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Abstract

Artificial intelligence (AI) promises to revolutionize many fields, but its clinical implementation 

in cardiovascular imaging is still rare despite increasing research. We sought to facilitate 

discussion across several fields and across the lifecycle of research, development, validation, 

and implementation to identify challenges and opportunities to further translation of AI in 

cardiovascular imaging. Furthermore, it seemed apparent that a multi-disciplinary effort across 

institutions would be essential to overcome these challenges. This paper summarizes the 
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proceedings of the NHLBI-led workshop, creating consensus around needs and opportunities 

for institutions at several levels to support and advance research in this field and support future 

translation.

Keywords

artificial intelligence; data science; machine learning; deep learning; AI algorithms; cardiovascular 
imaging

Introduction

Over the last century, advances in cardiovascular imaging have revolutionized the care 

of patients with cardiovascular disease (CVD)(1). However, these advances have come at 

a significant financial and human cost. Healthcare expenditures, as well as the burden 

on imaging specialists to generate increasingly detailed reports of imaging studies, both 

continue to rise in parallel with the exponential increase in frequency and variety of 

cardiovascular imaging tests performed during routine clinical care(2). Thus, the field of 

cardiovascular imaging is at a breaking point and ripe for a paradigm shift.

Artificial intelligence (AI) is touted as the disruptive innovator needed to solve a wide 

variety of problems in cardiovascular imaging(3), but whether the field can realize the 

promise of AI to reduce costs of cardiovascular imaging while advancing human health 

remains to be seen. In this regard, much can be learned from the tenets of disruptive 

innovation to prepare the field of cardiovascular imaging to best harness the power of AI 

to achieve goals(4). Some of these principles include: (1) understanding disruption as a 

process, rather than a fixed event or solution; (2) acknowledging that true disruption requires 

scientific, clinical, and business models that are very different from the status quo; and 

(3) realizing that not all disruptive innovations succeed. From these principles, it is clear 

that preparing, planning, and collaborating for research, testing, and implementation of any 

potential disruptive innovation, such as AI in cardiovascular imaging, is key to improving 

chances for success.

For these reasons, the US National Institutes of Health (NIH) convened a 2-day workshop in 

June 2022 entitled, “Artificial Intelligence in Cardiovascular Imaging: Translating Science 

to Patient Care,” which brought together key stakeholders from academia, NIH, the National 

Science Foundation, industry, the US Food and Drug Administration (FDA), the Centers for 

Medicare and Medicaid Services (CMS), and cardiovascular imaging societies. The overall 

goal of the workshop was to discuss challenges and opportunities for AI in cardiovascular 

imaging, focusing on how these stakeholders can support research and development to 

move AI from promising proofs of concept to robust, generalizable, equitable, scalable, 

and implementable AI. Workshop participants included representatives from over 18 

research institutions, five medical societies, and four government agencies. The participants 

were 34 percent female, 50 percent Caucasian, 45 percent Asian, and 5 percent Black, 

and represented geographic regions across the US, as well as the United Kingdom. In 

preparation for this workshop, we performed an analysis of NHLBI-funded studies of AI 

in CV imaging. Although we noted an increase over the last two years, the overall number 
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of funded studies was quite small (Figure 1). Here we describe the deliberations of the 

working group members, who sought to identify and prioritize the challenges and needs 

facing researchers in 6 key areas: data, algorithms, infrastructure, regulatory requirements, 

implementation, and human capital. The resulting proceedings described here provide a 

blueprint for academia, government institutions, and industry that should accelerate the 

incorporation of AI in all aspects of cardiovascular imaging, reduce financial and human 

resources burden, and most importantly, improve the care of patients with CVD.

1: Data

Data is of fundamental importance to AI development. In cardiovascular imaging, data spans 

multiple modalities including ultrasound, computed tomography (CT), magnetic resonance 

imaging (MRI), angiography, and nuclear imaging, each with different underlying physics 

of acquisition/processing, and involving several vendors. Data spans multiple patient types 

across diseases and demographics, has high clinical volume, and is large in size. These 

characteristics present inherent challenges in terms of how to acquire, harmonize, curate, 

analyze, and store cardiovascular imaging data for AI. The workshop identified several 

needs and opportunities to advance data-centric research:

• How should data quality and diversity be assessed? These challenges exist at a 

dataset level (e.g., patient representation, missing data), as well as at an image 

level (e.g., image quality and artifacts).

• If multi-center, multi-vendor datasets are superior for training and testing robust 

AI models, how can we best harmonize and standardize that data? How do we 

best distribute the responsibility for these tasks among national, institutional, and 

individual stakeholders?

• How can patient privacy best be protected while preserving data access for 

research?

Data quality and diversity.

If data quality and diversity are not considered, AI models may reflect and amplify the 

noise and biases of the underlying datasets. The quality of a cardiovascular imaging 

dataset includes aspects of the image itself, as well as the timing, location, and methods 

of acquisition (provenance)(5); purpose of creation; associated metadata; imaging report 

and other annotations (labels). The methods of annotation, labeler expertise, interobserver 

variability, and ground truth are all important quality metrics that should accompany datasets 

and the models that are trained from them. Development of standards for data quality, 

image acquisition, meta-data completion, image quality analysis, annotation, and reporting 

are important areas of future research. Ideally, clinical AI models should perform well on 

datasets of varying quality. Alternatively, AI may be developed to improve image quality 

(e.g., denoising or super-resolution)(6) for downstream clinical tasks.

Finally, it is important to remember that data quality is a dynamic issue. Developers 

and users of AI models should be alert for “data shift” that can result from new 
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imaging machines, new technology upgrades, changes to imaging protocols, or a change 

in utilization.

In some ways, diversity is one aspect of dataset quality. Dataset diversity encompasses 

patient factors—type of disease pathology, age, sex or gender, race, ethnicity, geography, 

and socioeconomic status—as well as factors intrinsic to the images themselves, such as 

scanner manufacturer, artifacts, and modes of acquisition(7).

Lack of patient-level diversity in datasets has the potential to exacerbate health inequalities. 

For example, in the assessment of chest x-ray datasets, AI models under-diagnosed 

underserved patients including female, Black, Hispanic, younger, and lower socioeconomic 

status patients.(8) It is important to engage with communities impacted by health disparities 

in order to recruit underrepresented minorities for cardiovascular imaging research.

Lack of image-level diversity may also cause healthcare inequalities that are yet 

unanticipated (e.g., if an AI model performs poorly given a certain imaging artifact or 

particular brand of scanner).

Diversity is important in both training and testing datasets, and it should be reported along 

with other quality metrics. Bias mitigation strategies that can be adopted before, during, 

and after training have been proposed in order to develop fairer algorithms. Identifying 

appropriate measures of “diversity” for datasets is an important area for future research.

Data curation.

In order to measure quality and track provenance across many images in various datasets 

at multiple centers, developing and deploying methods to curate and harmonize datasets 

are key challenges. Meeting this challenge will require innovation in data engineering, 

management, and deployment, as well as computing infrastructure (Section 3). Specific 

challenges in curation of cardiovascular imaging at this scale include harmonization 

across multiple centers, studies, and modalities; dealing with missing data or metadata; 

ensuring cross-compatibility across vendors and image formats; as well as centralization and 

deployment of standard image labeling workflows. Optimizing these challenges provides 

key areas for further research.

Data access, sharing, and safety.

Access to large, high-quality, diverse datasets drives innovation in AI. Data access is 

also an important democratizer, ensuring that researchers currently underrepresented in the 

development and use of AI have equal ability to innovate. In addition to curation (above) and 

infrastructure (Section 3), challenges in data sharing for cardiovascular imaging include data 

privacy and consent, institutional and national regulatory hurdles, security, and attribution of 

credit for dataset curation.

Depending on the type of data, different levels of de-identification and security may 

be required. Concerns about data privacy and consent are well-placed as the technical 

capabilities around subject identification/re-identification is rapidly changing. For example, 

facial recognition from scans of the head has been demonstrated(9). Developing “Biosafety 
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levels” around some types of imaging research may help to alleviate these concerns and is 

an important area for further research. This could include special training, security controls, 

and monitoring. Different levels of permission and consent may be needed for academic and 

commercial uses. Synthetic data may also help alleviate some data privacy concerns and 

warrants further research.

Successful data access and sharing will require both technical and policy support at multiple 

levels, including governmental, institutional, and individual. One example is the 2023 NIH 

Data Management and Sharing Policy, which expands its existing data sharing requirements 

to all extramural research that generates scientific data regardless of funding level(10). 

Enabling attribution of credit for the hard work of data collection and curation can help 

promote data sharing. Methods to facilitate this include journals and other resources where 

datasets can be documented and cited.

2: Algorithms

AI is anticipated to improve cardiovascular imaging through its application to use cases 

across the entire lifecycle of cardiovascular imaging. AI has been utilized in patient 

selection and protocoling prior to imaging tests, image acquisition, denoising, registration, 

and reconstruction during the test acquisition, quantification, interpretation, diagnosis. and 

reporting, as well as prognostic risk stratification (Figure 2)(11). Early potential was 

demonstrated using now-standard methods like supervised learning and using networks 

like convolutional neural networks and U-Nets. This work has sometimes demonstrated 

impressive results meeting expert human performance; however, AI to date is data-

hungry, label-hungry, data-specific, and can also fail in ways that jeopardize user trust. 

A new generation of AI algorithms must work smarter to meet clinical needs at the 

level of performance and robustness that clinicians and patients require. Challenges and 

opportunities in algorithm development include:

• How do we design data-efficient, and label-efficient, algorithms to maximize the 

value of medical imaging data while relieving clinicians of labeling burden?

• What are the best methods for leveraging data across cardiovascular imaging 

modalities, and/or combining cardiovascular imaging with other clinical data 

modalities?

• What are the best methods for evaluation of AI models’ robustness, 

generalizability, and learned features?

Data- and label-efficiency.

Several diagnostic challenges in cardiovascular imaging concern rare conditions where 

data is scarce. Also, while crowd-sourced labeling has worked well in supervised learning 

for non-medical imaging tasks, busy clinical experts are often tapped to produce the 

labor-intensive annotations for cardiovascular imaging. Image segmentation, in particular, 

is highly useful for several downstream clinical applications, including object detection and 

quantitative imaging. Creating segmentation labels is also highly time-consuming. Existing 
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clinical annotations, if they are readable by the algorithms, can be used as labels(12), but this 

approach may propagate human subjectivity into model training and may need data curation.

For these reasons, opportunities exist to further develop both data-efficient AI, requiring 

the least amount of (labeled or unlabeled) data to reach maximum performance, as well as 

semi-supervised and self-supervised AI (no labels needed for tasks that typically require 

them)(13). For example, self-supervised deep learning was recently used to segment all 

cardiac chambers without any manual labels(14). Tested on over 40 times the amount of 

data it was trained on, manual labeling for even the relatively small dataset used would have 

taken a clinician over 2,000 hours. Data-efficient algorithms may include active learning, 

increasingly lightweight neural networks, and other approaches.

Multi-modal algorithms.

Another opportunity is to further develop AI models that, like good clinicians, can 

incorporate multiple imaging modalities, and further combine imaging with other clinical 

data and circulating biomarkers. AI-based combination of quantitative positron emission 

tomography (PET) and coronary CT angiography atherosclerotic plaque biomarkers with 

clinical data can improve prediction of future myocardial infarction(15).

Image improvement.

Multi-modal data can even be synthetically generated, leveraging the benefits of multi-

modal imaging without the risk and cost of additional patient imaging. For example, deep 

learning techniques have been utilized to generate pseudo-CT data from single-photon 

emission computerized tomography (SPECT) emission data to allow attenuation correction 

on nuclear cardiology scanners which are not equipped with CT.(16) AI-generated CT maps 

with generative adversarial networks have also found utility in PET to CT image registration 

for hybrid image registration(17).

Quantitative analysis.

A highly practical application in cardiovascular imaging is assistance in image quantification 

- a task that is currently subjective and associated with observer variability. Deep learning 

techniques, such as U-Nets and convolutional Long Short-Term Memory networks, have 

been successfully applied for this purpose. Fully automated methods have been described 

for the segmentation of cardiac chambers in ultrasound, CMR, and CT images. AI-

enabled quantitative measurement of coronary calcium from chest CT images and of total 

atherosclerotic plaque from coronary CT Angiography has shown to predict prognostic 

outcomes(18,19). Use of an AI-based workflow for inline CMR myocardial perfusion 

analysis enhances objective interpretation of stress perfusion images and provides rapid 

results on the scanner(20).

Performance evaluation.

AI models typically produce an inference result that must then be put into clinical context; 

for example, left ventricular segmentation by an inference model must then be utilized for 

left ventricular size measurement. Like other clinical research, these final clinical results 

of AI inference can and should be tested using standard biostatistical methods and external 
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validation (Section 5). However, performance evaluation of the AI model itself—what the 

model is learning—is also a critical challenge. There is opportunity to further develop 

explainable AI algorithms, ways to measure model robustness and generalizability, and 

methods to interrogate AI models’ learned features, especially in deep learning.

Current methods to interrogate a neural network’s learned features include saliency maps, 

gradient-weighted class activation mapping (GradCAM), occlusion/ablation testing, and 

adversarial testing. These methods can reveal model-learned features for machine learning 

and deep learning, which can be evaluated as metrics of the AI models. Explainable 

AI features can even be presented directly to the physician as part of the AI-enabled 

application(21); and as indicated by preliminary studies, these may lead to improvements 

and confidence in physician interpretation(22). Finally, transparency is a key aspect for use 

of AI tools and important for their acceptance by health care providers and patients(23).

3: Computing Infrastructure

Biomedical researchers are in a good position to develop and test AI for cardiovascular 

imaging due to their domain expertise and skill in experimental design. However, 

traditionally they may lack access to flexible, high-capacity central processing units (CPU) 

and graphics processing units (GPU); storage; and mature software for data preparation, 

analytics, and results communication that are needed to further research.

While many institutions have local computing clusters, cloud providers are an indispensable 

part of the AI landscape because they have developed standardized, scalable environments 

with streamlined access to stored data, high-performance compute, and software tools; 

as well as secure infrastructure to enable federated, multi-center, and/or multi-site 

collaboration. Examples of major commercial cloud providers include Amazon Web 

Services (AWS), Microsoft’s Azure, and Google Cloud Platform (GCP), which in turn, 

leverage GPU hardware from companies, such as NVIDIA. While these core providers 

offer several software tools for machine learning and computer vision—even some that are 

specific to medical imaging—they must support and grow for innumerable different users 

and use cases. Continuing computing challenges include:

• How can computing platforms help biomedical researchers stay current with new 

and ever-evolving computational tools?

• How can platforms provide flexibility and interoperability for evolving research 

needs (new algorithms, new data formats, and cross-platform interoperability for 

collaboration or data linkage)?

• How can platforms and other stakeholders support needs for compute and/or 

data storage through the uncertainty of grand funding cycles, institutional policy 

changes, and other research challenges?

Core providers may address some of these challenges, but others will be best addressed 

by biomedical imaging-specific platforms built on top of core provider services. Table 1 

presents several examples.
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Tools, outreach, and education.

Rather than have each group of researchers develop their own tools for image preprocessing 

and labeling, model training, inference and performance analysis, platform tools can help 

streamline and accelerate research and collaboration. For example, NVIDIA’s Medical 

Open Network for Artificial Intelligence (MONAI)(24) is an open-source toolkit that can 

run on several computing platforms. GCP’s Healthcare API(25) offers tools for storage, 

de-identification, and processing of Digital Imaging and Communications in Medicine 

(DICOM) files. AWS offers integration with Orthanc(26), an open-source DICOM server 

system.

While readily available tools and platforms are helpful, researchers may find it challenging 

to keep pace with fast-evolving, ever-proliferating software. Continued outreach and 

education from software providers can help improve the learning curve and allow 

researchers to fully leverage available tools. Outreach should also include institutional 

leaders, who are often in the position of approving tools or platforms for their own 

institution.

Flexibility for novel research needs.

Despite available tools, the nature of novel research dictates that at times, researcher 

needs will not be well-served by existing offerings. For example, early cloud computing 

environments offered by core providers did not provide the security features required for 

patient data. Smaller platforms focused on building patient-safe environments on top of core 

services did not initially allow access to the full range and scope of computing required. 

Non- DICOM image formats are still not uniformly supported. It is therefore important 

for platform providers to continuously solicit feedback from researchers and respond to 

those needs by altering or enhancing platform capabilities. Some researchers may also play 

a valuable role on platform development teams or as alpha users. Finally, strengthening 

collaborations between researchers and software providers can help productionize promising 

tools developed out of research labs.

Interoperability.

While some tools are platform-agnostic, others are proprietary, offered only within specific 

cloud platforms, or require institutional endorsement that functionally silos their use. Lack 

of interoperability among platforms can limit exchange, use, and collaboration among 

researchers from different institutions. Technical barriers to interoperability arise when data 

and tools do not adhere to FAIR (findability, accessibility, interoperability, reusability)(10) 

characteristics. Other barriers concern policy, consent, and governance. Meta platforms, 

such as Seven Bridges (Table 1), can help communicate within and across repositories 

that are distributed, in-house, or on the cloud, including those that might be in different 

vendor offerings. They enhance collaboration among researchers through partnerships with 

biomedical research data platform providers, such as Flywheel (Table 1), which help connect 

to data across any academic, life sciences research, clinical, or commercial technology 

organization to provide a common interface for biomedical analysis pipelines.
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Support research needs through research uncertainty.

Workforce turnover and funding changes are inherent to biomedical research, and yet, 

these can jeopardize the integrity and availability of painstakingly developed data, code, 

and results. Researchers may depend on costly cloud computing, for example, only to 

face an interruption in grant funding. Several stakeholders have an opportunity to help 

researchers develop and maintain sustainable data and code. For example, the NIH has 

funded the development of an infrastructure for open imaging data commons called Medical 

Imaging and Data Resource Center (MIDRC, Table 1) in order to support tools for machine 

learning algorithms. It has also developed the BioData Catalyst (Table 1) ecosystem whose 

mission is to develop and integrate advanced cyberinfrastructure, leading edge tools, and 

FAIR standards to support the NHLBI research community. Individual institutions have 

negotiated research discounts with cloud providers; on a national level, the NIH Science 

and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability 

(STRIDES) program (Table 1) has also negotiated simplified cloud access and reduced 

costs for researchers. Additionally, cloud providers have made small amounts of cloud 

computing credits directly available to researchers through granting programs, and there is 

an opportunity to expand these offerings.

4: Regulatory Considerations

With biomedical researchers taking an active role in developing AI for cardiovascular 

imaging, it is natural to want to move innovation to the bedside. However, many researchers 

may find this their first experience with the regulatory processes required to test and 

implement new devices in patient care settings. Major challenges include:

• Researchers are unfamiliar with the regulatory process, particularly with respect 

to the rapidly evolving area of AI-enabled device approval

• Uncertainty exists about when and how to engage the FDA

• In addition to independent AI research and development, there is a need for 

ongoing regulatory science research toward rigorous performance evaluation of 

AI devices.

Software as a medical device (SaMD) regulatory process.

An AI/ML-enabled SaMD implements trained algorithmic models intended for well-defined 

medical purposes (Figure 4). Based on the associated risk, regulatory controls, and the 

type of review established by the Food and Drug Administration (FDA), medical devices 

may fall into three classes (Table 2)(27); most AI/ML cardiovascular imaging SaMDs 

fall within Class II. All three classes require general controls that include adulteration, 

misbranding, registration, listing, and premarket notification, banned devices, notification 

and other remedies, records, reports, and unique device identification, and general provisions 

of the Federal Food, Drug, and Cosmetic Act. Class II devices require special controls that 

include performance assessment strategies, post-market assessment, patient registries and 

guidelines in guidance documents. For devices where general and special controls are not 

sufficient to reasonably assure safety and effectiveness require premarket approval.
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Beyond Class, AI/ML SaMDs will fall into different device types based on function and 

intended use. For example, devices may provide annotations, measure objects of interest in 

medical images, improve the quality of acquired images, help with the acquisition of images, 

prioritize patients based on health conditions, alert a clinician to a suspicious region in the 

image, or provide diagnostic values to aid in medical decisions. Generally, the intended use 

of the device drives the required type and amount of validation, outcomes data and required 

details on the clinical reference standard. Similarly, the intended use can drive requirements 

of how the AI/ML SaMD algorithm must be trained and tested to result in a “locked” model 

followed by performance evaluation.

With respect to designing studies to evaluate SaMD performance, it is important to 

incorporate study endpoints and metrics to validate both the standalone performance of 

the device, as well as its performance within the intended clinical workflow. Careful 

planning and analysis are needed to ensure that bias is minimized at all stages, including 

data collection, reference standard determination, algorithm development, metrics, and 

performance assessment. Through multi-disciplinary experts, FDA makes non-binding 

recommendations regarding the above considerations, including recommendations on 

performance assessment of computer-assisted detection devices for radiological imaging 

and other device data(28–30).

Regulatory challenges for AI/ML SaMDs.

Regulatory science gaps for AI include the lack of consensus methods for enhancing 

algorithm training for small clinical datasets, the lack of clear definition and understanding 

of artifacts, limitations, and failure modes for deep-learning-based devices for image 

denoising and reconstruction, lack of assessment techniques to evaluate trustworthiness of 

adaptive and autonomous AI/ML devices, and lack of a clear path to updating AI/ML SaMD 

if the training and/or algorithm that make up the device change.

To address these gaps and prepare for increasing AI/ML-enabled device submissions, 

the Center for Devices and Radiological Health (CDRH) has begun several initiatives, 

incorporating feedback from various stakeholders including patients. The digital health 

Center of Excellence was created to advance digital health technology, including mobile 

health devices, SaMDs, and wearables used as medical devices. The FDA has created 

an AI/ML SaMD action plan(28), held a public workshop on transparency of AI/ML-

enabled medical devices(29), developed guiding principles for good practice in ML device 

development, and proposed a regulatory framework for modifications to AI/ML-based 

SaMDs(30).

Furthermore, the FDA recognizes certain regulatory-grade methods and tools as medical 

device development tools (MDDTs)(29) in order to improve predictability and efficiency 

in regulatory review. Medical device sponsors can use MDDTs in the development and 

evaluation of their devices and be sure they will be accepted by the FDA without the need to 

reconfirm their suitability.
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Interfacing with FDA.

Early and frequent communication between the FDA and developers of cardiovascular 

imaging SaMDs is vital in bringing high-quality, safe, and effective devices to the market in 

efficient and scientifically valid ways. The Agency’s Q-Submission program(31) introduced 

in 2019 provides a mechanism for interactive dialogue with the FDA regarding early 

stage product development, protocols for clinical and non-clinical testing, and preparation 

of premarket applications across a wide range of device types and regulatory pathways. 

Another mechanism to determine device classification of a device is through the 513(g) 

Request for Classification(32). Through the 513(g), developers can inquire about the 

appropriate regulatory path for their device which can significantly impact the timeline and 

resources required to bring the product to market.

Regulatory research in AI.

The regulatory challenges for AI/ML SaMDs mentioned above require both a policy 

response and ongoing technical research. The Artificial Intelligence and Machine Learning 

research program in Center for Devices and Radiological Health’s Office of Science and 

Engineering Laboratories (OSEL) conducts regulatory science research to ensure patient 

access to safe and effective medical devices using AI/ML. The program is charged with 

addressing scientific gaps such as methods for AI evaluation, image noise, artifacts, failure 

modes of AI/ML, trustworthiness, and generalizability.

In addition, OSEL has created a mechanism for developing and sharing regulatory science 

tools (RSTs)(33) to help assess the safety and effectiveness of emerging technologies. RSTs 

are computational or physical phantoms, methods, datasets, computational models, and 

simulation pipelines. RSTs are designed to accelerate the development of technologies and 

products by providing turn-key solutions for assessment of device performance.

5: Implementation

In addition to regulatory compliance, deployment of AI algorithms in clinical practice must 

include consideration of effectiveness in real-world settings, workflow integration, trust, and 

adoption by providers, reimbursement, and continuous monitoring and updating. Challenges 

in real-world implementation include:

• Additional consideration is needed to determine whether and how payer 

reimbursement, an important incentive to clinical implementation of new devices 

and services, applies to AI tools for cardiovascular imaging.

• Determining how to leverage other incentives to implementation, including 

outcomes and healthcare utilization data, may help in moving forward clinical 

translation of AI.

• Processes to integrate AI into existing clinical workflows and to perform 

continuous monitoring and updating require additional development.
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Reimbursement.

Reimbursement by the Centers for Medicare and Medicaid Services (CMS) and other payers 

may be a significant hurdle in the implementation process. From a payer perspective, 

the use of AI algorithms does not necessarily add specific, measurable benefit beyond 

current patient care. Electrocardiograms, for example, have long included algorithms for 

computation of rates and intervals, and diagnoses, but that software is not separated out for 

payment. Similarly, AI algorithms are generally not considered as a standalone procedure or 

service but rather as part of additional device or analysis support for providers.

There are, however, some special cases of AI imaging algorithms obtaining CMS approval. 

Reimbursement requests in CMS are handled through 3 different pathways: Medicare 

physician fee schedule (MPFS), the Inpatient Prospective Payment System (IPPS), or the 

Hospital Outpatient Prospective Payment System (HOPPS). Within MPFS, a new taxonomy 

for classification of an AI-supported service or procedure into one of three categories was 

recently released. The taxonomy recognizes assistive (machine detects clinically relevant 

data without analysis or conclusion), augmentative (machine analyzes and/or quantifies 

data), or autonomous (machine automatically interprets data without physician involvement)

(34) algorithms. Furthermore, the New Technology Add-on Payment (NTAP) is part of 

the IPPS and was recently used for approval of an AI-guided ultrasound platform(35), for 

coronary artery fractional flow reserve CT analysis(36), and for AI-enabled coronary plaque 

analysis from CT(37). Of note, temporary add-on payment augmentation is considered 

to recognize the increased provider cost to furnish an AI-assisted service, rather than 

recognition of the AI itself as a payable standalone benefit. Additionally, to the extent 

that AI software takes over physician work, one could argue that physician payment could 

actually be reduced in the current paradigm of resource-based reimbursement.

In the end, payers, like other stakeholders, will be positively influenced by strong causal 

evidence of improved health outcomes attributable to AI-augmented management versus 

current best practices.

Outcomes.

Improved patient outcomes derived from AI tools would incentivize payers, physicians, 

hospital administrators, data scientists, and patients alike to adopt and implement their use, 

especially where reimbursement opportunities may be limited. As has been done for drugs 

and other devices, there is an opportunity to use prospective, multicenter randomized clinical 

trials (RCTs) to test whether AI tools confer significant benefit and efficacy. For example, 

a recent trial of AI-enabled left ventricular ejection fraction (LVEF) found that AI-based 

LVEF was superior to initial sonographer assessment(38). While RCTs are a mainstay of 

clinical research, post-hoc imaging analyses making use of imaging already in clinical 

trials and large registries can also show improvement in diagnosis and prognostication for 

patients compared to standard of care(21,39,40). An equally important aspect requiring 

evaluation is the potential impact of incidental findings uncovered by AI, although this was 

not extensively discussed in the workshop.
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Healthcare utilization studies may additionally reveal cost and quality incentives for 

implementing AI. For example, use of a deep neural network-based computational workflow 

for inline CMR myocardial perfusion analysis not only removes the subjective, qualitative 

aspect of interpreting stress perfusion images(20), but it also can significantly reduce the 

time needed for image analysis. Healthcare utilization studies may also reveal cost savings 

when AI is used to re-purpose imaging acquired for one purpose in order to find additional 

benefits. For example, deep learning has utilized CT scans performed for non-cardiac 

purposes to report additional biomarkers of cardiovascular risk such as coronary calcium, 

epicardial fat, or chamber size(41).

Integration.

Finally, easy integration into existing clinical workflows will incentivize adoption of AI-

enabled tools for cardiovascular imaging. Technical challenges to integration include the 

need for software engineers to clean and package code, the need for user interfaces 

for the AI tools, and the need for interfaces/integrations with existing vendor-based 

imaging machines and/or software. The latter may be proprietary and therefore difficult 

to access without cooperation from vendors. Regulatory challenges to integration include 

testing, evaluating, and securing approval for modifications to clinical software(28). Finally, 

integration requires clinicians and hospital administrators to design and test care pathways 

that incorporate AI tools.

6: Human Capital

When discussing AI, it has become common to pit AI models against humans. However, 

every aspect of operationalizing AI for cardiovascular imaging previously described needs 

both AI and humans. Cardiovascular imaging experts are particularly important, as they will 

ultimately be the ones to use or not use AI to care for patients. Therefore, AI developers 

must collaborate with cardiovascular imagers in all implementation strategies to ensure 

the process’s practicality, robustness, and reliability. At the same time, physicians do not 

typically receive training in data science or AI. Challenges for developing human capital 

include:

• Clinician users are unfamiliar with AI development and validation processes, 

making it challenging for them to critically evaluate AI and to trust it.

• Dissemination of AI and education of the general community is limited to 

institutional pockets.

• Clinical studies and trials occur more commonly at single sites with a narrow 

focus of disease.

• Consensus on scientific rigor and reporting requirements for datasets and 

algorithms is still diffuse.

Education and training.

AI techniques remain weakly understood outside of the realms of technical experts. For 

broader adoption, AI requires more education and closer collaboration among computer 
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scientists, researchers, physicians, and technical staff, to identify the most relevant problems 

to be solved and the best approaches for using data sources to achieve this goal. In addition, 

given the upsurge of AI techniques in cardiac imaging, we need AI as a topic included 

in educational curricula offered for professional certifications. Moreover, institutions, 

administrators, and service-line leaders need to incentivize using AI to overcome health 

information silos that undermine care coordination and efficiency. Finally, automated tools 

that allow novices to implement AI models without writing code could help bridge the 

AI-literacy gap.

The application of AI for medical decision-making is fraught with challenges since treating 

patients does not imply simple “batch predictions” but more nuanced approaches given the 

varying needs of image interpretations within a clinical contextual framework. Moreover, 

applying such predictions for medical decision-making requires application within the 

framework of a patient-doctor relationship for shared decision-making. Therefore, while 

adopting and implementing AI, hospital and institutional leaders should invest in suitable 

human capital, training needs, and team structures and develop the right incentives for 

adopting AI-integrated workflow solutions.

Real-life Translation.

Improved education about AI can enable clinical researchers to study its translational 

impact. One obstacle to incorporating AI-based imaging tools is the failure of models to 

generalize when deployed across institutions with heterogeneous populations which differ 

in disease prevalence, racial and gender diversity, comorbidities, and other non-biological 

factors like referral patterns, equipment, imaging protocols, and archival. Indeed, only a 

small fraction of published studies has reported robust sets of prospective real-life external 

validation. For example, despite independent validation, a deep-learning diabetic-retinopathy 

screening imaging tool developed by Google Health faced challenges when deployed in 

a clinic workflow(42). As a result, there is growing emphasis on continuous evaluations 

in real-world settings and pragmatic clinical trials. The recently published extensions of 

the CONSORT and Standard Protocol Items: Recommendations for Interventional Trials 

(SPIRIT) statements for RCTs of AI-based interventions (namely Consolidated Standards 

of Reporting Trials (CONSORT)-AI and SPIRIT-AI) are beginning to provide such a 

framework(43,44).

The role of professional medical societies in translation of AI to the bedside.

Societies can help develop guidelines and standards that can facilitate interoperability of 

data and algorithms among developers, industry, and healthcare institutions. They can 

also aid research, benchmarking, and quality improvement by developing national imaging 

registries that are easily available to developers and researchers(45). For example, the 

development of the UK Biobank(46) imaging data has attracted investigators to embrace 

new ways to diagnose, treat, and potentially predict the onset of cardiovascular diseases. 

Societies may build interest and collaboration around cardiovascular imaging use cases 

by hosting hackathons or data science competitions. They may also sponsor physicians 

to pursue training in AI, through educational content at conferences as well as dedicated 

training. Finally, societies can serve as alpha- and beta-users of AI, offering feedback on 
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AI-human interactions, user interface, impact evaluation compared to the standard of care, 

and other implementation issues.

Dissemination of AI through journals and publications.

Once considered a niche for mainstream high-impact journals, AI-related research has been 

increasingly presented in cardiac imaging journals. By thoughtfully curating specific topics 

that engage AI algorithms’ downstream impact, journal editors can contribute significantly 

to responsible AI research. Moreover, improving the ability of non-technical experts and 

reviewers to assess the potential impact of AI research is critical for timely, constructive 

peer review and acceptance. Guidelines for scientific rigor and reporting in AI, as well 

as general educational opportunities, will create a deeper bench of qualified reviewers for 

cardiovascular imaging AI papers. The development of such steps enables a significant 

proportion of non-technical clinical reviewers to assess complex AI-related topics while 

focusing primarily on clinical translation of the AI approaches. Finally, expanding the 

use of preprint servers in partnership with peer-reviewed journals can improve timely 

dissemination of novel research.

Conclusion

There are several multi-disciplinary research opportunities and additional developmental 

work that are all important to translate AI of cardiovascular imaging forward into clinical 

practice. Some of these opportunities that were identified in the workshop include:

• Developing methods to assess data quality and diversity, data harmonization, and 

data security, all while also promoting a diverse AI workforce

• Expanding methods for data- and label-efficient algorithms, multi-modality 

algorithms, and methods for evaluation of AI models’ robustness, 

generalizability, and learned features

• Developing methods for interoperable and sustainable code across computing 

platforms that are easy for biomedical researchers to learn and use

• In regulatory science, addressing the lack of consensus methods for enhancing 

algorithm training for small clinical datasets, a better understanding of failure 

modes for AI devices, developing assessment methods to evaluate adaptive and 

autonomous devices, and forging a clear path to updating AI-based SaMD as 

technology rapidly evolves

• Formulating clinical trials, healthcare utilization studies, and other 

implementation studies to demonstrate AI’s ability to impact clinical outcomes 

and thus help facilitate payer reception of AI-based tools

• Educating clinicians in AI to improve trust in the methods and thus promote 

evaluation of AI for clinical cardiology by leading clinical trials and contributing 

to quality improvement, and engaging societies in the education process, in 

supporting AI-friendly datasets and registries that are readily accessible to users, 

and in helping to create guidelines
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Clinical cardiology is well-positioned for implementation of artificial intelligence that 

is expected to bring improvement across cardiovascular imaging workflow, diagnosis, 

management, and prognosis. Much work remains to be done in all areas of artificial 

intelligence in cardiovascular imaging, but with clear challenges and opportunities set out by 

a multi-disciplinary, cohesive community, progress can and will be achieved.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AWS Amazon Web Services
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FAIR findability, accessibility, interoperability, reusability

GPU graphics processing unit
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ML machine learning

MDDTs medical device development tools

MIDRC Medical Imaging and Data Resource Center

SaMD software as a medical device
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Highlights

• Despite increasing research, clinical use of artificial intelligence (AI) for 

cardiovascular imaging is still rare

• We identified key stakeholder groups to build consensus around challenges 

and priorities in supporting this research through to implementation

• Major needs to advance the field include methods and policies supporting 

analysis of data quality, content, and diversity; scalable, accessible, and 

flexible computing platforms; and clinical testing for AI algorithms
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Figure 1: NHLBI grants supporting AI in cardiovascular imaging over the past ten years.
The NIH internal data platform was used to search for grants from fiscal year 2013 to 2022 

using free-text search in the title and abstract. The terms used were: (“machine learning” 

and “imaging”) AND (“deep learning” and “imaging”) AND (“AI” and “imaging”). Fifty-

three grants were finalized after removing non-human studies and lung and blood related 

studies, as well as removing non-target grants by manual curation. The grant information 

is accessible using the publicly available NIH Research Portfolio Online Reporting Tools 

(NIH RePORT) system. Early-stage investigator grants, clinical trials, and U-grants have all 

become more common in recent years. Grants span imaging modalities, but typically focus 

on only one modality per grant.
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Figure 2: AI can be used to address use cases across the entire cardiovascular imaging workflow.
Where AI is typically thought of with respect to downstream applications (e.g., image 

analysis and prognosis), it is also proving useful upstream, from patient selection and 

protocoling for imaging studies, to image acquisition at the clinical point of care, signal 

processing, image denoising, attenuation correction, and reconstruction. These use cases are 

applicable across cardiovascular imaging modalities. At each step in the clinical workflow, 

AI can help provide speed and standardization and improve image quality. Finally, improved 

imaging can impact patient care as it is used to predict outcomes, improve prognostication, 

and connect to other clinical data modalities (e.g. text reports, lab data).
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Figure 3: The computing infrastructure landscape for AI is complex, including several types of 
stakeholders and several computing resources and tools.
While a crowded playing field has its advantages, the complexity could also make it more 

difficult for medical centers to participate in AI research and to collaborate with each other. 

Stakeholders include medical centers (dark blue), large cloud providers (orange), as well 

as intermediate platforms (light blue) that offer certain computing features and tools but 

ultimately rely on large cloud providers for core services. Given the complexity of the 

computing landscape, the computing option(s) chosen by an institution affect availability 

of certain tools and/or datasets and can affect ease of collaboration with other institutions. 

AWS, Amazon Web Services. GCP, Google Cloud Platform.
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Figure 4: Overview of different components of AI/ML-enabled software as a medical device in 
premarket submissions.
The intended use of the device (light blue) influences the data used for device development 

and the associated reference standard (orange). The device development process (blue) 

includes the algorithm development, a resulting locked model, and model evaluation. 

Clinical performance evaluation (red) consists of several interrelated components such as 

study design, bias and generalization assessment, selection of appropriate endpoints and 

metrics and selection of testing data that is representative of the target population.
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Central Illustration: Translating AI into patient care for cardiovascular imaging across 
modalities requires several components and has potential for improving care.
Data management, algorithm innovation, technical infrastructure, regulatory policies, and 

human capital must all continue to be developed in concert in order to enable clinical 

validation and testing, to ultimately achieve clinical impact for patient care.
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Table 1.

Selected computing platforms available to researchers.

Platform Website Main Service

Computing Hardware 
(Commercial) https://www.nvidia.com/ Hardware: GPU, Servers, Desktop

NVIDIA Software development environment/packages; MONAI, FLARE

Software platforms: CLARA

Core cloud computing 
providers (Commercial)

Google Cloud Platform 
(GCP) https://cloud.google.com

Traditional and high performance GPU computing, tools, and cloud 
storage

Amazon Web Services (AWS) https://aws.amazon.com
Traditional and high performance GPU computing, tools, and cloud 
storage

Microsoft Azure https://azure.microsoft.com
Traditional and high performance GPU computing, tools, and cloud 
storage

Platforms for medical 
imaging

Non-commercial 

NIH Medical Imaging 
and Data Resource Center 
(MIDRC) https://www.midrc.org/

An NIH supported multi-institutional initiative, hosted at the 
University of Chicago, representing a partnership spearheaded by the 
medical imaging community and, representatives of the American 
College of Radiology® (ACR®), the Radiological Society of North 
America (RSNA), and the American Association of Physicists 
in Medicine (AAPM) for rapid and flexible collection, artificial 
intelligence analysis, and dissemination of imaging and associated data 
with a first common goal to build an AI-ready data commons to fuel 
COVID-19 machine intelligence research that can expand to other 
organs, relevant diseases, and datasets.

NIH Science and Technology 
Research Infrastructure for 
Discovery, Experimentation, 
and Sustainability (STRIDES) 
Initiative https://datascience.nih.gov/strides

Broker providing price advantaged access to commercial cloud 
services for NIH grantees, collaborators, and intramural researchers.

American Heart Association 
Precision Medicine Platform 
(PMP) https://precision.heart.org

A data marketplace to find and access datasets and an AWS suppored 
cloud based virtual environment for analytics, tool development, and 
discovery.

Biodata Catalyst
https://
biodatacatalyst.nhlbi.nih.gov/

Data analysis tools and access to compute platforms internally within 
NIH and externally through commercial platforms

Commercial 

Seven Bridges https://www.sevenbridges.com

Offers a cloud-based environment for storing and conducting 
collaborative bioinformatic analyses that is geared toward genomic 
data and provides tools to optimize processing.

Flywheel Biomedical Data 
Research Platform https://flywheel.io

The service provides medical image management environment with 
tools to streamline research data with searchable, web-based data 
mining and analytics and sharing capabilities.

Ambra Health / Intelerad https://www.intelerad.com/ambra/

Offers scalable enterprise medical imaging platform and vendor neutral 
archive that connects provides tools for image management, clinician 
access, and other researcher needs such as AI driven quality control 
and anonymization.

CLARA https://developer.nvidia.com
Platform offering AI applications and accelerated frameworks for 
healthcare developers, researchers, and medical device makers

Terra https://terra.bio
Platform offerings include tools to help connect researchers to various 
data resources, analytical capabilities, and visualization software
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Table 2.

Device classes and pre-market requirements.

Device class Controls Premarket review process Highlights

Class I (Low risk) General controls Most are exempt

Class II (Moderate/controlled 
risk)

General controls Special 
controls

Premarket notification (510(k)) - 
substantially equivalent to a predicate Most common way to market

De Novo - no predicate Newer pathway to market

Class III (High risk) General controls 
Premarket approval Premarket approval (PMA) High risk devices with most 

stringent data requirements

*
21 CFR Part 860 -- Medical Device Classification Procedures. (27)
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