
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Intelligent Software in the Era of Deep Learning

Permalink
https://escholarship.org/uc/item/3nr572c0

Author
Wang, Yuke

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nr572c0
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Intelligent Software in the Era of Deep Learning

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy
in

Computer Science

by

Yuke Wang

Committee in charge:

Professor Yufei Ding, Chair
Professor Timothy Sherwood
Professor Tevfik Bultan
Professor Yuan Xie
Doctor Ang Li

June 2024

The Dissertation of Yuke Wang is approved.

Professor Timothy Sherwood

Professor Tevfik Bultan

Professor Yuan Xie

Doctor Ang Li

Professor Yufei Ding, Committee Chair

June 2024

Intelligent Software in the Era of Deep Learning

Copyright © 2024

by

Yuke Wang

iii

To my family, advisor, and colleagues

iv

Acknowledgements

This dissertation wouldn’t be possible without the help from many people. I want to

thank my excellent advisor, Professor Yufei Ding, for her help and encouragement. She

provided much guidance and advice over the years on identifying the essence of problems

and solving technical challenges. She spent numerous hours teaching me how to write

papers and prepare slides. She always encourages me to aim high during hard times.

I would like to thank the rest of my thesis committee members – Professor Tim

Sherwood, Professor Tevfik Bultan, Professor Yuan Xie, and Doctor Ang Li. Their

feedback and advice are essential for completing this dissertation.

I also want to thank Professor Tevfik Bultan, Tim Sherwood, Yuan Xie, Jonathan

Balkind, and Xifeng Yan, who taught me a lot about software engineering, and computer

architecture, and shared their valuable experience from both academia and industry.

I want to thank Dr. Ang Li and Dr. Tong Geng for their insightful suggestions and

discussions for several of our collaborative projects. I am grateful to have Dr. Yuan

Xie for his guidance on my first research internship at Alibaba. I would also thank Dr.

Mehrzad Samadi for bringing me to the exciting world of the genomic processing pipeline

at NVIDIA Parabrick. I want to thank Dr. Michael Garland for helpful discussions at

NVIDIA Research. I want to thank Dr. Saeed Maleki for his support and discussion at

Microsoft Research. I learned a lot from each of them and appreciate their help during

this exciting research and internship journey.

I want to thank my lab mates and friends: Boyuan Feng, Zheng Wang, Hezi Zhang,

Anbang Wu, Guyue Huang, Zhaodong Chen, Gushu Li, and Liu Liu. I enjoy every

moment that we have worked and played together.

Finally, I want to thank my parents for their unconditioned support. Their kindness

and self-motivation set role models for me.

v

Curriculum Vitæ
Yuke Wang

2121 Henley Hall, Phone: (+1) 805-259-9421
Santa Barbara, CA 93106 Email: yuke_wang@cs.ucsb.edu
Homepage: https://wang-yuke.com [Google Scholar][Github][Linkedin]

2018 – Now Ph.D. in Computer Science
University of California, Santa Barbara, USA
Advisor: Dr. Yufei Ding

2014 – 2018 B.E. in Software Engineering
University of Electronic Science and Technology of China, China
Advisor: Dr. Yu Tang

Employment

Summer 2023 Research Intern
Microsoft Research, USA.
Supervisor: Saeed Maleki

Summer 2022 Research Intern
NVIDIA Research, USA.
Supervisor: Michael Garland

Summer 2021 High-Performance Engineering Intern
NVIDIA, USA.
Supervisor: Mehrzad Samadi

Summer 2020 Research Intern
Alibaba DAMO Academy, USA.
Supervisor: Yuan Xie

Areas of Research

Yuke’s research interests include Deep-Learning (DL) Systems, and GPU-
based Parallel and Distributed Computing. His Ph.D. research spans deep
neural networks (DNNs), graph neural networks (GNNs), and deep reinforcement
learning (DRL) and their system-level optimization and acceleration on GPUs. The
ultimate goal of Yuke’s research is to facilitate efficient, scalable, and secure deep
learning in the future.

vi

mailto:yuke_wang@cs.ucsb.edu
https://www.wang-yuke.com/
https://scholar.google.com/citations?user=RL3Q9jUAAAAJ&hl=en&authuser=1
https://github.com/YukeWang96
https://www.linkedin.com/in/yuke-wang/
https://sites.cs.ucsb.edu/~yufeiding/
https://faculty.uestc.edu.cn/TANGYU/en/index.htm
https://www.microsoft.com/en-us/research/people/saemal/
https://research.nvidia.com/person/michael-garland
https://www.linkedin.com/in/mehrzads/
https://seal.ece.ucsb.edu/people/yuan-xie

Efficient DL: GNNAdvisor [OSDI’21], QGTC [PPoPP’22], TC-GNN [ATC’23].
Scalable DL: MGG [OSDI’23], El-Rec [SC’22], RAP [ASPLOS’24].
Secure DL: ZENO [ASPLOS’24], Faith [ATC’22], UAG [AAAI’21].

Publications

Selected

OSDI’23 Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng, Ang Li, Kevin
Barker, Yufei Ding, "MGG: Accelerating Graph Neural Networks with
Fine-grained intra-kernel Communication-Computation Pipelining on
Multi-GPU Platforms", the USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2023.

USENIX
ATC’23

Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, Yufei Ding,
"TC-GNN: Bridging Sparse GNN Computation and Dense Tensor
Cores on GPUs", the USENIX Annual Technical Conference (ATC),
2023.

PPoPP’22 Yuke Wang, Boyuan Feng, Yufei Ding, "QGTC: Accelerating Quan-
tized Graph Neural Networks via GPU Tensor Core", the ACM SIG-
PLAN Symposium on Principles & Practice of Parallel Programming
(PPoPP), 2022.

OSDI’21 Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan
Xie, Yufei Ding, "GNNAdvisor: An Adaptive and Efficient Runtime
System for GNN Acceleration on GPUs", the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2021 .

SC’21 Boyuan Feng∗, Yuke Wang∗, Tong Geng, Ang Li, Yufei Ding,
"APNN-TC: Accelerating Arbitrary-Precision Neural Networks on
Tensor Cores", the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC), 2021. (∗ : equal
contribution)

CCGrid’21 Yuke Wang, Boyuan Feng, Gushu Li, Georgios Tzimpragos, Lei Deng,
Yuan Xie, Yufei Ding, "TiAcc: Triangle-inequality based Hardware
Accelerator for K-means on FPGAs", the IEEE International Sym-
posium on Cluster, Cloud and Internet Computing (CCGrid), 2021.

IPDPS’21 Yuke Wang, Boyuan Feng, Yufei Ding, "DSXplore: Optimizing Con-
volutional Neural Networks via Sliding-Channel Convolutions", the
IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2021.

vii

https://www.usenix.org/system/files/osdi21-wang-yuke.pdf
https://dl.acm.org/doi/abs/10.1145/3503221.3508408
https://www.usenix.org/system/files/atc23-wang-yuke.pdf
https://www.usenix.org/system/files/osdi23-wang-yuke.pdf
https://dl.acm.org/doi/abs/10.5555/3571885.3571978
https://storage.googleapis.com/yuke_profile/asplos24spring-final48.pdf
https://www.usenix.org/system/files/atc22-feng.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16908/16715

TCAD’21 Yuke Wang, Boyuan Feng, Gushu Li, Lei Deng, Yuan Xie, Yufei Ding,
"STPAcc: Structural TI-based Pruning for Accelerating Distance-
related Algorithms on CPU-FPGA Platforms", IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.

CIKM’21 Yuke Wang, Boyuan Feng, Xueqiao Peng, Yufei Ding, "An Effi-
cient Quantitative Approach for Optimizing Convolutional Neural
Network", The ACM Conference on Information and Knowledge
Management (CIKM), 2021 .

ICTAI’20 Boyuan Feng∗, Yuke Wang∗, Xu Li, Shu Yang, Xueqiao Peng, Yufei
Ding, "SGQuant: Squeezing the Last Bit on Graph Neural Networks
with Specialized Quantization", the IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 2020. (∗: equal con-
tribution).

Other

ASPLOS’24 Zheng Wang, Yuke Wang, Jiaqi Deng, Da Zheng, Ang Li, Yufei Ding.
"RAP: Resource-aware Automated GPU Sharing for Multi-GPU Rec-
ommendation Model Training and Input Preprocessing.", ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2024.

ASPLOS’24 Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, Yufei Ding.
"ZENO: A Type-based Optimization Framework for Zero Knowledge
Neural Network Inference", ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2024.

ISCA’23 Hezi Zhang, Anbang Wu, Yuke Wang, Gushu Li, Hassan Shapourian,
Alireza Shabani, Yufei Ding"A Compilation Framework for Photonic
One-Way Quantum Computation. ", International Symposium on
Computer Architecture, 2023.

MLSys’23 Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu, Yufei Ding,
Yuan Xie. "ALCOP: Automatic Load-Compute Pipelining in Deep
Learning Compiler for AI-GPUs.", Sixth Conference on Machine
Learning and Systems, 2023.

USENIX
ATC’22

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng
Wang, Shu Yang, Yuan Xie, Yufei Ding. "Faith: An Efficient Frame-
work for Transformer Verification on GPUs", the USENIX Annual
Technical Conference (ATC), 2021.

viii

SC’22 Zheng Wang, Yuke Wang, Boyuan Feng, Dheevatsa Mudigere,
Bharath Muthiah, Yufei Ding. "EL-Rec: Efficient Large-scale Rec-
ommendation Model Training via Tensor-Train Embedding Table",
the International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC), 2022.

USENIX
ATC’21

Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, Yufei Ding, "Palleon:
A Runtime System for Efficient Video Processing toward Dynamic
Class Skew", the USENIX Annual Technical Conference (ATC), 2021.

PPoPP’21 Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng Zhang, Yuan Xie,
Yufei Ding, "EGEMM-TC: Accelerating Scientific Computing on Ten-
sor Cores with Extended Precision", the ACM SIGPLAN Symposium
on Principles & Practice of Parallel Programming (PPoPP), 2020.

USENIX
ATC’21

Boyuan Feng, Yuke Wang, Gushu Li, Yuan Xie, Yufei Ding, "Palleon:
A Runtime System for Efficient Video Processing toward Dynamic
Class Skew", the USENIX Annual Technical Conference (ATC), 2021.

AAAI’21 Boyuan Feng, Yuke Wang, Yufei Ding, "UAG: Uncertainty-aware At-
tention Graph Neural Network for Defending Adversarial Attacks",
the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI),
2021.

ICASSP’21 Boyuan Feng, Yuke Wang, Yufei Ding, "SAGA: Sparse Adversarial
Attack on EEG-based Brain Computer Interface", IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2021.

ICML’20 Liu Liu, Lei Deng, Zhaodong Chen, Yuke Wang, Shuangchen Li, Jing-
wei Zhang, Yihua Yang, Zhenyu Gu, Xing Hu, Yufei Ding, Yuan Xie,
"Boosting Deep Neural Network Efficiency with Dual-Module Infer-
ence", the International Conference on Machine Learning (ICML),
2020.

Professional Service

[03/2023] Journal of Supercomputing Paper Reviewer

[02/2023] IEEE Transactions on Neural Networks and Learning Systems Re-
viewer

[02/2023] PLDI’23 Artifact Evaluation Committee

[11/2022] ECOOP’23 Artifact Evaluation Committee

ix

[11/2022] PPoPP’23 Artifact Evaluation Committee

[10/2022] CGO’23 Artifact Evaluation Committee

[10/2022] MLSys’23 External Review Committee

[10/2022] IEEE Transactions on Computers Reviewer

[09/2022] USENIX Security’23 Artifact Evaluation Committee

[09/2022] ASPLOS’23 Artifact Evaluation Committee

[08/2022] POPL’23 Artifact Evaluation Committee

[08/2022] ACM Computing Survey Reviewer

[07/2022] MICRO’22 Artifact Evaluation Committee

[06/2022] SIGCOMM’22 Artifact Evaluation Committee

[04/2022] ISSTA’22 Artifact Evaluation Committee

[04/2022] OSDI’22 Artifact Evaluation Committee

[04/2022] USENIX ATC’22 Artifact Evaluation Committee

[01/2022] PLDI’22 Artifact Evaluation Committee

[01/2022] EuroSys’22 Artifact Evaluation Committee

[11/2021] ASPLOS’22 Artifact Evaluation Committee

[10/2021] SOSP’21 Graduate Student Mentor

[10/2021] Artificial Intelligence Review Paper Reviewer

[10/2021] Journal of Supercomputing Paper Reviewer

[08/2021] SOSP’21 Artifact Evaluation Committee

[07/2021] MICRO’21 Artifact Evaluation Committee

[07/2021] SC’21 Artifact Evaluation Committee

[10/2020] AAAI’21 Paper Reviewer Committee

x

Awards

[05/2023] Graduate Division Dissertation Fellowship of UCSB

[07/2022] 2022 USENIX Student Travel Grant for OSDI’22/USENIX ATC’22

[06/2022] 2021-2022 Graduate Student External Award in CS Department of
UCSB

[11/2021] 2022-2023 NVIDIA Graduate Fellowship (Top 10 out of global appli-
cants)

[10/2021] 2021 ACM PACT Student Research Competition (First Prize Win-
ner)

[09/2021] 2021 SIGIR Student Travel Grant

[06/2021] 2020-2021 Outstanding Publication Award in CS Department of
UCSB

[06/2020] 2020 Summer GSR recipient in CS Department of UCSB

[06/2019] 2019 Summer GSR recipient in CS Department of UCSB

[10/2017] Outstanding Graduates Award of UESTC

[10/2017] First-class People’s Scholarship (2/20 in the Elite Program)

[04/2017] Interdisciplinary Contest In Modeling (ICM) [Honorable Mention]

[04/2017] Suzhou Industrial Zone Scholarship (2/20 in the Elite Program)

[10/2016] International Software Testing Qualifications Board (Certified Tester)

[04/2016] First-class People’s Scholarship (4/116)

Teaching Experience

[09/2019] Teaching Assistant of CS160 (Translation of Programming Lan-
guages)

[07/2019] Teaching Assistant of CS8 (Python Programming Language)

[01/2019] Teaching Assistant of CS16 (C++ Programming Language)

xi

Opensource Project

MGG Accelerating Graph Neural Networks with Fine-grained intra-kernel
Communication-Computation Pipelining on Multi-GPU Platforms.
https://github.com/YukeWang96/MGG_OSDI23.git

TC-GNN Bridging Sparse GNN Computation and Dense Tensor Cores on
GPUs.
https://github.com/YukeWang96/TC-GNN_ATC23.git

QGTC Accelerating Quantized GNN via GPU Tensor Core.
https://github.com/YukeWang96/QGTC_PPoPP22.git

GNNAdvisor An Adaptive and Efficient Runtime System for GNN Acceleration on
GPUs.
https://github.com/YukeWang96/GNNAdvisor_OSDI21.git

APNN-TC Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores.
https://github.com/YukeWang96/APNN-TC_SC21.git

DSXplore Convolutional Neural Networks via Sliding-Channel Convolutions.
https://github.com/YukeWang96/DSXplore_IPDPS21.git

Student Mentoring

Xiaoya Zhou Accelerating the Large Language Model through Systemic Optimiza-
tions. (Undergrad at UCSB) [04/2023-Now]

Anshuman
Dash

Automating the Optimization Flow of Graph Neural Networks via
Dynamic Compilation. (Undergrad at UCSB) [09/2022-12/2022]

Qijun Zhang Optimizing the Computation Efficiency of the Large-Scale Deep
Learning via Holistic System Design. (Now as Ph.D. at HKUST)
[06/2022-09/2022]

Xueqiao Peng Optimizing Convolutional Neural Network with Quantitative Ap-
proach. (published at CIKM’21) (Now as Ph.D. at Ohio State Uni-
versity) [06/2020-09/2020]

xii

https://github.com/YukeWang96/MGG_OSDI23.git
https://github.com/YukeWang96/TC-GNN_ATC23.git
https://github.com/YukeWang96/QGTC_PPoPP22.git
https://github.com/YukeWang96/GNNAdvisor_OSDI21.git
https://github.com/YukeWang96/APNN-TC_SC21.git
https://github.com/YukeWang96/DSXplore_IPDPS21.git

Talks

[10/2023] Guest Lecture at the University of Rochester ECE403, hosted by Tong
Geng.

[07/2023] Invited Talk on Graph Learning Acceleration at CUHK and
CityUHK, hosted by Hong Xu and Qiang Su.

[11/2022] Gesture Lecture at NCSU CS591, hosted by Xipeng Shen.

[11/2022] Technical Talk at AWS AI at Santa Clara, hosted by Yida Wang.

[10/2022] SAMPLE Talk at the University of Washington, hosted by Zihao Ye.

[04/2022] NVIDIA GTC’22.

References

Dr. Yufei Ding Dr. Timothy Sherwood
Associate Professor Professor
UC at San Diego UC at Santa Barbara
yufeiding@ucsd.edu sherwood@cs.ucsb.edu

Dr. Tevfik Bultan Dr. Michael Garland
Professor Senior Research Director
UC at Santa Barbara NVIDIA Research
bultan@cs.ucsb.edu mgarland@nvidia.com

Dr. Mehrzad Samadi Dr. Ang Li
Senior Engineering Manager Senior Computer Scientist
NVIDIA Pacific Northwest National Laboratory
msamadi@nvidia.com ang.li@pnnl.gov

xiii

mailto:yufeiding@ucsd.edu
mailto:sherwood@cs.ucsb.edu
mailto:bultan@cs.ucsb.edu
mailto:mgarland@nvidia.com
mailto:msamadi@nvidia.com
mailto:ang.li@pnnl.gov

Intelligent Software in the Era of Deep Learning

By Yuke Wang

With the end of Moore’s Law and the rise of compute- and data-intensive deep learn-

ing (DL) applications, the focus on arduous new processor design has shifted towards a

more effective and agile approach: Intelligent Software to maximize the performance

gains of DL hardware like GPUs. There are several highlights of such intelligent software

design. First, it would maximize the execution efficiency of existing and emerging DL

algorithms on powerful platforms like GPUs. Second, it would promote the adaptive-

ness of systems to handle a diverse range of inputs. Third, it would maintain sufficient

portability and scalability across a diverse range of platforms, such as mobile devices and

high-performance clusters.

In this thesis, I will first highlight the importance of software innovation to bridge

the gap between the increasingly diverse DL applications and the existing powerful DL

hardware platforms. The second part of my thesis will recap my research work on DL

system software innovation, focusing on 1) Precision Mismatch between DL applications

and high-performance GPU units like Tensor Cores (e.g., QGTC [PPoPP ’22] and APNN-

TC [SC ’21]), to improve the efficiency of quantized deep learning on powerful GPU

platforms, and 2) Computing Pattern Mismatch between the sparse and irregular DL

applications, such as Graph Neural Networks, and the dense and regular tailored GPU

computing paradigm (e.g., GNNAdvisor [OSDI ’21] and MGG [OSDI ’23]), to highlight

system adaptability and scalability. Finally, I will conclude this thesis with my vision

and future work for building efficient, scalable, and secure DL systems.

xiv

Contents

Bio v

Abstract xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of My Dissertation . 4

2 QGTC: Accelerating Quantized Graph Neural Networks via GPU Ten-
sor Core 8
2.1 Introduction . 9
2.2 Background and Related Work . 13
2.3 QGTC Algorithm Design . 18
2.4 Implementation . 22
2.5 Integration with PyTorch . 30
2.6 Evaluation . 31

3 GNNAdvisor: An Adaptive and Efficient Runtime System for GNN
Acceleration on GPUs 40
3.1 Introduction . 41
3.2 Background and Related Work . 46
3.3 Input Analysis of GNN Applications . 50
3.4 2D Workload Management . 54
3.5 Specialized Memory Optimization . 59
3.6 Design Optimization . 64
3.7 Evaluation . 65

4 MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-
Kernel Communication-Computation Pipelining on Multi-GPU Plat-
forms 78
4.1 Introduction . 79
4.2 Related Work . 83

xv

4.3 Motivation . 86
4.4 GNN-tailored Pipeline Construction . 89
4.5 GPU-aware Pipeline Mapping . 95
4.6 Intelligent Runtime Design . 100
4.7 Evaluation . 102

5 TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores
on GPUs. 115
5.1 Introduction . 116
5.2 Motivation . 119
5.3 TC-GNN Design . 123
5.4 Evaluation . 133
5.5 Related Work and Discussion . 142

6 DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel
Convolutions 144
6.1 Introduction . 145
6.2 Background and Related Work . 148
6.3 Sliding-Channel Convolution . 152
6.4 Implementation . 157
6.5 Evaluation . 164

7 An Efficient Quantitative Approach for Optimizing Convolutional Neu-
ral Networks. 174
7.1 Introduction . 175
7.2 Related Work . 179
7.3 3D-Receptive Field . 183
7.4 Architecture Optimizer via 3DRF . 189
7.5 Evaluation . 195

8 Conclusions and Future Work 201
8.1 Conclusions . 201
8.2 Future Work . 203

Bibliography 206

xvi

Chapter 1

Introduction

1.1 Motivation

With the prosperity of DL applications, the performance of DL has raised significant

interest. As shown in Figure 1.1, there has been a giant leap in terms of training demands

from the DL algorithms, as highlighted by those popular GPT models for generative AI.

In order to support these intensive AI computations, on the hardware side, CPUs have

achieved minor throughput improvements (1.5×) over recent years. The promising DL

accelerators like GPUs have achieved an evident 15× throughput improvement. Despite

such improvements in hardware like GPUs, there is still a large gap between the DL

algorithm and hardware.

To bridge this gap, my research analysis reveals two fundamental insights. The first

insight is the precision mismatch. As shown in Figure 1.2, on one side, we have DL

and scientific applications that require high data and compute precision, while on the

other side, we have hardware units (e.g., GPU Tensor Cores) that have lower data/com-

pute precision but high performance. Therefore, these high-precision applications can-

not directly benefit from the high-performance units on GPU hardware. In addition to

1

Introduction Chapter 1

/38

The Recent Trend of DL Algorithm and Hardware

2

❖ Recap of DL algorithms and hardware performance scaling.

Huge Potential with GPUs! But it still has a Large Gap!

15x

1.5x

H100

A100
Q8000V100

Xeon Scalable
Xeon 8480+Ryzen 7950x

Xeon Platinum 8180

2023 (year)20222021202020192018

Th
ro

ug
hp

ut
 (T

FL
O

Ps
)

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

GPT-3

GPT-4

GPT-2

GPT-1

17,545x

282x

GPU TFLOPs

CPU TFLOPs

DL Req. TFLOPs (Train in one Week)

Figure 1.1: The trend of deep learning model and hardware compute capability.

/38

Why Underutilization? Precision Mismatch

5

Application

❖ High-Performance GPU units with Limited precision options cannot
support applications with Diverse precision demands.

Low-Precision Data on Tensor Cores

FP16

INT8

INT4

GPU Streaming
Multiprocessors (SM)

High-Precision Scientific Computing.

FP32
Sign Exponent Fraction

Hardware

A

W

A

WWeight

Activation

2-bit 3-bit
Low-Precision Quantized Deep Learning.

Figure 1.2: The illustration of Precision Mismatch in Deep Learning.

these high-precision scientific applications, there are also diverse quantized low-precision

deep learning applications. The precision mismatch could still occur because different

DL applications have varying precision requirements (e.g., one layer might require 2-bit

precision while another layer needs 3-bit precision for weights and activations), while

hardware units can only offer limited precision options (e.g., 4-bit or 8-bit precision).

The second insight is the compute pattern mismatch. As shown in Figure 1.3,

on one side, existing hardware accelerator devices like GPUs are mostly tailored for

2

Introduction Chapter 1

/38

Why Underutilization? Compute Mismatch — Sparsity

GPU

SM-0 SM-1

SM-2 SM-3 SM Fully Active SM

SM Fully Idle SM

❖ Dense and Regular GPUs cannot effectively support applications
with diverse inputs (e.g., sparse and Irregular Graph).

16

12

9

8

Node-id

N
od

e-
id

SM-0 SM-1

SM-2 SM-3

Edges

6

… …

…

…

SM: GPU Multi-Streaming Processor.

Software Innovation is key to promote ML Hardware!

Inefficient Processing
Cross Units

> Trillions of Parallel Threads
Throughput: ~20 TFLOP/s

HBM: ~2 TB/s

Figure 1.3: The illustration of Compute Pattern Mismatch in Deep Learning.

dense computations because those computations are usually easier to optimize. On the

other side, DL applications are now becoming more diverse and could come with Sparse

and Irregular Inputs (e.g., Graphs) that cannot well utilize Dense and Regular GPUs.

One typical example is the sparse matrix multiplication in GNN computation, where

the adjacent matrix of a graph consists of highly scattered edges among different node

pairs. There will be a natural imbalance of edges when we distribute them among several

GPU SMs. Such irregularity of workloads induces GPU hardware underutilization and

sub-optimal performance.

With these two major insights, we would like to highlight my Ph.D. research: Pro-

moting ML Hardware with Intelligent Software. Specifically, my research is com-

posed of three major dimensions, as shown in Figure 1.4. The first dimension defines

the precision of data from diverse DL applications. The second dimension defines the

sparsity of DL application inputs. With these two dimensions defined, my research work

strengthens the individual capability of DL hardware with improved efficiency and adap-

tiveness. Furthermore, to handle the inputs at scale, we introduce the third dimension

for platforms, ranging from single-device to multiple-device collaboration. With the third

dimension, we empower the holistic system design with scalability.

3

Introduction Chapter 1

/42

My Research: Promoting ML Hardware with Intelligent Software

10

Sparsity
Static Sparse Dynamic SparseDense

Platforms

Precision

Single GPU

Multi-GPU

CPU+GPU/
Accelerator

Standard Precision

Quantized Precision

Extended Precision

INT2 INT4

INT32 FP16

FP16 FP16
EGEMM-TC@PPoPP’21

APNN-TC@SC’21

QGTC@PPoPP’22

TC-GNN@USENIX ATC’23

GNNAdvisor@OSDI’21

MGG@OSDI’23

Precision

Sparsity

Scalability

Figure 1.4: The overview of my PhD research.

1.2 Overview of My Dissertation

Prior Research Projects

Today’s GPU-based system is the de facto standard to support DNN computation

with intensive computing and memory demands. However, due to the increasing com-

plexity and diversity of DL algorithms (e.g., DNNs and GNNs), existing DL computing

frameworks may suffer from sub-optimal performance and GPU underutilization, which

is due to the fact that tailored system designs and optimizations could hardly handle

the unique characteristics of diverse DL workloads. My research [1, 2, 3, 4, 5, 6, 7, 8]

tackles this challenge systematically by introducing a holistic runtime system design with

input, algorithm, and hardware awareness. Instead of resorting to fixed hard-coded com-

puting libraries widely adopted in the conventional DL frameworks (e.g., PyTorch and

Tensorflow), we capture essential input features and capitalize on their performance-

related benefits by developing customized kernel runtime and optimization heuristics.

With such new design paradigms, we enjoy the benefits of both inputs and hardware and

4

Introduction Chapter 1

accommodate diverse DL workloads and hardware.

Closing the precision gap with novel algorithm-system co-design. Over the

years, GPUs have evolved to incorporate many more new hardware features, and one

of the most successful ones is the Tensor Cores (TCs). Meanwhile on the algorithm

side, accelerating neural networks with quantization has been widely studied. Unfor-

tunately, prior algorithmic efforts with diverse precision types (e.g., 1-bit weights and

2-bit activations) are usually restricted by limited precision support on GPUs (e.g., 1-bit

and 4-bit). To bridge such a gap, my work, QGTC [4] (PPoPP ’22), introduces the

first TC-based computing framework for quantized mini-batch GNNs, to support any-

bit-width computation on GPUs. QGTC features a novel quantized low-bit arithmetic

design based on low-bit data representation and bit-decomposed computation. QGTC

incorporates a novel TC-tailored CUDA kernel design with 3D-stacked bit compression,

zero-tile jumping, and non-zero tile reuse to improve the performance systematically.

QGTC also integrates an effective bandwidth-optimized subgraph packing strategy to

maximize the transferring efficiency between the CPU host and GPU device. Extensive

experiments demonstrate that QGTC achieves an average 3.17× speedup compared with

the state-of-the-art Deep Graph Library (DGL) framework across diverse settings.

Closing the computing pattern gap with Intelligent Runtime System De-

sign. As the emerging trend of graph-based deep learning, Graph Neural Networks

(GNNs) excel in their capability to generate high-quality node feature vectors (embed-

dings). However, the existing one-size-fits-all GNN implementations are insufficient to

catch up with the evolving GNN architectures, the ever-increasing graph sizes, and the

diverse node embedding dimensionalities. My research GNNAdvisor [3] (OSDI ’21, a

flagship system venue), introduces an intelligent runtime system for boosting the GNN’s

performance on a GPU-based platform. GNNAdvisor combines the input-level (e.g.,

graph and node embedding) and system-level (e.g., GPU kernel design) optimizations to

5

Introduction Chapter 1

improve the GNN performance comprehensively. GNNAdvisor largely reduces the exe-

cution latency by 2×-3× compared with the state-of-the-art GNN frameworks on GPUs,

which can maximize energy efficiency and performance-per-dollar gains when deploying

on cloud-based platforms. This work has been opensourced for benefiting future explo-

ration and has inspired many new designs from industry (e.g., BGL from Bytedance,

SparseTIR from TVM) and academia (e.g., Marius++ from UW-Madison, Point-X from

UMich) in a similar domain since its publication.

To leverage the high-performance GPU Tensor Core units for sparse computation,

my work, TC-GNN [8] (USENIX ATC ’23), bridges the Sparse GNN Computation and

Dense TCs on GPUs Specifically, we introduce a sparse graph translation technique,

which makes the sparse and irregular GNN input graphs easily fit the dense computing

of TCs for acceleration. We build a TC-tailored algorithm and GPU kernel design for

CUDA core and TC collaboration on GPUs to handle different sparse GNN computations.

The increasing size of input graphs for graph neural networks (GNNs) highlights

the demand for using multi-GPU platforms. My research introduces MGG [9] (OSDI

’23), a novel system design to accelerate full-graph GNNs on multi-GPU platforms. The

core of MGG is its novel fine-grained dynamic software pipeline to facilitate fine-grained

computation-communication overlapping within a GPU kernel. Specifically, MGG intro-

duces GNN-tailored pipeline construction and GPU-aware pipeline mapping to facilitate

workload balancing and operation overlapping. MGG also incorporates an intelligent run-

time design with analytical modeling and optimization heuristics to dynamically improve

the GNN execution performance. Extensive evaluation reveals that MGG outperforms

state-of-the-art full-graph GNN systems across various settings: on average 4.41×, 4.81×,

and 10.83× faster than DGL, MGG-UVM, and ROC frameworks, respectively.

Besides the graph neural networks, sparsity also exists in conventional neural net-

works. I introduce, DSXplore [2] (IPDPS ’21), the first optimized design for exploring

6

Introduction Chapter 1

deep separable convolutions on CNNs. Specifically, at the algorithm level, DSXplore

incorporates a novel factorized kernel – sliding-channel convolution (SCC), featuring

input-channel overlapping to balance the accuracy performance and the reduction of

computation and memory cost. SCC also offers enormous space for design exploration

by introducing adjustable kernel parameters. Further, at the implementation level, we

carry out an optimized GPU implementation tailored for SCC by leveraging several key

techniques, such as the input-centric backward design and channel-cyclic optimization.

Intensive experiments on different datasets across mainstream CNNs show the advan-

tages of DSXplore in balancing accuracy and computation/parameter reduction over the

standard convolution and the existing DSCs.

To further reduce model complexity, my work introduces 3D-Receptive Field (3DRF) [6]

(CIKM ’21), an explainable and easy-to-compute metric, to estimate the quality of a

CNN architecture and guide the search process of designs. To validate the effectiveness

of 3DRF, we build a static optimizer to improve the CNN architectures at both the stage

level and the kernel level. Our optimizer not only provides a clear and reproducible pro-

cedure but also mitigates unnecessary training efforts in the architecture search process.

Extensive experiments and studies show that the models generated by our optimizer

achieve up to 5.47% accuracy improvement and up to 65.38% parameters deduction,

compared with state-of-the-art CNN model structures like MobileNet and ResNet.

7

Chapter 2

QGTC: Accelerating Quantized Graph

Neural Networks via GPU Tensor Core

Over the most recent years, quantized graph neural network (QGNN) attracts lots of

research and industry attention due to its high robustness and low computation and

memory overhead. Unfortunately, the performance gains of QGNN have never been re-

alized on modern GPU platforms. To this end, we propose the first Tensor Core (TC)

based computing framework, QGTC 1, to support any-bitwidth computation for QGNNs

on GPUs. We introduce a novel quantized low-bit arithmetic design based on the low-

bit data representation and bit-decomposed computation. We craft a novel TC-tailored

CUDA kernel design by incorporating 3D-stacked bit compression, zero-tile jumping,

and non-zero tile reuse techniques to improve the performance systematically. We in-

corporate an effective bandwidth-optimized subgraph packing strategy to maximize the

transferring efficiency between CPU host and GPU device. We integrate QGTC with Py-

torch for better programmability and extensibility. Extensive experiments demonstrate
1© ACM 2022, Yuke Wang. This work is licensed under a Creative Commons Attribution 4.0

International License. Reprinted from QGTC: Accelerating Quantized Graph Neural Networks via GPU
Tensor Core. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 02/2022.

8

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

FP32 INT32 TC

LD/ST LD/ST LD/ST SFU

Register File

L0 Cache + Warp Scheduler + Dispatch

Sub-Core Sub-Core

Sub-Core Sub-Core

Streaming-Multiprocessor (SM)

FP64

Figure 2.1: GPU Streaming-Multiprocessor (SM) with TC Design. Note that FP64,
FP32, INT32, LD/ST, and SFU are double-precision, single-precision, integer, load/store,
and special function units, respectively.

that QGTC can achieve evident inference speedup (on average 2.7×) compared with the

state-of-the-art DGL framework across diverse settings.

2.1 Introduction

With the popularity surge of the graph neural networks (GNNs) [10, 11, 12], research

around the full-precision GNNs has been widely studied in terms of its algorithms [10, 13]

and execution performance [14, 15, 16] over traditional graph analytical methods, such

as Random Walk [17]. On the other side, quantized GNN [18, 19] (QGNN) recently at-

tracts lots of attention thanks to its negligible accuracy loss, resilience towards malicious

attacks, and significantly lower computations and memory overhead. We summarize sev-

eral key features of GNNs that make them intrinsically suitable for quantization. First ,

the adjacent matrix of GNNs is naturally well-suited for quantization, since we only

need to use 0/1 to indicate the existence of edge connections. Thus, using low bits for

such information can save both memory and computation. Second , the quantization

of weight and node embedding can also be beneficial. Because the tiny precision loss in

quantization can largely be offset by the node information fusion through the iterative

9

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

neighbor aggregation process of GNNs. The quantization of floating-point numbers can

absorb input perturbations from adversarial attacks.

Despite such great theoretical success of QGNN, the realization of such benefits on

high-performance GPUs is still facing tremendous challenges. Existing GPU-based GNN

frameworks [16, 15, 3] are designed and tailored for GPU CUDA cores, which are intrin-

sically bounded by its peak throughput performance and can only handle the byte-based

data types (e.g., int32). Although quantized computation can be achieved via pure al-

gorithmic emulation, the actual bit-level performance gains could hardly be harvested,

since all underlying arithmetic operations still have to rely on those well-defined data

types from CUDA/C++ libraries.

To tackle these challenges, we decide to move forward with the recent GPU hardware

feature – Tensor Core (TC). The modern NVIDIA GPU with TC design is illustrated

in Figure 2.1. TC provides the native support of bit-level operations (XOR, AND), which

could be the major ingredient for quantized computation. Besides, TC can easily beat

CUDA core with a significantly higher throughput performance (more than 10×) on

conventional NN operations (e.g., linear transformation and convolution). This demon-

strates the potential of using TC in accelerating QGNNs. However, directly using TC

for QGNN computation is encountering several challenges. First , the current TC can

only support limited choices of bitwidth (e.g., 1-bit and 4-bit), which may not be able

to meet the demands of users for any-bitwidth (e.g., 2-bit) computation. Second , TC

initially tailored for GEMM computation may not directly fit the context of sparse GNN

computation. A huge amount of computation and memory access efforts would be wasted

on those non-existed edges. This is because the hard constraint of TC input matrix tile-

size (e.g., 8×128 for 1-bit GEMM) has to be satisfied, which may require excessive zero

paddings. Third , the low-bit computation would cause the compatibility issue, since the

existing deep-learning frameworks [20, 21] cannot directly operate on the low-bit data.

10

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

METIS
Graph

Partitioning

QGTC Algorithm
Design

Low-bit Data
Representation

Bit-decomposed
Computation

QGTC System-level
Design and Optimizations

Non-zero Tile
Reuse

Bandwidth-opt.
Subgraph
Packing

3D-Stacked Bit
Compression

Pytorch Framework Integration

Subgraph
Partitioning and

Batching

Zero-Tile
Jumping

CPU (Host) GPU (Tensor Core + CUDA Core)

Inter-Layer
Kernel Fusion

Figure 2.2: QGTC Overview.

Therefore, we remark there are several aspects to be considered in order to use

TC for QGNNs: 1) Hardware-level Support . This inspires us to explore the high-

performance GPU hardware features that can efficiently support the QGNN computa-

tion. Even though it is hard to find such a GPU hardware feature that can directly sup-

port any-bitwidth QGNN, some indirect hardware features would potentially be helpful.

For example, NVIDIA introduced the 1-bit TC-based GEMM on Turing Architecture,

which essentially can be used to composite any-bitwidth GEMM. 2) Software-level

Optimizations . This motivates us to optimize the kernel computation according to

the characters of QGNN. GNN computation is featured with a highly sparse and ir-

regular scheme. It is intrinsically not favorable for the dense GPU computation flow

tailored for the traditional NN operators. Thus, how to handle such input-level irreg-

ularity from the computation and memory perspectives is essential to the performance

of QGNN. For example, subgraph partitioning [22] based mini-batch GNN computation

has been used to increase the computation efficiency without compromising model accu-

racy performance. 3) Framework-level Integration . This encourages us to bridge the

gap between quantized low-bit implementations and deep-learning frameworks built for

full-precision computation. Therefore, our whole system-level design can be seamlessly

integrated with the state-of-the-art mainstream NN frameworks to benefit the execution

11

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

performance and the developing productivity.

To this end, we introduce QGTC2, the first framework (Figure 2.2) to support any-

bitwidth QGNN on GPU TC.

At the input level, we incorporate the METIS [22] graph partitioning to generate a

set of dense subgraphs from the highly irregular and sparse input graphs. The insight here

is that nodes in real-world graphs are likely to form clusters, and such information can

be used to benefit the efficiency of GNN computing and model algorithmic performance.

At the algorithm level, we leverage the insight that any-bitwidth QGNN compu-

tation can always be decomposed into the 1-bit computation. Each bit in the output can

be generated by different combinations of bits from the input. Thus, we use quantized

low-bit data representation and bit-decomposed computation base on the “atomic” 1-bit

type.

At the GPU kernel level, we craft a low-bit computation design tailored for QGNN

computation on batched dense subgraphs. We address the key performance bottleneck

of the low-bit GNN computing from the memory and computing perspectives. Specifi-

cally, we use only 1-bit binarized representation for the subgraph adjacent matrix, which

is memory efficient for representing the presence/absence of edge connections between

nodes. Besides, we use a 3D-stacked bit-compression technique for maintaining quan-

tized low-bit node embedding features and weights. In addition, we fully exploit the

intra-subgraph sparsity through zero-tile skipping and non-zero tile reuse, which can

further avoid unnecessary computations and improve the data locality.

At the framework level, we integrate QGTC with the state-of-the-art Tensor-based

PyTorch framework. We introduce the new notion of bit-Tensor data type and bit-Tensor

computation and warp them up as a new set of PyTorch API extensions. End-users can

directly interact with the QGTC PyTorch APIs to access all functionalities. This largely
2QGTC is open-sourced at github.com/YukeWang96/PPoPP22_QGTC.git

12

github.com/YukeWang96/PPoPP22_QGTC.git

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

improves the programmability and extensibility.

Overall, we summarize our key contributions as:

•••• We propose a novel 1-bit composition technique for any-bitwidth arithmetic design,

which can support QGNN with diverse precision demands.

• We introduce a highly efficient implementation of QGNN built on top of the GPU

Tensor Core by applying a series of computation optimizations (e.g., subgraph

partitioning and batching, and zero-tile jumping) and memory optimizations. (e.g.,

3D-stacked bit-compression and non-zero tile reuse).

• We integrate QGTC with PyTorch by introducing bit-Tensor data type and bit-

Tensor computation for better programmability and extensibility.

• Extensive experiments demonstrate the advantages of QGTC in terms of better

performance compared with the state-of-the-art DGL framework on mainstream

GNN models across various datasets.

2.2 Background and Related Work

In this section, we will introduce the background of GNNs, the quantization of GNNs,

and basics of GPU Tensor Core.

2.2.1 Graph Neural Networks

Graph neural network (GNN) is an effective tool for graph-based machine learning.

The detailed computing flow of GNNs is illustrated in Figure 3.2. GNNs basically com-

pute the node feature vector (embedding) for node v at layer k+1 based on the embedding

13

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

information at layer k (k ≥ 0), as shown in Equation 4.1,

a(k+1)
v = Aggregate(k+1)(h(k)u |u ∈ N(v) ∪ h(k)v)

h(k+1)
v = Update(k+1)(a(k+1)

v)

(2.1)

where h
(k)
v is the embedding vector for node v at layer k; a(k+1)

v is the aggregation results

through collecting neighbors’ information (e.g., node embeddings); N(v) is the neighbor

set of node v. The aggregation method and the order of aggregation and update could

vary across different GNNs. Some methods [10, 12] just rely on the neighboring nodes

while others [11] also leverage the edge properties that are computed by applying vector

dot-product between source and destination node embeddings. The update function is

generally composed of standard NN operations, such as a single fully connected layer or

a multi-layer perceptron (MLP) in the form of w ·a(k+1)
v +b, where w and b are the weight

and bias parameter, respectively. The common choices for node embedding dimensions

are 16, 64, and 128, and the embedding dimension may change across different layers.

The most recent advancement of GNN is its batched computation [23], which has

also been adopted by many state-of-the-art GNN computing frameworks [15, 16] for

large graphs that cannot be easily fit into the GPU/CPU memory for computation di-

rectly. Batched GNN computation has been highlighted with good accuracy and runtime

performance [23] in comparison with full-graph computation. Batched GNN compu-

tation takes several steps. First , it decomposed the input graphs by employing the

state-of-the-art graph partitioning toolset, such as METIS [22], which can minimize the

graph structural information loss meanwhile maximizing the number of edge connections

within each subgraph (i.e., improving the subgraph modularity). Second , it feeds the

small subgraphs into the GNN models for computation, which will generate the node

feature vector for each subgraph. Third, the generated node embeddings can be used

14

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

B

C

E

D

...

Layer-1 ReLU Layer-N Softmax

F G

+

Layer-2 ReLU

A
A

...
B C D E

......
FD E G

+

...

Neighbor
Aggregation

Node Update

Figure 2.3: GNN General Computation Flow.

in multiple downstream tasks, such as node/graph classification, link prediction, and

community detection [24, 25, 17, 26].

2.2.2 Quantization of GNNs

Besides the research efforts on full-precision GNNs, the recent focus also shifted to-

wards the quantized GNNs. For example, Boyuan et al. [18] propose the first framework

for running quantized GNNs, and several types of quantization schemes can be applied

on GNNs (e.g., the quantization based on the GNN layer, node degrees, and the edge

weights). And their experimental results also demonstrate the effectiveness of the GNN

quantization in terms of memory saving and model accuracy. Shyam et al. [19] introduce

an architecturally agnostic and stable method, Degree Quant, to improve performance

over existing quantization-aware training baselines commonly used on other architectures

(e.g., CNNs). They achieve up to 4.7× speedups on CPU when using int8 compared with

float. Compared with the full-precision GNNs, low-bit GNNs bring the benefit of model

robustness towards the adversarial attacks and the low computation and memory over-

heads. However, work from [18] only showcases the theoretical memory and computation

benefits via software-level quantization simulation, where its underlying computation is

still carried out in 32-bit full-precision float. Work from [19] only demonstrates such

gains on CPUs, which has limited applicability in the real-world GNN computation set-

15

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

tings. This encourages us to harvest its real performance benefits on the modern widely

used GPU platforms.

2.2.3 Tensor Core on GPUs

The recent advancement of GPU hardware technology has pushed computing power

to a new level. Among those innovations, the most significant one is the Tensor Core

(TC) on NVIDIA GPU. Different from scalar-scalar computation on CUDA Cores, TC

provides a matrix-matrix compute primitive, which can deliver more than 10× higher

computation throughput. The initial version of TC is designed for handling the GEMM

with half-precision input and full-precision output. More variants (e.g., int8, int4, and

int1 inputs with 32-bit unsigned integer (uint32) output) have been introduced since

the recent CUDA release (11.0) and newer GPU microarchitectures (e.g., Turing and

Ampere).

In particular, TC supports the compute primitive of D = A×B+C, where matrix

tile A and B are required to be a certain type of precision (e.g., 1-bit), while matrix

tile C and D use uint32. Depending on the input data precision and the version of

GPU microarchitecture, the matrix tile size of A(M ×K), B(K × N), and C(M × N)

may have different choices. For example, 1-bit TC computing requires M = N = 8 and

K = 128. Different from the CUDA Cores which requires users to define the execution

flow of each thread (i.e., work of individual threads). TC requires the collaboration of a

warp of threads (32 threads) (i.e., work of individual warps). This can be reflected in two

ways. First , before calling TC for computation, all registers of a warp of threads need to

collaboratively store the matrix tile into a new memory hierarchy (called Fragment [27]),

which allows data sharing across registers. This intra-warp sharing provides opportuni-

ties for fragment-based memory optimizations. Second , during the computation, these

16

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Listing 2.1: Basic WMMA APIs for TCU in CUDA C.
1 // define the register fragment for matrix A (1-bit).
2 wmma::fragment<matrix_a, M, N, K, b1, row_major> a_frag;
3 // load a tile of matrix A to register fragment.
4 wmma::load_matrix_sync(a_frag, A, M);
5 // matrix-matrix multiplication (1-bit x 1-bit -> 32-bit)
6 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
7 // store the C matrix tile from register to matrix C.
8 wmma::store_matrix_sync(C, c_frag, N, mem_row_major);

loaded matrix fragments will be taken as the TC input to generate the output fragment,

which also consists of the registers from each thread in a warp. Data movements among

these registers are also managed by a warp of threads collaboratively.

Prior research efforts have been devoted to accelerating high-performance computing

workloads with TC. Ahmad et al. [28] process the batched small-size GEMM on TC for

acceleration. Ang and Simon [29] leverage 1-bit GEMM capability on Turing GPU TC

for accelerating binary neural network inference. Dakkak et al. [30] accelerates the half-

precision scan on TC by transforming the scan to a GEMM. Boyuan et al. [31] introduce

GEMM-based scientific computing on TC with extended precision. QGTC enlarges the

application range of TC by accelerating GNNs for any-bitwidth quantized GNN compu-

tation, which is not directly covered by any existing research, any release of cuBLAS [32],

or CUTLASS [33] library, and GPU TC hardware.

TC can be used in several ways. The simplest one is to call cuBLAS [32] cublasSgemmEX

API. However, cuBLAS API only supports computation on the most common fixed bit-

width on TC, such as 8-bit, half-precision (16-bit), thus, it cannot support any bitwidth

precision directly. The second way is to call the Warp Matrix Multiply-Accumulate

(WMMA) (nvcuda::wmma) API [34] in CUDA C++ to operate TC directly. There are

basically four types of operations (Listing 4.1). In this project, we follow the second

way for more low-level implementation customization for batched GNN computation.

17

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Because it can offer more design/implementation flexibility for compositing arbitrary-

bit computation and ease the optimization (e.g., data loading and reuse) for batched

GNN-specific workloads at the GPU kernel.

2.3 QGTC Algorithm Design

In this section, we first introduce the basics of low-bit computation. Then we will

discuss our TC-tailored algorithm design for quantized GNN.

2.3.1 1-bit Composition for Quantized Ops.

Over the last few years, quantized deep neural networks (QDNNs) [18, 19] have been

extensively studied, largely due to their memory saving and high computation perfor-

mance. In GNN, however, similar work is largely lagging behind. Work from [18] demon-

strates that GNN is actually insensitive to quantization, even very low-bit quantization

would not lead to evident accuracy loss because of the graph-like aggregation operations

that can amortize such quantization influence. Another work from [35] also demonstrates

that even the binarized GNN would be beneficial in some application scenarios. In this

work, we foresee that the support for any-bitwidth precision computation on GNN is

vital to satisfy various users’ demands (e.g., execution time).

Given a quantization bit q and the 32-bit floating-point value α ∈ R, we quantize it

as a q-bit value by using

α(q) =

⌊
α− αmin

scale

⌋
. (2.2)

where αmin is an empirical lower bound that can be determined by users or application

settings; scale is the ratio between the range (|αmax − αmin|, where αmax is an empirical

upper bound) and the q-bit representation range (2q); ⌊·⌋ is the floor function.

18

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

For any-bitwidth computation on quantized values, we propose a new type of arith-

metics based on the “atomic” 1-bit computation widely used in the binarized NN [36].

Any-bitwidth Scalar-Scalar Multiplication: Assuming we have a 3-bit scalar

value (a) and multiply it with a 2-bit scalar value (b). we can first represent these two

values as
a = at2 · 22 + at1 · 21 + at0 · 20

b = bt1 · 21 + bt0 · 20
(2.3)

where at∗ and bt∗ indicate the bit value (0/1) at the certain bit position after bit decom-

position. By following the general rule of multiplication, we can get a · b as

a · b = (at2 · 22 + at1 · 21 + at0 · 20)(bt1 · 21 + bt0 · 20) (2.4)

through simplification we can get that

a · b = at2bt1 · 23 + (at1bt1 + at2bt0) · 22

+(at0bt1 + at1bt0) · 21 + at0bt0 · 20
(2.5)

Any-bitwidth Vector-Vector Multiplication: We extend the any-bitwidth scalar-

scalar computation towards any-bitwidth vector-vector computation between a 3-bit vec-

tor −→vi and 2-bit vector −→vj , each of which has k elements. Therefore, the above scalar-

scalar multiplication formula can be extended to k-dimension vector-vector multiplication

−→vi · −→vj =
k∑
y

a(y) · b(y) =
k∑
y

at
(y)
2 bt

(y)
1 · 23

+
k∑
y

(at
(y)
1 bt

(y)
1 + at

(y)
2 bt

(y)
0) · 22

+
k∑
y

(at
(y)
0 bt

(y)
1 + at

(y)
1 bt

(y)
0) · 21 +

k∑
y

at
(y)
0 bt

(y)
0 · 20

(2.6)

From the above formula, we can see that in order to compute the result of any-bitwidth

19

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

vector-vector multiplication, we first do bit decomposition on all elements in each vector

then do bit-bit multiplication between elements from each vector, and finally do bit

shifting and reduction to get the final result. For example, after bit-decomposition of −→vi

and −→vj , we can get −→vi at bit position 2 as at
(y)
2 and −→vj at bit position 1 as bt

(y)
1 , where

y ∈ [0, k). From the multiplication and addition, we can get the multiplication result

of −→vi · −→vj at bit position 3. Such a 1-bit vector-vector multiplication can be effectively

implemented as

ansi,j = popcnt(−→vi&−→vj) (2.7)

where popcnt() counts the total number of 1s of the result in its bit representation (e.g.,

popcnt will return 3 for a binary number 1011). A similar procedure can be applied to

generate the result at bit position 0, 1, and 2. After all these individual bits in temporary

results are ready, we can do bit shifting and reduction to get the final result. Based on

such any-bitwidth vector-vector results, we can easily derive the any-bit matrix-matrix

multiplication scheme, where each element in the output matrix can be seen as the results

of any-bitwidth vector-vector multiplication.

2.3.2 Quantized Computation in GNNs

Applying any-bitwidth precision computation in GNNs would find two major special-

ties. First, the adjacent matrix (A) of GNNs only needs to use binary (1-bit) numbers

to represent the presence/absence of edges. Second, the node embedding matrix (X)

and the weight matrix (W) can be represented with any bitwidth to meet the different

precision demands.

As described in Algorithm 1, each layer of any-bitwidth GNN consists of a neigh-

bor aggregation and a node embedding update phase. Specifically, neighbor aggregation

conducts X_new = A ·X through a 1-bit-and-s-bit matrix multiplication and the node

20

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Algorithm 1 1-layer Quantized GNN Computation.
Require: Full-bit adjacent matrix A (N ×N), node embedding matrix X (N ×D), and

weight matrix W (N ×H).
Ensure: Updated full-bit node embedding matrix X̂ (N ×H).
Abin = bitDecompse(A, 1)[0]
X_list = bitDecompse(X, s)
W_list = bitDecompse(W, t)
X_new_list = list(); C_dict = dict(); X̂ = zeros_as(X)
for xIdx in len(X_list) do
X_new_list.append(BMM(Abin, X_list[xIdx]))

end for
for xIdx in len(X_new_list) do

for wIdx in len(W_new_list) do
bitIdx = xIdx+ wIdx
tmp_C = BMM(X_new_list[xIdx], W_list[wIdx])
C_dict[bitIdx].append(tmp_C)

end for
end for
for bitIdx in len(C_dict) do

for Idx in len(C_dict[bitIdx]) do
X̂[Idx] += C_dict[bitIdx][Idx] ≪ bitIdx

end for
end for

update conducts X̂ = X_new · W through a s-bit-and-t-bit matrix multiplication. At

Line 1 to 3, we do bitDecompose for subgraph adjacency matrix A, embedding matrix

X, and weight matrix W. For scalar int32 numbers, our bitDecompose will first quan-

tize it to another int32 number in a n-bit data range [0, 2n − 1] by using Equation 2.2.

Then, it applies bit-shifting to extract each bit (0/1) from the quantized int32 number.

Our 3D stacked bit compression (Section 2.4.2) happens after the above first and second

steps are applied to each element of a matrix, and it will pack the extracted bits for the

whole matrix together. Here for ease of algorithm description, we maintain different bits

of a matrix as the list, e.g., X[1] stands for the 0’s bits for all elements inside the X.

At Line 5 to 7, we apply bit-matrix multiplication between each bit matrix from X and

the binary 1-bit matrix Abin, the results of this step will still be a set of bit matrices

21

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

and be stored in a list. At Line 8 to 14, we apply the similar bit-matrix multiplication

between X and W, and the results of this step will be stored as bit-matrix as well for the

following final-result generation. To avoid any data overflow during the reduction (Line

15 to 19), X̂ should also use a full-bit data type (e.g., int32). For large graphs, their

adjacent matrices cannot be easily fit into the GPU device memory directly. In this sce-

nario, we employ METIS [22] for graph partitioning and run GNN as batched subgraph

computation, which is used by the most popular cluster-GCN [23] design. Considering

that the number of subgraphs generated by METIS [22] is usually within the reasonable

size (2,000 to 20,000), such a batched GNN computation can be accommodated on a

single modern GPU without violating its memory constraints. Note that to reduce the

runtime overhead, the bit-decomposition of the matrix W and A can be pre-computed

and cached before the GNN computation at each layer. The major reason behind this is

that across different GNN layers of the same subgraphs, the adjacent matrix A can be

reused. On the other side, across different subgraphs at the same GNN layers, the weight

matrix W can be reused for the later-on computation.

2.4 Implementation

2.4.1 Subgraph Partitioning and Batching

Real-world graphs usually come with a large number of nodes and highly irregular

graph structure (edge connections). This brings two levels of difficulties for GNN com-

puting. The first one is the memory consumption, since GPU device memory cannot

accommodate all nodes, edges, and node embedding features at the same time. The

second one is the inefficient execution since the irregular and sparse edge connections

lead to low memory access efficiency and poor computation performance. To this end,

22

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

in QGTC, we combine the state-of-the-art graph partitioning technique METIS [22] and

subgraph batch processing [23] to handle different sizes of input graphs effectively. Com-

pared with other solutions, such as graph clustering approaches [37, 38] and BFS-based

methods [39], METIS achieves a better quality of its captured subgraph partitions (more

edges in each subgraph) and the significantly higher runtime performance owing to its

partial parallelization. Note that the number of subgraphs/partitions is determined by

users and is passed as a runtime parameter to METIS.

After the subgraph partitioning, we will conduct a batching step for GNN compu-

tation on GPUs. This step gathers a set of subgraph partitions based on user-defined

batch size. Later, during the GNN computing, subgraphs are loaded to GPU mem-

ory by batch. Using the partitioning and batching strategy for GNN computing gives

users control of workloads at two levels of granularity. First , the workload granularity

is defined by the number of subgraphs/partitions. This would manage the size of each

subgraph partition and the edge connection density of each subgraph. In general, the

more number of the subgraphs/partitions would lead to denser edges connections within

each subgraph, which may bring better computation and memory locality. Second , the

processing granularity is controlled by the batch size. This would determine the size of

graphs that will be fit into the GPU at each round of execution. The selection of batch

size would maximize the utilization of the GPU while respecting the GPU computation

and memory resource constraints.

2.4.2 3D-Stacked Bit Compression

Existing NN frameworks are developed for full-precision computation, which leads

to two major challenges: First , the low-bit quantized data type cannot directly borrow

the full-precision data type as the “vehicle” for computation. The major reason is that

the full precision data type such as float and int32 cannot bring any benefits to the
23

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

memory or computation saving. Second , low-bit quantization would not fit any type

of bit alignment, since its bit-level boundary mostly cannot be divisible by the size of a

byte (8-bit), making it hard to retrieve its actual value.

To this end, we propose a novel 3D-stacked bit-compression technique to handle any-

bitwidth data type effectively. The major idea is to compress any-bitwidth input with

32-bit alignment for ease of value retrieval and memory alignment. As exemplified in Fig-

ure 2.4(a), we have an input matrix with the shape of 3-bit×M ×K. For each bit of the

element in the matrix, we store it in a bit matrix (1-bit×M×K) stacked along the vertical

z axis. During the computation of any-bitwidth matrix multiplication C = A×B, two

types of 3D-stacked bit-compression are employed. For matrix A, we use the column-wise

compression with 32-bit alignment, as illustrated in Figure 2.4(b). The main reason for

choosing column-wise compression is that the matrix multiplication would benefit from

coalesced across-column memory access along each row of the matrix A. 32-bit alignment

can benefit the read performance by coalesced loading from the global memory to frag-

ment. After the compression on matrix A (1-bit×M×K), we will get a 32-bit compressed

3-bit Ac with the shape of 3-bit×(PAD8(M)× ⌊PAD128(K)/32⌋), where PAD8 and

PAD128 are for padding rows/columns that cannot be divisible by the basic TC com-

puting size (M(8)×N(8)×K(128)). For matrix B, we use the row-wise compression with

32-bit alignment, as shown in Figure 2.4(c) which can benefit the across-row access along

each column of matrix B. After the compression on matrix B (1-bit×M×K), we will get

a 32-bit compressed 2-bit Bc with the shape of 2-bit×⌊PAD128(K)/32⌋ × PAD8(N)

for the output layer. Note that if the A × B is the hidden layer of a GNN model, the

padding strategy on matrix B would be slightly different considering that the result ma-

trix C will become a new matrix A in the next layer which demands 128-bit padding. In

this case, to avoid additional padding overhead, we will get the 2-bit Bc with the shape

of 2-bit×⌊PAD128(K)/32⌋ ×PAD128(N).

24

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

01001...1 01111...1 00011...1
01101...1 01001...1 00001...1
01010...0 01011...1 01001...1

32-bit (int32)

00001...1 01001...1 01111...1

...

01001...1
01001...1

01101...1
01011...1

01010...0
10001...1

00001...1
01000...1

01001...1
01001...1

01101...1
01011...1

01010...0
10001...1

00001...1
01000...1

...

32-bit (int32)

(b) Column-wise
Compression.

(c) Row-wise
 Compression.

01001...101111...1
01001...101111...1

01001...101111...1
01001...101111...1

01001...101111...1
01001...101111...1

01001...101111...1
01001...101111...1

01001...101111...1
01001...101111...1

01001...101111...1
01001...101111...1

z-axis (bit)

1st-bit
2nd-bit
3rd-bit

M

x-axis (width)

y-axis (height)

K
(a) 3-bit Input Matrix.

Figure 2.4: 3D-Stacked Bit Compression. Note that every 32 bits are compressed and
stored in little-endian.

Compared with the previous work [40] that also leverages bit-level data packing,

there are several differences. The first one is the padding strategy. Padding of QGTC on

different tensor dimensions could be different, where bit-level padding is ignored in the

work from [40]. For example, QGTC may PAD8 or PAD128, depending on the following

computation is carried out in low-bit or 32-bit format, thereby, avoiding unnecessary

conversion. The second one is the packing datatype. Work from [40] uses uint4 for

packing continuous 128 bits, while QGTC uses a 32-bit format for better interoperability

with PyTorch. The third one is the bit-level layout. Work from [40] doesn’t consider

more bit-level layout optimization. In QGTC, for GEMM operation (C = AX), we use

a column-wise compression for the matrix A and a row-wise compression for X.

2.4.3 Zero-tile Jumping

Even though the subgraph partitioning such as METIS [22] makes the subgraph

denser (more number of edge connections within each subgraph), there are still some

TC tiles (i.e., the input matrix tile for a single TC computation) that are filled with

all-zero elements. Therefore, directly iterating through these zero tiles would introduce

the cost of unnecessary memory (loading data from the global memory to thread-local

25

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

32-bit (int32)

if (threadidx.x < 8) {tmp = *(uint4*) global_addr;
val = tmp.x[0] | tmp.x[1] | tmp.x[2] | tmp.x[3]; }

s = __ballot_sync(0x000000FF, val > 0)
s > 0

if (threadidx.x < 8) { tmp = *(uint4*) global_addr;
val = tmp.x[0] | tmp.x[1] | tmp.x[2] | tmp.x[3]; }

s = __ballot_sync(0xFFFFFFFF, val > 0)
s = 0

Subgraph
Adjacent Matrix

1-bit TC-Tile
 (8x128 bit)

128-bit

8-
bi

t

Jump
Zero Tile

Keep
Non-zero Tile

Figure 2.5: Zero-tile Jumping. Note that each small grey square box (on the left side)
indicates an edge connection between two nodes within a graph. Each grey rectangular
box (on the right side) indicates at least one of its 32 consecutive small square boxes is
grey (the presence of an edge).

registers) and computation (processing 1-bit TC-GEMM on input adjacent matrix tile

that contains all-zero elements). Based on this observation, we introduce a novel zero-

tile jumping technique to reduce unnecessary computations by bitwise OR operations and

warp-level synchronization primitives.

As illustrated in Figure 2.5, each 1-bit TC-GEMM would work on the tile size of

8 × 128 register fragment. This can be well partitioned into 8 × 4 int32 elements. To

check whether the 8× 128 tile contains all-zero elements, we first employ only 8 threads

from a warp of threads to fetch an uint4_v vector data (each uint4_v element in CUDA

consists of 4 int32 elements placed in continuous memory address). The reason for using

uint4_v is to maximize the memory access efficiency by issuing fewer global memory

requests. Once all uint4_v elements have been loaded. Each thread will apply bitwise

OR across all 4 int32 elements, which will check whether each row of a TC-tile is all-zero.

The next step is to tell whether the whole tile is all-zeros across different rows, we will

use the warp-level primitive to sync the information across these 8 active threads in the

26

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

warp. This step will generate an int32 number. If this number is zero, it will indicate

all elements in this input TC-tile are zero. Otherwise, we still need to conduct the 1-bit

TC-GEMM on the current tile. We will give a more quantitative analysis of such zero-tile

jumping in Section 5.4.3.

2.4.4 Non-Zero Tile Reuse

In addition to jumping over the zero tiles, we further consider reusing the non-zero

tiles to improve data locality. In the aggregation step of the GNN computation, we

generate the output feature map at different bit-level separately. For example, when

we choose 1-bit adjacent subgraph matrix and a 4-bit feature embedding matrix, we will

execute the iteration 4 times to generate the output. One straightforward solution, called

cross-bit reduction, is to generate the complete output matrix tile at each bit level first.

This requires loading the matrix tile imperatively, as shown in Figure 2.6(a). However,

this would cause one problem that each non-zero tile from the adjacent matrix will be

repetitively loaded when computing with each bit matrix from the embedding matrix.

In fact, we can consider reordering the steps in a way that we can maximize the benefit

of each non-zero tile of the subgraph adjacency matrix. As shown in Figure 2.6(b), we

introduce a cross-tile reduction strategy. Specifically, for each loaded non-zero fragment,

we will use it to generate an output tile at all bit levels and do a localized reduction

(only on the current tile) to generate a partial aggregation result. Once this part has

been done, we will move forward to the next non-zero tile and repeat the same process

until all non-zero tiles have been processed. The complexity of loading the nonzero tiles

can be reduced from O(n) to O(1), where n is the number of bits for node embeddings.

27

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Part.
Acc.

Part.
Acc.

1-bit
adj. Tile

1st-bit
feat. Tile
2nd-bit

feat. Tile
3rd-bit

feat. Tile

1st-bit
adj. Tile
1st-bit

feat. Tile

2nd-bit
feat. Tile

3rd-bit
feat. Tile

1st-bit
adj. Tile

1st-bit
adj. Tile

Acc.

Acc.

(a) Cross-bit Reduction (b) Cross-Tile Reduction

<<1

<<2

<<3

<<1

<<2

<<3

<<1

<<2

<<3

<<1

<<2

Figure 2.6: Non-zero Tile Reuse. Note that the grey box indicates the zero-tile of the
subgraph adjacent matrix, while the white box with a block solid dot inside represents
the non-zero tiles of the subgraph adjacent matrix.

2.4.5 Inter-layer Kernel Fusion

Across the GNN layers, we incorporate the low-bit data transferring. Specifically,

the output of the one hidden layer will directly be handed over to the next layer as

the input. There are several strategies we use. First , we apply data quantization and

bit-decomposition at the end of the computation kernel such as the neighbor aggrega-

tion and node update. This can help to avoid outputting the result to the slow global

memory and apply the data manipulation again. Second , standalone activation function

kernels such as ReLU and tanh, can be effectively fused into our computation kernel as a

device function, which can directly operate the shared memory results to achieve high

performance. For the batch normalization (BN) layers that follow the graph convolution

layers, we can also do layer fusion based on

BN(xi,j) =

(
xi,j − E[x∗,j]√
V ar[x∗,j] + ϵ

)
· γj + βj (2.8)

where βj, γj, and ϵ are the BN parameters that can be incorporated into the low-bit

convolutional kernel to avoid launching a BN kernel. One thing worth noting is that

computation at the hidden layer and the output layer is slightly different. For hidden

28

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

layers, each kernel has the quantization + bit-decomposition on the output activation,

since the next layer relies on the low-bit data as the input for computation. While for

the last layer, once the full-precision accumulation is complete, it will directly output

the full-precision result for the softmax layer (considering the node classification task)

to generate logits that demand high precision.

2.4.6 Bandwidth-Optimized Subgraph Packing

During the GNN computation of the subgraphs, data communication between the

CPU host and GPU device is also unavoidable. It will swap the subgraph data (such

as edge lists and node embedding) in/out of the GPU device. One basic approach is to

transfer the dense adjacent matrix in floating point numbers considering that the size of

a single subgraph is generally within the range of the modern GPU memory. However,

this could easily lead to a huge amount of data traffic between the CPU and GPU

host. The transferring performance is heavily bounded by PCIe bandwidth (32 GB/s

for PCIe 4.0x16) between the CPU host and the GPU device. For the node embedding

matrix, the current practice is to transfer the node embedding matrix by initializing

another standalone PCIe transferring, which incurs additional overheads and is unable

to maximize the bandwidth usage.

To overcome these issues, we employ a new strategy, called bandwidth-optimized sub-

graph packing. Instead of directly migrating the dense adjacent matrix or sparse adjacent

matrix in single-precision floating point, we just transfer the compressed low-bit adja-

cent matrix and low-bit embedding matrix. This can significantly minimize the data

traffic on the high-cost PCIe-based data communication. Besides, we compress the low-

bit adjacent matrix and low-bit embedding matrix into a compound memory object (by

using torch.nn.Module and register_buffer) on the host first and then initiate the

29

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

transferring of this memory object from the host CPU to GPU device.

2.5 Integration with PyTorch

Besides the highly efficient kernel design and data transferring optimization, for better

usability and programmability, we integrate QGTC with the popular PyTorch framework.

However, there are two key technical challenges. The first one is how to represent the

quantized low-bit number in those Tensor-based frameworks that are built on byte-based

data types (e.g., int32). The second one is how to apply valid computation between the

quantized low-bit number and those well-defined byte-based numbers. For example, how

could we get the correct results when we do arithmetic multiplication between a 2-bit

number and a 32-bit integer number. To this end, we introduce two new techniques.

Bit-Tensor Data Type: We use the 32-bit IntTensor in PyTorch as the “vehicle”

for holding any-bitwidth quantized data. And we leverage our 3D-stacked bit compres-

sion technique (Section 2.4.2) to package the quantized data. We offer a PyTorch API

Tensor.to_bit(nbits) for such data type conversion functionality. Note that existing

PyTorch APIs, such as print, are only defined for those complete data types, such as Int.

Therefore, to access the element value of a bit-Tensor, we provide Tensor.to_val(nbits)

to decode a bit-Tensor as int32 Tensor (converting each element from a low-bit num-

ber to an int32 number). This can make our design compatible with existing PyTorch

functionalities.

Bit-Tensor Computation: We handle two different types of computation: 1) the

operations that only involve bit-Tensor and 2) the operations that involve both bit-Tensor

and float or int32 Tensor. For the first type of operations, we built two APIs based

on whether we want to get the int32 output or still get the quantized low-bit output

as a bit Tensor. For any-bitwidth MM with low-bit output, the API is bitMM2Bit(C,

30

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Table 2.1: Datasets for evaluation.
Type Dataset #Vertex #Edge Dim. #Class

I Proteins 43,471 162,088 29 2
artist 50,515 1,638,396 100 12

II BlogCatalog 88,784 2,093,195 128 39
PPI 56,944 818,716 50 121

III ogbn-arxiv 169,343 1,166,243 128 40
ogbn-products 2,449,029 61,859,140 100 47

A, B, bit_A, bit_B, Bit_C), where A and B are bit Tensors, bit_A/B/C are bitwidth

parameters. For any-bitwidth MM with int32 output, the API is bitMM2Int(C, A, B,

bit_A, bit_B). For the second type of operations, we will first decode a bit-Tensor as

a float/int32 Tensor by using Tensor.to_val(nbits). Then we call the official APIs

in PyTorch for the regular full-precision computation.

2.6 Evaluation

Benchmarks: We choose two most representative GNN models widely used by

previous work [15, 16, 14] on the node classification task to cover different types of

aggregation. 1) Cluster GCN [10] is one of the most popular GNN model architectures.

It is also the key backbone network for many other GNNs, such as GraphSAGE [12], and

differentiable pooling (Diffpool) [41]. For Cluster GCN evaluation, we use the setting: 3

layers with 16 hidden dimensions per layer. 2) Batched GIN [13] differs from cluster

GCN in its order of aggregation and node update. Batched GIN aggregates neighbor

embedding before the node feature update (via linear transformation). GIN demonstrates

its strength by capturing the graph properties that cannot be collected by GCN according

to [13]. Therefore, improving the performance of GIN will benefit more advanced GNNs,

such as GAT [11]. For batched GIN evaluation, we use the setting: 3 layers with 64

hidden dimensions per layer. For quantization bitwidth, we cover the bitwidth settings

31

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

22
1.
1 28
6.
4

31
7.
1

25
4.
9 31
0.
6

60
4.
2

84
.8

86
.6

87
.0

82
.9

87
.1 11
0.
2

85
.4

85
.7

91
.4

84
.4

91
.6 12
2.
8

97
.7

99
.9 13
6.
2

10
2.
1

12
2.
1

15
9.
8

14
1.
8

14
4.
1

16
0.
7

14
2.
4

16
1.
5

20
6.
6

23
5.
6

24
6.
6

27
9.
5

22
8.
2

26
5.
6 33
9.
4

0

100

200

300

400

500

600

700

Proteins artist BlogCatalog PPI ogbn-arxiv ogbn-products

Ti
m

e
(m

s)

DGL (fp32) QGTC (2-bit) QGTC (4-bit)
QGTC (8-bit) QGTC (16-bit) QGTC (32-bit)

(a)

25
6.
3 34
0.
5

37
7.
3

27
0.
6 33
2.
3

61
6.
8

97
.2

10
0.
7

10
3.
8

82
.5

86
.7

95
.8

10
2.
0

10
2.
0

12
6.
6

84
.5

90
.6 12
1.
6

11
1.
6

11
4.
8

12
6.
6

97
.1 12
1.
7

14
9.
1

14
1.
3

14
3.
9

17
2.
9

15
1.
3

16
4.
7

20
7.
7

22
4.
0

22
9.
4

25
8.
6

22
1.
5

25
6.
5 33
8.
0

0

100

200

300

400

500

600

700

Proteins artist BlogCatalog PPI ogbn-arxiv ogbn-products

Ti
m

e
(m

s)

DGL (fp32) QGTC (2-bit) QGTC (4-bit)
QGTC (8-bit) QGTC (16-bit) QGTC (32-bit)

(b)

0

10

20

30

40

50

60

1024 2048 4096 1024 2048 4096 1024 2048 4096

16 32 64

TF
LO

Ps

CUBLAS_INT8
QGTC_2
QGTC_3
QGTC_4
QGTC_5
QGTC_6
QGTC_7

(c)

Figure 2.7: End-to-end performance comparison with (a) DGL on Cluster GCN and
(b) DGL on Batched GIN. (c) Compared with TC-based cuBLASgemmEX (int8) on GNN
aggregation kernel throughput performance (in TFLOPs). Note that “QGTC_3” stands
for QGTC with 3-bit data representation for node embedding matrix.

from the existing quantized GNN studies [18, 19] and also conduct a comprehensive

experimental analysis on different bitwidth settings.

Baselines: In our experiments, we choose several baselines for comparison. For end-

to-end runtime performance comparison, we choose Deep Graph Library (DGL) [15],

which is the state-of-the-art GNN framework on GPUs. DGL is built with a highly

optimized CUDA-based GNN kernel as the backend and uses PyTorch as its front-end.

For GNN aggregation kernel performance comparison, we choose the state-of-the-art

quantized GEMM implementation on GPU Tensor Core from cuBLAS [32] with int8

precision and CUTLASS [33] with int4 precision.

Datasets: We cover all three types of datasets, which have been used in many

previous GNN-related work [15, 16]. Details of these datasets are listed in Table 5.4.

Specifically, Type I graphs are the popular GNN datasets evaluated by many GNN

algorithmic papers [10, 13]. Type II graphs [42] are the popular benchmark datasets for

graph kernels in many frameworks for GNN algorithmic research. Type III graphs [43]

are challenging GNN datasets in terms of the large number of nodes and edges. These

graphs demonstrate high irregularity in its structures. Note that we do graph partitioning

by using METIS [22] and set the number of total subgraphs as 1,500 as prior work [23, 44].

Platforms & Metrics: QGTC backend is implemented with C++ and CUDA

C, while QGTC front-end is implemented in Python. Our major evaluation platform is

32

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

a Ubuntu server (16.04) with an 8-core 16-thread Intel Xeon Silver 4110 CPU@2.8GHz

with 64GB host memory and an NVIDIA Ampere RTX3090 GPU with 24GB device

memory. The GPU device kernel is compiled with CUDA (v11.0) and the CPU host

code is compiled with GCC 7.5.0 with the compilation option of “-std=c++14 -O3”

for integration with the PyTorch framework. To measure the performance speedup, we

calculate the averaged latency of 200 rounds of end-to-end results.

2.6.1 Compared with DGL

In this section, we conduct detailed end-to-end comparison with DGL framework

under the different choices of bitwidth. As shown in Figure 2.7(a) and Figure 2.7(b),

QGTC achieves on average 2.6× and 2.8× end-to-end inference speedup compared to

DGL over three types of datasets for cluster GCN and batched GIN, respectively. We

also notice that the performance benefit is closely related to the bitwidth we choose, as

we can see that from 16-bit to 32-bit the performance shows a large difference compared

with the 2-bit to 8-bit setting. We next provide a detailed analysis and give insights for

each type of dataset. With a fewer number of bits for both the weights and the node

embedding features, QGTC is more likely to reach higher performance. This is because

a smaller size of bitwidth would lead to less memory access and fewer computations at

the bit level. DGL reaches an inferior performance due to 1) FP32 computation comes

with the high computation complexity compared with our QGTC low-bit design; 2) DGL

can only rely on CUDA cores for computation which is naturally bounded by the peak

computation performance compared with our QGTC on TC with higher throughput

performance. Compared with cluster GCN, experimental results on the batched GIN

shows higher benefits of QGTC over DGL. This is because batched GIN applies the

node update first before the neighbor aggregation, which leads to higher computation-

to-communication ratio. QGTC achieves relatively higher performance improvements on

33

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Table 2.2: Model accuracy w.r.t. quantization bitwidth.
Settings FP32 16 bits 8 bits 4 bits 2 bits
ogb-product 0.791 0.791 0.783 0.739 0.620
ogb-arxiv 0.724 0.708 0.707 0.685 0.498

Type III datasets. The major reason is that under the same number of partitions, the size

of each partition (subgraph) will increase due to more number of nodes/edges. This also

improves the computation intensity that will highlight QGTC’s performance advantages

of quantized low-bit computation on GPU Tensor Cores.

Accuracy w.r.t. Quantization Bits To build the QGNN model, we apply quantization-

aware training and evaluate the model testing accuracy w.r.t. quantization bits on two

large Type III datasets on GCN model for demonstration. As shown in Table 2.2, the

GNN model is resilient to the low-bit quantization and can maintain the model accuracy

to a large extent. Combining these results with our above performance evaluation result

under different quantization bits, we can conclude that making the right tradeoff be-

tween the runtime performance and model accuracy is meaningful and can bring benefits

to different application settings.

2.6.2 Compared with other baselines

Compared with cuBLAS-int8 on TC. We further compare our low-bit computa-

tion (from 2-bit to 7-bit) with respect to the state-of-the-art cuBLASgemmEX for quantized

(int8) GEMM solution on Tensor Core in terms of their throughput performance. Note

that int8 is the cuBLAS currently supported minimum bits for quantized computa-

tion on Tensor Core. In this study, we mainly focus on the computation of AX (i.e.,

N×N×D, where N is the number of nodes and D is the node embedding dimension) for

the neighbor aggregation phase. As shown in Figure 2.7(c), QGTC achieves significant

throughput improvement compared with Tensor Core cuBLAS (int8) in low-bit settings.

34

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

Table 2.3: Compared with CUTLASS-int4 (TFLOPs).

N Dim CUTLASS
(int4)

QGTC
(1-
bit)

QGTC
(2-
bit)

QGTC
(3-
bit)

QGTC
(4-
bit)

2048 32 10.36 32.65 19.99 14.40 11.30
4096 32 12.28 81.41 46.23 32.27 24.75
8192 32 12.67 94.58 50.82 35.22 26.31
2048 64 21.40 63.94 39.41 29.83 22.15
4096 64 24.66 89.18 51.21 35.17 25.38
8192 64 24.70 104.66 55.16 40.77 31.07

The major reason is our QGTC design effectively reduces the computation and the data

movements at the bit level, thereby, harvesting the real performance gains of the low-bit

quantization on GPUs. When the number of bits for quantization is approaching 8-bit in

the computation, the performance gains would decrease due to the increase of bit-level

computations.

Compared with CUTLASS-int4 on TC We also compare against the latest CUT-

LASS [33](v2.7) with the int4 Tensor Core GEMM in terms of throughput (TFLOPs)

for AX. The results are summarized at Table 2.3, where we can clearly see the perfor-

mance advantage in terms of throughput over the CUTLASS implementation. Note that

all reported decimal numbers are in TFLOPS; N is the adjacent matrix size and Dim

is the node feature embedding dimension. The graph adjacent matrix is stored in 1-bit.

QGTC (2-bit) means the 2-bit representation for the embedding matrix. The major rea-

son behind such performance improvement is that our QGTC design can use the 1-bit

binary for representing graph adjacency matrix and n-bit (n=1,2,3,4) for node embed-

ding matrix, while CUTLASS int4 only have the support of 4-bit × 4-bit. Thus, we

have to use a 4-bit presentation for both adjacent matrix and embedding matrix during

computation.

35

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

33.33%
43.10%

36.22% 34.71%

6.32%
16.50%

0%

20%

40%

60%

80%

100%

120%

PROTEINS_full artist soc-BlogCatalog PPI ogbn-arxiv ogbn-products

N
or

m
al

iz
ed

 N
um

. T
ile

s

Base (w/o ZTS) QGTC (w/ ZTS)

Figure 2.8: Zero-tile jumping efficiency. The percentage (%) on each green bar indicates
the ratio of the number of tiles processed w/ jumping versus w/o jumping solution.

2.6.3 Additional Studies

In this section, we will conduct detailed studies to demonstrate the effectiveness of

our design and optimizations.

Zero-Tile Jumping. We would compute the ratio of the non-zero TC tiles (8×128)

that are actually involved in our computation versus the total number of TC tiles in the

adjacent matrix. As shown in Figure 2.8, our zero-tile jumping technology can largely

save the efforts for processing all-zero tiles. Based on our observation, the source of such

all-zero TC tiles comes from two levels. The first type of all-zero TC tiles is coming from

batching subgraphs. Because there is no edge connection among nodes across different

subgraphs. This type of all-zero TC tiles dominates the overall collected number of all-

zero tiles. The second type of all-zero tiles comes from the missing edge connections

between the nodes within each subgraph. While this type of all-zero tiles is minor in

its quantity compared with the first type. It potentially reduces memory access and

computation.

Adjacency Matrix Size. We will demonstrate the subgraph adjacency matrix size

impact on the performance of QGTC. Specifically, adjacency matrix size can be controlled

by specifying the number of subgraphs (in METIS) and batching size (in data loader).

The size of the adjacency matrix will impact the performance of aggregation in terms of

36

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

0

40

80

120

160

200

128 256 512 1024 2048 4096 8192 16384 32768

TF
LO

Ps

Adjacency Matrix Size (N)

16 32
64 128
256 512
1024

Figure 2.9: Adjacency matrix size impact. Note that we choose the common subgraph
size N={128, 256, ..., 32768} and the hidden embedding dimension D={16, 32, ..., 1024}.

computations and data movements, meanwhile, it will also determine whether our GNN

computation can fully utilize the available GPU resources.. We use 1-bit for both the

adjacency matrix and node embedding matrix in this study. As shown in Figure 2.9, we

can observe that under the same size of D, with the increase of the number of nodes

(i.e., the value of N), our major 1-bit GEMM computation kernel would scale up its

performance well. Note that different colored lines represent different embedding sizes,

and we mainly focus on the computation of AX (i.e., N×N×D, where N is the number

of nodes and D is the node embedding dimension) for neighbor aggregation phase. in

the settings of small subgraph size (128 to 512), the increase of the overall computation

throughput is not evident, because the computation size is small and most of the available

GPU resources such as SMs would achieve low utilization. While in the range of subgraph

size (512 to 16,384), we can notice a more significant increase in the TFLOPs performance.

Because in these settings, more computations from the bit-level data manipulation would

trigger more SMs to participate in the BMM computation, thereby, improving the overall

GPU throughput. For those large subgraph sizes (> 16,384) the overall throughput

would hardly increase, mainly because all available GPU computation units are almost

fully in use. One specialty of those batched GNN computations w.r.t. the traditional

NN computation is that batch GNN have more skewed-sized matrices in terms of the

37

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

ratio between N and D. This, to some degree, limits the achievable peak performance

on TC. What is also worth noticing is that among different lines (different choices of D),

the larger D usually leads to better utilization of the GPU, since more computation and

memory resources of the GPU will become active for higher throughput.

Non-zero Tile Reuse. We will demonstrate the effectiveness of our non-zero tile

reuse by a control-variable study. We eliminate the number of non-zero tiles impact on

performance by setting all tiles to non-zero tiles (i.e., filling the initial matrix with all

ones). Then we choose the neighbor aggregation process (X̂ = AX) for the study and

fix the D to 1024. We change N from 1,024 to 8,192. Three bit combinations are used

in our evaluation, where A is consistently using 1-bit while X is using 4, 8, and 16 bit.

0.80

0.90

1.00

1.10

1.20

1.30

A(1)X(4) A(1)X(8) A(1)X(16)

Sp
ee

du
p

(x
) V

s.
 w

/o
 R

U 1024 2048 4096 8192

Figure 2.10: Non-zero tile reuse effectiveness. Note that we choose subgraph size
N={1024, 2048, 4096, 8192} for this study.

As described in Figure 2.10, our non-zero tile reuse can improve the throughput

performance on those large matrix sizes with the higher number of bits. The major reason

behind this is that reuse the non-zero tile can largely reduce the global memory access for

fetching the same 1-bit adjacency matrix tile repetitively, which is the key performance

bottleneck for those large metrics. The setting (w/o nonzero-tile) reuse shows more

advantage on the smaller size matrix because the overhead of recurrent loading the same

adjacency matrix tile is not pronounced compared with GEMM operations on TC. This

study inspires us to come up with a more intelligent strategy or heuristics to determine

38

QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core Chapter 2

under which condition applying the non-zero tile reuse will bring performance benefits

and we would leave this for our future work for exploration.

39

Chapter 3

GNNAdvisor: An Adaptive and

Efficient Runtime System for GNN

Acceleration on GPUs

As the emerging trend of graph-based deep learning, Graph Neural Networks (GNNs)

excel for their capability to generate high-quality node feature vectors (embeddings).

However, the existing one-size-fits-all GNN implementations are insufficient to catch up

with the evolving GNN architectures, the ever-increasing graph sizes, and the diverse node

embedding dimensionalities. To this end, we propose GNNAdvisor 1, an adaptive and

efficient runtime system to accelerate various GNN workloads on GPU platforms. First,

GNNAdvisor explores and identifies several performance-relevant features from both the

GNN model and the input graph, and uses them as a new driving force for GNN ac-

celeration. Second, GNNAdvisor implements a novel and highly-efficient 2D workload
1Published at USENIX OSDI’21. USENIX permits authors to retain their ownership of the copy-

rights in their works. Reprinted from GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. USENIX Symposium on Operating Systems Design and Implementation.
07/2021.

40

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

management, tailored for GNN computation to improve GPU utilization and performance

under different application settings. Third, GNNAdvisor capitalizes on the GPU memory

hierarchy for acceleration by gracefully coordinating the execution of GNNs according

to the characteristics of the GPU memory structure and GNN workloads. Furthermore,

to enable automatic runtime optimization, GNNAdvisor incorporates a lightweight an-

alytical model for an effective design parameter search. Extensive experiments show

that GNNAdvisor outperforms the state-of-the-art GNN computing frameworks, such as

Deep Graph Library (3.02× faster on average) and NeuGraph (up to 4.10× faster), on

mainstream GNN architectures across various datasets.

3.1 Introduction

Graph Neural Networks (GNNs) emerge to stand on the front-line for handling many

graph-based deep learning tasks (e.g., node embedding generation for node classifica-

tion [45, 46, 47] and link prediction [48, 49, 50]). Compared with standard methods

for graph analytics, such as random walks [25, 51] and graph Laplacians [52, 53, 54],

GNNs highlight themselves with the interleaved two-phase execution of both graph op-

erations (scatter-and-gather [55]) at the Aggregation phase, and Neural Network (NN)

operations (matrix multiplication) at the Update phase, to achieve significantly higher

accuracy [10, 13, 11] and better generality [12]. Yet, the state-of-the-art GNN frame-

works [15, 16, 14, 56], which follow a one-size-fits-all implementation scheme, often suffer

from poor performance when handling more complicated GNN architectures (i.e., more

layers and higher hidden dimensionality in each layer) and diverse graph datasets.

Specifically, previous work that supports both GNN training and inference can be

classified into two categories. The first type [56, 14] is built on popular graph processing

systems and is combined with NN operations. The second type [16, 15], in contrast,

41

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

GNNAdvisor
Pytorch-based

Frontend
(An example code

in Listing 1)

Kernel & Runtime Crafter
2D Workload
Management

Parameterized
GNN Kernel Specialized Mem.

OptimizationDecider

GNNAdvisor

GPU Runtime

Loader&Extractor

GNN Model Info.
(e.g., #Layers, Hidden Dim,

Output Dim)

Graph Info.
(e.g., Node Degree,

Input Dim, Community)

Analytical
Modeling
Param.

Selection

Runtime
Param.

 Neighbor
Partitioning

Dimension
Partitioning

Thread
Mapping

Node
Renumbering

Memory
Customization

Input
Properties

Optimized
Imple. & Exec.

Figure 3.1: Overview of GNNAdvisor.

starts with deep learning frameworks and is extended to support vector-based graph

operations. However, these existing solutions are still preliminary and inevitably fall

short in the following three major aspects, even on common computing platforms such

as GPUs.

Failing to leverage GNN input information. GNN models demonstrate great

diversity in terms of layer sequences, types of aggregation methods, and the dimension

size of node embeddings. These profoundly impact the effectiveness of various system

optimization choices. The diversity of input graphs further complicates the problem.

Unfortunately, current GNN frameworks [16, 15, 14] follow a one-size-fits-all optimization

scheme and fail to craft an optimization strategy that maximizes efficiency for a particular

GNN application’s settings. Some classical graph systems [57, 58] have exploited input

characteristics to facilitate more efficient optimizations, but they only focus on simple

graph algorithms like PageRank [59] while having no support for GNN models.

Optimizations not tailored to GNN. While the update phase in GNNs involves

NN operations that are dense in computation and regular in memory access, the aggre-

gation phase is usually sparse in computation and highly irregular in memory access.

Without dedicated optimization, it will inevitably become the performance bottleneck.

Existing GNN frameworks [16, 15, 14] simply extend the optimization schemes from clas-

sical graph systems [60, 56], and do not address the difference between GNN and graph

processing. For example, each node is associated with an embedding attribute in GNNs

while each node only has a single scalar attribute in traditional graph processing. Such

42

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

difference invokes novel design principles for GNNs towards more aggressive parallelism

and more efficient memory optimization.

Listing 3.1: Example of a 2-layer GCN in GNNAdvisor.
1 import GNNAdvisor as GNNA
2 import torch
3 # import other packages ...
4

5 # Create a GCN class.
6 class GCN(torch.nn.Module):
7 def __init__(self, inDim, hiDim, outDim, nLayers):
8 self.layers = torch.nn.ModuleList()
9 self.layers.append(GNNA.GCNConv(inDim, hiDim))

10 for i in range(nLayers - 2):
11 layer = GNNA.GCNConv(hiDim, hiDim)
12 self.layers.append(layer)
13 self.layers.append(GNNA.GCNConv(hiDim, outDim))
14 self.softmax = torch.nn.Softmax()
15

16 def forward(self, X, graph, param):
17 for i in range(len(self.layers)):
18 X = self.layers[i](X, graph, param)
19 X = self.ReLU(X)
20 X = self.softmax(X)
21 return X
22

23 # Define a two-layer GCN model.
24 model = GCN(inDim=100, hiDim=16, outDim=10, nLayers=2)
25

26 # Loading graph and extracting input propertities.
27 graphObj, inputInfo = GNNA.LoaderExtractor(graphFile,
28 model)
29 # Set runtime parameters automatically.
30 X, graph, param = GNNA.Decider(graphObj, inputInfo)
31

32 # Run model.
33 predict_y = model(X, graph, param)
34

35 # Compute loss and accuracy.
36 # Gradient backpropagation for training.

Poor runtime support for input adaptability. Prior GNN frameworks [16, 15,

14] rely on a Python-based high-level programming interface for ease of user implemen-

tation. These frameworks employ static optimizations through a compiler or manually-

optimized libraries. Nevertheless, some critical performance-related information for a

GNN is only available at runtime (e.g., node degree and embedding size). Without adapt-

able designs that can leverage such runtime information, we would easily suffer from an

43

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

inferior performance because of the largely under-utilized the GPU computing resources

and inefficient irregular memory access. This limitation motivates the need for runtime

environments with flexible designs to handle a wide spectrum of inputs effectively.

To this end, we propose, GNNAdvisor2, an adaptive and efficient runtime system for

GNN acceleration on GPUs. GNNAdvisor leverages Pytorch as the front-end to improve

programmability and ease user implementation. We show a representative 2-layer Graph

Convolutional Network (GCN) [10] in GNNAdvisor at Listing 5.1. At the low level, GN-

NAdvisor is built with C++/CUDA and integrated with Pytorch framework by using

Pytorch Wrapper. It can be viewed as a new type of Pytorch operator with a set of ker-

nel optimizations and runtime support. It can work seamlessly with existing operators

from the Pytorch Framework. Data is loaded with the data loader written in Pytorch

and passed as a Tensor to GNNAdvisor for computation on GPUs. Once the GNNAd-

visor completes its computation at the GPU, it will pass the data Tensor back to the

original Pytorch framework for further processing. As detailed in Figure 4.1, GNNAdvi-

sor consists of several key components to facilitate the GNN optimization and execution

on GPUs. First, GNNAdvisor introduces an input Loader&Extractor to exploit the

input-level information that can guide our system-level optimizations. Second, GNNAd-

visor incorporates a Decider consisting of analytical modeling for automatic runtime

parameter selection to reduce manual effort in design optimization, and a lightweight

node renumbering routine to improve graph structural locality. Third, GNNAdvisor in-

tegrates a Kernel&Runtime Crafter to customize our parameterized GNN kernel and

CUDA runtime, which consists of an effective 2D workload management (considering

both the number of neighbor nodes and the node embedding dimensionality) and a set

of GNN-specialized memory optimizations.

Note that in this project, we mainly focus on the setting of single-GPU GNN com-
2GNNAdvisor is open-sourced at https://github.com/YukeWang96/GNNAdvisor_OSDI21.git

44

https://github.com/YukeWang96/GNNAdvisor_OSDI21.git

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

puting, which is today’s most popular design adopted as the key component in many

state-of-the-art frameworks, such as DGL [15] and PyG [16]. Single-GPU GNN comput-

ing is desirable for two reasons: First, many GNN applications with small to medium

size graphs (e.g., molecule structure) can easily fit the memory of a single GPU. Second,

in the case of large-size graphs that can only be handled by out-of-GPU-core and multi-

GPU processing, numerous well-studied graph partition strategies (e.g., METIS [22]) can

cut the giant graphs into small-size subgraphs to make them suitable for a single GPU.

Therefore, the optimization of both the out-of-GPU-core (e.g., GPU streaming process-

ing) and multi-GPU GNN computation still largely demands performance improvements

on a single GPU. Moreover, while our paper focuses on GNNs, our proposed methodol-

ogy can be applied to optimize various types of irregular workload (e.g., social network

analysis) targeting GPUs as well.

Overall, we make the following contributions:

• We are the first to explore GNN input properties (e.g., GNN model architectures

and input graphs), and give an in-depth analysis of their importance in guiding

system optimizations for GPU-based GNN computing.

• We propose a set of GNN-tailored system optimizations with parameterization,

including a novel 2D workload management and specialized memory customization

on GPUs. We incorporate the analytical modeling and parameter auto-selection to

ease the design space exploration.

• Comprehensive experiments demonstrate the strength of GNNAdvisor over state-

of-the-art GNN execution frameworks, such as Deep Graph Library (average 3.02×)

and NeuGraph (average 4.36×), on mainstream GNN architectures across various

datasets.

45

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

3.2 Background and Related Work

In this section, we introduce the basics of GNNs and two major types of GNN com-

puting frameworks: GPU-based graph systems and deep learning frameworks.

3.2.1 Graph Neural Networks

Figure 3.2 visualizes the computation flow of GNNs in one iteration. GNNs compute

the node feature vector (embedding) for node v at layer k + 1 based on the embedding

information at layer k (k ≥ 0), as shown in Equation 4.1,

a(k+1)
v = Aggregate(k+1)(h(k)u |u ∈ N(v) ∪ h(k)v)

h(k+1)
v = Update(k+1)(a(k+1)

v)

(3.1)

where h
(k)
v is the embedding vector for node v at layer k; h

(0)
v is computed from the

task-specific features of a vertex (e.g., the text associated with the vertex, or some scalar

properties of the entity that the vertex represents) via some initial embedding mapping

that is used only for this ingest of symbolic values into the embedding space; a(k+1)
v is the

aggregation results through collecting neighbors’ information (e.g., node embeddings);

N(v) is the neighbor set of node v. The aggregation method and the order of aggregation

and update could vary across different GNNs. Some methods [10, 12] just rely on the

neighboring nodes while others [11] also leverage edge properties, by combining the dot

product of the end-point nodes of each edge, along with any edge features (edge type and

other attributes). The update function is generally composed of standard NN operations,

such as a single fully connected layer or a multi-layer perceptron (MLP) in the form of

w·a(k+1)
v +b, where w and b are the learnable weight and bias parameters, respectively. The

common choices for node embedding dimensions are 16, 64, and 128, and the embedding

dimension may change across different layers.

46

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

A
B

D

F

C

E

D

A

F

Aggregate Update

param
sharing

D
A

C

B

F
E GNN Layer

𝒉𝟎 𝒂𝟏 𝒉𝟏

Node Classes
Prediction

GNN Layer-1

ReLU

GNN Layer-N

Softmax

…
.

Node
Embedding

A
B
C
D
E
F

Figure 3.2: GNN General Computation Flow.

After passing through several iterations of aggregation and update (i.e., several GNN

layers), we will get the output embedding of each node, which can usually be used for

various downstream graph-based deep learning tasks, such as node classification [45, 46,

47] and link prediction [48, 49, 50]. Note that the initial node embedding for GNN’s input

layer may come with the original graph dataset or can be generated by a set of graph

embedding algorithms, such as [25, 61, 62], which is not included in the computation of

GNNs models (generating the hidden and output node embeddings).

3.2.2 Graph Processing Systems

Numerous graph processing systems [60, 63, 56, 64, 65] have been proposed to acceler-

ate traditional graph algorithms. The major commonalities of these systems include the

vertex/node-centric programming abstraction, edge-centric processing, and system opti-

mizations to reduce the computation irregularity (e.g., workload imbalance) and memory

access irregularity (e.g., non-coalesced global memory access). However, extending these

graph processing systems to support GNN computing meets with substantial challenges.

47

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

First, the common algorithm optimizations in graph processing may not benefit

GNNs. For example, graph traversal algorithms, such as Breadth-first Search, rely on it-

erative computing on node frontiers (active neighbors). Therefore, a set of frontier-based

optimizations, such push-pull traversal [64, 65], and frontier filtering [64, 65, 56], have

been extensively studied. However, GNNs consistently maintain fixed-sized frontiers (all

neighbors) of each node across iterations.

Second, the system optimization techniques for graph processing would benefit GNNs

only after careful adaption and calibration. For example, node/edge-centric process-

ing [56, 65] and shard-based graph representation [60] are tailored for processing nodes/edges

represented with a single scalar attribute. In GNNs, there’s another dimension for data

parallelism, namely the embedding dimension, which tends to be large Therefore, pre-

vious design trade-offs between the coarse-grained node-level parallelism and node-value

locality should be further extended to balance dimension-wise parallelism and node-

embedding locality at a finer granularity.

Third, some essential functionalities of GNN computing are missing in graph sys-

tems. For example, the node update based on NN computing for both the forward

value propagation and the complicated backward gradient propagation is not available

in graph systems [60, 63, 56, 64, 65, 66, 67]. In contrast, Pytorch and Tensorflow feature

an analytic differentiation function for automatic gradient computations on various deep

learning model architectures and functions. Therefore, extending the graph-processing

system to support GNN computing requires non-trivial efforts, and thus we develop GN-

NAdvisor on top of a deep learning framework.

3.2.3 Deep Learning Frameworks

Various NN frameworks have been proposed, such as Tensorflow [68], and Pytorch.

These frameworks provide end-to-end training and inference support for traditional deep-

48

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

learning models with various NN operators, such as linear and convolutional operators.

These operators are highly optimized for Euclidean data (e.g., image) but lack support

for non-Euclidean data (e.g., graph) in GNNs. Extending NN frameworks to support

GNN that takes the highly irregular graphs as the input is facing several challenges.

First, NN-extended GNN computing platforms [16, 15] focus on programmability and

generality for different GNN models but lack efficient backend support to achieve high per-

formance. For example, Pytorch-Geometric (PyG) [16] uses the torch-scatter [69] library

implemented with CUDA as its major building block of graph aggregation operations.

The torch-scatter implementation scales poorly when encountering large sparse graphs

with high-dimensional node embedding because its kernel design essentially borrows the

design principles of graph-processing systems by using excessive high-overhead atomic

operations to support node embedding propagation. A similar scalability problem is also

observed in Deep Graph Library (DGL) [15], which incorporates an off-the-shelf Sparse-

Matrix Multiplication (SpMM) (e.g., csrmm2 in cuSparse [70]) for simple sum-reduced

aggregation [10, 12] and leverages its own CUDA kernel for more complex aggregation

scheme with edge attributes [13, 11].

Second, major computation kernels [16, 15] are hard-coded without design flexibility,

which is essential to handle diverse application settings with different input graph sizes

and node embedding dimensionality. From the high-level interface, users are only allowed

to define the way of composing these kernels externally. Users are not allowed to cus-

tomize kernels internally based on the known characteristics of GNN model architectures,

GPU hardware, and graph properties.

49

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

3.3 Input Analysis of GNN Applications

In this section, we argue that the GNN input information can guide the system

optimization, based on our key observation that different GNN application settings would

favor different optimization choices. We introduce two types of GNN input information

and discuss their potential performance benefits and extraction methods.

3.3.1 GNN Model Information

While the GNN update phase follows a relatively fixed computing pattern, the GNN

aggregation phase shows high diversity. The mainstream aggregation methods of GNNs

can be categorized into two types:

The first type is aggregation (e.g., sum, and min) with only the embeddings of neigh-

bor nodes, as in Graph Convolutional Network (GCN) [10]. For GNNs with this type of

aggregation, the common design practice is to reduce the node embedding dimensionality

during the update phase (i.e., multiplying the node embedding matrix with the weight

matrix) [10, 16, 15] before the aggregation (gather information from neighbor node em-

bedding) at each GNN layer, thereby, largely reducing the data movements during the

aggregation. In this case, improving memory locality would be more beneficial, in that

more node embeddings can be cached in fast memory (e.g., L1 cache of GPUs) to exploit

performance benefits.

The second type is aggregation with special edge features (e.g., weights, and edge

vectors that are computed by combining source and target nodes) applied to each neigh-

bor node, as in Graph Isomorphism Network (GIN) [13]. This type of GNN must work

on large full-dimensional node embeddings to compute the special edge features at the

node aggregation. In this case, the fast memory (e.g., shared memory of GPU Stream-

Multiprocessors) is not large enough to exploit memory locality. However, improving

50

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

computation parallelization (e.g., workload partitioning along the embedding dimension)

would be more helpful, considering that workloads can be shared among more concurrent

threads for improving overall throughput.

We illustrate this aggregation-type difference with the mathematical equations for

GCN and GIN. With GCN, the output embedding X is computed as follows:

X′ = D̂−1/2ÂD̂−1/2XW, (3.2)

where D̂ is the diagonal node degree matrix; W is the weight matrix; Â is the graph

adjacency matrix. For GIN, the output embedding X for each layer is computed as

follows:

x′
i = h

(1 + ϵ) · xi +
∑

j∈N (i)

xj

 (3.3)

where h denotes a neural network, e.g., an MLP, which maps node features x with input

embedding dimension and output embedding dimension; ϵ is a configurable/trainable

parameter depending on the users’ demands or application settings; N (i) denotes the

neighbor IDs of the node i.

Assume we have GCN and GIN with hidden dimension 16, and the input dataset has

a node embedding dimension of 128. In the case of GCN, we will first do node update

(GEMM3-based linear transformation) of the node embedding, thus, at the aggregation,

we only need to do aggregation on nodes with hidden dimension 16. In the GIN case,

we have to do neighbor aggregation on nodes with 128 dimensions then do node update

to linearly transform node embedding from 128 to 16 dimensions. Such an aggregation

difference would also lead to different optimization strategies, where GCN would prefer

more memory optimization on the small node embeddings while GIN would prefer more

computing parallelism on the large node embeddings.

To conclude, the type of aggregation in GNNs should be considered for system-level
3General Matrix-Matrix Multiplication.

51

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

optimization and it can be obtained by GNNAdvisor’s built-in parser of GNN model

proprieties.

3.3.2 Graph Information

Node Degree & Embedding Dimensionality: Real-world graphs generally fol-

low the power-law distribution [71] of node degrees. Such distribution already causes

workload imbalance in traditional graph processing systems [64, 72, 73]. In GNN aggre-

gation, such workload imbalance would be exacerbated due to the higher dimensionality

of the node embeddings if we perform node-centric workload partitioning. Moreover,

node embedding would invalidate some cache-based optimizations that are originally ap-

plied to graph processing systems, since caches are usually small in size and insufficient

to hold enough nodes with their embeddings. For example, in the graph processing sce-

narios with a scalar attribute for each node, we can improve performance by putting

16 × 103 nodes on the 64KB L1 cache of each GPU thread block. However, in typical

GNNs with a 64-dimension embedding for each node, we can only fit 256 nodes on each

GPU block’s cache.

With node degree and embedding dimensionality information, new optimization op-

portunities for GNNs may appear because we can estimate the node’s workload and its

concrete composition based on such input information. If the workload size is domi-

nated by the number of node neighbors (e.g., large node degree), we may customize the

design that could concurrently process more neighbors to increase the computing paral-

lelism among neighbors. On the other hand, if the workload size is dominated by node

embedding size (e.g., high-dimensional node embedding), we may consider boosting the

computing parallelism along the node embedding dimension. Note that the node degree

and embedding dimension information can be extracted based on the loaded graph struc-

52

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

ture and node embedding vectors. GNNAdvisor manages the GNN workload based on

such information (Section 3.4).

Graph Community: Graph community [74, 75, 76] is one key feature of real-

world graphs, which describes that a small group of nodes tend to hold “strong” intra-

group connections (many edges) while maintaining “weak” connections (fewer edges) with

the remaining part of the graph. A motivating example of GNN optimization with

graph community structure is shown in Figure 3.3a. Existing node-centric aggregation

employed by many graph processing systems [56, 60] is shown in Figure 3.3b, where each

node will first load its neighbors and then do aggregation independently. This strategy

can achieve great computation parallelism when each neighbor has a lightweight scalar

attribute. In this case, the benefit of loading parallelization would offset the downside

of duplicate loading of some shared neighbors. However, in GNN computing where node

embedding size is large, this node-centric loading would trigger significant unnecessary

memory access since the cost of duplicate neighbor loading is now dominant and not offset

by per-node parallelism For example, aggregation of node a, b, c, d, and e would load the

embeddings of 15 nodes in total and most of these loads are repeated (both node a and b

load the same node d during the aggregation). Such loading redundancy is exacerbated

with the increase of embedding dimensionality. On the other side, by considering the

community structure of real-world graphs, unnecessary data loading for these “common”

neighbors can be well reduced (Figure 3.3c), where aggregation only requires loads of 5

distinct nodes.

This idea sounds promising, but the effort to realize its benefits on GPUs is non-

trivial. Existing approaches [77, 76] of exploiting the graph communities mainly target

CPU platforms with a limited number of parallelized threads and MB-level cache sizes

for each thread. Their major goal is to exploit the data locality for every single thread.

GPUs, on the other side, are equipped with a massive number of parallel threads and

53

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

(b) Loading without Community(a) Graph Community

B C

...

a b c d e ...

LD LD

......

LDLDLD LDLD LDLD

a b c d e

... ...Node Embedding

...

...Updated
Node Embedding

...

a b c d e

a b c d e

... ...

...

a b c d e

...

...

LD LD

... ...

... ...

LD

Updated
Node Embedding

Node Embedding

(c) Loading with Community

COM-A COM-B COM-C

a

c

d

e
b

A

Figure 3.3: Graph community and its potential benefits. Note that “LD”: loading opera-
tion. “COM”: community.

KB-level cache sizes per thread. Therefore, the key to exploiting graph community on

GPUs is to effectively exploit the data locality among threads by leveraging the L1 cache.

Specifically, we need first capture the communities of a graph and then map such locality

from input level (node-ID adjacency) to underlying GPU kernels (thread/warp/block-ID

adjacency). The major hardware-level insight is that threads close in their IDs are more

likely to share memory and computing resources, thus, improving the data spatial and

temporal locality. GNNAdvisor handles all these details through community-aware node

renumbering and GNN-specialized memory optimizations (Section 3.5).

3.4 2D Workload Management

GNNs employ a unique space in graph computations, due to the representation of each

node by a high-dimensional feature vector (the embedding). GNN workloads grow in two

major dimensions: the number of neighbors and the size of the embedding dimension. GN-

NAdvisor incorporates an input-driven parameterized 2D workload management tailored

for GNNs, including three techniques: coarse-grained neighbor partitioning, fine-grained

dimension partitioning, and warp-based thread alignment.

54

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0 1 2

7 8 93 6 10 3 5 0 3 42

Target Node

Neighbor Node
Target Node
Embedding

Neighbor Embedding

NP-0 NP-1 NP-2

EP0 EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EP10 EP11
NG-0 NG-1 NG-2 NG-3 NG-4 NG-5

Edge Partitioning

Neighbor Partitioning

Node PartitioningWorkload
Imbalance

Atomic
Operations

0
1

2

3

6

10

4

7
8

9

5

Graph CSR

Figure 3.4: Neighbor Partitioning. Note that “NP”: Node Partitioning; “EP”: Edge Par-
titioning; “NG”: Neighbor Group.

3.4.1 Coarse-grained Neighbor Partitioning

Coarse-grained neighbor partitioning is a novel workload balance technique tailored

to GNN computing on GPUs. It aims to tackle the challenge of inter-node workload

imbalance and redundant atomic operations.

Specifically, based on the loaded graph compressed-sparse row (CSR) representation,

our coarse-grained neighbor partitioning will first break down the neighbors of a node into

a set of equal-sized neighbor groups, and treat the aggregation workload of each neighbor

group (NG) as the basic workload unit for scheduling. Figure 3.4 exemplifies an undi-

rected graph and its corresponding neighbor partitioning result. The neighbors of Node-0

are divided into two neighbor groups (NG-0 and NG-1) with a pre-determined group size

of 2. Neighbors (Node-3 and Node-5) of Node-1 are covered by NG-2, while the neighbors

of Node-2 are spread among NG-{3,4,5}. To support the neighbor group, we introduce

two components, the neighbor-partitioning module and the neighbor-partitioning graph

store. The former is a lightweight module built on top of the graph loader by partitioning

the graph CSR into equal-size groups. Note that each neighbor group only covers the

neighbors of one target node for ease of scheduling and synchronization. The neighbor-

55

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

partitioning graph store maintains the tuple-based meta-data of each neighbor group,

including its IDs, starting and ending position of its neighbor nodes in the CSR repre-

sentation, and the source node. For example, the meta-data of NG-2 will be stored as (2,

1, (4, 6)), where 2 is the neighbor-group ID, 1 is the target node ID, (4, 6) is the index

range of the neighbor nodes in CSR.

The benefits of applying the aggregation based on partitioning neighbors are three-

fold: 1) compared with the more coarse-grained aggregation based on node/vertex-centric

partitioning [60], neighbor partitioning can largely mitigate the size irregularity of the

workload units, which would improve GPU occupancy and throughput performance; 2)

compared with the more fine-grained edge-centric partitioning (used by existing GNN

frameworks, such as PyG [16], for batching and tensorization, and graph processing sys-

tems [65, 56] for massive computing parallelization), the neighbor-partitioning solution

can avoid the overheads of managing many tiny workload units that might hurt the

performance in many ways, such as scheduling overheads and the excessive amount of

synchronizations; 3) it introduces a performance-related parameter, neighbor-group

size (ngs), which is used for design parameterization and performance tuning. Neighbor

partitioning works at a coarse granularity of individual neighbor nodes. It can largely mit-

igate the workload imbalance problem for low-dimension settings. For high-dimensional

node embeddings, we employ a fine-grained dimension partitioning discussed in the next

subsection to further distribute workloads of each neighbor group to threads. Note that

when the number of neighbors is not divisible by the neighbor group size, it will raise

neighbor-group imbalance. Such irregularity can be amortized by setting the neighbor-

group size to a small number (e.g., 3).

56

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

3.4.2 Fine-grained Dimension Partitioning

GNN distinguishes itself from traditional graph algorithms in its computation on the

node embedding. To explore the potential acceleration parallelism along this dimension,

we leverage a fine-grained dimension partitioning to further distribute the workloads of

a neighbor group along the embedding dimension to improve aggregation performance.

As shown in Figure 3.5, the original neighbor-group workloads are evenly distributed to

11 consecutive threads, where each thread manages the aggregation along one dimension

independently (i.e., accumulation of all neighbor node embeddings towards the target

node embedding). If the dimension size is larger than the number of working threads,

more iterations would be required to finish the aggregation.

There are two major reasons for using dimension partitioning. First, it can accom-

modate a more diverse range of embedding dimension sizes. We can either increase the

number of concurrent dimension workers or enable more iterations to handle the di-

mension variation flexibly. This is essential for modern GNNs with increasingly compli-

cated model structures and different sizes of embedding dimension. Second, it introduces

another performance-related parameter – the number of working threads (dimension-

worker (dw)) for design customization. The value of this parameter can help to balance

the thread-level parallelism and the single thread efficiency (i.e., computation workload

per thread).

3.4.3 Warp-based Thread Alignment

While the above two techniques answer how we balance GNN workloads logically,

how to map these workloads to underlying GPU hardware for efficient execution is still

unresolved. One straightforward solution is to assign consecutive threads to concurrently

process workloads from different neighbor groups (Figure 3.6a). However, different behav-

57

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

...Neighbor Embedding

Iterate

Target Embedding

NG-1

Working Threads Working Threads

Figure 3.5: Dimension Partitioning.
⊕

: Accumulated add.

iors (e.g., data manipulation and memory access operations) among these threads would

result in thread divergence and GPU underutilization. Threads from the same warp pro-

ceed in a single-instruction-multiple-thread (SIMT) fashion and the warp scheduler can

only serve one type of instruction per cycle. Therefore, different threads have to wait

for their turn for execution until the Stream-Multiprocessor (SM) warp scheduler issues

their corresponding instructions.

To tackle this challenge, we introduce a warp-aligned thread mapping in coordina-

tion with our neighbor and dimension partitioning to systematically capitalize on the

performance benefits of balanced workloads. As shown in Figure 3.6b, each warp will

independently manage the aggregation workload from one neighbor group. Therefore,

the execution of different neighbor groups (e.g., NG-0 to NG-5) can be well parallelized

without inducing warp divergence. There are several benefits in employing warp-based

thread alignment. First, inter-thread synchronization (e.g., atomic operations) can be

minimized. Threads of the same warp are working on different dimensions of the same

neighbor group, thus no conflicts occur for either global or shared memory accesses by

threads from the same warp.

Second, the workload of a single warp is reduced and different warps will process more

balanced workloads. Therefore, more small warps can be managed flexibly by SM warp

schedulers to improve overall parallelism. Considering the unavoidable global memory

58

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

Warp-0 Warp-1

Warp-0 Warp-1 Warp-2 Warp-3 Warp-4 Warp-5

NG-0 NG-1 NG-2 NG-3 NG-4 NG-5

NG-0 NG-1 NG-2 NG-3 NG-4 NG-5
(a) Continuous Mapping.

(b) Warp-Aligned Mapping.

Warp-1

Global Memory

Warp-0

Serialized non-Coalesced Access

Global Memory

Warp-1 Warp-2 Warp-5Warp-3 Warp-4

Parallelized Coalesced Transactions

(c) Continuous Mapping Memory Access.

(d) Warp-Aligned Mapping Memory Access.

Figure 3.6: Warp-based Thread Alignment.

access of each warp during aggregation, increasing the number of warps can improve

SM occupancy to hide latency. Third, memory access can be coalesced. Threads with

consecutive IDs from the same warp will access continuous memory addresses in global

memory for node embeddings. Therefore, compared with continuous thread mapping

(Figure 3.6c), warp-aligned thread mapping can merge memory requests from the same

warp into one global memory transaction (Figure 3.6d).

3.5 Specialized Memory Optimization

To further exploit the benefits of 2D workload, we introduce GNN-specialized memory

optimizations, community-aware node renumbering and warp-aware memory customiza-

tion.

3.5.1 Community-aware Node Renumbering

To explore the performance benefits of graph community (Section 3.3.2), we incorpo-

rate lightweight node renumbering by reordering node IDs to improve the temporal/s-

patial locality during GNN aggregation without compromising output correctness. The

59

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

key idea is that the proximity of node IDs would project to the adjacency of computing

units on GPU where they get processed. In GNNAdvisor, our 2D workload management

assigns neighbor groups of a node to consecutive warps based on their node ID. If two

nodes are assigned with consecutive IDs, their corresponding neighbor groups (warps)

would be close to each other in their warp IDs as well. Thus, they are more likely to

be scheduled closely on the same GPU SM with a shared L1 cache to improve the data

locality on loaded common neighbors. To apply node renumbering effectively, two key

questions must be addressed.

When to apply: While graph reordering provides potential benefits for perfor-

mance, we still need to figure out what kind of graph would benefit from such reordering

optimization. Our key insight is that for graphs already in a shape approximating block-

diagonal pattern in their adjacency matrix (Figure 3.7a), reordering could not bring more

locality benefits, since nodes within each community are already close to each other in

terms of their node-IDs. For graphs with a more irregular shape (Figure 3.7b), where

edge connections are distributed among nodes with an irregular pattern, the reorder-

ing could bring notable performance improvement (up to 2× speedup, later discussed in

Section 5.4.3). To this end, we propose a new metric – Averaged Edge Span (AES), to

determine whether it is beneficial to conduct a graph reordering.

AES =
1

#E

∑
(srcid,trgid)∈E

|srcid − trgid| (3.4)

where E is the edge set of the graph; #E is the number of total edges; srcid and trgid

are the source and target node IDs of each edge. Computing AES is lightweight and can

be done on-the-fly during the initial graph loading. Our profiling of a large corpus of

graphs also shows that when
√
AES > ⌊

√
#N
100

⌋ node numbering is more likely to improve

runtime performance.

How to apply: We leverage Rabbit Reordering [58], which is a fully parallelized and

60

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

(a) (b)

Figure 3.7: Graph Edge Connection Patterns. Note that each colored square represents
the edge between two nodes. Different colors in (a) represent edges from different com-
munities. The red dot-line box indicates the sub-community.

low-cost graph reordering technique. Specifically, it first maximizes the graph modularity

by hierarchically merging edges and clustering nodes. And it then generates node order

within each cluster through DFS traversal. Rabbit Reordering has also been proved to

outperform other graph clustering approaches [22, 78, 37, 38, 39], including Community-

based methods, such as METIS [22], and BFS-based methods, such as Reverse Cuthill-

McKee (RCM) [39]) in terms of better quality (data locality) of the captured graph

communities, the ease of parallelization, and performance. More importantly, Rabbit

Reordering can capture the graph communities hierarchically (i.e., a set of smaller sub-

communities are included in a larger community, as exemplified in Figure 3.7a). Such

communities at different levels of granularities would be a good match for the GPU cache

hierarchy, where smaller sub-communities (occupying one SM) can enjoy the data locality

benefit from the L1 cache, while larger communities (occupying multiple SMs) can enjoy

the data locality from the larger L2 cache. We quantitatively discuss such a locality

benefit in Section 4.7.2.

61

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

3.5.2 Warp-aware Memory Customization

Existing works [16, 56] utilize a large number of global memory accesses for reading

and writing the embedding and a large number of atomic operations for aggregation

(a reduction operation). However, this approach leads to heavy overhead and fails to

exploit the potential benefits from shared memory. In particular, when aggregating on

a target node with k neighbor groups (each has ngs neighbors with Dim-Dimensional

embeddings) into a Dim-dimensional embedding, it involves O(k · ngs · Dim) atomic

operations and O(k · ngs ·Dim) global memory accesses.

By contrast, we propose a warp-centric shared memory optimization technique. Our

key insight is that by customizing shared memory layout according to the block-level

warp organization pattern (Figure 3.7), we can significantly reduce the number of atomic

operations and global memory access. First of all, we reserve a shared memory space

(4 × Dim bytes for floating-point embeddings) for the target node of each neighbor

group (warp), such that the threads from a warp can cache the intermediate results of

reduction in shared memory. Later on, within a thread block, we designate only one warp

(called leader) for copying the intermediate results of each target node to global memory

considering that neighbors of each node can be spread across different warps. The detailed

customization procedure is described in Algorithm 2. Specifically, each warp (maintained

in warpPtr) has three properties: nodeSharedAddr (a shared memory address for the

aggregation result of a neighbor-group), nodeID (the ID of the target node), and leader

(a boolean flag indicating whether the current warp is a leader warp for flushing out

the result from the shared memory to the global memory). The major customization

routine (Line 4 to Line 22) handles different warps based on their index position relative

to thread blocks. Note that such a shared memory customization is low-cost and is done

only once on-the-fly with the regular graph initialization process before the GPU kernel

62

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

Algorithm 2 Warp-aware Memory Customization.
▷ Compute #neighbor-groups (#warps).

1: warpNum = neighborGroups = computeGroups(ngs);
▷ Compute the number of warps per thread block.

2: warpPerBlock = floor(threadPerBlock/threadPerWarp)
▷ Initialize tracking variables.

3: cnt = 0; local_cnt = 0; last = 0;
4: while cnt < warpNum do

▷ Warp in the front of a thread block.
5: if cnt % warpPerBlock == 0 then
6: warpPtr[cnt].nodeSharedAddr = local_cnt ×Dim;
7: last = warpPtr [cnt].nodeID;
8: warpPtr [cnt].leader = true;

▷ Warp in the middle of a thread block.
9: else

▷ Warp with the same target node as
its predecessor warp.

10: if warpPtr [cnt].nodeID == last) then
11: warpPtr [cnt].nodeSharedAddr = local_cnt×Dim;

▷ Warp with the different target node as
its predecessor warp.

12: else
13: local_cnt ++;
14: warpPtr [cnt].nodeSharedAddr = local_cnt ×Dim;
15: last = warpPtr [cnt].nodeID;
16: warpPtr [cnt].leader = true;
17: end if
18: end if

▷ Next warp belongs to a new thread block.
19: if (+ + cnt)%warpPerBlock == 0 then
20: local_cnt = 0;
21: end if
22: end while

execution.

In our design, when a target node with k neighbor groups (each has ngs neighbors

with Dim-dimensional embeddings), it involves O(Dim) atomic operations and O(Dim)

global memory accesses. To this end, we can save the atomic operations and global mem-

ory access by (k ·ngs)×, thus significantly accelerating the aggregation operations. Here,

we treat ngs as a hyper-parameter to balance memory access efficiency and computation

parallelism, and we further discuss its value selection in Section 3.6.

63

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

3.6 Design Optimization

The parameters in our GPU kernel configurations can be tuned to accommodate

various GNN models with graph data sets. But it is not yet known how to automati-

cally select the parameters which can deliver the optimal performance. In this section,

we introduce the analytical model and the auto parameter selection in the Decider of

GNNAdvisor.

Analytical Modeling: The performance/resource analytical model of GNNAdvi-

sor has two variables, workload per thread (WPT), and shared memory usage per block

(SMEM).

WPT = ngs × Dim

dw
, SMEM =

tpb

tpw
×Dim× FloatS (3.5)

where ngs and dw is the neighbor-group and dimension-worker size (Section 3.4.2), re-

spectively; Dim is the node embedding dimension; IntS and FloatS are both 4-byte on

GPUs; tpb is the thread-per-block and tpw is the thread-per-warp; tpw is 32 for GPUs,

while tpb is selected by users.

Parameter Auto Selection: To determine the value of the ngs and dw , we follow

two steps. First, we determine the value of dw based on tpw (hardware constraint) and

Dim (input property), as shown in Equation 3.6. Note that we develop this equation by

profiling different datasets and GNN models.

dw =

tpw Dim ≥ tpw

tpw
2

Dim < tpw

(3.6)

Second, we determine the value of ngs based on the selected dw and the user-specified

tpb. The constraints include making WPT ≈ 1024 and SMEM ≤ SMEMperBlock . Note

that SMEMperBlock is 48KB to 96KB on modern GPUs [79, 80]. Across different

GPUs, even though the number of CUDA cores and global memory bandwidth would

64

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

be different, the single-thread workload capacity (measured by WPT) remains similar.

tpb is usually chosen as a power of 2 but less than or equal 1024. Our insight based on

micro-benchmarking and previous literature [81] shows that smaller blocks (1 to 4 warps,

i.e., 32 ≤ tpb ≤ 128) can improve SM warp scheduling flexibility and avoid tail effects,

thus leading to higher GPU occupancy and throughput. We further demonstrate the

effectiveness of our analytical model in Section 5.4.3.

3.7 Evaluation

In this section, we comprehensively evaluate GNNAdvisor in terms of the performance

and adaptability on various GNN models, graph datasets, and GPUs.

3.7.1 Experiment Setup

Benchmarks: We choose the two most representative GNN models widely used

by previous work [15, 16, 14] on node classification tasks to cover different types of

aggregation. 1) Graph Convolutional Network (GCN) [10] is one of the most popular

GNN model architectures. It is also the key backbone network for many other GNNs,

such as GraphSAGE [12], and differentiable pooling (Diffpool) [41]. Therefore, improving

the performance of GCN will also benefit a broad range of GNNs. For GCN evaluation,

we use the setting: 2 layers with 16 hidden dimensions, which is also the setting from the

original paper [10]. 2) Graph Isomorphism Network (GIN) [13]. GIN differs from GCN

in its aggregation function, which weighs the node embedding values from the node itself.

In addition, GIN is also the reference architecture for many other advanced GNNs with

more edge properties, such as Graph Attention Network (GAT) [11]. For GIN evaluation,

we use the setting: 5 layers with 64 hidden dimensions, which is the setting used in the

original paper [13].

65

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

Baselines: we choose several baseline implementations for comparison. 1) Deep

Graph Library (DGL) [15] is the state-of-the-art GNN framework on GPUs, which is built

upon the famous tensor-oriented platform – Pytorch. DGL significantly outperforms the

other existing GNN frameworks [16] over various datasets on many mainstream GNN

architectures. Therefore, we make an in-depth comparison with DGL in our evaluation; 2)

Pytorch-Geometric (PyG) [16] is another GNN framework in which users can define their

edge convolutions when building customized GNN aggregation layers; 3) NeuGraph [14] is

a dataflow-centered GNN system on GPUs built on Tensorflow [68]; 4) Gunrock [56] is the

GPU-based graph processing framework with state-of-the-art performance on traditional

graph algorithms (e.g., PageRank).

Datasets: We cover all three types of datasets, which have been used in previous

GNN-related work [15, 16, 14]. Type I graphs are the typical datasets used by previous

GNN algorithm papers [10, 13, 12]. They are usually small in the number of nodes

and edges, but rich in node embedding information with high dimensionality. Type II

graphs [42] are the popular benchmark datasets for graph kernels and are selected as

the built-in datasets for PyG [16]. Each dataset consists of a set of small graphs, which

only have intra-graph edge connections without inter-graph edge connections. Type III

graphs [82, 10] are large in terms of the number of nodes and edges. These graphs

demonstrate high irregularity in structure, which is challenging for most of the existing

GNN frameworks. Details of these datasets are listed in Table 5.4.

Platforms & Metrics: We implement GNNAdvisor’s backend with C++ and

CUDA C and its front-end with Python. Our major evaluation platform is a server with

an 8-core 16-thread Intel Xeon Silver 4110 CPU [83] and a Quadro P6000 [80] GPU.

Besides, we use Tesla V100 [79] GPU on the DGX-1 system [84] to demonstrate the gen-

erality of GNNAdvisor. Runtime parameters of different input settings are optimized by

GNNAdvisor Decider. To measure the performance speedup, we calculate the averaged

66

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

Table 3.1: Datasets for Evaluation.
Type Dataset #Vertex #Edge Dim. #Class

I

Citeseer 3,327 9,464 3,703 6
Cora 2,708 10,858 1,433 7
Pubmed 19,717 88,676 500 3
PPI 56,944 818,716 50 121

II

PROTEINS_full 43,471 162,088 29 2
OVCAR-8H 1,890,931 3,946,402 66 2
Yeast 1,714,644 3,636,546 74 2
DD 334,925 1,686,092 89 2
TWITTER-Partial 580,768 1,435,116 1,323 2
SW-620H 1,889,971 3,944,206 66 2

III

amazon0505 410,236 4,878,875 96 22
artist 50,515 1,638,396 100 12
com-amazon 334,863 1,851,744 96 22
soc-BlogCatalog 88,784 2,093,195 128 39
amazon0601 403,394 3,387,388 96 22

latency of 200 end-to-end inference (forward propagation) or training (forward+backward

propagation).

3.7.2 Compared with DGL

In this section, we first conduct a detailed experimental analysis and comparison

with DGL on GNN inference, then extend our comparison for GNN training. As shown

in Figure 3.8, GNNAdvisor achieves 4.03× and 2.02× speedup on average compared to

DGL [15] over three types of datasets for GCN and GIN on inference, respectively. We

next provide detailed analysis and give insights for each type of datasets.

Type I Graphs: The performance improvement against DGL is significantly higher

for GCN (on average 6.45×) than GIN (on average 1.17×). The major reason is their

different GNN computation patterns. For GCN, node dimension reduction (DGEMM)

is always placed before aggregation. This largely reduce data movement and thread

synchronization overheads during the aggregation phase, which could gain more benefits

from GNNAdvisor’s 2D workload management and specialized memory optimization for

data locality improvements. GIN, on the other side, has aggregation phase that must

67

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ci
te

se
er

Co
ra

Pu
bm

ed PP
I

PR
O

TE
IN

S_
fu

ll

O
VC

AR
-8

H

Ye
as

t

DD

TW
IT

TE
R

-P
ar

tia
l

SW
-6

20
H

am
az

on
05

05

ar
tis

t

co
m

-a
m

az
on

so
c-

B
lo

gC
at

al
og

am
az

on
06

01

Type I Type II Type III

No
rm

. S
pe

ed
up

 (x
)

GCN GIN

14.46

6.54

9.61

3.99

Figure 3.8: Inference speedup (×) over DGL on GCN and GIN.

be finished before the node dimension reduction. Thus, it cannot avoid high-volume

memory access and data movements during the aggregation phase. Therefore, it gets

lower benefits from the data locality and the shared memory on GPUs for fast and

low-overhead memory access. However, our fine-grained dimension partitioning can still

handle these high-dimensional cases effectively.

Type II Graphs: Performance shows less difference between GCN (4.02×) and

GIN (2.86×) on the same datasets except for TWITTER-Partial, which has the highest

node embedding dimension (1323) in Type II graphs. It is worth noticing that the

speedup for GIN is consistently better compared with Type I. There are two major

reasons: 1) node feature dimension is much lower (average 66.5, excluding TWITTER-

Partial) versus Type I (average 1421), which can gain more performance benefits from

data spatial and temporal locality of our specialized memory optimizations; 2) Type

II graphs intrinsically have good locality in their graph structure. The reason is that

Type II datasets consist of small graphs with very dense intra-graph connections but no

inter-graph edges, plus nodes within each small graph are assigned with consecutive IDs.

Therefore, the performance gains of such graph-structure locality can be scaled up when

combined with GNNAdvisor’s efficient workload and memory optimizations.

68

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

Type III Graphs: The speedup is also evident (average 2.10× for GCN and average

1.70× for GIN) on graphs with a large number of nodes and edges, such as amazon0505.

The reason is the high overhead inter-thread synchronization and global memory ac-

cess can be well reduced through our 2D workload management and specialized memory

optimization. Besides, our community-aware node renumbering further facilitates an ef-

ficient workload sharing among adjacent threads (working on a group of nodes) through

improving the data spatial/temporal locality. On the dataset artist, which has the small-

est number of nodes and edges within Type III, we notice a lower performance speedup

for GIN. And we find that the artist dataset has the highest standard deviation of graph

community sizes within Type III graphs, which makes it challenging to 1) use the group

community information to capture the node temporal and spatial locality in the GNN

aggregation phase, and 2) capitalize on the performance benefits of using such a commu-

nity structure for guiding system-level optimizations (e.g., warp-aligned thread mapping

and shared memory customization) on GPUs, which have a fixed number of computation

and memory units within each block/SM.

Kernel Metrics: For detailed kernel metrics analysis, we utilize NVProf [85] to

measure two performance-critical (computation and memory) CUDA kernel metrics:

Stream Processor (SM) efficiency and Cache (L1 + L2 + Texture) Hit Rate. GNNAd-

visor achieves on average 24.47% and 12.02% higher SM efficiency compared with DGL

for GCN and GIN, respectively, which indicates that our 2D workload management can

strike a good balance between the single-thread efficiency and the multi-thread paral-

lelism that are crucial to the overall performance improvement. GNNAdvisor achieves

on average 75.55% and 126.20% better cache hit rate compared with DGL for GCN and

GIN, correspondingly, which demonstrates the benefit of specialized memory optimiza-

tions.
Training Support: We also evaluate the training performance of GNNAdvisor on

69

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

C
ite

se
er

C
or

a

Pu
bm

ed PP
I

PR
O

TE
IN

S_
fu

ll

O
VC

A
R-

8H

Ye
as

t

D
D

TW
IT

TE
R-

Pa
rt

ia
l

SW
-6

20
H

am
az

on
05

05

ar
tis

t

co
m

-a
m

az
on

so
c-

Bl
og

C
at

al
og

am
az

on
06

01

Type I Type II Type III

No
rm

. S
pe

ed
up

 (x
) GCN GIN

Figure 3.9: Training speedup (×) over DGL on GCN and GIN.

all three types of datasets compared with the DGL on both GCN and GIN. Compared

with inference, training is more challenging, since it involves more intensive computa-

tion with the forward value propagation and the backward gradient propagation, both

of which heavily rely on the underlying graph aggregation kernel for computation. As

shown in Figure 3.9, GNNAdvisor consistently outperforms the DGL framework with

average 1.61× and average 2.00× speedup on GCN and GIN, respectively, which shows

the strength of our input-driven optimizations. The key difference between training and

inference of GNNs is two-fold: First, backpropagation is needed in training. This step

benefits from our improvements, as the backpropagation step is similar to the forward

computation during the inference, and all the proposed methods are still beneficial; Sec-

ond, training incurs extra memory and data movement overheads for storing/accessing

the activations of the forward pass until gradients can be propagated back.

70

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0.0

0.5
1.0

1.5
2.0
2.5

3.0
3.5

No
rm

. S
pe

ed
up

 (x
) GCN GIN

PROTEINS_full YeastOVCAR-8H SW-620HTWITTER-PartialDD

Figure 3.10: Training speedup (×) over PyG on GCN and GIN.

Table 3.2: Latency (ms) comparison with NeuGraph (NeuG).
Dataset NeuG (ms) Ours (ms) Speedup
reddit-full 2460 599.69 4.10×
enwiki 1770 443.00 3.99×
amazon 1180 474.57 2.48×

3.7.3 Compared with other Frameworks

We compare with DGL on all input settings, since DGL is the overall best-performance

GNN framework. In this section, we further compare GNNAdvisor with three other

representative GNN computing frameworks on their best settings.

Compared with PyG: As shown in Figure 3.10, GNNAdvisor can outperform

PyG with 1.78× and 2.13× speedup on average for GCN and GIN, respectively. For

GCN, GNNAdvisor achieves significant speedup on datasets with high-dimensional node

embedding, such as TWITTER-Partial, through 1) node dimension reduction before

aggregation and 2) workload sharing among neighbor partitions and dimension partitions.

For GIN, GNNAdvisor reaches 2.45× speedup on datasets with a higher average degree,

such as DD, since GNNAdvisor can effectively distribute the workload of each node along

their embedding dimension to working threads while balancing the single-thread efficiency

and inter-thread parallelism. PyG, however, achieves inferior performance because 1)

it has poor thread management in balancing workload and controlling synchronization

overhead; 2) it heavily relies on the scatter-and-gather kernel, which lacks flexibility.

Compared with NeuGraph: For a fair end-to-end training comparison with Neu-

Graph that has not open-sourced its implementation and datasets, we 1) use the GPU

71

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

amazon0505 artist com-amazon soc-BlogCatalog amazon0601
N

or
m

. S
pe

ed
up

 (x
) Gunrock (x)

GNNAdvisor (x)

Figure 3.11: Speedup (×) comparison with Gunrock.

(Quadro P6000 [80]) that is comparable with the GPU of NeuGraph (Tesla P100 [86]) in

performance-critical factors, such as GPU architecture (both have the Pascal architec-

ture) and the number of CUDA cores; 2) use the same set of inputs as NeuGraph on the

same GNN architecture [14]; 3) use the datasets that are presented in their paper and

are also publicly available. As shown in Table 3.2, GNNAdvisor outperforms NeuGraph

with a significant amount of margin (1.3× to 7.2× speedup) in terms of computation and

memory performance. NeuGraph relies on general GPU kernel optimizations and largely

ignores the input information. Moreover, the optimizations in NeuGraph are built-in and

fixed inside the framework without performance tuning flexibility. In contrast, GNNAd-

visor leverages GNN-featured GPU optimizations and demonstrates the key contribution

of input insights for system optimizations.

Compared with Gunrock: We make a performance comparison between GN-

NAdvisor and Gunrock [56] on a single neighbor aggregation kernel of GNNs (i.e., the

Sparse-Matrix Dense-Matrix Multiplication (SpMM)) over the Type III graphs. As shown

in Figure 3.11, GNNAdvisor outperforms Gunrock with 2.89× to 8.41× speedup. There

are two major reasons behind such a evident performance improvement on the sparse

GNN computation: 1) Gunrock focuses on graph-algorithm operators (e.g., frontier pro-

cessing) but lacks efficient support for handling high-dimensional node embedding; 2)

Gunrock leverages generic optimizations without considering the input differences, thus,

losing the adaptability for handling different GNN inputs efficiently.

72

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1 2 4 8 16 32 64 128 256 512

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

N
or

m
.R

un
tim

e
(%

)

(a)
0%

20%

40%

60%

80%

100%

120%

1 2 4 8 16 32

N
or

m
. R

un
tim

e
(%

)

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

(b)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

amazon0505 artist com-amazon

N
or

m
. S

pe
ed

up
 (

x)

GCN GIN

(c)
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Atomic-Ops. Reduction Mem. Access Reduction

amazon0505 artist soc-BlogCatalog

(d)

Figure 3.12: Optimization Analysis. (a) Normalized latency as the neighbor group size
(ngs) grows (latency at ngs = 1 is set as 100%); (b) Normalized latency as the number
of dimension workers grows (latency at dw = 1 is set as 100%); (c) Normalized speedup
when using node renumbering compared to without renumbering; (d) Normalized GPU
kernel metrics when using block-level optimizations compared to without block-level op-
timizations.

3.7.4 Optimization Analysis

In this section, we explore and analyze the optimizations used in Sections 3.4 and 3.5

in detail.

Neighbor partitioning: From Figure 4.10a, we can see that with the increase

of the neighbor-group size, the running time of GNNAdvisor will first decrease. The

increase of the neighbor-group size saturates the computation capability of each thread

meanwhile improving the data locality and reducing the number of atomic operations

(i.e., inter-thread synchronization overhead). However, when the neighbor-group size

becomes larger than a certain threshold (e.g., 32 for the artist dataset), each thread

reaches its computation capacity upper bound, and further increasing the neighbor-group

size offers no more performance benefit instead increases the overall latency.

Dimension partitioning: As shown in Figure 4.10b, the dimension worker impact

is more evident in performance compared with the neighbor-group size at the range

from 1 to 16. When the number of dimension worker increases from 16 to 32, the

runtime performance shows very minor difference due to the already balanced single-

worker efficiency and multi-worker parallelism. Therefore, further increase the number

of dimension workers brings no more benefits.

73

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

1

10

100

1000

16 32 64 128 256 512 1024 2048

R
u

n
ti

m
e

(m
s)

Hidden Dimsnion

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

(a)

0% 20% 40% 60% 80% 100%

amazon0505

artist

com-amazon

web-BerkStan

soc-BlogCatalog

amazon0601

Reordering Training

(b)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

C
ite

se
er

C
or

a

Pu
bm

ed PP
I

PR
O

TE
IN

S_
fu

ll

O
VC

A
R

-8
H

Ye
as

t

D
D

TW
IT

TE
R

-P
ar

tia
l

SW
-6

20
H

am
az

on
05

05

ar
tis

t

co
m

-a
m

az
on

so
c-

B
lo

gC
at

al
og

am
az

on
06

01

Type I Type II Type III

N
or

m
. S

pe
ed

up
 (x

)

GCN GIN

(c)

Figure 3.13: Additional Studies. (a) Latency (ms) analysis as the hidden dimension
grows on GCN; (b) Overhead (%) analysis for node renumbering; (c) Speedup (×) on
Tesla V100 over Quadro P6000 (set as 1×).

Node renumbering: We demonstrate the benefit of node renumbering by profiling

Type III datasets for GCN and GIN. As shown in Figure 4.10c, renumbering nodes within

a graph can bring up to 1.74× and 1.49× speedup for GCN and GIN, respectively. The

major reason is that our community-aware node renumbering can increase the data spatial

and temporal locality during GNN aggregation.

To quantify such locality benefits, we extract the detailed GPU kernel metric – mem-

ory access in terms of read and write bytes from DRAM for illustration. Our CUDA

kernel metric profiling results show that node renumbering can effectively reduce the

memory access overhead (on average 40.62% for GCN and 42.33% for GIN) during the

runtime since more loaded node embeddings are likely to be shared among the nodes

with consecutive IDs. We also notice one input case that benefits less from our optimiza-

tion – artist, since 1) the community size inside artist displays a large variation (high

standard deviation), making it challenging to capture the neighboring adjacency and lo-

cality; 2) such a variation hurdles system-level (computation and memory) optimizations

to effectively capitalize on the locality benefits of renumbering.

Block-level optimization: We show the optimization benefits of our block-level

optimization (including warp-aligned thread mapping, and warp-aware shared memory

customization). We analyze two kernel metrics (atomic operations reduction and DRAM

access reduction) on three large graphs for illustration. As shown in Figure 4.10d, GN-

74

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

NAdvisor can effectively reduce the atomic operations and DRAM memory access by an

average 47.85% and 57.93%. This result demonstrates 1) warp-aligned thread mapping

based on neighbor partitioning can effectively reduce a large portion of atomic opera-

tions; 2) warp-aware shared memory customization can avoid a significant amount of

global memory access.

3.7.5 Additional Studies

Hidden dimensions of GNN: In this experiment, we analyze the impact of

the GNN architecture in terms of the size of the hidden dimension for GCN and GIN.

As shown in Figure 3.13a, we observe that with the increase of hidden dimension of

GCN, the running time of GNNAdvisor is also increased due to more computation (e.g.,

additions) and memory operations (e.g., data movements) during the aggregation phase

and a larger size of the node embedding matrix during the node update phase. Meanwhile,

we also notice that GIN shows a larger latency increase versus GCN, mainly because of

the number of layers (2-layer GCN vs. 5-layer GIN) that make such a difference more

pronounced.

Overhead analysis: Community-aware node renumbering is the major source of

overhead for leveraging GNN input information, and other parts are negligible. Here

as a case study, we evaluate its overhead on the training phase of GCN on Type III

graphs, given the optimization decision from our GNNAdvisor Decider (as discussed in

Section 3.5). Here we use training for illustration; inference in a real GNN application

setting would also use the same graph structure many times [12, 10, 10] with different node

embeddings inputs. As shown in Figure 3.13b, node-renumbering overhead is consistently

small (average 4.00%) compared with overall training time. We thus conclude that such

one-time overhead can be amortized over GNN running time, which demonstrates its

applicability in real-world GNN applications.

75

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

2 4 8 16 32 64 128 256 512 1024

(b) Setting II24 ms

54 ms

2
4
8
16
32

2 4 8 16 32 64 128 256 512 1024

38 ms

103 ms

(a) Setting I

2 4 8 16 32 64 128 256 512 1024

(d) Setting IV74 ms

610 ms

2 4 8 16 32 64 128 256 512 1024

(c) Setting III11 ms

70 ms

2
4
8
16
32

ngs
dw

ngs
dw

ngs
dw

ngs
dw

2
4
8
16
32

2
4
8
16
32

Figure 3.14: Parameter Selection for Four Settings. Note that the solid-black dot indi-
cates the parameter (dw and ngs) selected by GNNAdvisor Decider based on analytical
modeling.

Performance on Tesla V100: To demonstrate the potential of GNNAdvisor in

the modern data-center environment, we showcase the performance of GNNAdvisor on

an enterprise-level GPU – Tesla V100 [79]. As shown in Figure 3.13c, GNNAdvisor can

scale well towards such a high-end device, which can achieve 1.97× and 1.86× speedup

compared with P6000 for GCN and GIN due to more computation resources (e.g., 2.6×

SMs, and 1.33× CUDA cores, and 1.13× throughput performance) and higher memory

bandwidth (e.g., 2.08× peak memory bandwidth). This comparison shows that GNNAd-

visor well adapts towards more advanced GPU hardware for seeking better performance.

We also foresee that our current work of GNNAdvisor can be extended to the multi-GPU

or distributed data center, benefiting overall performance by improving single GPU effi-

ciency.

Parameter selection: To show the effectiveness of our analytical modeling in ker-

nel parameter selection, we consider four different settings: I: amazon0505 on GCN at

76

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs Chapter 3

P6000 GPU as our base setting; II: amazon0505 GCN on V100 to demonstrate device

adaptation; III: amazon0505 and soc-BlogCatalog on P6000 to demonstrate adaptation

to different datasets; IV: amazon0505 on GIN at P6000 to demonstrate adaptation to

a different GNN model architectures. As shown in Figure 4.11, our parameter selection

strategy can pinpoint the optimal low-latency design for the above four settings. This

demonstrates the effectiveness of our analytical modeling in assisting parameter selection

to optimize the performance of GNN computation.

77

Chapter 4

MGG: Accelerating Graph Neural

Networks with Fine-Grained

Intra-Kernel

Communication-Computation

Pipelining on Multi-GPU Platforms

The increasing size of input graphs for graph neural networks (GNNs) highlights the

demand for using multi-GPU platforms. However, existing multi-GPU GNN systems

optimize the computation and communication individually based on the conventional

practice of scaling dense DNNs. For irregularly sparse and fine-grained GNN workloads,

such solutions miss the opportunity to jointly schedule/optimize the computation and

communication operations for high-performance delivery.

To this end, we propose MGG 1 , a novel system design to accelerate full-graph
1Published at USENIX OSDI’23. USENIX permits authors to retain their ownership of the copyrights

78

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

GNNs on multi-GPU platforms. The core of MGG is its novel dynamic software pipeline

to facilitate fine-grained computation-communication overlapping within a GPU ker-

nel. Specifically, MGG introduces GNN-tailored pipeline construction and GPU-aware

pipeline mapping to facilitate workload balancing and operation overlapping. MGG

also incorporates an intelligent runtime design with analytical modeling and optimiza-

tion heuristics to dynamically improve the execution performance. Extensive evaluation

reveals that MGG outperforms state-of-the-art full-graph GNN systems across various

settings: on average 4.41×, 4.81×, and 10.83× faster than DGL, MGG-UVM, and ROC,

respectively.

4.1 Introduction

Over the recent years, graph-based deep learning has attracted lots of attention from

the research and industry communities. Among various graph-learning methods, graph

neural network (GNN) [10, 13, 11] gets highlighted most due to its success in many

deep learning tasks (e.g., node feature vector (embedding) generation for node classifica-

tion [45, 46, 47] and link prediction [48, 49, 50]). GNNs consist of several layers, where

layer k+1 computes the embedding for a node v based on the embeddings at the previous

layer k (k ≥ 0) by applying

a(k+1)
v = Aggregate(k+1)(h(k)u |u ∈ N(v) ∪ h(k)v)

h(k+1)
v = Update(k+1)(a(k+1)

v)

where h
(k)
v is the embedding of node v at layer k. The Aggregate function accumu-

lates neighbors’(N(v)) embeddings of node v. The Update function consists of a fully-

in their works. Reprinted from MGG: Accelerating Graph Neural Networks with Fine-grained intra-kernel
Communication-Computation Pipelining on Multi-GPU Platforms. USENIX Symposium on Operating
Systems Design and Implementation. 07/2023.

79

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

connected NN layer. The neighbor aggregation (Aggregate) is the key bottleneck that

dominates the overall computation due to its high computation sparsity and irregular-

ity [3, 87]. Compared with conventional graph analytics (e.g., random walk [25, 51]),

GNN features higher accuracy [10, 13] and better generality [12, 88] on various applica-

tions.

GNN computation on large input graphs (millions/billions of nodes and edges) usu-

ally counts on powerful multi-GPU platforms (e.g., NVIDIA DGX [89]) for scaling up

the performance. The multi-GPU system (that can potentially store all data required

for the computation in the aggregate memory of all GPUs on a single machine) can ben-

efit from aggregated memory capacity and bandwidth (HBM and NVLinks) with more

GPUs. There is also a popular trend for state-of-the-art hyper-scale systems employ-

ing GPU-centric building blocks. For example, the recent NVIDIA DGX SuperPod [90]

consists of 32×DGX-H100 servers (each with 8×H100). Unfortunately, the runtime per-

formance of GNNs does not scale proportionally with the aggregated compute capability

and memory capacity of the platform. This is mainly because the irregular and sparse

local memory access of neighbor aggregation in the single-GPU settings now “scales” to

more expensive inter-GPU communication (i.e., remote memory access). Such intensive

inter-GPU communication becomes the new critical path of multi-GPU GNN execution

and offsets the performance gains from multi-GPU computation parallelism.

Based on this observation, we highlight a more promising way of formalizing GNN

computation on multi-GPU systems. Our key insight is that GNN execution can be more

precisely abstracted as a fine-grained dynamic software pipeline to encourage communi-

cation and computation overlapping, which will largely hide the communication cost.

The opportunities for building such fine-grained pipelines widely exist at different gran-

ularities in GNNs. For instance, on a single graph node, the remote neighbor access

can be overlapped with the local neighbor computation. Among different graph nodes,

80

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Kernel & Runtime Manager

GNN Workload &
Data Manage.

Pipeline-centric
Kernel Design

MGG

SHMEM Library
(e.g., NVSHMEM)

Optimized
Param.

Graph Loader &
Model Initializer

Runtime
Param.

Optimizer

Performance Feedbacks

GNN
Model

Node
Embe-
dding

Graph
Struc-
ture

NVIDIA DGX
Multi-GPU Platform

Optimized
Design

Hybrid Data
Placement

Warp-based
Mapping &
Pipelining

Specialized
Memory Design
& Optimization

Pipeline-aware
Workload

Management

Figure 4.1: Overview of MGG.

the remote neighbor access for certain nodes would potentially be overlapped with the

local neighbor computation of some other nodes. However, prior research could hardly

exploit such benefits since they rely on hardware and software infrastructures tailored

for coarse-grained [91, 92] and regular communication patterns [14, 93]. To capitalize on

the fine-grained pipelining benefits, there are three major challenges.

The first challenge is how to craft the pipeline structure. A work-efficient pipeline for

GNNs demands comprehensively considering multiple factors (e.g., the operations and

the number/granularity of each pipeline stage) to best fit the GNN algorithm and multi-

GPU computation/communication. The second challenge is how to map the pipeline to

the GPU processing units. Given the GPU’s architectural complexity (e.g., multi-granular

processing units and multi-layer memory hierarchy), different mapping and primitive

choices would bring performance and design flexibility tradeoffs. The third challenge is

how to find and adapt toward the “optimal” pipeline configuration swiftly. Given the diver-

sity of GNN inputs (e.g., graph structures) and hardware (e.g., different types/numbers

of GPUs), pinpointing the best-off design configuration with high-performance delivery

relies on combined insights from the properties of the software pipeline, GNN inputs, and

GPU programming and execution paradigms.

To this end, we introduce a set of principles for multi-GPU GNN acceleration via

81

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

a fine-grained dynamic software pipeline. To construct fine-grained pipelines, the orig-

inal coarse-grained irregular GNN computation should be breakdown into fine-grained

operations. The joint optimization of the GNN workload granularity and data layout

should be carried out to facilitate operation overlapping. To map pipelines to GPUs,

the proper GPU logical processing units (e.g., thread, warp, and block) should be se-

lected for promoting GPU kernel efficiency and design flexibility. In addition, the right

choice of communication primitives (e.g., NVSHMEM [94]) should be determined to pro-

vide fine-grained inter-GPU communication support. To adapt pipelines dynamically ,

customized kernel templates with tunning knobs should be devised. This will help to

maintain pipelining effectiveness across a diverse range of GNN inputs and hardware

platform settings.

We crystallize the above principles into MGG2, a holistic system design and im-

plementation for multi-GPU GNNs (Figure 4.1). Given the GNN models and inputs,

MGG will automatically generate pipeline-centric GPU kernels for multi-GPU platforms

and dynamically improve the kernel performance based on runtime feedback. The core

of MGG is its Kernel & Runtime Manager, which constructs GNN-tailored pipelines

and maps such pipelines to proper communication primitives and GPU logical process-

ing units. It can also dynamically orchestrate GPU kernels based on new configurations.

MGG also incorporates a Runtime Parameter Optimizer, which will monitor the per-

formance (e.g., latency) from the actual execution and generate new configurations for

the next iteration based on the analytical performance model and optimization heuristics.

To the best of our knowledge, we are the first to explore the potential of GPU kernel oper-

ation pipelining for accelerating irregular GNN workloads. Moreover, MGG can be gen-

eralized to other applications (e.g., deep-learning recommendation model (DLRM) [95])

that are sharing similar irregular communication demands (§4.7.3).
2MGG is open-sourced at https://github.com/YukeWang96/MGG_OSDI23

82

https://github.com/YukeWang96/MGG_OSDI23

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Overall, we make the following contributions in this paper:

• We propose a GNN-tailored pipeline construction technique (§4.4) with pipeline-

aware workload management and hybrid data placement, for efficient communication-

computation pipelining in a GPU kernel.

• We introduce a GPU-aware pipeline mapping strategy (§4.5), encompassing warp-

based mapping and pipelining, and specialized memory designs and optimizations

to comprehensively promote kernel performance.

• We devise an intelligent runtime with lightweight analytical modeling and optimiza-

tion heuristics to dynamically improve the performance of GNN training (§4.6).

• Comprehensive experiments demonstrate that MGG can outperform state-of-the-

art multi-GPU GNN systems across various GNN benchmarks. Additionally, MGG

can be generalized to other DL applications, like DLRM.

4.2 Related Work

Recent deep-learning applications expand their scope from handling structured dense

inputs (e.g., images) to unstructured sparse inputs (e.g., graphs). Along with such algo-

rithmic/application expansion is the exploration of new system designs and optimizations

for more efficient deep learning. One of the most important topics is the ability to han-

dle large-scale inputs, which are usually out of the computation and memory capacity of

one GPU. For scaling regular deep-learning applications, like dense DNNs, various ab-

stractions (e.g., data and model parallel) and high-performance communication libraries

(e.g., NCCL [96]) have been developed. While the scaling approach for irregular GNN

applications is still initial and suffers from unsatisfactory performance.

83

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

B C

C

A

F

G D

D

A

(b) Compute + Regular Comm. (c) Comm. -Compute Overlapping.

time

DE

CA

C

E

F D

F

B

G

Partial
Compute

Partial
Compute

P2P Embed.
Comm.

D E

C G

D

ABD

A C

B C

E

F

G

A

F D

D E

F

C

CA

Overlapped Compute &
Comm

SMMSMMSMM

time

D

C

A
B
C

E
F
G

D

G
PU

-0
G

PU
-1

C

E

G F

D

B

A

Local Compute

DEFG

swap

ABC

DEFGABC

B CD

A C

C

A
B
C A BE

E
F
G

F

FA

G D

Compute

D

D C G

E

F D

(a) Irregular Comm + Compute.
Comm.

G
PU

-0
G

PU
-1

time

D

E D

A C

C

Remote Fetch SMSMSM

SMSMSM SMSMSM

Local Compute
SMSMSM

SM

Figure 4.2: Different Multi-GPU GNN strategies for computation and communication.
Note that red and green boxes indicate aggregation workload on remote and local neigh-
bors. “SM” boxes with grey areas indicate potential idleness.

Compared to scaling dense DNNs, scaling sparse GNNs is significantly more chal-

lenging. The irregular fine-grained sparse GNNs workload cannot fit the regular coarse-

grained workload abstraction for dense DNNs. The cost of irregular communication in

GNNs cannot be easily amortized by simply batching more requests as dense DNNs due

to their randomness and sparseness. Scaling strategies largely vary among different GNN

inputs while tiling/schedule strategies would be reused across different inputs of dense

DNNs. Therefore, an array of dedicated designs have been introduced to scale the sparse

GNNs, focusing on three major directions.

84

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Operator Specialization for Sparse Communication: This is the mainstream

solution that treats the communication as a standalone operator for irregularly sparse

GNN communication (Figure 4.2(a)). DGL [15] is the state-of-the-art GNN framework

and its most recent update incorporates PyTorch-Direct [92] (a GNN-tailored communi-

cation design based on zero-copy memory [97]) for large-scale GNN training across GPUs.

Work from [98] introduces a communication planning algorithm for distributed GNNs by

considering links, communication, contention, and load balancing. However, these efforts

optimize the communication standalone and thus miss the opportunities to jointly opti-

mize computation and communication operations/schedules which can potentially reduce

the overall latency and improve GPU utilization.

Algorithm Modification for no Communication: The second typical type is to

eliminate irregular communication by altering algorithms [99, 100, 15, 101]. They harness

various algorithmic adaption solutions, such as neighbor sampling and mini-batch to

prefetch the remote neighbors to local devices, and then train the GNN model in a data-

parallel fashion as the traditional dense DNN. However, existing research [91, 102] shows

that such an algorithmic modification would compromise the accuracy of GNN models

compared to the original GNNs. It would also destabilize the algorithmic performance

(e.g., the lower convergence speed and final accuracy) under different inputs and sampling

configurations.

Schedule Transformation for Dense Communication: The third type is to

transform irregular communication to regularized communication (e.g., AlltoAll, P2P),

which has been optimized by existing communication kernels (Figure 4.2(b)). ROC [91]

delegates communication to its underlying NVIDIA Legion runtime [103], which man-

ages irregular remote neighbor access via a DMA engine. It batches fine-grained em-

beddings into large embedding tiles on CPUs to facilitate coarse-grained data movement

between the host and GPUs. NeuGraph [14] tiles the large node embedding matrices

85

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

by rows (as embedding chunks) and then forwards each chunk to GPUs sequentially via

coarse-grained P2P communication. P3 [93] spots the potential of transforming irregu-

lar embedding communication to regular all-to-all communication for embedding column

tiles. However, this type of effort would introduce many unnecessary data movements

and non-trivial overhead to transform original algorithms and data inputs.

To sum up, existing designs explore solutions in a limited scope and have yet to

extend their solution search to a broader context by exploring the synergy between the

multi-GPU GNN workloads, GPU execution paradigms, and communication patterns.

Therefore, these designs could hardly enjoy the full potential of multi-GPU platforms.

4.3 Motivation

Different from prior solutions, we propose a new view for multi-GPU GNN workload.

We spot that by removing the explicit barrier between the computation and communi-

cation stage in multi-GPU GNNs, we can co-schedule the operations from both stages

in a holistic way that can reduce the GPU resource idleness and promote performance

(Figure 4.2(c)). For example, when GPUs initiate remote access requests and are wait-

ing for the arrival of remote data, the idle cycles of GPUs can be fulfilled by other local

computing workloads. Such insight enables us to abstract the multi-GPU GNN workload

as a fine-grained dynamic software pipeline for communication and communication over-

lapping. Specifically, “Fine-grained” means that the operations at each pipeline stage are

tiny (e.g., the aggregation of one neighbor’s embeddings) versus DNN layers.“Dynamic”

means that the division of computation into pipeline stages would vary among differ-

ent inputs in contrast to DNNs with a relatively fixed pipeline. Such a new design is

motivated by our three major observations.

GNN Workload Speciality: The first observation reveals the specialty of GNN

86

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Listing 4.1: NVSHMEM APIs in CUDA C.
1 // Initialize an NVSHMEM context on CPUs.
2 nvshmem_init();
3 // Get the current GPU device ID on CPUs.
4 int gpu_id = nvshmem_team_my_pe(NVSHMEMX_TEAM_NODE);
5 // Set the GPU based on its device ID on CPUs.
6 cudaSetDevice(gpu_id);
7 // Define NVSHMEM memory visible for all GPUs on CPUs.
8 d_shared_mem = (void*) nvshmem_malloc (num_bytes);
9 // Define global memory visible only for the current GPU.

10 cudaMalloc((void**) &d_mem, num_bytes);
11 // Remote access API called by a thread/warp/block.
12 __device__ nvshmem_float_get_{warp/block}(void *dst, const void *src, size_t nelems, int

src_gpu_id);
13 // Sync all GPUs within an NVSHMEM context on CPUs.
14 nvshmem_barrier_all();
15 // Release NVSHMEM objects on CPUs.
16 nvshmem_free(d_shared_mem);
17 // Terminate the current NVSHMEM context on CPUs.
18 nvshmem_finalize();

workloads, which feature two major types of partial dependency that facilitate pipelin-

ing [104]. The first type is the fine-grained neighbor aggregation dependency, where

the neighbor embeddings of individual graph nodes are aggregated either sequentially

or in parallel with proper synchronization. The second type is the dynamic execution

dependency on limited processing units, where different operations would compete for

limited GPU resources (e.g., SMs) during the runtime. Such two types of dependen-

cies expose new opportunities for us to amortize communication costs by overlapping

neighbor aggregation from different nodes.

GPU Execution Characteristics: The second observation highlights the charac-

teristics of the GPU execution paradigm. One key design principle of GPUs is their

massive computation/communication parallelism to amortize the unit cost of individ-

ual computation/communication operations [105]. The underlying mechanism of GPU

hardware design to facilitate this is to simultaneously schedule multiple logical process-

ing units (e.g., threads/warps/blocks) to share the hardware processing units (i.e., GPU

87

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

SMs). Such a design provides the essential ingredient for pipelining, which is that com-

putation and communication operations can co-run on the same units at the same time

to fulfill the idle GPU cycles and maximize the utilization of the GPU hardware process-

ing units. Moreover, with the precise control of GPU kernel launching parameters (e.g.,

the size of the block and shared memory), the effectiveness of co-running heterogeneous

operations can be adjusted so that we can flexibly accommodate different inputs while

maintaining high-performance delivery.

Multi-GPU Programming Support: The third observation features the recent

advancement of the GPU communication technique and its programming support. The

one highlighted most is the NVSHMEM [94], which provides GPU intra-kernel APIs for

fine-grained (several to tens of bytes) inter-GPU communication (Listing 4.1). NVSH-

MEM is the main communication backend for MGG. Other existing techniques such

as Zero-copy memory can also serve as an alternative to NVSHMEM for fine-grained

communication. The performance will be similar while NVSHMEM offers better pro-

grammability. Some other traditional strategies for inter-GPU communication, would ei-

ther offer too coarse-grained communication solutions (e.g., unified virtual memory [106]

uses KB-level communication granularity) or resort to the default communication strate-

gies of existing multi-GPU-based runtime system (e.g., NVIDIA Legion [103]) without

GNN-tailored communication optimization.

These observations and insights motivate MGG, a holistic multi-GPU GNN sys-

tem with a novel view of GNN workloads as an operation pipeline. MGG automates

the pipeline construction, detailed pipeline mapping, and dynamic input-driven pipeline

adaption, to improve the GNN scaling.

88

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

5

GPU-0: 0-5

GPU-0
CSR

0 6 10

1 854 5 7 10 0 31

...

11
0 4 6

2 4 0 31

Remote
CSR

0 2 4

7 10

5

96
RNP-1

LNP-0 LNP-1 LNP-2
1 5
LNP-3

1
2

2

edge
split

neighbor
partitioning

neighbor
partitioning

962
Local
CSR

...
GPU-2: 6-11

... ...

7 10

10

0
30

3

6

6

1
21

2

7

7 4
54

10

10

(c) Heterogeneity-aware Workload Split and its pipeline.

(d) Heterogeneity & Granularity-aware Workload Split and its pipeline.

(b) Node-aware Workload Split and its pipeline.

6

6 9

9

...

RNP-0
118

RNP-2

9

9

1
21

2 4
54

5
6 9

6 9

6

6
0

8

0
30

3 1
51

54
54

5

time

0
0

3
3

1
1

5
5

21 54
51 2 4

LR

1
51

5

8

8

11

11 50
3

3 8 1 5

11

11
...

...
1 5 ...AC

LR

AC
LL

8

8

11

110
3

3 ...
...

time

LR
LL
AC

time

7

7

10

10

6

6

9

9

7

7

10

101
21

2 4
4

5
5

6 9

6 9
0

...
time

7

7

10

101
21

24
4

50
30

31
51

6

6

98

8

11

time

5 9 11 ... time

LR
LL
AC

LR
LL

AC

7

8

8

11

11 AC
LL
LR

(a) Pipeline-aware Workload Management.

LL

10

1
2

3

0
45

6

7

8

9

11

Node-0

Node-2 Node-1

LNP

RNP

RNP-0

LNP-1
7

7

10

10

8

8 11

11

RNP-1 RNP-2

(1)

(2)

(1)

(2)

(1)

(2)

1
21

2
LNP-0 LNP-2 LNP-3

Figure 4.3: (a) Pipeline-aware workload management. “LNP”/“RNP” indicate local/re-
mote workload partitions. (b)(c)(d) Different strategies of workload decomposition and
pipelining. Each box indicates a certain (local/remote) aggregation workload and its
length indicates its relative latency. “LR”: loading remote neighbors, “LL”: loading local
neighbors, “AC”: aggregation computation. Each grey rectangular shadow indicates a
workload partition to be processed by one GPU processing unit. (1) and (2) indicate
that the same pipeline is chunked into two parts along its time axis due to space limita-
tions.

4.4 GNN-tailored Pipeline Construction

Constructing a GNN-tailored pipeline are facing two major challenges: 1) How to ef-

fectively partition and schedule multi-GPU GNN workloads so that pipeline efficiency can

be maximized; 2) How to properly layout input so that the hierarchy of GNN inputs and

the memory/storage of multi-GPU systems can be carefully matched to facilitate pipeline

execution. MGG addresses these challenges with Pipeline-aware Workload Management

and Hybrid GNN Data Placement.

4.4.1 Pipeline-aware Workload Management

Managing irregularly sparse GNN workloads for pipelining is challenging and could

hardly benefit from the prior practice and exploration of the DNN pipeline [107, 108].

Difference from DNN pipeline First , balancing the GNN workloads among GPUs

89

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

has to jointly optimize the computation capacity and the computation/communication

irregularity. While the DNN pipeline only needs to balance the computation/memory

capacity, since its pipeline stages are well-structured and their inputs are regularly dense.

Distributed DNNs require dense regular communication (e.g., Allreduce) that is naturally

fit for existing GPU interconnects optimized for throughput and has been optimized by

many libraries (e.g., NCCL). In contrast, distributed full-graph GNN (with the entire

graph cached on GPUs) is much more challenging since it requires sparse irregular com-

munication that is naturally at odds with the existing hardware interconnects, and fewer

efforts have optimized its performance. Second , the GNN pipeline workload is more irreg-

ular and non-structural and can easily cause pipeline stalls/bubbles. For example, remote

neighbor aggregation would have different stages (remote access + aggregation) compared

with local neighbor aggregation (local access + aggregation), making it challenging to

mix those two heterogeneous workloads. While in the DNN pipeline, all inputs should

consistently pass through the same pipeline stages. Third , GNN pipeline stages are more

fine-grained (e.g., fetching individual embeddings) compared with coarse-grained layers

(e.g., GEMMs and Convolutions) in the DNN pipeline. Such small workload granularity

enables different pipeline stages to overlap with each other on GPU processing units, like

Streaming Multiprocessors (SMs). In contrast, DNN pipelines can only overlap layer-wise

computation and communication operations among different GPUs.

With the above insights, we propose a three-stage dynamic software pipeline design.

The three stages include loading remote neighbors (LR), loading local neighbors (LL),

and aggregation computation (AC). Aggregation of a certain neighbor will only take

two stages. The remote neighbor aggregation will take the stage LR and AC while

local neighbor aggregation will take the stage LL and AC. The stage-wise pipelining

is achieved with two steps: 1) assigning aggregation workload to different GPU logical

processing units (LPUs), like warps and blocks, and 2) scheduling different LPUs on

90

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

the same GPU SM to overlap their execution. Three-phase pipeline can generalize to

different GNN models, which essentially consist of the different numbers of basic remote

and local operations. For example, GCN has a lower local-vs-remote operation ratio

while GAT features a higher local-versus-remote operation ratio. Three-phase pipeline

can also capture differences among inputs. For instance, a more sparse graph will have

a higher remote-to-local operation ratio.

However, the direct construction and execution of such three-stage pipelines would

be inefficient, because of its ignorance of GNN workload heterogeneity and irregularity

on multi-GPU platforms. To address these challenges, MGG highlights a GNN-tailored

pipeline construction strategy to build and optimize the software pipeline in three steps.

Step-1: Workload-aware inter-GPU pipeline workload balancing. This step

aims to construct the “raw” pipeline and balance workloads among pipelines on differ-

ent GPUs. Our insight is that GPUs with massive processing units (e.g., SMs) will

serve many pipelines concurrently, and the key to maximizing GPU performance and

utilization is to ensure that each pipeline will get a similar amount of workload, thereby

avoiding execution critical path on certain “long” pipelines. We, therefore, develop a

range-constrained binary search algorithm (Algorithm 3) based on prior graph partition-

ing exploration [109]. Our solution features a lower runtime cost to split the GNN input

graph into chunks (one chunk per GPU) while balancing the number of edges within

each chunk. Then the workload from the same chunk is grouped by nodes as workload

partitions mixed local and remote neighbors (Figure 4.3(b)). From its potential execu-

tion pipeline, we can see many idle cycles (indicated by blank spaces in different pipeline

stages) which would result in low pipeline efficiency and GPU resource occupancy. Note

that in the software pipeline, workloads from different partitions can be overlapped as

they will be processed by different LPUs. While the workloads from the same partition

are sequentially processed by one LPU and their relative order should be maintained

91

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

even after being mixed with other partitions.

Step-2: Heterogeneity-aware pipeline bubble reduction. The pipeline con-

structed from the previous step is still inefficient due to its scattered workloads among

stages, namely pipeline bubbles. The optimization in this step is to minimize such

pipeline bubbles for better pipeline efficiency. The key is to reduce the heterogeneity

of workload partitions that hinders effective overlapping. To achieve this, we catego-

rize the sparse multi-GPU GNN computation into two types. The first type has local

neighbor access only, which has shorter execution latency. The second type has remote

neighbor access, which features high latency overhead. We delicately handle different

types of workloads via grouping (Figure 4.3(a)- 1), where two separate CSRs for lo-

cal and remote subgraphs will be built. The aggregation will be conducted on local

and remote subgraphs separately and followed by a result synchronization at the end.

Such a remote-local split is also backed by the fact that on platforms with all-to-all

GPU interconnections (e.g, DGX-A100/H100), accessing different GPUs under the same

data granularity has approximately equal communication cost [110]. Such heterogeneity

awareness in workload partitioning (Figure 4.3(c)) enables a more densely overlapped

workload between the stage LR and LL/AC.

Step-3: Granularity-aware intra-GPU pipeline enhancement. While the sec-

ond optimization improves pipeline efficiency by reducing the workload heterogeneity,

there is still plenty of room for further enhancement. The optimization in this step is to

facilitate a more balanced workload distribution among pipeline stages. This key is to

find the proper workload granularity for local and remote subgraphs so that those origi-

nally sequentially processed workload partitions can be overlapped. Our key observation

is that nodes in the local/remote subgraphs would have a diverse number of neighbors.

Such a specialty makes it challenging for massively parallel GPUs to harvest the real

performance gains due to the imbalance workload and diverged execution flow.

92

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Algorithm 3 Range-constrained Binary Search.
Require: Graph node pointer array (nPtr), edge list array (eList), and the number of GPUs

(numGPUs).
Ensure: List of graph edge split points (numGPUs − 1).
outList = {}; lastPos = 0
▷ Compute approximated #edges per GPU.
ePerGPU = len(eList)+numGPUs−1

numGPUs
for sId in [0, 1, ..., numGPUs − 1] do

nid = binSearch(nPtr , ePerGPU , lastPos,numNodes)
lastPos = nid
outList [sId] = nid

end for
return outList
Function (binSearch)nPtr, ePerGPU , lastPos, numNodes
i = lastPos; j = numNodes
target = min(nPtr[i] + ePerGPU, nPtr[numNodes])
while i < j do

mid = nPtr[i]+nPtr[j]
2

if mid > target then
j = i+j

2
else

i = i+j
2

end if
end while
return i

Therefore, we approximate such coarse-grained irregular workloads with fine-grained

fixed-sized partitions so that the workload imbalance across nodes can be amortized. For

example, with 2 neighbors per partition (Figure 4.3(a)- 2), we can get a more balanced

workload among nodes in their local and remote neighbor aggregation. With such gran-

ularity awareness, the individual pipeline can be further condensed along its time axis

with more overlapping of the LL and AC stage. (Figure 4.3(d)). Meanwhile, the irreg-

ular workload can be more evenly distributed to GPU SMs for higher GPU utilization.

On the other side, partition granularity should also be balanced with synchronization

overhead, since more fine-grained partitioning can bring more parallelism at the cost of

more synchronization overhead. This is because workloads from different partitions for

the same target node need to be reduced via synchronization, like inter-thread shuffling

93

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

and atomics.

MGG design can also be generalized to multiple machines with a minor adaptation.

For example, in Figure 4.3(d), when there are inter-node (over Inifite-Band) remote

neighbors (longer latency due to lower inter-node communication speed), the size of

remote neighbor partitioning (RNP) should be adjusted to a smaller size (e.g., from 2 to

1 remote neighbor) to facilitate better overlapping with local computation.

4.4.2 Hybrid GNN Data Placement

In collaboration with our multi-step pipeline construction, we introduce a hybrid GNN

data placement strategy to exploit the benefits of different types of memory in SHMEM-

enabled multi-GPU systems. The major impact of such hybrid placement on pipelining

is two-fold. First, placing GNN data in different memory spaces will lead to different

ratios of local and remote workloads, thus, affecting workload balance among pipelines.

Second, different memory spaces will offer different access performances (e.g., latency),

thereby, affecting the execution efficiency of the individual pipelines, such as the number

of pipeline bubbles.

Our strategy focuses on two major aspects. Firstly, for workload balance among

pipelines, we leverage NVSHMEM “shared” global memory to store the node embeddings

(NEs) of the whole graph (Figure 4.4 left). Our major consideration here is that such

shared global memory space can be accessed by all GPUs with the approximated equal

access speed, which is vital to facilitate a more even distribution of remote workloads to

GPUs in terms of their size and unit access costs. In addition, NEs are generally large

in terms of size (due to high dimensionality), which are beyond the device memory limit

of a single GPU. Therefore, NEs are ideal to be placed in shared global memory space

with sufficient space (with aggregated memory of different GPUs), which also provides

94

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

GPU-0 GPU-1 GPU-2

Remote
Offset

Targeted
GPU id

Local
Offset

Remote
Node id

Local
Node id

GPU-0
[lb, ub]

Address Trans.

GPU-1
[lb, ub]

GPU-2
[lb, ub]

GPU-0
[lb, ub]

Shared Global Memory

NE-0

GP-0

NE-1

GP-1 GP-2

NE-2

Local
Agg.

Rem.
Agg.

Local
Agg.

Rem.
Agg.

Local
Agg.

Rem.
Agg.

Figure 4.4: MGG Storage Layout and Communication Pattern. Note that “NE-i” is the
node embedding partition stored on the i-th GPU. “GP-i” is the neighbor partition pro-
cessed by the i-th GPU. “GPU-i [lb, ub]” is the node-id range [lowerbound, upperbound]
of the node embeddings on the i-th GPU.

direct remote access support across GPUs. Specifically, we will partition the NEs of input

graphs into n equal-sized partitions (where n is the number of GPUs) and place each of

them in one GPU’s shared global memory space.

Secondly, for the efficiency of individual pipelines, we allocate the “private” global

memory space for storing partitioned graph structure (GP) data, which is only visible

to kernels on the current GPU. Our key insight is that GP (e.g., edge lists), is all scalar

values and usually small in size, and will only be accessed by the local GPU. Therefore,

GP is ideal to be placed in individual GPUs’ DRAM. Such a placement is also important

to reduce unnecessary and inefficient remote access on those tiny scalars for fewer pipeline

bubbles. In our design, GP data (e.g., edges) from private GPU global memory will be

processed by a address translation unit for fetching correct NEs on local/remote GPU

since the NE indices are rebased to zero on each GPU (Figure 4.4 right).

4.5 GPU-aware Pipeline Mapping

Efficient pipelining also demands effective mapping of well-constructed pipeline work-

load and their schedules to the low-level GPU logical processing units (e.g., GPU thread-

s/warps/blocks) to overlap computation and communication. To achieve this, we propose

95

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

LNP-0 LNP-1 LNP-2 RNP-0 RNP-1 RNP-2 RNP-3 RNP-4 RNP-5

LNP-0 LNP-1 LNP-2RNP-0 RNP-1 RNP-4 RNP-5

LNP-3

LNP-3

w/o Interleaving

Interleaving
(dist=1)

1 Warp-based Mapping on dist=1

GPU
SM-0

GPU
SM-1

...

...

... ...

... ...

RNP-2 RNP-3
2

LNP-0 LNP-1 LNP-2RNP-0 RNP-1 RNP-3 RNP-4 RNP-5LNP-3Interleaving
(dist=2)

...RNP-2

Mapping
2-to-1

Warp-0 Warp-1 Warp-2 Warp-3 Warp-4
...
...

GPU
SM-2 ...

... GPU
SM-3 ...

...

Mapping
1-to-1

Warp-0 Warp-1 Warp-2 Warp-3 Warp-4 Warp-5 Warp-6 Warp-7 Warp-8 Warp-9

...

...
...

...

...
...

Figure 4.5: Warp-based Mapping and Pipelining. Note that “LNP” refers to the local
neighbor partitions; “RNP” refers to the remote neighbor partitions. Workload and Warps
are matched based on colors. Tiny boxes in GPU SM indicate decomposed workload
operations for overlapped execution.

Warp-based Mapping & Pipelining and Specialized Memory Design & Optimization to

jointly optimize the pipeline execution efficiency, GPU utilization, and end-to-end design

flexibility.

4.5.1 Warp-based Mapping & Pipelining

An effective pipeline mapping demands comprehensive consideration of two major

aspects. 1) Which type of GPU logical processing units (e.g., warps, blocks) should be

used for pipeline workload partitions? We choose GPU warp as the basic working unit

to handle the workload of each partition. This is because threads in a warp can collab-

oratively work on different dimensions of a node embedding simultaneously. Whereas

using a single or several threads (less than the size of a warp, 32 threads) would hardly

explore the computation parallelism and would cause warp-level divergence. Besides,

NVSHMEM remote access initiated by a warp of threads would merge the requests into

one remote memory transaction to amortize the overhead. 2) Which pattern of mapping

should be used for benefiting pipeline execution efficiency? The most straightforward way

96

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

is to continuously map the neighbor partitions from the local and remote workload list to

GPU warps with continuous IDs (Figure 4.5). However, this strategy would easily suffer

from workload imbalance among GPU SMs. This is because warps with continuous IDs

are more likely to be placed into the same thread block, which is assigned to one SM for

processing. Therefore, SMs assigned with warps for handling remote neighbor partitions

would lead to much longer latency than SMs assigned with warps for processing local

neighbor partitions. Such a workload imbalance would lead to poor GPU utilization and

runtime execution performance.

To this end, we introduce our novel workload interleaving strategy to balance the

workload among SMs on GPUs. Each warp of threads running on GPU would handle

one or more pairs of local/remote workload partitions. To more precisely calibrate the

warp-to-SM mapping for different pipeline stages to achieve efficient pipelining, we in-

troduce a new metric – interleaving distance. We give examples with the interleaving

distance equals 1 and 2 for illustration (Figure 4.5). By mixing different types (both lo-

cal and remote) of workload together, better GPU utilization can be achieved since when

one warp is blocked for high-cost remote access, other warps that are working on local

computation can still be served by the SMs warp scheduler for filling up these idle GPU

cycles. Moreover, such a design would improve design flexibility. For instance, given an

input graph with a selected neighbor partition size, we can adjust the size of interleaving

distance and the workload per warp so that waiting cycles of the remote access can be

hidden by the computation cycles of the neighbor aggregation. Thus, each warp can be

fully utilized while the design can achieve sufficient parallelism.

MGG currently processes the neighbors of adjacent nodes (based on node-ids) to the

same thread block where the same block will be scheduled on the same SM. If there are

common remote neighbors for those adjacent nodes, their remote requests will be merged.

Improving such locality requires reordering the graph nodes to maximize their common

97

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

neighbors. Such an exploration is orthogonal to our current contribution. In future GPUs,

there is a trend to explore the locality among independent processing units. For instance,

in Hopper, several thread blocks can be grouped together as thread-block groups. We can

explore the tradeoff between the locality benefits and group synchronization overhead.

4.5.2 Specialized Memory Design & Optim.

Efficient software pipelining also demands careful management of high-bandwidth

shared memory for promoting data access efficiency and asynchronized primitives for

exploiting intra-warp operation pipelining.

GPU SM Shared Memory Layout: Based on our MGG’s warp-based workload

design, we propose a block-level shared memory orchestration to maximize the perfor-

mance gains. We have several key insights for such a dedicated memory layout design

within each thread block. First , our neighbor-partition-based workload will generate the

intermediate results that can be cached at the high-speed shared memory for reducing

the frequent low-speed global memory access. Second , NVSHMEM-based remote data

access demands a local scratch-pad memory (e.g., registers, shared and global memory)

to hold the remote data for local operations.

For the local neighbor aggregation, we reserve a shared memory space with D (D is

the embedding dimension) floating-point numbers for embeddings of the target node in

each neighbor partition so that threads from a warp can cache the intermediate results

of partial reduction in shared memory. For the remote neighbor aggregation, the shared

memory space is doubled 2 × wpb × D (wpb is the warps per block). The reason is that

we need the first half wpb × D for caching the partial aggregation results of each warp

and the remaining for the remotely accessed neighbor embeddings. For each MGG kernel

design, we will first identify the warp-level information, like warp IDs. Then within each

98

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

time

time

Aggregation
Computation

Local
Access

Remote
Access

1 Launch sync local access
and async remote access

2 Start the remote-aggregation
once the remote data arrives

3 Proceed to the next
pair of workload

(a)

(b)

LNP RNP

Figure 4.6: Illustration of (a) w/o and (b) w/ asynchronized primitives for overlapping
computation and communication of an individual warp. Note that the length of each
rectangular box indicates the estimated latency cost of each operation.

thread block, we define the customized shared memory layout by splitting the contiguous

shared memory address into three different parts for neighbor ids, partial aggregation

results, and the remotely-fetched node embeddings. We use the dynamic shared memory

for design flexibility since those parameters (e.g., wpb and D) can only be determined at

runtime. During execution, we will first calculate the total shared memory size per block

and then pass it as a kernel launching parameter.

Pipelined Memory Operation: §4.5.1 have discussed assigning local (LNP) and

remote (RNP) neighbor aggregation workloads to warps so that different warps can over-

lap their computation and communication to fully saturate the active cycles of the GPU

SM scheduler. However, only exploiting the inter-warp communication-computation over-

lap is not enough to maximize the utilization of GPU resources. We further explore the

overlapping of the computation and communication at the intra-warp level by carefully

scheduling the memory operations. Figure 4.6(a) shows the case with two LNPs and

two RNPs by using the synchronized remote access, we can just sequentially process the

two LNPs and the two RNPs. The long-latency remote access can happen only after the

completion of its preceding LNP. This could lead to a longer GPU stall for memory oper-

ations and low GPU SM utilization. Our profiling also shows that without overlapping,

99

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

the remote access usually dominates the overall execution (around 60% of overall latency)

compared to the time for local data access plus the time for aggregation computation

(around 40% of overall latency). Such observation justifies our design to mainly hide the

latency from remote access.

To amortize the cost of remote access for each warp, we introduce asynchronized

remote memory operations (Figure 4.6(b)). This improved design consists of two major

steps. First, we can simultaneously launch the local memory access while initializing

the remote memory access for fetching the node embedding (1), therefore, the time

for remote access can be amortized by the processing of LNP. Second, once the remote

access is completed, the current warp will start aggregation on the remotely-fetched node

embedding data (2). The next step will start the new iteration of the previous two steps,

which will process a new pair of LNP and RNP.

4.6 Intelligent Runtime Design

In this section, we will discuss our intelligent runtime design with performance/re-

source analytical modeling and heuristic-based cross-iteration optimization strategy.

Performance-Resource Analytical Modeling: The performance/resource model

of MGG has two variables: workload per warp (WPW) and shared memory usage per

block (SMEM), which can be measured by

WPW = 2 · ps ·D · dist ,

SMEM = ps · wpb · IntS + 2 · wpb ·D · FloatS
(4.1)

where ps , wpb, and D are the sizes of neighbor partition, warp per block, and node

embedding dimension, respectively; dist is the interleaved distance of local/remote work-

loads (§4.5.1); IntS and FloatS are both 4 bytes on GPUs. To determine the value of

the ps , wpb, and dist of a given input graph, we will first compute the total number of
100

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

warps by using

numWarps =
max{local, remote}

dist
(4.2)

where local and remote are the number of local and remote partitions, respectively. Then

we compute the total number of blocks and the estimated block per SMs by using

numBlocks =
numWarps

wpb
,

blocksPerSM =
numBlocks

numSMs

(4.3)

Later, based on our micro-benchmarking results on diverse datasets, we define our

parameter search space and constraints: 1) ps ∈ [1 . . . 32] to balance the computation

parallelism and synchronization overhead; 2) dist ∈ [1 . . . 16] to effectively overlap the

computation and remote memory access; 3) wpb ∈ [1 . . . 16] to maintain SM warp schedul-

ing flexibility for better occupancy and throughput; 4) numSMs ≤ c1, SMEM ≤ c2,

where c1 and c2 are hardware constraints [111], e.g., NVIDIA A100 has 108 SMs and

164KB shared memory per SM.

Heuristic-based Cross Iteration Optimization To optimize the design of MGG,

the parameter ps , dist , and wpb are initialized as the value 1 at the beginning. Then we

optimize one parameter in each of the following iterations. First , we increase the ps to

maximize the warp utilization. When further increasing the ps would also increase the

latency, we would stop the search on ps and switch to dist. Second , we apply a similar

strategy to locate the value of dist that can maximize the overlap of local computation

and remote access. Third , we increase wbp to maximize the utilization of the entire SM.

If any increase of wpb would increase the latency, we know that there may be too large

thread blocks or too heavy workloads on individual warps that lower SM warp scheduling

efficiency or computation parallelism. We would “retreat” (i.e., decrease) ps to its second-

highest value if necessary and restart the increase of wpb. This optimization algorithm
101

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Table 4.1: Datasets for Evaluation.
Dataset #Vertex #Edge #Dim #Class
reddit(RDD) [15] 232,965 114,615,892 602 41
enwiki-2013(ENWIKI) [82] 4,203,323 202,623,226 300 12
it-2004 (IT04) [112] 41,291,594 1,150,725,437 256 64
ogbn-paper100M(PAPER) [93] 111,059,956 1,615,685,872 128 64
ogbn-products(PROD) [113] 2,449,029 61,859,140 100 47
ogbn-proteins(PROT) [113] 132,534 39,561,252 8 112
com-orkut(ORKT) [82] 3,072,441 117,185,083 128 32

will stop when any decrease of ps and increase of wpb would lead to higher latency

than the top-3 lowest latency. The latency of each iteration during the optimization will

be recorded by a configuration lookup table. Finally, the configuration with the lowest

latency will be applied.

This particular optimization order of parameters (ps , dist , and wpb) is based on two

major aspects: (i) Spatially speaking, the granularity is from coarse-grained algorithm-

level partitioning through ps , to medium-grained pipeline construction through dist (ac-

cording to the partition plan), to fine-grained pipeline-to-warp fine-tuning through wpb

(according to the pipeline design). (ii) Temporally speaking, the three optimizations

are applied at loading-time (ps to decide layout), kernel initialization (dist to decide

pipeline), and runtime (wpb to decide pipeline mapping), respectively.

The above parameter adaption for dynamic pipelining is vital for design/optimization

generality. This is because the characteristics of graphs (#nodes/edges and embedding

sizes) would lead to different efficiency of kernel pipelines. Our later experimental stud-

ies (as shown in Figure 4.11) demonstrate its benefits with up to 70% of performance

improvements.

4.7 Evaluation

Benchmarks & Datasets Despite the diversity of GNN models, the fundamental

computation and communication paradigm (vector-based scatter-gather operation) in

102

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

multi-GPU GNNs remains the same. We evaluate two distinctive and representative

GNN models on node classification tasks:

The first type of GNN model uses a non-discriminated neighbor aggregation strategy,

where all neighbors contribute equally when doing the aggregation. We choose Graph

Convolutional Network (GCN) [10], which is the most popular GNN model and

is also the key backbone network for many other GNNs, such as GraphSAGE [12] and

Differentiable Pooling [41]. We use 2 layers with 16 hidden dimensions for GCN, which

is also the setting from the original paper [10]. The computation of a 2-layer GCN can

be expressed as

Z = Softmax (Â ReLU(ÂXW 1)W 2). (4.4)

where Â is the adjacent matrix of the input graph with self-loop edges, and X is the

input node embedding matrix, where X ∈ RN×D; N is the number of nodes in a graph;

D is the size of node embedding dimensions. W 1 and W 2 are trainable weight matrices

in layer-1 and layer-2, respectively.

The second type uses a discriminated neighbor aggregation strategy, where neighbors

would contribute differently depending on their calculated edge-specific features. We

choose Graph Isomorphism Network (GIN) [13], which aims to distinguish the

graph structure that cannot be identified by GCN. Each layer of GIN can be expressed

as

hl+1
v = MLP l((1 + ϵl)ḣl +

∑
u∈N(v)

hlu). (4.5)

where l is the layer ID and l ∈ {0, 1}, MLP is a fully-connected neural network, hv is the

node embedding for node v, and N(v) stands for the neighbors of node v. GIN mainly

differs from GCN in its aggregation function, which introduces a weight parameter as

the ratio of contribution from its neighbors and the node itself. In addition, GIN is

the reference architecture for many other advanced GNNs with more edge properties,

103

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

such as Graph Attention Network [11]. For GIN evaluation, we use 5 layers with 64

hidden dimensions, which is also the setting used in the original paper [13]. Graphs

(Table 5.4) used in our evaluation are large in their number of nodes and edges that

demand multi-GPU capability for effective GNN computation. #Class is the output

dimension (#labels) for the node classification task. #Dim is the embedding dimension

of the input graph.

Baselines In this evaluation, we compared MGG with several existing systems that

support large full-graph GNN (i.e., caching the entire graph on GPUs) on multi-GPU

platforms. 1) Deep Graph Library (DGL) [15] is the state-of-the-art framework for

large-scale GNNs across GPUs. It leverages PyTorch-Direct [114] as the communication

backend for GPU-initiated zero-copy memory access [97] to fetch neighbors embedding

from the CPU host. 2) MGG-UVM [115] is a GNN design by adapting MGG to lever-

age unified virtual memory (UVM). UVM has been highlighted in handling irregular

graph computations (such as PageRank) on large graphs [115]. However, [115] is not

open-sourced, we thus generalize the pipeline kernel designs and optimizations (§4.4 and

§4.5) of MGG to build such a UVM baseline and incorporate optimizations from [115].

Note that UVM and zero-copy memory are different communication backends [1]. Thus,

MGG-UVM does not implement zero-copy data transfer. We remark UVM is the key

communication protocol before the new hardware support for fine-grained direct GPU-

GPU communication (e.g., NVSHMEM). UVM is more coarse-grained and will require

the engagement of CPUs (e.g., host memory management) for communication. The rea-

son to use MGG-UVM is to show that if there is no advanced hardware support (e.g.,

NVSHMEM) for fine-grained direct GPU-GPU communication, the benefits of our elabo-

rated pipeline can be offset by UVM communication overhead. 3) ROC [91] is a popular

distributed multi-GPU system for full-graph computation. ROC highlights its learning-

based partitioning and leverages NVIDIA Legion [103] runtime for communication and

104

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

1.
51

1.
29 1.
45 2.

66 2.
72

3.
17 4.

19

3.
92

1.
66 3.

38 8.
47 5.
15 10

.0
1

9.
98

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKTNo
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(a) GCN Model.
1.

97

1.
68 5.
52

8.
65

1.
47

0.
94

4.
05

3.
76

3.
27 5.

33 13
.5

3

3.
20

2.
19

8.
44

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKTNo
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(b) GIN Model.

Figure 4.7: Performance comparison with DGL. Note that full-graph PAPER on DGL
requires A100-80GB.

task scheduling.

Other multi-GPU GNN designs, like NeuGraph [14] and P3 [93], are not publicly

available. Initially, we plan to evaluate MGG on AMD ROC_SHMEM [116]. However,

as indicated in its document, the existing ROC_SHMEM is an experimental prototype

and is not officially ready to be applied in practice due to very strict software limita-

tions (e.g., only supports ROCm v4.3) and hardware (e.g., only supports AMD GFX9

GPUs), which are quite challenging to find and deploy and not supported by any existing

GNNs frameworks [98, 92, 91] for comparison. We believe that once ROC_SHMEM be-

comes ready and generally applicable, MGG can be easily migrated to AMD multi-GPU

platforms.

There is no existing design that can leverage GPU-to-GPU communication only for

distributed full-graph GNN computation. We try our best to measure the best-possible

baseline performance. DGL and ROC have longer latency in the earlier iteration due to

cache warmup for node embedding on GPU memory. We thus perform warm up iterations

until their per-iteration latency becomes stable, and then measure their performance with

105

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

minimized CPU-GPU data movements.

Platforms & Tools The implementation of MGG consists of ∼9K LoC. We compile

and link MGG with CUDA (v11.2), OpenMPI (v4.1.1), NVSHMEM (v2.0.3), and cuDNN

(v8.2) library. Our major platform is an NVIDIA DGX-A100 with dual AMD Rome 7742

processors (each with 64 cores, 2.25 GHz), 1TB host memory, and 8×A100 GPUs (40 GB)

connected via NVSwitch, which offers 600 GB/s GPU-to-GPU bi-directional bandwidth.

For the modeling study, we also leverage DGX-1 with 4×V100 GPUs connected via

NVLinks. We use NVIDIA NSight Compute to get the kernel-level profiling metrics.

Speedup is averaged over 100 runs.

4.7.1 End-to-End Performance

Compared with DGL In this section, we will compare with the state-of-the-art

DGL framework, which leverages PyTorch-Direct for cross-GPU communication. We

evaluate different datasets and platform settings (with 4 and 8 A100 GPUs). As shown

in Figure 4.7, MGG outperforms DGL with averaged 4.25× and 4.57× speedups on

GCN and GIN models, respectively. We also notice a trend that MGG demonstrates

a more pronounced speedup with more GPUs. With the increasing number of GPUs,

DGL suffers from heavy memory access contention, since multiple GPUs are initiating

massive requests to access the neighbor embeddings on the CPU host memory. Another

observation is that on GIN (D = 64) with higher hidden dimensionality for smaller

datasets (e.g., PROD and PROT), the performance gap between DGL and MGG is

smaller compared to GCN (D = 16) since as indicated in [92], zero-copy memory would

be beneficial from more coarse-grained data movement (with larger embedding vector)

that can saturate the PCIe cache line (128 Bytes). While such an advantage of DGL

diminishes for those larger datasets (e.g., IT04 and PAPER) on GIN due to significantly

106

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

1.
53

1.
72

6.
60

6.
53

1.
85 2.
30

1.
93

2.
27

7.
26 8.

17

8.
06

7.
03

3.
09

5.
79

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKT

No
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(a) GCN Model.
2.

56

2.
05

10
.0

0

8.
22

2.
23

2.
43 2.
73

2.
39

8.
17 11

.7
4

8.
03

3.
76

2.
87 3.
32

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKT

No
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(b) GIN Model.

Figure 4.8: Performance comparison with MGG-UVM.

Table 4.2: Additional performance comparison of MGG and DGL on GraphSAGE and
GAT.

Model RDD ENWIKI IT04 PAPER PROD PROT ORKT
SAGE 4.97× 1.76× 1.99× 3.53× 7.05× 3.39× 3.53×
GAT 2.65× 1.62× 2.06× 3.04× 2.06× 3.39× 3.04×

increased sparsity and irregularity. In addition, compared with MGG, DGL assumes the

one-size-fits-all communication strategy would work well for all input datasets. Therefore,

it ignores the importance of the inputs and hardware properties, which would bring non-

trivial (more than 30%) benefits (§4.7.2).

MGG can also be extended to cover other GNN models. The following results show

the speedups of MGG over DGL on GraphSAGE with layerwise node neighbor sampling

and GAT with dot-product edge attention. Table 4.2 shows that the performance re-

sults of GAT and SAGE also agree with our prior observations on the GCN and GIN,

demonstrating the generality and effectiveness of our proposed design and optimizations

to handle more complex dataflow (e.g., edge attention and softmax) in multi-GPU GNN

computation.

107

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Despite that MGG (NVSHMEM) and DGL (with CPU-GPU zero-copy memory [97])

both rely on GPU-initiated communication and overlap communication with compu-

tation, their underlying mechanism is different, and MGG shows more performance

advantages. MGG can leverage inter-GPU communication while DGL can only rely

on CPU-GPU communication with limited bandwidth. This makes the communication

costs pronounced in DGL and offsets the performance gains from massive thread-level

parallelism. This experiment also shows that MGG can serve as a drop-in replacement

for the existing communication backend of DGL to improve large-scale full-graph GNN

computation.

Compared with MGG-UVM In this experiment, we compare MGG with its UVM-

based counterpart, MGG-UVM, which uses UVM in place of NVSHMEM for remote

communication. Figure 4.8 shows that MGG achieves 4.58× speedup and 5.04× speedup

on average compared to MGG-UVM on GCN and GIN, respectively. The MGG-UVM

leverages the page-faulting-based remote data access that is more coarse-grained (around

4 KB) in comparison with a single node embedding size (less than 0.4KB), which leads

to higher overhead and lower effective bandwidth usage per embedding transfer. Such an

overhead would exacerbate with more GPUs and also make MGG-UVM challenging for

GPU SM schedulers to effectively dispatch instructions for the next available warps. This

is mainly because most of the warps wait for the long-cycle page-faulting and migration.

We notice that with the increase of the dimension size (i.e., data movement granular-

ity), the speedup over MGG-UVM becomes higher. We later found out that the increase

of data-movement granularity actually increases the overall page-fault counts. This is be-

cause embedding vectors are generally stored continuously for memory efficiency instead

of aligning with the size of memory pages. Therefore, increasing the size of individual

embedding also increases the likelihood of triggering multiple pagefaults per embedding

transfer.

108

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

5.
93

3.
51

37
.7

2

14
.2

3

6.
77

6.
54 11

.4
1

4.
27 6.

46 21
.9

4

13
.2

0

4.
41 6.
02 9.

14

0

10

20

30

RDD ENWIKI IT04 PAPER PROD PROT ORKT

No
rm

 S
pe

ed
up

 (x
)

GCN GIN

Figure 4.9: Performance comparison with ROC with 8×A100.

Comparing among datasets, for graphs (e.g., PAPER) with more nodes/edges and

lower average node degree, MGG would demonstrate more speedups since these graphs

exhibit more irregular and sparse access that can not well fit into regular fix-sized pages.

This also indicates the importance of amortizing communication overhead. Thanks to

pipeline-centric workload management, we can effectively amortize such costs with careful

operation scheduling.

We further measure two performance-critical GPU kernel metrics that are the key

indicators of our pipeline efficiency (§4.4.1): Achieved Occupancy (the ratio of the average

active warps per active cycle to the maximum number of warps supported in an SM) and

SM utilization (the utilization of all available SMs on a single GPU). MGG improves SM

utilization (by 21.15% on average) and occupancy (by 39.20% on average) compared to

MGG-UVM. This indicates that MGG can effectively 1) distribute irregular workloads

to SMs to balance workloads among pipelines and improve the overall GPU utilization,

and 2) overlap the remote access and local aggregation computation from different warps

to reduce pipeline bubbles and maximize SM occupancy.

Compared with ROC In this experiment, we compare MGG with ROC [91] on

their officially released GCN model implementation. We originally plan to evaluate both

4 and 8 GPU settings. However, ROC reports many out-of-memory (OOM) errors for

those large graphs on GCN/GIN model and medium graphs on the GIN model due to

its aggressive caching of those intermediate tensors on GPUs. Therefore, we keep our

109

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

0
50

100
150
200
250

RDD ENWIKI PROD

La
te

nc
y

(m
s) w/o_NP

w/_NP

2.36x

2.78x

1.65x

(a)

0
10
20
30
40
50

RDD ENWIKI PROD

La
te

nc
y

(m
s) w/o_WL

w/_WL

2.90x

1.22x
1.53x

(b)

0.31 0.41 0.36 0.33 0.51 0.43

0.0
0.3
0.5
0.8
1.0
1.3
1.5

RDD ENWIKI PROD

N
or

m
. L

at
en

cy Thread Warp Block

(c)

Figure 4.10: Optimization Analysis: (a) Neighbor Partitioning; (b) Workload Interleav-
ing; (c) Choice of Communication Primitives.

comparison to 8 GPUs. Performance-critical ROC runtime configurations (e.g., #CPU

cores, GPU/host memory size) are optimized to fully utilize the DGX-A100.

Figure 4.9 shows that MGG achieves averaged 12.30× and 9.35× speedups over ROC

on GCN and GIN, respectively. MGG demonstrates a more pronounced speedup over

ROC on the larger graph (e.g., IT04 and PAPER), which has more irregular neigh-

bor embedding access. The Legion runtime of ROC relies on the DMA engine for

bulky data (batched embeddings) transfer between host and GPU memory, leading to

higher throughput but inferior latency performance. Besides, ROC relies on a separate

communication-computation design, where computation happens after the full comple-

tion of communication. Such a design eliminates the opportunity to fill idle GPU cycles

with computation during communication. In addition, the learning-based partitioning

(to reduce communication) of ROC shows benefits on relatively smaller datasets (e.g.,

RDD and PROT) but hard to find optimal partition plans for large graphs due to the

input structure complexity.

4.7.2 Optimization Analysis

Neighbor Partitioning (NP) We compare MGG with a baseline design without

applying the neighbor partitioning technique (i.e., each aggregation workload consists of

all local/remote neighbors) on 4×A100. We apply the workload interleaving for both

implementations and fix the warp-per-block size to 2 to eliminate the impact from other

110

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

performance-related factors. Figure 4.10(a) shows higher latency (averaged 2.26×) for

designs without applying neighbor partitioning, since the workload imbalance becomes

more severe across different warps without neighbor partitioning, especially for those

graphs with many remote access demands, leading to limited computing parallelism and

GPU underutilization.

Workload Interleaving (WL) We compare MGG with a baseline design without

workload interleaving (i.e., remote neighbor aggregation and local neighbor aggregation

are mapped separately to the GPU warps. We fix the neighbor partition size to 16 and

the warp-per-block size to 2. Figure 4.10(b) shows that MGG consistently outperforms

the non-interleaved baseline with an average of 1.89× speedup. Without interleaving

the local/remote workload, the workload distribution would be highly skewed, where

the heavy and intensive remote aggregation would be gathered on certain warps close

to each other while the lightweight local aggregation would be gathered on some other

warps close to each other. This leads to inefficient warp scheduling and higher latency.

Communication Primitives We adopt MGG with different NVSHMEM primi-

tives at the thread, warp, and block levels. We fix the number of GPUs to 2, the

hidden dimension to 16, the neighbor partition size to 2, and the distance of work-

load interleaving to 2. Figure 4.10(c) shows that warp-level NVSHMEM primitives

(e.g., nvshmemx_float_warp_get) for remote accessing can bring the lowest latency. For

thread-level NVSHMEM primitives (e.g., nvshmem_float_get), it would not coalesce the

remote memory access to reduce unnecessary transactions. For the block-level NVSH-

MEM primitives (e.g., nvshmemx_float_block_get), the higher overhead comes from

collaborating a block of threads for remote access, since thread blocks (usually consisting

of multiple warps) is larger than a single warp, thus, leading to higher synchronization

and scheduling cost. This study also shows that our choice of warp-level primitives strikes

a good balance between memory access efficiency and scheduling flexibility.

111

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

36.51ms

ps
dist

34.84ms

(a)

(b)
31.51ms

30.24ms

40.03ms

40.93ms

(c)

dist

ps
dist

ps
dist

43.46ms

16.53ms

30.45ms

10.12ms

40.21ms

wpb

wpbdist

28.19ms

wpb
dist

1 1

1

E

E

E E

1 2

E

1 2

E

1

Figure 4.11: Parameter selection for three different settings. (a), (b), and (c) are for
setting I, II, and III, respectively. Note that the left-side figures show the runtime latency
for different combinations of ps and dist , while the right-side figures show the latency for
different combinations of wpb and dist . The solid black triangle with “E” is the searched
“optimal” combination for ps and dist , while the black solid star with “E” is the searched
“optimal” wpb given dist and ps .

Modeling and Optimization We further analyze the effectiveness of our lightweight

analytical model for design space search. Specifically, three key parameters are studied,

the size of neighbor partitioning (ps), the interleaving distance (dist), and the warps

per block (wpb). We consider three different settings on a 2-layer GCN model: I: RDD

on 4×A100 as the basic setting. II: RDD on 8×A100 to demonstrate the adaptability

toward the different numbers of GPUs. III: RDD on 4×V100 [79] to demonstrate the

adaptability toward the different types of GPUs. We decompose searching results into

two parts corresponding to the output of the second and third steps of the optimization

discussed in §4.6.

112

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Figure 4.11 shows that our performance modeling and parameter selection strategy

can pinpoint the low-latency design for the above three settings. The overall searching

process only requires about 10 iterations to reach the final “optimal” settings. Note that

here we show latency results for all possible settings for comparison. While in practice,

we only need to traverse a small part of the whole design space (as indicated by the boxes

touched by the dot lines). By comparing the final optimal runtime configuration setting

and the initial configuration, we can see that modeling and cross-iteration optimization

can decrease the execution time by up to 68%. In the end-to-end GNN training (usually

more than 100 iterations), such a latency saving would also be significant.

4.7.3 Additional Study

Accuracy-latency Tradeoff This study will analyze the accuracy-latency tradeoff

between GNNs with sampling and full-graph (w/o sampling) on 8×A100. Table 4.3 shows

an evident node classification accuracy increase (2% to 5%) of GNN w/o sampling over

GNN w/ sampling. The accuracy of sampling-based GNN would be affected by many

factors (e.g., sampling rate at each GNN layer and graph structure). It is thus highly

tricky to choose the “optimal” value for those factors. Here we follow the conventional way

for GNN sampling [15]. The accuracy difference agrees with previous GNN algorithmic

work [12]. In many real-world applications (e.g, e-commerce), such an accuracy advantage

of full-graph GNNs are be more preferred by users. Because even 1% accuracy would

make significant profit gains when deploying services at scale while the latency penalty

is relatively minor.

Generality to other applications The design of MGG can be generalized to other

similar applications. We demonstrate the typical and popular deep-learning recommen-

dation model (DLRM) [95, 117, 118] that has been widely used in the industry. In

113

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms Chapter 4

Table 4.3: Accuracy-Latency of GNNs w/ and w/o sampling.

Dataset
Accuracy

w/
sampling

Accuracy
w/o

sampling

Latency
(w/o vs.

w/
sampling)

RDD 0.937 0.957 1.07×
PROT 0.776 0.825 1.25×

Table 4.4: DLRM [95] with MGG in Embedding Lookup.

Implementation DLRM [95] DLRM (MGG)
Time (ms) 315.27 119.66

multi-GPU DLRM, the large embedding tables are partitioned by rows and stored in

different GPUs. The DLRM inputs (embedding access queries) will request embeddings

from tables on different GPUs and then apply operations (e.g., elementwise addition

or dot product) on those fetched embeddings. Such embedding lookup is highly sparse

and irregular and dominates (> 80% latency [117, 119]) the overall DLRM computation.

We improve the mainstream DLRM system [95] with the design and optimizations of

MGG to accelerate embedding lookup and element-wise addition and compare with the

original system (which relies on NCCL) [95] under 4-GPU settings on the popular Criteo

Kaggle [120] dataset. Table 4.4 shows that DLRM with MGG effectively reduces the

lookup time (2.64×). The fine-grained remote access of MGG can reduce redundant

inter-GPU traffic by using NCCL and offset the cost by massively parallel GPU-initiated

communication.

114

Chapter 5

TC-GNN: Bridging Sparse GNN

Computation and Dense Tensor Cores

on GPUs.

Recently, graph neural networks (GNNs), as the backbone of graph-based machine learn-

ing, have demonstrated great success in various domains (e.g., e-commerce). However,

the performance of GNNs is usually unsatisfactory due to the highly sparse and irregular

graph-based operations. To this end, we propose TC-GNN 1 , the first GNN accelera-

tion framework based on GPU Tensor Core Units (TCUs). The core idea is to reconcile

the “Sparse” GNN computation with the high-performance “Dense” TCUs. Specifically,

we conduct an in-depth analysis of the sparse operations in mainstream GNN computing

frameworks. We introduce a novel sparse graph translation technique to facilitate TCU

processing of the sparse GNN workload. We implement an effective CUDA core and

TCU collaboration design to fully utilize GPU resources. We integrate TC-GNN with
1Published at USENIX ATC’23. USENIX permits authors to retain their ownership of the copyrights

in their works. Reprinted from TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores
on GPUs. USENIX USENIX Annual Technical Conference. 07/2023.

115

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

the PyTorch framework for high programmability. Rigorous experiments show an av-

erage of 1.70× speedup over the state-of-the-art DGL framework across various models

and datasets.

5.1 Introduction

Over the recent years, with the increasing popularity of graph-based learning, graph

neural networks (GNNs) [10, 13, 121] become dominant in the computing of essential

tasks across a wide range of domains, like e-commerce, financial services, and etc. Com-

pared with standard methods for graph analytics, such as random walk [25, 51, 17] and

graph laplacians [52, 53, 54], GNNs highlight themselves with significantly higher accu-

racy [10, 13, 11] and better generality [12]. From the computation perspective, GNNs

feature an interleaved execution phase of both graph operations (scatter-and-gather [55])

at the Aggregation phase and Neural Network (NN) operations (matrix multiplica-

tion) at the Update phase. Our experimental studies further show that the aggrega-

tion phase which involves highly sparse computation on irregular input graphs generally

takes more than 80% of the running time for both GNN training and inference. Exist-

ing GNN frameworks, e.g., Deep Graph Library [15] and PyTorch Geometric [16], are

mostly built upon the popular NN frameworks that are originally optimized for dense

operations, such as general matrix-matrix multiplication (GEMM). To support sparse

computations in GNNs, their common strategy is to incorporate sparse primitives (such

as cuSPARSE [70]) for their backend implementations. However, cuSPARSE leverages

the sparse linear algebra (LA) algorithm which involves lots of high-cost indirect mem-

ory accesses on non-zero elements of a sparse matrix. Therefore, cuSPARSE cannot

enjoy the same level of optimizations (e.g., data reuse) as its dense counterpart, such as

cuBLAS [32]. Moreover, cuSPARSE is designed to only utilize CUDA cores. Therefore,

116

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

It cannot benefit from advancements in GPU hardware features, like Tensor Core Units

(TCUs) on the recent NVIDIA Ampere and Hopper GPUs. Such a design is also the

trend of many other AI-tailored accelerators/units (e.g., Google TPU [122] and Matrix

Core [123] on AMD GPUs) and can significantly boost the performance of dense LA al-

gorithms (e.g., GEMM and Convolution) in most conventional deep-learning applications

(e.g., CV [124] and NLP [125]).

This work focuses on exploring the potential of TCUs for accelerating such GNN-based

graph learning and our design/optimization principles will also benefit other similar AI

hardware [122, 123] for sparse deep-learning workloads. We remark that making TCUs

effective for general GNN computing is a non-trivial task. Our initial study shows that

naively applying the TCU to sparse GNN computation would even result in inferior

performance compared with the existing sparse implementations on CUDA cores. There

are several challenges. First , directly resolving the sparse GNN computing problem with

the pure dense GEMM solution is impractical due to the extremely large memory cost

(O(N2), where N is the number of nodes). Besides, traversing the matrix tiles already

known to be filled with all-zero elements would cause excessive unnecessary computations

and memory access. Second , simply employing TCUs to process non-zero matrix tiles

of the sparse graph adjacency matrix would still waste most of the TCU computation

and memory access efforts. This is because TCU input matrix tiles are defined with fixed

dimension settings (e.g., height(16)×width(8)), whereas the non-zero elements of a sparse

graph adjacency matrix are distributed irregularly. Thus, it requires intensive zero-value

padding to satisfy such a rigid input constraint. Third , although the recent CUDA

release update enables TCUs to exploit the benefit of certain types of sparsity [126], it

only supports blocked SpMM, where non-zero elements must first fit into well-shaped

blocks and the number of blocks must be the same across different rows. Such an input

restriction makes it hard to handle highly irregular sparse graphs in real-world GNN

117

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

applications.

To this end, we introduce, TC-GNN2, the first TCU-based GNN acceleration design

on GPUs. Our key insight is to let the sparse input graph fit the dense computation of

TCUs. At the input level, instead of exhaustively traversing all sparse matrix tiles

and determining whether to process each tile, we develop a new sparse graph translation

(SGT) technique that can effectively identify those non-zero tiles and condense non-zero

elements from these tiles into fewer number of “dense” tiles. Our major observation is that

neighbor sharing is very common among nodes in real-world graphs. Therefore, applying

SGT can effectively merge the unnecessary data loading of the shared neighbors among

different nodes to avoid high-cost memory access. SGT is generic to any kind of sparse

pattern of input graphs and can always yield the correct results as the original sparse

algorithm. At the GPU kernel level, for efficiently processing GNN sparse workloads,

TC-GNN exploits the benefits of CUDA core and TCU collaboration. The major design

idea is that the CUDA core, which is more powerful at fine-grained thread-level exe-

cution, would be a good candidate for managing memory-intensive data access. While

TCU, which is more powerful in handling simple arithmetic operations (e.g., multipli-

cation and addition), would be well-suited for compute-intensive GEMM on dense tiles

generated from SGT. At the framework level, we integrate TC-GNN with the popular

PyTorch framework. Thereby, users only need to interact with their familiar PyTorch

programming environment by using TC-GNN APIs. This can significantly reduce extra

learning efforts, and improve user productivity and code portability.

To sum up, we summarize our contributions as follows:

• We conduct a detailed analysis (§5.2) of existing solutions (e.g., SpMM on CUDA

cores) and identify the potentials of TCUs for accelerating sparse GNN workloads.
2TC-GNN is open-sourced at https://github.com/YukeWang96/TC-GNN_ATC23.git

118

https://github.com/YukeWang96/TC-GNN_ATC23.git

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

• We introduce a sparse graph translation technique (§5.3.1). It can make the sparse

and irregular GNN input graphs easily fit the dense computing of TCUs for accel-

eration.

• We build a TCU-tailored algorithm (§5.3.2) and GPU kernel design (§5.3.3) for

CUDA core and TCU collaboration on GPUs to handle different sparse GNN com-

putation.

• Extensive experiments show TC-GNN achieves 1.70× speedup on average over the

state-of-the-art GNN computing framework, Deep Graph Library, across various

mainstream GNN models and dataset settings.

5.2 Motivation

In this section, we will discuss the major technical thrust for us to leverage TCUs

for accelerating sparse GNN computation. We use the optimization of SpMM as the

major example in this discussion, and the acceleration of SDDMM would also benefit

from similar optimization principles.

5.2.1 SpMM on CUDA cores

As the major component of sparse linear algebra operation, SpMM has been in-

corporated in many off-the-shelf libraries [70, 127, 128, 129, 130]. The close-sourced

cuSPARSE [70] library developed by NVIDIA is the most popular solution and it can de-

liver state-of-the-art performance for most GPU-based SpMM computation. cuSPARSE

has also been widely adopted by many GNN frameworks, such as Deep Graph Library

(DGL) [15], as the backend for sparse operations. To understand its characters, we profile

DGL on one layer of a GCN [10] model (neighbor aggregation + node update) on NVIDIA

119

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Table 5.1: Profiling of GCN Sparse Operations.

Dataset Aggr. (%) Update (%) Cache(%) Occ.(%)
Cora 88.56 11.44 37.22 15.06
Citeseer 86.52 13.47 38.18 15.19
Pubmed 94.39 5.55 37.22 16.24

RTX3090. We report two key kernel matrices for only neighbor aggregation kernel, in-

cluding L1/texture cache hit rate (Cache) and the achieved Streaming-Multiprocessor

(SM) occupancy (Occ.). We select three representative GNN datasets: Cora with 3,327

nodes, 9,464 edges, and 3,703 node embedding dimensions; Citeseer with 2,708 nodes,

10,858 edges, and 1,433 dimensions; Pubmed with 19,717 nodes, 88,676 edges, and 500

dimensions.

From Table 5.1, we have several observations: First , the aggregation phase usually

dominates the overall execution of the GNN execution. From these three commonly used

GNN datasets, we can see that the aggregation phase usually takes more than 80% of

the overall execution time, which demonstrates the key performance bottleneck of the

GNNs is to improve the performance of the sparse neighbor aggregation. Second , sparse

operations in GNNs show very low memory performance. The column Cache of Table 5.1

shows GNN sparse operations could not well benefit from the GPU cache system, thus,

showing a low cache-hit ratio (around 37%) and frequent global memory access. Third ,

sparse operations of GNNs show very inefficient computation. As described in the col-

umn Occupancy of Table 5.1, the sparse operation of GNNs could hardly keep the GPU

busy because 1) its low computation intensity (the number of non-zero elements in the

sparse matrix is generally small); 2) its highly irregular memory access for fetching rows

of the dense matrix during the computation, resulting in memory-bound computation; 3)

it currently can only leverage CUDA cores for computation, which naturally has limited

throughput performance. On the other side, this study also points out several potential

directions for improving the SpMM performance on GPUs, such as improving the com-

120

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Table 5.2: Medium-size Graphs in GNNs.

Dataset # Nodes # Edges Memory Eff.Comp
OVCR-8H 1,890,931 3,946,402 14302.48 GB 0.36%
Yeast 1,714,644 3,636,546 11760.02 GB 0.32%
DD 334,925 1,686,092 448.70 GB 0.03%

putation intensity (e.g., assigning more workload to each thread/warp/block), boosting

memory access efficiency (e.g., crafting specialized memory layout for coalesced memory

access), and breaking the computation performance ceiling (e.g., using TCUs).

5.2.2 Dense GEMM on CUDA Cores/TCUs

While the dense GEMM is mainly utilized for dense NN computation (e.g., linear

transformation and convolution), it can also be leveraged for GNN aggregation under

some circumstances. For example, when an input graph has a very limited number of

nodes, we can directly use the dense adjacency matrix of the graph and accelerate the

intrinsically sparse neighbor aggregation computation on CUDA cores/TCUs by calling

cuBLAS [32]. However, such an assumption may not hold even for medium-size graphs

in real-world GNNs.

As shown in Table 5.2, for these selected datasets, the memory consumption of their

dense graph adjacent matrix (as a 2D float array) would easily exceed the device memory

constraint of today’s GPU (less than 100GB). Even if we assume the dense adjacent

matrix can fit into the GPU memory, the extremely low effective computation (the last

column of Table 5.2) would also be a major obstacle for us to achieve high performance.

We measure the effective computation as nnz
N×N

, where nnz is the number of the non-zero

elements (indicating edges) in the graph adjacent matrix and N is the number of nodes

in the graph. The number of nnz is tiny in comparison with the N × N . Therefore,

computation and memory access on zero elements are wasted.

121

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

5.2.3 Hybrid Sparse-Dense Solution

Another type of work [131, 126] takes the path of mixing the sparse control (tile-

based iteration) with Dense GEMM computation. They first apply a convolution-like

(2D sliding window) operation on the adjacent matrix and traverse all possible dense tiles

that contain non-zero elements. Then, for all identified non-zero tiles, they invoke GEMM

on CUDA cores/TCUs for computation. However, this strategy has two shortcomings.

First , the sparse control itself would cause a high overhead. Based on our empirical

study, the non-zero elements are highly scattered on the adjacent matrix of a sparse

graph. Therefore, traversing all blocks in a super large adjacent matrix would be time-

consuming. Second , the identified sparse tiles would still waste lots of computation.

The irregular edge connections of the real-world graphs could hardly fit into these fixed-

shape tile frames. Therefore, most of the dense tiles would still have very few non-zero

elements.

Inspired by the above studies, we make several design choices in order to achieve

high-performance sparse GNN operations. First , we choose the hybrid sparse-dense

solution as the starting point. This can give us more flexibility for optimizations at the

sparse control (e.g., traversing fewer tiles) and dense computation (e.g., increasing the

effective computation/memory access when processing each tile). Second , we employ

shared memory as the key space for GPU kernel-level data management. It can help us

to re-organize the irregular GNN input data in a more “regularized” way such that both

the memory access efficiency and computing performance can be well improved. Third ,

we choose TCUs as our major computing unit since they can bring significantly higher

computing throughput performance in comparison with CUDA cores. This also indicates

the great potential of using TCUs for harvesting more performance gains.

Finally, we crystallize all of our ideas and insights into TC-GNN that effectively coor-

122

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Table 5.3: Comparison among Sparse GEMM, Dense GEMM, Hybrid Sparse-Dense, and
TC-GNN. Note that MC: Memory Consumption, EM: Effective Memory Access, CI:
Computation Intensity, EC: Effective Computation.

Solution MC EM CI EC
Sparse GEMM (§5.2.1) Low Low Low High
Dense GEMM (§5.2.2) High High High Low
Hybrid Sparse-Dense (§5.2.3) High Low Low High
TC-GNN (This work) Low High High High

dinates the execution of GNN sparse operations on dense TCU. We show a brief qualita-

tive comparison among TC-GNN and the above three solutions in Table 5.3. Note that

Memory Consumption is the size of memory used by the sparse/dense graph adjacency

matrix; The Effective Memory Access is the ratio between the size of the accessed data

that is actually involved in the later computation and the total data being accessed; The

Computation Intensity is the ratio of computing operations versus the data being ac-

cessed; The Effective Computation is the operations for generating the final result versus

the total operations.

5.3 TC-GNN Design

In this section, we will first give an overview of TC-GNN through its high-level pro-

gramming interface and then detail the TCU-aware GNN algorithm design. As detailed in

Listing 5.1, TC-GNN consists of several key components to facilitate the programming of

GNN models on GPU TCUs. TC-GNN introduces a set of pre-built popular GNN layers

(e.g., TCGNN.GCNConv) that can be easily connected with some other existing neural net-

work layers (e.g., ReLU and softmax), to help users define their own GNN model quickly.

For those non-conventional GNN layers, users can directly use our low-level APIs (e.g.,

TCGNN.spmm and TCGNN.sddmm) to express the GNN computation easily. TC-GNN intro-

duces an input Loader to load the GNN input graph as a rawGraph and capture the key

123

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Listing 5.1: Example of a 2-layer GCN in TC-GNN.
1 import TCGNN, torch
2 # include other packages ...
3 class GCN(torch.nn.Module):
4 def __init__(self, inDim, hiDim, outDim):
5 self.layer1 = TCGNN.GCNConv(inDim, hiDim)
6 self.layer2 = TCGNN.GCNConv(hiDim, outDim)
7 self.softmax = torch.nn.Softmax()
8

9 def forward(self, tiledGraph, param):
10 tiled_adj, X = tiledGraph.adj, tiledGraph.X
11 X = self.layer1(X, tiledAdj, param)
12 X = self.ReLU(X)
13 X = self.layer2(X, tiledAdj, param)
14 X = self.softmax(X)
15 return X
16 # Define a two-layer GCN model in TC-GNN.
17 model = GCN(inDim=100, hiDim=16, outDim=10)
18 # Load graph and extract input information.
19 rawGraph, info = TCGNN.Loader(graphFilePath)
20 # Generate TCU tile and runtime configuration.
21 tiledGraph, config = TCGNN.Preprocessor(rawGraph, info)
22 # Run model through forward computation.
23 predict_y = model(tiledGraph, config)
24 # Compute loss and accuracy.
25 # Gradient backpropagation for training.

input information for system-level optimizations. TC-GNN incorporates a Preprocessor

to build tiles from rawGraph and generate TCU-aware tiledGraph (§5.3.1), and optimize

runtime configuration (e.g., warps per block) for our TCU-tailored GPU kernel (§5.3.2

and §5.3.3) based on input. Finally, we train the initialized GNN model defined in

TC-GNN as the regular GNN models defined in other frameworks through forward and

backward computation.

5.3.1 TCU-aware Sparse Graph Translation

As the major component of TC-GNN, we introduce a novel Sparse Graph Transla-

tion (SGT) technique to facilitate the TCU acceleration of GNNs. Our core idea is that

the pattern of the graph sparsity can be well-tuned for TCU computation through effective

graph structural manipulation meanwhile guaranteeing output correctness. Our key obser-

vation is that neighbor sharing is common in real-world graphs and has been exploited

124

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Algorithm 4 TCU-aware Sparse Graph Translation.
Require: Graph adjacency matrix A (nodePointer , edgeList).
Ensure: Result of winPartition and edgeToCol .
1: ▷ Compute the total number of row windows.
2: numRowWin = ⌈numNodes

winSize ⌉
3: for winId in 1 to numRowWin do
4: ▷ EdgeIndex range of the current rowWindow.
5: winStart = nodePointer [winId · winSize]
6: winEnd = nodePointer [(winId+ 1) · winSize]
7: ▷ Sort the edges of the current rowWindow.
8: eArray = Sort(winStart, winEnd, edgeList)
9: ▷ Deduplicate edges of the current rowWindow.

10: eArrClean = Deduplication(eArray)
11: ▷ #TC blocks in the current rowWindow.
12: winPartition[winId] = ⌈ eArrClean.size

TC_BLK_w ⌉
13: ▷ Edges-to-columnID mapping in TC Blocks.
14: for eIndex in [winStart, winEnd] do
15: eid = edgeList [eIndex]
16: edgeToCol[eIndex] = eArrClean[eid]
17: end for
18: end for

for various tasks like link prediction [132]. Our evaluated datasets (Section 5.4) have

18% to 47% (averaged 29%) neighbor similarity. Specifically, we condense (remap) the

highly-scattered neighbor ids into highly-condensed new neighbor ids that can facilitate

the dense TCU computation paradigm. Also, such condensing should not compromise

any original information (e.g., edge connections) and can generate the exact output as

the conventional design.

As exemplified in Figure 5.1a and Figure 5.1b, we take the regular graph in CSR

format as the input and condense the columns of each row window (in the red-colored

rectangular box) to build TCU blocks (TC_block) (a.k.a., the input operand shape of

a single MMA instruction), in the orange-colored rectangular box. nodePointer is the

row pointer array edgeList is the edges of each node stored continuously. In this paper,

we demonstrate the use of standard MMA shape for TF-32 of TCU on Ampere GPU

architecture, and other MMA shapes [133] can also be used under different precision

125

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Condensed
Sparse Matrix

 TC-aware
Sparse Graph

Translation

TC_BLK_H

2 8 14 17 0 7 15 2 717 5 10 17

0 4 5 7 8 10nodePointer

edgeList

Sort Edges

2 8 14 170 7 152 7 175 10 17sorted
edgeList

Deduplication

2 8 14 170 1575 10
eArrClean

1 4 6 80 732 5 Column IDs
in TC block

TC_BLK_W TC_BLK_W

Illustration of translation process
 for one Row WindowSparse Matrix

Row Window

(a) (b) (c)

Figure 5.1: Illustration of Sparse Graph Translation. Note that the grey area indicates
the TCU blocks that will be directly skipped.

(e.g., half and int8) and GPU architecture (e.g., Turing).

SGT takes several steps for processing each row window, as detailed in Algorithm 4

and visualized in Figure 5.1c. winPartition is an array for maintaining the number of TC

blocks in each row window. edgeToCol is an array for maintaining the mapping between

the edges and their corresponding position in the graph after SGT. Note that edgeTo-

Col has the same length as edgeList but with column-id from eArrClean. colToRow

maps column-id of adjacency matrices to the row-id of embedding matrices. We choose

the size of the row window (winSize=TC_BLK_H) and column width (TC_BLK_W)

according to TCU MMA specification (e.g., TC_BLK_H=16, TC_BLK_W =8 in TF-

32). After condensing the graph within each row window, the time complexity of sliding

the TC_block can be reduced from O(N
TC_BLK_W

) to only O(
nnzunique

TC_BLK_W
), where N is

the total number of nodes in the graph and nnzunique is the size of the unique neigh-

bor within the current row window, which equals eArrClean.size in Algorithm 4. The

density (computation intensity) of each identified TCU block can be largely improved.

Considering the case in Figure 5.1, after the sparse graph translation, we can achieve 2×

higher density on individual TCU blocks (Figure 5.1b) compared with the original one

(Figure 5.1a).

Compared to existing sparse matrix formats (e.g., Blocked-Ellpack [126]) which use

126

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Algorithm 5 TC-GNN Neighbor Aggregation.
Require: Condensed graph structure (nodePointer, edgeList, edgeToCol, winPartition) and node

embedding matrix (X).
Ensure: Updated node embedding matrix (X̂).
1: for winId in 1 to numRowWindows do
2: ▷ #TC blocks of the row window.
3: numTCblocks = winPartition[winId]
4: ▷ edge range of TC blocks of the row window.
5: edgeRan = GetEdgeRange(nodePointer, winId)
6: for TCblkId in 1 to numTCblocks do
7: ▷ The edgeList chunk in current TC block.
8: edgeChunk = GetChunk(edgeList, edgeRan, TCblkId)
9: ▷ Neighbor node Ids in current TC block.

10: colToNId = GetNeighbors(edgeChunk, edgeToCol)
11: ▷ Initiate a dense tile (ATile).
12: ATile = InitSparse(edgeChunk,winId)
13: ▷ Initiate a dense tile (XTile).
14: XTile, colId = FetchDense(colToNId,X)
15: ▷ Compute XnewTile via TCU GEMM.
16: XnewTile = TCcompute(ATile,XTile)
17: ▷ Store XnewTile of X̂.
18: X̂ = StoreDense(XNewTile, winId, colId)
19: end for
20: end for

the regular matrix tiles to cover the irregularly scattered non-zero elements, SGT reduces

the irregularity of non-zero-elements layout to fit them into fewer number TCU blocks,

thus, reducing the unnecessary computation and memory overhead. SGT is applicable

for both the SpMM and SDDMM in GNN sparse operations and can be easily parallelized

because the processing of individual row windows is independent. In most cases, SGT

only needs to execute once and its result can be reused across many epochs/rounds of

GNN training/inference.

Additionally, SGT can be generally used with other accelerators (e.g., AMD-GPUs

with matrixCore and TPUs) that offer similar dense MM primitives. CPUs have no direct

alternative to TensorCore-like MM primitives. However, with AVX-vectorized instruc-

tions, CPUs can benefit from SGT by setting BLK_H=1 and BLK_W =(#elements-

per-AVX-instruction). TC-GNN currently targets GNN training. SGT is conducted

once before training. SGT cost can be offset by training iterations (averaged 2% for 200

127

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

iterations as DGL).

5.3.2 TCU-tailored GNN Computation

Besides the effective way to condense the sparse tiles, the next major challenge is how

to tailor the computation schedule of GNN algorithms so that we can capitalize on the

performance of condensed sparse graphs and the powerful TCUs. We focus on two major

types of computation in GNNs.

Neighbor Aggregation The major part of GNN sparse computing is neighbor aggre-

gation, which can generally be formalized as SpMM operations by many state-of-the-art

frameworks [15]. And they employ the cuSPARSE [70] on CUDA cores as a black-box

technique for supporting sparse GNN computation. In contrast, our TC-GNN design

targets at TCU for the major neighbor aggregation computation which demands a spe-

cialized algorithmic design. TC-GNN focuses on maximizing the net performance gains

by gracefully batching the originally highly irregular SpMM as dense GEMM computation

and solving it on TCU effectively. As illustrated in Algorithm 5, the node aggregation

processes all TC blocks from each row window. nodePointer and edgeList are directly

from graph CSR, while edgeToCol and winPartition are generated from SGT discussed

in the previous section. Note that InitSparse is to initialize a sparse tile in dense for-

mat according to the translated graph structure of the current TC block. Meanwhile,

FetchDense returns a dense node embedding matrix tile XTile for TCU computation,

and the corresponding column range colId (embedding dimension range) of matrix X.

This is to handle the case that the width of one XTile could not cover the full-width (all

dimensions) of X. Therefore, the colId will be used to put the current TCU computation

output to the correct location in the updated embedding matrix X̂.

Edge Feature Computing Previous research [121, 11] has demonstrated the great

128

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Algorithm 6 TC-GNN Edge Feature Computation.
Require: Condensed graph data (nodePointer , edgeList , edgeToCol , winPartition) and node embed-

ding matrix (X).
Ensure: Edge Feature List (edgeValList).
1: for winId in 1 to numRowWin do
2: ▷ #TC blocks in the row window.
3: numTCblocks = winPartition[winId]
4: ▷ Edge range of TC blocks of the row window.
5: edgeRan = GetEdgeRange(nodePointer, winId)
6: for TCblkId in 1 to numTCblocks do
7: ▷ EdgeList chunk in current TC block.
8: edgeChunk = GetChunk(edgeList, edgeRan, TCblkId)
9: ▷ Neighbor node Ids in current TC block.

10: colToNId = GetNeighbors(edgeChunk, edgeToCol)
11: ▷ Fetch a dense tile (XTileA).
12: XTileA = FetchDenseRow(winId, TCblkId,X)
13: ▷ Fetch a dense tile (XTileB).
14: XTileB = FetchDenseCol(colToNId, edgeToCol,X)
15: ▷ Compute edgeV alT ile via TCU GEMM.
16: edgeV alT ile = TCcompute(XTileA, XT ileB)
17: ▷ Store edgeV alT ile to edgeV alList.
18: StoreSparse(edgeV alList, edgeV alT ile, edgeList, edgeToCol)
19: end for
20: end for

importance of incorporating the edge feature for a better GNN model algorithmic per-

formance (e.g., accuracy, and F1-score). The underlying building block to generate edge

features is the Sampled Dense-Dense Matrix Multiplication (SDDMM)-like operation.

In TC-GNN, we support SDDMM with the collaboration of the above sparse graph

translation and TCU-tailored algorithm design, as described in Algorithm 6. The overall

algorithm structure and inputs are similar to the above neighbor aggregation. The major

difference is the output. In the case of neighbor aggregation, our output is the updated

dense node embedding matrix (X̂), where edge feature computing will generate a sparse

output with the same shape as the graph edge lists. Note that fetching the XTileA only

needs to consecutively access the node embedding matrix A by rows while fetching the

XTileB requires first computing the TCU block column-id to node-id (colToNId) to fetch

the corresponding neighbor node embeddings from the same node embedding matrix X.

Despite the dataflow similarity with dense-GEMM computation (e.g., CUTLASS [33]),

129

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Node Embedding in Global MemoryNode Embedding in Global Memory

TCU

Dense_X
Fragment

A_Sparse
Fragment

(a) SpMM-like Neighbor
 Aggregation Dataflow.

Registers

Registers

0
1
2

Shared Memory

Edge
Connection

Node
Embedding

Tile_X

TCU

Dense_X
Fragment

Dense_Y
Fragment

(b) SDDMM-like Edge Feature
Computation Dataflow.

Registers

Registers

Shared
Memory

Node
Embedding

Tile_Y

3
4

0
1
2

Registers

Edge
Features

Shared
Memory

3
4

0
1
2 Edge

Connection

N
ode

Em
bedding

Tile_X

Updated
Tile_X

Registers

Figure 5.2: TCU-optimized Dataflow Design for (a) Neighbor Aggregation and (b) Edge
Feature Computing in GNNs.

TC-GNN has to overcome the limited parallelism (imbalance workload) and sparse/irreg-

ular access with novel algorithmic and kernel designs. While these challenges are absent

in dense-GEMM computation with naturally high parallelism and data-access locality.

5.3.3 TCU-centric Workload Mapping

In collaborating with our TCU-tailored algorithm design, an effective mapping of

our algorithmic design to low-level GPU primitives is indispensable for high-performance

delivery. We discuss two key techniques: GPU-aware Workload Decomposition and TCU-

optimized dataflow design.

GPU-aware Workload Decomposition

Different from previous work [15, 16] focusing on CUDA cores only, TC-GNN high-

lights itself with CUDA core and TCU collaboration through effective two-level workload

mapping. The idea is based on the fact that CUDA cores work in SIMT fashion and

are operated by individual threads, while TCU designated for GEMM computation re-

quires collaboration from a warp of threads (32 threads). Our key design principle is

to mix these two types of computing units as a single GPU kernel, which can efficiently

coordinate the kernel execution at different levels of execution granularity.

130

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

In TC-GNN, we operate CUDA cores by thread blocks and manage TCU by thread

warps. Specifically, threads running CUDA cores from the same thread block will load

data (e.g., edges) from the global memory to shared memory. Note that in our design

we assign each row window (discussed in §5.3.1) to one thread block. The number of

threads in each block should be divisible by the number of threads in each warp (32) for

better performance. Once threads running on CUDA cores (CUDA-core threads) finish

the data loading, threads from each warp (TCU threads) will operate TCU for GEMM

computation (including loading the data from the shared memory to thread-local registers

(fragments), applying GEMM computation on data in registers, accumulating results on

registers, and storing the final results back to global memory). Note that there would be

a large overlap of the CUDA-core threads and TCU threads, both of which are threads

from the same blocks but running at a different time frames. In general, we use more

CUDA-core threads than TCU threads considering that global memory access demands

more parallelization.

There are two major benefits of such two-level workload decomposition. First, threads

from the same block can work together to improve the memory access parallelization to

better utilize memory bandwidth. Second, warps from the same block can reuse the

loaded data, including the information (e.g., column index mapping) of the translated

graph and the tiles from the dense node embedding matrix. Therefore, we can avoid

redundant high-cost global memory operations.

TCU-optimized Dataflow Design

As the major technique to improve the GPU performance, shared memory is cus-

tomized for our TCU-based sparse kernel design for re-organizing data layout for dense

TCU computation and reducing the redundant global memory traffic. Our design takes

the TCU specialty into careful consideration from two aspects, 1) the input matrix tile

131

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

size of the TCU, which is M(16)×N(16)×K(8) in the case of TF-32, and 2) the tile

fragment layout for fast computation. The common practice of the loaded tile A and

B are stored in row-major and column-major for better performance. Next, we will de-

tail our TCU-optimized dataflow design for both neighbor aggregation and edge feature

computation.

Neighbor Aggregation In Figure 5.2a, shared memory is mainly used for caching

several most frequently used information, including the tile of sparse matrix A (sparse_A),

the column-id of the sparse matrix A to row-id of the node embedding matrix of a graph

X (sparse_AToX_index), and the dense tile of X (dense_X). When handling each TCU

block, we assign all threads from the same block of threads for loading the sparse tile

while allowing several warps to concurrently load the dense row tile from the matrix X.

The reasons for enforcing such caching are two-fold. First, it can bridge the gap be-

tween the sparse graph data and the dense GEMM computing that requires continuous

data layout. For example, the adjacent matrix A is input as CSR format that can-

not be directed feed to TCU GEMM computation, therefore, we use a shared memory

sparse_A to initialize its equivalent dense tile. Similarly, we cache rows of X according

to the columns of A to the row of X mapping after our sparse graph translation, where

originally scattered columns of A (the rows of X) are condensed. Second, it can enable

data reuse on sparse_AToX_index and sparse_A. This is because in general, the BLK_H

(16) cannot cover all dimensions of a node embedding (e.g., 64), multiple warps will be

initiated of the same block to operate TCU in parallel to work on non-overlapped dense

tiles while sharing the same sparse adjacency matrix tile.

Edge Feature Computation Similar to the shared memory design in neighbor

aggregation, for edge feature computing, as visualized in Figure 5.2b, the shared memory

is utilized for sparse_A, sparse_AToX_index, and dense_X. We assign all threads from

the same block of threads for loading the sparse tile while allowing several warps to

132

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

concurrently load the dense row tile from the matrix X. Compared with dataflow design

in neighbor aggregation, edge feature computing demonstrates several differences.

First , the sizes of sparse_A are different. In the neighbor aggregation computation,

the sparse matrix A is used as one operand in the SpMM-like computation, therefore,

the minimal processing granularity is 16 × 8, while in edge feature computing by fol-

lowing SDDMM-like operation, the sparse matrix A serves as the output matrix, thus,

maintaining the minimum processing granularity is 16×16. To reuse the same translated

sparse graph as SpMM, we need to recalculate the total number of TC blocks. Second ,

iterations along the embedding dimension would be different. Compared with neighbor

aggregation, edge feature computing requires the result accumulation along the embed-

ding dimension. The result will only be output until all iterations have finished. In

neighbor aggregation, the node embedding vector is divided among several warps, each

of which will output their aggregation result to non-overlapped embedding dimension

ranges in parallel. Third , the output format has changed. Compared with SpMM-like

neighbor aggregation which directly output computing results as an updated dense ma-

trix X̂, SDDMM-like edge feature computing requires a sparse format (the same shape

as edgeList) output for compatibility with neighbor aggregation and memory space.

Therefore, one more step of dense-to-sparse translation is employed.

5.4 Evaluation

Benchmarks: We choose two representative GNN models widely used by previous

work [15, 16, 14] on node classification tasks. Specifically, 1) Graph Convolutional Net-

work (GCN) [10] is one of the most popular GNN model architectures. It is also the key

backbone for many other GNNs (e.g., GraphSAGE [12] and differentiable pooling (Diff-

pool) [41]). Therefore, improving the performance of GCN will also benefit a broad range

133

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Table 5.4: Datasets for evaluation.
Type Dataset Abbr. #Vertex #Edge Dim. #Class

I

Citeseer CR 3,327 9,464 3703 6
Cora CO 2,708 10,858 1433 7
Pubmed PB 19,717 88,676 500 3
PPI PI 56,944 818,716 50 121

II

PROTEINS_full PR 43,471 162,088 29 2
OVCAR-8H OV 1,890,931 3,946,402 66 2
Yeast YT 1,714,644 3,636,546 74 2
DD DD 334,925 1,686,092 89 2
YeastH YH 3,139,988 6,487,230 75 2

III

amazon0505 AZ 410,236 4,878,875 96 22
artist AT 50,515 1,638,396 100 12
com-amazon CA 334,863 1,851,744 96 22
soc-BlogCatalog SC 88,784 2,093,195 128 39
amazon0601 AO 403,394 3,387,388 96 22

of GNNs. For GCN evaluation, we use the setting: 2 layers with 16 hidden dimensions

per layer, which is also the setting from the original paper [10]. 2) Attention-based Graph

Neural Network (AGNN) [121]. AGNN differs from GCN in its aggregation function,

which computes edge features (via embedding vector dot-product between source and

destination vertices) before the node aggregation. AGNN is also the reference architec-

ture for many other recent GNNs for better model algorithmic performance. For AGNN,

we use: 4 layers with 32 hidden dimensions per layer.

Baselines: 1) Deep Graph Library (DGL) [15] is the state-of-the-art GNN frame-

work on GPUs, which is built with the high-performance CUDA-core-based cuSPARSE [70]

library as the backend and uses PyTorch as its front-end programming interface. DGL

significantly outperforms other existing GNN frameworks [16] over various datasets on

many mainstream GNN model architectures. Therefore, we make an in-depth comparison

with DGL. 2) PyTorch Geometric (PyG) [16] is another GNN framework. PyG leverages

torch-scatter [69] library (highly-engineered CUDA-core kernel) as the backend support,

which highlights its performance on batched small graph settings; 3) Blocked-SpMM [126]

(bSpMM) accelerates SpMM on TCU. It is included in the recent update on the cuS-

PARSE library. bSpMM requires the sparse matrix with Blocked-Ellpack format for

134

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

CR CO PB PI PR OV YT DD YH AZ AT CA SC AO

Type I Type II Type III

Speedup-GCN
Speedup-AGNN

(a)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

CR CO PB PI PR OV YT DD YH AZ AT CA SC AO

Type I Type II Type III

Speedup-GCN
Speedup-AGNN

Py
G

 O
O

M

(b)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

CR CO PB PI PR OV YT DD YH AZ AT CA SC AO

Type I Type II Type III

TC-GNN Vs. cuSPARSE

cuSPARSE

(c)

Figure 5.3: Speedup over (a) DGL and (b) PyG on GCN and AGNN; (c) Speedup over
cuSPARSE bSpMM on TCUs.

computation. Its computation on non-zero blocks can be seen as the hybrid sparse-dense

solution (§5.2.3). Note that the bSpMM has not been incorporated into any existing

GNN frameworks. We also compare TC-GNN with tSparse [134] and Triton [135] for

non-vendor-developed highly optimized kernels on TCUs.

Datasets, Platforms, and Metrics: We cover three types of datasets (Table 5.4),

which have been used in previous GNN-related work [15, 16, 14]. Specifically, Type I

graphs are the typical datasets used by previous GNN algorithm papers [10, 13, 12].

They are usually small in the number of nodes and edges, but rich in node embedding

information with high dimensionality. Type II graphs [42] are the popular benchmark

datasets for graph kernels and are selected as the built-in datasets for PyG [16]. Each

dataset consists of a set of small graphs, which only have intra-graph edge connections

without inter-graph edge connections. Type III graphs [82, 10] are large in terms of the

number of nodes and edges. These graphs demonstrate high irregularity in its structures,

which are challenging for most of the existing GNN frameworks. The core design of

TC-GNN consists of around 2.5K lines of code. TC-GNN backend is implemented with

C++ and CUDA C, and its front end is implemented in Python. Our major evaluation

platform is a server with an 8-core 16-thread Intel Xeon Silver 4110 CPU and an NVIDIA

RTX3090 GPU. To measure the performance speedup, we calculate the average latency

of 200 end-to-end runs.

135

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

5.4.1 Compared with DGL

Figure 5.3a shows that TC-GNN achieves 1.70× speedup on average compared to

DGL over three types of datasets across GCN and AGNN models on end-to-end train-

ing. Our kernel profiling via Nsight Compute shows that TC-GNN achieves high SM

occupancy (averaged 85.28%), which is on average 21.05% higher compared to DGL

across all datasets.

Type I Graphs: The performance improvements against DGL are significantly

higher for GCN (on average 2.23×) compared to AGNN (on average 1.93×). The major

reason is their different GNN computation patterns. GCN only consists of a neighbor

aggregation phase (SpMM-like operation) and a node update phase (GEMM operation).

Whereas in the AGNN, the aggregation phase would also require an additional edge

attention value (feature) computation based on SDDMM-like operations. Compared

with SpMM-like operations, edge attention computation in SDDMM is more sensitive to

the irregular sparse graph structure because of much more intensive computations and

memory access. Thus, the performance improvement is relatively lower.

Type II Graphs: TC-GNN achieves averaged 1.38× speedup on GCN and 1.70×

speedup on AGNN for the Type II graphs. Speedup on Type II graphs is relatively lower

compared with Type I, since Type II datasets consist of a set of small graphs with very

dense intra-graph connections but no inter-graph edges. This leads to a lower benefit

from the sparse graph translation that would show more effectiveness on highly irregular

and sparse graphs. Such a clustered graph structure would also benefit cuSPARSE due to

more efficient memory access, i.e., less irregular data fetching from the sparse matrix. In

addition, for AGNN, TC-GNN can still demonstrate evident performance benefits over

the DGL (CUDA core only) that can mainly contribute to TCU-based SDDMM-like

designs that can fully exploit the power of GPU through an effective TCU and CUDA

136

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

Table 5.5: Compare TC-GNN with tSparse and Triton.

Dataset tSparse (ms) Triton (ms) TC-GNN (ms)
AZ 18.60 31.64 4.09
AT 9.15 12.86 3.06
CA 13.84 15.50 3.26
SC 9.74 14.38 3.59
AO 11.93 21.78 3.41

core collaboration.

Type III Graphs: The speedup is also evident (on average 1.59× for GCN and av-

erage 1.51× for AGNN) on graphs with a large number of nodes and edges and irregular

graph structures. The reason is the high overhead global memory access can be well re-

duced through our spare graph translation. Besides, our dimension-split strategy further

facilitates efficient workload sharing among warps by improving the data spatial/tem-

poral locality. On the dataset AT and SC, which have a higher average degree within

Type III datasets, we notice a better speedup performance for both GCN and AGNN.

This is because 1) more neighbors per node can lead to a higher density of non-zero

elements within each tile/fragment. Thus, it can fully exploit the computation benefits

of each TCU GEMM operation; 2) it can also facilitate more efficient memory access.

For example, in AGNN, fetching one dense embedding x from the dense matrix X can be

reused more times by applying a dot-product between x and many columns of the dense

matrix XT (neighbors embeddings).

Additionally, our performance breakdown analysis shows that for graphs with highly

scattered and irregular edge distribution, such as Type I and III graphs, SGT would

contribute more (averaged 64%) to the overall performance improvements since it helps

significantly reduce the unnecessary workload. For graphs with highly dense and more

regular edge connections, such as Type II datasets, SGT contributes relatively minor

(averaged 23%) to the overall performance since it could not squeeze out more redundant

computations from already condensed edge tiles.

137

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

5.4.2 Compared with other baselines

Compared with PyG Figure 5.3b shows TC-GNN can outperform PyG with an

average of 1.76× speedup on GCN and an average of 2.82× speedup on AGNN. For

GCN, TC-GNN achieves significant speedup on datasets with high-dimensional node

embedding, such as Yeast (YT), through effective TCU acceleration through a TCU-

aware sparse graph translation while reducing the synchronization overhead by employing

our highly parallelized TCU-tailored algorithm design. PyG, however, achieves inferior

performance because its underlying GPU kernel can only leverage CUDA cores, thus,

intrinsically bounded by CUDA core performance.

Compared with cuSPARSE bSpMM Figure 5.3c shows that TC-GNN outper-

forms bSpMM with on average 1.76× speedup on neighbor aggregation and improves

effective computation by 75.8% on average. Our SGT technique can maximize the non-

zero density of each non-zero tile and significantly reduce the number of non-zero tiles to

be processed. However, bSpMM in cuSPARSE has to comply with the strict input sparse

pattern (indicated in official API documentation [136]). For example, all rows in the ar-

rays must have the same number of non-zero blocks. Thus, more redundant computations

(on padding non-structural non-zero blocks) in bSpMM lead to inferior performance. We

also notice that for SC datasets with a high average node degree and clustered node

distribution, bSpMM would benefit more due to its usage of a larger block size of 32×32

(fewer TCU invocations) compared to 16×8 in TC-GNN (more TCU invocations).

Compared with tSparse and Triton From Table 5.5, TC-GNN can outperform

tSparse with on average 3.60× speedup on SpMM. The major reason behind this is

that TC-GNN can well reduce the graph structural-level irregularity through our novel

SGT strategy to benefit the dense TCU-based computation. In contrast, tSparse only

considers partitioning the input sparse matrix into dense/sparse tiles based on their

138

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

0
20
40
60
80

100

CR CO PB PI PR OV YT DD YH AZ AT CA SC AO

Type I Type II Type III

Re
du

ct
io

n
(%

)

SpMM_16x8 (%) SDDMM_16x16 (%)

Figure 5.4: SGT Effectiveness on SpMM and SDDMM.

non-zero elements but ignores the potential of compressing non-zero elements into fewer

tiles to reduce the workload. TC-GNN also outperforms Triton with on average 5.42×

speedup on SpMM. Triton’s block-sparse GEMM for TCU acceleration is designed for

dense neural networks (focusing on feature maps’ sparsity), which is quite different from

GNNs (focusing on the graph adjacency matrix’s sparsity) with significantly larger sparse

matrix size and more irregular pattern.

5.4.3 Additional Studies

SGT Effectiveness & Overhead We conduct a quantitive analysis of SGT in terms

of the total number of TCU blocks between graphs w/o SGT and the graphs w/ SGT

applied. Note that in the SpMM-based aggregation, the size of TCU blocks is 16×8 since

it serves as one of the operands in TCU GEMM. While in SDDMM-based edge feature

computation, the size of TCU blocks is 16 × 16 since it serves as the resulting matrix

of TCU GEMM. Figure 5.4 shows that across all types of datasets, our SGT technique

can significantly reduce the number of traversed TCU blocks (on average 67.47%). The

major reason is that SGT can largely improve the density of non-zero elements within

each TCU block. In contrast, the graphs w/o SGT would demonstrate a large number

of highly sparse TCU blocks. What is also worth noticing is that on Type II graphs,

such a reduction benefit is lower. The reason is that Type II graphs consist of a set
139

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

0% 20% 40% 60% 80% 100%

AZ
AT
CA
SC
AO

SGT Training

Figure 5.5: The overhead analysis of SGT.

Table 5.6: Sparsity Analysis. Numbers for bSpMM/TC-GNN are in GFLOPs. “DB/W”:
dense blocks per row window.

DB/W Sparsity (%) bSpMM TC-GNN
1 99.61 773.86 12,686.02
2 99.22 1,597.83 11,010.75
4 98.44 3,348.75 18,164.08
8 96.88 6,528.10 25,883.10
16 93.75 12,955.40 23,865.99
32 87.50 26,061.70 16,629.28

of small subgraphs that only maintain the intra-subgraph connections, which already

maintain dense columns. We evaluate the overhead of SGT (Figure 5.5), we find that its

overhead is consistently low (on average 4.43%) compared with the overall training time

(200 epochs as DGL [15]).

Sparsity Analysis We compare with bSpMM on synthetic matrix data with different

sparsity (zero-element ratio). Note that we change the sparsity by varying the number

of dense non-zero blocks (16×16) within each row window, the input adjacent matrix

size is fixed to 4096×4096 while the dense embedding matrix dimension is fixed to 16.

Table 5.6 shows that when sparsity increases from 93.75% to 99.61%, TC-GNN design

demonstrates more throughput performance strength (averaged 6.9×) and this is also

the common sparsity range (more than 95%) for most input graphs of GNNs. When the

sparsity drops to around 87.50% the sparse would demonstrate more advantage due to

more dense blocks for computation.

140

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

0
10
20
30
40

1 2 4 8 16 32
Ti

m
e

 (m
s)

Warps Per Block

AZ AT CA

Figure 5.6: Performance Impact of Warps per Block.

0
50
100
150
200
250
300
350
400
450

16 32 64 128 256

G
FL
O
Ps

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

Figure 5.7: Analysis of TC-GNN kernel throughput when increasing the node embedding
dimension from 16 to 256.

Warps per Block: Figure 5.6 shows that with the increase of the number of

warps, the overall performance for training per epoch would first decrease due to the

better parallelism for loading the graph data. However, the number of warps per block

would decrease the overall performance under certain circumstances (e.g., 32). All three

settings suffer from evident performance degradation. Because the global memory access

contention will become severe, leading to lower execution performance. Different datasets

would have different “optimal” choices of the warp-per-block parameter. For example, on

the CA dataset, 2 warps per block can deliver the best performance, while AZ requires

8 warps per block. Based on our profiling and empirical study, the selection of this

parameter should consider the average #edges per row window (avg .edges), which can

be easily get during the preprocessing. Our preprocessor will generate warpPerBlock =

⌊avg.edge
32

⌋ to approach the “optimal” performance. For instance, the average edges per row

window are 88 for CA, it reaches the best performance at 2 warps per block.

Throughput Analysis: For sparse matrix computations in GNNs, we measure the

141

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

throughput performance of SpMM in TC-GNN when the dimension of node embedding

increases for a roofline analysis. Sparse matrix computation is largely limited by its

memory access performance, which is quite different from the dense GEMM computa-

tion which is largely bounded by the computing performance. Figure 5.7 shows that

the throughput of TC-GNN can scale proportionally with the growing number of node

embedding dimensions. This also indicates that TC-GNN can effectively handle graphs

with high-dimensional node embeddings and well utilize GPU resources.

5.5 Related Work and Discussion

Other GPUs TC-GNN can easily generalize to other GPUs (e.g., A6000, H100, and

RTX4090) with TCUs via recompilation (python setup.py install). TC-GNN also

supports different TCU configurations (e.g., precision) by modifying (BLK_H, BLK_W

in TCGNN_conv/config.h) and four parameters (M, N, K, dataType) in wmma::fragment,

then recompile. For future GPUs with more TCUs, our TC-GNN can also be adapted

to accommodate such changes and maintain its performance advantage. There are two

future GPU designs that we anticipate. The first direction is to place more TCUs per

SM while keeping the total number of SMs unchanged. There will be more active warps

per thread block (This is mainly because TCUs are operated by warps) and each warp

will process fewer neighbors. The cost of decomposition and mapping can be offset by

parallelism among more warps. The second direction is to place more SMs on GPUs

while keeping TCUs per GPU unchanged. In this scenario, there will be more thread

blocks and each thread block will process neighbors from fewer nodes. The cost can be

offset by parallelism among more thread blocks.

Other GNN Frameworks Besides DGL and PyG, other single-GPU GNN frame-

works like GNNAdvisor [3], GE-SpMM [130], and fuseGNN [137], tailor their own GNN

142

TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs. Chapter 5

layers manually with low-level GPU kernel optimizations. Unfortunately, these designs

limit their kernel optimizations to CUDA cores, thus, missing the golden opportunities

to exploit the full potential of widely deployed AI-tailored GPUs with TCUs.

Graph Partitioning/Reordering ROC [138] introduces a learning-based graph

partitioning to reduce the data movement between CPU and GPU when processing large

graphs. Rabbit Order [139] and Reverse Cuthill Mckee Algorithm [140] are focusing on

row reordering/clustering to improve node/row-wise computation locality. Our sparse-

graph translation (SGT) technique is orthogonal and complementary to these graph

partitioning and reordering techniques since our SGT focuses on column (neighbor) re-

indexing to improve neighbor-wise locality for TCU computation.

Distributed GNN Computation There are two major ways of scaling-up GNN

computing: 1) Distributed sampled graphs [15, 100, 16, 114] (where graph nodes and

their embeddings are on the same GPU): TC-GNN can be incorporated directly since all

sampled graphs along with their node embeddings are presented at the same GPU. 2)

Distributed full-graph [141, 14, 138, 142] (where graph nodes and their embeddings may be

on different GPUs): TC-GNN needs to be modified slightly by incorporating inter-GPU

communication techniques (e.g., Unified Virtual Memory [106] and NVSHMEM [94]) to

support the remote neighbor embedding access. We leave such exploration for our future

work.

143

Chapter 6

DSXplore: Optimizing Convolutional

Neural Networks via Sliding-Channel

Convolutions

As the key advancement of the convolutional neural networks (CNNs), depthwise sepa-

rable convolutions (DSCs) are becoming one of the most popular techniques to reduce

the computations and parameters size of CNNs meanwhile maintaining the model accu-

racy. It also brings profound impact to improve the applicability of the compute- and

memory-intensive CNNs to a broad range of applications, such as mobile devices, which

are generally short of computation power and memory. However, previous research in

DSCs are largely focusing on compositing the limited existing DSC designs, thus, missing

the opportunities to explore more potential designs that can achieve better accuracy and

higher computation/parameter reduction. Besides, the off-the-shelf convolution imple-

mentations offer limited computing schemes, therefore, lacking support for DSCs with

different convolution patterns.

144

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

To this end, we introduce, DSXplore 1, the first optimized design for exploring DSCs

on CNNs. Specifically, at the algorithm level, DSXplore incorporates a novel factor-

ized kernel – sliding-channel convolution (SCC), featuring input-channel overlapping to

balance the accuracy performance and the reduction of computation and memory cost.

SCC also offers enormous space for design exploration by introducing adjustable kernel

parameters. Further, at the implementation level, we carry out an optimized GPU-

implementation tailored for SCC by leveraging several key techniques, such as the input-

centric backward design and the channel-cyclic optimization. Intensive experiments on

different datasets across mainstream CNNs show the advantages of DSXplore in balanc-

ing accuracy and computation/parameter reduction over the standard convolution and

the existing DSCs.

6.1 Introduction

With the increasing popularity of AI-driven edge computing and Internet of Things

(IoTs), convolutional neural networks (CNNs) have entered a new era with the plethora of

tiny devices, which have limited resources, such as the power, and memory budgets. This

makes the CNNs that are small in parameter size with low computation costs (FLOPs)

highly in demand. Among numerous research and industry efforts, depthwise separable

convolutions (DSCs) attract a lot of attention, largely because of their stunning success

in reducing FLOPs and parameters.

Existing works around DSCs have been widely studied mainly from an algorithmic

perspective. MobileNet [143] has been proposed by replacing the standard convolution

with the depthwise separable convolution (depthwise (DW) + pointwise (PW) convolu-
1© 2021 IEEE. Reprinted, with permission, from Yuke Wang, DSXplore: Optimizing Convolutional

Neural Networks via Sliding-Channel Convolutions, International Parallel and Distributed Processing
Symposium, 05/2021.

145

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

tion) to reduce the model parameters and computation cost significantly. Inspired by

the success of MobileNet, Xception [144] architecture has been built to largely simplify

more complicated CNNs, such as Inception [145] (with a large number of layers and

residual connections) by leveraging DSCs. The major assumption of these works is that

the cross-channel correlations and the spatial correlations can be effectively decoupled

and there is no need to map them at the same time. Therefore, the high-cost standard

convolution can be effectively divided into the lightweight DW convolution to capture

the spatial information and PW convolution to capture the channel-wise information.

However, these existing efforts on DSCs are still initial, since they overlook some

key points that could be potentially leveraged for further parameter and computation

reduction. And we believe there are several reasons behind.

First, there are limited DSC designs to balance accuracy performance

and the size of computation/parameters. Existing work on DSCs is mostly derived

from the DW+PW design for standard convolution replacement. The more effective DSC

schemes that can potentially deliver better accuracy and model size trade-offs still remain

uncovered. For example, we can further reduce the computation cost and parameter size

by combining the group convolution (GC) (dividing the input and output channel into

the same number of groups and only applying standard convolution within each group)

with PW.

Second, there is a lack of efficient implementation support for new factor-

ized kernels. Existing works on DSCs heavily rely on the deep-learning infrastructure

with standard/group convolutions for their factorized kernel implementation. For ex-

ample, the DW convolution can be expressed as the extreme case of the GC with the

number of groups equal the input channels, while the PW convolution can be expressed

as another special case of standard convolution with the 1× 1 kernel spatial dimension.

Therefore, the better factorized kernel that may bring better accuracy and lower com-

146

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

𝑾

𝑪𝒊𝒏

𝑪𝒐𝒖𝒕

(a) Standard

𝑾

𝑾

𝑪𝒊𝒏

(d) DW

𝑪𝒐𝒖𝒕
𝟐

𝑪𝒊𝒏
𝟐

1
1

𝑪𝒊𝒏
𝟐

𝒈 = 𝟐

(e) GPW (cg=2)

1
1

𝑪𝒊𝒏

𝑪𝒐𝒖𝒕

(b) PW

𝑾

𝑾

𝑪𝒐𝒖𝒕
𝟐

𝒈 = 𝟐

𝑪𝒊𝒏
𝟐

(c) GC (cg=2)

𝑾

𝑪𝒊𝒏
𝟐

𝑭𝑾

𝑭𝑾

𝑪𝒊𝒏

Input Feature Map Output Feature Map

𝑭𝑾

𝑭𝑾

𝑪𝒐𝒖𝒕

Figure 6.1: Comparison of input/output feature map before/after convolution and the
filter dimension of existing CNN convolutions.

putation and memory costs but not in the above categories cannot leverage the existing

convolutional primitives for an effective implementation.

To this end, we propose, DSXplore, the first optimized design for exploring the long-

existing “buried” DSC potentials. The highlight of DSXplore is our novel factorized

convolution kernel – sliding-channel convolution (SCC), which can effectively reduce the

computation and parameter size meanwhile maintaining model accuracy to a great extent.

In contrast to the previous fixed DW+PW in most existing DSC designs, DSXplore pro-

vides an enormous space for exploring new DSC designs by introducing a set of adjustable

parameters to SCC – the number of channel groups (cg) and input-channel overlapping

(co). Furthermore, we present an optimized implementation of SCC on GPUs by captur-

ing the specialty (e.g., cyclic-channel pattern) of SCC and tailoring parallel computation

(e.g., improving thread-level parallelism and reducing atomic operations).

Overall, we make the following contributions

• We propose the first optimized design to uncover the potentials of DSC. We harness

our novel sliding-channel convolution (SCC) to balance the accuracy performance

and the reduction of computation and memory cost. Moreover, SCC offers an

enormous design exploration space with parameterized design strategy.

• We carry out an optimized GPU-implementation tailored for SCC design by incor-

porating several key techniques, including the output-centric forward and input-

centric backward optimization, and the optimization based on the convolutional

147

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

specialty (cyclic channel) of its filters.

• We integrated our SCC design with the original Pytorch framework as the drop-in

replacement of the existing DSCs to facilitate the training and inference of DSX-

plore2 in an end-to-end fashion.

• Intensive experiments show DSXplore achieves better accuracy and lower computa-

tion/memory cost compared with the existing DSC. Our proposed optimized GPU

implementation can overcome the implementation challenges of SCC by providing

notable speedup compared with the implementations by compositing the highly-

optimized Pytorch operators.

6.2 Background and Related Work

6.2.1 Standard Convolution

The standard convolution is the most widely used deep-learning operation in many

CNNs [146, 147, 148], which targets on images (a.k.a., feature map). In general, we

annotate the dimension of 3D feature map as Fw ×Fw ×Cin, where FW is the 2D spatial

dimension of the feature map while Cin is the number of input channels.

The standard convolution relies on a set of (Cout) standard convolutional filters, each

of which has the size of W ×W × Cin parameters to generate output feature maps, as

shown in Figure 7.1(a), where the W is the spatial dimension of the filters (In general,

filters usually have a square shape of W × W), Cin is the number of channels for the

input feature map, and Cout is the number filters (equals the channels for the output

feature map, since each filter only generates the feature map in one output channel).

After applying the standard convolution on the input with the shape of Fw × Fw × Cin,
2DSXplore is open-sourced at https://github.com/YukeWang96/DSXplore.git

148

 https://github.com/YukeWang96/DSXplore.git

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

we will get the output feature map O, which has the shape of Fw × Fw × Cout. Note

that the mainstream CNNs [146, 147, 143] generally maintain the same feature map

spatial dimension at different convolutional layers while only changing the number of the

channels across different layers.

Formally, for standard convolution, we have

Om,n,c =
∑
i,j,a

Ki,j,a,c ∗ Fm+i−1,n+j−1,a (6.1)

where Om,n,c is one pixel point in the output feature map; m and n are the spatial

indexes in the output feature map (0 ≤ m < Fw and 0 ≤ n < Fw); a is the channel index

in the input feature map (0 ≤ a < Cin); c is the channel index in the output feature

map (0 ≤ c < Cout); i, j, and a are the index used to accumulated the elementwise

multiplication values between input feature map and one filter, which is essentially a

cube with the shape of K ×K × Cin.

The standard convolution not only captures the spatial information by iteratively

“gathering” a W ×W square in a 2D sliding-window fashion in each channel but also ef-

fectively fuses the information across different channels, as indicated in the Figure 7.1(a),

where each kernel filter will “fuse” the information from all Cin channels of input feature

maps.

6.2.2 Factorized Convolution

While the standard convolution gains success in CNNs across different applications

settings (e.g., computer vision), its high computation and memory complexity signifi-

cantly make it challenging to get widely adopted on devices with limited capability of

computation and memory resources.

To break this hurdle, a set of factorized kernels and their combinations are introduced

149

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

as a drop-in replacement for the standard convolution to reduce the computation and

memory cost meanwhile maintaining the model prediction power. Existing factorized

kernels can be divided into four major categories: 1) Pointwise Convolution (PW) [145],

which is a standard convolution with 1 × 1 spatial size, as shown in Figure 7.1(b); 2)

Group Convolution (GC) [149] that divides input channels into several groups and per-

forms standard convolution within each group, as exemplified in Figure 7.1(c) with two

groups; 3) Depthwise Convolution (DW) [150] which calculates spatial convolution per

channel or can be regarded as an extreme case of GC when the group number equals

the number of the input channels, as shown in Figure 7.1(d); 4) Group Pointwise Convo-

lution (GPW) [151] that further splits PW into groups, as exemplified in Figure 7.1(e)

with two groups.

The most successful example adopted in many CNNs (e.g., Xception [144] and Mo-

bileNet [143]) is the depthwise separable convolution (DSC). It breaks the original stan-

dard convolution into two parts: depthwise (DW) convolution and pointwise (PW)

convolution. The first step (DW) applies Cin different W ×W × 1 filters to each of the

Cin input channels independently, which can be formalized as Equation 7.2

Ôm,n,a =
∑
i,j

Ki,j,a ∗ Fm+i−1,n+j−1,a (6.2)

The second step (PW) applies a filter with 1× 1 spatial dimension. As shown in Equa-

tion 7.3.

Om,n,c =
∑
a

Ka,c ∗ Fm−1,n−1,a (6.3)

Compared with the standard convolution, DSC brings two folds of benefits. First, it

largely reduces the size of weight parameters. In the standard convolution, we have

W ×W ×Cin ×Cout parameters, while in DSC, we only have W ×W ×Cin +Cin ×Cout

150

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

parameters, which is only 1
Cout

+ 1
W 2 of the parameters in the standard convolution.

Second, it can largely reduce the total number of computations (FLOPs) compared with

the standard convolution kernel. Specifically, the standard convolution requires Fw×Fw×

Cout×W×W×Cin operations, whereas DSC only requires Cin×Fw×Fw×W×W+Cout×

Fw×Fw×Cin, which is 1
Cout

+ 1
W 2 of the number of operations in the standard convolution.

Further study, such as Shift Convolution [152], adapts the depthwise convolution by using

a shift matrix for a more specialized spatial-wise information fusion at individual input

channels.

However, the underlying reason why these designs can be successful is not clear.

Our work, in contrast, introduces a brand-new DSC convolution kernel – sliding-channel

convolution (SCC), focusing on the channel-wise information fusion. It offers explainable

parameters (the number of channel groups and the input-channel overlapping ratio) to

effectively capture cross-channel information with more flexibility.

6.2.3 Sparse Convolution

As an another way of reducing computation and compressing model size, sparse con-

volution [153, 154, 155, 156, 157] has been proposed and widely studied. Depending on

the granularity of the pruning, existing pruning strategies can also be categorized into

two major types, non-structured and structured pruning. The non-structured pruning

aims to maximize the ratio of reducing the parameters and saving FLOPs. However,

it fails to consider the implementation complexity on modern hardware due to its com-

putation irregularity after pruning. The structured pruning overcomes the weakness

of non-structured pruning through applying coarse-grained pruning strategy to largely

maintain the computation regularity. However, it may compromise model accuracy to

some extent due to such an “imprecise” nature of the structural pruning.

151

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Furthermore, the modern deep-learning frameworks, such as Pytorch and Tensor-

flow [158], still lack of efficient programming library support for these pruning operations

(a.k.a., sparse kernels) on CPUs and GPUs. And most of these sparse kernels are only

evaluated in their accuracy performance by masking the feature maps or weight param-

eter with zero values. At the same time, some of the pruning method is highly input-

sensitive, which may lead to non-deterministic model accuracy when encountering the

“unseen” real-world datasets. In contrast, our work focusing on factorized kernel design is

essentially orthogonal to these pruning approaches but share the commonality of saving

computation and parameters of CNNs. And the difference is that our work is to redesign

the overall kernel filters and their operation patterns (e.g., the input-to-output channel

mapping of kernel filters), while these pruning works target at modifying individual fil-

ters or feature maps, such as masking out specific tensors based on their values. We also

believe that factorize kernel + pruning is a potential research direction, but it is not our

current focus in this paper.

6.3 Sliding-Channel Convolution

Motivated by previous research on DSCs, we believe some “hidden” dimensions are

yet to be explored in this direction. And there are three major questions to be answered:

1) Is it possible to further save the parameters and the computation costs by crafting

a new DSC convolution scheme?

2) How could we maintain the model accuracy performance by applying such a design?

3) How could we implement such a new design to facilitate end-to-end training on

modern hardware, like GPUs?

152

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

(a) PW (b) GPW (c) SCC

Figure 6.2: Comparison of our proposed SCC to PW and GPW on input-to-output
channel mapping of filters. Note that circles in the same color represent input channels
covered by one filter.

6.3.1 Sliding-Channel Convolution

To this end, we propose a brand new convolution scheme, named sliding-channel

convolution (SCC), in place of the PW convolution in the DW+PW design to capture

cross-channel information more effectively. Specifically, it combines the GC to reduce

the parameter and computations in the original PW convolution. Most importantly, it

overlaps the input-channels of each filter to “recover” the information that is ignored by

applying GC. Such specialty makes our SCC different from previous designs (PW and

GPW) in different perspectives.

Table 6.1: Comparison among SCC, PW, and GPW.

Convolution FLOPs Params. Acc.
PW† High High High

GPW∗ Low Low Low
SCC Low Low High

†: PW can be seen as SCC with 1 group with 100% channel overlapping of adjacent filters.
∗: GPW can be seen as SCC with m groups with 0% channel overlapping of adjacent filters. m is a

parameter that can be determined by users.

Compared with PW: As the second step in DW+PW design, the major role of PW

is to cross-channel information by a standard convolution with 1 × 1 filter. While SCC

also shares a similar goal as PW to unify channel-wise information, each kernel filter of

SCC only needs to look through a part of the input channels, whereas each kernel filter

of PW has to look through all input channels. As illustrated in Figure 6.2(a), the Cout0

153

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

c

GPW

𝑾

𝑿𝒄𝒂𝒕

c GPW

GPW

GPW

GPW

𝑾𝟏

𝑾𝟐

𝑾𝟑

𝑾𝟒

(a) Channel-Stack (b) Convolution Stack

O𝒖𝒕
O𝒖𝒕

1 2
Indexing Extracting

3
Concatnating

4
Convolution

1 2
Indexing Extracting

3
Concatnating

4
Convolution

𝑰𝒏𝑰𝒏

Figure 6.3: Two proposed Implementations for SCC via Pytorch-operator composition:
channel-stack and convolution-stack.

in SCC only need to “gather” information from the input channel Cin0 and Cin1, whereas

Cout0 in PW requires information from channel Cin0, Cin1, Cin2 and Cin3. Note that

we use the circle to represent the feature map (Fw × Fw) on each channel. The benefits

of our SCC design compared with PW can be highlighted by comparing line 3 and line

1 in Table 6.1, where SCC reduces the FLOPs and parameters meanwhile maintaining

accuracy performance.

Compared with GPW: As the variant of the PW convolution, GPW has been

studied to amortize the computation and parameter costs of PW. While sharing the

commonality of reducing the model complexity as GPW, each filter of our SCC would

cover different “windows” of input channels that are partially overlapped with their ad-

jacent filters. The input-channel overlapping in SCC serves as an essential “bridge” to

communicate the different input channel information that is originally segregated by

channel grouping in GPW. Filters in the conventional GPW, on the other hand, would

either fully overlap with their adjacent filters or no overlap with their adjacent filters in

terms of input channels they cover. This may lead to 1) redundant information from the

same input-channel window, and 2) missing information spanning across different input-

channel windows. As illustrated in Figure 6.2(b), the first half of the output channels

only uses the first half of the input channels from the input feature map, while the second
154

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

half of the output channels only uses the second half of the input channels. In contrast, in

our SCC design (Figure 6.2(c), the adjacent two filters would never occupy the same part

of input-channel window. For example, filter 2 overlaps with the filter 1, thus, extracting

information from both Cin1 and Cin2, which cannot be captured in GPW. Besides, we

introduce the channel-circulation scheme that further strengthens the capability to ex-

tract information, i.e., the last input channel is logically connected with the first input

channel to form a cycled input channels. Therefore, as shown in Figure 6.2(c), the input-

channel window of filter 3 will include the Cin3 and Cin0. The benefits of our SCC design

compared with GPW can be demonstrated by comparing line 3 and line 2 in Table 6.1,

where SCC wins in terms of accuracy by better utilizing cross-channel information.

Moreover, another highlight of our SCC design is its flexibility, and there are two

parameters are introduced: channel group number cg and input-channel overlap ratio

co. For instance, we use SCC-cgX-coY% to denote each filter in the convolution kernel

takes 1
X

number of input channels, while adjacent filters in SCC have y% overlap in their

consumed input channels. As exemplified in Figure 6.2(c) with the setting of SCC-cg2-

co50%, the input and output channels of the feature map are divided in to two groups,

each adjacent filter is overlapped with 50% input channels.

6.3.2 Implementation Challenges

While the SCC allows users to explore more algorithmic benefits from DSCs through

combining group convolution and overlapping channels, the implementation of this new

kernel is challenging in several aspects. First, existing off-the-shelf high-level CNN build-

ing blocks (e.g., cuDNN [159], Conv2D in Pytorch) crafted for standard convolution could

not be easily adapted for the implementation of SCC due to the quite different ways of

conducting convolution operations. Because each filter of SCC relies on different input

155

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

channels to generate feature map on one output channel, as indicated in Figure 6.2. Thus,

extra computations are required to pinpoint the corresponding input-channel window at

the input feature map before the convolution.

Second, the implementation of SCC could not well benefit by leveraging the highly-

optimized low-level NN primitives, such as General Matrix-Matrix operations (GEMM).

The major reason is that SCC requires more fine-grained GEMM operations on the

matrix that are essentially skewed in its shape. Because each kernel filter does not cover

the identical “window” of input channel as its adjacent filter, thus, lacking the reuse of

input-channel window. For example, considering a setting with feature map (56 × 56)

in each input channel, the number of input channel is 64 (Cin = 64) and the number of

output channel is 128 (Cout = 128). When cg = 2 (i.e., both input and output channel

are divided in to 2 groups), SCC requires 128 times fine-grained GEMM operations

between the matrix with shape ((56 × 56) × 32) and matrix with shape (32 × 1). Even

though stacking these small matrices in to a larger matrix is an alternative solution, the

computation and memory costs are also non-trivial. In contrast, existing convolution

kernels, such as GPW, can be well benefited from cuBLAS [32] for implementation.

Assuming the same setting (cg = 2) as the above example, GC only requires two GEMM

operations between a matrix with shape ((56×56)×32) and a matrix with shape (32×64),

which is clearly efficient compared with that in SCC.

To tackle these challenges, we first propose two implementations by compositing

existing Pytorch operators. Further, we orchestrate our highly-efficient implementation

with a set of kernel-level designs and optimizations tailored for SCC computation. We

discuss those details in Section 6.4.

156

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

6.4 Implementation

6.4.1 Pytorch Operator Composition

Channel-Stack Implementation As the most straight-forward solution, we implement

SCC by compositing the standard Pytorch operators, such as tensor slicing, concatena-

tion, and standard group convolution. Specifically, there are four major steps, as shown

in Figure 6.3(a). The first step (1) is to identify the input channels of kernel filters

(i.e., the calculation of the index range of each kernel filter, including its starting and

ending location). The second step (2) is to extract the input feature maps based on

the calculated input channel windows from the previous step. Then the third step (3)

concatenates them into a large feature map long their channel dimension. The fourth

step (4) is to apply the standard group convolution (such as conv2D in Pytorch) with

the number of groups specified as the number of output channels (kernel filters).

However, we could easily find the drawbacks of such an implementation in the follow

aspects. First, massively dividing and concatenating tensors (feature maps) in Pytorch

is inefficient. It generally requires random indexing and data duplication on tensors,

leading to a large amount of data movement that will hurt the performance. Second,

Pytorch framework lacks support for concurrently executing the above operations, thus,

missing the opportunity for parallelization. Third, the overlapped input channels of

each kernel filter incur excessive data redundancy of repeatedly storing the same feature

maps, leading to a prohibitively large size of the concatenated tensor that hurdles its

applicability on modern GPUs with limited size of memory.

Convolution-Stack Implementation The second implementation circumvents the

“huge” concatenated tensor in the above channel-stack implementation by applying con-

volution operation before concatenating. One major key insight is that the computation

157

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

on the large concatenated tensor can be decomposed into the more effective computation

on a set of small tensors. As illustrated in Figure 6.3(b), instead of simply combining

all the extracted features maps, we can pre-build a set of lightweight convolutions, such

as GPW1 - GPW4, each of which will generate the feature map for only one kernel

filter. Finally, we concatenate these output feature map together. While this solution

can largely overcome the third problem of the above channel-stack implementation, it

is still hindered by the excessive inefficient Pytorch operations and lack of computation

parallelization.

6.4.2 DSXplore Implementation

To handle the aforementioned challenges, our DSXplore introduces a set of new de-

signs at forward and backward pass tailored for SCC computation. Moreover, DSX-

plore identifies the channel-cyclic pattern in SCC that can be effectively applied towards

different implementations.

Output-Centric Forward Pass We propose an output-centric forward pass to effi-

ciently handle the SCC forward propagation. Adjacent kernel filters are overlapped in

terms of their corresponding input channels. Note that the last input channel is logically

adjacent to the first input channel to form a channel circle. In the forward pass, we

assign N × Cout × Fw × Fw GPU threads in total to generate each pixel point in the

output feature map, and the workload of each thread is just a simple vector-vector mul-

tiplication between the weight and the pixels across different input channels but at the

same position of the 2D kernel dimension (i.e., the same (x, y) in Fw × Fw space). For

example, output feature map on channel C1 with the shape of Fw ×Fw will be generated

by the elementwise multiplication between input feature maps ((Fw×Fw)×2) and weight

parameters (2× 1) by leveraging Fw × Fw threads.

158

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Our proposed forward pass scheme has two major benefits. First, no data duplication

for any part of tensors (feature maps) during the whole computation, since each thread

only need to fetch its corresponding pixel point across different input channels from the

original input tensor directly. Second, better data locality in the input feature map and

weight parameters, since adjacent threads within the same GPU block are scheduled to

operate on the same output feature map. Third, no inter-thread contention, since the

computation of each pixel point is independent from each other and is handled by one

thread.

Input-Centric Backward Pass For training our SCC kernel, an efficient backward

phase is required for gradient backward propagation to update the model parameters.

Compared with the forward pass, backward propagation is generally several times higher

in computations due to the gradient backpropagation for both the trainable parameters

(e.g., weight, and bias) and input feature maps. The backpropagation of the standard-

/group convolution can be easily formalized as the high-performance GEMM operation

due to the fact that their kernel filters are either fully overlapped (for filters from the

same group) or non-overlapped (for filters from different groups) in terms of their input

channels. However, in our SCC kernel, filters are partially overlapped, which challenges

the implementation of gradient backpropagation due to lacking support of any existing

optimized operation.

While there is a straightforward option to simply reverse the forward computation

flow of data propagation to the backward flow for gradient propagation. As illustrated in

Figure 6.4(a), we assign threads based on the output gradient map as we previous do in

the forward pass. However, the overlapping of input channel for different filters also leads

to the excessive amount of thread-level synchronization during the backward pass. The

major reason is that the overlapped input-channel feature maps would simultaneously

159

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Input Gradient Map Output Gradient Map Output Gradient Map Input Gradient Map

W0

W1

W2

W3

W0

W1

W2

W3

*

*

*

* *

*

*
*

*

*

+

+

+

+

Conflict update

Non-Conflict update* +Element-wise
multiplication

Element-wise
Accumulation

GPU-thread
Conflict update

Non-Conflict update* +Element-wise
multiplication

Element-wise
Accumulation

GPU-thread

CH-0

CH-1

CH-2

CH-3

*

*

Figure 6.4: SCC backward computation flow: output-centric and input-centric design.
Note that square boxes stand for points on feature maps, while each curved line inside
a box stands for a GPU thread for generating value at that point. “CH” is short for
“channel”.

receive the gradients being “pushed” from different kernel filters that are operated by

different groups of threads. Therefore, the computation correctness has to be guaranteed

by employing lots of atomic primitives when accumulating gradients for input feature

maps. For example, the propagation of output gradient map on CH-2 and CH-3 would

incur lots of conflicts during the updating of input gradient map on CH-3.

To overcome these issues, we introduce an input-centric backward scheme that assigns

each thread to generate the gradient of each pixel point on the input feature map. As

shown in Figure 6.4(b), we assign threads based on the input gradient map instead of the

output gradient map, while the direction of the gradient flow remains unchanged. For

example, the input gradient map on CH-3 will “pull” gradients from the output gradient

maps on CH-2 and CH-3. By harnessing such an input-centric backward scheme, we

eliminate the need to use the excessive amount of thread-level synchronization (atomic

160

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

operations) for the input gradient map update, meanwhile maintaining the correctness

of the backward computation.

Note that for both forward and backward computation, we decide not to move forward

with GEMM-based (e.g., cuBLAS [32]) solution according to our experimental study.

First, it would lead to launching an excessive amount of small GEMM kernels, each of

which can not fully utilize the GPU resources; Second, cuBLAS [32] no longer supports

any function call from the CUDA kernel (decorated with __global__) since CUDA 10.0.

Thus, only the host code running on CPU is allowed to invoke cublasSgemm, which

largely limits the computation parallelism (even with OpenMP).

Channel-Cyclic Optimization While SCC brings challenges of implementing forward

and backward pass, it also comes with a special pattern – channel cyclic, which can be

leveraged for further optimization. The adjacent kernel filters would “gather” information

from the adjacent “windows” of input channels that are overlapped with each other. After

several kernel filters, it will encounter the same input-channel window that has been

traversed before. For example, as shown in Figure 6.5(a) for the cg = 2 and co = 50%

case, every four kernel filters will share the same set of input-channel window. Similarly,

for the cg = 2 and co = 33% case, as shown in Figure 6.5(b), every three kernel filters will

share the same set of input-channel window. To identify such cyclic channel pattern and

compute the input-channel indexes of filters within one cycle, we follow the Algorithm 7,

under the given Cin, cg, and co.

Cyclic-channel patterns in SCC can be leveraged to optimize our proposed implemen-

tations in the above sections. First, it can be applied to the implementations of Pytorch

operator composition to reduce the repetitive tensor manipulations and save memory.

Specifically, in the channel-stack implementation, we only need to identify and concate-

nate the first cycle of input feature maps. Then for the settings that are composed of

multiple cycles, we just need to duplicate the concatenated feature map of the first cycle

161

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

(a) 𝑪𝒊𝒏 = 𝟒, 𝐜𝐠 = 𝟐, 𝐜𝐨 = 𝟓𝟎% (b) 𝑪𝒊𝒏 = 𝟔, 𝐜𝐠 = 𝟐, 𝐜𝐨 = 𝟑𝟑%

𝒄𝒚
𝒄𝒍
𝒊𝒄
_𝒅
𝒊𝒔
𝒕=

𝟒

𝒄𝒚
𝒄𝒍
𝒊𝒄
_𝒅
𝒊𝒔
𝒕
=
𝟑

𝑪𝒊𝒏𝟎 𝑪𝒊𝒏𝟏 𝑪𝒊𝒏𝟐 𝑪𝒊𝒏𝟑 𝑪𝒊𝒏𝟎 𝑪𝒊𝒏𝟏 𝑪𝒊𝒏𝟐 𝑪𝒊𝒏𝟑 𝑪𝒊𝒏𝟒 𝑪𝒊𝒏𝟓

𝑪𝒐𝒖𝒕𝟎

𝑪𝒐𝒖𝒕𝟏

𝑪𝒐𝒖𝒕𝟐

𝑪𝒐𝒖𝒕𝟑

𝑪𝒐𝒖𝒕𝟔

𝑪𝒐𝒖𝒕𝟒

𝑪𝒐𝒖𝒕𝟓

𝑪𝒐𝒖𝒕𝟕

𝑪𝒐𝒖𝒕𝟎

𝑪𝒐𝒖𝒕𝟏

𝑪𝒐𝒖𝒕𝟐

𝑪𝒐𝒖𝒕𝟓

𝑪𝒐𝒖𝒕𝟑

𝑪𝒐𝒖𝒕𝟒

Figure 6.5: Illustration of the channel-cyclic pattern in SCC.

...

(b) Optimized Convolution Stack

Cycle-index
Computation

Concatenation

Tensor Indexing
and Slicing

(a) Optimized Channel Stack

Weights
of Convs

Input Tensor

Figure 6.6: Case study of cyclic-channel optimization on Pytorch-based implementations
for Cin = 4, cg = 2, co = 50%.

several times and merge them all together along the channel dimension, as exemplified

in Figure 6.6(a). This can avoid the high-cost tensor indexing and slicing operations

on the original feature map that have been carried out before. In the convolution-stack

implementation, we can largely save the memory by keeping the concatenated tensor of

the input feature maps in the first cycle, since all the remaining cycles would maintain

the same input information, as illustrated in Figure 6.6(b). And we just need to pile

enough GPW convolutions (the number of which equals the output channels) that will

be trained to extract different information from the same input.

Second, it can be leveraged to optimize our DSXplore by reusing the indexes of the

162

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Algorithm 7 Compute channel indexes of one cycle.
channel_map = {}
group_width = input_channel//num_groups
start, end = 0, group_width
start_v, end_v = start, end
cyclic_dist = 0
for oid = 0; oid < output_channel; oid++ do
item = (start, end)
if item not in channel_map then
channel_map.add(item)
cyclic_dist++

else
break

end if
start_v = end_v − int(overlap ∗ group_width)
end_v = start_v + group_width
start = start_v % input_channel
end = end_v % input_channel

end for

Algorithm 8 DSXplore Channel-cyclic Optimization
1: thread_id = blockIdx.x× blockDim.x+ threadIdx.x
2: opt_channel_id = get_output_channel(thread_id)
3: idx = output_channel_id mod cyclic_dist
4: start, end = channel_map[idx]

input channel during our SCC-tailored forward pass. Therefore, the recurrent index range

only need to be calculated once and will be stored into a map/dictionary like object

for the following filters, as illustrated in Algorithm 8. Line 1 gets the corresponding

kernel filter index (opt_channel_id) based on the GPU thread ID. Then based on the

opt_channel_id and the cyclic_dist from the Algorithm 7, we can get the idx of feature

map to fetch the corresponding starting and ending position of input channels for the

filter.

163

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

6.5 Evaluation

In this section, we conduct a set of intensive experiments on DSXplore in terms of its

accuracy and the runtime performance.

6.5.1 Experimental Setup

Datasets We use CIFAR-10 [160] and ImageNet [161] dataset for evaluation. CIFAR-

10 consists of 60,000 32×32 color images in 10 classes, with 6,000 images per class.

ImageNet is a large dataset of over 14 million images with up to 1,000 output classes,

and it has been widely used for many computer vision research.

CNN Models We run comprehensive experiments on the state-of-the-art CNN mod-

els (VGG16 [147] and VGG19 [147], MobileNet [143], ResNet18 [124] and ResNet50 [124].

The major reasons of choosing these CNN models are 1) VGG16 and VGG19 are two

most classic CNNs with linearly stacked layers; 2) MobileNet is the typical lightweight

model with depth-separable convolution (DW+PW) blocks; 3) ResNet18 and ResNet50

is the representative model with the non-linearly stacked layers (residual connections).

Implementations We include three implementations for comparison: 1) Pytorch-

Base: the baseline Pytorch implementation using channel-stack design (CHS) without

channel-cyclic (CC) optimization; 2) Pytorch-Opt: the optimized Pytorch implementa-

tion using convolution-stack (COS) design with CC optimization; 3) DSXplore: DSX-

plore implementation comes with our efficient forward/backward pass design and CC

optimization. Note that we omit the Pytorch implementation with CHS design and

CC optimization, since CHS design still requires replicating the identified recurrent fea-

ture maps to build a large tensor before passing through the group convolution, which

is identical to the Pytorch-Base implementation in terms of computation and memory

complexity.

164

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Platforms & Tools Our major evaluation platform is a server with an Intel Xeon

Platinum 8168 (2.7 GHz, 24 cores), 188GB host memory and a Tesla V100 GPU (5,120

CUDA cores, Memory: 32GB, Peak Single-Precision: 15.7 TFLOPs). Note that to

measure the end-to-end CNNs training performance, we use the Python time library

and calculate the averaged running time of 100 measurements under the same setting.

For kernel detailed metric analysis, such as GPU memory consumption, we use NVProf

profiling tool from Nvidia.

6.5.2 Algorithmic Performance

In this experiment, we will first show the overall accuracy performance of different

models optimized by DSXplore on CIFAR-10 in terms of computation (FLOPs), param-

eter saving and accuracy. We then apply our SCC kernel on ResNet50 and evaluate it

on ImageNet dataset to show its applicability towards more complicated model on the

large dataset. Moreover, we demonstrate the benefits of our SCC kernel design by using

MobileNet on CIFAR-10 for a detailed study with the different number of groups (cg)

and the channel overlapping ratios (co). Note that the value of cg should respect 1) the

smallest channel number (64 for our selected models) of the convolution layers (excluding

the input layer, which is usually 3 for RGB image), 2) balancing the parameter/compu-

tation reduction and the model accuracy. Our empirical study shows that cg > 8 would

lead to significant accuracy degradation.

Overall Accuracy As shown in Table 6.2, DSXplore-optimized CNNs can strike a good

balance between the model accuracy and the computation/parameter size. Overall, DSX-

plore can save 50.04% FLOPs in computation and 75.60% in parameter size on average,

meanwhile maintaining accuracy to a great extent. This is because DSXplore leverages

the SCC design that can maximize the value from the input information across different

165

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Table 6.2: Accuracy comparison of CNNs on CIFAR-10.

Model Implementation MFPLOS Param. (M) Acc. (%)
Origin 314.67 14.73M 92.64VGG16 DSXplore 94.39 0.85M 92.60
Origin 399.75 20.02M 93.88VGG19 DSXplore 114.22 1.16M 92.71
Origin 67.31 3.19M 92.05MobileNet DSXplore 45.29 1.63M 92.02
Origin 581.63 11.17M 95.75ResNet18 DSXplore 298.63 0.54M 94.81
Origin 2036.01 23.52M 95.82ResNet50 DSXplore 1469.64 12.81M 95.67

Table 6.3: Accuracy comparison (ImageNet) for ResNet50.

Network MFLOPs Param. Acc.(%)

Origin 4130 23.67M 76.56

DSXplore 2550 14.34M 75.91

channels. We also notice that on VGG16 and VGG19, DSXplore can save more than 70%

FLOPs and more than 90% parameters. The major reason is that the original VGG mod-

els rely on standard convolutions that would carry lots of redundant computations and

parameters that contribute minor to the final prediction. In contrast, our SCC design in

DSXplore can effectively captures the key factors (spatial and cross-channel information)

that contribute most to the model prediction capability, thus, reducing the computation

and parameters without compromising accuracy. Besides, for the complicated ResNet50

model on the challenging ImageNet dataset (Table 6.3), our SCC design can still reduce

the FLOPs and parameters with up to 38.25% and 39.41% compared with the original

model while maintaining accuracy.

Detailed Analysis A detailed studies on MobileNet (Table 6.4) further demonstrates

the advantage of our SCC design in DSXplore in terms of a better trade-off between

the model efficiency and the prediction accuracy. We try three different group numbers

cg ∈ {2, 4, 8}), as well as two overlapping ratios co ∈ {25%, 50%}. Our model with

DW+SCC-cg2-co25% achieves comparable accuracy performance in comparison with

166

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

Table 6.4: Comparison of different settings on MobileNet.

Network MFLOPs Param. Acc.(%)

Baseline (DW+PW) 67.31 3.19M 92.05

DW+GPW-cg2 45.29 1.63M 90.11

DW+GPW-cg4 34.28 0.84M 88.88

DW+GPW-cg8 28.78 0.45M 82.69

DW+SCC-cg2-co25% 45.29 1.63M 92.02

DW+SCC-cg2-co50% 45.29 1.63M 91.36

DW+SCC-cg4-co25% 34.28 0.84M 90.63

DW+SCC-cg4-co50% 34.28 0.84M 90.60

DW+SCC-cg8-co25% 28.78 0.45M 88.92

DW+SCC-cg8-co50% 28.78 0.45M 89.23

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

VGG16 VGG19 MobileNet ResNet18 ResNet50

S
p

e
e

d
u

p
 (

x)

cg=2, co=50% Pytorch-Opt (x) cg=2, co=50% DSXplore (x)
cg=4, co=50% Pytorch-Opt (x) cg=4, co=50% DSXplore (x)
cg=8, co=50% Pytorch-Opt (x) cg=8, co=50% DSXplore (x)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

VGG16 VGG19 MobileNet ResNet18 ResNet50

S
p

e
e

d
u

p
 (

x
)

cg=2, co=25% Pytorch-Opt (x) cg=2, co=25% DSXplore (x)
cg=2, co=50% Pytorch-Opt (x) cg=2, co=50% DSXplore (x)
cg=2, co=75% Pytorch-Opt (x) cg=2, co=75% DSXplore (x)

Figure 6.7: Runtime performance comparison on CIFAR10. Note that speedup is nor-
malized w.r.t. Pytorch-Base Implementation.

baseline DW+PW model while saving about 32.77% FLOPs and 48.90% parameters.

The reason is that under the setting of the small group number (e.g., 2), our SCC-based

channel sliding help filters learn different information by watching different channels.

Note that in the larger group number (e.g., 8), such benefits would be largely offset by

the significantly reduced parameters. With an increase in the group number, we observe

a significant reduction in both computational cost and parameter usage, along with a

slight degradation in prediction accuracy. This aligns well with our expectation that the

channel-group number cg determines the number of input channels that GPW or SCC

would take, and thus also decides the number of computations and parameters of the

model.

167

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

0.0

1.0

2.0

3.0

4.0

5.0

VGG16 VGG19 MobileNet ResNet18 ResNet50

S
p

ee
d

u
p

 (
x)

cg=2, co=50% cg=4, co=50% cg=8, co=50%

0.0

1.0

2.0

3.0

4.0

5.0

VGG16 VGG19 MobileNet ResNet18 ResNet50

S
p

ee
d

u
p

 (
x)

cg=2, co=25% cg=2, co=50% cg=2, co=75%

Figure 6.8: Runtime performance comparison on ImageNet. Note that speedup is nor-
malized w.r.t. Pytorch-Opt Implementation.

6.5.3 Runtime Performance

In this section, we compare DSXplore with Pytorch-Base and Pytorch-Opt on CIFAR-

10 and ImageNet for training across different CNNs, including VGG16, VGG19, Mo-

bileNet, ResNet18, and ResNet50. We use two set of settings for better coverage, where

the first type of settings is cg ∈ {2, 4, 8} and co = 50% while the second type of settings

is cg = 2 and co ∈ {25%, 50%, 75%}.

As shown in Figure 6.7, across all two types of settings, DSXplore consistently out-

performs Pytorch-Base and Pytorch-Opt with average 5.68× and 2.34× speedup, respec-

tively. We also notice that Pytorch-Opt is faster than Pytorch-Base, since our effective

convolution-stack design and channel-cyclic optimization can be leveraged to reduce the

memory overhead and excessive data movement (tensor slicing and concatenation), such

an optimization can deliver 1.86× to 3.20× speedup compared with the Pytorch-Base

implementation. DSXplore further boosts the performance on top of that by introducing

channel-wise parallelism, which delivers an additional 1.11× to 3.97× speedup on average

compared with Pytorch-Opt. Another key observation is that on VGG16 and VGG19,

the performance benefits is more significant compared with ResNet18 and ResNet50. The

major reason is that VGG models mainly rely on standard convolutions (carrying high

computation complexity and large number of parameters) as the major building blocks,

while the ResNet models would use either “Basic Blocks” or “Bottleneck Blocks” as the

major building blocks. These “Blocks” include additional convolutions that are already

168

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

lightweight (such as the dual PW convolutions in Bottleneck Block) and no need to be

replaced, thus, replacing the standard convolution of these blocks would have relatively

lower impact. Moreover, under the same overlapping ratio, the increase of the cg would

give more advantage to the Pytorch-based implementations, since the computation of

each group convolution is reduced due to the smaller number of channels in each group.

On the other hand, however, as notated in Section 6.5.2, the larger cg would lower the

model accuracy. Therefore, we prefer lower value of cg in most settings.

In the comparison on ImageNet for the same set of CNNs, Pytorch-Base cannot even

to run due to the excessive amount of the memory consumption. Therefore, we choose

the Pytorch-Opt as the baseline for speedup normalization. As shown in Figure 6.8,

DSXplore outperforms Pytorch-Opt with 1.95× to 3.88× speedup. This also demonstrate

the scalability of DSXplore by effectively exploring the computation parallelism.

6.5.4 Additional Studies

Input-centric Backward Design To demonstrate the benefits of our input-centric

backward optimization, we leverage four implementations (Pytorch-Base, Pytorch-

Opt, a DSXplore variant (DSXplore-Var) with output-centric backward, which simply

reverses the forward propagation flow for backward gradient propagation), and DSX-

plore (with input-centric backward). We evaluate the time of backward gradient prop-

agation only. As shown in Figure 6.9, our input-centric backward achieves an av-

erage 15.03×, 4.55×, 1.55× speedup compared with Pytorch-Base, Pytorch-Opt, and

DSXplore-Var, respectively. The advantage of DSXplore are two-folds: first, compared

with Pytorch implementations, DSXplore with output-centric backward propagation

(DSXplore-Var) and input-centric backward propagation (DSXplore) can explore the

computation parallelism, meanwhile reducing lots of unnecessary data manipulation;

169

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

VGG16 VGG19 MobileNet ResNet18 ResNet50

BP
 R

un
tim

e
(s

)

Pytorch-Base Pytorch-Opt DSXplore-Var DSXplore

Figure 6.9: Back-propagation optimization.

second, compared with the DSXplore-Var, DSXplore can significantly reduce the atomic

operations (more than 90% on average) on updating the gradient of the input tensor

based on our kernel profiling via NVProf.

Cyclic-Channel Optimization As another key technical contribution, our CC op-

timization can effectively reduce the memory overhead from 72.88% to 83.33%, as il-

lustrated in Figure 6.10. This is because the pattern of repeated channels will occur

0

5000

10000

15000

20000

25000

VGG16 VGG19 MobileNet ResNet18 ResNet50

M
em

o
ry

 (
M

B
) w/o CC (MB) w/ CC (MB)

Figure 6.10: Channel-cyclic optimization.

periodically, as described in Section 6.4.2. And we only need to store them once instead

of extracting and concatenating them all. To this end, we can avoid most of the data ma-

nipulation (e.g., tensor slicing) and movement (e.g., tensor concatenation). What is also

worth noticing is that the impact of such optimization would also depend on the value

of co we choose. Therefore, the cyclic distance would be largely different. For example,
170

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

when co = 50% with Cin = 4, we will have the cyclic distance of 4. When co = 25%

with Cin = 6, we will have the cyclic distance as 3. This would also determine the size of

concatenated feature map to be stored, thus, affecting the overall memory consumption.

Number of Groups As one of the features that is shared with the existing group

convolution, our SCC divides the input and output channels into different groups based

on the user-provided group numbers. Experiments from the detailed analysis of previous

Section 6.5.2 already gives us the idea about its impact on model accuracy, and this study

will help us to analyze its influence on the overall runtime performance in the end-to-end

training. As shown in Figure 6.11, the increase in the number of groups will lead to the

0%

20%

40%

60%

80%

100%

120%

1 8
Number of Channel Groups (cg)

VGG16
VGG19
MobileNet
ResNet18
ResNet50

2 4

Figure 6.11: The performance impact of the number of groups (cg). Note that we set
co = 50% and the runtime is normalized w.r.t the performance at cg = 1.

reduction of the runtime, since with more channel groups, the corresponding group size

(the number of input channels) required for each output channel will decrease. Therefore,

the overall running time will decrease. Meanwhile, as discussed in the above section, the

more number of groups will also leads to a slightly decrease of accuracy and reduction

in parameter/computation costs. Therefore, in practice, we should balance the runtime

performance and the model accuracy performance when choosing the value of cg.

Input-Channel Overlapping As the key feature that distinguishes SCC from the

171

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

existing factorized convolution kernels, the overlapping (co) of the filters’ input channel

facilitates the information fusion across different channels. Experiments from the detailed

analysis of previous Section 6.5.2 already give us an idea about its impact on model

accuracy, while this experimental study, on the other side, aims to help us understand

how different choices of co would impact our SCC kernel performance. As shown in

0%

20%

40%

60%

80%

100%

120%

140%

10% 20% 30% 60% 70% 80% 90%40% 50%
Channel Overlaping (co)

VGG16
VGG19
MobileNet
ResNet18
ResNet50

Figure 6.12: The performance impact of the input-channel overlapping ratio (co). Note
that we set cg = 2 and the runtime is normalized w.r.t the performance at co = 10%.

Figure 6.12, the change of co for the adjacent sliding channel units does not show an

evident impact on the runtime, since the overlapping ratio will not change the workloads

assigned to different threads during the forward and backward pass. Even though there

are some fluctuations in the running time, and it is mostly caused by the data reuse when

choosing different co, which is also a very minor impact compared with the change of cg.

Training Batch Size As one of the most important factor of training CNNs, the

batch size would impose a profound impact on the training, including the convergence

rate, model accuracy, and training speed. In general, the larger batch size would lead to

shorter training time. However, it may also degrade the model accuracy performance. In

this experiment, we consider different batch sizes ranging from 16 to 1024 with the in-

crease step by the power of 2. We select three CNNs: VGG16, MobileNet, and ResNet18,
172

DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions Chapter 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 64 128 256 512 1024

Ti
m

e
pe

r B
at

ch
 (s

)

VGG16 MobileNet ResNet18

Figure 6.13: Impact of batch size on training performance.

which represent different types of CNN architectures for studies under the most common

settings of cg = 2 and co = 50%. As shown in Figure 6.13, the overall trend of the

running time will increase with respect to the increase of the batch size. We also observe

that within a certain range of batch size (less than 128), the increase of batch size does

not lead to an evident increase of the running time. This is because of not enough active

threads to saturate the available GPU Streaming Processors (SMs) to support the fully

parallelized forward and backward computation. However, when the batch size becomes

even larger, the active threads will increase correspondingly, which are more likely to

compete with each other given the number of SMs for execution.

173

Chapter 7

An Efficient Quantitative Approach for

Optimizing Convolutional Neural

Networks.

With the increasing popularity of deep learning, Convolutional Neural Networks (CNNs)

have been widely applied in various domains, such as image classification and object

detection, and have achieved stunning success in terms of their high accuracy over the

traditional statistical methods. To exploit potential of CNN models, a huge amount

of research and industry efforts have been devoted to optimizing CNNs. Among these

endeavors, CNN architecture design has attracted tremendous attention because of its

great potential to improve model accuracy or reduce model complexity. However, exist-

ing work either introduces repeated training overhead in the search process or lacks an

interpretable metric to guide the design. To clear these hurdles, we propose 3D-Receptive

Field (3DRF) 1, an explainable and easy-to-compute metric, to estimate the quality of a
1© ACM 2021, Yuke Wang. This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License. Reprinted from An Efficient Quantitative Approach for Optimizing Convolutional Neural
Networks.. ACM International Conference on Information and Knowledge Management. 11/2021.

174

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

CNN architecture and guide the search process of designs. To validate the effectiveness

of 3DRF, we build a static optimizer to improve the CNN architectures at both the stage

level and the kernel level. Our optimizer not only provides a clear and reproducible pro-

cedure but also mitigates unnecessary training efforts in the architecture search process.

Extensive experiments and studies show that the models generated by our optimizer

achieve up to 5.47% accuracy improvement and up to 65.38% parameters deduction,

compared with state-of-the-art CNN model structures like MobileNet and ResNet.

7.1 Introduction

Deep convolutional neural networks (CNNs) have achieved significant successes in

a broad collection of fields, including object-detection [162], video classification [163],

object tracking [164], image segmentation [165] and human pose estimation [166]. Such

unparalleled successes attract many interests in CNN architecture design to improve

accuracy or reduce complexity. Examples include an array of efficient models that have

been crafted manually (e.g., VGG [147], MobileNet [143], ShuffleNet [167]) and those

generated automatically by the neural architecture search (NAS) tools [168, 169, 170,

171, 172]. Yet, two challenges of CNN architecture design remain far from well resolved:

1) missing an interpretable metric, and 2) huge training efforts. The former indicates

that some direct and easy-to-interpret metric is still missing to guide the design, while the

latter means that the repeated training cost is huge for evaluating different architectures

in the search process.

To address these challenges, we propose 3D-Receptive Field (3DRF), an interpretable

metric, for efficient CNN architecture designs. Particularly, we focus on two levels: the

stage level2 and the kernel level. At the stage level, we decide the number of convolution
2Following many works [124, 151, 173], we define a stage in a CNN as a collection of consecutive

175

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

kernels in different stages, while at the kernel level we choose the type of the convolution

kernel to use (i.e., standard convolution kernels or efficient factorized kernels [150, 151]).

We build up 3DRF to uniformly conduct the optimization at both levels. The key

insight is that the portion of the input tensor that can flow into each output neuron,

which we name as 3DRF, often determines the learning potential of that given stage

or kernel. A stage or kernel with larger 3DRF will have more input elements passing

through, leading to a higher potential for extracting useful features and improving the

classification accuracy. Therefore, we use 3DRF to estimate the quality of architecture

design in the search process, rather than repeated training.

To validate and showcase the effectiveness of 3DRF, we propose an architecture opti-

mizer to examine CNN architecture designs at stage and kernel level. At stage level, we

provide an organizer to improve the accuracy of a CNN model while using the same or

fewer convolution kernels. The organizer, in effect, removes the convolution kernels that

cannot contribute to 3DRF enough or move the kernels from the positions with marginal

contributions to 3DRF in one stage to another stage with larger contributions. The op-

timization is based on two key observations: 1) the contributions from the latter kernels

in a stage are diminishing since the newly observed input elements are on the marginal

positions, which have less impact compared with the central input already observed; 2)

when the spatial size of the input tensor to a stage is small, piling more layers can barely

learn more features. On the other side, moving some layers to another stage with larger

input tensor would promote 3DRF and better learning capacity.

At the kernel level, we propose a decomposer to reduce model complexity without sub-

stantively affecting accuracy. The decomposer, in effect, replaces standard convolution

kernels 3 with convolution blocks composed of efficient factorized kernels (e.g., Depth-

convolution layers with input tensors of the same spatial dimensions (i.e., pooling or convolution kernel
with stride ≥ 2 will generate a new stage).

3In this paper, we refer to the standard convolution kernel as the one with 3 * 3 * C filters, where C

176

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

wise Convolution [150], and Pointwise Convolution [145]). The key guidance behind such

replacement is to maintain the same 3DRF (i.e., the efficient convolution block should

observe the same amount of 3DRF as standard convolutions in order to maintain accu-

racy). We name this rule as Rule for Kernel Replacement. This rule not only allows us

to unify all existing convolution blocks used in MobileNet, ShuffleNet, clcNet [173], and

Xception [144], but also inspires the discovery of one new basic factorized convolution

kernel, as we named Rolling Pointwise Convolution (RPW), and a new convolution block

(Depthwise (DW) + RPW). This new convolution block turns out to be more efficient

than existing factorized kernel designs, like that in MobileNet model.

To facilitate the end-to-end CNN model design, we introduce our design prototype. As

shown in the Listing 7.1, we start with importing our 3DRF-based optimization libraries,

including a stage optimizer (stage_opt) and a kernel optimizer (kernel_opt). We will

then build a CNN models as we normally do in the regular Pytorch. Here, convolutional

layers in the CNN models can be grouped into different stages, where each stages consists

of convolutions linearly stacked together. Different stages are sequentially connected. At

the end of those stages, we put the linear (fully-connected) layer and a softmax layer

layer to generate logits for classification.

In summary, the major contributions of our work are:

• We propose a brand-new interpretable metric 3D-Receptive Field (3DRF) for guid-

ing CNN architecture designs efficiently. Whereas previous CNN model architecture

exploration techniques (e.g., NAS) require huge training and searching efforts.

• We build an end-to-end CNN stage-level organizer for improving the accuracy per-

formance of CNN models at the model architectural level. This can largely ease

the manual efforts in arduous CNN model optimization process.

is the number of input channels.

177

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Listing 7.1: Illustration of 3DRF-based Optimizer Prototype.
1 from 3DRF_optimizer import stage_opt, kernel_opt
2 # import other libraries, such as Pytorch...
3

4 # Create an stage of CNN model.
5 def make_stage(stage_depth):
6 layers = nn.sequential()
7 for i in range(stage_depth):
8 layers.append(nn.conv2D(inChannel, outChannel))
9 return layers

10

11 # Create a CNN model.
12 class CNN(nn.module):
13 def __init__(self, stageDepth=[2,2,2,2], outClass=10):
14 self.stages = torch.nn.moduleList()
15 for depth in stageDepth:
16 self.stages.append(make_stage(depth))
17 self.classifier = nn.Linear(flatDim, outClass)
18 self.softmax = nn.softmax()
19

20 def forward(self, X):
21 out = X
22 for stg in self.stages:
23 out = stg(out)
24 out = self.classifier(out)
25 out = self.softmax(out)
26 return out
27 # Define a simple CNN Model.
28 model = CNN([2,2,2,2], 10)
29 # Compute the delta 3DRF for a input model.
30 info_3DRF = stage_opt.comp_Delta3DRF(model)
31 # Optimize the model structure with delta 3DRF.
32 model_opt = stage_opt.optimze_arch(model, info_3DRF)
33 # Optimize the kernel.
34 model_final = kernel_opt(model_opt)
35 # Do regular model training and inference.

• We introduce an new type of convolution kernel – Rolling-Pointwise Convolution

to reduce the model parameters and the computation FLOPs.

Rigorous evaluations on real-world image datasets (e.g., CIFAR-10/100 [160], and

ImageNet [161]), demonstrate the strength of our architecture optimizer in terms of

model accuracy, FLOPs and parameters. At the stage level, the organizer improves the

accuracy (up to 5.47%) of the manually crafted CNN structures (e.g., MobileNet) by

maximizing the contribution to 3DRF. For instance, the optimized MobileNet achieves

3.7% higher accuracy with 74% fewer parameters and 16% fewer FLOPs compared with

178

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

(a) Standard Convolution (e) Group-Pointwise Convolution(c) Group Convolution (d) Depthwise Convolution(b) Pointwise Convolution

Figure 7.1: Channel mapping (top) and Spatial mapping (bottom) of the standard con-
volution and factorized convolution kernel.

the original structure. At the kernel level, the newly discovered convolution block achieves

higher accuracy (up to 0.58%) with much fewer computations (up to 40.0% reduction) and

parameters (up to 90.4% reduction) compared with the existing design. For example, one

kernel designed by us has 2.54% higher accuracy and 29.04% fewer FLOPs in comparison

with the MobileNet.

7.2 Related Work

7.2.1 Neural Architecture Search (NAS)

NAS methods have been widely studied to automatically construct efficient CNN ar-

chitectures. NAS frameworks generally come with three major components, 1) Search

space: The NAS search space is composed of several types of operations (e.g., convo-

lution, fully-connected, and pooling) and the inter-connection among these operators.

The design of search space demands domain expertise from both the deep learning and

the specific application settings; 2) Search algorithm: A NAS search algorithm sam-

ples a population of network architecture candidates. It receives the model performance

evaluation result (e.g., result) as rewards and optimizes to generate high-performance

architecture candidates. 3) Evaluation strategy: This step will measure the performance

179

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

of candidate models in order to improve the search algorithm.

The most significant part of NAS research has been devoted to the neural architecture

search algorithm. And a array of techniques and strategies have been proposed, such as

evolutional algorithms [168, 174], hill climbing [175]; multi-objective search [176, 177],

and reinforcement learning (RL) [168, 169]. To accelerate the NAS search, ENAS [178]

represents the search space using a directed acyclic graph (DAG) and targeting at op-

timizing the subgraph structure within the large supergraph. Meanwhile, it also intro-

duces a training strategy of parameter sharing among subgraphs to significantly boost

the searching efficiency. Work from [179, 180] also follow the similar idea of hierarchical

computation graph optimization. Work from [181] further share the parameters of differ-

ent paths within a block using super-kernel representation. [182] proposes a fine-grained

search space comprised of atomic blocks that is much smaller than the ones used in recent

NAS algorithms.

Although NAS methods can build high-quality CNN architecture, they have two

major drawbacks. First, they require prohibitively expensive computing power and add

significant overhead to the design time. For instance, the RL-based method in [172]

requires 500 NVIDIA P100 GPUs for more than 4 days to evaluate 20000 candidate neural

networks, even after adopting many proxy tasks techniques including early stopping with

few epochs, running on a small dataset, and limiting the kernel numbers. Second, the

NAS method can identify the design, but it does not explain the general rule behind to

obtain such a design, which limits its applicability. Once the task changes, one has to run

NAS again. In contrast, our static architecture optimizer gives an alternative solution,

offering a clear and reproducible design procedure without training in the architecture

search process. Other works still requires non-trivial overhead of CNN runtime profiling

for optimization.

180

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

7.2.2 Standard Convolution

The widely applied deep learning application demands effective ways to capture the

characters of the inputs (e.g., images). Among those techniques, the standard convo-

lution is most widely used in many CNNs [146, 147, 148]. In general, we annotate the

input image (I), output feature map (O), and filter (F). The dimension of an image is

[Iw, Iw, Cin], where IW is the size of an image while Cin is the number of input channels

(e.g., the RGB image has 3 input channel). The standard convolution (Figure 7.1a)

leverages Cout standard convolutional filters with the shape of [K,K,Cin], where the K

is the filter size, Cin is the number of input channels, and Cout is the number filters. After

applying the standard convolution on the input (with the shape of [Iw, Iw, Cin]), we will

get the output feature map O, which has the shape of [Ow, Ow, Cout]., where the Ow is

size of the output feature map. Note that the mainstream CNNs [146, 147, 143] generally

maintain the same feature map spatial dimension at different convolutional layers while

only changing the number of the channels across different layers.

Formally, for standard convolution, we have

Om,n,c =

K,K,Cin∑
i,j,a

Fi,j,a,c ∗ Im+i−1,n+j−1,a (7.1)

where Om,n,c is one pixel point in the output feature map; m and n are the spatial

indexes in the output feature map (m ∈ Z : m ∈ [0, Ow) and n ∈ Z : n ∈ [0, Ow)); a is

the channel index in the input feature map (a ∈ [0, Cin)); c is the channel index in the

output feature map (c ∈ Z : c ∈ [0, Cout)); i, j, and a are the index used to accumulated

the elementwise multiplication values between input feature map and one filter. The

standard convolution will not only extract the spatial information by traversing a K×K

2D sliding window within each channel but also effectively fuses the information across

181

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

different channels (Figure 7.1a), where each kernel filter will gather the information from

all input channels.

7.2.3 Kernel Factorization

Besides the standard convolution kernel, recent deep-learning research introduces

several factorized kernels [145, 149, 150, 151] and combine them into a convolution block.

This can offer another way to improve the computation efficiency of CNN architecture

designs while maintaining the prediction power. Existing factorized kernels can be divided

into four categories. Specifically, the first type is the Pointwise Convolution (PW) [145])

(Figure 7.1b), which is a standard convolution with 1 × 1 spatial size. The second

type is Group Convolution (GC) [149] (Figure 7.1c) that divides input channels into

several groups and performs standard convolution within each group. The third type is

Depthwise Convolution (DW) [150] (Figure 7.1d) which calculates spatial convolution per

channel or can be regarded as an extreme case of GC when the group number equals the

number of the input channels. The last one is Group Pointwise Convolution (GPW) [151]

(Figure 7.1e), that further splits PW into groups. Previously, researchers combine some

of the factorized kernels into convolution blocks.

Xception [144] and MobileNet [143] demonstrate the successful application of convo-

lutional kernel factorization in the popular CNN models. It breaks the original standard

convolution into two parts: depthwise (DW) convolution and pointwise (PW) convo-

lution. The first step (DW) applies Cin different [W,W, 1] filters to each of the Cin input

channels independently, which can be formalized as Equation 7.2

Ôm,n,a =

K,K∑
i,j

F
(dw)
i,j,a ∗ Im+i−1,n+j−1,a (7.2)

The second step (PW) applies a filter with 1× 1 spatial dimension. As shown in Equa-
182

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

tion 7.3.

Om,n,c =

Cin∑
a

F (pw)
a,c ∗ Im−1,n−1,a (7.3)

In this paper, we use the idea of 3DRF to unify these previous convolution blocks. In

addition, we create a new type of factorized convolution kernel, named Rolling Pointwise

Convolution (RPW), and a new convolution block (DW+RPW) that can outperform the

previous designs.

7.3 3D-Receptive Field

In this section, we present 3D-Receptive Field (3DRF) for measuring the representa-

tion ability of each neuron in a convolution layer. Then, we derive the 3D-Receptive Field

Gain (3DRF Gain) for quantifying the representation ability change when an additional

convolution layer is inserted. This 3DRF Gain is sensitive to the location, type, and

combination of the inserted convolution layer, thus guiding the CNN design. We demon-

strate the effectiveness of 3DRF Gain in quantifying representation ability, in terms of

its impact on accuracy.

Our 3D-Receptive field is inspired by an existing metric, receptive field [183], which

quantifies the spatial area of neurons for evaluating a single neuron in the next convolution

layer. This receptive field serves well for quantifying the local representation ability

in a single traditional convolution layer, where a larger receptive field leads to higher

accuracy. However, the receptive field fails to quantify the global representation ability

across layers, when a large number of convolution layers with diverse receptive fields

stacked in a CNN stage. Moreover, the receptive field fails to consider the channel

number, which becomes critical in modern convolution layers (e.g., Depthwise convolution

and Channel-wise convolution). By contrast, our 3DRF provides the first global metric

183

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

kth
Kernel

(k-1)th

Kernel

Input
Tensor

…

… …

…

IFk-1
wIFk-1
w

IFk-1
c

IFk-1
c

Wk -1

kth
Kernel

(k-1)th

Kernel …

… …
… IFk-1

c
IFk-1

c

kth
Kernel

(k-1)th

Kernel

Input
Tensor

…

… …

…

IFk-1
wIFk-1
w

IFk-1
c

IFk-1
c

Wk -1

kth
Kernel

2nd

Layer

1st
Layer

Input
Tensor

Wk -13DRFk-1
w3DRFk-1
w

(a) Spatial Dimension (b) Channel Dimension

Channels

1 2 3 41 2 3 4

Figure 7.2: Illustration of 3D-Receptive Field (3DRF) for convolutions of a single stage.

for quantifying the global representation ability across layers, considering extensively

the location, type, and combination of convolution layers. By quantifying the global

representation ability, 3DRF serves as an effective and efficient tool for guiding the CNN

design without tediously enumerating and training NN architectures.

7.3.1 Definition of 3D-Receptive Field

For a CNN stage with a sequence of layers, we define the 3D-Receptive Field (3DRF)

for the kth convolution layer in the current stage as 3DRFk. This 3DRFk captures

the number of neurons in the initial input tensor to the CNN stage that contributes to

computing individual neurons in this layer k. This initial input tensor is the w0 ×w0 × 3

input tensor (e.g., input image) in the first stage of a CNN, and a w0 × w0 × c0 input

tensor in later stages. Here, w0 is the spatial width of the input tensor and c0 is the

channel number of the input tensor. To cater convolution layers with diverse kernel sizes

and types, 3DRF considers two factors of the spatial width 3DRFw
k for the kernel size

and the channel number 3DRF c
k for the convolution type:

3DRFk = (3DRFw
k)

d ∗ 3DRF c
k (7.4)

184

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

where d = 1 for 1D convolution (Figure 7.2) and d = 2 for 2D convolution. We recursively

compute the spatial width 3DRFw
k in layer k based on the spatial width 3DRFw

k−1 in the

preceding layer k − 1 and the kernel width wk in the current layer k:

3DRFw
k = min(3DRFw

k−1 + wk − 1, w0) (7.5)

A min() is applied for ensuring that the spatial width 3DRFw
k does not exceed the spatial

width w0 of the input tensor.

We compute recursively the channel number 3DRF c
k in layer k with a property func-

tion g(·, ·), that captures the channel number 3DRF c
k−1 in the preceding layer k− 1 and

the convolution type Tk in the current layer k:

3DRF c
k = min(g(3DRF c

k−1, Tk), c0) (7.6)

A min() is applied for ensuring that the channel number 3DRF c
k does not exceed the

channel number c0 of the input tensor. The property function g(·, ·) captures the in-

formation flow from the perspective of channel numbers and is designed for individual

convolution types. For example, as illustrated in Figure 7.2, we set the property func-

tion g(3DRF c
k−1, PW) = c0 for Pointwise (PW) Convolution, since the output neuron

of PW observes all input channels. Similarly, we set g(3DRF c
k−1, DW) = 3DRF c

k−1 for

Depth-wise Convolution (DW), since only one channel from the preceding layer k − 1

contributes to the neuron in the current layer k. This property function g(·, ·) is designed

only once for a small set of convolution types. While modern CNNs may have hundreds

of convolution layers, these layers often use the same convolution type repeatedly. Thus,

the property function can be written once and applied repeatedly for a large number of

convolution layers.

185

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

7.3.2 Definition of 3DRF Gain

We derive the 3DRF Gain (∆3DRF) to measure the impact of a convolution layer k

over the model representation ability, in terms of the impact over the 3DRF. While 3DRF

quantifies the information flow in a convolution unit as a whole, 3DRF Gain—denoted

by ∆3DRF— targets at measuring the contribution of a single convolution kernel k in

the unit. The goal of introducing ∆3DRF is to create a direct indicator that could match

the learning power (i.e., prediction accuracy) of a CNN model in the granularity of a

single convolution, laying a foundation for static architecture optimization. Specifically,

we define ∆3DRFk as the difference in the receptive field with and without the layer k,

adjusted with an exponential decay term:

∆3DRFk =
3DRFk − 3DRFk−1

3DRFk−1

∗ e−α∗
3DRFk−1

V0 (7.7)

where V0 = w0 × w0 × c0 is the volume of the input tensor. The exponential decay term

rescales the impact of the kth layer with regards to the information already observed by

1th to (k − 1)th layers. which composes of two major terms: the former calculates the

relative increase in 3DRF incurred by kernel k; the latter introduces an exponentially

decay term to rescale the impact of the kth layer with regards to the information already

observed by 1th to (k − 1)th layers. This decay term is inspired by the observation that

the elements in the central region of the input tensor usually have a larger impact than

the newly observed elements on the margin: the central input elements have more paths

to propagate their values into the output in the forward pass and larger gradient in the

backward pass. Note that α is a hyperparameter that should be set larger than 0. In

our empirical study, we tried multiple choices and observed no substantial difference in

architecture optimization, and we set it to 3 for the rest of this paper.

186

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Table 7.1: Illustration of computing 3DRF Gain on Variant-3.

k Layer Type 3DRFw
k 3DRF c

k 3DRFk ∆3DRFk

1 conv3-256 3 128 1152 -
2 conv3-256 5 128 3200 1.17

3 conv3-256 7 128 6272 0.29

Table 7.2: Impact of 3DRF Gain (∆3DRF) over Accuracy.

Network ∆3DRF Accuracy (%) ∆Accuracy (%)

VGG-11 0 92.68 0

Variant-1 1.73 93.56 0.88
Variant-2 1.60 93.46 0.78

Variant-3 0.29 92.75 0.07

Variant-4 0.0 92.58 -0.10
Variant-5 0.0 92.41 -0.27

7.3.3 Case Study: Accuracy Impact of 3DRF Gain

We demonstrate the impact of diverse (∆3DRF) over the accuracy. Here we generate

diverse (∆3DRF) by sticking to the same base model and inserting an additional con-

volution layer at diverse location. More study on the (∆3DRF) from varying the type

and combination of convolution layers will be conducted later in the evaluation section.

As shown in Figure 7.2, we take VGG11 [147] as the baseline structure and run it on

CIFAR-10 dataset [160]. Specifically we generate five VGG-variants by inserting a single

standard convolution before each max pooling. The inserted convolution layer has the

same kernel width and channel number as its preceding layer. For example, we insert

a conv3-64 before the first max pooling as the Variant-1, and a conv3-512 before the

fifth max pooling as the Variant-5. Specifically, we train these models on the CIFAR-10

training dataset and report the accuracy on the CIFAR-10 testing dataset. We repeat

this procedure for ten times and present the average accuracy here. We also present

the ∆3DRF of each variants for demonstrating the impact of ∆3DRF over accuracy.

187

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Conv
7

Conv
8

Conv
9

Conv
2’

2
Spot stage 1 with
largest ∆3DRF’MAX

from the temporarily
inserted conv

Conv
1

Pooling
Conv
2 · · · Pooling

Stage 1
Stage 5

Original
CNN

Structure

Optimized
CNN

Structure

Conv
1’

Pooling
Conv
3’

Conv
2· · · Pooling

Conv
8

Stage 1 Stage 5

3

1

if ∆3DRF’MAX > ∆3DRFMIN and
∆3DRF’MAX > θ , move conv 9

from stage 5 to stage1

Select ∆3DRFMIN from
conv 9 of stage 5

Figure 7.3: Illustration of the Stage-level Organizer.

∆3DRF is calculated by leveraging our proposed Equation 7.7 for the newly inserted

layer.

As shown in Table 7.1, the procedure of computing ∆3DRF on Variant-3, which

inserts an additional layer to the third stage in VGG-11. Originally, the third stage in

VGG-11 contains two convolution layers (i.e., the 1st layer and the 2nd layer in Table

7.1). We insert the 3rd convolution layer with the same kernel width and channel number

as the first two layers. The input tensor to this third stage is of shape 8 × 8 × 128,

leading to a V0 of 8192. Following Equation 7.4 - 7.6, we can compute 3DRFw
k , 3DRF c

k ,

and 3DRFk recursively. The derived 3DRFk can be exploited for computing ∆3DRF

following Equation 7.7. This procedure can be applied for other VGG-11 model variants,

leading to the ∆3DRF in Table 7.2.

As shown in Table 7.2, we can clearly figure out the the impact of ∆3DRF on

CNN model accuracy. Large ∆3DRF of the newly inserted layer agrees with notable

accuracy gain, as is the case for Variant-1 and Variant-2. For the Variant-3, small

∆3DRF indicates close-to-saturation information coverage, yielding negligible accuracy

improvement from the original model. Variant-4 and Variant-5 has a low ∆3DRF of

188

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

0, indicates that inserting convolution layers does not improve its 3DRF. The insight

is that, for an input tensor with a small spatial width w0 of 2 (after 4 times of max

pooling from an input image of shape 32 × 32 × 3), a single convolution layer of kernel

width 3 is sufficient for capturing all neurons. In fact, Variant-4 and Variant-5 show an

accuracy degradation of −0.10% and −0.27% respectively. This degradation shows that

a ∆3DRF of 0 signals overfitting since all input elements have already been observed by

other kernels at such stage. Comparing across variants, Variant-1 has a larger ∆3DRF

of 1.73 and a larger ∆Accuracy of 0.88%, compared with Variant-5 with ∆3DRF of

0.0 and ∆Accuracy of −0.27%. This trend demonstrates a strong correlation between

the ∆3DRF and the ∆Accuracy, thus guiding the NN design in terms of the insertion

location.

To sum up, ∆3DRF effectively probes the potential of accuracy improvement, and

we leverage such an easy-to-compute metric to build our architecture optimizer in Sec-

tion 7.4.

7.4 Architecture Optimizer via 3DRF

We build a static Architecture Optimizer based on 3DRF and ∆3DRF . It examines

the structure inefficiency in a given CNN architecture and optimizes it at the stage level

and kernel level.

7.4.1 Stage-Level Organizer

Stage-level organizer (Figure 7.3) manages to improve the prediction accuracy of

a CNN design by iteratively removing a convolution kernel from a saturated stage or

moving it to another stage with more room to absorb new information (i.e., learn from

more marginal elements introduced by the kernel).

189

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Three sub-steps are conducted in each iteration. The first step is to find the convolu-

tion kernel with minimum ∆3DRF , which has the lowest contribution to the 3DRF. In

consideration of the decaying property of ∆3DRF within a stage, this step can be sim-

plified to compute the ∆3DRF of the last convolution kernel in each stage. Comparing

across stages, we select the convolution layer with the minimum 3DRF Gain, denoted

as ∆3DRFMIN in Figure 7.3, and identify the corresponding stage as the source stage.

This identified convolution layer will be either deleted or moved from the source stage to

another stage, in the following steps.

The second step is to spot the stage with the largest room for improving 3DRF. This

step follows the insight from our case study that a larger ∆3DRF often leads to higher

accuracy. We tentatively append the convolution kernel identified in the first step to

each stage and compute the corresponding ∆3DRF . When appending the convolution

layer, the input and output channel number will be adjusted for catering to the preceding

layers in the source stage and the following layer in the next stage if available. Comparing

across stages, we can find the one, called target stage, with maximum ∆3DRF for the

appended layer (∆3DRF ′
MAX in Figure 7.3). This step follows the insights obtained

from our case study that a strong correlation exists between ∆3DRF and ∆Accuracy.

to conduct architecture optimization.

The third step decides whether moving the last convolution layer from the source

stage to the target stage or simply removing this layer. When moving the convolution

layer, we adjust the input channel number and the output channel number with the same

strategy in the second step. This step follows the insights obtained from our case study

to conduct architecture optimization. There are three key choices: 1) If ∆3DRF ′
MAX >

∆3DRFMIN and ∆3DRF ′
MAX > θ, we move the last kernel from the source stage and

append it to the target stage; 2) If ∆3DRF ′
MAX < θ and ∆3DRFMIN < θ, we just remove

the last kernel from the source stage (no appending); 3) If ∆3DRFMIN > ∆3DRF ′
MAX

190

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Standard
Convolution

c

3
3
(S)

I. Channel:

II. Spatial
1 conv: 3*3
2 convs: 5*5

In

Out

Standard
Conv

PW+DW

c

1
1

(A)

I. Channel:

II. Spatial:
Spatial:1 conv: 3*3
2 convs: 5*5

In

Out
3

3

1

PW

DW

DW+PW

c

1
1
(B)

I. Channel:

II.Spatial:
Spatial:1 conv: 3*3
2 convs: 5*5

In

Out

3

3

1

DW

PW

(GC+Interlace+
GPW)*2

3
3

(C)

I. Channel:

II.Spatial:
Spatial:1 conv: 3*3
2 convs: 5*5

In

Out

GC1C0
g

I

g
C0

Interlace

GPW1

GC2

Interlace

GPW2

1

(GPW+Shuffle
+DW+GPW)*2

3

3

(D)

I. Channel:

II.Spatial:
Spatial:1 conv: 3*3

2 convs: 5*5

In

Out

GPW1C0
g

s
Shuffle

DW1

GPW2

DW2

GPW3

1

1

C0
g

1 Shuffle

GPW4

Figure 7.4: Illustration of the 3DRF, both in the channel (I) and spatial (II) dimension,
for the standard kernels (S) and previous convolution blocks (A-D). g is the number
of groups for GC and GPW. The arrow denotes the flow from inputs to outputs in the
channel dimension, and the number of input channels that could flow into an output
neuron would be the channel dimension of 3DRF for that block. We omit the process
of computing the spatial size of 3DRF, while only giving the computed result based on
Equation 7.4 in the figure.

and ∆3DRFMIN > θ, we keep the original structure and terminate our optimization

procedure. Here the hyperparameter θ is the border we draw empirically to distinguish

underfitting from overfitting. For example, θ is set to 0 for VGG. Following this iterative

optimization procedure, our organizer manages to mitigate the structure-level inefficiency

in a CNN design via static architecture optimization. The experimental results of the

organizer can be found in our evaluation.

7.4.2 Kernel-Level Decomposer

At the kernel level, our decomposer reduces the computational cost of a CNN archi-

tecture design, by substituting its standard convolution kernels with less computational

expensive convolution blocks. The key challenge here is to construct such an efficient and

effective convolution block with multiple factorized kernels. Previous manual efforts by

domain experts have made some progress [148, 173, 151], but the underlying design prin-

ciple remains unclear. In this paper, we provide the first easy-to-follow design principle,

191

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Rule of Kernel Replacement, to guide the design of efficient convolution blocks.

Rule of Kernel Replacement To avoid significant accuracy degradation and achieve

computation efficiency, a convolution block N can replace the standard convolution ker-

nels S only if two conditions are satisfied: 1) Quality Condition: 3DRF (N) = 3DRF (S)

for the same input tensor; 2) Compact Condition: 3DRF (N − x) < 3DRF (S) if we

remove a factorized kernel x from N . The former ensures the effectiveness of N with

regards to its learning capacity, while the latter guarantees its optimality in terms of

computation efficiency. The rule helps us unify the previous construction of the convo-

lution block, as well as inspires us to build a new convolution blocks and one efficient

factorized kernel.

Unifying Existing Convolution Blocks This section shows that the previous four

convolution blocks follow the Rule of Kernel Replacement : they have the same 3DRF

as the standard convolutions and they are already in the compact form that cannot

be further simplified. Figure 7.4 depicts the 3DRF for a standard convolution block

(S) and four previously explored convolution blocks (A-D), in their spatial and channel

dimensions. As shown in Figure 7.4 (S), the 3DRF spatial size 3DRFw
1 for S is 3 for

one standard convolution and 3DRFw
2 is 5 when two standard convolutions are packed

together in the block. The 3DRF channel dimension 3DRF c
k for S equals the number of

the input channels to the block.

Convolution block A (adopted by Xception [144]) and B (applied in MobileNet [143])

follow a similar structure. Both A and B successfully maintain the same 3DRF with

that of S with one standard kernel. Specifically, the spatial coverage is managed by DW

4 and channel coverage is taken care of by PW, which communicates the information

among all input channels. Convolution block C (used in clcNet [173]) and D (utilized by

ShuffleNet [151]), on the other hand, achieve the same 3DRF with that of S with two
4Definitions of factorized kernels like DW can be found in the Related Work Section.

192

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

standard kernels. Take block C (shown in Figure 7.4 (C)) as an example, one combination

of GC, Interlace, and GPW, can perceive the same spatial region but only half of the

entire input channels, compared to a standard convolution kernel. But with one extra

GC+Interlace+GPW, the channel dimension gets full coverage. Thus, the 3DRF is the

same for the block with (GC+Interlace+GPW) * 2 and two standard convolutions. The

proof of the compactness for four convolution blocks is omitted, but it is clear from the

plot that if we remove any of the factorized kernels, the 3DRF cannot be maintained.

New Kernel Design Inspired by the Rule of Kernel Replacement, we discover an

unexplored convolution block and a new type of factorized kernel, shown in Figure 7.5.

The first block includes a DW, a channel shuffle, and a GWC. The key insight of the

design is choosing a DW to capture information in the spatial dimension and using a GPW

with a shuffle operation to observe full channel information. Since the PW contributes

to the majority of the computations in the previous factorized design (more than 95%

FLOPs in MobileNet [143]), the usage of GPW to replace PW can largely reduce the

computation cost, compared to blocks like (A) and (B).

The convolution block we come up with composes of a DW and a Rolling-Pointwise

Convolution (RPW), as shown in the left side of Figure 7.5 (model F). The comparison

between RPW and GPW is presented in the right side of Figure 7.5. Different from GPW,

RPW is the new factorized convolution kernel we invented, where adjacent convolution

filters partially overlap in the channel dimension. The overlapped part serves as a bridge

to communicate the different channel information and allows the later kernel to observe

different channels without channel shuffle. Specifically, there are two parameters that

come with RPW: group number g and overlap ratio o. For instance, RPW-gX-oY%

denotes each filter in the convolution kernel takes 1
X

number of input channels, while

adjacent filters in RPW have y% overlap in their consumed channels. The newly designed

block outperforms previous designs in accuracy, memory and computation efficiency,
193

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

II.Spatial:

GPW vs. RPW
Channel Channel

1st filter

2nd filter

3rd filter

4th filter

GPW-g2 RPW-g2-o50%

I.Channel:

In

Out

DW1

RPW1

DW2

RPW2

DW3

RPW3

(DW+RPW)
*3

1

3

3

1
1

𝑪𝟎
𝒈

(F)

1. Conv 3*3
2. Conv 5*5
3. Conv 7*7

Figure 7.5: Left: DW+RPW convolution block design. Right: Comparison of RPW
kernel with GPW kernel. Note that in RPW, adjacent filters overlap in channel dimen-
sions.

which are detailed in our evaluation.

Implementation of New Kernel Design To implement the new rolling-pointwise

convolution, we introduce two kind of implementation by compositing the existing Py-

torch Operators. First, we can first extract the corresponding channels and concatenate

them together. We will leverage the existing Pytorch operators, such as tensor slicing,

concatenation, and standard group convolution. There are several steps, as shown in

Listing 7.2. The second type of design is to let the convolution iterate through the in-

put channel. The second implementation circumvents the “huge” concatenated tensor in

the above implementation by applying convolution operation before concatenating. One

major key insight is that the computation on the large concatenated tensor can be de-

composed into the more effective computation on a set of small tensors. Instead of simply

combining all the extracted features maps, we can pre-build a set of lightweight convolu-

194

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Listing 7.2: Compositing RPW via PyTorch Operators.
1 width = int(input_channel/num_groups)
2 start, end, start_v, end_v= 0, width, 0, width
3 item_set, slice_li = set(), []
4 # input channel range for each kernel filter.
5 for fid in range(output_channel):
6 item_set.add((start,end)); slice_li.append((start,end))
7 start_v = end_v - int(overlap * width)
8 end_v = start_v + width
9 start, end= start_v%input_channel, end_v%input_channel

10 # define a groupwise convolution.
11 conv2D = nn.Conv2d(width*len(item_set), len(item_set),
12 kernel_size=1, groups=len(item_set))
13 # forward computation.
14 def forward(input):
15 comb_unit = []
16 for idx in range(len(item_set)):
17 item = slice_li[idx]
18 start, end = item[0], item[1]
19 if start > end and start < input_channel:
20 tmp = input[:, start:, :, :]
21 tmp_1 = input[:, :end, :, :]
22 new_tmp = torch.cat([tmp, tmp_1], dim=1)
23 comb_unit.append(new_tmp)
24 else:
25 comb_unit.append(input[:, start:end, :, :])
26 comb_tensor = torch.cat(combined_unit, dim=1)
27 return conv2D(comb_tensor)

tions, each of which will generate the feature map for only one kernel filter. Finally, we

concatenate these output feature map together. While this solution can largely overcome

the third problem of the above channel-stack implementation, it is still hindered by the

excessive inefficient Pytorch operations and lack of parallelization.

7.5 Evaluation

To validate the effectiveness of the architecture optimizer, we run comprehensive ex-

periments on the state-of-the-art CNN models (VGG16 and VGG19 [147], MobileNet [143]

and ResNet50 [124]. The major reason of choosing these CNN models are 1) VGG16 and

VGG19 are two most classic CNNs with linearly stacked layers; 2) MobileNet is the

representative lightweight model with DW+PW convolution block; 3) ResNet50 is the

195

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

representative model with the non-linearly stacked layers (residual connections).

Dataset: We use CIFAR-10 (CIFAR-100) [160] and ImageNet [161] dataset for eval-

uation. CIFAR-10 consists of 60,000 32×32 colour images in 10 classes, with 6,000 images

per class. CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes con-

taining 600 images each. ImageNet is a large dataset of over 14 million images with up

to 1,000 output classes, and it is mainly used for computer vision research, such as image

classification.

Training Settings: We follow the conventional settings [184] for training and testing

on CIFAR-10 and CIFAR-100: learning rate starts from 0.1 and decays by the factor

of 0.1 after 150 and 250 epochs, with 350 epochs in total. We adopt SGD with 0.9

momentum and 5e-4 for the weight decay. We apply normalization for the input image

with (0.491, 0.482, 0.446) for each RGB channel as the mean and (0.247, 0.243, 0.261)

for standard deviation, respectively. And we select two state-of-the-art Pytorch CNNs

implementations on CIFAR-10 and CIFAR-100 , respectively. For ImageNet, we use the

official Pytorch implementations 5 and choose learning rate starts with 0.1 with total

120 epochs. We adopt SGD with 0.9 momentum and 1e-4 weight decay. We also apply

normalization for the input image with (0.485, 0.456, 0.406) for each RGB channel as the

mean and (0.229, 0.224, 0.225) for standard deviation. We select the pre-trained model

as the baseline from Pytorch official website.

7.5.1 Stage-Level Organizer

This experiment aims to demonstrate the effectiveness of our stage-level organizer.

Specifically, we first use CIFAR-10 and CIFAR-100 for detailed analysis, and further

leverage ImageNet to show our design applicability and scalability towards the challeng-

ing state-of-the-art large dataset. Table 7.3 exhibits the performance of various CNNs
5github.com/pytorch/examples/tree/master/imagenet

196

github.com/pytorch/examples/tree/master/imagenet

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Table 7.3: Performance comparison (CIFAR-10) between original CNNs and reorganized
structures.

Network MFLOPs Param. Acc. (%) ∆3DRF

VGG16 310 14.73M 92.64 -
VGG16-opt 370 5.10M 92.95 2.30

VGG19 400 20.04M 91.91 -
VGG19-opt 490 8.09M 92.89 3.13

MobileNet 50 3.22M 90.67 -
MobileNet-opt 50 1.13M 92.05 3.94

ResNet50 1,300 23.52M 93.75 -
ResNet50-opt 1,310 17.24M 95.79 0.76

Table 7.4: Performance comparison (CIFAR-100) between original CNNs and reorga-
nized structures.

Network MFLOPs Param. Acc. (%) ∆3DRF

VGG16 330 34.02M 72.93 -
VGG16-opt 390 24.39M 74.64 2.30

VGG19 420 39.33M 72.23 -
VGG19-opt 500 27.38M 74.00 3.13

MobileNet 50 3.32M 65.98 -
MobileNet-opt 50 1.23M 71.45 3.94

ResNet50 1,310 23.71M 77.39 -
ResNet50-opt 1,380 21.89M 78.25 0.76

optimized by the stage-level organizer, including computation complexity (MFLOPs),

parameter size, and accuracy. It is clear that the stage-level organizer can improve the

accuracy of various state-of-the-art CNN models. On CIFAR-10 and CIFAR-100, stage-

level organizer improves the accuracy of four evaluated models by 1.18% and 1.90% on

average, while reducing model parameters by 54.15% and 32.33% on average, respec-

tively. We also notice on the more complicated model, such as ResNet50, the accuracy

improvement is notable (2.04% on CIFAR-10 and 0.86% on CIFAR-100). The original

197

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Table 7.5: Performance comparison (ImageNet) between original CNNs and reorganized
structures.

Network MFLOPs Param. Acc. (%) ∆3DRF

VGG16 15,500 138.36M 71.59 -
VGG16-opt 16,900 133.82M 72.17 0.39

VGG19 19,670 143.67M 72.38 -
VGG19-opt 21,060 141.34M 72.61 1.09

MobileNet 580 4.23M 70.60 -
MobileNet-opt 570 3.52M 71.05 2.59

ResNet50 4,120 25.56M 76.15 -
ResNet50-opt 4,130 23.67M 76.56 0.47

ResNet50 model has 4 stages. Each stage contains {3, 4, 6, 3} bottleneck blocks respec-

tively. Following the iterative optimization steps, the organizer moves the last two blocks

from the third stage to the first stage and the last block from the last stage to the second

stage to generate an optimized ResNet50 containing {5, 5, 4, 2} blocks in each stage. By

improving the total ∆3DRF , this optimized architecture gets both higher accuracy and

fewer model parameters. In addition, on the lightweight MobileNet model, which has

factorized kernel designs (DW+PW) with the smallest number of parameters, our stage-

level organizer also achieves a notable performance improvements (1.38% on CIFAR-10,

and 5.47% on CIFAR-100). This is because our organizer finds five convolutions—four

from the fourth stage and one from the last stage—which suffer from small ∆3DRF . By

moving these convolutions to the first and second stage, we get a new architecture con-

tains {4, 4, 2, 2, 1} convolutions in each stage, which offers a more efficient architecture

in terms of less model parameters and higher accuracy. On the challenging ImageNet, our

stage-level organizer can still effectively reduce the number of model parameters (up to

16.7%), meanwhile improving the testing accuracy (up to 0.58%) compared with baseline.

198

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

Table 7.6: Kernel-level design (CIFAR-10) on VGG16-opt.

Network MFLOPs Param. Acc.(%)

Baseline 370 9.64M 92.95

DW+PW 50 1.11M 92.12

DW+GPW-g2 30 0.67M 92.35

DW+GPW-g4 20 0.36M 88.05

DW+GPW-g8 10 0.20M 86.41

DW+RPW-g2-o33% 30 0.66M 92.52

DW+RPW-g2-o50% 30 0.66M 92.70

DW+RPW-g4-o33% 20 0.36M 91.61

DW+RPW-g4-o50% 20 0.36M 91.59

DW+RPW-g8-o33% 10 0.20M 89.86

DW+RPW-g8-o50% 10 0.20M 90.19

7.5.2 Kernel-Level Decomposer

This experiment aims to demonstrate the benefits of our brand-new kernel design. We

first use VGG16-opt (with stage-level optimization) on CIFAR-10 for a detailed study.

We further highlight our new kernel scalability by applying it towards the complicated

ResNet50-opt model on ImageNet. Table 7.6 shows that our new convolution block based

on rolling-channel design achieve a better balance between the model efficiency and the

prediction accuracy on VGG16-opt on CIFAR10, in contrast to DW+PW factorized ker-

nel design. We tried three different group numbers g (2, 4, 8), as well as two overlapping

ratios o (33%, 50%). Our model with DW+RPW-g2-o50% achieves a better accuracy

compared to the high-performance DW+PW model while saving about 40.0% FLOPs

and 40.5% parameters. With an increase in the group number, we observe a significant

reduction in both computational cost and parameter usage, along with a slight degrada-

tion in prediction accuracy. This aligns well with our expectation that the group number

199

An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks. Chapter 7

g determines the number of input channels that GPW/RPW would take, and thus also

decides the number of computations and parameters of the model.

We also notice that our new convolution block design consistently outperforms with

the ones without overlap (o) under the same number of groups (g). For example, our

new design (DW+RPW-g4-o33%) outperform DW+RPW-g4 with 3.56% better accuracy.

Under the settings with same number of group in RPW, such as DW+RPW-g2-o33%

vs. DW+RPW-g2-o50%, the latter with higher overlap ratio offers higher accuracy,

indicating the effectiveness of overlapping channels to improve model accuracy.

200

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In Chapter II, I propose QGTC, the first QGNN computing framework to support

any-bit-width computation via GPU Tensor Core. Specifically, I introduce the first GNN-

tailored any-bitwidth arithmetic design that can emulate different bitwidth computations

to meet the end-user’s demands. We craft a TC-tailored CUDA kernel design by incorpo-

rating 3D-stacked bit compression, zero-tile jumping, and non-zero tile reuse techniques

to maximize the performance gains from GPU Tensor Core. We also incorporate an effec-

tive bandwidth-optimized subgraph packing strategy to maximize the data transferring

efficiency. Finally, I integrate QGTC with the popular PyTorch framework for better

programmability and extensibility. Extensive experiments show significant performance

gains of QGTC in practice.

In Chapter III, I propose, GNNAdvisor, an adaptive and efficient runtime system for

GNN acceleration on GPUs. Specifically, I explore the potential of GNN input-level infor-

mation in guiding system-level optimizations. We further propose a set of GNN-tailored

system-level optimizations (e.g., 2D workload management, and specialized memory opti-

201

Conclusions and Future Work Chapter 8

mizations) and incorporate them into our parameterized designs to improve performance

and adaptability. Extensive experiments on a wide range of datasets and mainstream

GNN models demonstrate the effectiveness of our design. Overall, GNNAdvisor provides

users with a handy tool to accelerate GNNs on GPUs systematically and comprehensively.

In Chapter IV, I present MGG, a novel multi-GPU system design, and implementation

to exploit the potential of leveraging GPU intra-kernel software pipeline for accelerating

GNNs. MGG consists of GNN-tailored pipeline construction and GPU-aware pipeline

mapping to facilitate workload balancing and operation overlapping, and an intelligent

runtime design to dynamically improve the GNN runtime performance. Experiments

show the advantages of MGG over state-of-the-art solutions and its generality towards

other DL applications.

In Chapter V, I introduce TC-GNN, the first GNN acceleration framework on TCU

of GPUs. We design a novel sparse graph translation technique to gracefully fit the

sparse GNN workload on dense TCUs. Our TCU-tailored GPU kernel design maximizes

the TCU performance gains for GNN computing through effective CUDA core and TCU

collaboration and a set of memory/data flow optimizations. Our seamless integration

with the PyTorch framework further facilitates end-to-end GNN computing with high

programmability. Extensive experiments demonstrate the performance advantage of TC-

GNN over the state-of-the-art frameworks. across diverse GNN models and datasets.

Furthermore, our TC-GNN design could also inspire potential TCU-like hardware

features that can support (i) the dynamic shape of TCU input tiles and (ii) the dynamic

structural sparsity of input tiles to yield higher performance benefits at the runtime.

These proposed hardware features will help reduce unnecessary computation in a more

fine-grained and precise manner.

In Chapter VI, I introduce DSXplore, the first optimized design to explore the DSCs

on CNNs. Specifically, at the algorithm-level optimization, DSXplore incorporates a

202

Conclusions and Future Work Chapter 8

novel sliding-channel convolution (SCC), featured with the input-channel overlapping

to capture cross-channel information that can effectively improve the accuracy while

reducing FLOPs and parameter size across a board range of CNNs on mainstream image

classification datasets. At the implementation level, I reduce the atomic operation during

the backward phase by leveraging the input-centric back-propagation design. Moreover,

I fully integrated DSXplore with the Pytorch to improve programmability. Overall,

our work paves a new way of exploring DSCs systematically and comprehensively by

combining both algorithmic and implementation innovations.

In Chapter VII, I propose 3D-Receptive Field (3DRF), an interpretable and easy-

to-compute metric to guide the search of CNN designs. To illustrate the usefulness of

3DRF, We build an optimizer and improve the CNN structure at the stage and kernel

level. The stage-level optimization targets at reducing the model structural redundancy

by improving the kernel organization, while the kernel-level optimization improves the

individual kernel design by reducing the number of parameters without compromising

the model accuracy. Experiments show models generated by our optimizer achieve higher

efficiency and accuracy compared with state-of-the-art CNNs.

8.2 Future Work

Looking forward, I will deepen and strengthen my DL system research in several

aspects. Specifically, I plan to develop a DL verification system that can effectively

certify the robustness of the neural network models for safety-critical applications (e.g.,

autonomous driving). I will also work on expanding the existing system abstraction for

new hardware features and DL workloads, and promoting system-level failure resiliency.

My long-term goal is to facilitate the efficiency, scalability, and safety of DL systems to

effectively support diverse DL applications in the future.

203

Conclusions and Future Work Chapter 8

Secure DL Systems Despite the stunning success in accelerating DL model execu-

tion on GPUs, the performance of verifying the DL model’s robustness (i.e., whether DL

models can still make the right predictions under noisy/adversarial inputs) largely lagged

behind. DL model verification involves neuros’ variation (bound) derivation and propaga-

tion to quantify input variation on output prediction. Such bound-centric computation

is highly irregular and memory-intensive in comparison to standard DL computation

with regular dense GEMM computation. I will build an efficient DL model verifica-

tion system on accelerating hardware (e.g., GPUs). The key of our design is to design

and implement verification-tailored primitives and computation graph transformation on

GPUs with model adaptability. Moreover, our prior experience [1, 4, 8] in leveraging new

AI-tailored hardware features (e.g., GPU Tensor Cores) in irregular and sparse GNN

workloads will provide us with good examples for exploring their uncovered potentials

such as high computing throughput and quantization, in verifying and securing DL mod-

els. I also seek to demonstrate our design/optimization effectiveness by collaborating

with faculty with research interests in software engineering and programming language.

Automated Novel Hardware Features Adaption: With the increasing popu-

larity of GPUs in AI applications, GPU hardware also advances simultaneously. Numer-

ous new hardware features have been introduced since the initial version of the GPU and

CUDA programming model, tailoring for different needs of computation specialization.

For instance, Ray tracing/Tensorcore units have been introduced for accelerating the

computer graphics and AI workloads, respectively. The threadblock clusters provide new

opportunities to manage the GPU kernel computation in a more efficient way. Register

bypassing enables faster data loading from global memory to shared memory.

Unfortunately, it is impractical to rewrite all prior kernel designs to enjoy perfor-

mance benefits from these new features and demands arduous design and engineering

efforts. I will build a holistic compiler stack and runtime orchestration strategy

204

to automate the matching between the new hardware features and the emerging ML

workloads. The key is to build the new computation/memory abstraction for new hard-

ware features meanwhile reconstructing DL workloads to match such new abstraction.

I will also explore the potential and design space of collaboration between existing and

new hardware features to promote the overall performance delivery. Our prior experi-

ence [4, 8] in retargeting dense GPU Tensor Cores for sparse GNN workloads provides a

good start to achieving our goal. Our collaboration with NVIDIA and Pacific Northwest

National Laboratory can offer easier access to the latest hardware and valuable insights

for kernel optimization and compiler stack implementation.

Failure Resilient DL Systems With the growing demands of Large Language

Models (LLMs) training and inference, the failure of runtime execution is becoming more

likely to happen at the software and hardware level. For instance, one of the commonly

used communication libraries, NCCL, is vulnerable to a diverse range of errors including

failures due to the crash of NICs (Network interface for inter-machine communication).

Such failures would put the entire training on hold and take engineers/ML practitioners

hours or even days to recover from those failures. I envision a failure-resilient DL

system that can directly heal itself with several mechanisms, including agile failure

detection, intelligent root cause diagnostic, and remediation generation, through the

innovation of DL framework, runtime system, and accelerating hardware. I will develop

the framework and runtime system support for failure-resilient DL systems. The design

space for remediation solution generation will also be explored systematically to match

or even outperform the default one used in existing DL frameworks.

205

Bibliography

[1] B. Feng, ∗Yuke Wang, T. Geng, A. Li, and Y. D. E. Contribution), Apnn-tc:
Accelerating arbitrary precision neural networks on ampere gpu tensor cores, in
The International Conference for High Performance Computing, Networking,
Storage, and Analysis. (SC’21), 2021.

[2] Yuke Wang, B. Feng, and Y. Ding, Dsxplore: Optimizing convolutional neural
networks via sliding-channel convolutions, in IEEE International Parallel and
Distributed Processing Symposium (IPDPS’21), 2021.

[3] Yuke Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, Gnnadvisor: An
efficient runtime system for gnn acceleration on gpus, in USENIX Symposium on
Operating Systems Design and Implementation (OSDI’21), 2021.

[4] Yuke Wang, B. Feng, and Y. Ding, Qgtc: Accelerating quantized gnn via gpu
tensor core, in ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. (PPoPP’22), 2022.

[5] Yuke Wang, B. Feng, and Y. Ding, Tc-gnn: Accelerating sparse graph neural
network computation via dense tensor core on gpus, USENIX Annual Technical
Conference (USENIX ATC’23) (2023).

[6] Yuke Wang, B. Feng, X. Peng, and Y. Ding, An efficient quantitative approach
for optimizing convolutional neural networks, in ACM International Conference
on Information and Knowledge Management. (CIKM’21), 2021.

[7] Yuke Wang, B. Feng, G. Li, L. Deng, Y. Xie, and Y. Ding., Stpacc: A
compiler-based framework for accelerating distance algorithms on cpu-fpga
platforms., in IEEE Transactions on Computer Aided Design of Integrated
Circuits & Systems. (TCAD’21), 2021.

[8] Wang, Yuke, B. Feng, Z. Wang, G. Huang, and Y. Ding, Tc-gnn: Bridging sparse
gnn computation and dense tensor cores on gpus, in 2023 USENIX Annual
Technical Conference (USENIX ATC 23), 2023.

[9] Yuke Wang, B. Feng, Z. Wang, T. Geng, K. Barker, A. Li, and Y. Ding, Mgg:
Accelerating graph neural networks with fine-grained intra-kernel

206

communication-computation pipelining on multi-gpu platforms, in 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’23), 2023.

[10] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional
networks, International Conference on Learning Representations (ICLR) (2017).

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
Graph attention networks, in International Conference on Learning
Representations (ICLR), 2018.

[12] W. Hamilton, Z. Ying, and J. Leskovec, Inductive representation learning on large
graphs, in Advances in neural information processing systems (NeurIPS), 2017.

[13] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful are graph neural
networks?, in International Conference on Learning Representations (ICLR),
2019.

[14] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai, Neugraph: parallel
deep neural network computation on large graphs, in USENIX Annual Technical
Conference (ATC’19).

[15] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang,
C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, and
Z. Zhang, Deep graph library: Towards efficient and scalable deep learning on
graphs, ICLR Workshop on Representation Learning on Graphs and Manifolds
(2019).

[16] M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch
Geometric, in ICLR Workshop on Representation Learning on Graphs and
Manifolds (ICLR), 2019.

[17] Z. Huang, A. Silva, and A. Singh, A broader picture of random-walk based graph
embedding, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 685–695, 2021.

[18] B. Feng, Y. Wang, X. Li, S. Yang, X. Peng, and Y. Ding, Sgquant: Squeezing the
last bit on graph neural networks with specialized quantization, in IEEE 32nd
International Conference on Tools with Artificial Intelligence (ICTAI), 2020.

[19] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, Degree-quant:
Quantization-aware training for graph neural networks, International Conference
on Learning Representations (2021).

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

207

S. Chintala, Pytorch: An imperative style, high-performance deep learning library,
in Advances in Neural Information Processing Systems (NeurIPS). 2019.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, Tensorflow: A system for large-scale machine learning, in
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, (Savannah, GA, USA), 2016.

[22] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 4.0.” http://www.cs.umn.edu/~metis, 2009.

[23] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks, in
Proceedings of the 25th ACM International Conference on Knowledge Discovery
& Data Mining, 2019.

[24] D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social
networks, Journal of the American society for information science and technology
58 (2007), no. 7 1019–1031.

[25] A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in
Proceedings of the 22nd ACM international conference on Knowledge discovery
and data mining (SIGKDD), 2016.

[26] Z. Huang, A. Silva, and A. Singh, Pole: Polarized embedding for signed networks,
2022.

[27] NVIDIA, Programming tensor cores in cuda 9, 2017.

[28] A. Abdelfattah, S. Tomov, and J. Dongarra, Fast batched matrix multiplication
for small sizes using half-precision arithmetic on gpus, in 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2019.

[29] A. Li and S. Su, Accelerating binarized neural networks via bit-tensor-cores in
turing gpus, IEEE Transactions on Parallel and Distributed Systems (TPDS)
(2020).

[30] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, Accelerating reduction
and scan using tensor core units, in Proceedings of the ACM International
Conference on Supercomputing.

[31] B. Feng, Y. Wang, G. Chen, W. Zhang, Y. Xie, and Y. Ding, Egemm-tc:
Accelerating scientific computing tensor cores with extended precision, ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPoPP) (2021).

208

http://www.cs.umn.edu/~metis

[32] Nvidia, “Dense linear algebra on gpus.” developer.nvidia.com/cublas.

[33] Nvidia, “Cuda templates for linear algebra subroutines(cutlass).”
github.com/NVIDIA/cutlass.git.

[34] Nvidia, “Warp matrix multiply-accumulate (wmma).”

[35] M. Bahri, G. Bahl, and S. Zafeiriou, Binary graph neural networks, arXiv preprint
arXiv:2012.15823 (2020).

[36] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized
neural networks, in Proceedings of the 30th international conference on neural
information processing systems, 2016.

[37] U. N. Raghavan, R. Albert, and S. Kumara, Near linear time algorithm to detect
community structures in large-scale networks, Physical review E (2007).

[38] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J. Garzaran, and K. Pingali,
Parallelization of reordering algorithms for bandwidth and wavefront reduction, in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2014.

[39] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices,
in Proceedings of the 1969 24th National Conference, 1969.

[40] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze, Automatic generation
of high-performance quantized machine learning kernels, in Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and Optimization,
pp. 305–316, 2020.

[41] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
Hierarchical graph representation learning with differentiable pooling, in The 32nd
International Conference on Neural Information Processing Systems (NeurIPS),
2018.

[42] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann, Benchmark
data sets for graph kernels, 2016.

[43] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
Open graph benchmark: Datasets for machine learning on graphs, arXiv preprint
arXiv:2005.00687 (2020).

[44] H. Zeng and V. Prasanna, Graphact: Accelerating gcn training on cpu-fpga
heterogeneous platforms, in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2020.

209

developer.nvidia.com/cublas
github.com/NVIDIA/cutlass.git

[45] R. Kaspar and B. Horst, Graph classification and clustering based on vector space
embedding. World Scientific, 2010.

[46] J. Gibert, E. Valveny, and H. Bunke, Graph embedding in vector spaces by node
attribute statistics, Pattern Recognition (2012).

[47] A. G. Duran and M. Niepert, Learning graph representations with embedding
propagation, in Advances in neural information processing systems (NeurIPS),
2017.

[48] H. Chen, X. Li, and Z. Huang, Link prediction approach to collaborative filtering,
in Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL), IEEE, 2005.

[49] J. Kunegis and A. Lommatzsch, Learning spectral graph transformations for link
prediction, in Proceedings of the 26th Annual International Conference on
Machine Learning (ICML), 2009.

[50] T. Tylenda, R. Angelova, and S. Bedathur, Towards time-aware link prediction in
evolving social networks, in Proceedings of the 3rd workshop on social network
mining and analysis, 2009.

[51] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of social
representations, in The 20th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), 2014.

[52] D. Luo, F. Nie, H. Huang, and C. H. Ding, Cauchy graph embedding, in The 28th
International Conference on Machine Learning (ICML), 2011.

[53] D. Luo, C. Ding, H. Huang, and T. Li, Non-negative laplacian embedding, in
Ninth IEEE International Conference on Data Mining (ICDM), 2009.

[54] D. Cheng, Y. Gong, X. Chang, W. Shi, A. Hauptmann, and N. Zheng, Deep
feature learning via structured graph laplacian embedding for person
re-identification, Pattern Recognition (2018).

[55] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, Powergraph:
Distributed graph-parallel computation on natural graphs, in The 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2012.

[56] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, Gunrock: A
high-performance graph processing library on the gpu, in Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2016.

210

[57] V. Balaji and B. Lucia, When is graph reordering an optimization? studying the
effect of lightweight graph reordering across applications and input graphs, in 2018
IEEE International Symposium on Workload Characterization (IISWC), IEEE.

[58] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura, Rabbit order:
Just-in-time parallel reordering for fast graph analysis, in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2016.

[59] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking:
Bringing order to the web., tech. rep., 1999.

[60] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, Cusha: vertex-centric graph
processing on gpus, in Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing (HPDC), 2014.

[61] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
Translating embeddings for modeling multi-relational data, in Advances in Neural
Information Processing Systems (NeurIPS), 2013.

[62] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, Convolutional networks on graphs
for learning molecular fingerprints, arXiv preprint (2015).

[63] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, Tigr: Transforming irregular graphs for
gpu-friendly graph processing, in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[64] H. Liu and H. H. Huang, Enterprise: breadth-first graph traversal on gpus, in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2015.

[65] H. Liu and H. H. Huang, Simd-x: Programming and processing of graph
algorithms on gpus, in USENIX Annual Technical Conference (ATC), 2019.

[66] A. Kyrola, G. Blelloch, and C. Guestrin, Graphchi: Large-scale graph computation
on just a pc, in The 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[67] A. Roy, I. Mihailovic, and W. Zwaenepoel, X-stream: Edge-centric graph
processing using streaming partitions, in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP), 2013.

[68] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et. al., Tensorflow: A system for large-scale
machine learning, in 12th USENIX symposium on operating systems design and
implementation (OSDI), 2016.

211

[69] M. Fey and J. E. Lenssen, Pytorch extension library of optimized scatter
operations, 2019.

[70] Nvidia, “Cuda sparse matrix library (cusparse).”
developer.nvidia.com/cusparse.

[71] A. Sala, H. Zheng, B. Y. Zhao, S. Gaito, and G. P. Rossi, Brief announcement:
Revisiting the power-law degree distribution for social graph analysis, in
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), 2010.

[72] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis,
Mizan: A system for dynamic load balancing in large-scale graph processing, in
Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys), 2013.

[73] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin, An
experimental comparison of pregel-like graph processing systems, The VLDB
Endowment (2014).

[74] S. Fortunato, Community detection in graphs, Physics reports (2010).

[75] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing
community detection algorithms, Physical review E (2008).

[76] M. E. Newman, Spectral methods for community detection and graph partitioning,
Physical Review E (2013).

[77] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel
computing, Parallel computing (2000).

[78] P. Boldi, M. Rosa, M. Santini, and S. Vigna, Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks, in
Proceedings of the 20th international conference on World wide web (WWW),
2011.

[79] Nvidia, “Tesla v100.” https://www.nvidia.com/en-us/data-center/v100/.

[80] Nvidia, “Quardo p6000 gpu.” https://www.nvidia.com/content/dam/en-zz/
Solutions/design-visualization/productspage/quadro/quadro-desktop/
quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf.

[81] C. Yang, A. Buluç, and J. D. Owens, Design principles for sparse matrix
multiplication on the gpu, in European Conference on Parallel Processing, 2018.

[82] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection.” http://snap.stanford.edu/data, 2014.

212

developer.nvidia.com/cusparse
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
http://snap.stanford.edu/data

[83] Intel, “Xeon sliver 4110.”
https://ark.intel.com/content/www/us/en/ark/products/123547/
intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html.

[84] Nvidia, “Dgx-1.” https://www.nvidia.com/en-us/data-center/dgx-1/.

[85] Nvidia, “Profiling tools.”
docs.nvidia.com/cuda/profiler-users-guide/index.html.

[86] Nvidia, “Tesla p100.”
https://www.nvidia.com/en-us/data-center/tesla-p100/.

[87] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan, and Y. Xie,
Hygcn: A gcn accelerator with hybrid architecture, 2020.

[88] Y. Zhang, X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang, Every document owns its
structure: Inductive text classification via graph neural networks, Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics (ACL)
(2020).

[89] Nvidia, “Nvidia dgx a100.” https://nvidia.com/content/dam/en-zz/
Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf.

[90] Nvidia, “Dgx superpod.”
https://nvidia.com/en-us/data-center/dgx-superpod/.

[91] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, Improving the accuracy,
scalability, and performance of graph neural networks with roc, in Proceedings of
the3rd MLSys Conference, 2020.

[92] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi, D. Chen,
and W.-m. Hwu, Large graph convolutional network training with gpu-oriented
data communication architecture, Proc. VLDB Endow. (2021).

[93] S. Gandhi and A. P. Iyer, P3: Distributed deep graph learning at scale, in 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2021.

[94] Nvidia, “Nvshmem communication library.”
https://developer.nvidia.com/nvshmem.

[95] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Mallevich,
I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira,
X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy, Deep learning
recommendation model for personalization and recommendation systems, arXiv
preprint arXiv:1906.00091 (2019).

213

https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html
https://www.nvidia.com/en-us/data-center/dgx-1/
docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://nvidia.com/en-us/data-center/dgx-superpod/
https://developer.nvidia.com/nvshmem

[96] Nvidia, “Nvidia collective communication library (nccl).”
https://developer.nvidia.com/nccl.

[97] T. Schroeder, “Peer-to-peer & unified virtual addressing.” https://developer.
download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf.

[98] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, Dgcl: an efficient
communication library for distributed gnn training, in Proceedings of the Sixteenth
European Conference on Computer Systems (EuroSys), 2021.

[99] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, Pagraph: Scaling gnn training on large
graphs via computation-aware caching, in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020.

[100] J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yu, and J. Zhou,
Gnnlab: a factored system for sample-based gnn training over gpus, in Proceedings
of the Seventeenth European Conference on Computer Systems (EuroSys), 2022.

[101] S. Polisetty, J. Liu, K. Falus, Y. R. Fung, S.-H. Lim, H. Guan, and M. Serafini,
Gsplit: Scaling graph neural network training on large graphs via split-parallelism,
arXiv preprint arXiv:2303.13775 (2023).

[102] J. Chen, T. Ma, and C. Xiao, FastGCN: Fast learning with graph convolutional
networks via importance sampling, in International Conference on Learning
Representations (ICLR), 2018.

[103] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, Legion: Expressing locality
and independence with logical regions, in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC), 2012.

[104] M. Alle, A. Morvan, and S. Derrien, Runtime dependency analysis for loop
pipelining in high-level synthesis, in Proceedings of the 50th Annual Design
Automation Conference (DAC), 2013.

[105] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, Optimization principles and application performance evaluation
of a multithreaded gpu using cuda, in The 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming (PPoPP), 2008.

[106] NVIDIA, “Unified memory for cuda beginners.”
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[107] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R.
Ganger, P. B. Gibbons, and M. Zaharia, Pipedream: generalized pipeline
parallelism for dnn training, in Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), 2019.

214

https://developer.nvidia.com/nccl
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

[108] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
Memory-efficient pipeline-parallel dnn training, in International Conference on
Machine Learning (ICML), 2021.

[109] K. Andreev and H. Räcke, Balanced graph partitioning, in Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and architectures
(SPAA), 2004.

[110] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and gpudirect,
IEEE Transactions on Parallel and Distributed Systems (TPDS) (2019).

[111] wikipedia, “Nvidia gpu micro-architecture.”
https://en.wikipedia.org/wiki/CUDA.

[112] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM
Transactions on Mathematical Software (TOMS) (2011).

[113] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
Open graph benchmark: Datasets for machine learning on graphs, Advances in
neural information processing systems (NeurIPS) 33 (2020).

[114] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi, D. Chen,
and W.-m. Hwu, Pytorch-direct: Enabling gpu centric data access for very large
graph neural network training with irregular accesses, arXiv preprint
arXiv:2101.07956 (2021).

[115] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, Batch-aware unified memory
management in gpus for irregular workloads, in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[116] AMD, “Rocm openshmem.”
https://github.com/ROCm-Developer-Tools/ROC_SHMEM.

[117] S. Zhang, L. Yao, A. Sun, and Y. Tay, Deep learning based recommender system:
A survey and new perspectives, ACM Computing Surveys (CSUR) (2019).

[118] Z. Wang, Y. Wang, B. Feng, D. Mudigere, B. Muthiah, and Y. Ding, El-rec:
efficient large-scale recommendation model training via tensor-train embedding
table, in 2022 SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2022.

[119] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K. M.
Hazelwood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere,
M. Smelyanskiy, L. Xiong, and X. Zhang, The architectural implications of

215

https://en.wikipedia.org/wiki/CUDA
https://github.com/ROCm-Developer-Tools/ROC_SHMEM

facebook’s dnn-based personalized recommendation, in IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020.

[120] Criteo, “Criteo display ad challenge.”
https://kaggle.com/c/criteodisplay-ad-challenge.

[121] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, Attention-based graph
neural network for semi-supervised learning, .

[122] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et. al., In-datacenter performance analysis of a
tensor processing unit, in Proceedings of the 44th annual international symposium
on computer architecture (ISCA), 2017.

[123] AMD, “All-new matrix core technology for hpc and ai.”
https://amd.com/en/technologies/cdna.

[124] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 2016.

[125] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[126] Nvidia, “Accelerating matrix multiplication with block sparse format and nvidia
tensor cores.” https:
//developer.nvidia.com/blog/accelerating-matrix-multiplication-with\
-block-sparse-format-and-nvidia-tensor-cores/.

[127] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 1999.

[128] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. (1997). Computational algebra and number theory
(London, 1993).

[129] Intel Math Kernel Library. Reference Manual. Intel Corporation. Santa Clara,
USA.

[130] G. Huang, G. Dai, Y. Wang, and H. Yang, Ge-spmm: General-purpose sparse
matrix-matrix multiplication on gpus for graph neural networks, in Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020.

216

https://kaggle.com/c/criteodisplay-ad-challenge
https://amd.com/en/technologies/cdna
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with\-block-sparse-format-and-nvidia-tensor-cores/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with\-block-sparse-format-and-nvidia-tensor-cores/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with\-block-sparse-format-and-nvidia-tensor-cores/

[131] S. E. Kurt, A. Sukumaran-Rajam, F. Rastello, and P. Sadayyapan, Efficient tiled
sparse matrix multiplication through matrix signatures, in Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2020.

[132] M. Zhang and Y. Chen, Link prediction based on graph neural networks, Advances
in neural information processing systems (NeurIPS) 31 (2018).

[133] NVIDIA, “Improved tensor core operations.” https://docs.nvidia.com/cuda/
ampere-tuning-guide/index.html#tensor-operations.

[134] O. Zachariadis, N. Satpute, J. Gómez-Luna, and J. Olivares, Accelerating sparse
matrix–matrix multiplication with gpu tensor cores, Computers & Electrical
Engineering (2020).

[135] P. Tillet, H. T. Kung, and D. Cox, Triton: An intermediate language and
compiler for tiled neural network computations, in Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learning and Programming
Languages (MAPL), 2019.

[136] Nvidia, “Nvidia blocked-sparse api.” https://docs.nvidia.com/cuda/cusparse/
index.html#cusparse-generic-function-spmm).

[137] Z. Chen, M. Yan, M. Zhu, L. Deng, G. Li, S. Li, and Y. Xie, fusegnn: accelerating
graph convolutional neural network training on gpgpu, in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020.

[138] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, Improving the accuracy,
scalability, and performance of graph neural networks with roc, Proceedings of
Machine Learning and Systems (MLSys) (2020).

[139] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura, Rabbit order:
Just-in-time parallel reordering for fast graph analysis, in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2016.

[140] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices,
in Proceedings of the 1969 24th national conference, 1969.

[141] S. Gandhi and A. P. Iyer, P3: Distributed deep graph learning at scale, in 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2021.

[142] Y. Wang, B. Feng, Z. Wang, T. Geng, A. Li, K. Barker, and Y. Ding, Mgg:
Accelerating graph neural networks with fine-grained intra-kernel
communication-computation pipelining on multi-gpu platforms, in USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2023.

217

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#tensor-operations
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html#tensor-operations
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-generic-function-spmm)
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-generic-function-spmm)

[143] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications, arXiv (Apr., 2017).

[144] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), 2017.

[145] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, Inception-v4,
inception-resnet and the impact of residual connections on learning, in
Thirty-First AAAI Conference on Artificial Intelligence (AAAI), 2017.

[146] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual
transformations for deep neural networks, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[147] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, ICLR (2015).

[148] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv2:
Inverted residuals and linear bottlenecks, in IEEE Computer Vision and Pattern
Recognition (CVPR), 2018.

[149] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks, in Advances in Neural Information Processing
Systems (NeurIPS) (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, eds.). 2012.

[150] L. Sifre and S. Mallat, Rigid-motion scattering for image classification. PhD
thesis, Citeseer, 2014.

[151] X. Zhang, X. Zhou, M. Lin, and J. Sun, Shufflenet: An extremely efficient
convolutional neural network for mobile devices, in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[152] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad,
J. Gonzalez, and K. Keutzer, Shift: A zero flop, zero parameter alternative to
spatial convolutions, in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018.

[153] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren, Patdnn:
Achieving real-time dnn execution on mobile devices with pattern-based weight
pruning, in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

218

[154] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, Scalpel:
Customizing dnn pruning to the underlying hardware parallelism, in Proceedings of
the 44th Annual International Symposium on Computer Architecture (ISCA),
2017.

[155] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, A
systematic dnn weight pruning framework using alternating direction method of
multipliers, in Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

[156] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang,
Pconv: The missing but desirable sparsity in dnn weight pruning for real-time
execution on mobile devices., .

[157] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, Autocompress: An automatic
dnn structured pruning framework for ultra-high compression rates, in AAAI
Conference on Artificial Intelligence, 2020.

[158] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et. al., Tensorflow: A system for large-scale
machine learning, in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[159] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, cudnn: Efficient primitives for deep learning, arXiv preprint
arXiv:1410.0759 (2014).

[160] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny
images, tech. rep., Citeseer, 2009.

[161] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer
vision and pattern recognition (CVPR), 2009.

[162] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pp. 580–587,
2014.

[163] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,
Large-scale video classification with convolutional neural networks, in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June, 2014.

[164] N. Wang and D.-Y. Yeung, Learning a deep compact image representation for
visual tracking, in Advances in Neural Information Processing Systems (NeurIPS)

219

(C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
eds.), pp. 809–817. 2013.

[165] J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic
segmentation, in Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pp. 3431–3440, 2015.

[166] A. Toshev and C. Szegedy, Deeppose: Human pose estimation via deep neural
networks, in Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp. 1653–1660, 2014.

[167] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, Shufflenet v2: Practical guidelines for
efficient cnn architecture design, in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 116–131, 2018.

[168] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin, Large-scale evolution of image classifiers, in Proceedings of the 34th
International Conference on Machine Learning (ICML), pp. 2902–2911, 2017.

[169] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, Learning efficient
convolutional networks through network slimming, in The IEEE International
Conference on Computer Vision (ICCV), Oct, 2017.

[170] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, Progressive neural architecture search, in Proceedings
of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018.

[171] B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing neural network
architectures using reinforcement learning, ICLR 2017 (2016).

[172] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning transferable
architectures for scalable image recognition, in Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), pp. 8697–8710, 2018.

[173] D.-Q. Zhang, clcnet: Improving the efficiency of convolutional neural network
using channel local convolutions, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7912–7919, 2018.

[174] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, Regularized evolution for image
classifier architecture search, AAAI 2019 (2018).

[175] T. Elsken, J.-H. Metzen, and F. Hutter, Simple and efficient architecture search
for convolutional neural networks, arXiv preprint arXiv:1711.04528 (2017).

[176] T. Elsken, J. H. Metzen, and F. Hutter, Efficient multi-objective neural
architecture search via lamarckian evolution, ICLR2019 (2018).

220

[177] Y. Zhou and G. Diamos, Neural architect: A multi-objective neural architecture
search with performance prediction, in Proc. Conf. SysML, 2018.

[178] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, Efficient neural architecture
search via parameters sharing, in International Conference on Machine Learning,
pp. 4095–4104, PMLR, 2018.

[179] X. Jin, J. Wang, J. Slocum, M.-H. Yang, S. Dai, S. Yan, and J. Feng, Rc-darts:
Resource constrained differentiable architecture search, arXiv preprint
arXiv:1912.12814 (2019).

[180] H. Liu, K. Simonyan, and Y. Yang, Darts: Differentiable architecture search,
arXiv preprint arXiv:1806.09055 (2018).

[181] J. Yu, P. Jin, H. Liu, G. Bender, P.-J. Kindermans, M. Tan, T. Huang, X. Song,
and Q. Le, Scaling up neural architecture search with big single-stage models,
arXiv preprint (2019).

[182] J. Mei, Y. Li, X. Lian, X. Jin, L. Yang, A. Yuille, and J. Yang, Atomnas:
Fine-grained end-to-end neural architecture search, in International Conference on
Learning Representations (ICLR), 2020.

[183] C. S. Sherrington, Observations on the scratch-reflex in the spinal dog, The
Journal of physiology 34 (1906), no. 1-2 1–50.

[184] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, Pruning filters for
efficient convnets, ICLR 2017 (2016).

221

	Bio
	Abstract
	Introduction
	Motivation
	Overview of My Dissertation

	QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core
	Introduction
	Background and Related Work
	QGTC Algorithm Design
	Implementation
	Integration with PyTorch
	Evaluation

	GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs
	Introduction
	Background and Related Work
	Input Analysis of GNN Applications
	2D Workload Management
	Specialized Memory Optimization
	Design Optimization
	Evaluation

	MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel Communication-Computation Pipelining on Multi-GPU Platforms
	Introduction
	Related Work
	Motivation
	GNN-tailored Pipeline Construction
	GPU-aware Pipeline Mapping
	Intelligent Runtime Design
	Evaluation

	TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs.
	Introduction
	Motivation
	TC-GNN Design
	Evaluation
	Related Work and Discussion

	DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions
	Introduction
	Background and Related Work
	Sliding-Channel Convolution
	Implementation
	Evaluation

	An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks.
	Introduction
	Related Work
	3D-Receptive Field
	Architecture Optimizer via 3DRF
	Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

