementary Table 7).

DISCUSSION

Our study explored the association of NAFLD and non-invasive liver fibrosis index with 

Aβ and tau deposition in the brain. We observed no associations between NAFLD and 

brain Aβ and tau. However, in the total sample, high risk for advanced liver fibrosis was 

significantly related to tau deposition in the rhinal brain region. Among individuals with 

NAFLD, advanced liver fibrosis was related to tau pathology in the inferior temporal, 

parahippocampal, entorhinal and rhinal regions as well as to Aβ deposition overall and in the 

inferior temporal and parahippocampal brain regions.

In line with our findings, a recent review of the available evidence for cognitive dysfunction 

in NAFLD concluded that despite insufficient evidence on the link between the whole 

NAFLD spectrum and cognitive dysfunction, simple steatosis may not be an independent 

risk factor for cognitive dysfunction and that a more severe NAFLD, with involvement of 
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fibrosis and hepatitis may be required to affect cognition [13]. This includes a previous study 

from our group, which found no significant association between NAFLD and cognitive 

function, yet risk for advanced liver fibrosis assessed using the NAFLD fibrosis score was 

associated with poorer executive function and abstract reasoning among individuals with 

NAFLD [23]. Findings are also consistent with regard to dementia risk. Indeed, a cohort 

study with histological data demonstrated no association between NAFLD and incident 

dementia, yet, histological indicators of fibrosis improved dementia risk prediction beyond 

that of conventional dementia risk factors [16]. Accordingly, a community-based cohort 

study conducted in Germany found no significant link between NAFLD and all-cause or 

vascular dementia [49], while in the Italian longitudinal study, NAFLD fibrosis score among 

the general population (i.e., not restricted to NAFLD patients) was related to increased 

dementia risk in those who were physically frail. Although the latter studies did not assess 

NAFLD and fibrosis together, they imply that liver fibrosis rather than NAFLD per se is a 

risk factor for dementia. Lastly, few studies exist showing that the presence of white matter 

hyperintensities is associated with the fibrosis severity among patients with NAFLD [50, 

51], which again, consistent with our report, highlights the importance of liver fibrosis to 

brain health.

The pathophysiology of both NAFLD and AD are complex and multi-factorial, and the 

mechanistic links between them are speculative. Moreover, it should be noted that the 

assessment of liver fibrosis in our study is based on a non-invasive score that may 

indicate liver function in general rather than liver fibrosis specifically. Because the liver 

is responsible for activation, clearance, and processing of multiple molecules, there may 

be various mechanisms in which liver dysfunction may affect the brain. For example, liver 

damage may lead to change in cholesterol catabolism through its conversion to primary bile 

acids, which in turn may be linked with increased AD risk, both in animals [52] and humans 

[53].

One major hypothesis for the link between NAFLD and dementia to date was that dementia 

risk in NAFLD is driven primarily by vascular forms. This hypothesis was based on 

studies showing a direct association of NAFLD, and particularly NAFLD with advanced 

fibrosis, with subclinical vascular damage including atherosclerosis, endothelial dysfunction, 

arterial stiffness, vascular calcification [54–56], and cerebral small vessel disease [50, 51]. 

However, recent explorations of AD temporal dynamics suggest that accumulation of Aβ 
and tau precedes cerebral small vessel disease [57, 58]. Thus, the strong link between 

fibrosis and AD pathology in our study may highlight the additional contribution of other 

pathophysiological mechanisms. One possible pathway for the link of liver fibrosis with Aβ 
and tau deposition in our study may be through systemic inflammation, which characterizes 

advanced liver fibrosis in particular [59]. Indeed, a network clustering and pathways 

enrichment pointed to the Interleukin signaling pathway as a key pathway underlying both 

NAFLD and AD [60]. Furthermore, according to preclinical studies, systemic inflammation 

may increase dementia risk not only through elevation in atherosclerosis and cerebral small 

vessel disease [20, 61], but also by triggering neuroinflammation that promotes cerebral 

Aβ accumulation directly [62, 63]. Further support for this hypothesis arrives from the 

Atherosclerosis Risk in Communities (ARIC) - PET Study, which demonstrated a link 

between systemic inflammation and cerebral Aβ deposition, albeit only in specific race and 
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sex groups [64]. Moreover, a recent study among the Alzheimer’s Disease Neuroimaging 

initiative (ADNI) participants with mild cognitive impairment demonstrated an association 

between elevated inflammatory markers and tau, but not Aβ pathology [65]. These results 

are in accordance with the link of liver fibrosis with tau but not Aβ pathology in our 

general sample, and may highlight the importance of inflammation as an underlying 

mechanism. An additional explanation for our findings may be that hepatic dysfunction and 

insulin resistance lead to insufficient Aβ clearance in the blood, possibly through reduced 

expression of Low-density lipoprotein receptor–related protein 1 (LRP1) [66], which in 

turn contributes to brain Aβ accumulation [67]. Lastly, toxic metabolites produced in the 

injured liver may cross the blood brain barrier and lead to Aβ and tau pathology. For 

example, ceramides, bioactive sphingolipids, are activated in the course of NAFLD [68] and 

liver fibrosis [69], and were recently linked with incident AD and Aβ load on PET in the 

Framingham Study [70].

We show that in the general sample (i.e., not restricting to those with NAFLD), higher 

risk of advanced fibrosis is coupled with tau but not with Aβ deposition. Although 

previous studies demonstrated that amyloidosis is required for the subsequent elevation of 

tauopathy [71, 72], recent PET assessments confirm autopsy studies [73] by highlighting 

the contribution of the initial medial temporal tau deposition to AD natural history [40]. 

Specifically, the first signal of tau PET is thought to appear independently of Aβ burden 

in the rhinal cortex, which in our study showed strong association with FIB-4 index. 

Subsequent to the tau deposition in the rhinal cortex, tau is thought to spread to temporal 

neocortex but this stage is dependent on the primary tau accumulation and on global Aβ 
load [40]. Thus, our findings may advance the literature by showing that liver fibrosis is 

linked with early markers of AD, upstream to the development of vascular pathology and Aβ 
aggregation. Furthermore, tau deposition in these brain regions are highly correlated with 

early AD clinical phenotypes [72, 74–76].

Focusing on a subsample with confirmed NAFLD yielded a small sample size and therefore 

limited power to adjust for the whole set of confounders. However, after adjustment for 

age, sex, time between exposure and PET and camera, we found additional associations 

of advanced fibrosis with overall Aβ load as well as in the inferior temporal and 

parahippocampal regions. Due to between-studies heterogeneity in Aβ detection techniques 

(e.g., PET versus autopsy) as well as in population characteristics and study settings, the 

spatiotemporal ordering of Aβ deposition is not fully understood [47]. Yet, recent PET 

studies suggest that Aβ accumulates initially in the medial frontal and cingulate regions [47] 

which, in our sensitivity analysis, were not related to liver fibrosis. In contrast, overall Aβ 
load and its deposition in brain regions that were linked with liver fibrosis in our study 

(e.g., middle temporal) are considered to accumulate in relatively later AD stages [77, 78]. 

However, these accumulations of Aβ may be needed for the observed spread of tau beyond 

the middle temporal lobe to neocortical regions [40, 72].

The inconsistency in results between the general sample and the NAFLD subsample (i.e., 

associations of FIB-4 with tau in the first and with tau and Aβ in the latter) may imply 

that Aβ deposition is influenced by a synergistic effect of liver steatosis and fibrosis. 

Alternatively, the different findings may reflect the differential capacity of the FIB-4 index 
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to non-invasively identify advanced fibrosis in these two samples. Of note, FIB-4 has been 

extensively studied in ethnically diverse NAFLD populations where it showed good ability 

to discriminate advanced versus non-advanced fibrosis [79, 80]. On the other hand, it may 

have limited ability to estimate risk of advanced fibrosis in the general population [81]. In 

addition, the FIB-4 cutoff for advanced fibrosis has been determined among persons with 

NAFLD [45], which is in line with our findings that dichotomous FIB-4 using this cutoff 

is related to AD markers only in the NAFLD subsample. Thus, despite the small sample of 

participants who had both PET and NAFLD information, the significant link between FIB-4 

and both Aβ and tau may more specifically indicate the consequences of advanced liver 

fibrosis.

The strengths of our study include the predominantly middle-aged sample with information 

on Aβ and tau PET imaging, the CT-based ascertainment of NAFLD and the well-

characterized cohort of individuals with a wide variety of metabolic and lifestyle covariates, 

including visceral adipose tissue. We also acknowledge several limitations of our study: 

first, this is a cross-sectional design that does not allow inference on temporal relationship 

between liver conditions and AD pathology. Second, liver fibrosis was assessed using a 

non-invasive index with limited validity compared to liver biopsy as the gold standard, 

and we lacked imaging information such as magnetic resonance elastography or ultrasound 

elastography (i.e., FibroScan) [82]. However, FIB-4 has the advantage of being a simple 

tool composed of routinely collected biochemical variables. Third, we lacked information 

on fibrosis etiology other than NAFLD such as hepatotoxic medications, viral hepatitis, 

autoimmune liver disease, or alcohol abuse (due to underreporting of alcohol consumption). 

A fourth limitation is the restricted external validity of our results as the sample was 

predominantly of European ancestry, from one geographic area and of a relatively high 

socioeconomic status. Lastly, the statistical power was limited due to small number of 

persons in some subgroup analyses, and residual confounding could exist due to incomplete 

adjustment.

In conclusion, our study highlights the importance of liver fibrosis severity to extrahepatic 

health conditions by demonstrating a link between liver fibrosis severity and early stages 

of AD. If validated in other studies, these findings suggest that FIB-4 may improve risk 

stratification models in AD and may help identifying individuals at risk for tau and Aβ 
accumulation, who may benefit from preventive strategies. The public health implications 

of these findings may be particularly significant because liver fibrosis is prevalent and 

yet often underdiagnosed. In addition, liver fibrosis can be managed through lifestyle 

modifications as well as through existing therapeutics and numerous drugs that are currently 

under development [18]. Future investigations are necessary to explore whether therapeutic 

strategies that target liver fibrosis can lead to decreased AD burden and to clarify the 

underlying mechanisms linking liver fibrosis to AD.
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Fig. 1. 
Flow chart of the study sample.
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