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Abstract

In Search of Greener Pastures: Advancements in Modeling for Vegetation Dynamics,

Climate-Driven Human Migration, and Disaster Classification

by

Rachel Kayla Green

Climate change and its associated environmental impacts pose immense challenges

that require innovative approaches to address. This dissertation presents three distinct

studies that showcase the application of advanced modeling and machine learning meth-

ods to investigate critical issues at the intersection of changing human and natural sys-

tems. In Chapter 2, I employ a novel modeling framework to analyze the complex rela-

tionship between vegetation dynamics and hydroclimate variability across East Africa.

Empirical dynamic modeling is a data-driven approach for studying state-dependent dy-

namics and interactions within complex systems, enabling the identification of key driving

variables and the prediction of future system behaviors. Adopting this method, the study

provides insights into how the stability and vulnerability of ecosystems vary with environ-

mental conditions, land cover type, and seasonality. In Chapter 3, I explore how various

factors contribute to human displacement, focusing on the environmental drivers and

mechanisms of migration in Somalia. Gravity models are a class of spatial interaction

models that estimate the flow or movement between locations based on the attractive-

ness of the destinations and the impedance between the origin and destination. I use

these models to examine the connections between climate, socio-economic, and political

factors influencing population movements. Notably, I find that livelihood is an important

differentiating factor in determining whether the climate strongly impacts individuals’

migration patterns. In Chapter 4, I implement advanced natural language processing
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techniques to develop an automated system for classifying global multi-hazard disaster

events from humanitarian news articles and reports. Large language models are a form

of artificial intelligence and deep learning that can process, understand, and generate

human language by learning from vast amounts of textual data, enabling them to per-

form a wide range of natural language processing tasks. By employing these models, the

study demonstrates the potential of emerging technologies in improving the efficiency of

disaster information retrieval and response. With a geographical framework that unifies

perspectives from environmental, social, and computer science, these chapters collectively

contribute to developing data-driven solutions for understanding environmental stressors.
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Chapter 1

Introduction

The escalating impacts of climate change and the rapid advancement of technology are

transforming the world as we know it, presenting both challenges and opportunities for

natural systems and human societies. As we face increasingly volatile climate patterns

and their cascading effects, there is a pressing need to think creatively, beyond tradi-

tional disciplinary boundaries, to meet extraordinary future uncertainties. Mitigating

unprecedented challenges requires adopting new analytical tools and innovative methods

to deepen our understanding of the complex mechanisms governing the interactions be-

tween environmental and human dynamics. In this dissertation, I explore critical aspects

of this understanding: how dynamical models can provide new perspectives on how vege-

tation responds to environmental fluctuations, how push-and-pull factors such as extreme

weather patterns can compel certain human populations to migrate, and how emerging

technologies like large language models can aid in disaster informatics.

This dissertation is structured into three main chapters, each dedicated to addressing

a unique aspect of the connections between environmental changes and their broader

impacts. Chapter 2 explores the complexities of vegetation dynamics in East Africa,

Chapter 3 examines human displacement drivers in Somalia, and Chapter 4 applies ad-
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Introduction Chapter 1

vanced artificial intelligence (AI) technologies to classify and manage disaster-related

data.

I begin my research on the African continent, which is recognized as one of the regions

most susceptible to climate change, resulting in droughts, agricultural losses, and limited

water resources (Pricope et al., 2013). In East Africa, temperature, evapotranspiration,

and hydrological extremes are anticipated to continue increasing into the future (Gebre-

chorkos et al., 2023). These shifting patterns will deeply impact the livelihoods of the

approximately 80% of East Africans who depend on rain-fed agriculture (Kalisa et al.,

2019). Yet, the extent to which hydroclimatic characteristics influence the spatiotempo-

ral heterogeneity of vegetation dynamics is a contested area of research. In Chapter 2, I

take on this debate by comparing the sensitivity and stability of East African croplands

to other vegetation types with respect to land surface temperature, precipitation, evapo-

transpiration, and soil moisture. Ecosystems exhibit state dependency, or non-linearity,

which means that their response to environmental factors is not always directly correlated

or predictable. This aspect can make it challenging to comprehend and model ecosystem

behavior using traditional statistical methods, which often assume linear relationships

between variables (Chang et al., 2017). Instead, I interpret vegetation-hydroclimate

dynamics using Empirical Dynamic Modeling (EDM), an alternative equation-free ap-

proach that can accommodate interdependent effects (Ye et al., 2015). Introducing this

new method for measuring vegetation predictability, this study investigates the char-

acteristics of ecosystems that exhibit strong resilience. I also consider the underlying

mechanisms that enable these systems to maintain stability in the face of environmental

perturbations.

Narrowing the scope of my analysis to Somalia, my next study shifts attention toward

environmental impacts on human well-being. In this arid country, environmental changes

such as water scarcity, land degradation, aridity, soil constraints, and changes in cropland

2



Introduction Chapter 1

and pasture areas play consequential roles in influencing livelihood adaptive strategies,

which in certain cases manifest as migration (Neumann et al., 2015). In Chapter 3, I

tie the diverse patterns of migration motivations with time and location-specific envi-

ronmental, socio-economic, and political conditions. I use a gravity model approach to

understand the various drivers of historical migration flows in Somalia. My contribution

to the growing literature on environmentally induced displacement lies in my approach

to investigating the mechanistic processes that drive migration decisions. By examining

livelihoods as important pathways that differentiate individuals’ decisions and abilities

to migrate, I offer new insights into the relationship between environmental factors and

human mobility (Griffith et al., 2023).

In Chapter 4, I zoom out to the global landscape, focusing on how we can better

detect and build contextual knowledge around extreme disaster events. When disasters

strike, emergency responders must quickly search vast amounts of media to find crucial

information, which can delay and complicate their response (Imran et al., 2020). Moni-

toring and gaining situational awareness can be challenging, particularly when multiple

disaster events occur simultaneously or in sequence (Tamagnone et al., 2023). In these

cases, it is essential to treat events not as isolated incidents but as intertwined within

a broader system of instability and damage. Large language models (LLMs), which are

AI-powered systems trained on extensive amounts of text data to understand language,

can expedite disaster information synthesis and serve as a tool for emergency decision

support (Chen et al., 2023). I test the ability of LLMs to perform a multi-label classi-

fication task of identifying multiple disaster types from humanitarian news articles. In

doing so, I examine the prospects and shortcomings of AI-led information retrieval for

the disaster risk management field.

3



Chapter 2

Measuring the Sensitivity and

Stability of Vegetation in Response

to the Hydroclimate Across East

Africa with an Empirical Dynamic

Modeling Approach

Abstract Hydroclimatic factors influence vegetation growth in East Africa, but the

nature of this relationship varies by land cover type. Using approximately 20 years of

satellite records, this study investigates the differences in vegetation dynamics between

croplands and other land cover types. Employing Empirical Dynamic Modeling (EDM), a

data-driven approach that uses observational time series data to model and predict com-

plex systems by capturing their interconnected relationships, I evaluate the predictability

of vegetation dynamics. This is achieved by analyzing the Normalized Difference Veg-

etation Index (NDVI) in relation to fluctuations in precipitation, soil moisture, evapo-

4
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transpiration, and land surface temperature across different land cover types, including

croplands, shrublands, grasslands, and woodlands.

The findings reveal spatial differences in NDVI predictability, with regions near the

equator showing less predictability due to erratic rainfall and high aridity. Woodlands

exhibit the strongest predictability across the region among the land cover types, while

grasslands show the most variable outcomes. Croplands and shrublands are closely

aligned in their predictability on average, though there is wide variation across the region.

The study emphasizes that both physiological features (uptake and storage capabilities)

and environmental conditions (rainfall seasonality and aridity) play a crucial role in de-

termining the consistency of vegetation within and across types on an interannual basis.

Short-term vegetation dynamics (one-month lead) can be predicted with high accu-

racy from multi-year records, but predictability diminishes as the lead time is extended

to four or six months, at which point seasonality becomes the dominant influence. A key

insight from this study is the enhanced understanding of the interaction between veg-

etation and land surface temperatures, which has implications for effective agriculture

production and efficient water management.

This research contributes to the growing application of EDM in biogeosciences and

lays the groundwork for using historical satellite observations to anticipate future envi-

ronmental shifts, particularly in light of East Africa’s vulnerability to climate change and

increasing agricultural demands.

2.1 Introduction

Drylands are critical ecosystems that cover approximately 41% of the Earth’s land

surface (Prăvălie, 2016). These regions support 38% of the world’s population, encompass

44% of cropland areas, and host 20% of plant biodiversity hotspots (Huang et al., 2017;
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Maestre et al., 2021), underscoring their significance in sustaining human well-being,

agricultural production, and ecological diversity. However, drylands are also fragile en-

vironments that experience highly variable climates and low water availability. Under a

changing climate, these regions are expected to face further challenges, with projections

indicating a reduction in mean annual precipitation and an increase in the frequency of

extreme precipitation events (Tietjen et al., 2010).

East Africa’s drylands, in particular, have been identified as an area of heightened risk

for experiencing the adverse effects of environmental change. This can be observed in the

form of vegetation productivity decline, land degradation (Wei et al., 2018), intensified

hydrological extremes (droughts and floods), and increasing temperatures (Gebrechorkos

et al., 2023). According to the Shared Socioeconomic Pathways emission scenarios, most

of East Africa is expected to experience increased precipitation in the coming decades.

However, arid and semi-arid areas will likely receive less rainfall, while the highlands and

lake regions are expected to receive more precipitation (Ayugi et al., 2022). The majority

of people in East Africa (approximately 80%) depend on rain-fed agriculture for their

livelihood (Kalisa et al., 2019). Short and long-term fluctuations in vegetation produc-

tivity driven by climate variability cause significant socioeconomic disruptions and affect

the natural resource management strategies of farmers, fishers, and pastoralists (Con-

way et al., 2005). Understanding vegetation dynamics in East Africa, including stability,

sensitivity, and predictability, or the degree to which behaviors can be anticipated, is

essential for mitigating the impacts of environmental change on the region’s ecosystems

and livelihoods.

Increasing environmental pressures stress the importance of understanding how these

shifts will alter the functioning of dryland vegetation. Numerous studies have sought to

determine the relative influence of factors such as precipitation (Maurer et al., 2020), soil

moisture (D’Odorico et al., 2007), and temperature (Chen et al., 2019) on vegetation sen-
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sitivity and variability. For instance, Chen et al. (2019) find that increasing interannual

variability of global vegetation greenness is primarily driven by changes in temperature,

solar radiation, and precipitation, leading to a decrease in vegetation stability and an in-

crease in sensitivity to environmental disturbances, particularly in arid regions. In global

drylands, interannual precipitation variability has been shown to have a negative effect

on aboveground net primary production (ANPP), with dry years decreasing ANPP and

wet years increasing ANPP (Gherardi and Sala, 2019).

These elements act differently in driving dryland vegetation dynamics depending

on species composition, seasonality, and other localized factors. According to a study

conducted in a semi-arid region of the United States by Thoma et al. (2016), water

balance variables significantly influence vegetation greenness during most growing season

months more than climate variables. The importance of certain factors on greenness

shifts seasonally, with antecedent water input and storage being the primary factor in

the spring, drought indicators in the summer, and antecedent soil moisture availability

in the fall. In the arid to sub-humid zones of Sub-Saharan Africa, the productivity

of vegetation is affected by climate variability. Higher temperatures and humidity, as

well as less consistent rainfall, can impact the availability of water and nutrients for

the vegetation, which affects their overall growth and physiological processes (Rishmawi

et al., 2016).

There is a discrepancy, however, in vegetation response to environmental variability

over time and space (Sohoulande Djebou et al., 2015; Measho et al., 2019). This may

be due to non-linear feedbacks (Hsu et al., 2012), such as those between soil moisture

recharge and increased precipitation (Rishmawi et al., 2016) or when critical thresholds

of drought are crossed that impair vegetation functioning (Li et al., 2023b). Linear

regression methods of describing the variability in precipitation or other hydroclimatic

variables and vegetation production (e.g., Chamaillé-Jammes and Fritz (2009)) may mis-
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characterize and oversimplify these complex relationships. Furthermore, many studies

on dryland vegetation dynamics are focused on particular vegetation types or make as-

sumptions about functional relationships. Others follow conceptual and methodological

designs that are too intellectually specialized, which can hinder the generalizability of

their outcomes and approaches to other contexts.

Causal inference methods, such as structural equation modeling, can help identify

key drivers or factors that influence the behavior of the Earth system. These techniques

can also be used to evaluate the performance of physical models and their assumptions

(Runge et al., 2019a). Several methods related to causal inference have been applied to

Earth system sciences. First, Granger Causality (GC) relies on the predictability of one

time series based on the past values of another, assuming linearity and stationarity in

the data. The approach is applied by (Papagiannopoulou et al., 2017), who introduce a

non-linear GC framework to investigate climate-vegetation dynamics, motivated by the

limitations of traditional linear methods in capturing the complex relationships between

climate and vegetation, particularly in water-limited regions. Tuttle and Salvucci (2016)

also use GC to determine divergent patterns in the soil moisture-precipitation relationship

over the contiguous United States, which could be attributed to regional aridity. Yet,

one constraint of GC is the necessity for variables to be separable. Its applicability

becomes less clear in deterministic systems that exhibit weak to moderate coupling, a

trait frequently observed in ecosystem dynamics. This can lead to inconclusive results

when examining interconnected systems (Sugihara et al., 2012).

Another method, the Peter-Clark Momentary Conditional Independence (PCMCI)

algorithm, tests for causal relationships by examining conditional independence among

variables. PCMCI is suitable for high-dimensional time series with potential non-linear

relationships where the dependency structure is represented in a graphical model (Runge

et al., 2019b). While the method has been applied to study the interactions and feedback
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between atmospheric and biospheric variables (Krich et al., 2019), understanding the

PCMCI model outputs can be challenging due to its technical nature, which involves

advanced statistical and information theory concepts.

In this study, I consider an alternative approach known as Empirical Dynamic Mod-

eling (EDM), which is a method of viewing dynamic relationships between variables from

data as part of a system without relying on theoretical assumptions (Chang et al., 2017;

Fogarty and Collie, 2020). The “dynamical systems” view sees ecosystems as composted

of interconnected variables such as species or environmental drivers, each represented in

a changing “state space,” where the ecosystem’s condition is a moving point. This ap-

proach reveals that what appears as random “noise” may actually be predictable patterns

influenced by overlooked factors, and the system’s behavior is traced as a trajectory that

eventually converges to a stable set of conditions known as the “attractor” (Munch et al.,

2020). EDM avoids the need for a parametric model and observations of all variables in

a system (Munch et al., 2023), presenting instead a more holistic perspective of ecosys-

tems as being composed of inseparable state variables (otherwise known as coordinates

or dimensions).

I use EDM to analyze vegetation productivity predictability (or the interannual con-

sistency) and the strength of causal relationships driving dryland vegetation dynamics

across East Africa. Utilizing two decades of remotely sensed observations, I explore

the spatiotemporal differences in how hydroclimatic elements, including precipitation,

land surface temperature, soil moisture, and evapotranspiration, influence vegetation

greenness via the Normalized Difference Vegetation Index (NDVI). I conduct a detailed

analysis of how NDVI predictability due to environmental conditions varies between dif-

ferent land cover types. In particular, I distinguish between managed vegetation (i.e.,

croplands) and unmanaged vegetation (i.e., woodlands, shrublands, and grasslands). I

then focus on how different characteristics, including the prediction interval, latitude,
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rainfall seasonality, and aridity, affect cropland predictability.

Earth observation data are increasingly used to explore the interrelationships between

environmental dynamics. For instance, Pérez-Suay and Camps-Valls (2019) propose a

methodology for observational causal inference in bivariate scenarios within geoscience

and remote sensing. They present a specific application for vegetation parameter model-

ing, emphasizing the significance of understanding complex interactions governing Earth’s

systems. Their approach utilizes regression models and dependence estimation to identify

causal relationships from observational data.

This study contributes to the growing body of work in biogeosciences and hydrom-

eteorology using the EDM framework. One extension of EDM is the Convergent Cross

Mapping (CCM) approach, which infers causality by predicting one variable’s state based

on another. CCM assumes underlying dynamical and non-linear system interactions and

requires time series data that capture the system’s dynamics for state-space reconstruc-

tion (Sugihara et al., 2012). Wang et al. (2018) use CCM to detect causal and non-linear

relationships between soil moisture, evapotranspiration, and precipitation. They find an

optimal lag for the effect of soil moisture on precipitation of one month, which then sub-

stantially decreases in impact after four months, indicating the potential for sub-seasonal

precipitation prediction, especially in semi-arid and semi-humid regions. Ombadi et al.

(2020) apply CCM to analyze causal drivers of evapotranspiration rate in shrubland re-

gions, including net radiation, vapor pressure deficit, soil water content, air temperature,

soil temperature, and wind speed. The study also reveals the relative contributions of

these drivers across seasons. Shi et al. (2022) present a novel approach to determine the

propagation time of drought from meteorological to hydrological phases. The study chal-

lenges conventional correlation analyses, favoring CCM for assessing causality using ob-

servational data. Finally, Sasaki et al. (2023) study dryland sensitivity to climate change

in Mongolia using EDM and CCM to detect causal effects on ANPP. They find that
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ANPP is greatly influenced by annual precipitation, temperature, and aridity, including

their variability. The study stresses the necessity of considering non-linear relationships

to accurately predict biosphere feedback to the climate system.

I also build upon previous studies that have measured the predictability of NDVI

signals using traditional, non-dynamical systems methods. Martiny et al. (2010) perform

linear multiple regression models with ocean and atmospheric predictors to estimate

and predict regional NDVI interannual variability in semi-arid African regions. Linear

statistical models, though simple and interpretable, can face difficulties in capturing

the complexities of climate-vegetation interactions. One of the main challenges is their

assumption of linearity, which oversimplifies complex interactions. Additionally, iden-

tifying key predictors can be difficult. Linear models also have limited adaptability to

changing conditions and assume predictor independence. Moreover, these models may

not be adequate in interpreting mechanisms. To address these limitations and improve

understanding of NDVI predictability, researchers have explored advanced modeling tech-

niques such as non-linear models, machine learning algorithms, or integrated statistical-

dynamical models to provide a more comprehensive representation of the relationships

between climate variables and vegetation dynamics. For instance, Jiang et al. (2016)

apply several methods, including Mann-Kendall, Thiel-Sen slope, correlation analysis,

linear regression, and Artificial Neural Network-Genetic Algorithm (ANN-GA) to test

the lag effects of climatic variables (precipitation and temperature) on vegetation pro-

ductivity in Canada. They find the non-linear model (ANN-GA) performed better than

using linear (regression) models and discover spatiotemporal variability in NDVI pre-

dictability. Mangiarotti et al. (2010) study the predictability of NDVI in West Africa,

employing EDM-like methods of embedding the NDVI time series into a pseudo-phase

space to reconstruct the local attractor of vegetation dynamics. By extracting various

geometric parameters and statical estimates associated with the attractor, they estimate
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how the horizon of predictability for vegetation dynamics varies due to factors like local

stability and land use practices. Mangiarotti et al. (2012) later conducted a similar study

that tests the importance of resolution in predicting vegetation cycles, finding that longer

prediction horizons and lower resolutions are needed to achieve higher accuracy.

While NDVI projections and forecasts are insightful and useful for applications in agri-

culture, food security, and water resource management, the objective of this study is not

to improve them directly. Several authors have made progress in this pursuit. Funk and

Brown (2006) use a statistical model that projects NDVI changes over short time scales

(1 to 4 months) in semi-arid Africa by incorporating precipitation and relative humidity

as environmental drivers. Using robust geostatistics to predict time-integrated NDVI in

Australia, Pringle (2013) demonstrate a means of discriminating between cropping and

grazing areas, quantifying prediction uncertainty, and addressing outliers. An experimen-

tal tool called VegOut-Ethiopia predicts NDVI conditions in Ethiopia through multiple

linear regression equations with indices describing droughts, oceanic/atmospheric inter-

actions, and biophysical characteristics (Tadesse et al., 2014). Asoka and Mishra (2015)

developed a predictive multiple linear regression model with NDVI, soil moisture, and

the El Niño-Southern Oscillation (ENSO) Index, which revealed good skill in forecasting

NDVI anomalies in India at a 1-month lead time. Last, Tian et al. (2019) used NDVI

data and an ecohydrological model to analyze arid to moderately humid regions glob-

ally. The findings reveal that larger accessible water storage leads to improved forecast

skill decay, enabling three-month advance forecasts of vegetation conditions in global

drylands, particularly in dry climatic zones with higher dryness values.

In the following sections, I will explain the EDM framework and its implementation

more thoroughly. The findings demonstrate how vegetation predictability varies between

and within land cover types. I will then discuss the possible mechanisms that can deter-

mine the spectrum of ecosystem responses to interannual climate variability. Finally, I
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reflect on the suitability of EDM as an approach for ecohydrological applications.

2.2 Methods

2.2.1 Study Area

East Africa, the region comprising the countries of Burundi, Djibouti, Eritrea, Ethiopia,

Kenya, Rwanda, Somalia, South Sudan, Sudan, Tanzania, and Uganda, is home to 457

million people who are reliant on bimodal rainfall seasons – long rains (March-May) and

short rains (October-December) (Palmer et al., 2023). These rainfall patterns in East

Africa exhibit significant spatio-temporal heterogeneity, which has cross-sectoral impacts

on agriculture, food security, water resources, energy production, and population health

in the region (Funk et al., 2008; Palmer et al., 2023). Referred to as the “East African

Climate Paradox,” the decline in the long rains contrasts with climate projections of

a wetter future for the region (Lyon and Vigaud, 2017; Walker et al., 2020). Rainfall

season frequency, timing, intensity, and duration vary based on the interactions between

the shifting movement of the Intertropical Convergence Zone, the Indian Ocean Dipole,

and the El Niño Southern Oscillation (Palmer et al., 2023; Wei et al., 2018). During the

long rains, which feed the main crop-growing season, the vegetation shows less interan-

nual variability compared to the short rains (Kalisa et al., 2019). Semi-arid areas within

the region experience an average annual rainfall of less than 800 mm compared to 800

to 1300 mm of rainfall per year in sub-humid areas (Kalisa et al., 2019). Agriculture is

a major source of livelihood, with smallholder farmers relying mainly on rain-fed crops,

accounting for upwards of 90% of the total production. (Adhikari et al., 2015). The dom-

inant biomes in East Africa include forest, wet and dry miombo (deciduous woodland),

bushland/thicket, and grassland/shrubland (Nicholson et al., 1990). Population pressure
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and increased land use activity have resulted in biodiversity decline, deforestation, and

degradation (Pfeifer et al., 2013).

2.2.2 Data

To capture the complex interactions of the land-atmosphere system across East Africa,

I examined five critical components: vegetation condition, land surface temperature,

precipitation, evapotranspiration, and soil moisture. Looking at records between July 1,

2002, and July 31, 2021, I resampled each remotely sensed image to a spatial resolution

of 0.05 degrees using bilinear interpolation and composited them to dekadal (∼10-day)

periods.

Vegetation Condition

The Normalized Difference Vegetation Index (NDVI) is a widely used proxy mea-

surement of photosynthetic activity as well as the greenness, condition, or density of

vegetation (Cao et al., 2013; Hawinkel et al., 2016). NDVI is calculated from the near-

infrared (NIR) and red bands of multispectral sensors with the formula NDVI = (NIR -

RED)/(NIR + RED), and values range from -1 to 1. I use the U.S. Geological Survey’s

Earth Resources Observation and Science (EROS) Center Moderate Resolution Imaging

Spectroradiometer (eMODIS) NDVI product, which was developed for operational land

monitoring applications that necessitate near-real-time NDVI data as well as histori-

cal trend information for temporal anomaly detection (Brown et al., 2015). The NDVI

maximum-value products are available at dekadal intervals at 250-meter resolution from

2002 to 2022. The eMODIS product is utilized by the Famine Early Warning Systems

Network (FEWS NET) to monitor vegetation conditions across major food-insecure re-

gions worldwide. NDVI and anomaly maps are generated with a temporal smoothing
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algorithm on raw MODVIS NDVI composites (Swets et al., 1999). A cloud and at-

mospheric contamination correction is also applied to the finalized product to ensure

quality.

Land Surface Temperature

The MODIS/Aqua Land Surface Temperature/Emissivity version 6 product (MYD11C1)

provides daily global land surface temperature (LST) and emissivity values in a 0.05-

degree Climate Modeling Grid (CMG) (Wan, 2014). The MYD11C1 product is derived

directly from the MODIS LST/Emissivity (MYD11B1) 6 km SIN Grid and are available

from 2002 to the present.

Precipitation

The Climate Hazards Center InfraRed Precipitation with Station (CHIRPS) Precip-

itation dataset provides 30+ years of quasi-global rainfall data, available at monthly,

dekadal, pentadal, and daily time intervals (Funk et al., 2015). CHIRPS spatial coverage

spans from 50°S-50°N (over all longitudes), and the data record extends from 1981 to

the near present. CHIRPS data have a 0.05-degree native spatial resolution. Satellite

data are calibrated with in situ station data to create gridded rainfall time series appro-

priate for trend analysis and seasonal drought monitoring. The creation of CHIRPS has

supported drought monitoring efforts by FEWS NET and organizations worldwide.

Evapotranspiration

The Global Reference Evapotranspiration (refET) product, developed by the National

Oceanic and Atmospheric Administration (NOAA) primarily for the FEWS NET com-

munity, aims to improve drought and famine early warning in food-insecure countries

(Hobbins et al., 2018). refET is estimated using the FAO model of the Penman-Monteith
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refET, driven by radiative and meteorological forcings from NASA’s Modern-Era Ret-

rospective Analysis for Research and Applications (MERRA-2) reanalysis dataset. The

refET output is spatially downscaled to match subgrid variability provided by the Inter-

national Water Management Institute (IWMI) monthly climatological refET grids. The

resulting product covers the globe at a 0.125-degree spatial resolution and is available

from 1980 to present.

Soil Moisture

The FEWS NET Land Data Assimilation System (FLDAS) Soil Moisture product is

an output from a custom instance of the NASA Land Information System (LIS) frame-

work (McNally et al., 2017). The FLDAS multi-model and multi-forcing estimates of

hydro-climate conditions contribute to FEWS NET operations. Soil moisture percentiles

are calculated using soil moisture outputs from the Noah Land Surface Model (Noah)

and Variable Infiltration Capacity (VIC) simulations. In this study, I use the 0-10 cm

depth soil moisture dataset. Data are available from 2000 to the present at 0.1-degree

spatial resolution.

Land Cover

The European Space Agency Climate Change Initiative Land Cover (ESA-CCI LC)

dataset is a 300 m global land cover product produced annually since 1992. The product

merges multiple available Earth observation products based on the GlobCover products

of the ESA (Defourny et al., 2017). There are 37 land cover types identified in the

dataset, classified using the Land Cover Classification System developed by the Food

and Agriculture Organization (FAO). In this analysis, I use the land cover map from

2016 and focus on the five dominant land cover types in East Africa: broadleaved open

deciduous forest (15-40%) (referred to as woodland forest hereafter), cropland rainfed,
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Figure 2.1: (a) Primary vegetation land covers in East Africa – cropland, woodland,
shrubland, and grassland, with a subset map of the study countries highlighted within
Africa. (b) Aridity Index values, where areas below 0.2 are classified as arid, 0.2 - 0.5
are semi-arid, 0.5 - 0.65 are dry sub-humid, and > 0.65 are humid.

cropland irrigated, grasslands and shrublands. The dataset was resampled to 0.05 degrees

to match the spatiotemporal resolution of the environmental variables. The land cover

distribution across East Africa is shown in Figure 2.1(a).

Aridity

I derive aridity measurements from the Global Aridity Index and Potential Evapo-

transpiration (PET) Climate Database-Version 2. The global high-resolution (30 arc-

seconds) data represent the average aridity over the 1970-2000 period (Trabucco and

Zomer, 2019). The aridity index is the ratio of mean annual precipitation to mean an-

nual reference evapotranspiration. It measures moisture availability for the potential

growth of reference crops or other vegetation types. As an index, the aridity can be
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interpreted across ecosystems. A map of the Aridity Index for East Africa is shown in

2.1(b).

2.2.3 Empirical Dynamic Modeling

Empirical Dynamic Modeling (EDM) is a data-driven approach for non-linear system

analysis and prediction that can be used to study the behavior of such complex systems.

The method uses time-series data to generate an attractor, or reconstructed state space

known as the “shadow manifold” from one or more observable variables to represent a

system’s dynamic states over time. The applications of EDM span multiple disciplines.

It has been shown that complex dynamics can be effectively detected and predicted in

a wide range of disciplines, including neuroscience (Natsukawa and Koyamada, 2017;

Schiecke et al., 2015), epidemiology (Deyle et al., 2016; Nova et al., 2019), and climate

(van Nes et al., 2015). Within the field of ecology, researchers have implemented EDM to

uncover phenomena including population abundance and recruitment (Nakayama et al.,

2018; Ye et al., 2015), regime shifts (Scheffer et al., 2009), and spatial synchrony (Clark

et al., 2015).

Time-Delayed Embedding

A foundational concept in EDM is time-delayed embedding, which is an advanced

analytical technique for examining complex, non-linear systems. By reconstructing the

state space, it becomes feasible to identify patterns, commonly known as attractors,

which signify stable cycles within the system. With historical observations, it is possible

to make predictions about a system’s potential trajectories and anticipate future states.

This technique draws from Takens’ embedding theorem, which postulates that a scalar

time series can be transformed into a multidimensional space from a sequence of time-
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delayed iterations as new dimensions (Takens, 1981). This reconstruction process retains

the system’s core properties and can provide valuable insights into its inherent dynamics

and interactions that underlie its behaviors.

Simplex Projection

Simplex projection is a mathematical method of non-parametric analysis that can be

used in ecological and environmental sciences to measure the predictability of complex

systems from time series data (Sugihara and May, 1990; Sugihara et al., 2012). Following

the concept of time-delayed embedding, the simplex projection algorithm rests on the

notion that the behavior of a system can be predicted from the cycles and relationships

observed in historical data. The approach avoids the need to model any core equations

or processes explicitly. Instead, one constructs a high-dimensional state space manifold

by embedding the time series of multiple variables hypothesized to influence a target

variable. The embedding is typically done using time delay coordinates, which capture

the temporal dependencies among the variables. From state space reconstruction, the

simplex projection algorithm estimates the system’s trajectory into a lower-dimensional

simplex, representing a probabilistic estimate of the system’s future states. The position

of the target variable within the simplex reflects its predictability and relationships with

the other variables. By comparing the observed and predicted positions of the target

variable, it is then possible to evaluate the accuracy and skill of the projection.

Several steps are involved in the computation of predictability with simplex pro-

jection. The observed time series is first transformed into a reconstructed state space

with time-delayed embedding in a single variate analysis. An alternative multivariate

approach uses several variables that provide additional information that may improve

the predictive skill of a target variable. In this case, the embedded state spaces of the

target and candidate variables are combined into a single state space manifold. At each
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point in the manifold, the algorithm selects a set of nearest neighbors that exhibit sim-

ilar positions and dynamics to the target prediction point. The embedding dimension

defines the number of nearest neighbors. Next, the future value of a target variable is

calculated with a weighted linear regression of the nearest neighbors, where the weight

is determined by its distance to the target point to account for non-linear relationships

that may exist in the system. Finally, the simplex projection’s predictive skill is eval-

uated with a leave-one-out cross-validation. Performance is commonly measured with

the correlation coefficient (ρ), root-mean-square error (RMSE), or mean absolute error

(MAE). Figure A.1 demonstrates simplex projection with a singular time series in its

original form (before time-delayed reconstruction), where historical trajectories can be

used to predict future states.

Convergent Cross Mapping

Convergent Cross Mapping (CCM) extends the time-delay embedding paradigm, in-

troduced by Sugihara et al. (2012) for observation-based causal exploration1. The the-

orem posits that one can reconstruct a dynamical system manifold M, using the lagged

time series of a single variable, otherwise referred to as the shadow manifold, that is

diffeomorphic (topologically equivalent) to the true manifold (Ombadi et al., 2020; Tak-

ens, 1981). Following Takens’ theorem (Takens, 1981), this shadow manifold Mx can be

constructed by creating three time-lagged copies of one variable, X(t), X(t− τ), and

X(t− 2τ)) where τ represents one time step. At each time interval, m(t), there is a

unique corresponding point from M and Mx. A complimentary “shadow manifold” can

also be reconstructed from other dimensions or variables making up M . Multivariate

CCM allows for three time series of distinct variables (X, Y, Z) to be cast into a manifold

1In the time-series literature, causality is often defined as a phenomenon “A” that consistently pre-
cedes another outcome, “B”. This terminology does not mean ‘causal’ in the traditional sense that “A”
‘causes’ “B.” In this paper, I will use the terminology common to the time-series literature.
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whereby each time point, m(t), is comprised of the coordinate values of the three time

series: m(t) = [X(t), Y (t), Z(t)] (Shi et al., 2022). If X and Y , for instance, produce

a one-to-one mapping, meaning for each t, there is a singular point correlated between

Mx(t) and My(t), they are known as mutual neighbors. The manifolds display topo-

logical isomorphism (correspondence) as the two shadow manifolds cross-map onto one

another (Figure A.2). As demonstrated in Figure A.3, for bidirectional causality to oc-

cur, X and Y must share an original manifold, and at each t, both X and Y reflect one

another. For a unidirectional causality, the information from Y , for instance, can only

be retrieved from the information of X, but not vice versa (Shi et al., 2022).

To determine cross-mapping skill, the nearest neighbors of the shadow manifold of

one variable, X, and their Euclidean distances to points on Mxt are measured to locate

each contemporaneous point between both manifolds (Ombadi et al., 2020). Sufficient

samples (i.e., library length) of X and Y are necessary so that the manifolds are dense

enough to detect corresponding nearest neighbors. As the number of samples increases,

the correlation coefficient ρ between observed and estimated values will stabilize (Shi

et al., 2022). If unidirectional causality is present, one of the variables is expected to

converge close to zero. In contrast, in the case of bidirectional forcing, the two variables

will converge faster or reach a higher plateau at a certain value (Schiecke et al., 2015).

Relative causal strength of one variable over another can be resolved by the difference in

cross-map skill (Sugihara et al., 2012).
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2.2.4 Model Implementation

Cross-year examination of NDVI’s cyclical consistency from a state space

perspective

The variation in NDVI within and between years can be explored using time-delayed

embedding. The two key parameters required when transforming a single-variable time

series into a multi-dimensional phase space are the time delay (τ) and embedding dimen-

sion (E). Time delay refers to the intervals between points in the generated delayed copies

that construct the phase space. The embedding dimension determines the dimensions in

the reconstructed phase space (Chang et al., 2017).

When applying time-delayed embedding to NDVI time series, the change in magni-

tude of NDVI distributions per time interval over multiple years can be observed. Man-

ifolds in EDM transform complex system structures into lower dimensions using state

variables, retaining phase space topology. With one sample NDVI time series, I con-

structed a manifold with an embedding dimension (E) and time delay (τ) of one dekad,

forming a three-dimensional structure of the original time series and two lagged copies.

I calculated the convex hull of the outermost points in the manifold to measure the

variability in NDVI from year to year for any given dekad. I chose to use the convex

hull as it provides a single metric that is easy to understand and is not affected by the

specific structure created by the manifold. By comparing measurements associated with

different dekads, it is possible to visualize how the consistency of NDVI influences the

predictability of future behavior at different points in the year.

Measuring NDVI predictability between land covers

I applied the simplex projection algorithm to the time series of all vegetated land

cover pixels in East Africa to evaluate NDVI’s predictive capability under varying envi-
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ronmental conditions. All EDM analysis from this point was computed using the pyEDM

Python package.

My approach – using a large cohort of time series data throughout the study region

– marks a departure from prior research, which has predominantly relied on singular,

aggregated time series to measure the dynamics of specific systems. By analyzing patterns

across hundreds of thousands of pixels, my research reveals the spatial heterogeneity and

variance in ecosystem dynamics across different land covers. I calculated the predictive

skill of NDVI for each pixel, using a range of embedding dimensions (1 - 10 dekads)

and prediction intervals (3 - 18 dekads) to identify the optimal configurations that best

characterize the regional NDVI patterns. I then ran multivariate simplex projection

with several model inputs consisting of historical NDVI time series data alongside two

ancillary variables at a time out of the following: precipitation, temperature, reference

evapotranspiration (refET), and soil moisture. Additionally, I applied a 50/50 train-test

split for each model scenario to ensure robust model validation.

Quantifying causal relationships in ecohydrological systems

To identify the relevancy of the candidate hydroclimatic variables for generating ro-

bust and accurate NDVI predictions, I evaluated the relative importance of precipitation,

LST, soil moisture, and refET on vegetation productivity with CCM. I computed the

CCM skill (ρ) between combinations of each environmental variable paired with NDVI

for every pixel’s time series in the study region. Model parameters were set to the fol-

lowing levels – embedding dimension (E): 6, embedding time shift (τ): -1, prediction

interval (Tp): 0, and the number of random samples: 10.
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2.3 Results

2.3.1 Interannual variation of vegetation condition

Figure 2.2: The NDVI of a given dekad can vary substantially from year to year. At an
example location in Kenya (a), the NDVI time series is used to reconstruct a manifold
with time-delayed embedding, and the convex hull volumes for each dekad across years
(2002-2021) are measured in (b). The months where the convex hull of the manifold was
the lowest (least dispersion) and highest (most dispersion) were in September and May,
respectively, as shown in (c). The highlighted dots represent the time-delayed NDVI
value for every year in that month.

Vegetation productivity (NDVI) is heteroscedastic within and across years. A recon-

structed manifold made up of a single time series delayed with lagged versions of itself

reveals how the dispersion of NDVI outcome for a given dekad can vary widely at differ-

ent times of the year over multiple years. Figure 2.2 displays how, at a sample location

selected within Kenya, the NDVI values within each dekad vary widely interannually.

While it is an intuitive observation that such deviation occurs, particularly in drylands,

I demonstrate how visualizing the topology of a time series’ manifold and measuring the

convex hull of each dekad’s state space over multiple years reveals not only the locations

of where the NDVI cycle may be more or less consistent but also when during the annual
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cycle to expect (in)consistency. Measurements of time-delayed manifolds are insightful

for identifying regions or ecosystems that may be more or less resilient to changes in

climate and land management practices. In practical application, this metric could be

informative for agricultural operations, where farmers need precise knowledge of when

and where the timing of planting and harvesting as well as yields will be most reliable.

2.3.2 NDVI predictability across lead times and land covers

Figure 2.3: (a) With increasing lead time (prediction interval), the predictability will
decrease until seasonality starts to dominate the cycle around 4 months. While there are
noticeable differences between land covers on average, there is a wide variability within
each land cover, shown in shaded areas that fill the range of skill values over all pixels for
a given land cover type. (b) Increasing the embedding dimension offers greater memory
with which to predict future states of NDVI. Prediction skill increases then plateaus by
10 dekads for all land covers.

NDVI predictability is highest at low lead times (prediction interval) within the first

month across all land covers at a skill score (ρ) of approximately 0.8 (Figure 2.3). Sub-

sequently, skill declines and later plateaus by the second month. On average, woodland

ecosystems exhibit the highest predictability over a four-month prediction interval. In

contrast, grasslands exhibit a trajectory of predictive skill that is consistently lower than
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other land cover types over the same period. Despite demonstrating the least overall pre-

dictive accuracy, the predictability of grasslands stabilizes after 2 months. By 4 months,

the predictability of all land cover types stabilizes, suggesting the onset of rainfall season-

ality as a predominant factor influencing vegetation conditions beyond this point. While

there are noticeable differences between the average predictability of each land cover,

there is wide variability across pixels, and the distributions overlap one another.

2.3.3 Distinct patterns of NDVI predictability among croplands

Figure 2.4 shows the spatial and temporal variability in predictive skill across crop-

lands of East Africa. Using historical precipitation and LST data as ancillary variables

for predictions one month ahead (left), the NDVI predictability is generally high across

the region (ρ greater than 0.6), notably in the northern and southern extremities, as indi-

cated by the darker shading. However, extending the prediction interval to four months

(right) reveals a discernable decline in predictive skill throughout the region. The decline

in predictability is significant within the equatorial zone, where the skill score hovers

around 0.3. The trend depicted in Figure 2.5 shows how the predictability of croplands

changes with respect to latitude. In the figure, pixels are categorized according to lat-

itude bins. With longer lead times and in locations closer to the equator, the mean

predictability and overall distribution of predictive skills decrease.

The predictability of vegetation conditions is tightly coupled to rainfall seasonality.

Water availability, measured by rainfall’s magnitude, distribution, and timing throughout

the year, is a strong determinant of vegetation phenology, survival, and productivity. I

calculated the rainfall Seasonality Index, SI, based on Walsh and Lawler (1981), for

East Africa with the CHIRPS precipitation dataset. The index provides meaningful

quantification and comparison of the relative seasonality of precipitation between different
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Figure 2.4: Predictive skill of NDVI from historical land surface temperature and pre-
cipitation across croplands in East Africa at a one-month lead time (a) compared to a
fourth-month lead time (b). Predictability is estimated with multivariate Simplex Pro-
jection, and skill is determined by Pearson’s correlation coefficient (ρ) between observed
and predicted values.

Figure 2.5: In latitudes within the equatorial zone of East Africa, where rainfall is more
erratic and extreme, predictability is reduced from a one-month lead (a) to a four-month
lead (b).
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areas. It is determined by taking the absolute difference between the rainfall totals of

the wettest summer month and the wettest winter month, divided by the total annual

rainfall. The equation is as follows:

SI =
1

R̄

n=12∑
n=1

∣∣x̄n − R̄/12
∣∣ (2.1)

where x̄n = mean rainfall of month n and R̄ = mean annual rainfall.

Table 2.1: Seasonality Index classes (when using mean monthly data) from Walsh and
Lawler (1981).

Rainfall regime SI class limits
Very equable ≤ 0.19
Equable but with a definite wetter season 0.20− 0.39
Rather seasonal with a short drier season 0.40− 0.59
Seasonal 0.60− 0.79
Markedly seasonal with a long drier season 0.80− 0.99
Most rain in 3 months or less 1.00− 1.19
Extreme, almost all rain in 1 - 2 months ≥ 1.20

Higher values signify greater seasonality, meaning more annual rainfall is concentrated

in a certain time of year, whereas lower values indicate areas where rainfall is distributed

more evenly throughout the year. See Table 2.1 for seasonality classes and Figure 2.6 for

the spatial distribution of seasonality across East Africa.
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Figure 2.6: Average rainfall seasonality during the study period (2002-2021) in East
Africa based on the index by Walsh and Lawler (1981). Lighter areas experience precipi-
tation equably throughout the year, whereas darker areas experience a short, wet season.

Aridity also plays a critical role in determining vegetation productivity. Vegetation in-

habiting highly arid climatic zones and distinct rain seasons generally outperform in pre-

dictability to those growing in more humid areas with more distributed rain throughout

the year (Figure 2.7a). I also calculate the count of pixels existing along the continuum

of aridity and seasonality, noting the sparse occurrence of croplands in humid regions of

East Africa, which skews the perception of aridity’s overall contribution to small changes

in NDVI predictability for this region (Figure 2.7b). Within the study area, croplands

are primarily present in a narrow band of aridity (0.24 to 0.36) and rainfall seasonality

(0.96 to 1.12).
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Figure 2.7: NDVI cropland prediction skill (a) and pixel count (b) by aridity and rainfall
seasonality bins. Across croplands in East Africa, areas with higher NDVI predictability
tend to be in arid and semi-arid regions with a high rainfall seasonality index, meaning
the annual rainfall is concentrated within 1-3 months. However, when considering the
number of pixels that fall within each bin of the two indices, there is a substantially
greater cropland area (measured in number of pixels) that falls within a narrow range
of approximately 0.96 to 1.12 the rainfall seasonality index (longer dry season and con-
centrated rains) and between 0.24 to 0.36 in the aridity index (arid/semi-arid). The
remainder of the study region has minimal representation across the possible range of
values.

30



Measuring the Sensitivity and Stability of Vegetation in Response to the Hydroclimate Across East
Africa with an Empirical Dynamic Modeling Approach Chapter 2

2.3.4 Elucidating vegetation-hydroclimatic interrelationships

According to the cross-mapping assessment, each environmental variable combination

converges as the number of observations (library length) increases, indicative of inter-

connected dynamics between each pair (Figure 2.8). It is possible to visually compare

the differences in CCM skill of hydroclimatic variables imposed on NDVI by isolating

the last value at the maximum library length or number of observations (Figure 2.9).

The grouped bars for each pairing’s end value show that both pairs converged beyond

0, with all values plateauing to a skill score (ρ) above 0.6. Yet for each pair, the hydro-

climatic variable reaches a value above that of NDVI, where a greater gap between the

lines suggests a stronger forcing of the top variable on NDVI. The difference in forcing or

CCM skill between precipitation and NDVI is the largest among pairings, validating the

importance of rainfall amount and timing in this water-limited region on the stability

of vegetation growth. The NDVI and LST CCM skills have minimal differences in their

final values, indicating high correspondence or coupling in the timing of their trajectories.

Figure A.4 displays the converged skill value for all combinations of variables.
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Figure 2.8: Cross mappings between each set of variable pairs (combinations of NDVI, precipitation, refET, soil moisture,
and LST) across all cropland pixels in East Africa. Skill is measured by the Pearson’s correlation coefficient (ρ) of the
estimated and observed values of the target variable (e.g., in the first panel, the blue line ‘ndvi xmap precip’ means that
NDVI is the candidate manifold cross-mapping onto the target, precipitation). Solid lines are the average cross-map skill
for all pixels, and shaded areas show the range of results for all pixels. The two sets converge rapidly in each subplot,
indicative of bidirectional causation. The gap in average lines can be interpreted as the relative strength of one variable
forcing another. For instance, in the first panel, precipitation wields a strong effect on NDVI based on the relatively large
vertical separation between the two compared to other combinations, particularly that of soil moisture and temperature,
where the lines are nearly indistinguishable, suggestive of nearly identical historical signatures or immediate feedbacks.
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Figure 2.9: Cross mapping skill scores (labeled as ‘Causal Strength’) between NDVI
and other hydroclimatic variables across East Africa’s croplands reveal their feedback’s
importance and directionality. Causal strength is measured by the final scores (ρ) of each
line from Figure 2.8 where they have converged or plateaued at the maximum library
length or number of observations. Note, while the dataset has 687 dekads of observations,
I cut off the library length in the figures at 400 observations, by which point each cross-
mapping converged. Error bars mark the range of skill over all pixels. Higher bars
with minimal height differences between forcing directions indicate strong bidirectional
connections. The leading bar in a pair indicates the forcing direction with more causal
influence.
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2.4 Discussion

2.4.1 EDM as a tool for exploring dryland vegetation dynamics

and its implementation with remote sensing data

In this study, I present an application of EDM using geospatial datasets to explore

ecohydrological relationships. By adopting a spatially explicit EDM structure, I provide a

new perspective on the linkages between climatic variables and vegetation productivity.

East Africa’s many climate zones and vegetation patterns make this spatial approach

particularly useful. Given the region’s propensity for pronounced climatic variation,

even over short distances, I map the predictability thresholds of ecological responses to

hydroclimatic conditions using real observations.

According to Olson et al. (2008), a multi-disciplinary approach that combines models

and data is necessary to study the complex couplings between land use, land cover, and

climate. The authors use East Africa as a case study to demonstrate the challenges

in integrating diverse datasets, calibrating models, and quantifying differences in scale

between environmental feedback loops. They discuss how livelihoods in East Africa are

highly dependent on and responsive to climate variability and change. I contend that

using EDM can be an innovative and useful technique to address these challenges. By

utilizing long records of geospatial information to investigate complex dynamics in a

region with diverse landscapes and important land use implications, EDM can provide

valuable insights into the impacts of climate on vegetation productivity.

The spatial replication approach is a notable contribution to the field of EDM as

it permits detailed interrogation and visualization of geographically explicit variability

and predictability. Previous studies have referred to spatial replication in alternative

contexts, so I will clarify how the technique I use in this study differs. Clark et al.
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(2015) introduce “multispatial CCM” to detect causal relationships from ecological se-

ries shorter than 30 sequential observations by bootstrapping samples to create longer

assemblages. Munch et al. (2023) also refer to spatially replicating short time series

to improve EDM forecasts by concatenating delay vectors from time series across space

that exhibit similar dynamics. While these methods prove beneficial for applications of

EDM with moderately to very short time series, often from field collections of ecological

species, the length of remote sensing environmental records I use is beyond sufficient

(687 dekads of observations) to meet EDM criterion and each dekad can be treated as an

individual instance. In this case, I refer to conducting spatial replication to compare the

predictability of locations that may exhibit similar biogeographical characteristics but

different dynamics and vice versa.

Using EDM with remote sensing time series data offers opportunities to uncover

environmental dynamics at a broader yet also granular scale. Previous EDM studies have

utilized single-point or spatially averaged data sources. These include research examining

the relationship between sea surface temperatures and fish abundance (Deyle et al., 2013;

Ye et al., 2015), climate and influenza (Deyle et al., 2016) or dengue infections (Nova et al.,

2021), environmental drivers and algal blooms (McGowan et al., 2017), and temperature

and greenhouse gases (van Nes et al., 2015). The use of EDM with satellite-derived

observations offers several key benefits. These data cover various spatial and temporal

scales, from local to global and daily to annual. Thus, they allow us to investigate how

alterations in ecological and hydroclimatic conditions interact across scales.
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2.4.2 Biophysical characteristics and mechanisms that influence

vegetation predictability

In East Africa, vegetation density correlates strongly with the amount and timing of

rainfall, which varies spatially and temporally. This study provides a detailed analysis

of how different factors interact to regulate vegetation patterns. Factors like evapotran-

spiration rates, soil moisture, land surface temperature, and vegetation cover all play

a role in shaping ecological dynamics at a local scale. The study’s pixel-wise analysis

offers a better understanding of how different types of vegetation, such as shrublands or

grasslands, respond to environmental changes. The magnitude, rate, and time scales of

these changes can affect each vegetation type differently, which suggests that customized

models may be necessary for each type of vegetation. For instance, shrublands, primarily

influenced by temperature and radiation, react at different time scales and magnitudes

to climatic forcing than savannas, which rely primarily on precipitation.

Water availability is a crucial determinant of vegetation growth, accounting for the

bulk of variability across biomes (Hawinkel et al., 2016). Deep-rooted vegetation, com-

mon in arid regions, tends to be highly resilient to erratic rainfall patterns and prolonged

dry spells. The water storage capabilities of such vegetation types and their water use

efficiency may explain the patterns of NDVI predictability observed. Areas with pro-

nounced rainfall seasonality broadly exhibit high NDVI predictability overall. In future

analysis, one could split the full-time series into wet and dry seasons and evaluate trends

in how different factors play a more significant and immediate role in determining veg-

etation stability during each season. For instance, vegetative growth relies more on soil

moisture content, rooting depth, and plant water-use efficiency during drier periods than

in the wet seasons.

The predictability of NDVI varies significantly across different land covers in East
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Africa. In regions that experience strong rainfall seasonality, NDVI predictability is

quite high overall, with skill ranging between 0.6 and 0.8. When pronounced seasons

have abundant rainfall, vegetation will green up rapidly and simultaneously. As such,

there is an increased ability to foresee the course of vegetation productivity. During the

dry season, however, vegetation browning is not as straightforward to predict due to

additional influential factors such as soil moisture, rooting depth, and plant water-use

efficiency. Thus, consideration of intraseasonal NDVI predictability in relation to rainfall

seasonality warrants further inquiry, as vegetation dynamics may display considerable

variation contingent upon the season.

The spatial distribution, annual cycle, and interannual variability of vegetation are

highly related to spatial and temporal patterns of precipitation as well as other climate

signals (Mangiarotti et al., 2012). Hawinkel et al. (2016) determine that mean annual

precipitation explains the majority of variability in vegetation response across ecological

zones in East Africa, while topographic and soil factors are also of some importance. In

water-limited regions, the precipitation signal is tightly coupled with the inter-annual

variability of ecosystem dynamics and thus is a useful measure for predicting NDVI

(Funk and Brown, 2006). Variability in moisture availability between vegetation types is

a function of structure, climate, water use efficiency, fractional cover, and soil conditions.

Broadly, water use efficiency is highest in plants within the driest environments. Changes

in annual species composition, functional types, and overall land cover characterization

can also reduce predictability (Mangiarotti et al., 2012).

Woodland regions in East Africa exhibit more consistent interannual NDVI values,

with distinct wet and dry seasons. The results also confirm that shorter and drier vegeta-

tion is more sensitive to erratic rainfall. These findings are supported by those of Nichol-

son et al. (1990), who observe that the phenology of East African woodlands is more

stable compared to other forest types and that the minimum NDVI is longer and more
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distinct. In the bushland/thicket and grassland areas, the authors find that while NDVI

and rainfall seasonal cycles are highly irregular, the two measures correspond closely in

timing and magnitude, whereby the NDVI signal responds clearly and immediately to

rainfall variability (Nicholson et al., 1990).

Rooting depth is also well-aligned with ecosystem functioning and varies with species

composition and density, as well as soil characteristics (Canadell et al., 1996). Vegetation

root distribution also dictates soil water-holding capacity and uptake rates from different

layers (Zeng, 2001). In their global study of species rooting depth across various func-

tional groups, (Canadell et al., 1996) find that woody species have the greatest maximum

rooting depth, a prerequisite to strong water retention, followed by shrubs, herbaceous

plants, and crop species.

My extensive analysis using remote sensing to assess the relative stability of NDVI in

relation to water availability confirms findings from earlier small-scale, field-based studies.

For example, Hesla et al. (1985) observed that shrubland species in Kenya have higher

stomatal conductances and water potentials than grassland species. Higher predictive

skill at longer lead times in shrublands than grasslands may be a product of superior

transpiration regulation to limit water loss and consequently reduced response in the

NDVI signal to rainfall variability.

Root-zone soil water strongly influences the prediction of vegetation conditions, as

it has a memory that lasts for weeks to months. For instance, NDVI is shown to be

forecastable with relative success across the majority of global drylands out to three

months in advance based on water storage information (Tian et al., 2019). Wei et al.

(2018) also conclude that a high correlation exists between NDVI and soil water across

most of East Africa and that spatial patterns of soil water are more similar to NDVI than

precipitation, likely because the lag between soil water uptake and greening is shorter.

While I used precipitation and temperature records equally to predict NDVI across
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land covers, the amount and way different vegetation types respond to these climate-

driven factors differs. Wu et al. (2015) discuss how the growth of shrublands at middle

and low latitudes is primarily dependent on temperature and radiation, whereas woody

vegetation is more reliant on precipitation and temperature for their growth. Conversely,

savannas are largely influenced by precipitation. Moreover, variation in grassland vegeta-

tion growth is predominantly determined by sufficient photosynthesis and precipitation,

while cropland growth is driven by three main climatic factors – precipitation, radiation,

and temperature Wu et al. (2015). Future analysis could implement an EDM with the

addition of radiation and explore the predictive response when controlling for certain

climate drivers or differentially weighting multiple factors over different land cover types.

Structural characteristics (e.g., leaf area) and physiological strategies (e.g., stomatal

conductance and light use efficiency) also contribute to vegetation function (Li et al.,

2023a). A given vegetation type’s isohydric and anisohydric tendencies may influence

differences in NDVI prediction accuracy. Notably, isohydric plants that strictly regulate

their stomata tend to have more predictable NDVI patterns due to water conservation

during periods of increasing dryness (Konings et al., 2017). On the other hand, anisohy-

dric plants tend to use water more liberally, favoring aggressive growth and carbon uptake

even in arid conditions, which may reduce predictability. This dichotomy is present in

East Africa, where ecosystems with taller trees and broad leaves are generally more iso-

hydric, while croplands tend to exhibit anisohydric behavior as crops are bred for rapid

growth and increased carbon uptake, often at the expense of water conservation (Konings

and Gentine, 2017).
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2.4.3 Study Limitations and Future Directions

While satellite-based estimates offer the most homogenous quality over areas with

limited ground observations (Hawinkel et al., 2016), the pre-processed and smoothed

nature of the eMODIS NDVI data (Swets et al., 1999) may have augmented predictability

outcomes. As EDM relies solely on the inherent patterns of time series, it does not

require prior knowledge of ecological mechanisms as opposed to process-based approaches.

While this affords flexibility in modeling complex dynamics, it comes at the cost of

interpretability, as the model cannot explicitly reveal how hydroclimatic variables and

vegetation physiological processes translate into productivity.

Regarding the specific methods of EDM, the primary advantage of simplex projection

is that it allows researchers to analyze complex multivariate datasets with relationships

that are difficult to discern using traditional statistical methods. Several challenges,

however, include identifying the appropriate parameters, the sensitivity to data quality,

and computational intensity when handling large geospatial data. In addition, while

the algorithm can diagnose a system’s predictive power and contributing elements, it

may not explain the mechanisms underlying such patterns. Further, CCM has been

noted to have several limitations when identifying causality in hydrology that can lead

to high false positive rates (Bonotto et al., 2022; Ombadi et al., 2020). These include the

role of seasonality, whereby cyclical patterns are deterministic and likely a confounding

factor. While CCM is considered a bi-variable causal approach, the relationships observed

may result from stronger external shared forcings and synchronization behavior (Bonotto

et al., 2022).

Further refinements to better understand ecohydrological stability in diverse environ-

ments and test robustness could include training the EDM on a larger dataset covering

a wider climatic gradient. Incorporating other remote sensing vegetation indices in the
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model may also improve the accuracy of predictability across different land covers as

NDVI has been known to have saturation issues at high vegetation cover and precipita-

tion levels (Huang et al., 2021).

Additionally, working with a static land cover year may not capture changes to bound-

aries and vegetation type due to land management or other anthropogenic influences over

time. Non-stationary behavior due to shifts in cultivation practices or crop types planted

could have also influenced the measured predictability scores. I recommend future re-

search agendas that delve into crop-specific phenological patterns for applications in

agricultural monitoring. Along these lines, conducting an attribution study and residual

trend analysis could reveal which aspects of trends of vegetation productivity, specifically

in cropland areas, are due to climate and environmental elements alone versus the influ-

ence of anthropogenic factors, thereby informing potential future sensitivity and drivers

(Mechiche-Alami and Abdi, 2020). I also did not consider precipitation persistence (Tut-

tle and Salvucci, 2017) or self-propagation trends (Schumacher et al., 2022) due to soil

moisture-precipitation positive cycling that either perpetuates droughts or leads to more

precipitation. An area for continued inquiry could involve exploring how projected drying

and expansion of drylands may further exacerbate land-atmosphere feedback.

Another potential concern is the prevalence of spatial autocorrelation. Gridded data

of environmental variables or climatic factors often have similar values in areas that are

close to each other due to, for instance, similar soil types, climate, or human interventions.

If there is a strong spatial autocorrelation, the EDM may largely identify relationships

based on spatial proximity rather than a genuine ecological phenomenon, which could

inflate the model’s perceived accuracy over the entire study region. This challenge is also

present when distinguishing causality under synchronized dynamics where pixels are not

wholly independent. One way to address the spatial autocorrelation among neighboring

replicates would be to conduct diagnostic tests such as Moran’s I, identify areas of strong
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autocorrelation, and filter out redundant pixels that elevate overall predictability or use a

clustering procedure to group similar pixels together to reduce local scale overconfidence.

I also did not include oceanic phenomena (e.g., El Niño–Southern Oscillation and

Indian Ocean Dipole) as a model variable because previous studies determined that the

interannual response of vegetation greenness to precipitation variability is determined

more by the structural characteristics of the vegetation itself rather than through climatic-

oceanic or topographic features (Hawinkel et al., 2016). Local land feedback has also been

found to substantially impact aridity more than remote oceanic warming (Berg et al.,

2016). As hydroclimatic factors directly and immediately impact vegetation greenness,

future work exploring long-term land management strategies could consider additional

aspects.

While the dataset was suitable for CCM analysis regarding observation length and

frequency, climate trends may have influenced the results over the nearly 20-year study

period. CCM relies on a recurrence assumption, meaning causality is assessed by iden-

tifying the degree to which shadow manifolds consistently revisit similar states. If sub-

periods of the time series follow different trends, then the assumption could be violated,

and the CCM skill could be artificially boosted by temporal autocorrelation rather than

by recurrence (Bonotto et al., 2022). A Theiler window can omit neighboring points

to control for this issue, though at the cost of ignoring real-world trends. Preprocessing

data by detrending or removing seasonal components can avoid some artifacts that falsely

detect causality but at the expense of important features necessary for CCM (Bartsev

et al., 2021).

Climate projections suggest that the frequency and severity of concurrent soil drought

and atmospheric aridity will worsen due to coupled land-atmosphere feedback (Zhou

et al., 2019). While remote oceanic warming has been shown to significantly modulate

terrestrial climate change, projected land surface processes, including decreasing soil
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moisture and the physiological effect of increasing atmospheric CO2 on vegetation, greatly

intensify and contribute to continental aridity trends (Berg et al., 2016). Drylands rely

heavily on moisture recycling and are especially constrained by water-limited evaporation.

Coupled with the expansion of arid lands globally, these components make drylands

highly vulnerable to cascading and self-reinforcing droughts (Schumacher et al., 2022).

In an era of accelerating global climate change, traditional models based on historical

data may become less reliable. These static models are often predicated on the assump-

tion that past patterns can inform future events, though as evolving patterns stray from

historical cyclical outcomes, accuracy could wane. Climatic anomalies, more frequent

extreme events, and non-linear changes to ecosystem behavior can lessen the efficacy

of these models, especially in areas that are already sensitive to climate disturbances.

EDM is an adaptive tool that can capture these emergent patterns, adjust to complex

scenarios, and seamlessly recalibrate to new data.

2.5 Conclusion

I employ a multivariate state space reconstruction algorithm that accounts for hy-

droclimatic drivers, including land surface temperature, precipitation, soil moisture, and

reference evapotranspiration, to estimate the predictability of vegetation conditions based

on the knowledge of these related drivers. As the prediction horizon extends, the pre-

cision of the model diminishes because the trajectories of the nearest neighbors in the

reconstructed manifold become increasingly dispersed. In addition, predictive skill varies

spatially across East Africa and different biomes. Woodland forest leads with the highest

predictive skill across embedding dimensions and prediction intervals, followed by crop-

lands. This study presents a spatially explicit EDM approach that could be utilized as a

blueprint for similar investigations in other regions.
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Operating beyond a forecasting tool, EDM provides insight into the sensitivity and

stability of ecosystems. It is a means by which one can measure the strength of the

relationships between variables in a complex system with minimal a priori parameters

compared to process-based models that place constraining assumptions on the mecha-

nisms of dynamics. From an EDM perspective, state-dependent variables that collapse

onto an attractor describe the fundamental characteristics of a system rather than pre-

determined functions based on equations. EDM can also help identify model misspeci-

fications and improve their construction by identifying important components, such as

forcing variables (Munch et al., 2020).

The approach has potential value for addressing land management, agricultural decision-

making, and drought relief (Tian et al., 2019). The state space view of the inter- and intra-

annual consistency in vegetation growth patterns has useful applications, from quantify-

ing the impact of land use and land cover change on ecosystem health and biodiversity

to monitoring crops and directing agricultural management practices. This method can

assist in identifying regions or ecosystems that are more susceptible or less resilient to

changes in environmental conditions or land management practices. Amidst a rapidly

changing global climate, precise and predictive tools are needed to understand and an-

ticipate ecological transitions. By identifying areas with high NDVI consistency and

understanding the drivers behind them, this study highlights the potential of remote

sensing data to capture the responsiveness of ecological systems.

44



Chapter 3

Gravity Model Estimation of the

Drivers to Internal Human

Displacement in Somalia

Abstract The drylands of Africa are increasingly vulnerable to the impacts of climate

change, with cascading effects on livelihoods, food security, and human mobility. In So-

malia, the confluence of recurrent droughts, extreme flooding, protracted armed conflict,

and the disruption of traditional pastoral and agricultural livelihoods has arisen as a de-

terminant that amplifies internal displacement. This study investigates the causal mech-

anisms through which climate shocks influence both out- and in-migration. Employing a

gravity model framework, I estimate the relative influence of weather anomalies, conflict

intensity, and livelihood factors on inter-regional displacement flows within Somalia. The

analysis reveals that while climate does not play a strong role in all circumstances, it

can be a critical driver for certain populations. Most notably, those who live in predomi-

nantly pastoralist or pastoralist and fishing areas are much more likely to migrate due to

anomalous rainfall. Conversely, anomalous air temperatures do not serve as a primary
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influence on migration as a short-run shock. Conflict severity, nevertheless, stands up to

robust testing as a significant driver of migration. While this study adds to the growing

literature examining displacement dynamics, particularly in Somalia, its novel contribu-

tion lies in the numerical modeling of how livelihood factors intersect with climate and

conflict variables to shape mobility patterns.

3.1 Introduction

Human migration in response to a changing climate is emerging as one of the most ur-

gent humanitarian challenges of the twenty-first century (Mart́ınez-Zarzoso et al., 2023).

Several factors contribute to this phenomenon. First, climate change is causing more

frequent and intense extreme weather events, which force people to abandon their homes

and livelihoods. Migration can also be seen as a form of adaptive strategy if individuals

have the resources to move. Climate-related disasters, including droughts and floods,

can cause severe damage to local livelihoods, compelling people to seek opportunities

elsewhere. These economic shocks, along with conflicts exacerbated by climate-related

disasters, further fuel human mobility (Ceola et al., 2023). Researchers predict that

droughts will have a substantial impact on societies in Africa, in particular, due to an in-

crease in precipitation deficits and durations under global warming scenarios. Moreover,

populations living in African drylands are anticipated to double by 2050, while cities

in these regions are projected to become risk hotspots for climate change and climate-

induced human displacements, worsening pre-existing vulnerabilities (Ceola et al., 2023).

Given these issues, it is crucial to discern whether the effects of climate patterns

alone can drive migration or if they amplify existing factors such as conflict and poverty

resulting from the loss of income (Mart́ınez-Zarzoso et al., 2023). In this chapter, I ex-

amine the drivers of internal displacement in Somalia, a country faced with numerous
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challenges that have led to widespread internal displacement, including protracted armed

conflicts, severe flooding, prolonged droughts, and deep-rooted socio-political instability.

The Internal Displacement Monitoring Center (IDMC) reported that there were 621,000

internal displacements as of 2022 due to conflict and violence and 1,152,000 associated

with disasters in Somalia (IDMC, 2023a). Yet these figures, IDMC states, are underes-

timates as it is difficult to verify which movements are caused by singular versus mixed

triggers. Accordingly, this situation has garnered significant attention from academic

researchers and humanitarian organizations.

In this study, I contribute to the ongoing conversation around quantitative practices

to understand the climate-conflict-migration nexus. The research expands upon previous

work on whether out-migration can be attributed to climate shocks. I add insight into

how certain livelihoods are specifically impacted, testing the extent to which weather

extremes and short-run hazards can explain displacement for different populations. Fur-

ther, I evaluate both in- and out-migration drivers. I use gravity model estimation, a

method commonly used in trade and migration studies (Anderson, 2011), to test assump-

tions about the drivers of mobility in Somalia. The models are constructed in a manner

to evaluate the importance of different factors in their influence on displacement, includ-

ing distance, population size, livelihood type, weather conditions, and conflict severity.

By estimating the impact of heterogeneous push and pull factors, this study offers a

comprehensive, contextual perspective that dissects the role of various characteristics in

shaping the enduring displacement crisis in Somalia.

To facilitate discussion around the concepts of environmental change and migration,

I will first briefly lay out a few definitions. Climate mobility encompasses various forms

of movement resulting from direct or indirect impacts of climate change and related en-

vironmental hazards. Various forms of mobility include migration, forced displacement,

and relocation or evacuation in response to climatic stress and hazards (Rigaud et al.,
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2018). Displacement involves forced mobility, often due to sudden-onset disaster events,

typically short-term and over short distances, with affected households returning to their

original locations once the danger has passed. Climate migrants are defined as individ-

uals or groups who are pushed to leave their homes over longer periods or permanently

due to sudden or gradual changes in climatic conditions. Permanent migration can also

result from initial displacement if the displaced individuals do not return to their original

locations (Hoffmann, 2022). Individuals or communities may also become forcibly dis-

placed when they are compelled to leave their homes because of armed conflict, disasters,

and other disruptive events (Earney and Moreno Jimenez, 2019). Internal displacement,

specifically, is the forced movement of individuals from their residence to another location

within their country’s borders due to various distressing events (Clement et al., 2021).

Year after year, the number of internally displaced people (IDPs) continues to rise.

At the end of 2022, Internally Displaced People (IDPs) made up the majority of the

global forcibly displaced population at 58 percent. Additionally, the number of IDPs

protected/assisted by the United Nations High Commissioner For Refugees (UNHCR)

reached 57.3 million, which is double the amount of the previous decade and represents a

12 percent increase from the previous year (UNHCR, 2022). According to IDMC, among

those internally displaced due to disasters, by the end of 2022, the numbers jumped to

8.7 million people across 88 countries and territories. This was a 45 percent increase in

the number of disaster-related IDPs since 2021 (IDMC, 2023b). Despite the meticulous

efforts by organizations such as UNHCR and IDMC, recent research on monitoring and

describing global migration trends has become more complex due to several evolving

elements. These factors include the shift in historical migration patterns, the emergence

of migration economies, the rising environmental migration driven by climate change,

and the growing occurrence of conflict-driven migration in specific regions (Griffith et al.,

2023).
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In the following sections, I will discuss the research landscape around (1) environmen-

tal change and migration, (2) gravity modeling of migration, (3) the interaction between

climate, conflict, and migration, (4) patterns of environmental migration in African dry-

lands, and (5) specific literature pertaining to understanding displacement in Somalia.

3.1.1 Literature Review

Empirical Study of Environmental and Climate Effects on Migration

In recent years, there has been a growing interest in the scientific literature on the

topic of environmental change and climate migration. This trend can be seen through the

integration of semantic elements (e.g., vulnerability, social justice, security, and adapt-

ability) that climate and environmental change research shares with that on migration

(Maretti et al., 2019). With the strong connection between these themes, taking account

of the socio-environmental context in understanding migration dynamics and integrating

both quantitative and qualitative approaches is crucial.

Kaczan and Orgill-Meyer (2020) synthesize the literature on the impact of climate

change on migration, concluding four key themes that disrupt common thinking on the

topic: (1) climate-induced migration is not necessarily more common among poorer

households, as wealthier households may have the means to migrate, (2) climate-induced

migration tends to result in more long-distance domestic moves rather than local or in-

ternational crossing, (3) slow-onset climate changes, such as droughts, are more likely to

lead to increased migration than rapid-onset changes, such as floods, and (4) the severity

of climate shocks affects migration in a non-linear way, depending on whether households

have the resources to migrate or are vulnerable to the effects of climate change.

Two primary motivations differentiate empirical research on the environment-migration

nexus: forecasting versus hindcasting. In other words, studies may focus on (1) predict-
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ing the numbers of people who will move due to climate change and where or (2) tracing

the pathways by which previous environmental fluctuations or shocks have affected mi-

gration, often with the intention to inform future outcomes (Morrissey, 2014). One of the

most prominent research efforts to project future environmental-induced internal migra-

tion, published in what is known as the “Groundswell” reports, estimates that by 2050,

without climate change and development action, climate change could result in more than

216 million people migrating within their own countries in six regions – Latin America,

North Africa, Sub-Saharan Africa, Eastern Europe and Central Asia, South Asia, and

East Asia and the Pacific (Clement et al., 2021). Yet, while forecasts may be helpful in

conceptualizing these enormous expected shifts and directing mitigating policies, we are

not currently at a stage in which they are reliable and should only be considered as tools

for exploring various possible futures (Schewel et al., 2024). Instead, developing mod-

els to understand the scenarios in which environmental change can modulate migration

patterns using past observations is equally, if not more, important.

Research approaches that measure key indicators of climate-induced migration can

significantly impact our understanding of the phenomenon. Quantitative evidence can be

gathered from large-scale spatial and longitudinal analyses that monitor greater trends or

from agent-based (Morrissey, 2014; Groen, 2018; Nelson et al., 2020) and system dynamics

models (Ginnetti and Franck, 2014) that can simulate decision-making processes that may

shift movement patterns in the future under different climate scenarios (Hoffmann et al.,

2021). Other methods include machine learning (ML) algorithms such as random forests

(RFs) and gradient boosting machines (GBMs) to predict the number of people displaced

that coincided with historical hazards (floods, storms, or landslides). For instance, Ronco

et al. (2023) incorporate a diverse set of socioeconomic and environmental variables on a

national and disaster-specific scale, explainable AI, and causality measures to shed light

on global human mobility’s complex processes and drivers. In doing so, they find that
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displacements result from uneven vulnerabilities that can be largely attributed to the

combination of poor household conditions and extreme precipitation.

Others have studied how economic development, political stability, and social net-

works are intertwined with environmental change and migration (Hoffmann et al., 2020,

2021). Risks to public health due to disease outbreaks or injuries and disruptions

in healthcare services in areas affected by climate-related events also impact migrant

decision-making and their well-being (Khalid et al., 2023; Issa et al., 2023b). Addition-

ally, both rapid and slow-onset natural hazards impact movement patterns differently

(Kaczan and Orgill-Meyer, 2020; Mart́ınez-Zarzoso et al., 2023; Kabir et al., 2018; Zick-

graf, 2021). Land degradation has also been shown to contribute to this critical problem

(Hermans and McLeman, 2021; Hoffmann et al., 2022).

This is to say that migration decisions are not solely based on environmental changes

but are influenced by multiple factors, and research on this topic must be approached

with a contextual and multi-causal lens (Warner et al., 2010; Piguet, 2022). Black et al.

(2011) classifies five families of drivers that affect migrant decision-making: economic,

political, social, demographic, and environmental drivers. Under the wing of environmen-

tal drivers, migration may mainly be impacted through two direct pathways: availability

and reliability of ecosystem services and exposure to hazards, as well as indirect mech-

anisms, for example, via loss of livelihoods or conflict over resources. Throughout this

chapter, I will explore how to tease apart these mechanisms.

Gravity Modeling of Migration

In this study, I employ an analytical approach to examine internal displacement flows

within Somalia. I measure the impact of key factors, including population dynamics,

climatic conditions, and the prevalence of conflict on migration between different regions

across the country. Multiple recent studies have similarly implemented gravity model
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analysis to investigate the extent to which climatic variations can explain migration

flows. Progressing from a basic gravity model that includes population and distance to

nested models that integrate supplementary explanatory variables may further explain

how migration is impacted by socio-demographic and climate features.

Garcia et al. (2015) modeled internal migration flows in several countries of sub-

Saharan Africa using census microdata and global climate variables. While the authors

found high correlations in their models for predicting within-country migration, the con-

tribution of climate variables was relatively low compared to the socio-demographic ef-

fects. They highlight several limitations of their method, however, including the inability

to monitor circulatory movements when the census microdata tracks only permanent

migration, the lack of consideration for other impacts such as conflict events, underlying

data quality issues, and possible misalignment between the spatiotemporal scale of how

climate drivers affect migration and data availability. Backhaus et al. (2015) focus on

bilateral international migration, finding a positive correlation between migration and

temperature and precipitation (though to a lesser extent). The authors have noted a

correlation between countries that depend on agriculture and the out-migration rate.

This correlation is more closely linked to temperature than precipitation. Additionally,

they found that state fragility directly affects emigration but did not observe a significant

interaction with climate.

Mastrorillo et al. (2016) study the effect of climate variability on internal migra-

tion flows in South Africa. They similarly conclude a relationship between temperature

extremes (positive), excess rainfall (negative), and agricultural employment and produc-

tion on out-migration, though the impact varied substantially by migrant socio-economic

and demographic differences. Pirani et al. (2019) explore how inter-district migration in

Tanzania is determined by adverse environmental conditions, including households that

have been affected by droughts and floods, crop diseases or pests, or severe water short-
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ages, while also accounting for socio-economic covariates and border contiguity in their

model specifications. The authors find that crop-related shocks were significant factors

in shaping internal migration and severe water shortage to a smaller degree. Levels of

urbanization, education, and economic development in the destination areas were also

highly relevant in the migration destination process, while distance and contiguity played

an important role.

Concerning conflict as a driver of displacement, Saldarriaga and Hua (2019) take a

comparable gravity modeling approach with the case of Colombia, studying the correla-

tion between the intensity of violence in origin and destination municipalities and victims

that are forcibly displaced. Since displaced people tend to cluster in space, the study also

considers the level of community participation in each location and the strength of social

networks at the destination. Abel et al. (2019) study the climate, conflict, and migration

nexus with global bilateral refugee flows data and gravity-type models. Their findings

suggest that climate conditions, especially severe droughts, are consequential in explain-

ing asylum-seeking flows, though this varies across regions and periods. The Arab Spring

and the Syrian war are examples, for instance, of where the interaction between polit-

ical transformation, drought, and armed conflict significantly elevated asylum-seeking

migrants (Abel et al., 2019; Kelley et al., 2015).

Notably, each of these studies analyzes migration patterns from panel data at the

annual or multi-year scale, which may not pick up on the impact of rapid-onset shocks

(e.g., flash floods) and seasonal labor migration patterns. In this chapter, I use a unique

dataset with frequently and continuously reported estimates of displaced populations

within Somalia, which offers a deepened understanding of mobility pathways. On the

other hand, as I did not have access to individual or community-level socio-demographic

information, as well as high-resolution records of those at risk but unable to move, I

inevitably miss populations that are “trapped” and highly vulnerable (Borderon et al.,
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2019; Zickgraf, 2019). Nawrotzki and DeWaard (2018) implement gravity models to

estimate inter-district migration flows in Zambia, combining climate data with aggregated

census microdata of socio-demographic factors to predict not only characteristics that

would enable populations to migrate but also those that cause immobility. Poverty, the

steep costs of migration, and the further degradation of already weakened livelihoods

under climate change all contribute to specific groups being susceptible to becoming

trapped in place.

Climate, Conflict, and Migration

While climate-related migration poses a legitimate concern, I would be remiss to

exclude conflict as an important component that greatly magnifies internal displacement.

The relationship between conflict, climate, and migration has been a topic of growing

interest in academic research. Numerous studies have explored the linkages between these

factors, revealing the potential causal pathways with empirical evidence supporting these

associations.

Across Eastern Africa, countries are contending with difficult repercussions of more

frequent and severe droughts, which have exacerbated food insecurity and economic

losses, prompting greater tensions and pervasive conflicts between herders and farmers.

The resulting resource-based conflicts and large-scale displacement disproportionately

affect pastoralists and rural smallholder farmers in highly drought-prone areas. While

rural-to-urban migration in the region is largely driven by livelihood diversification, it

also serves as an emergency response to drought (Adaawen et al., 2019).

Climate-induced resource scarcity, such as water and arable land, can trigger com-

petition and conflict, particularly in regions already experiencing socio-political tensions

(Helman and Zaitchik, 2020; Raleigh and Kniveton, 2012). Droughts, extreme weather

events, and other climate-related hazards can lead to forced displacement and migration.
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As a result, this displacement can engender social and political tensions in the areas of

origin and destination (Mach et al., 2019).

Changes in agricultural productivity, livelihoods, and employment opportunities due

to climate variability can influence migration patterns and cause conflict over resources

(Freeman, 2017; Owain and Maslin, 2018). Higher concentrations of crop production

can increase the likelihood of conflict onset by exacerbating inequalities and livelihood

disparities across regions (Vesco et al., 2021). When climate shocks lead to crop failure,

rural laborers may migrate to adapt, consequently driving up resource competition in the

host areas and promoting socio-political tensions. Another transmission channel between

drought and civil conflict in countries such as Somalia is through livestock prices, as live-

stock rearing is a major source of income for rural populations in the country (Maystadt

and Ecker, 2014). Drought can lead to a sequence of cascading events. Reduced water

availability and fodder for livestock can drive herders to sell more of their livestock, in-

creasing the supply in the market, decreasing the price, and diminishing herder income.

In this case, migration may not be a viable strategy due to high transportation costs and

limited rangeland resources at the destination during widespread, severe drought. In-

stead, drought intensity and length have been shown to substantially raise the likelihood

of conflict in Somalia, as herders may resort to violent means to supplement their lost

income (Maystadt and Ecker, 2014).

In a commentary by Mach et al. (2020) discussing future research directions on cli-

mate and conflict, the authors stress that while it is important to study climate-induced

conflict that can drive displacement and outmigration, it is also essential to consider the

possibility of reverse causation, where climate change drives outmigration, contributing

to conflict.

The connection between migration and conflict is highly context-specific (Abel et al.,

2019), yielding the need for more in-depth case-study research to test theoretical as-
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sumptions. Cantor (2023) differentiates between macro and micro dynamics of internal

displacement, where the macro describes large-scale patterns and trends (e.g., the scale

and distribution of disaster and climate-driven internal displacement) compared to the

micro, which refers to more granular patterns of displacement, such as the livelihoods,

social vulnerability, and resilience of affected populations as well as the decision-making

process (e.g., anticipatory or reactive). My analysis in this chapter will be situated along

the macro-micro continuum. I analyze the patterns of internal displacement in Somalia

at the sub-seasonal level and consider the dominant livelihoods across different regions.

However, I cannot fully address individual socio-demographic dynamics due to the coarser

scale at which I examine mobility dynamics.

Patterns in African Drylands

Environmental change is having a significant impact on human migration across

African drylands. In these regions, populations have been experiencing a range of en-

vironmental stressors, including droughts, soil erosion, and deforestation, which have

prompted forced displacement and overall changes to migration patterns (Morrissey,

2014). African drylands have historically been impacted by environmental stressors that

affect mobility decisions. These areas are highly vulnerable to the impacts of warming

trends that cause worsened aridity and increase the frequency, intensity, and duration of

temperature-related extremes (Hoffmann, 2022). Although migration as a response to

environmental stress is often temporary, and its effects have typically been short-lived,

mobility patterns are becoming more diverse in scope, direction, and duration (Morris-

sey, 2014). Livelihood adaptability, demographics, variations in migration response, type

and duration of environmental stressors, social networks and familial bonds, abundance of

natural resources, and contextual dependence of migration-environment dynamics greatly

influence migration (Borderon et al., 2019).
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East Africa is projected to experience increases in heatwaves, dry days, heavy pre-

cipitation, particularly over Somalia, and river flooding. These changes are expected to

significantly alter human mobility patterns across the region. Furthermore, cascading

risks and multi-hazard events wield dangerous threats and deepen population vulnera-

bility (Thalheimer et al., 2021b).

Evidence from Somalia

Environmental and conflict-related shocks in Somalia have had profound negative

impacts on displacement, poverty, and livelihoods. Here, climate change is leading to

water scarcity due to droughts, coastal erosion, flooding, and changes in ocean dynamics.

As a result, pastoralists and farmers sometimes resort to water rationing because of the

reduction in arable and grazing land. This, in turn, led to increased costs of agriculture

and livestock products and intensified conflict over water resources. Combined with the

fragile political and economic system, extreme events contribute to widespread displace-

ment and poor adaptive capacity (Ali et al., 2023). Forced displacement due to conflict

and drought disrupts traditional livelihood strategies and negatively affects household

income, food security, and access to basic services (Osman and Abebe, 2023).

Over the past few decades, protracted drought has substantially reduced household

income and consumption, especially in rural areas (Pape and Wollburg, 2019). Yet,

drought is not the only culprit. In 2011, for instance, a widespread crisis leading to

famine was caused by the compounding factors of conflict, drought, governance failure,

political instability, and constrained humanitarian assistance (Lindley, 2014; Maxwell

and Fitzpatrick, 2012).

Compounding vulnerabilities worsen systemic risks in Somalia (Thalheimer et al.,

2021a). Climate change will likely deepen water scarcity and food security (Ajuang Ogallo

et al., 2018). In one study, Warsame et al. (2023) quantified mortality rates and the ex-
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cess death toll related to Somalia’s 2017-2018 drought-triggered crisis. Analyzing house-

hold surveys, the authors identified predictors of mortality, reconstructed population

denominators for each district and month, and found excess mortality to be moderately

correlated with the severity of the crisis predicted by the Integrated Phase Classification

food insecurity scale. Addressing the root causes of displacement, health, and poverty

in Somalia requires a comprehensive and integrated analysis considering the country’s

context and multiple drivers of vulnerability.

Several researchers recently conducted quantitative assessments of mobility in Soma-

lia to better understand situational mechanisms. Predictive modeling techniques can

aid in monitoring the movements of refugees and internally displaced people Pham and

Luengo-Oroz (2022). One such machine learning method that has been explored in the

Somalia context is known as long short-term memory (LSTM) modeling, which is a type

of recurrent neural network (RNN) that was used to predict monthly arrivals of Inter-

nally Displaced Persons (IDPs) across Somalia’s 18 regions. Project Jetson, an applied

experiment by UNCHR, used this method along with nontraditional data such as mar-

ket prices and climate anomalies to estimate the numbers of IDPs within Somalia and

refugees that moved to southern Ethiopia (Earney and Moreno Jimenez, 2019). How-

ever, machine learning approaches have several shortcomings, including the potential

for overfitting, computational costs, and limitations towards capturing the magnitude

of unexpected events or sudden spikes in displacement trends (Pham and Luengo-Oroz,

2022).

In an ecological analysis of longitudinal panel data on displacement in Somalia, neg-

ative binomial regression models reveal strong associations between Internally Displaced

Person (IDP) out-migration rates and failed rains at a three-month lag, food insecurity at

a one-month lag, and the presence of therapeutic food services with no lag (Yuen et al.,

2022). Conversely, the IDP out-migration rate is not associated with armed conflict inten-
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sity and cash- and rations-based food security services. In parallel, another study imple-

mented statistical and econometric models with the same disaggregated dataset tracking

internal displacement across Somalia. Thalheimer et al. (2023b) find that both weather

and conflict play substantial roles in perpetuating displacement in Somalia, though there

is little evidence of feedback from displacement to conflict. Oh et al. (2024) used net-

work analysis to study the emergent movement patterns of IDPs due to disasters and

conflict. Disaster-induced networks were denser and more modular than conflict-induced

IDP networks, suggesting that those affected by disasters tend to move within regional

boundaries compared to those affected by conflicts who relocate to relatively remote areas

outside the regional boundaries.

3.2 Methods

3.2.1 Study Area

Somalia faces numerous environmental and social risks within the Horn of Africa,

including consecutive drought events, intense floods, and ongoing armed conflict (Thal-

heimer et al., 2021a). These challenges greatly affect population health, food supply,

and general well-being. The country frequently experiences below-average rainfall, lead-

ing to severe droughts, displacement, and epidemics (Warsame et al., 2023). Worsening

consequences of climate change, including floods, droughts, river depletion, sea-level rise,

and poor water quality, have significantly stressed water resources in Somalia (Ali et al.,

2023). The environment is characterized by a semi-arid climate that is prone to spo-

radic floods during the rainy season along the two major rivers, the Juba and Shabelle

(Mohamed and Adam, 2022; Osman and Das, 2023; Billi and Sebhat, 2022), as well as

prolonged droughts that have lead to famine (Maxwell and Fitzpatrick, 2012; Warsame
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et al., 2023).

The protracted regional conflict has intensified these issues, transforming drought-

induced food shortages into famines and causing extensive mortality, disease, and dis-

placement (Seal and Bailey, 2013). Moreover, the country has a history of colonial rule

and a struggle for independence, followed by civil war and political unrest. As a result,

these events have culminated in a fragile central government, regional power struggles,

and the presence of militant groups (Menkhaus, 2014). Somalia is economically vul-

nerable, largely due to its high dependence on volatile agriculture and livestock prices,

with some supplementary support from remittances (Warsame et al., 2021, 2022; Lindley,

2010). Widespread poverty and unemployment, minimal industrialization, and poor ba-

sic services, including education and healthcare, exacerbate the socio-economic situation

(Lwanga-Ntale and Owino, 2020; Ahmed et al., 2020). The amalgamation of these is-

sues considerably impacts population health, livelihoods, and displacement (Achour and

Lacan, 2011; Wakabi, 2009; Raleigh and Kniveton, 2012).

The trifecta of environmental stressors, armed conflicts, and socio-economic instabil-

ity in Somalia amounts to high levels of internal displacement. Over recent decades, mil-

lions of people have been displaced annually within Somalia as a result of tribal territorial

disputes, clan clashes, local conflicts, and resource scarcity (Maystadt and Ecker, 2014).

Protracted violence and lack of security continue the cycle of displacement, famine, and

disrupted humanitarian assistance efforts (Lindley, 2011; Seal and Bailey, 2013). Land

degradation strains farming and pastoralist communities, further driving population dis-

placement (Warner et al., 2010; Hermans and McLeman, 2021). The struggle for water

and grazing land, among other resources, has also intensified conflict (Ali et al., 2023).
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Livelihoods of Somalia

The geography and climatic conditions play a significant role in determining the dom-

inant regional livelihoods across Somalia. These include pastoralism, agropastoralism,

riverine irrigation, pastoralism/fishing, and urban livelihoods (FEWSNET, 2015; Nelson

et al., 2020). The spatial variation of each livelihood zone indicates how the people of

Somalia adapt to and confront challenges within their surroundings. Pastoralists rely on

herding livestock, including cattle, goats, camels, and sheep. Largely practiced in the

arid and semi-arid regions of the country, pastoralism is a way of life highly attuned to

harsh, dry environments (Ahmed et al., 2023; Nelson et al., 2020). As mobile communi-

ties, pastoralists follow seasonal migration patterns depending on water accessibility and

rangeland conditions. Agropastoralism is a more diversified livelihood approach whereby

communities engage in agriculture and pastoralism in areas where conditions are con-

ducive to farming and raising livestock. As a dual strategy, agropastoralism is a way

of fortifying income and food security, though it is still susceptible to environmental

disasters such as droughts and floods, which can devastate both crop production and

livestock health. In fertile riverine areas, especially along the Juba and Shabelle rivers,

communities practice irrigated agriculture by pumping or gravity systems. While these

areas can provide a stable source of income, communities are still vulnerable to flooding

and water resource conflict (Osman and Abebe, 2023). Along the coastline, particularly

along the eastern shore meeting the Indian Ocean, communities engage in a mix of pas-

toralism and fishing. The combination of livelihood strategies affords local consumption

and some larger-scale commercial fishing. Lastly, urban areas, notably the larger cities of

Mogadishu and Hargeysa, provide trade, services, and manufacturing opportunities. City

dwellers often send remittances to their rural family members (Lindley, 2010). In these

cities, however, overpopulation, rent-seeking and dispossession, and security concerns are
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additional stressors that have hindered livelihoods and deepened poverty Bakonyi (2021).

3.2.2 Data

Internal Displacement

Figure 3.1: Time series of internally displaced people recorded by the United Nations
High Commissioner for Refugees (UNHCR) Protection and Return Monitoring Network
(PRMN) dataset from 2016 to 2023. Colors distinguish the reason individuals give for
why they were displaced, whether by flood, drought, or conflict.

The United Nations High Commissioner for Refugees (UNHCR) leads a multi-stakeholder

initiative known as the Protection and Return Monitoring Network (PRMN), which

is tasked with identifying and reporting on internal displacement in Somalia via key-

informant surveys (UNHCR, 2017; Earney and Moreno Jimenez, 2019). The PRMN

publicly releases a dataset that disaggregates by location (district and region) and time
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Figure 3.2: Circos diagram of total internal displacements between regions in Somalia
from 2016 to 2023 where (a) represents all migration flows and (b) leaves out the flows
that occurred within the same region.

scale (week and month), supplying a high granularity unique among country-wide mi-

gration datasets. The dataset provides a continuous record from January 2016 to the

present. The records also include details on populations’ reasons (3.1) or triggers for

displacement as well as their humanitarian needs (UNHCR, 2017; Thalheimer and Oh,

2023; Pham and Luengo-Oroz, 2022). While the PRMN dataset is exceptional among

public displacement data in its breadth of coverage and opportunity for near real-time

displacement identification, it is not exhaustive, as data collection relies on field ob-

servers’ presence. The figures, rather, should be taken as representative of potentially

larger movement trends and their underlying causes. Issues in reliability can arise, for

instance, during periods of conflict, where there may be areas that enumerators can not

safely access (Pham and Luengo-Oroz, 2022; UNHCR, 2017).

In this study, I analyze the number of people who have been displaced between regions

of Somalia from 2016 to 2023. I resampled the population movement counts from weekly
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Figure 3.3: Major livelihood zones of Somalia with administrative zone 1 (region) bound-
aries.

to monthly. Relative displacements from origin to destination regions can be seen in

Figure 3.2, where (a) represents the total displacements recorded as being between and

within regions over the study period and (b) represents only movements between two

regions.
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Figure 3.4: Percent of the population per region in Somalia that practices a certain major
type of livelihood.

Livelihood Zones

The Livelihood Zone Map, produced by the Famine Early Warning Systems Network

(FEWS NET) and the Food Security Nutrition and Analysis Unit (FSNAU), delineates

geographic areas of the country that pertain to where people have similar opportunities

for obtaining food and income as well as engaging in trade (FEWSNET, 2015). The

most recent map was last updated in October 2015. I reclassified the 19 officially demar-

cated zones into five major zones: Urban, Pastoral, Agropastoral, Pastoral/Fishing, and

Riverine Irrigation. Figure 3.3 displays these livelihood zones and regional administrative

boundaries. Then, for each region, I calculated the percentage of the population that

follows each livelihood type (Figure 3.4).

Region administrative zones and population

The administrative zones for regions were derived from the Global ADMinistrative

Area (GADM) admin 1 boundaries (GADM, 2015). I computed the total populations of

each region for 2020 based on data from the Global Human Settlement Layer Population

(GHS-POP) dataset produced by the European Commission’s Joint Research Centre

(Schiavina et al., 2023).
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Precipitation

The precipitation observations are derived from the Climate Hazards Center InfraRed

Precipitation with Station (CHIRPS) Precipitation dataset (Funk et al., 2015). I calcu-

lated the average population-weighted z-score of each region’s precipitation for every

month of the study period based on historical records from 1981 to 2023.

Air Temperature

I used a blend of two global air temperature datasets to acquire high-resolution (0.05◦)

data from 1980 to 2023 – The Climate Hazards Center Infrared Temperature with Sta-

tions (CHIRTSmax) product (Funk et al., 2019) and the fifth generation of European

ReAnalysis (ERA5), produced by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) (Hersbach et al., 2020). The Climate Hazards Center produces a har-

monized product, which has not yet been published. The following are the methods

used to create it – First, hourly ERA5 2-meter temperature data is extracted to com-

pute daily maximum and minimum temperatures. These values are then downscaled to

match the daily resolution of the CHIRTSmax. Monthly climatological mean and stan-

dard deviation are then calculated from 1983 to 2016 for ERA5 Tmax, ERA5 Tmin, and

CHIRTS Tmax. A correction factor is determined by subtracting the mean ERA5 Tmax

from the actual value and dividing the result by the standard deviation of ERA5 Tmax.

This factor is multiplied by the CHIRTS Tmax standard deviation to obtain an offset.

CHIRTS-ERA5 Tmax is computed by adding the CHIRTS monthly mean and the offset.

Monthly CHIRTS-ERA5 Tmax is calculated by averaging daily CHIRTS-ERA5 values.

Finally, I calculated regional population-weighted z-scores for CHIRTS-ERA5 Tmax using

the full historical record from 1980 to 2023.
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Conflict

The Armed Conflict Location and Event Dataset (ACLED) provides detailed, disag-

gregated information on the type, agents, location, date, and other various attributes of

political violence events, demonstration events, and other non-violent, politically relevant

activities in every country and territory globally (Raleigh et al., 2010). ACLED focuses

on tracking violent and non-violent actions perpetrated by or affecting political agents,

including governments, rebels, militias, identity groups, political parties, external forces,

rioters, protesters, and civilians. Event types include battles, protests, explosions/remote

violence, and violence against civilians.

My analysis considers the total number of events and fatalities per 1,000 people

recorded monthly in each region as a proxy for conflict severity. I used monthly average

regional z-scores of each measure based on the historical ACLED record from 1997 to

2023.

3.2.3 Theoretical Model

The gravity model is a statistical method that predicts the flow of goods, services,

people, or capital between two locations. The traditional model is based on the economic

size (or population stock in the case of human migration) and the distance between

locations (Anderson, 2011). The model is derived from the analogy of Newton’s law

of universal gravitation, which states that the force of attraction between two objects

is directly proportional to the mass of goods, labor, or other elements of production

between the origin, Yi, and destination, Ej, while the potential flow is minimized by, or

inversely proportional to, the square of the distance between them, d2ij. The equation is

as follows,
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Xij =
YiEj

d2ij
(3.1)

whereXij is the predicted flow of goods or labor between i and j. According to spatial

interaction theory, individuals aim to maximize migration benefits while minimizing costs

regarding the reason for and distance of migration (Garcia et al., 2015). Additional

specifications can be incorporated into the model to improve its fit and accuracy in

predicting migration flows. While some factors may add friction that impedes migration

flow, such as transportation costs, others encourage movement between locations through

added benefits such as economic opportunities or better living conditions. The extended

equation is represented as follows,

Xij = α + β1Yi + β2Yj + β3Dij + β4[Zij] + γ1(Pi) + γ2(Pj) + ϵij (3.2)

where Xij is the bilateral flow between location i and country j, Yi and Yj represent

the mass (e.g., population) of the two locations, Dij is the distance between them, and

[Zij] is a vector of other variables that can supplement the model to capture additional

factors that affect migration flows. The β coefficient terms measure quantitative changes

in the observable factors.

The equation also includes fixed effects for each location, defined by Pi and Pj, which

capture unobserved time and location-specific characteristics that affect migration flows,

and γ1 and γ2 are the associated coefficients. The error term, ϵij, represents the random

variation in population displacement flows that the model’s variables do not explain.

Finally, the Poisson pseudo-maximum likelihood (PPML) method is a reliable way

to estimate the gravity model. This method effectively handles zero values and het-

eroskedasticity in migration data. PPML works by maximizing the likelihood that ob-

served migration flows come from a Poisson distribution. Thus, the approach ensures
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robustness when incorporating additional complexities such as zero migration flows and

fixed effects.

3.2.4 Empirical Model

I constructed a suite of gravity models with different specifications, beginning with

a standard gravity model with only region population and distance between regions,

and then iteratively added subsequent models with additional explanatory variables.

The distance between regional centroids is calculated in kilometers. Movements within

regions were given a distance of 10 kilometers to avoid zero measurements. Population

and distance were expressed in logarithmic form for all models as the Akaike Information

Criterion (AIC) value was lower than a z-score estimation. Successive models included

weather variables – monthly regional average precipitation and temperature z-scores –

and monthly conflict variables – the z-score of the total number of events and fatalities

per 1,000 people in a region. To evaluate temporal lags and compounding effects driving

migration patterns, I evaluated the influence of present weather and conflict conditions

followed by successive models with the addition of lagged observations of one to two

months. Figure 3.5 is a conceptual diagram of how lagged variables are added to each

observation, representing how compounding pressures such as two to three months of

anomalously low rainfall or prolonged conflict can further exacerbate a situation and

incite populations to move. The decision and ability to migrate may also take individuals

longer than a month after a stressful event occurs.

I also tested how the interaction between the present climate conditions for each

month and the percentage of the population that follows a certain livelihood type in

each region affects migration flows. Month dummy variables, as well as region and year

fixed effects, were included in each model. The dependent variable is the total popula-
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tion that moved between regional administrative zone boundaries in a given month. To

avoid multicollinearity, I excluded one year (2023) and one month (January) from the

model estimations. Region fixed effects with high multicollinearity were also automati-

cally omitted from the model estimation. The percentage of the population with urban

livelihoods interacting with the climate variables was excluded and designated as the ref-

erence category, allowing for a comparison of the effects of various non-urban livelihoods

on migration relative to urban settings. All fitting procedures were computed using the

Gravity Modeling Environment (GME) Python package.

Figure 3.5: A conceptual diagram of the gravity model estimation between origin and
destination regions with the addition of explanatory variables and their lags to account
for compounding effects.

70

https://github.com/USITC-Gravity-Group/GME


Gravity Model Estimation of the Drivers to Internal Human Displacement in Somalia Chapter 3

3.3 Results

3.3.1 Baseline model findings

In the base PPML model (model 1 of B.1), the coefficient for the logarithm of dis-

tance (−1.521) provides insights into the impact of geographical separation on migration.

Specifically, for every 1% increase in the distance measured in kilometers between origins

and destinations, the number of migrants moving between the locations decreases by

approximately 0.015. The coefficient’s high statistical significance (p < 0.001) and its

consistency across different model specifications reflect the strong negative relationship

between distance and migration. This finding confirms the hypothesis that increased dis-

tances significantly deter migration due to considerable challenges and costs associated

with longer migration routes.

Contrary to distance, the coefficients for the logarithm of the population at both the

origin and destination displayed no significant influence on migration patterns in any

of the model specifications. In the base model, the coefficient for the logarithm of the

departure (origin) population (0.062) indicated a marginal and statistically insignificant

decrease in the number of migrants by 0.0062 for every 1% increase in the origin popu-

lation. Similarly, the coefficient for the logarithm of the destination population (0.765)

suggested a modest and equally non-significant increase of approximately 0.0076 migrants

for every 1% increase in the destination’s population. Although intuitive, these subtle

effects lacked statistical significance and thus do not support strong conclusions about

the role of population size in driving migration flows in this case study.
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Figure 3.6: Coefficient estimates with standard errors for arrival (a) and departure (b)
climate effects without conflict or livelihood effects (model 4 from B.1) and with conflict
fatalities added for arrival (c) and departure (d) estimates (model 10 from B.1). The
lagged inputs are labeled with “t-” and the number of months. Significant coefficients
are marked with an asterisk, indicating a p-value of 0.001, 0.05, or 0.1.

3.3.2 Anomalous rainfall, particularly in pastoralist zones, is a

significant driver of migration

Next, we turn to the analysis of environmental and livelihood factors. When con-

sidering the effects of weather alone with lags of up to 2 months (model 4 from B.1),

the coefficient for the z-score of current departure (origin) precipitation is -0.233 (see

Figure 3.6b), indicating a moderately statistical relationship with migration outcomes

(p < 0.1). This coefficient signifies that for every one standard deviation increase in
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Figure 3.7: Coefficient estimates with standard errors for arrival (a) and departure (b)
climate effects and livelihood interaction terms without conflict effects (model 13 from
B.2) and with conflict fatalities added for arrival (c) and departure (d) estimates (model
19 from B.2. The lagged inputs are labeled with “t-” and the number of months. Signif-
icant coefficients are marked with an asterisk, indicating a p-value of 0.001, 0.05, or 0.1.

precipitation above the mean at the origin, migration counts are expected to decrease

by 0.233. This result suggests that adverse weather conditions deter individuals from

initiating migration, potentially due to the enhanced risks associated with travel under

such circumstances. The moderate level of statistical significance, however, points to

a noticeable but not overwhelmingly strong relationship between precipitation and the

decision to migrate when the weather drivers are considered alone. Air temperatures

alone were not significant across the various models. This may be because high air tem-
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peratures, while physically uncomfortable, do not directly or as strongly influence the

decision to migrate in the short term (0 to 2 months) as they may take a longer time to

affect livelihoods.

I will now explain how multiplicative effects between weather and livelihood zones

impact migration patterns. When the percent of the region’s population that follows a

certain livelihood is added (model 13 from B.2 and Figure 3.7), the coefficient for the

z-score of current origin precipitation drops out as no longer significant, while three of

the variables for weather interacting with livelihood types stand out.

The z-score of current arrival (destination) precipitation interacting with the percent

of the population that is pastoral is highly significant (p < 0.001) with a coefficient of

1.042, and the coefficient of arrival precipitation is -0.043. With an average regional

percent population that is pastoral of 34.13%, the effect of a 1% change in the standard

deviation of precipitation is about 0.31 migrants, or in other words, an approximately

31% increase in migration for a one standard deviation increase in precipitation, holding

the pastoralist livelihoods constant. This is calculated by −0.043 + (1.042 × 0.3413).

With a 10% increase in pastoralists at the arrival, this effect increases to nearly 35%.

On the other hand, at the departure locations, two distinct patterns emerged. The

interaction between departure precipitation and the percentage of the pastoral popula-

tion showed a notable inhibitive effect on migration with a coefficient of -1.170. As the

coefficient of departure precipitation is 0.024, this interaction term can be interpreted as

an approximately 37.5% decrease in migration for every one standard deviation increase

in precipitation at the departure region, holding the pastoralist livelihoods constant, as

calculated by 0.024 + (−1.170 × 0.3413). This substantial effect stresses the strong re-

lationship between environmental conditions and socio-economic characteristics of the

destination region, highlighting how climatic factors particularly amplify migration re-

sponses in areas with significant pastoral communities. Enhanced precipitation might
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make local conditions more favorable for pastoral activities, thereby reducing the push

factors for migration from these areas.

Similarly, for the interaction of precipitation with pastoral/fishing populations, a coef-

ficient of 3.159 indicates that a dramatic increase in migration occurs under the combined

influence of increased precipitation and a significant presence of these livelihoods. Hold-

ing the percentage of regional populations with pastoral/fishing livelihoods constant at

the mean (7.3%), the effect of a one standard deviation change in precipitation in the

origin location results in a 25.5% increase in migrants and a 10% increase in pastoral-

ist/fishing livelihoods would lead to an approximately 28% increase in migrants leaving.

The results reflect how adverse conditions, possibly flooding (especially in late 2023) or

loss of fishing and/or grazing lands, prompt a significant migration response.

3.3.3 Conflict has a strong effect on migration over and above

that of weather

In analyzing conflict’s impacts on migration patterns, the coefficients associated with

the z-scores of conflict fatalities per 1,000 people reveal important influences at both

departure and arrival locations (Figure 3.8). According to the model specifications with

both weather and conflict fatalities effects but no livelihood effects (model 10 from B.1,

the z-score of the number of fatalities per 1,000 people is very significant for the arrival

region at the current period (p < 0.05) as well as at a lag of one month (p < 0.05).

Similarly, the current departure fatalities effect is also highly significant (p < 0.001).

At the departure locations, the positive coefficient for current fatalities suggests that an

increase in fatalities by one standard deviation is associated with 0.174 more migrants.

This indicates that higher levels of violence push more individuals to flee from these areas.

On the other hand, at arrival locations, both the current and lagged one-month fatality
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Figure 3.8: Coefficient estimates with standard errors for arrival (a) and departure (b)
conflict fatalities effects with climate effects and no livelihood inputs (model 10 from B.1)
and with livelihood interaction terms added for arrival (c) and departure (d) estimates
(model 19 from B.2). The lagged inputs are labeled with “t-” and the number of months.
Significant coefficients are marked with an asterisk, indicating a p-value of 0.001, 0.05,
or 0.1.

rates exhibit negative coefficients (-0.105 and -0.123, respectively) for each standard

deviation increase in fatalities. These findings suggest that higher immediate and recent

past violence at potential destinations deters migrants from moving to these regions.

Note that I show the effects of the number of conflict events per 1,000 people per month

and region as a robustness check in the appendix (Figure B.3), where the results indicate

similar levels of significance.
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3.3.4 Overall interpretation

The models reveal nuanced and significant influences in examining the effects of cli-

mate, conflict, and their interactions with specific livelihood demographics on migration

patterns (model 19 from B.2 and Figure 3.7). First, the standalone climate variables,

including both current and lagged precipitation and temperature, did not yield statis-

tically significant effects. This suggests that climate variables alone may not directly

predict migration decisions without considering the context of local economic livelihoods

or conflict scenarios. The coefficient of -0.092 with a marginal significance level (p < 0.1)

for current arrival fatalities suggests that an increase in conflict fatalities tends to slightly

reduce migration into those areas. More pronounced is the effect of fatalities from the

previous month (-0.125, p < 0.05), suggesting that the recent history of conflict remains

a significant factor deterring migration, possibly due to lingering safety concerns and

destabilized conditions. An increase in fatalities at the departure location (coefficient of

0.175 with p < 0.001) significantly increases migration, suggesting that violence pushes

residents to flee from these areas in search of safety or stability.

The interaction term for arrival precipitation with the percentage of the pastoral pop-

ulation in a region shows a significant positive effect (coefficient of 0.976, p < 0.05). This

suggests that increased precipitation, when combined with a higher proportion of pas-

toralists at the destination, enhances migration inflows, possibly due to improved grazing

conditions or other favorable factors for pastoral activities. The negative coefficient of

-0.763 (p < 0.1) for the interaction at the departure location suggests that increased pre-

cipitation coupled with a high percentage of pastoralists reduces migration. This could

reflect that better water availability might temporarily improve local conditions for pas-

toralism, decreasing the necessity to migrate. The coefficient for departure precipitation

and combined pastoral/fishing populations is high with a coefficient of 2.818 (p < 0.05),
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indicating a strong push factor, where increased precipitation exacerbates conditions neg-

atively for combined pastoral and fishing communities, likely worsening local economic

conditions and driving migration.

The full regression results tables with 19 different model specifications are displayed

in the appendix. Among the models without livelihood effects (models 1 to 10: B.1),

the version that includes weather with lags of up to two months and conflict fatalities

with lags of up to two months has the lowest AIC and, therefore, the best fit. With the

addition of livelihood interaction terms (models 11 to 19: B.2), the AIC value decreases

overall for all models, and similarly, the version that includes weather lags up to two

months, and conflict fatalities lags up to two months has the lowest AIC and therefore

is the best fit across all model versions.

3.4 Discussion

3.4.1 Migration as a livelihood adaptation strategy

While I find that weather as a whole is not a primary driver of migration, it does

play an important role in places where people are experiencing certain circumstances.

Livelihood zones differentially affect how precipitation impacts migration. Most notably,

pastoral and pastoral/fishing regions are significant drivers of migration. I find that

precipitation has a larger effect on pastoralists, whereby individuals are likely to leave

due to drought or reduced rainfall and move towards places that are experiencing more

rain. Yet, while precipitation acts as a push and pull factor, specifically in places that

are pastoral (and pastoral/fishing), in areas with agropastoralists, precipitation was not

a significant marker of in- or out-migration. Therefore, the places where we would expect

the climate to matter the most in terms of immediate push and pull factors are largely
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based on where individuals can move with their productive assets.

My findings align with the broader literature on how migration is often framed as

a livelihood strategy for smallholder households in rural areas. Economic, social, and

cultural factors shape migration decisions and their impact on household livelihoods

(Greiner and Sakdapolrak, 2013). As environmentally driven migration can fall along a

spectrum from forced to more voluntary forms of mobility (Hoffmann et al., 2022), access

to productive land and economic opportunities strongly influence movement patterns in

East African countries (Willett and Sears, 2018). During slow-onset climate hazards

such as drought, migration patterns may resemble traditional practices as individuals

seek to diversify their livelihood options. Circular migration between rural and urban

areas is common in East Africa, especially when economic activities are tied to the local

environment (Willett and Sears, 2018). This strategy may become more prevalent with

climate change as natural resources decline in these regions.

Drought has been shown to significantly impact rural households dependent on agri-

culture in neighboring Ethiopia, leading to crop damage and drinking water shortages

for humans and livestock (Hermans and Garbe, 2019). These stressors can increase mo-

bility among affected households, triggering short-term migration to nearby locations to

address immediate needs such as food insecurity. However, understanding the impacts of

drought on livelihoods and migration requires considering a broader context rather than

focusing solely on drought as a single driver. The decision to migrate may not be directly

caused by drought but is heavily moderated by it. Other factors, such as how to cover

food shortages, employment opportunities, or government support through food aid, also

play an important role (Hermans and Garbe, 2019). In Tanzania, environmental shocks,

such as extreme weather events, have a significant impact on migration and increase the

probability of having a household member absent (Blocher et al., 2024). These shocks

have an immediate impact on household livelihoods as they lead to livestock losses and
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crop damage. Conversely, non-environmental shocks, which include economic, social, po-

litical, or health-related disruptions, also play a role in influencing migration patterns,

though these shocks can be idiosyncratic and therefore make migration less consistent

(Blocher et al., 2024). Apart from migration, farmers in arid and semiarid regions may

adopt other coping and adaptive strategies, including crop diversification, input adjust-

ment, water management, asset depletion, or forms of income diversification that do not

require moving, to sustain their livelihoods during periods of stress caused by extreme

weather conditions (Ashraf et al., 2021). Households may also seek support from social

networks or make changes in food provision and consumption before or in addition to

migrating (Hoffmann et al., 2022).

Rangeland and pastoral livelihood zones in the East African Horn have been experi-

encing increased environmental degradation due to factors such as land fragmentation,

overexploitation, extreme weather conditions, and climate variability (Pricope et al.,

2013). Due to these stressors, there has been an increasing susceptibility to environ-

mentally driven pastoral conflicts in the region as communities compete for dwindling

resources. With shrinking grazing land, pastoralists and agropastoralists respond by

traveling further distances.

Griffith et al. (2023) discuss the value of a “livelihood constellation” perspective in

understanding the patterns of migration and livelihood in Somalia, referring to how

households engage in multiple activities, which each influence one another to sustain

their livelihoods. These economic activities can include traditional, seasonal, and envi-

ronmental migration, as well as other forms of economic activity, such as pastoralism

or small-scale trading. Finally, Sakdapolrak et al. (2024) emphasize the importance of

considering livelihoods in the context of migration and climate change adaptation. They

confirm my findings that there are differentiated impacts on households based on place

and social scale. Livelihood decisions to migrate are shaped by socioeconomic conditions,
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seeking better livelihood security through adaptive actions that aim to enhance coping

capacity, reduce vulnerability, and improve asset bases over time.

3.4.2 Displacement pathways may be shaped differently by short-

run shocks compared to prolonged events

While I did find that there were immediate effects of migration due to precipitation,

air temperatures were not a significant driver in the context of my study region and time

period. This could be because it may take a longer period of time for temperatures to re-

sult in a bad harvest or negatively affect livestock health. The literature on heat stress as

a driver of migration is thin. While Mueller et al. (2014) find that over the long-term, heat

stress can increase the migration of men from rural areas due to negative effects on farm

and non-farm income, there is scant evidence that short-term heat waves would result

in migration. Additionally, in a review of the heat-migration research nexus, Issa et al.

(2023a) conclude that heat may not be a driver of migration in all circumstances, and

moderating elements include other climatic factors, agricultural productivity, economic

opportunities, and demographics. They also find that none of the analyzed literature

reported a “temperature threshold” above which migration is inevitable. Using land sur-

face temperatures, instead, could reflect when crop or grazing seasons fail and, therefore,

indicate when pressures are higher for people to move elsewhere.

I would also expect that droughts and floods would impact migration decisions dif-

ferently depending on the time scale analyzed. Mobility as a response to slow-onset

environmental hazards such as droughts is challenging to quantify due to the indirect

effects between livelihood stability and environmental change (Oakes et al., 2023). While

flash droughts or flash floods can lead to immediate population displacement, the effects

of prolonged stressors from multi-year drought or frequent flooding may not have shown
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up in my analysis as affecting migration, particularly when farmers or pastoralists have

developed long-term coping mechanisms in their place of residence.

Assessing patterns on a rolling three-month average rather than a per-month basis

could be a way to test how ongoing stressors from environmental drivers affect displace-

ment. In a study by Backhaus et al. (2015), the authors suggest that future research

analyzes the relative contributions of abrupt versus gradual changes in climate.

Similar patterns may be associated with conflict as well. As discussed in Section 3.1.1

on “Climate, Conflict, and Migration,” extreme weather can provoke conflict. Regardless

of the origin, however, conflict is a more salient situation overall and has a universal effect

on all of the country’s population rather than only impacting specific livelihood groups.

It is possible, however, that ongoing conflict would have a different effect on migration

compared to immediate shocks as populations must learn to cope with their surroundings.

Future analyses could explore how conflict-migration trends relate to the temporal unit

of analysis.

3.4.3 Limitations and Future Research Opportunities

Several limitations of this study suggest prospects for further inquiry. First, it is

important to acknowledge issues with the Somalia internal displacement dataset itself.

The accuracy of population redistribution of different locations based on internal dis-

placement movements depends on the precision of PRMN reports. These reports are

based on ground informants instead of statistically representative estimation methods.

Although the PRMN project captures both departures and returns, it is possible that

the returning flows are reported less systematically (Warsame et al., 2023).

Next, it was not possible to characterize migrant individuals without the availability of

demographic information on, for example, age, gender, or wealth. Fanning (2018) argues
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for the importance of gender-sensitive research on displacement in Somalia, capturing

the specific needs of different populations, particularly with respect to safety, services,

and livelihood opportunities. Researchers in the field of human mobility in the context of

climate change call for producing differentiated knowledge that accounts for groups that

are particularly vulnerable, including young or elderly populations, as well as in terms

of access to resources, work, services, and impacts on health, both physical and mental

for those that are mobile and trapped (Oakes et al., 2023). In my model estimation,

I was unable to account for immobile populations. Benveniste et al. (2022) find that

lower-income and resource-constrained populations globally may be less likely to be able

to migrate in the future due to climate change. These populations will face additional

vulnerabilities and exacerbated poverty from staying in place. Research agendas that

also prioritize the concerns of trapped populations are needed.

There may also be confounding factors that I did not consider, which could have a

larger role in driving migration behaviors. For instance, in a study by Owain and Maslin

(2018), the authors determined that climate variations, measured by the Palmer Drought

Severity Index and the global temperature record, played little or no part in the causation

of conflict and displacement of people in East Africa over the last 50 years. Rather, they

attribute such trends largely to rapid population growth, low or falling economic growth,

and political instability.

Another opportunity for further analysis is to incorporate food security as another

branch of migration drivers. Compounding events raise systemic risks to food systems

and affect displaced populations already vulnerable to climate variability (Thalheimer

et al., 2023a). (Tuholske et al., 2024) present a conceptual framework for linking the

climate-food-migration nexus in low- and middle-income countries. While the authors

examine the “agricultural pathway” hypothesis as a possible mechanism to explain the

food security and migration relationship, particularly in explaining rural out-migration
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as an adaptation strategy, they also emphasize the need for more empirical evidence

and fine-grained data to determine the direct connections. Additional parameters in the

gravity model estimation of migration in Somalia, such as food prices or access to food

markets, may yield new insights into how agricultural livelihoods relate to mobility.

Finally, the 2023 torrential deyr rain season (October to December) in Somalia led

to severe flooding, which caused extraordinary levels of internal displacement as seen by

the large spike towards the end of the time series of Figure 3.1. According to a situation

report by OCHA (2023), roughly 2.48 million people were affected by the floods, including

1.2 million displaced people. Incorporating flood extent and impact data into the model

estimation, alongside drought severity indices to capture strong drought years like in

2017 and 2022, could provide more direct evidence of how and when disasters lead to

mass displacement.

3.5 Conclusion

In this chapter, I offer a nuanced, quantitative view of climate, conflict, and socio-

economic-driven migration. With access to a uniquely high spatiotemporal resolution

dataset of internal displacement in Somalia over a seven-year period, I derive novel in-

sights into how environmental characteristics and socio-economic status influence internal

displacement. While my research contributes to a thread of researchers that have used

the PRMN dataset in their work (Oh et al., 2024; Yuen et al., 2022; Pham and Luengo-

Oroz, 2022; Thalheimer et al., 2021a, 2023b) (see “Evidence from Somalia,” Section 3.1.1

for details on each study), none thus far have implemented a gravity modeling approach.

Using this method, I distinguish whether singular and combined elements may explain

the challenges displaced populations face and differentiate between push/pull factors.

Precipitation can be an important driver of both in- and out-migration, though the in-
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fluence varies widely by livelihood zone. Regions with a greater prevalence of pastoral or

pastoral/fishing populations and anomalous rainfall have an outsized effect on migration

compared to other livelihood types interacting with precipitation. While it is unsur-

prising that conflict is a strong driver of migration, I quantify the magnitude to which

violence triggers migration above that of anomalous weather conditions.

The PRMN dataset exemplifies the type of rich, consistently collected information

that other countries need to better monitor the risks and vulnerabilities of specific popula-

tions. We must also continue refining quantitative approaches that enhance our awareness

of how certain stressors impact migration and feedback to one another. An improved

understanding of historical and current drivers of internal displacement can guide efforts

to project future trends, inform policy, and aid interventions under a changing climate.
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Chapter 4

The Application of Large Language

Models for Multi-hazard Disaster

Event Classification

Abstract Disasters pose a significant threat to lives, livelihoods, and development

worldwide. The consequences can be even more damaging when disasters happen in

succession or overlap. Rapid and accurate categorization of disaster events is critical

for effective disaster response and risk-reduction efforts. However, the growing volume

of disaster-related news and reports presents challenges for timely analysis and insight

generation. This study utilizes recent advancements in artificial intelligence, specifically

large language models (LLMs), to automatically classify news articles and reports by dis-

aster type and assign relevant topical tags. Applying OpenAI’s GPT-3 language model

to a large dataset of articles from ReliefWeb, a leading humanitarian information por-

tal, I demonstrate the suitability and value of AI-assisted multi-label classification for

disaster news streams. I test the model with zero- and few-shot prompting and then

fine-tune it using historical ReliefWeb articles and their disaster labels. I analyze per-
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formance across different disaster types using three evaluation metrics: subset accuracy,

Hamming loss, and Jaccard similarity. The fine-tuned model responds more appropri-

ately according to the prompt compared to the base model, though it sometimes leans

towards over-classifying multiple tags or confuses similar types of events. This chapter

presents important implications for improving the specificity and timeliness of disaster

monitoring systems.

This is the first study to apply LLMs to perform multi-label classification of disaster-

related news at scale. The approach suggests promising avenues to accelerate the synthe-

sis of unstructured text into structured, actionable data to inform disaster risk manage-

ment. I introduce an AI-driven solution that enables more efficient tracking of disaster

events, impacts, and trends to support rapid needs assessments, resource allocation deci-

sions, and strategic planning for long-term risk reduction by humanitarian organizations,

governments, and other stakeholders. The study illustrates how AI can be used for good

to improve global disaster resilience and social welfare.

4.1 Introduction

The world has witnessed a substantial increase in the frequency and severity of

climate-related disasters in recent years. This alarming trend is closely linked to shifts in

our climate, marked by increasingly erratic and extreme global temperatures and rainfall

patterns (Thomas and López, 2015). The consequences of disasters are intensifying, fu-

eled by the simultaneous factors of population growth, expanding development, and an

escalating vulnerability attributed to aging infrastructure AghaKouchak et al. (2020). As

a result, communities worldwide are facing unprecedented challenges in terms of human

casualties and displacement, economic losses, and long-term social and environmental

repercussions.
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Moreover, there has been a growing number of multi-hazard and compound events,

which are characterized by the co-occurrence of hazards that may interact or cascade

upon one another (Claassen et al., 2023). Figure 4.1 highlights subregional vulnera-

bilities and differences in disaster occurrence, highlighting where certain compounding

events have occurred over time. Multiple events transpiring in the same period and loca-

tion can intensify the overall impact and place additional challenges on response efforts

(Raymond et al., 2020; Zscheischler et al., 2020). Connected events often manifest in

unpredictable and intense ways that outpace singular disasters and call into question

traditional disaster management practices that may not be sufficient to meet new or ad-

ditional demands (Cutter, 2018; van den Hurk et al., 2023). For instance, multivariate

hydrological extremes such as sequential flood-to-drought events (Rezvani et al., 2023;

Brunner, 2023), or heightened health risks from joint exposure to heatwaves and drought

(Tripathy et al., 2023; Wang et al., 2023; Hao et al., 2022; Mukherjee and Mishra, 2021;

Hao et al., 2018), generate complex humanitarian crises that require novel systems of

risk reduction and mitigation.
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Figure 4.1: Overview of climate-related disaster frequency by type across global subregions from 2000 to 2023 according
to the Emergency Events Database (EM-DAT). Each panel represents a different subregion, such as Latin America and
the Caribbean, Northern Africa, and Eastern Europe. Within each panel, disasters are categorized by type: drought,
extreme temperature, flood, landslide, and storm. Dot size indicates the number of events, with larger dots representing
more events in a given year.
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The compounding effects of these multi-hazard events can greatly strain emergency

response resources and expose the vulnerabilities of our current disaster risk reduction

strategies. Traditional approaches focusing on single hazards may prove inadequate for

complex, interrelated risks. To effectively address the challenges posed by multi-hazard

events, it is essential to have access to timely, accurate, and comprehensive information

about these disasters. Humanitarian and media organizations produce news highlights,

situational reports, maps, and infographics surrounding a disaster that inform timely and

effective intervention. How information is transmitted from the epicenter of a disaster

zone to the international community influences how events are perceived in their severity

and prioritized for response.

It is crucial to produce rapid and accurately distilled updates to adeptly address and

mitigate the added pressure of multi-hazard events. The information should facilitate a

comprehensive understanding of the mechanisms and impacts of these events, guiding the

formulation of effective preparedness and response strategies. Improving how we gather,

analyze, and disseminate disaster-related information is paramount for building a more

resilient world in the face of more complex emergencies.

Considerable obstacles persist in detecting and identifying the severity of multi-hazard

events. Existing systems are limited in their capability to address the multi-dimensional

aspects of such events, which can lead to delayed and inaccurate communication. Most

information retrieval systems struggle to handle diverse formats of unstructured text

data from various monitoring sources. This limitation is particularly significant for

multi-hazard events, where the complexity of situations makes effective data analysis

and information utilization more challenging.

A promising solution to the challenges in disaster management is the advancement of

artificial intelligence (AI) tools, which offer innovative contributions to the field. Large

language models (LLMs), advanced AI systems that are trained on vast amounts of text
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to perform various language-related tasks, can quickly process and analyze large volumes

of text data, pushing the boundaries of disaster information collection and synthesis to a

new level. While traditional methods of disaster management rely on human intervention

and manual analysis, AI offers powerful automation, efficiency, and insights (Alam et al.,

2020; Goecks and Waytowich, 2023).

Natural Language Processing (NLP), a field of computer science that combines com-

putational linguistics and machine learning to enable computers to understand, interpret,

and generate human language, is not yet widely used for detecting and evaluating ex-

treme events (Tounsi and Temimi, 2023). In this chapter, I demonstrate a use case for

AI-based NLP in disaster management. Specifically, I present a multi-label classification

approach to identify multi-hazard disaster events from unstructured text derived from

humanitarian news and reports.

As individuals, humanitarian organizations, and authorities collect, seek out, and

disseminate information about a crisis, the process of sifting through the surge of news

articles or social media posts can be laborious, slow, and inefficient Imran et al. (2020);

Tamagnone et al. (2023); Pereira et al. (2023). With the rise of new technologies such as

remote sensing and social media, the humanitarian sector is receiving abundant informa-

tion. However, not all data and analytical tools are useful. Currently, the humanitarian

community is struggling to meet early action needs due to the overwhelming amount of

sources that need to be collected and analyzed to make informed decisions (Lentz and

Maxwell, 2022).

Rocca et al. (2023) argue that humanitarian organizations, which work with large

amounts of unstructured text from many different sources and formats, could dramat-

ically benefit from tools that automatically analyze these data and derive actionable

insights. However, the systematic adoption of NLP is presently limited in the human-

itarian sector. NLP methods for large-scale digestion of unstructured text are still in
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their infancy and changing rapidly. Data scarcity and standardization remain an issue

when NLP is used, and models can produce biases that pose ethical risks (Rocca et al.,

2023).

AI innovations present new opportunities and challenges in processing incoming data

and extracting key insights. In the context of disaster response and management, deep

learning techniques for NLP can be used to detect crisis events, understand public re-

action and sentiment, identify eyewitnesses, build situational awareness, communicate

warnings and risks, assess damage, gather actionable insights, and verify information

(Imran et al., 2020). Automated text summarization and event classification could better

equip specialists to address all stages of disaster risk management: mitigation, prepared-

ness, response, and recovery (Yela-Bello et al., 2021).

In this study, I investigate the potential role of LLMs in revolutionizing the synthesis

of crisis information from diverse sources. I demonstrate how LLMs can offer disaster

and humanitarian relief information management solutions. By showcasing the practical

application of advanced AI models, I explore avenues to enhance the efficiency and effec-

tiveness of information retrieval. The need for swift and accurate access to information

during disasters underscores the significance of LLMs, as they can filter through data

and identify essential details.

This chapter introduces an application of LLMs for performing multi-label catego-

rization of disaster-related information. I discuss the steps to prepare these models

and compare their performance with human-led classification. My comparative analysis

sheds light on the value that LLMs provide as well as opportunities for improvement.

Looking ahead, I propose paths for future research and applications. The versatility of

LLMs and other emerging technologies in disaster information management opens up

numerous possibilities. I contribute to the discourse by highlighting opportunities for

innovation and cross-disciplinary collaboration among researchers and practitioners to
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use these tools for improved disaster response. In the following section, I will discuss the

literature on various forms of disaster events and the state of AI applications for disaster

risk management.

4.1.1 Literature Review

Disaster event terminology

Extreme impacts often result from converging multiple variables or events, even if

none are individually extreme. This amalgamation of factors can significantly increase

the severity of the impact (Leonard et al., 2014). Several terms can be used to dif-

ferentiate complex hazard events in disaster risk reduction. Among these, a compound

event is defined as a scenario where two or more drivers happen simultaneously or se-

quentially. The concurrence or succession of multiple drivers often results in situations

that lead to increased difficulty in response and recovery than those caused by a singular

driver. In turn, compound events often exhibit increased uncertainty and greater impacts

(Raymond et al., 2020; Cutter, 2018).

Another term, multi-hazard event, can be distinguished as the presence of multiple

natural or human-caused hazards within a defined area or time frame. While there is

no prerequisite of interaction between these hazards, there may be interrelated effects

(UNDRR, 2016; Claassen et al., 2023).

Other related terminologies include consecutive disasters, which represents when a

series of natural hazard events occur in sequence, with each disaster potentially influenc-

ing the vulnerability and impacts of subsequent events. Dependencies between natural

hazards can trigger these disasters or can occur independently but may overlap spatially

and/or temporally. The word “consecutive” is used to describe disasters that happen

one after the other, regardless of their size and impact. Consecutive disasters can have
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a range of effects, both tangible and intangible, such as damage to buildings and infras-

tructure, loss of life, reduced institutional capabilities, and decreased welfare (de Ruiter

et al., 2020).

Similarly, cascading hazards describe when one primary hazard triggers a secondary

hazard. Cascading hazards create a chain reaction of events that progressively gain com-

plexity (Sakahira and Hiroi, 2021). The progression from a hazard to a disaster to a

catastrophe is characterized by the interconnectedness of systems (e.g., the hazard, crit-

ical infrastructure, and preexisting vulnerabilities) and the escalation of consequences

(Cutter, 2018). Complex emergencies describe disaster situations alongside political in-

stability, conflict, and societal disruptions, which give rise to multi-dimensional crisis

scenarios. Connected extreme events transpire when there is an inherent linkage be-

tween extreme weather or climate hazard events and their impacts due to shared societal

mechanisms or physical drivers (Raymond et al., 2020).

Lastly, the term paired events has been used to represent two events of the same haz-

ard type (e.g., floods or droughts) that occurred in the same geographical area several

years apart. Studying paired events can reveal how exposure, vulnerability, and manage-

ment strategies may have changed between the two events to identify patterns, trends,

and lessons learned (Kreibich et al., 2022).

In this study, I use multi-hazard event when articles or reports discuss more than one

hazard affecting a given region or population. I recognize, however, that the context of

each event may differ. For instance, an article may include information about a flood

and landslide that both happened in relatively the same time frame and location, while

another article may compare two flood events from different time frames and locations.

I use the term multi-hazard event as the main term throughout the rest of the chapter

because I do not instruct the AI system to determine how the discussed disasters interact.

Instead, I only instructed the system to identify the hazards discussed in a document.
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Information retrieval for disaster management and humanitarian response

Crisis informatics is an emerging area of research focused on devising techniques

and frameworks to process and classify extensive data related to crises, as disseminated

across both mainstream and social media platforms (Alam et al., 2021). In response to the

challenges of extracting and deciphering vast amounts of crisis-related data, Alam et al.

(2021) introduced CrisisBench. This dataset merged eight different human-annotated

social media datasets to allow for more effective, standardized, and context-sensitive

training of machine learning models for tasks aimed at humanitarian situational under-

standing. Further, CrisisBench offers benchmarks for binary and multiclass classification

tasks with various deep learning models.

Mishra and Saini (2014) exemplified how sentiment analysis and text mining meth-

ods can automatically identify interlinked events within disaster management. Utilizing

AI algorithms, their research showed that improving the identification and evaluation

of disaster-related occurrences, recovery initiatives, and public responses could lead to

more efficient disaster response strategies. This could be achieved by facilitating prompt

assessments and enhancing decision-making processes.

CrisisFACTS, introduced by McCreadie and Buntain (2023), was a data challenge

motivated by the need to address limitations in evaluating crisis information and enhance

situational awareness during emergencies. The findings from the 2022 pilot edition of

CrisisFACTS showed promising advancements in automated technologies for extracting

and summarizing online content during crises.

In another study, Padhee et al. (2020) demonstrate how deep learning methods us-

ing language models, including Bidirectional Encoder Representations from Transformers

(BERT) and Robustly Optimised BERT Approach (RoBERTa), can effectively classify

social media messages during crises. The authors categorized messages into three main
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categories: informativeness, intent type (whether a message refers to an individual, group,

or organization “need” or “supply”), and the type of humanitarian aid (“Food”, “Shel-

ter”, “Health” and “WASH” – Water, Sanitation, and Hygiene). The use of advanced

deep learning and NLP technologies can automate the classification tasks that are tra-

ditionally time-consuming and impractical when done manually, thus facilitating more

efficient humanitarian aid responses (Padhee et al., 2020).

Similar techniques can also be used to identify sub-events during disasters (i.e., noun-

verb pairs that represent specific actions or incidents related to a particular event, such

as infrastructure damage or missing persons) from social media messages. Driven by hu-

manitarian organizations increasingly relying on social media for disaster response efforts,

Rudra et al. (2018) use clustering methods and dependency parsing to detect and sum-

marize sub-events from tweets. The authors assert that real-time processing over large

datasets can deliver actionable insights. Arachie et al. (2020) develop an unsupervised

learning framework to detect sub-events from tweets for retrospective crisis analyses on

Hurricane Harvey in 2017 and the Nepal earthquake in 2015. A key advancement of

their study is the introduction of a crisis-specific ontology for ranking sub-events based

on their relevance to a disaster. They cluster these sub-events to organize, categorize,

and evaluate how each component impacted different scenarios.

One initiative that implements AI techniques for humanitarian use is The Data Entry

and Exploration Platform (DEEP). The organization, Data Friendly Space, developed

this service, which aims to help organizations streamline the process of inter-agency

response by gathering and maintaining documentation and structured qualitative infor-

mation from data and reports (Belliardo et al., 2023).

Other research efforts have compiled multilingual humanitarian text datasets to test

extractive summarization. Yela-Bello et al. (2021) presented “MultiHumES,” the first

collection of 50,000 multilingual documents, of which approximately 35,000 have been
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tagged with annotated informative excerpts provided by humanitarian analysts that can

be used for training and evaluating extractive summarization models.

Fekih et al. (2022) later developed “HumSet,” a novel multilingual, expert-annotated

dataset designed for information retrieval and classification for humanitarian crisis re-

sponse. It is one of the first datasets for the humanitarian context that offers the ability

to test complex tasks in entry extraction and multi-label entry classification. With ap-

proximately 17,000 annotated documents covering multiple humanitarian emergencies

from 2018 to 2021, “HumSet” can be used to train and benchmark predictive models for

humanitarian text data (Rocca et al., 2023). The “HumSet” dataset is now used in the

DEEP platform for NLP-assisted article tagging and summarization.

More recently, Tamagnone et al. (2023) built upon “HumSet,” creating “HumBERT,”

which is a further customized multilingual dataset attuned to the complexity of the

humanitarian domain (e.g., knowledge of specific vocabulary, topics, and concepts). The

data corpus was collected from ReliefWeb, The United Nations High Commissioner for

Refugees (UNHCR), Refworld, and the Europe Media Monitor News Brief.

Applications of natural language processing with AI for disaster management

Natural Language Processing (NLP) is a domain that combines linguistics, computer

science, and artificial intelligence to process and analyze text and speech data. Com-

mon NLP tasks include extracting main topics from texts (topic modeling), identifying

named entities such as locations and people (named entity recognition), extracting sen-

timent (sentiment classification), automated text summarization, language translation

(machine translation), and automated question answering. In recent years, NLP tech-

niques in disaster management have started to gain attention for use in trend analysis,

event detection, and impact assessment (Tounsi and Temimi, 2023).

Predating the rise of and expanded access to LLMs, traditional NLP methods have
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been used to extract relevant text from mainstream and social media to facilitate build-

ing situational awareness during mass emergency events. Word embeddings, linguistic

processing, geographical taxonomies, and supervised classification can be employed to re-

trieve information such as semantics, syntax, key details (e.g., locations and dates), and

event impacts from articles or tweets (Petroni et al., 2018). Machine learning methods,

including Näıve Bayes and Maximum Entropy, have also been used to classify features

such as subjectivity, sentiment, register, and tone from tweets related to crisis events

(Verma et al., 2021). Other classification approaches such as Support Vector Machines

(SVM), Random Forests, Convolution Neural Networks, and Hierarchical Attention Net-

works have been tested to classify articles based on event types (Nugent et al., 2017). For

instance, Sakahira and Hiroi (2021) used an SVM to learn and detect causal sentences

within Japanese newspaper articles detailing cascading disasters. They constructed a

network that visually represents the interconnected events by extracting these casual

relationships. This approach can enhance the objectivity and comprehensiveness of anal-

yses compared to traditional methods that rely on manual extraction of causal relations.

As LLMs have become more powerful in recent years, several studies have emerged

to test their capabilities for disaster situation synthesis and knowledge building.Pereira

et al. (2023) use a search engine (NeuralSearchX) and the General Pre-training Trans-

former 3 Language Model (GPT-3) to create summaries of crisis event situations by

querying multiple documents, ranking their relevancy and then merging results from

various sources. With few-shot learning and chain-of-thought prompting, the authors

could generate comprehensive summaries without collecting training data, which can be

particularly beneficial when working with inconsistent data structures.

Graph neural networks can also augment transformer-based language models, bolster

understanding, and generate structured, synthesized information from disaster-related

text. Ghosh et al. (2022) introduced a framework called GNoM (Graph Neural Network
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Enhanced Language Model) to improve disaster-related multilingual text classification

under limited supervision. GNoM addresses the challenges of data inadequacy and non-

representativity found in disaster-related text data. Likewise, Goecks and Waytowich

(2023) built DisasterResponseGPT, which leverages graph neural networks and LLMs to

quickly generate action plans to user input disaster response scenarios. The algorithm

offers an interactive means to explore options during the planning phase of a response.

While not a focus of this study, multiple data modes, such as text and imagery,

can also be processed to categorize crisis events. NLP and computer vision can extract

valuable insights from social media during disaster events that may outperform image-

only or text-only approaches (Abavisani et al., 2020; Alam et al., 2020).

Beduschi (2022) acknowledge the potential benefits of AI for disaster management,

including enhancing preparedness, response, and recovery efforts and shifting towards an

anticipatory approach. However, they also recognize the significant risks associated with

AI. These include algorithmic bias, challenges in ensuring the accuracy and reliability of

training data, and concerns regarding data privacy. Finally, Nguyen and Rudra (2022)

present another framework for classifying and summarizing disaster-related tweets from

microblogs such as Twitter. In their study, the authors focus on interpretability in

their model design. According to Nguyen and Rudra (2022), although classification

explanations and rationales may reduce accuracy, interpretable models are essential for

transparency, accountability, and fairness.
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4.2 Methods

4.2.1 Data

Disaster Articles

ReliefWeb (https://reliefweb.int/) is a widely recognized humanitarian information

service provided by the United Nations Office for the Coordination of Humanitarian

Affairs (UNOCHA). Information posted on the site is monitored and collected from over

4,000 key sources, including humanitarian agencies, research institutions, and the media.

Reports, maps, new press releases, and infographics are delivered on the website and

accessible by an API at https://reliefweb.int/help/api. Launched in 1996, the service

provides global content on a 24/7 basis.

Using the ReliefWeb API, I extracted all updates on the service that had been tagged

with at least one disaster event. I excluded posts that only focused on conflict, health,

or other non-disaster-related crises and general global updates such as climate change

reports unrelated to specific events. In total, I extracted 301,306 articles. The time

frame of the data set spans from March 1, 1981, to June 28, 2023. The initial data set

included 3143 unique disasters labeled by ReliefWeb (e.g., Peru: Floods and Landslides

- March 2023) and 2658 disasters labeled with a GLobal IDEntified (GLIDE) number,

which is a globally common unique ID code for disasters. The GLIDE number “DR-2015-

000137-MWI,” for example, represents a drought in Malawi that was the 137th global

recorded event in 2015. Figure 4.2 depicts the distribution of different disaster types

recorded globally by GLIDE from 2000 to 2023. Meanwhile, Figure 4.3 presents the

number of countries that have experienced a certain number of major disasters (climate

and non-climate-related) in relation to El Niño and La Niña events during this time

period.
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Figure 4.2: Annual global distribution disasters given a GLobal IDEntified (GLIDE)
number from 2000 to 2023, segmented by disaster type. Each bar represents the total
count of disasters for a given year, with individual segments colored to denote different
disaster types, ranging from droughts and earthquakes to storms and wildfires. The
graph highlights variations and trends in the frequency of specific disasters, illustrating
the persistent prevalence of floods and storms alongside the episodic occurrences of other
disasters like droughts and heat/cold waves.

For each article, I retrieved the following annotated information: the date posted,

the primary country mentioned, a list of all countries mentioned, disaster types, disaster

names, themes, source, format, language, title, and the full text. For my analysis, I

only used the body articles posted as plain text on ReliefWeb and did not scrape any

attached PDF reports accompanying some posts. I then selected articles for the study

based on specific criteria: those written in English and tagged with up to five countries

and/or disaster types. Figure 4.4 represents the distribution of this subset of articles

by the top 30 combinations of disaster type tags. Most articles were tagged with one

disaster type, the most common being Flood, Earthquake, Tropical Cyclone, Epidemic,

and Drought. There were, however, numerous articles tagged with multiple disaster types.

To contextualize why some articles were tagged with several disaster types, I present a
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Figure 4.3: Annual distribution of disasters given a GLobal IDEntified (GLIDE) number
across countries from 2000 to 2023, differentiated by the number of disasters experienced
per country. Each bar represents the number of countries experiencing 1 to 5 or more
disasters in a given year, with color intensities increasing with the number of disasters.
Overlaying dashed lines indicate the occurrence and intensity of El Niño and La Niña
events according to the Oceanic Niño Index, categorized from weak to very strong. Note
that the disasters in the figure include climate-related and non-climate-related types.

few examples in Table 4.1 of the type of information summarized from certain articles

alongside their disaster type tags and overall classification according to the previously

discussed terminology.
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Figure 4.4: An UpSet plot of the distribution and overlap of articles tagged with various
disaster types on ReliefWeb. Each verticle bar represents a set of articles tagged with a
specific disaster type, with the height of the bar indicating the number of articles. The
horizontal bars at the bottom of the plot show the intersection between different disaster
types. These intersections reveal the number of articles that are tagged with multiple
disasters, providing insights into how often certain disasters are reported together. Only
the top 30 combinations are displayed.
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Table 4.1: Multi-hazard event classification examples summarized from select ReliefWeb articles.

Classification Disaster Types Description

Cascading Haz-
ard

Earthquake,
Tsunami

An earthquake off the coast of Sri Lanka and India caused a major tsunami.

Cascading Haz-
ard

Flash Flood,
Flood, Landslide

Water levels of a river are becoming dangerously high, prompting scientists to mon-
itor the river bank and warn citizens about the possibility of a landslide.

Complex Emer-
gency, Connected
Extreme Events

Drought, Epi-
demic, Flash
Flood

Humanitarian efforts following a drought in Afghanistan are halted, female humani-
tarians are limited in their ability to participate, and monetary value and surround-
ing wars have created a multidimensional conflict in the state.

Complex Emer-
gency

Drought, Flood,
Heat Wave

The “Zero Hunger Program” has failed to reduce childhood hunger. Aid is not reach-
ing those in the most vulnerable states because of a government possibly withholding
funds.

Multi-Hazard
Event

Tropical Cyclone,
Earthquake

Disasters occurred at relatively the same time in the Philippines (floods/landslides),
Samoa (tsunami), and Indonesia (earthquakes).

Cascading Haz-
ard

Epidemic, Flood,
Landslide

A tropical cyclone hit Mozambique, leading to floods and outbreaks of cholera in
displacement camps.

Compound Event Epidemic, Flood,
Tropical Cyclone

People in Libya are in need because of conflict, displacement, and lack of humani-
tarian services. Healthcare is becoming less accessible, and the COVID pandemic is
spreading in migrant camps.

Connected Ex-
treme Events

Drought, Epi-
demic, Insect
Infestation

A severe drought across Somalia has caused human and livestock deaths. The live-
stock carrying mosquitos and diseases have not been vaccinated because veterinari-
ans refuse to leave their towns. Goats coming from nearby Ethiopia have destroyed
the local market. The cash card system has also not been working for months.

Complex Emer-
gency

Heat Wave, Wild
Fire

In Greece, the combined effects of a heatwave, hot winds, drought, and arson crimes
have created unprecedented forest fires.

Cascading Haz-
ard

Drought, Epi-
demic

People are facing food insecurities because humanitarian aid is not reaching those
most in need. The drought has caused a lack of healthy living conditions, leading
to epidemics across the country.
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4.2.2 Large Language Models (LLMs) and Prompt Engineering

Large Language Models (LLMs) are a class of artificial intelligence systems designed

to understand and generate human-like text by learning from a vast dataset of diverse

internet text. One of the most prominent advances in natural language processing is

GPT-3. Developed by OpenAI, it comprises 175 billion parameters, enabling the model

to process and produce contextually relevant and highly coherent text, even over long

passages (Floridi and Chiriatti, 2020). This makes it suitable for complex language tasks,

including text classification, summarization, and question-answering.

Prompt engineering is a strategic process that involves creating inputs (prompts)

that guide language models such as GPT-3 to perform specific tasks. The design of these

prompts significantly influences the accuracy and relevance of the model’s outputs. When

prompt engineering is done effectively, it ensures that the model understands the task at

hand, improving its performance without requiring extensive retraining. Creating effec-

tive prompts involves crafting clear and concise instructions, utilizing specific keywords

that the language model can recognize, and iteratively testing and refining prompts based

on initial outputs.

4.2.3 Operational modes of LLMs

Zero-Shot Learning

In zero-shot learning, GPT-3 applies its pre-trained knowledge to new tasks without

specific examples or prior exposure. This mode is particularly useful for tasks where

collecting a large annotated dataset is impractical. In this case, the task is described

directly in the prompt and the model must rely on its general understanding of language

and context.
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Few-Shot Learning

Few-shot learning refers to the process of training GPT-3 with a limited number of

examples to prepare it for a specific task. This method enhances the model’s capacity to

produce responses that align with the desired output. The model’s predictions can often

be refined with a few annotated examples, improving accuracy and consistency.

Fine-Tuning

Fine-tuning is a technique for adjusting a model’s parameters on a dataset to achieve

higher precision for a specific task. When a higher level of accuracy is required, fine-

tuning narrows the model’s focus and provides additional context. This involves training

GPT-3 on a corpus of relevant texts so that the model can adapt its responses by reflecting

the specific linguistic patterns and terminology associated with different text structures.

4.2.4 Multi-label classification

Multi-label classification refers to the task of assigning multiple associated labels or

categories to a single document or data point (Song et al., 2022; Wu and Zhu, 2020). In

this study, I aimed to accurately predict and assign all relevant disaster-type labels to a

given ReliefWeb article. I test the ability of a human annotator and an LLM to perform

this task in parallel.

The human annotator was tasked with reading through the titles and texts of a sample

set of articles and assigning between one to five relevant disaster types according to the

context of the article. The annotator completed tagging 220 articles, which became the

test set for the AI. Figure C.3 displays the UpSet plot showing the distribution and

overlap of how the test set articles were originally tagged by disaster type. Only the top

30 most common tag names and combinations of names are shown.
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4.2.5 AI model implementation

To operationalize GPT-3 for disaster-type detection from ReliefWeb article text, I

interacted with OpenAI’s API to run a prompt against the test set of articles using zero-

and few-shot learning. Regarding the few-shot learning, I provided three examples of

different titles, texts, and disaster-type labels per OpenAI’s recommendations. I designed

the prompt in a direct and specific manner while maximizing a limited number of tokens.

Common best practices for prompt engineering are assigning the AI a role to narrow its

focus and then providing details on how the user would like the model to output the

results. Therefore, after rigorous testing, I used the following prompt:

“You are an AI specialized in reading comprehension and disaster identifi-

cation. Your task is to categorize articles by analyzing their text and title.

Assign each article the relevant disaster type(s) from the following list: Cold

Wave, Drought, Earthquake, Epidemic, Extratropical Cyclone, Flash Flood,

Flood, Heat Wave, Insect Infestation, Land Slide, Mud Slide, Severe Local

Storm, Snow Avalanche, Storm Surge, Tropical Cyclone, Tsunami, Volcano,

Wild Fire. Output categorizations as a comma-separated list, using your best

judgment for articles fitting multiple or unclear categories.”

For the fine-tuning training and validation sets, I randomly selected articles until

there were at least 100 samples of every disaster type, per the recommendations by

OpenAI. This led to certain disasters with far more than 100 samples, such as Floods

and Cyclones, when they were commonly tagged with other disasters. However, I wanted

to ensure that there were sufficient examples of each disaster type being tagged in the

articles. In total, this amounted to 1241 training articles and 290 validation articles. The

fine-tuning model was trained on three epochs, and the step-wise training and validation

loss can be seen in C.4. The final training loss was 0.979, and the final validation loss
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was 0.5565. Figures C.1 and C.2 show the UpSet plots of the most common disaster-type

labels for the training and validation datasets, respectively.

Finally, I used gpt-3.5-turbo-1106 as the base model. I also set the temperature

for each model to zero and the maximum number of output tokens to 100 to minimize

randomness and ensure the models’ responses were brief.

4.2.6 Evaluation metrics

I used three types of multi-label classification evaluation metrics: subset accuracy,

Hamming loss, and Jaccard similarity, to assess the human annotator’s skill against the

performance of zero-shot, few-shot, and fine-tuned LLM testing in detecting the correct

names and numbers of disasters. Next, I will briefly describe each metric, including how

it is used and calculated.

Subset Accuracy

Subset accuracy, also known as “exact match” or “zero-one loss”, is a performance

metric used in multi-label classification that evaluates if the predicted set of labels exactly

matches the true set of labels. It is a strict metric requiring that every label in the

predicted set matches the corresponding label in the true set, with no additional or

missing labels, for a sample to be considered correctly classified.

Subset Accuracy =
1

N

N∑
i=1

1(ŷi = yi) (4.1)

where N is the total number of instances in the dataset, ŷi is the predicted label set

for the i-th instance, and yi is the true label set for the i-th instance. 1(ŷi = yi) is an

indicator function that returns 1 if the predicted label set for the instance is exactly the

same as the true label set and 0 otherwise. When calculating subset accuracy, each value
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is summed for all instances and then divided by the total number of instances N . This

calculation gives a value between 0 and 1, where 0 indicates no instances were correctly

predicted and 1 indicates all instances were perfectly predicted. Values between 0 and

1 indicate the proportion of instances that have a perfect match between the predicted

and true label sets.

Subset accuracy is a simple and intuitive metric but can be too harsh for some ap-

plications, particularly in cases where partial correctness is still meaningful. Therefore,

I also consider the following two metrics.

Hamming Loss

Hamming loss is a metric that measures the fraction of incorrect predictions compared

to the total number of predictions. It is used in situations where each instance can be

classified into multiple categories and is particularly useful when the classification error

on each label is equally important. The equation for measuring Hamming loss is as

follows:

Hamming Loss =
1

N

N∑
i=1

xor(yi, ŷi)

L
(4.2)

where N is the number of instances in the dataset, L is the number of labels, yi is the

true label set for the i-th instance, and ŷi is the predicted label set for the i-th instance.

xor(yi,ŷi) is the symmetric difference between the true and predicted labels, essentially

counting the number of labels where the predicted label differs from the true label.

The Hamming loss values range from 0 to 1, where 0 means perfect classification (no

error), and 1 means all predictions are incorrect.
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Jaccard Similarity

Jaccard similarity – also known as the Jaccard index or the Intersection over Union

– is a statistic used for gauging the similarity and diversity of sample sets. In the

context of classification, particularly multi-label classification, it measures the size of

the intersection divided by the size of the union of the predicted and true label sets.

This metric is useful for assessing the similarity between sets as it computes the average

similarity between the predicted and true label sets across all instances. It evaluates how

many labels are common between the true and predicted labels relative to the number

of labels present in either the true or predicted labels (or both). The Jaccard Similarity

equation is as follows:

Jaccard Similarity =
1

N

N∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

(4.3)

where is N the total number of instances in the dataset, yi is the true label set for

the i-th instance, ŷi is the predicted label set for the i-th instance. |yi ∩ ŷi| is the size

of the intersection of the true and predicted label sets, representing the number of labels

correctly predicted. |yi ∪ ŷi| is the size of the union of the true and predicted label sets,

representing the total number of unique labels in both the true and predicted sets.

Jaccard similarity ranges from 0 (no overlap) to 1 (perfect overlap), where higher

values indicate higher similarity between the predicted and true labels. This metric

is particularly effective in scenarios where it is beneficial to consider the proportion of

correct predictions to the potential errors made in the form of false positives and false

negatives.

110



The Application of Large Language Models for Multi-hazard Disaster Event Classification
Chapter 4

4.3 Results

4.3.1 Evaluation of human versus AI effectiveness in classifying

multi-hazard disaster events

Figure 4.5 depicts the performance of the annotator and AI models in correctly iden-

tifying the originally tagged disaster types from the 220 article test set. For the subset

accuracy (panel a), the annotator (maroon) exhibits a significant decline in performance

as the number of tags increases, starting from a relatively high accuracy with one to

two disaster-type tags. This decrease alludes to the difficulty in understanding complex

emergencies. The zero-shot (orange) model is consistently low across all tag complexities,

indicating a lack of adaptability to the task without prior specific training, particularly in

multi-tag cases. The few-shot (yellow) model also shows a sharp decrease in performance

with an increase in the number of original tags. However, there does not appear to be

a distinct advantage between the few-shot with additional training examples compared

to the zero-shot, and both reach a subset accuracy score of zero once the articles reach

three or more disaster-type tags. The fine-tuned model (purple) starts off lower than the

other tests and decreases to zero when there are three disaster types but then rebounds

with four to five tags.

According to the Hamming loss (panel b), the annotator makes more incorrect label

predictions in more complex situations, as seen by the gradual line increase. The zero-

shot and few-shot models similarly display an increasing trend with only a minimal

differentiation between the two and generally lower outcomes compared to the annotator.

The fine-tuned model remains relatively stagnant as the complexity in the number of tags

decreases, demonstrating consistency in predicting labels and perhaps a superior ability

to minimize incorrect labels and adapt better to the task.

111



The Application of Large Language Models for Multi-hazard Disaster Event Classification
Chapter 4

Figure 4.5: Performance comparison of human annotator and AI models across multi-
label classification metrics: subset accuracy (a), Hamming loss (b), and Jaccard similarity
(c) as a function of the number of originally tagged disaster types.

With the Jaccard similarity (panel c), the annotator’s performance gradually de-

clines with increasing tag numbers, reflecting difficulties in attaining overlap between the

predicted and actual labels as complexity increases. The zero-shot model and few-shot

model’s skills are nearly identical, with both showing a more modest decrease compared

to the annotator as the number of original tags increases. The fine-tuned model starts

with slightly worse skill than the others but finishes with the highest Jaccard similarity,

highlighting its effectiveness in predicting correct label sets even under more challenging

conditions.
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The fine-tuned model outperforms the other approaches overall, revealing stronger

robustness and accuracy in handling multi-label classifications, especially as the task

complexity increases. While the human annotator proves effective in simpler scenarios,

their performance does not scale well with increased complexity. This contrasts with the

few-shot and zero-shot models, which show similar limitations in handling complex label

sets. Few-shot marginally outperforms zero-shot, indicating some potential benefits from

minimal targeted learning.

I then compared the skill of the three AI models – zero-shot, few-shot, and fine-tuned

– relative to the number of tags assigned by the annotator. According to Figure 4.6,

the zero-shot model’s subset accuracy remains relatively flat across different numbers

of tags, indicating that the model’s ability to completely match the annotator’s tagged

set does not significantly change with the complexity of the tag count. Similarly, the

few-shot model subtly decreases from one to two tags but generally remains consistent as

the number of tags increases. However, it begins with slightly higher accuracy than the

zero-shot model, possibly benefiting from limited examples during training. Contrary

to expectations, the fine-tuned model shows the lowest subset accuracy across all levels

of tags. This trend could indicate that the model may have been excessively tuned to

specific types of data, which reduces its generalizability to broader or more varied tag

combinations seen during testing. On the other hand, in certain cases, the annotator

was considered “incorrect” compared to the original human tagging system, which is

reflective of differences in context interpretation.

The zero- and few-shot models exhibit near-zero and relatively constant Hamming

loss against the annotator’s tags across all levels of tag complexity. This indicates that

both models consistently make few label prediction errors, irrespective of the number of

tags. The models’ low error rate indicates good alignment with annotator perception

in identifying primary disaster types. The fine-tuned model shows a slightly higher
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Figure 4.6: Performance comparison of AI models across multi-label classification metrics:
subset accuracy (a), Hamming loss (b), and Jaccard similarity (c) as a function of the
number of the annotator tagged disaster types.

Hamming loss in comparison, which slightly increases as the number of tags increases.

Based on the pattern observed, it appears that the fine-tuned model, which underwent

more intensive training, faces more challenges with labeling as the complexity of the task

increases. In some instances, the model either misses correct labels or predicts incorrect

ones, indicative of some overfitting to certain disaster types over others.

Finally, the zero- and few-shot models maintain high and relatively stable Jaccard

similarity across different tag numbers. This pattern implies that the models are effective

at predicting a large proportion of the correct labels relative to the union of predicted
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and actual labels, demonstrating good overall precision and recall. On the other hand,

the fine-tuned model starts with a lower Jaccard similarity compared to the zero- and

few-shot models and shows a slight decreasing trend as the number of tags increases.

The decrease in performance suggests that the model is having a harder time accurately

identifying the correct labels, as reported by the annotator. This is particularly the case

in more complex scenarios, possibly due to the model’s over-reliance on the training data,

resulting in poor generalization of new label combinations.

In most cases, articles were originally tagged with three or fewer disaster types, and

the annotator primarily assigned up to two disaster-type labels to the articles. This

suggests that overall, the AI models predicting three or more tags either identified ad-

ditional labels that the annotator missed or inaccurately over-predicted labels. This

discrepancy highlights the challenge of evaluating model accuracy without corresponding

ground truth for these tag counts, raising questions about the models’ ability to gener-

alize from their training data. While the models are often good at identifying types of

disasters that humans missed, the model is also biased to selecting certain disaster types

over others due to an imbalance in training examples. Further validation is needed after

the AI assessment with expert review or additional data sources to confirm the accuracy

of each model’s predictions.

4.3.2 Classification skill by disaster type

When evaluating the classification performance by disaster type in relation to the

original number of tags for each type, I find that the three language model strategies,

zero-shot, few-shot, and fine-tuned, perform similarly overall (Figure 4.7). Each test

identified common disasters such as floods, earthquakes, tropical cyclones, and epidemics

with relatively high accuracy, but their prevalence in the training and validation datasets
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also caused some incorrect responses. In other words, disaster types that I had supplied

ample examples for when fine-tuning the model were more likely to have been correctly

identified when testing in some cases but, at the same time, overly misclassified articles

with that type as well. Hence, strong negative bars (incorrect classification) of the top

more common disaster types exist. Certain types of disasters, including floods, flash

floods, and landslides, as well as storm surges and severe local storms, are also highly

similar events that are more difficult for the LLMs to distinguish between. Disasters that

were less common in the training, validation, and test datasets, such as wildfires, heat

waves, and extratropical cyclones, were also more often misidentified.

Similar trends are revealed when making the same comparison in relation to the an-

notator’s tags. However, for the fine-tuned classifications by disaster type, responses

were almost equally likely to be correct and incorrect for certain disasters, such as earth-

quakes. The gaps between the annotator’s classifications and those of the LLMs call into

question the context awareness of the AI systems. It appears that the AI was more likely

to hallucinate responses when, in the prompt, I specified that it was required to choose

at least one disaster type from a list.

I also find that, overall, the fine-tuned model is largely successful at adhering to the

list of disaster types and avoiding creating new labels or responding in phrases rather than

stating the type(s). However, this did not necessarily lead to more accurate responses

regarding the original and annotator tags. The fine-tuned model only generated the

names “Fire” and “Hurricane” in two instances each, which were out of the scope of the

pre-defined list of disaster types yet are reasonably similar to “Wildfire” and “Extratrop-

ical Cyclone.” There were far more invalid responses by the zero- and few-shot models.

For instance, these two model versions were significantly more likely to add additional

responses outside the list I supplied, such as “Famine,” “Conflict,” and “Population Dis-

placement,” or in some cases, responded with a full sentence that was unrelated to the
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Figure 4.7: Comparison of disaster type identification in articles by different LLM strate-
gies – zero-shot (a), few-shot (b), and fine-tuned (c) – alongside human annotation. Pos-
itive bars (orange) indicate the number of correct classifications for each disaster type,
while negative bars (maroon) reflect the number of incorrect responses. The light purple
line indicates the total count of each disaster type originally tagged across all articles.

prompt but showed that the model was trying to explain why it could not select one of

the items from the list.

4.3.3 Annotator labeling experience

The annotator initially found the experience of tagging articles challenging, but as

they grew more familiar with the structures and themes of the articles, their ability to

classify the articles systematically improved over time. They observed needing to make

both subjective and objective interpretations of the texts. In some instances, the articles

were straightforward, with opening lines identifying the disaster type, such as “Today’s

powerful 7.3 magnitude earthquake...” For these cases, the annotator could immediately
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Figure 4.8: Comparison of disaster type identification in articles by different LLM strate-
gies – zero-shot (a), few-shot (b), and fine-tuned (c) – relative to the human annotation.
Positive bars (orange) indicate the number of correct classifications for each disaster type,
while negative bars (maroon) reflect the number of incorrect responses. The light purple
line indicates the total count of each disaster type the human annotator tagged across
all articles.

tag the article accordingly. Most articles were formatted this way, making identifying the

associated tag within the first few sentences a simple process. Articles involving fewer

disasters were the easiest to tag, especially when a brief, concise history was given before

the disaster report, as this made it easier to identify the context. Articles that opened

by explicitly stating the disasters upfront, followed by a report of their effects, comprised

most of the annotator’s correctly tagged articles.

When articles included a variety of forced migration causes, the annotator found

it difficult to interpret the most pressing cause of displacement. Cascading hazards,

characterized by sequential events, were challenging to identify accurately due to their

nature. For instance, according to one article, there was initially a tropical cyclone
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in a location, which later led to floods and landslides. While reading, the annotator

mistakenly tagged the disaster type as only “Tropical Cyclone” because it was the first

event mentioned, failing to account for the subsequent floods and landslides.

The annotator spent many hours reading through the lengthy texts. They found

the experience tedious and unreasonable to scale up to a larger production. However,

the annotator reported that the overall tagging process was straightforward and clear.

Most articles had the disaster type in the title, while the text provided additional details

describing the impacts of the aftermath. As the annotator had minimal prior knowledge

of the subject matter, they found that more concise and explicit reports were easier and

faster to understand, interpret, and identify the associated tags. Conversely, ambiguity

and lack of crucial details posed challenges, requiring subjective interpretations from the

annotator’s perspective.

4.4 Discussion

4.4.1 The role of AI in disaster information retrieval

Artificial intelligence offers great potential to progress our ability to synthesize and

retrieve key information in a flood of data. In this study, I demonstrate the viability of

using an LLM to perform a relatively simple task of labeling text. Complexity emerges

when requesting the system to conduct multi-label classification and make tagging deci-

sions when the context and structure of the articles are highly variable. Fine-tuning a

language model is one way of improving the consistency of the output, but it does not

always guarantee accuracy. These fine-tuned models are only as good as the quality of

their training data, and avoiding overfitting is a balancing act that requires supplying

just enough diverse examples. Similarly, prompt engineering is a dance between being
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brief versus verbose, narrow versus broad, and rigid versus flexible to guide the model

toward a desired output.

While LLMs are still in their infancy, I envision a space for this technology to grow

into a force for good in crisis informatics. Emergency responders face the considerable

challenge of sifting through extensive media to identify critical and actionable informa-

tion in the face of disasters. The sheer volume of incoming social media posts alone can

hamper the ability of responders to quickly grasp the situation and make informed deci-

sions regarding the distribution of resources. Media content’s informal and unstructured

nature adds complexity to extracting pertinent information. Furthermore, the diverse

needs of various stakeholders complicate the situation further. While first responders

typically seek precise situational awareness to act effectively, policymakers often look for

higher-level information to guide their decision-making processes (Arachie et al., 2020).

This chapter introduces the concepts and techniques needed to begin utilizing LLMs for

rapid disaster information retrieval that can benefit various stakeholders.

I focus on the concept of multi-hazard disaster events as an application of multi-label

classification. Disasters are often addressed in silos as single independent events rather

than part of a larger system of instability and damage tied to other disasters. In the

process of identifying multiple disaster types from the ReliefWeb articles, I highlight

the complications of either human- or AI-led decision-making, furthering the case for

additional research on these situations.

Multi-hazard events are more common than perceived. In a study by Lee et al.

(2024), the authors reclassified historically recorded disasters from the Emergency Events

Database, EM-DAT, which revealed that approximately one in five reported hazards are

multi-hazard events. Floods and storms are the most common primary hazards in the

database. Additionally, the study underscored that multi-hazard events incurred sig-

nificantly higher economic losses than single-hazard events, with storms, earthquakes,
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and floods causing substantially greater losses compared to others, stressing the critical

need for a deeper understanding of multi-hazard interactions and their severity. Yet,

de Ruiter et al. (2020) and (Raymond et al., 2020) highlight how disaster-risk manage-

ment and humanitarian aid logistics typically focus on the short-term impacts of a single

disaster while falling short on long-term planning and accounting for connected and/or

consecutive disaster events.

“Compound thinking,” a concept in disaster risk reduction discussed by van den

Hurk et al. (2023), involves understanding how multiple factors interact to create more

complex outcomes. By recognizing the combined impacts of various hazards and drivers

and adopting a holistic approach that considers the interaction between different ele-

ments like hydrometeorological forces, societal vulnerabilities, and ecological systems,

practitioners can improve their disaster preparedness and response strategies by gain-

ing a deeper insight into interconnected risks, leading to more effective risk reduction

measures and increased resilience against complex challenges. In my view, practicing

“compound thinking” includes being receptive to innovative and advancing techniques

that may uncover new connections between accounts of disasters in unforeseen ways.

4.4.2 Challenges of multi-label AI classification

During the course of this study, a number of issues emerged that I will address. First,

sometimes ReliefWeb tags articles according to the content in an attached PDF report.

This made it difficult or, at times, impossible for the annotator and LLM to identify the

correct disaster types if the information was absent from the website’s text. In these

cases, the disaster type tags could only be detected if the AI could make “inferences”

based on the context, which should have been minimized as I set the temperature (ran-

domness parameter) to zero, meaning the model should have been more prone to choosing
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predictable and conservative responses. Yet, at other times, the AI made up completely

new categories despite being restricted to choosing from a list of disaster types. These

new categories could be helpful, however, in identifying other important aspects of the

article that may describe the overall themes, such as conflict or food insecurity. Perhaps

giving detailed definitions of each type of disaster in the prompt could have strengthened

the AI’s understanding and improved response accuracy.

Another approach to improve outcomes could be to ask the model to perform binary

classification tasks first, such as asking iteratively “Is this article about a drought haz-

ard?” or “Is this article a fire hazard?” Prompting LLMs to “think step-by-step” is a

common way to ensure more appropriate responses. One could also ask the AI to first

summarize an article and then classify it by disaster types, as LLMs are not as skilled at

multi-task jobs.

A further opportunity lies in AI agents, which use LLMs to assist users in complex

cognitive tasks and are often referred to as “copilots.” They work alongside human

prompting, providing tailored assistance for specific contexts or applications (White,

2023). For instance, one could run an agent that is tasked with only summarizing text

and another that is explicitly designed for classification based on keywords. A different

strategy could be to use different agents that are equipped to handle certain domains, such

as various geographies or disaster types, which may also reduce hallucinations because

the tasks are partitioned and specialized.

High costs and rate limits can pose challenges when using LLMs to process large

volumes of text data. Creating and using a fine-tuned model is expensive, and testing it on

the entire original dataset with hundreds of thousands of articles was not feasible. Fine-

tuning a generic LLM also raises issues when data is sparse, involves complex subdomains,

and has inherent biases (Tamagnone et al., 2023). It is important to have sufficient

training data for effective fine-tuning, though, at the same time, larger training datasets
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incur more computational resources and time compared to zero-shot or few-shot learning

(Chae and Davidson, 2023).

The ReliefWeb articles are highly variable in structure and lean heavily on certain

geographical regions and types of disaster situations over others, which may have led to

overfitting in some areas. It is not possible to grasp all forms of scenarios as training

examples. For example, sometimes, an article may discuss multiple disasters by summa-

rizing a country’s situation over a year and how much aid they have received. In this

case, the article is not necessarily talking about related events. It is currently unclear how

truly “context aware” AI systems are, and requesting the models to distinguish between

how disasters are (un)related is a much more complicated task.

While ReliefWeb publishes articles in a few major languages, I only tested the mod-

els with English articles. Training datasets for underrepresented languages need to be

developed to acquire more localized information. One example of this effort is by Ghosh

et al. (2022), who introduce a multilingual disaster-related classification system known

as the Graph Neural network based Multilingual text classification framework (GNoM).

Several other key challenges emerge through using AI in disaster risk management.

First, as mentioned, high costs can be incurred, and low-income countries facing disas-

ters may not possess the resources and infrastructure to support such heavy computation

needs. Developing and deploying AI-based solutions necessitates a high level of exper-

tise, which may also be lacking in disaster-affected areas (Velev and Zlateva, 2023). Data

quality and quantity are also a concern. Data can be scarce, unreliable, or inconsistent

in many disaster scenarios, making it difficult to train AI models and make accurate pre-

dictions. AI poses questionable ethical and social implications as sensitive information

is collected and analyzed. Minimizing bias and ensuring data privacy and security are

critical. Existing disaster management systems may not be equipped to integrate ad-

vanced models, requiring significant investments to secure compatibility. Together, these
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challenges with the nature of AI may inadvertently result in the denial of protection to

the most vulnerable populations in disaster situations (Moitra et al., 2022).

Moreover, Tamagnone et al. (2023) emphasize the limitations of using generic LLMs

for humanitarian data analysis, highlighting issues such as ineffective performance on

data-sparse subdomains and the encoding of societal biases. The authors advocate for

developing domain-specific models to address these challenges. Doing so would ensure

more ethical and effective humanitarian document analysis and “response entry” (i.e.,

text excerpt) classification. Ongoing research and development are required to address

the evolving changes to disaster patterns and impacts and the AI technologies themselves

(Velev and Zlateva, 2023).

In a perspective piece by Gevaert et al. (2021), the authors outline several aspects that

need to be fulfilled to uphold the responsible usage of AI for disaster risk management.

Tools and methods to detect and mitigate biases must be developed to achieve better

accuracy and fairness in risk assessment. AI systems must be designed transparently and

explainable to allow users to understand and trust how decisions are made (Ghaffarian

et al., 2023). Involving local communities, experts, and other stakeholders in creating

and deploying AI technologies can help ensure local values, priorities, and needs are

considered. Safeguarding sensitive information and establishing governance structures

for accountability and ethical conduct are crucial. Still, with fairness, transparency,

and accountability in mind, Gevaert et al. (2021) echo the opportunities AI offers to the

disaster management community as discussed throughout this chapter, namely rapid and

accurate data processing, enhanced risk modeling and predictive capabilities, optimized

resource allocation, automation of routine tasks, and improved decision support.
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4.4.3 Future prospects for using new technologies in disaster

informatics

Finally, I will discuss a few opportunities for future work. The power of LLMs extends

beyond classification problems to summarization and question/answer tasks. Nguyen and

Rudra (2022) introduce an interpretable classification-summarization framework that

classifies tweets by disaster-related categories and summarizes them. The strength of

their work lies in their model’s ability to explain its decisions or rationales. Effective PDF

summarization is another active area of development. Multi-document summarization

adds a layer of complexity and potential for developing synthesized and informative

summaries from several topic-related texts (Pereira et al., 2023).

Multimodal approaches that combine textual and visual information in event de-

tection during emergency response situations can provide an even more comprehensive

understanding of crises (Abavisani et al., 2020). This approach enhances the context

by offering visual details from images and specific text information, improving the ac-

curacy and reliability of crisis event detection. By integrating multiple modalities, such

as images and texts, the sensitivity of event detection systems is increased, enabling the

identification of subtle signals that might be missed using a single modality. Addition-

ally, combining images and texts helps evaluate the severity of crises, understand the

impact, and facilitate more effective response planning and resource allocation. Another

approach, automatic sentiment analysis from social media posts, can help understand in-

dividuals’ emotions, opinions, and attitudes in response to disasters, recovery efforts, and

related events. By gauging public perception towards disaster management, government

agencies and organizations may improve their decision-making and response strategies,

particularly regarding interlinked events (Mishra and Saini, 2014).

AI is considered a disruptive technology in disaster risk management, potentially
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revolutionizing how disasters are predicted and addressed (Munawar et al., 2022). Other

disruptive and potentially transformative technologies for disaster management include

Internet of Things Devices, smart sensors, cloud computing, satellite imagery and image

processing algorithms, and advanced communication networks. Integration across these

technologies will enable more comprehensive data analysis for better risk assessment,

early warning systems and decision-making, improved communication and coordination,

and increased resilience of cities (Munawar et al., 2022).

Although not discussed in this chapter, machine learning and text-mining techniques

can measure extreme events’ size and geographical scope (Pita Costa et al., 2024). For

instance, media has been shown to serve as a relatively good proxy for capturing the

dynamics and impact of floods, though there is often a lag between the event occurrence

and news coverage. On the other hand, droughts may not receive as much explicit

attention in the news, making monitoring their severity and spatial extent difficult unless

their coverage is combined with extreme heat events with broader societal implications

(Pita Costa et al., 2024).

Another important use of AI for humanitarian aid is predictive modeling, which can

be used, for example, to forecast food insecurity. Balashankar et al. (2023) demonstrate

the use of deep learning to predict food crises from news streams up to 12 months ahead,

which can aid humanitarian organizations like the World Food Program in prioritizing

emergency food assistance allocation in a more efficient and timely manner. Machine

learning predictive models can extract anticipatory signals of food insecurity episodes

from text data derived from new streams, providing early warnings and insights for

decision-making.

Lastly, explaining the reasoning behind NLP model decisions is difficult as they are

considered “black box” systems (Rocca et al., 2023). Explainable AI techniques (e.g.,

feature importance identification, Shapely Additive Explanations (SHAP), and counter-
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factual explanations) have been instrumental in improving the transparency and inter-

operability of AI models for disaster risk management. They can also be pivotal in risk

assessment for multi-hazard scenarios by revealing insights into the interactions between

hazards. This can aid in prioritizing resources and improving preparedness for complex

disaster situations (Ghaffarian et al., 2023). Observability, meaning the ability to mea-

sure and interpret how an AI system operates and arrives at an answer, is an ongoing

challenge. Retrieval-augmented generation (RAG) is one method used to enhance the

capabilities of generative models by integrating them with a retrieval component. Pro-

viding additional context to the model, often through a large document or knowledge

base, can produce more accurate, relevant, and detailed outputs (Gao et al., 2024).

4.5 Conclusion

Disaster informatics is a growing field involving designing and applying technologies to

solve or enhance understanding of information problems related to disaster areas (Ogie

and Verstaevel, 2020). Artificial intelligence is one tool that is becoming an increas-

ingly important component of emerging technologies in disaster management. Machine

learning algorithms are utilized to gain cognitive insights, detect patterns within large

datasets, and interpret their significance. As a result, AI contributes to more efficient

decision-making, resource allocation, and overall performance improvement in disaster

response and recovery operations (Vermiglio et al., 2021).

In this chapter, I walk through the implementation of one form of AI, multi-label

classification. I challenge the ability of large language models to identify disaster events

from humanitarian news updates and reports, particularly when multiple disasters are

discussed in one source. By testing various AI approaches to improve responses, from

crafting an effective prompt to using zero- and few-shot methods and finally fine-tuning
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the GPT-3 model, I evaluate the skill of LLMs to derive consistent and accurate responses.

Fine-tuning produces more suitable but not always correct results compared to the zero-

and few-shot tests. By refining the model with many example input-output pairs, the

fine-tuned model is able to follow the prompt more closely but may struggle with biased

responses based on number of different sample types used in the training process. Other

concerns include computational costs and the quality of input unstructured data.

The field of AI is rapidly changing, and more advanced models and methods are be-

ing introduced regularly. With the increased use of AI in disaster management, these

tools must be adopted with careful consideration and vetting. Institutions should re-

spond proactively, flexibly, and with a focus on social justice and fairness to minimize

biases and inflated expectations when embracing AI for disaster informatics (Gevaert

et al., 2021). In light of the changing climate and the evolving human relationship with

technology, interdisciplinary teams must engage in systems thinking, blending various

methods that can address the interrelated nature of environmental, socioeconomic, and

political compounding risks and complex emergencies (Kruczkiewicz et al., 2021).
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Conclusion

Climate change is a global phenomenon that is affecting every corner of the planet, and

its impacts are becoming increasingly evident and severe. As temperatures rise and

weather patterns become more erratic, communities worldwide face growing challenges

threatening their safety and livelihoods. One of the most devastating consequences of

climate change is the increasing frequency and intensity of extreme weather events, such

as floods and droughts. These disasters can cause widespread destruction, loss of life, and

long-term economic and social disruption. However, the impacts of climate change extend

far beyond the immediate aftermath of catastrophic events. As populations become

increasingly vulnerable to climate-related hazards, millions of people may be forced to

leave their homes and communities and seek refuge elsewhere.

Even those who are not directly affected by disasters or displacement will likely feel

the ripple effects of climate change in other ways, such as through more widespread

food insecurity and water scarcity. In short, the repercussions of climate change are far-

reaching and inescapable. This global crisis will leave no one untouched, from the direct

impacts of extreme disasters to the indirect effects on food, water, and socio-economic

security.
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Given the scale and complexity of the climate change crisis, traditional approaches to

understanding and addressing its impacts may no longer be sufficient. The nexus of shift-

ing climate systems, ecosystems, and human system dynamics requires a new paradigm

that utilizes the power of advanced technologies and data-driven methods. One promis-

ing avenue is using machine learning to analyze vast amounts of environmental and social

data. These techniques can help identify patterns, measure predictability, and optimize

decision-making in the face of uncertainty. Another key area is the development of ad-

vanced sensors and monitoring systems that can provide near real-time data on climate

variables, ecosystem health, and human activities. By deploying these technologies at

scale, we can create a more comprehensive and granular picture of how climate change

affects different regions and communities, enabling more targeted and effective mitiga-

tion efforts. Integrating diverse data sources, including remote sensing, surveys, and

news media, can provide a more nuanced understanding of environmental impacts and

support more inclusive and participatory approaches to adaptation and resilience.

In this dissertation, I have explored the potential of these new technologies and data-

driven methods to advance our understanding of climate impacts on environmental and

population well-being. My three studies demonstrate that creative approaches can pro-

vide valuable insights for decision-makers and stakeholders by showcasing the complex

interactions between climate, ecosystems, and human systems.

In the first study, I employed an empirical dynamic modeling approach to investi-

gate the sensitivity and stability of vegetation in response to hydroclimatic variability

across East Africa. By leveraging advanced computational techniques and high-resolution

satellite data, I identified regions that exhibit higher sensitivity to changes in rainfall pat-

terns and those that show greater stability. These findings have important implications

for natural resource conservation and agricultural management, highlighting the need for

spatially targeted interventions that account for vegetation’s heterogeneous responses to
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hydroclimatic variability.

Using a gravity model approach, my second study focused on understanding the

importance of various drivers to internal human displacement in Somalia. I integrated

environmental, socioeconomic, and conflict data to interrogate the factors that shape

migration patterns, from anomalous weather to conflict severity. This work emphasized

the importance of considering how livelihoods can differentially determine the impact

of weather on population movement as an adaptation strategy, while conflict remains a

significant reason for out-migration.

In my third study, I presented a novel application of large language models for multi-

hazard disaster event classification. I demonstrated how artificial intelligence can be

used to identify and categorize different types of disasters from text-based descriptions,

outperforming the speed and often accuracy of traditional human labeling approaches. I

found that while fine-tuning a large language model can aid in improving the adherence

to prompts, they may not always be the most suitable option for scalable implementation

due to high computational costs and the risk of overfitting. This work has important

implications for disaster risk management, as artificial intelligence can enable users to

grasp situations more quickly and efficiently. These tools, in turn, can improve how we

deploy resources to support affected areas.

In tandem, these studies bridge environmental science, human dynamics, and com-

putational analysis. This dissertation contributes to the growing body of knowledge on

complex adaptive systems and the imaginative solutions needed to understand them.
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Chapter 2 Appendix

Figure A.1: Demonstration of Simplex Projection: The figure highlights time series
segments that exhibit similar trajectories. Simplex projection utilizes these historical
patterns to predict future outcomes. The method estimates the next state based on
the dynamics observed in these historical segments by identifying and comparing similar
past trajectories. The future predicted value is calculated as a weighted average of past
similar outcomes. Adapted from Petchey (2016).
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Figure A.2: If X and Y variables from a system create a one-to-one mapping, it means
that for each time point t, there is a unique corresponding point between the recon-
structed states Mx(t) and My(t). These points are referred to as mutual neighbors. The
manifolds exhibit topological isomorphism, indicating that the two reconstructed state
spaces (shadow manifolds) map onto each other accurately.

133



Chapter 2 Appendix Chapter A

Figure A.3: Demonstration of Convergent Cross Mapping (CCM): The top panels illus-
trate bidirectional cross-mapping, where each variable can predict the state of the other,
indicating a bidirectional causal relationship. The bottom panels show unidirectional
cross-mapping, where only one variable can predict the state of the other, suggesting a
unidirectional causal influence. Adapted from Sugihara et al. (2012).
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Figure A.4: Cropland convergent cross mapping skill between all combinations of the
study variables: precipitation (P), soil moisture (SM), vegetation productivity (NDVI),
reference evapotranspiration (refET), and land surface temperature (LST). The skill
represents the average final converged value of the driving variable (whichever variable
comes up “on top” as having the stronger skill when two variables are mapped onto one
another). The standard error bars represent the skill spread across all pixel values.

135



Appendix B

Chapter 3 Appendix

136



C
h
ap
ter

3
A
p
p
en
d
ix

C
h
ap
ter

B
Table B.1: Internal displacement gravity model estimates for models 1 to 10. Standard errors are reported in paren-
theses. Asterisks indicate significance at the 1, 5, and 10 percent level. Time lags, “t-,” are in months. “Events” and “Fatalities”
are conflict-related and “1k” refers to occurrence for 1 in 1,000 people. Distance and Population variables are in logarithmic form,
and all other variables are z-scores. Year and region fixed effects were included in each model.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log Distance Km -1.521***

(0.042)

-1.521***

(0.042)

-1.522***

(0.042)

-1.523***

(0.042)

-1.525***

(0.042)

-1.526***

(0.042)

-1.527***

(0.042)

-1.536***

(0.042)

-1.543***

(0.042)

-1.545***

(0.042)

Arrival Log Pop 0.765

(1.658)

0.759

(1.656)

0.757

(1.657)

0.759

(1.661)

0.728

(1.650)

0.724

(1.650)

0.725

(1.656)

0.662

(1.563)

0.651

(1.571)

0.647

(1.567)

Departure Log Pop -0.062

(1.657)

-0.054

(1.655)

-0.052

(1.656)

-0.057

(1.660)

-0.029

(1.649)

-0.020

(1.650)

-0.018

(1.655)

0.042

(1.562)

0.054

(1.570)

0.055

(1.567)

Arrival Precip 0.043

(0.089)

0.043

(0.089)

0.039

(0.089)

0.038

(0.091)

0.043

(0.093)

0.045

(0.095)

0.012

(0.096)

-0.012

(0.097)

-0.019

(0.099)

Arrival Precip t-1 0.035

(0.095)

0.026

(0.100)

0.049

(0.096)

0.039

(0.102)

0.001

(0.099)

-0.004

(0.104)

Arrival Precip t-2 -0.020

(0.086)

-0.021

(0.087)

0.000

(0.090)

Departure Precip -0.239*

(0.131)

-0.234*

(0.129)

-0.233*

(0.129)

-0.211

(0.132)

-0.210

(0.132)

-0.209

(0.133)

-0.227*

(0.129)

-0.190

(0.131)

-0.190

(0.131)

Departure Precip t-1 -0.017

(0.122)

0.004

(0.125)

-0.018

(0.124)

0.011

(0.128)

0.029

(0.123)

0.042

(0.127)

Departure Precip t-2 0.158

(0.115)

0.154

(0.114)

0.143

(0.112)

Arrival Temp -0.124

(0.079)

-0.118

(0.081)

-0.120

(0.081)

-0.135*

(0.079)

-0.126

(0.082)

-0.126

(0.082)

-0.119

(0.082)

-0.127

(0.083)

-0.123

(0.082)

Arrival Temp t-1 0.045

(0.075)

0.052

(0.079)

0.040

(0.077)

0.055

(0.081)

0.005

(0.083)

0.014

(0.085)

Arrival Temp t-2 0.072

(0.085)

0.075

(0.088)

0.066

(0.089)

Departure Temp -0.025

(0.143)

-0.036

(0.144)

-0.021

(0.147)

0.017

(0.140)

0.006

(0.143)

0.012

(0.146)

-0.019

(0.143)

-0.024

(0.143)

-0.016

(0.144)

Departure Temp t-1 -0.101

(0.145)

-0.119

(0.140)

-0.074

(0.145)

-0.091

(0.140)

-0.031

(0.152)

-0.056

(0.151)

Departure Temp t-2 -0.183

(0.123)

-0.173

(0.122)

-0.198

(0.128)

137



C
h
ap
ter

3
A
p
p
en
d
ix

C
h
ap
ter

B
Table B.1 Continued from previous page

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arrival Events Per 1K -0.063

(0.085)

-0.358**

(0.182)

-0.362*

(0.185)

Arrival Events Per

1K t-1

0.301*

(0.167)

0.349*

(0.208)

Arrival Events Per

1K t-2

-0.037

(0.127)

Arrival Fatalities Per

1K

-0.110**

(0.045)

-0.097**

(0.046)

-0.105**

(0.048)

Arrival Fatalities Per

1K t-1

-0.120**

(0.057)

-0.123**

(0.050)

Arrival Fatalities Per

1K t-2

0.033

(0.056)

Departure Events Per

1K

0.182**

(0.086)

0.170**

(0.086)

0.168*

(0.087)

Departure Events Per

1K t-1

-0.133*

(0.070)

-0.137*

(0.071)

Departure Events Per

1K t-2

-0.110

(0.067)

Departure Fatalities

Per 1K

0.165***

(0.035)

0.167***

(0.036)

0.174***

(0.037)

Departure Fatalities

Per 1K t-1

0.048

(0.040)

0.045

(0.040)

Departure Fatalities

Per 1K t-2

-0.031

(0.044)

February -0.116

(0.276)

-0.136

(0.273)

-0.147

(0.274)

-0.143

(0.285)

-0.097

(0.273)

-0.130

(0.278)

-0.150

(0.292)

-0.184

(0.269)

-0.174

(0.268)

-0.165

(0.283)

March 0.143

(0.291)

0.050

(0.283)

0.042

(0.284)

0.047

(0.292)

0.149

(0.285)

0.107

(0.292)

0.080

(0.301)

0.087

(0.285)

0.104

(0.281)

0.109

(0.287)

April 0.119

(0.303)

0.054

(0.299)

0.054

(0.311)

0.066

(0.318)

0.126

(0.301)

0.091

(0.316)

0.081

(0.321)

0.087

(0.301)

0.104

(0.313)

0.112

(0.320)

May 0.488

(0.343)

0.462

(0.345)

0.458

(0.348)

0.521

(0.347)

0.503

(0.346)

0.474

(0.350)

0.506

(0.351)

0.470

(0.348)

0.467

(0.350)

0.525

(0.350)

June -0.583**

(0.277)

-0.603**

(0.274)

-0.610**

(0.277)

-0.570**

(0.280)

-0.567**

(0.273)

-0.599**

(0.280)

-0.588**

(0.283)

-0.582**

(0.275)

-0.588**

(0.275)

-0.551*

(0.282)

July -0.283

(0.291)

-0.243

(0.290)

-0.256

(0.294)

-0.238

(0.299)

-0.200

(0.290)

-0.235

(0.297)

-0.263

(0.307)

-0.215

(0.292)

-0.215

(0.296)

-0.196

(0.301)
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Table B.1 Continued from previous page

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

August -0.255

(0.334)

-0.280

(0.330)

-0.283

(0.329)

-0.275

(0.332)

-0.299

(0.328)

-0.279

(0.328)

-0.273

(0.329)

-0.281

(0.328)

-0.276

(0.324)

-0.273

(0.330)

September -0.244

(0.319)

-0.260

(0.313)

-0.276

(0.317)

-0.287

(0.324)

-0.295

(0.308)

-0.280

(0.313)

-0.271

(0.321)

-0.337

(0.311)

-0.327

(0.312)

-0.341

(0.322)

October 0.205

(0.352)

0.143

(0.348)

0.141

(0.339)

0.140

(0.344)

0.163

(0.349)

0.161

(0.340)

0.142

(0.340)

0.160

(0.351)

0.196

(0.343)

0.195

(0.349)

November 0.760**

(0.331)

0.714**

(0.325)

0.714**

(0.331)

0.733**

(0.333)

0.768**

(0.324)

0.742**

(0.328)

0.749**

(0.324)

0.725**

(0.333)

0.761**

(0.334)

0.779**

(0.330)

December -0.467

(0.291)

-0.472*

(0.284)

-0.478*

(0.286)

-0.427

(0.291)

-0.476*

(0.288)

-0.476

(0.291)

-0.442

(0.295)

-0.457

(0.287)

-0.463

(0.287)

-0.417

(0.294)

AIC 27524073 27368699 27356947 27282285 27156702 26985480 26794041 26961738 26818711 26723219

BIC 27185959 27030619 27018900 26944271 26818637 26647466 26456076 26623674 26480697 26385254

Likelihood -

13761982***

-

13684292***

-

13678412***

-

13641077***

-

13578291***

-

13492674***

-

13396949***

-

13480809***

-

13409290***

-

13361537***

N. Obs 29160 29160 29160 29160 29160 29160 29160 29160 29160 29160
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Table B.2: Internal displacement gravity model estimates for models 11 to 19. Standard errors are reported in
parentheses. Asterisks indicate significance at the 1, 5, and 10 percent level. Time lags, “t-,” are in months. “Events” and
“Fatalities” are conflict-related and “1k” refers to occurrence for 1 in 1,000 people. Distance and Population variables are in
logarithmic form, and all other variables are z-scores. Climate and livelihood interaction terms are indicated with an “x” between
the variable names. Year and region fixed effects were included in each model.

Variable (11) (12) (13) (14) (15) (16) (17) (18) (19)

Log Distance Km -1.525***

(0.042)

-1.526***

(0.042)

-1.527***

(0.042)

-1.528***

(0.042)

-1.529***

(0.042)

-1.530***

(0.042)

-1.536***

(0.041)

-1.543***

(0.042)

-1.546***

(0.042)

Arrival Log Pop 0.656

(1.627)

0.652

(1.626)

0.651

(1.633)

0.635

(1.606)

0.626

(1.604)

0.627

(1.612)

0.547

(1.512)

0.546

(1.523)

0.535

(1.519)

Departure Log Pop 0.053

(1.626)

0.057

(1.625)

0.055

(1.632)

0.067

(1.606)

0.081

(1.603)

0.083

(1.611)

0.160

(1.510)

0.163

(1.522)

0.171

(1.518)

Arrival Precip -0.036

(0.114)

-0.039

(0.116)

-0.043

(0.116)

-0.036

(0.117)

-0.033

(0.122)

-0.033

(0.125)

-0.068

(0.131)

-0.084

(0.132)

-0.092

(0.133)

Arrival Precip t-1 0.027

(0.095)

0.017

(0.100)

0.038

(0.096)

0.027

(0.102)

-0.006

(0.098)

-0.012

(0.103)

Arrival Precip t-2 -0.022

(0.086)

-0.022

(0.086)

-0.003

(0.089)

Departure Precip 0.030

(0.274)

0.051

(0.280)

0.024

(0.284)

0.074

(0.267)

0.082

(0.276)

0.070

(0.282)

0.071

(0.284)

0.108

(0.289)

0.079

(0.293)

Departure Precip t-1 -0.013

(0.121)

0.009

(0.125)

-0.008

(0.122)

0.020

(0.127)

0.037

(0.120)

0.052

(0.126)

Departure Precip t-2 0.168

(0.110)

0.162

(0.109)

0.161

(0.110)

Arrival Temp -0.125

(0.104)

-0.117

(0.108)

-0.115

(0.107)

-0.140

(0.105)

-0.129

(0.109)

-0.123

(0.109)

-0.127

(0.107)

-0.153

(0.111)

-0.145

(0.109)

Arrival Temp t-1 0.051

(0.079)

0.057

(0.082)

0.043

(0.080)

0.057

(0.083)

0.010

(0.084)

0.019

(0.087)

Arrival Temp t-2 0.065

(0.086)

0.071

(0.089)

0.059

(0.090)

Departure Temp -1.166

(1.090)

-1.206

(1.103)

-1.217

(1.104)

-1.196

(1.101)

-1.266

(1.091)

-1.262

(1.089)

-1.298

(1.095)

-1.281

(1.092)

-1.286

(1.084)

Departure Temp t-1 -0.126

(0.145)

-0.145

(0.141)

-0.095

(0.145)

-0.113

(0.142)

-0.049

(0.149)

-0.072

(0.149)

Departure Temp t-2 -0.187

(0.123)

-0.174

(0.122)

-0.201

(0.127)
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Table B.2 Continued from previous page

Variable (11) (12) (13) (14) (15) (16) (17) (18) (19)

Arrival Events Per 1K -0.050

(0.082)

-0.356**

(0.179)

-0.362**

(0.183)

Arrival Events Per

1K t-1

0.315*

(0.166)

0.364*

(0.208)

Arrival Events Per

1K t-2

-0.038

(0.127)

Arrival Fatalities Per

1K

-0.099**

(0.044)

-0.084*

(0.046)

-0.092*

(0.048)

Arrival Fatalities Per

1K t-1

-0.119**

(0.056)

-0.125**

(0.050)

Arrival Fatalities Per

1K t-2

0.041

(0.056)

Departure Events Per

1K

0.185**

(0.080)

0.172**

(0.079)

0.169**

(0.081)

Departure Events Per

1K t-1

-0.140**

(0.071)

-0.144**

(0.072)

Departure Events Per

1K t-2

-0.101

(0.068)

Departure Fatalities

Per 1K

0.168***

(0.032)

0.168***

(0.034)

0.175***

(0.035)

Departure Fatalities

Per 1K t-1

0.052

(0.039)

0.048

(0.040)

Departure Fatalities

Per 1K t-2

-0.027

(0.044)

Arrival Precip x Perc

Pop Agropastoral

0.157

(0.268)

0.167

(0.272)

0.169

(0.273)

0.140

(0.273)

0.155

(0.280)

0.154

(0.286)

0.308

(0.284)

0.253

(0.292)

0.278

(0.296)

Arrival Precip x Perc

Pop Pastoral

1.046***

(0.381)

1.051***

(0.384)

1.042***

(0.387)

1.022***

(0.356)

1.011***

(0.358)

1.015***

(0.365)

0.770**

(0.316)

0.794**

(0.319)

0.796**

(0.317)

Arrival Precip x Perc

Pop Pastoral Fishing

-1.318

(1.356)

-1.314

(1.352)

-1.307

(1.364)

-1.356

(1.293)

-1.334

(1.276)

-1.345

(1.301)

-0.965

(1.065)

-1.014

(1.049)

-1.024

(1.053)

Arrival Precip x Perc

Pop Riverine

Irrigation

-0.762

(0.489)

-0.763

(0.499)

-0.742

(0.491)

-0.805

(0.492)

-0.774

(0.500)

-0.747

(0.490)

-0.704

(0.507)

-0.789

(0.526)

-0.791

(0.520)

Departure Precip x

Perc Pop

Agropastoral

-0.218

(0.346)

-0.242

(0.351)

-0.215

(0.357)

-0.236

(0.342)

-0.215

(0.357)

-0.213

(0.365)

-0.485

(0.355)

-0.449

(0.362)

-0.433

(0.367)
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Table B.2 Continued from previous page

Variable (11) (12) (13) (14) (15) (16) (17) (18) (19)

Departure Precip x

Perc Pop Pastoral

-1.194**

(0.475)

-1.222**

(0.487)

-1.170**

(0.495)

-1.147**

(0.450)

-1.158**

(0.459)

-1.138**

(0.473)

-0.795**

(0.401)

-0.840**

(0.413)

-0.795*

(0.414)

Departure Precip x

Perc Pop Pastoral

Fishing

3.111**

(1.435)

3.109**

(1.429)

3.152**

(1.441)

3.159**

(1.367)

3.066**

(1.347)

3.084**

(1.371)

2.686**

(1.144)

2.731**

(1.134)

2.818**

(1.135)

Departure Precip x

Perc Pop Riverine

Irrigation

-0.341

(0.523)

-0.342

(0.516)

-0.332

(0.521)

-0.373

(0.516)

-0.419

(0.508)

-0.376

(0.511)

-0.396

(0.539)

-0.353

(0.537)

-0.340

(0.544)

Arrival Temp x Perc

Pop Agropastoral

-0.139

(0.357)

-0.141

(0.358)

-0.153

(0.358)

-0.098

(0.355)

-0.095

(0.353)

-0.120

(0.359)

-0.129

(0.362)

-0.037

(0.364)

-0.057

(0.364)

Arrival Temp x Perc

Pop Pastoral

0.095

(0.535)

0.089

(0.534)

0.083

(0.537)

0.121

(0.529)

0.105

(0.530)

0.087

(0.534)

0.217

(0.557)

0.287

(0.557)

0.286

(0.548)

Arrival Temp x Perc

Pop Pastoral Fishing

-1.073

(0.947)

-1.058

(0.948)

-1.087

(0.957)

-1.133

(0.973)

-1.118

(0.977)

-1.193

(0.982)

-1.116

(1.059)

-1.097

(1.075)

-1.172

(1.071)

Arrival Temp x Perc

Pop Riverine

Irrigation

0.296

(0.578)

0.310

(0.579)

0.301

(0.577)

0.290

(0.573)

0.325

(0.572)

0.318

(0.575)

0.229

(0.588)

0.198

(0.593)

0.198

(0.596)

Departure Temp x

Perc Pop

Agropastoral

1.212

(1.179)

1.250

(1.188)

1.278

(1.193)

1.233

(1.192)

1.302

(1.174)

1.302

(1.174)

1.369

(1.187)

1.306

(1.181)

1.323

(1.173)

Departure Temp x

Perc Pop Pastoral

0.770

(1.102)

0.794

(1.116)

0.813

(1.116)

0.830

(1.108)

0.881

(1.101)

0.887

(1.098)

0.757

(1.102)

0.720

(1.098)

0.737

(1.089)

Departure Temp x

Perc Pop Pastoral

Fishing

1.963

(1.692)

1.964

(1.687)

2.026

(1.680)

2.229

(1.727)

2.255

(1.701)

2.425

(1.675)

2.228

(1.817)

2.216

(1.816)

2.290

(1.792)

Departure Temp x

Perc Pop Riverine

Irrigation

1.819

(1.510)

1.842

(1.523)

1.895

(1.525)

1.949

(1.511)

2.007

(1.497)

2.022

(1.503)

2.088

(1.521)

2.050

(1.522)

2.088

(1.517)

February -0.135

(0.258)

-0.148

(0.259)

-0.145

(0.270)

-0.109

(0.255)

-0.142

(0.259)

-0.163

(0.273)

-0.202

(0.252)

-0.204

(0.253)

-0.197

(0.268)

March 0.013

(0.277)

0.002

(0.279)

0.011

(0.286)

0.106

(0.280)

0.063

(0.287)

0.044

(0.295)

0.039

(0.277)

0.042

(0.277)

0.050

(0.282)

April 0.019

(0.290)

0.012

(0.303)

0.024

(0.311)

0.077

(0.294)

0.038

(0.309)

0.033

(0.312)

0.041

(0.290)

0.049

(0.304)

0.052

(0.312)

May 0.467

(0.331)

0.458

(0.337)

0.530

(0.336)

0.502

(0.335)

0.473

(0.339)

0.517

(0.339)

0.474

(0.333)

0.459

(0.339)

0.530

(0.340)
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Variable (11) (12) (13) (14) (15) (16) (17) (18) (19)

June -0.623**

(0.272)

-0.632**

(0.274)

-0.588**

(0.276)

-0.592**

(0.270)

-0.625**

(0.276)

-0.604**

(0.277)

-0.606**

(0.272)

-0.611**

(0.270)

-0.565**

(0.274)

July -0.246

(0.271)

-0.265

(0.276)

-0.247

(0.280)

-0.209

(0.272)

-0.250

(0.277)

-0.272

(0.286)

-0.221

(0.273)

-0.230

(0.276)

-0.211

(0.281)

August -0.270

(0.323)

-0.274

(0.322)

-0.267

(0.326)

-0.301

(0.323)

-0.284

(0.322)

-0.279

(0.326)

-0.275

(0.324)

-0.272

(0.318)

-0.267

(0.324)

September -0.281

(0.300)

-0.301

(0.305)

-0.313

(0.311)

-0.328

(0.291)

-0.316

(0.296)

-0.310

(0.304)

-0.378

(0.297)

-0.379

(0.300)

-0.394

(0.309)

October 0.115

(0.330)

0.110

(0.323)

0.111

(0.327)

0.122

(0.332)

0.119

(0.324)

0.105

(0.325)

0.120

(0.333)

0.145

(0.329)

0.146

(0.335)

November 0.664**

(0.301)

0.661**

(0.307)

0.682**

(0.310)

0.710**

(0.303)

0.684**

(0.306)

0.700**

(0.303)

0.669**

(0.306)

0.692**

(0.311)

0.706**

(0.306)

December -0.534*

(0.273)

-0.543**

(0.276)

-0.490*

(0.280)

-0.546**

(0.275)

-0.555**

(0.280)

-0.517*

(0.285)

-0.533*

(0.275)

-0.552**

(0.278)

-0.504*

(0.285)

AIC 26874787 26857085 26775861 26627621 26438551 26263776 26436157 26301685.020 26190943

BIC 26536838 26519170 26437979 26289689 26100669 25925943 26098225 25963802.950 25853110

Likelihood -

13437319***

-

13428464***

-

13387849***

-

13313735***

-

13219193***

-

13131800***

-

13218003***

-

13150761***

-

13095383***

N. Obs 29160 29160 29160 29160 29160 29160 29160 29160 29160
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Figure B.1: Coefficient estimates with standard errors for arrival (a) and departure (b)
climate effects without conflict or livelihood effects (model 4 from B.1) and with conflict
events added for arrival (c) and departure (d) estimates (model 7 from B.1). The lagged
inputs are labeled with “t-” and the number of months. Significant coefficients are marked
with an asterisk, indicating a p-value of 0.001, 0.05, or 0.1.
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Figure B.2: Coefficient estimates with standard errors for arrival (a) and departure (b)
climate effects and livelihood interaction terms without conflict effects (model 13 from
B.2) and with conflict events added for arrival (c) and departure (d) estimates (model 16
from B.2. The lagged inputs are labeled with “t-” and the number of months. Significant
coefficients are marked with an asterisk, indicating a p-value of 0.001, 0.05, or 0.1.
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Figure B.3: Coefficient estimates with standard errors for arrival (a) and departure (b)
conflict events effects with climate effects and no livelihood inputs (model 7 from B.1)
and with livelihood interaction terms added for arrival (c) and departure (d) estimates
(model 16 from B.2). The lagged inputs are labeled with “t-” and the number of months.
Significant coefficients are marked with an asterisk, indicating a p-value of 0.001, 0.05,
or 0.1.
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Figure C.1: An UpSet plot of the distribution and overlap of articles used in the training
dataset. Each verticle bar represents a set of articles tagged with a specific disaster
type, with the height of the bar indicating the number of articles. The horizontal bars
at the bottom of the plot show the intersection between different disaster types. These
intersections reveal the number of articles from the training dataset that are tagged with
multiple disasters. Only the top 30 combinations are displayed.
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Figure C.2: An UpSet plot of the distribution and overlap of articles used in the validation
dataset. Each verticle bar represents a set of articles tagged with a specific disaster type,
with the height of the bar indicating the number of articles. The horizontal bars at
the bottom of the plot show the intersection between different disaster types. These
intersections reveal the number of articles from the validation dataset that are tagged
with multiple disasters. Only the top 30 combinations are displayed.
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Figure C.3: An UpSet plot of the distribution and overlap of articles used in the test
dataset. Each verticle bar represents a set of articles tagged with a specific disaster
type, with the height of the bar indicating the number of articles. The horizontal bars
at the bottom of the plot show the intersection between different disaster types. These
intersections reveal the number of articles from the test dataset that are tagged with
multiple disasters. Only the top 30 combinations are displayed.

Figure C.4: Fine tuning training and validation loss metrics by step.
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Pita Costa, J., Rei, L., Bezak, N., Mikoš, M., Massri, M. B., Novalija, I., and Leban, G.
(2024). Towards improved knowledge about water-related extremes based on news me-
dia information captured using artificial intelligence. International Journal of Disaster
Risk Reduction, 100:104172.

Pricope, N. G., Husak, G., Lopez-Carr, D., Funk, C., and Michaelsen, J. (2013). The
climate-population nexus in the East African Horn: Emerging degradation trends in
rangeland and pastoral livelihood zones. Global Environmental Change, 23(6):1525–
1541.

Pringle, M. (2013). Robust prediction of time-integrated NDVI. International Jour-
nal of Remote Sensing, 34(13):4791–4811. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/01431161.2013.782117.
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Kretschmer, M., Mahecha, M. D., Muñoz-Maŕı, J., Nes, E. H. v., Peters, J., Quax, R.,
Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang,
K., and Zscheischler, J. (2019a). Inferring causation from time series in Earth system
sciences. Nature Communications, 10(1):2553.

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019b). Detect-
ing and quantifying causal associations in large nonlinear time series datasets. Science
Advances, 5(11):eaau4996. Publisher: American Association for the Advancement of
Science Section: Research Article.

Sakahira, F. and Hiroi, U. (2021). Designing cascading disaster networks by means
of natural language processing. International Journal of Disaster Risk Reduction,
66:102623.

Sakdapolrak, P., Sterly, H., Borderon, M., Bunchuay-Peth, S., Naruchaikusol, S., Ober,
K., Porst, L., and Rockenbauch, T. (2024). Translocal social resilience dimensions of
migration as adaptation to environmental change. Proceedings of the National Academy
of Sciences, 121(3):e2206185120. Publisher: Proceedings of the National Academy of
Sciences.

Saldarriaga, J. F. and Hua, Y. (2019). A gravity model analysis of forced displacement
in Colombia. Cities, 95:102407.

Sasaki, T., Collins, S. L., Rudgers, J. A., Batdelger, G., Baasandai, E., and Kinugasa, T.
(2023). Dryland sensitivity to climate change and variability using nonlinear dynamics.
Proceedings of the National Academy of Sciences, 120(35):e2305050120. Publisher:
Proceedings of the National Academy of Sciences.

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V.,
Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G. (2009). Early-warning signals
for critical transitions. Nature, 461(7260):53–59.

Schewel, K., Dickerson, S., Madson, B., and Nagle Alverio, G. (2024). How well can we
predict climate migration? A review of forecasting models. Frontiers in Climate, 5.

Schiavina, M., Melchiorri, M., Pesaresi, M., Politis, P., Carneiro, F. S. M., Maffenini, L.,
Florio, P., Ehrlich, D., Goch, K., Carioli, A., Uhl, J., Tommasi, P., and Kemper, T.
(2023). GHSL Data Package 2023. ISBN: 9789268023419.

Schiecke, K., Pester, B., Feucht, M., Leistritz, L., and Witte, H. (2015). Convergent Cross
Mapping: Basic concept, influence of estimation parameters and practical application.
In 2015 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 7418–7421. ISSN: 1558-4615.

169



Schumacher, D. L., Keune, J., Dirmeyer, P., and Miralles, D. G. (2022). Drought
self-propagation in drylands due to land–atmosphere feedbacks. Nature Geoscience,
15(4):262–268. Number: 4 Publisher: Nature Publishing Group.

Seal, A. and Bailey, R. (2013). The 2011 Famine in Somalia: lessons learnt from a failed
response? Conflict and Health, 7(1):22.

Shi, H., Zhao, Y., Liu, S., Cai, H., and Zhou, Z. (2022). A New Perspective on Drought
Propagation: Causality. Geophysical Research Letters, 49(2):e2021GL096758. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021GL096758.

Sohoulande Djebou, D. C., Singh, V. P., and Frauenfeld, O. W. (2015). Vegetation
response to precipitation across the aridity gradient of the southwestern United states.
Journal of Arid Environments, 115:35–43.

Song, D., Vold, A., Madan, K., and Schilder, F. (2022). Multi-label legal document
classification: A deep learning-based approach with label-attention and domain-specific
pre-training. Information Systems, 106:101718.

Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., and Munch, S. (2012).
Detecting Causality in Complex Ecosystems. Science, 338(6106):496–500.

Sugihara, G. and May, R. M. (1990). Nonlinear forecasting as a way of distinguishing
chaos from measurement error in time series. Nature, 344(6268):734.

Swets, D., Reed, B. C., Rowland, J., and Marko, S. E. (1999). A weighted least-squares
approach to temporal NDVI smoothing.

Tadesse, T., Demisse, G. B., Zaitchik, B., and Dinku, T. (2014). Satellite-based hy-
brid drought monitoring tool for prediction of vegetation condition in Eastern Africa:
A case study for Ethiopia. Water Resources Research, 50(3):2176–2190. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2013WR014281.

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical Systems and
Turbulence, Warwick 1980, volume 898, pages 366–381. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Tamagnone, N., Fekih, S., Contla, X., Orozco, N., and Rekabsaz, N. (2023). Leverag-
ing Domain Knowledge for Inclusive and Bias-aware Humanitarian Response Entry
Classification. arXiv:2305.16756 [cs].

Thalheimer, L., Gaupp, F., and Webersik, C. (2021a). Compound vulnerabilities exac-
erbate systemic risks of food security in Somalia. preprint, In Review.

Thalheimer, L., Gaupp, F., and Webersik, C. (2023a). Systemic risk and compound vul-
nerability impact pathways of food insecurity in Somalia. Climate Risk Management,
42:100570.

170



Thalheimer, L. and Oh, W. S. (2023). An inventory tool to assess displacement data in the
context of weather and climate-related events. Climate Risk Management, 40:100509.

Thalheimer, L., Schwarz, M. P., and Pretis, F. (2023b). Large weather and conflict effects
on internal displacement in Somalia with little evidence of feedback onto conflict. Global
Environmental Change, 79:102641.

Thalheimer, L., Williams, D. S., van der Geest, K., and Otto, F. E. L.
(2021b). Advancing the Evidence Base of Future Warming Impacts on Human
Mobility in African Drylands. Earth’s Future, 9(10):e2020EF001958. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020EF001958.

Thoma, D. P., Munson, S. M., Irvine, K. M., Witwicki, D. L., and Bunting, E. L. (2016).
Semi-arid vegetation response to antecedent climate and water balance windows. Ap-
plied Vegetation Science, 19(3):413–429.
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