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QUANTIFICATION AND DEEP LEARNING APPLICATIONS: METABOLITE-SPECIFIC 

HYPERPOLARIZED 13C-PYRUVATE MRI AND MULTIPHASE CT IN RENAL CELL 

CARCINOMAS 

SULE IREM SAHIN 

ABSTRACT 

 

Incidental discoveries of renal cell carcinomas, the most common type of kidney cancer, have 

increased in recent years due to improved imaging technologies. It is crucial to be able to 

characterize the pathology and tumor grade of discovered renal masses to optimize treatment 

planning. This problem will be approached in this dissertation using advanced metabolic MRI 

methods and CT data collection. 

 

Hyperpolarized [1-13C]pyruvate (HP C13) MRI has emerged as a method of imaging metabolic 

pathways in cancer, including kidney cancer. Yet further acquisition and quantification 

improvements are needed to optimize clinical relevance.  

 

To improve HP C13 MRI acquisition in preclinical systems, a spectral-spatial echo planar 

imaging (EPI) sequence is proposed and compared to using a chemical shift imaging (CSI) 

acquisition. The EPI sequence is found to reduce partial volume effects and expedite acquisition. 

To improve upon quantification of HP C13 MRI, a novel pharmacokinetic model for balanced 

steady state free precession (bSSFP) acquisitions is proposed to fit apparent rate constants, kPL 

and kPB. The fit rate constant maps are compared to results from previous pharmacokinetic 

models in paired preclinical and clinical datasets.  



 viii 

Additionally, a U-Net is trained to estimate kPL maps from HP C13 MRI data to take advantage 

of spatial relationships in the data. A novel anatomic HP C13 MRI brain phantom is introduced 

as training data for the U-Net. The U-Net is further finetuned with in vivo datasets. The U-Net 

predicted rate constant maps are compared to using a pharmacokinetic model to fit maps.  

Finally, a 500+ 3D multiphase renal tumor CT dataset is described to increase available data 

examples of renal tumors for better performance of data-driven approaches in renal tumor 

characterization.  
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CHAPTER 1: INTRODUCTION 

Magnetic resonance imaging, ubiquitously known as MRI, is an incredibly powerful medical 

imaging tool for anatomical and functional imaging and has had a widespread impact in the field 

of medicine since its inception in the 1970s1. Recently, the invention of dynamic nuclear 

polarization (DNP) techniques has made in vivo MRI of 13C possible2. Particularly the imaging 

of [1-13C]pyruvate, termed hyperpolarized [1-13C]pyruvate MRI has been a growing field of 

interest as pyruvate is the precursor to multiple metabolic pathways. The power of 

hyperpolarized [1-13C]pyruvate MRI is in its’ ability to probe each of these pathways, and gather 

in vivo data not just of pyruvate but its’ metabolites: lactate, bicarbonate and alanine, as well.  

 

Since the first in-human hyperpolarized [1-13C]pyruvate MRI in prostate cancer patients3, there 

has been an interest in using this technology for oncology applications. Dysregulated metabolism 

is a hallmark of cancer4 and hyperpolarized [1-13C]pyruvate MRI can clue us into the metabolism 

of tumors in a minimally invasive manner. Renal cell carcinoma, the most common type of 

kidney cancer, is specifically a cancer that has shown to exhibit dysregulated metabolism5, which 

has made it an excellent candidate for hyperpolarized [1-13C]pyruvate MRI studies6,7.  The 

characterization of renal cell carcinomas is challenging with standard imaging protocols8–10, 

which makes treatment planning challenging. This challenge either requires data-driven 

approaches, like deep learning, or new contrasts, like hyperpolarized [1-13C]pyruvate. 

 

1.1 Outline 

Chapter 2 will introduce the foundational basics of MR imaging. It will next describe 

hyperpolarized [1-13C]pyruvate MRI including challenges and recent advances. Finally, renal cell 
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carcinomas will be introduced. Specifically, computed tomography (CT) imaging of renal cell 

carcinomas and the metabolism of renal cell carcinomas will be reviewed.  

 

Chapters 3-5 present advancements in acquisition and quantification of hyperpolarized [1-

13C]pyruvate MRI. Chapter 3 describes the implementation of a metabolite-specific echo planar 

imaging (EPI) sequence for hyperpolarized [1-13C]pyruvate MRI on a Bruker 3T preclinical MR 

system. Here, the EPI sequence will be compared with a chemical shift imaging (CSI) sequence, 

through simulations of the point spread function and in vivo experiments. For the EPI sequence, 

simulations are also used to determine optimal pyruvate and lactate flip angles. Finally, 

pharmacokinetic modeling is performed to compute and compare the kPL maps for CSI and EPI 

acquisitions. 

 

Chapter 4 introduces a novel pharmacokinetic model to be used in hyperpolarized [1-

13C]pyruvate MRI experiments where one or more metabolites are acquired with a balanced 

steady state free precession (bSSFP) sequence. This model is validated on preclinical and clinical 

datasets that have paired acquisitions with spoiled gradient echo (GRE)-only acquisitions. The 

model performs well and fits kPL and kPB values similar to those used with a previous PK model 

on the GRE-only acquisitions.  

 

Chapter 5 describes a method to train a U-Net to estimate kPL maps from hyperpolarized [1-

13C]pyruvate MR dynamics. An anatomically accurate brain phantom pipeline is also described 

and used to generate a diverse training dataset to train the U-Net. The model is further finetuned 
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using in vivo brain datasets. The U-Net predicted kPL maps are compared to maps derived using a 

pharmacokinetic model for simulated and in vivo test cases.  

 

Chapter 6 presents a 3D multi-phase renal tumor CT dataset. This chapter describes the data 

curation process including, data formatting, registration of the phases to one another and the 

creation of tumor masks. Additionally, an analysis of the number of phases, pathologies, and 

pathology grades within the dataset is performed and presented.  
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CHAPTER 2: BACKGROUND 

2.1 MRI 

MRI and Nuclear Magnetic Resonance (NMR), which forms the foundation of MRI, involves 

atomic nuclei and nuclear spin physics. In MRI, any NMR active nuclei (nuclei with an odd 

number of protons) can be imaged, but in most MRI applications, hydrogens (protons) are 

imaged.  

Table 2.1: Select NMR active nuclei with nuclear spin number, gyromagnetic ratio and natural 

abundance.  

Nucleus Spin 
Gyromagnetic Ratio, 

𝜸 [MHz/T] 

Natural Abundance 

[%] 

1H 1/2 42.58 99.99 

3He 1/2 32.43 0.0001 

13C 1/2 10.71 1.108 

19F 1/2 40.06 100.0 

23Na 3/2 11.26 100.0 

31P 1/2 17.24 100.0 

129Xe 1/2 11.78 26.44 

 

Under a magnetic field (B0), nuclear spins either align in the direction of the magnetic field (Z-

direction) or the opposite direction. A slight majority align in the direction of the magnetic field 

creating a net magnetization, M = [Mx, My, Mz], aligned in the direction of the magnetic field. 

Within this magnetic field, the nuclear spins precess, and the frequency at which they precess is 

given by the Larmor equation: 

 𝜔 =  𝛾 B0 2.1 

Where 𝜔 is the angular precession frequency, 𝛾 is the gyromagnetic ratio, a property of the 

nuclei, and B0 is the strength of the magnetic field. The B0 magnetic field, also called the main 

magnetic field, sets the stage to make MRI possible. 
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At equilibrium, the net magnetization points along the direction of the magnetic field, the 

longitudinal (Z) direction by convention. Radiofrequency (RF) excitation pulses tuned to the 

same precession frequency as the spins (also known as “on resonance”) are used to perturb the 

spins under B0 towards the transverse (X, Y) plane. Relaxation times (T1, T2) govern how the 

spins react to the RF pulses. The T1 or spin-lattice relaxation time describes the recovery of 

longitudinal (Z) magnetization. The T2 or spin-spin relaxation time describes the dephasing that 

occurs between individual spins resulting in a loss of net transverse magnetization over time. The 

relationship between the relaxation times and magnetization over time is described as follows: 

 
𝑀𝑧(𝑡) =  𝑀0(1 − 𝑒

−
𝑡
𝑇1) 2.2 

 
𝑀𝑥𝑦(𝑡) =  𝑀0 𝑒

−
𝑡
𝑇2 2.3 

Where M0 is the initial magnetization, t is time, Mxy is the transverse magnetization and Mz is the 

longitudinal magnetization. The T1 and T2 change based on the main magnetic field strength and 

the tissue properties.  

 

The RF excitations or B1
+ pulses are transmitted via transmit RF coils. The received signal, also 

called the free induction decay (FID) is received via receive RF coils that are placed very close 

to the body. The FID is a decaying oscillating signal, the current generated from the oscillating 

magnetic field from the oscillating spins.  

 

Gradient coils which sit in between the main magnetic field and the RF coils, encode spatial data.  

In each spatial dimension (Gx, Gy, Gz), they add a small gradient to the B0 field in that direction. 

For frequency encoding (usually denoted to be in X), the gradient is applied during readout such 

that spatial position corresponds with slightly different precession frequencies. For phase 
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encoding (usually in Y and sometimes, in Z for 3D imaging), the gradient is turned on and off 

before readout such that spatial position corresponds with varying accumulated phase. For slice 

or slab selection, the Gz gradient is turned on during RF excitation such that only spins with a 

specific frequency (and therefore within the slice) are excited. The gradient fields over time 

dictate the spatial readout, which can be optimized for fast readouts like echo planar imaging 

(EPI).  

 

These timings of the gradients along with the RF pulses make up the pulse sequence which can 

be shown in the form of a pulse sequence diagram: 

 
Figure 2.1: Example gradient echo pulse (GRE) pulse sequence diagram with a cartesian 

readout1. First row shows the RF excitation with flip angle Θ, where TR describes the time 

between subsequent excitations. The slice selection, phase encoding and frequency encoding 

gradients are shown in the second through fourth lines. For phase encoding, the multiple lines 

show the change of the amplitude of the gradients for a cartesian readout. The final row shows 

the FID signal. 
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The TR or repetition time is the time between subsequent RF excitations and TE, the echo time, 

is the time between the RF pulse and the FID (signal readout).  

 

The data received from the MRI is filled in a matrix, called k-space, where each location 

corresponds to a different spatial frequency in the reconstructed image. To reconstruct the image, 

the 2D or 3D Fourier transform of k-space is used. 

 

2.2 Hyperpolarized [1-13C]Pyruvate MRI 

As an alternative to conventional proton MRI, with carbon imaging, the imaging of organic 

compounds with carbon backbones becomes possible, which is particularly relevant in medicine. 

As carbon-12 has spin zero and is therefore NMR inactive, its’ isotope carbon-13 must instead be 

imaged (Table 2.1). MRI of endogenous carbon-13 is a challenge due to very low SNR 

compared with protons. Carbon-13 has much lower natural abundance (only ~1% of all carbon), 

lower concentration in tissue than proton, and a ¼ of the gyromagnetic ratio of protons (Table 

2.1). These challenges make endogenous carbon-13 MRI infeasible and would necessitate 

impractically long acquisition times to get SNR like that of proton MRI.  

 

To achieve SNR on the order of proton MRI, two steps must be taken. First, the agent of interest 

can be enriched with carbon-13 and the enriched carbon-13 compound can be administered to the 

subject. Second, the Carbon-13 enriched agent must be hyperpolarized. Currently, the most 

popular method of hyperpolarization for hyperpolarized carbon-13 MRI is via dissolution 

dynamic nuclear polarization (dDNP). Briefly, with dDNP, microwaves are used to transfer 

polarization from electron radicals to carbon-13 at very low temperatures and under high 
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magnetic field. In solution, this results in a 10,000x increase in polarization2. A disadvantage of 

dDNP is outside of the magnetic field, the carbon-13 quickly loses polarization governed by the 

T1 time decay constant specific to carbon-13 and the compound. Unlike proton MRI, there is no 

T1 recovery of magnetization. In practice, this necessitates quick injection after removal from the 

magnetic field. To speed up the process, dissolution with heated water is used to quickly bring 

the hyperpolarized solution to body temperature for injection. Preclinical and clinical 

hyperpolarizers are available that can boost polarization up to 30-40%. With carbon-13 

enrichment and dDNP hyperpolarization, in vivo carbon-13 MRI is feasible.  

 

2.2.1 Pyruvate Metabolism 

The utility of carbon-13 MRI is governed by the choice of the carbon-13 enriched agent used. 

Currently, the most popular molecule used is pyruvate and hyperpolarized [1-13C]pyruvate MRI 

is the focus of this work. However, other compounds such as urea3,4, bicarbonate5–7, fumarate8,9 

and more have also been studied with success.  

 

Pyruvate is useful to image due to its location in the metabolic pathway. Through glycolysis, 

glucose is converted to pyruvate as a precursor to several metabolic pathways. Pyruvate is 

converted to lactate via lactate dehydrogenase (LDH) through anaerobic fermentation. Pyruvate 

is shuttled into the mitochondria as input into the TCA cycle (and creates bicarbonate as a 

byproduct). Pyruvate is also converted to alanine via alanine aminotransferase (ALT) during 

transamination.  
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Figure 2.2: Pyruvate metabolic pathways and metabolites of interest. Red circle denotes the 13C -

labelled carbon10. Pyruvate is transported into the cell where it is converted to lactate, alanine or 

bicarbonate via the enzymes lactate dehydrogenase (LDH), alanine aminotransferase (ALT) or 

pyruvate dehydrogenase (PDH).  

 

During hyperpolarized [1-13C]pyruvate MR preparation, the 1st Carbon in pyruvate is labelled 

with the hyperpolarized carbon-13 and as pyruvate takes each of these metabolic pathways 

converts to 13C labelled lactate, bicarbonate and alanine. Using MRI, we can take advantage of 

the unique chemical shifts of [1-13C]pyruvate and its metabolites to image metabolic maps of 

each metabolite, directly probing the various metabolic pathways. 

 

The first in-human MRI study using hyperpolarized [1-13C]pyruvate was completed in 2013 at 

UCSF in prostate patients11 initiating new research into technical advances and clinical 

applications. 
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2.2.2 RF Excitations, Readouts & Pulse Sequences 

As multiple metabolites are being imaged, one acquisition strategy is spectroscopic imaging 

(MRSI), where for each spatial location the continuous chemical shift spectrum is acquired. The 

spectrum can then be analyzed to derive metabolite maps using the chemical shifts of each 

metabolite. One MRSI technique of interest is phase-encoded chemical shift imaging (CSI). With 

CSI, the spectrum of each voxel is acquired during one TR and phase encodes are used to move 

to a new voxel, requiring Nx x Ny RF excitations (where Nx and Ny are the number of voxels in 

X and Y). One large disadvantage of CSI is that it is slow, which makes it difficult to acquire 

high resolution data or across larger FOVs12,13. Faster methods for MRSI have been developed 

such as echo planer spectroscopic imaging (EPSI) strategies, which acquire both one row of 

imaging data and spectra for each voxel in one TR14.  

 

As an alternative to MRSI, metabolite-specific imaging is a more flexible and faster method. 

With metabolite-specific imaging, spectral-spatial (spsp) RF excitations are used not only for 

slice or slab selection but also to excite only certain chemical shift frequencies15. Using a 

spectral-spatial RF excitation centered around the frequency of the metabolite of interest, fast 

readout methods, like those used in proton MRI can be leveraged to directly image maps of the 

metabolite. During metabolite-specific imaging, an image of pyruvate is acquired using a spsp 

RF excitation centered around the frequency of pyruvate, then the center frequency of the spsp 

RF pulse is shifted to the frequency of a metabolite, for example lactate, to acquire a lactate map. 

The center frequency can then be shifted back to pyruvate and so on to acquire interleaved 

images of pyruvate and lactate dynamically. Common fast readouts for metabolite-specific 

imaging are echo planar imaging (EPI) or spiral16–19.  
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Figure 2.3: The advantages and disadvantages of imaging methods for Hyperpolarized 13C 

MRI20. Spectroscopic imaging works best with complex spectra but is slow. In contrast, 

metabolite-specific imaging requires sparse spectra but is more flexible and faster.  

 

Recently, metabolite-specific balanced steady state free precession (bSSFP) pulse sequences 

have been applied to hyperpolarized [1-13C]Pyruvate MRI. The advantage of bSSFP sequences is 

that they refocus the transverse magnetization at every TR instead of a typical spoiled gradient 

echo (GRE) sequence21. This is particularly important for hyperpolarized experiments where 

there is no magnetization recovery. Using a metabolite-specific bSSFP sequence for 

hyperpolarized C13 metabolites has shown to improve the SNR of lactate19, bicarbonate22 and 

urea23 by 2-3x.  
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Figure 2.4: Spoiled GRE pulse sequence diagram (left) versus a bSSFP pulse sequence diagram 

(right). In bSSFP sequences, the gradients are balanced each TR (i.e. sum to 0) and the RF 

excitations alternate. (Images courtesy of Allen D. Elster, MRIquestions.com 24,25.) 

 

2.2.3 Quantification & Pharmacokinetic Modeling 

Area under the curve (AUC) ratios, computed by summing the metabolite data over time, have 

previously been used to normalize the downstream metabolite signal by pyruvate. Although 

uncomplicated and quick to compute, it is challenging to compare AUC ratios across patients or 

studies. AUC ratios are affected by flip angles used, bolus timings and bolus characteristics. 
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Figure 2.5: Overview of quantification methods for Hyperpolarized [1-13C]Pyruvate26. AUC 

ratio maps are derived from taking the sum of the dynamics and dividing the AUCs of the 

downstream metabolites (lactate, bicarbonate) by the pyruvate AUC. For the pharmacokinetic 

model the dynamics are fit to the model per voxel to get rate constant (kPL and kPB) maps. Pyr = 

pyruvate, Lac = lactate, Bic = bicarbonate, AUC = area under the curve  

 

In an alternative approach, the pharmacokinetics of pyruvate and lactate can be modeled as a set 

of differential equations27–30. The pharmacokinetic (PK) model used can increase in complexity 

based on the number of physical compartments (Figure 2.6). Although more physical 

compartments (such as vasculature, intracellular, extracellular) may more accurately model the 

biochemistry, there are more unknown parameters that cannot be acquired with imaging which 

must also be estimated or fit27. In the one physical compartment case, the whole body is 

considered as a single homogeneous compartment. The one physical compartment model for 

pyruvate and lactate can be described with the following equations30: 
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𝑑𝑃𝑧(𝑡)

𝑑𝑡
=  −𝑅1𝑃𝑃𝑧(𝑡) − 𝑘𝑃𝐿𝑃𝑧(𝑡) + 𝑢(𝑡) 2.4 

 
𝑑𝑃𝑧(𝑡)

𝑑𝑡
=  −𝑅1𝑃𝑃𝑧(𝑡) − 𝑘𝑃𝐿𝑃𝑧(𝑡) + 𝑢(𝑡) 2.5 

Where Pz and Lz are the longitudinal components of pyruvate and lactate respectively, kPL is the 

apparent pyruvate-to-lactate rate constant, R1P and R1L are the reciprocal of pyruvate and lactate 

T1, and u(t) is the input function. Note that this is a uni-directional model, meaning that it is 

assumed that the lactate-to-pyruvate conversion, kLP, is zero.  

 

The apparent rate constant, kPL, is a quantitative marker representing anaerobic fermentation. The 

model can be extended to the other metabolites to fit kPB and kPA, the rate constants representing 

pyruvate to bicarbonate and alanine conversion, respectively.  

 
Figure 2.6: Visual representations of a one physical compartment (A), two physical 

compartment (B) and three physical compartment (C) pharmacokinetic (PK) model27. For the 

one compartment model, the full pool of pyruvate can convert to lactate, In the two compartment 

model, the intervascular (iv) compartment is separate and pyruvate can only convert to lactate in 

the extravascular (ev) compartment. For the three compartment model, there is a further 

intracellular compartment (ic), where pyruvate can only convert to lactate in the intracellular 

compartment. 

 

By solving the differential equations, a function can be derived between the metabolite dynamics 

and the rate constants. Then using least-squares fitting or similar techniques, the metabolite maps 
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can be used to fit rate constants per voxel to create rate constant maps. As flip angles, and bolus 

characteristics are inputs into the model, the apparent rate constants can be compared across 

patients and institutions.  

 

2.3 Renal Cell Carcinoma 

According to the American Cancer Society, there will be an estimated 81,610 new cases of 

kidney and renal pelvis cancers in 202431. Improvement in imaging technologies has increased 

the rate of incidental discoveries of small renal masses32. For these new discoveries, it is more 

important than ever to be able to characterize these masses for proper treatment planning.  

 
Figure 2.7: Diagram of groupings and pathologies of renal lesions, including malignant renal 

cell carcinoma (RCC), benign angiomyolipoma and benign oncocytoma33. 

 

Renal cell carcinomas (RCCs) are the most common renal malignancy. Renal cell carcinomas are 

divided into three main pathological subgroups: clear cell RCC (ccRCC) which is up to 80% of 
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RCCs, papillary RCC (pRCC) which is about 10%, and chromophobe RCC (chRCC) about 

5%34,35. The most common benign renal tumors include angiomyolipoma (AML) and 

oncocytomas. 

 

Standard of care for RCC, includes initial diagnosis and TNM staging using ultrasound or pre- 

and post-contrast CT. Typically, this leads to surgical resection of the tumor in form of a partial 

or radical nephrectomy. If the pathology is unclear, percutaneous needle core biopsy is used. 

Fuhrman grading based on histology is additionally used to assign a grade to the tumor based on 

appearance of cell nuclei36. The International Society of Urological Pathology (ISUP) has more 

recently updated tumor grading guidelines and stated chRCC should not be graded37. Of 

localized (stage T1) renal tumors, around 80% were found to be low-grade38 and would not 

require resection, and instead would benefit from active surveillance39.  

 

2.3.1 CT of RCC 

The most common imaging method used for renal mass diagnosis and staging is Computed 

Tomography (CT). An optimal CT protocol for RCC diagnosis typically includes an unenhanced 

CT along with post-contrast phases: corticomedullary (25-40 seconds after contrast 

administration) and nephrogenic (90-120 seconds after contrast administration)35,40.  AML with 

macroscopic fat can be distinguished from RCC using CT alone. However, it is challenging to 

distinguish lipid-poor AML and oncocytomas from RCC with CT35,40–42. 

 



 19 

2.3.2 RCC Metabolism 

The reprogramming of metabolism is a hallmark of cancer43. Called the Warburg effect, tumor 

cells, unlike healthy cells, even in the presence of oxygen, rely more heavily on lactate 

fermentation than respiration for metabolism44 (Figure 2.8). RCC exhibits the Warburg effect45, 

and previous studies have shown increased LDHA in RCC tumor cells compared with healthy 

through immunohistochemistry46, gene expression47 and proteomics/metabolomics analysis48.  

Girgis et al.47 reports an increase in LDHA expression for increasing RCC tumor grade. Sriram et 

al.49 found a significant increase in mean LDHA expression in ccRCC compared with both 

healthy tissues and benign tumors (AML and oncocytoma).  

 
Figure 2.8: Graphical representation of the Warburg effect50. Tumor cells, regardless of the 

availability of oxygen, favor fermentation (pyruvate to lactate conversion) over the TCA cycle 

and oxidative phosphorylation.  

 

Hyperpolarized [1-13C]Pyruvate MRI can also be used to capture the Warburg-like metabolism in 

RCC. In xenograft rat models, Sriram et al.51 investigated three different RCC cell lines and 
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found the cell line with the highest LDHA expression, also had the highest pyruvate-to-lactate 

conversion as assessed with Hyperpolarized [1-13C]Pyruvate MRI. In human Hyperpolarized [1-

13C]Pyruvate MRI studies, increasing WHO/ISUP tumor grade has shown to correlate with 

median kPL in ccRCC52. Another study showed that an increase in hyperpolarized 13C-Lactate 

over 13C-Pyruvate ratio correlated with increasing ccRCC tumor grade53.  
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CHAPTER 3: METABOLITE-SPECIFIC ECHO PLANAR IMAGING FOR 

PRECLINICAL STUDIES WITH HYPERPOLARIZED 13C-PYRUVATE MRI 

3.1 Abstract 

Metabolite-specific echo-planar imaging (EPI) sequences with spectral–spatial (spsp) excitation 

are commonly used in clinical hyperpolarized [1-13C]pyruvate studies because of their speed, 

efficiency, and flexibility. In contrast, preclinical systems typically rely on slower spectroscopic 

methods, such as chemical shift imaging (CSI). In this study, a 2D spspEPI sequence was 

developed for use on a preclinical 3T Bruker system and tested on in vivo mice experiments with 

patient-derived xenograft renal cell carcinoma (RCC) or prostate cancer tissues implanted in the 

kidney or liver. Compared to spspEPI sequences, CSI were found to have a broader point spread 

function via simulations and exhibited signal bleeding between vasculature and tumors in vivo. 

Parameters for the spspEPI sequence were optimized using simulations and verified with in vivo 

data. The expected lactate SNR and pharmacokinetic modeling accuracy increased with lower 

pyruvate flip angles (less than 15°), intermediate lactate flip angles (25° to 40°), and temporal 

resolution of 3 s. Overall SNR was also higher with coarser spatial resolution (4 mm isotropic vs. 

2 mm isotropic). Pharmacokinetic modelling used to fit kPL maps showed results consistent with 

the previous literature and across different sequences and tumor xenografts. This work describes 

and justifies the pulse design and parameter choices for preclinical spspEPI hyperpolarized 13C-

pyruvate studies and shows superior image quality to CSI. 

 

3.2 Introduction 

Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate, using the dissolution 

dynamic nuclear-polarization technique, can interrogate key crossroads of metabolism by 
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measuring whether pyruvate is converted to lactate, alanine, or enters the TCA cycle. Elevated 

pyruvate to lactate conversion is a hallmark of many cancers, known as the Warburg effect, 

motivating the use of this modality for cancer imaging. Hyperpolarized 13C-pyruvate MRI is now 

in clinical trials at 13 institutions worldwide with applications including prostate cancer 1, brain 

tumors 2, breast cancer 3, kidney cancer 4, kidney disease, liver disease, ischemic heart disease, 

and cardiomyopathies 5,6. 

 

Metabolite-specific imaging is a popular tool in clinical hyperpolarized [1-13C]pyruvate MRI as 

it provides excellent performance in terms of speed, coverage, and acquisition flexibility 

compared to spectroscopic imaging and chemical shift-encoding methods 7–9. Specifically, this 

technique uses a spectrally and spatially selective (spsp) excitation pulse followed by a fast 

imaging readout, such as echo planar imaging (EPI). With a typical spspEPI sequence, one 

metabolite is excited at a time, and for each metabolite, all of k-space is acquired within one TR. 

Other metabolite-specific sequences have also been used previously, such as balanced steady-

state free precession (bSSFP), which allowed for improved SNR by refocusing transverse 

magnetization 10,11. Metabolite-specific imaging has become the optimal choice for 

hyperpolarized [1-13C]pyruvate studies of tumor metabolism due to the sparsity of spectral 

information of interest. 

 

Recent optimizations at our institute for clinical spspEPI include mitigation of B0 

inhomogeneities by improved shimming using proton signals 12, avoidance of flip angle variation 

over time due to its sensitivity to transmit B1 inhomogeneities, and calibration errors 13, and 
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incorporation of real-time calibrations of hyperpolarized agent bolus arrival time, B0, and B1 to 

improve the reproducibility and SNR for better quantification 14. 

 

In contrast, the standard for hyperpolarized [1-13C]pyruvate MRI experiments on preclinical 

imaging systems is a chemical shift imaging (CSI) or non-localized spectroscopic sequences. 

While this sequence is very robust and requires no knowledge of the chemical shifts, it is also 

much slower than spspEPI. Fast spectroscopic imaging approaches, such as EPSI, have been 

developed as an alternative to CSI 15. However, EPSI sequences still fall short of metabolite-

specific sequences, such as spspEPI, in terms of speed and flexibility 8. 

 

There has been limited development of spspEPI 13C sequences on preclinical imaging systems 

and scarcely any implementation in preclinical in vivo research studies 16,17. Thus, the objective 

of this work is to reverse engineer a 2D metabolite-specific clinical EPI protocol to a preclinical 

imaging system. In this, we include comparisons to CSI sequences, and additionally analyze 

different acquisition parameters as well as perform rate constant fitting for metabolite-specific 

EPI in murine studies. 

 

3.3 Materials and Methods 

3.3.1 Simulations 

Simulations of the hyperpolarized signals were performed to evaluate the expected spatial 

resolution, SNR, and pharmacokinetic model accuracy for the EPI and CSI sequences. 

Magnetization decay across the k-space was simulated for both EPI and CSI acquisitions, taking 

into account RF effects, T1 decay, and metabolic conversion. The metabolism was simulated 
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using a pharmacokinetic model with one physical compartment and two chemical pools—

pyruvate and lactate 18. The decay across one TR, from TR = n − 1 to n, can be modeled as: 

𝑀𝑛 = rot(α) ⋅ spoil ⋅ expm(𝑅 ⋅ TR) ⋅ 𝑀𝑛−1 3.1 

where M stores the transverse and longitudinal magnetizations of pyruvate and lactate, i.e., 𝑀 =

[MP,x,MP,y,MP,z,ML,x,ML,y,ML,z]′, and expm is a matrix exponential. The matrix R includes 

relaxation and metabolic conversion and can be defined as: 

R =

{
 
 

 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 −𝑘𝑃𝐿

′′ − 𝑅1𝑃 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 𝑘𝑃𝐿

′′ 0 0 −𝑅1𝐿}
 
 

 
 

 3.2 

where kPL” is the effective apparent rate constant and R1P and R1L are the reciprocals of pyruvate 

and lactate T1. The matrix rot is a 3D rotation matrix to simulate RF excitation and spoil is a 

matrix that eliminates transverse magnetization (Mx and My) after each TR. 

 

The model used parameters of kPL = 0.05 1/s, T1,pyruvate = 20 s, and T1,lactate = 30 s with values 

chosen based on prior in vivo fitting results. A realistic input function was modelled as a gamma 

distribution with FWHM of 8 s determined from the previous in vivo datasets. The input function 

was used to simulate bolus effects and inflow of injected pyruvate. 

 

The point spread function (PSF) was simulated by taking the IFFT of the magnetization decay 

across k-space. The full width at half maximum (FWHM) was calculated for a y = 0 slice of the 

PSF, including zero-filling k-space before the IFFT. T2* blurring effects were not considered due 

to short EPI readout time (100 ms) and expected relatively long T2 of metabolites19. 
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The pharmacokinetic model was also used to simulate average pyruvate and lactate dynamic 

curves for EPI. Equation (3.1) can be modified and expanded to multiple time points for an EPI 

sequence. For time point t, first, pyruvate is acquired: 

𝑀𝑡,𝑃 = rot𝑃(α𝑃) ⋅ spoil
𝑃
⋅ (𝑀𝑡−1 + 𝑈𝑡) 

𝑃𝑡 = 𝑀𝑡,𝑃
(1) + 𝑖𝑀𝑡,𝑃

(2)
 

3.3 

Here, Ut stores the input function for time point t and is added to longitudinal pyruvate 

magnetization. The matrix rotP is a rotation matrix that only rotates pyruvate magnetizations 

(simulating the spsp RF pulse) and Pt is the complex pyruvate signal for timepoint t. Next, 

lactate is acquired: 

𝑀𝑡,𝐿 = rot𝐿(α𝐿) ⋅ spoil
𝐿
⋅ expm(𝑅 ⋅ TR𝑃) ⋅ 𝑀𝑡,𝑃 

𝐿𝑡 = 𝑀𝑡,𝐿
(4) + 𝑖𝑀𝑡,𝐿

(5)
 

3.4 

Similarly, Lt is the complex lactate signal for timepoint t. Finally, relaxation and metabolic 

conversion at the delay at the end of each timepoint is modeled to arrive at the final 

magnetization vector, Mt, at the end of timepoint t: 

𝑀𝑡 = expm(𝑅 ⋅ (TempRes - TR𝑃)) ⋅ 𝑀𝑡,𝐿 3.5 

This model was repeated for all timepoints to simulate complex pyruvate and lactate signal over 

time. The relative SNR was approximated as the sum of the modelled magnitude signal over 

time. A Monte Carlo simulation was performed using simulated dynamic curves with random 

noise to fit kPL values 18. The standard deviation of the fit kPL values across Monte Carlo 

iterations was calculated as a measure of kPL fitting precision. 
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3.3.2 Pulse Sequences 

A ramp-sampled, symmetric EPI readout with spsp excitation was developed for use on the 

ParaVision 6.0 Bruker software (Bruker, Billerica, MA, USA). The original EPI sequence on the 

Bruker scanner (Bruker, Billerica, MA, USA) was modified for 13C applications and for use with 

spsp pulses, by enabling multiple image acquisitions pertaining to different chemical shifts, with 

variable flip angle implementation. Dynamic images were acquired over a minute with 18 

metabolite images for each chemical shift in the following sequence, urea, pyruvate, and lactate, 

every 3 or 4 s. A reference scan was used to correct for the EPI phase errors that lead to Nyquist 

ghosts. This also enabled the online reconstruction of 13C metabolite maps. The spsp RF pulse 

used in all of the EPI acquisitions was designed to individually excite [1-13C]pyruvate, [1-

13C]lactate, or 13C Urea at 3T, with a passband FWHM of 120 Hz and a stopband of 600 Hz 

(Figure 3.1). The spectral spatial pulse was 25.17 ms long and designed with a default slice 

thickness of 15 mm and is the same pulse used in the clinical studies 7. The RF pulse was 

designed in MATLAB (MathWorks, Natick, MA, USA) using the spsp RF pulse design toolbox 

20. Further information and access by request to the pulse sequence can be found through 

https://github.com/UCSF-HMTRC/ accessed on 20 March 2023. 

 

3.3.3 Experiments 

All experiments were performed on a preclinical 3T cryogen-free Bruker Biospin (Billerica, MA, 

USA) with a maximum gradient strength of 960 mT/m and a maximum slew rate of 3550 T/m/s. 

A dual-tuned 40 mm 1H/13C volume coil was used for both the thermal phantom and 

hyperpolarized 13C experiments. A total of 24 mg of [1-13C]pyruvate was polarized on 

Hypersense (Oxford Instruments, Oxford, England). Thermal phantoms consisted of a ~2 cm 

https://github.com/UCSF-HMTRC/
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diameter sphere filled with 4M 13C-Urea doped with 25mM Magnevist. A 5 mm diameter and 4 

cm long cylindrical tube filled with 4M 13C urea was used with mice during in vivo testing for 

calibration. 

 

Eight mice implanted with patient-derived xenograft tissues of either renal cell carcinoma 

(RCC), or prostate cancer (LTL610, LuCap93) in the kidney or liver were used for testing the 

sequences (RCC kidney: 3, LTL liver: 2, LTL kidney: 2, LuCap93 kidney: 1) 21–24. Animal 

experiments were performed under protocols approved by the Institutional Animal Care and Use 

Committee. Mice were anesthetized during the MRI experiments and their tail veins were 

cannulated for infusion of hyperpolarized solutions. Then, 350 μL of hyperpolarized neutralized 

80 mM [1-13C]pyruvate was infused in 12–15 s. Imaging was started 10 s after the start of the 

infusion. The average time between hyperpolarized imaging experiments was 41 min. For the 8 

studies where both spspEPI and CSI imaging were acquired, CSI was acquired before spspEPI 

for 6 of them. 

 

Different flip-angle combinations were tested for the metabolite-specific EPI sequence: 10° for 

urea, 10°, 15°, or 20° for pyruvate and 20°, 30°, or 50° for lactate. The field-of-view acquired 

was either 3.2 cm × 3.2 cm or 6.4 cm × 6.4 cm and corresponding spatial resolutions of 2 mm × 

2 mm or 4 mm × 4 mm. Temporal resolutions tested were 3 or 4 s, adjusted by adding delay time 

after acquisition of metabolites (Figure 3.1D). Corresponding CSI scans were acquired with flip 

angle 10°, resolution 4 mm × 4 mm with FOV of 3.2 cm × 3.2 cm, centric phase encode 

ordering, and temporal resolution of 4.25 s. CSI flip angle was chosen due to previous success 
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using flip angle. Multi-slice 1H T2 RARE images were acquired with a 3.2 cm × 3.2 cm FOV and 

0.167 mm × 0.167 mm resolution for anatomical reference. 

 

3.3.4 Analysis  

CSI metabolite maps were generated using SIVIC 25. Tumor regions-of-interest (ROIs) were 

drawn on T2 RARE images and down-sampled to the EPI and CSI resolutions. Hyperpolarized 

signal time courses were normalized by the mean noise over time within a region outside of the 

animal. An inputless one-physical-compartment pharmacokinetic model accounting for RF pulse 

flip angles was used to fit kPL to the average signal from all tumor voxels resulting in a single kPL 

value and per voxel within the tumor resulting in a kPL map 18,26. Hyperpolarized images and kPL 

maps were overlaid on T2 RARE after resampling to the T2 RARE resolution and applying a 

Fermi filter. Simulations, models, and analysis were performed using MATLAB (Mathworks, 

MA, USA). 
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Figure 3.1: EPI spectral-spatial RF pulse design. (A) RF pulse design using the SPSP RF pulse 

design toolbox [20]. (B) SPSP RF pulse frequency selectivity measurements were performed 

with a 4M 13C Urea sphere phantom. For this pulse, the measured passband had a FWHM of 120 

Hz and stopband of 660 Hz. (C) Slice profile and (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) corresponding area-under-the-curve (AUC) 

values for 30°, 60°, and 90° excitations. Corresponding FWHM values are 16.77 mm, 18.68 mm, 

and 20.10 mm, respectively. (D) During one timepoint, each metabolite is acquired using a spsp 

RF pulse with an EPI readout. Delay time is added at the end of a timepoint to achieve preferred 

temporal resolution. 

 

3.4 Results 

3.4.1 Spectral–Spatial Pulse Design and Calibration 

The spectral–spatial RF pulse design and pulse profile measurements are shown in Figure 3.1. 

There is excellent agreement between the simulated and measured frequency profile of the pulse, 

confirming the 120 Hz FWHM passband and a stopband of over 600 Hz. The spsp pulse power 

was calibrated on a 4M 13C-urea sphere phantom by using a one-dimensional slab acquisition 

and stepping through the power for a 23.5 ms pulse length and determining the 90° flip angle 

that corresponds to the maximal signal (when covering a full 180 nutation). Additionally, the 

varying RF flip angle and subsequent slice profile of the pulse was tested in the spspEPI 

sequence using a long 4M Urea phantom as demonstrated in Figure 3.1C. The FWHM of the 

slice profile for 30°, 60°, and 90° excitations were 16.77 mm, 18.68 mm, and 20.10 mm, 

respectively. The AUC values were 127.27, 217.28, and 277.27, respectively. 

 

3.4.2 Comparison of EPI and CSI 

A 2D PSF was simulated for both CSI and EPI acquisitions (Figure 3.2). The simulated EPI PSF 

was effectively a delta function with no signal blurring across voxels whereas the simulated CSI 

PSF resulted in signal blurring for both pyruvate and lactate due to varying signal amplitudes 

across phase encoding steps. From the CSI PSF profile with a 10 degree flip angle, the FWHM 

was 5.603 mm and 5.209 mm for pyruvate and lactate, respectively, which is broader than the 

nominal resolution of 4 mm. The width at 10% of max signal was 13.827 mm and 20.410 mm 
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for pyruvate and lactate. In comparison, for the EPI PSF profile, the FWHM and width at 10% of 

max signal was 2.415 mm and 10.809 mm for both pyruvate and lactate. For in vivo 

experiments, the simulations indicate that CSI will have a higher likelihood of signal bleeding, 

for example between the vasculature to kidney tumors, compared to EPI. This would typically 

result in lower kPL estimates for voxels adjacent to large vessels because of the additional 

vascular pyruvate signal bleed into nearby regions. 

 
Figure 3.2: Simulation of the point spread function (PSF) for CSI and EPI Acquisition. 

Magnetization decay was modelled across k-space using a pharmacokinetic model. The CSI 

PSFs for two different flip angles are shown: 5 degrees and 10 degrees. 

 

Pyruvate and lactate AUC images of CSI and EPI scans overlaid on proton T2 images of the 

same mouse were compared side by side (Figure 3.3). CSI maps showed a strong metabolic 

signal from the vasculature but did not show any signal from the tumor region that was clearly 

differentiable from the vasculature signal. Meanwhile, the EPI maps showed metabolite signals 

that were better delineated and clearly originating from the tumor as well as the vasculature. Line 

plot profiles of the lactate signal show two distinct peaks for EPI compared to a single peak for 
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CSI. This agrees with the PSF results from the simulation and suggests the tumor signal for the 

CSI maps is obscured by the blurred vasculature signal. 

 

Figure 3.3: In vivo pyruvate and lactate area-under-the-curve (AUC) maps of two mice overlaid 

on T2 RARE images. Both examples are of an LTL610 tumor implanted in the mouse liver. The 

bottom row shows line profiles drawn through the lactate AUC. For both examples, CSI was 

acquired before EPI. 

 

3.4.3 Testing In Vivo EPI Parameters Optimization for Robust SNR and kPL 

Relative pyruvate and lactate SNR was calculated for various pyruvate–lactate flip angle pairs 

and temporal resolutions that can be used in a metabolite-specific EPI experiments (Figure 3.4). 

Pyruvate SNR was only dependent on the flip angle of pyruvate and not lactate, as expected. 
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Pyruvate SNR was the highest for pyruvate flip angles of 30 to 45 degrees. The highest lactate 

SNR resulted when using lower pyruvate flip angles (less than 15 degrees) and lactate flip angles 

between 25 and 40 degrees. For pyruvate–lactate flip angle pairs, the standard deviation of kPL 

fitting error was also calculated. For a temporal resolution of 2 s, kPL fitting error variation was 

the lowest for pyruvate flip angles of 15–20 degrees and lactate flip angles of 30 to 50 degrees. 

For a temporal resolution of 3 s, kPL fitting error variation was minimized for pyruvate flip 

angles of 15–25 degrees and lactate flip angles of 30–60 degrees. For a temporal resolution of 5 

s, kPL fitting error variation was minimized for pyruvate flip angles of 20–35 degrees and lactate 

flip angles of 40–60 degrees. 

 

A simulated EPI acquisition, with a shorter temporal resolution of 2 s, resulted in a relative 

increase in pyruvate SNR. In contrast, lactate SNR peaked with a temporal resolution of 3 s. A 

longer temporal resolution decreased the kPL fitting error for a mid-range of flip angles. 

According to the simulation, a pyruvate flip angle between 10° to 20°, a lactate flip angle of 25° 

to 40°, and a temporal resolution of 3 s will optimize lactate SNR without compromising 

pyruvate SNR and maintain a low kPL fitting error. 
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Figure 3.4: Pyruvate and lactate SNR and kPL fitting error of simulated EPI signal for various 

temporal resolutions and pyruvate and lactate flip angles (FAs).The simulation used the 

following parameters: kPL = 0.05 1/s, T1,pyruvate = 20 s, and T1,lactate = 30 s. 

 

The results of the simulation (Figure 3.4) were used to guide EPI parameter choices. A pyruvate 

flip angle of 15° and a lactate flip angle of 30° were chosen as the simulation suggested high 

lactate SNR and low kPL error. A smaller pyruvate flip angle was not used as previous 

experiments found shorter pyruvate flip angles did not provide sufficient signal. Larger flip 

angles of 20° and 50° for pyruvate and lactate were chosen for comparison. A temporal 

resolution of 3 s was chosen as lactate SNR was the highest and a 4 s temporal resolution was 
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used for comparison. The feasibility of these chosen parameters was evaluated with in vivo 

experiments. 

 

Average pyruvate and lactate time courses within tumor and blood vessel ROIs for EPI scans 

with varying parameters were plotted (Figure 3.5). Using a temporal resolution of 3 s resulted in 

higher relative SNR and area-under-the-curve (AUC) for pyruvate and lactate compared with a 

temporal resolution of 4 s. A coarser spatial resolution of 4 mm × 4 mm also resulted in a higher 

AUC for pyruvate and lactate compared with a finer spatial resolution of 2 mm × 2 mm. 

Additionally, a coarser spatial resolution paired with an optimized flip angle choice of 15° for 

pyruvate and 30° for lactate increased the AUC for pyruvate and lactate in the tumor compared 

with the finer spatial resolution and flip angles of 20° and 50° for pyruvate and lactate. These 

experiments showed that changing spatial resolution from 2 mm to 4 mm and temporal 

resolution from 4 s to 3 s improved pyruvate and lactate SNR. Nevertheless, it is important to 

consider that these comparisons were conducted with a very limited sample size and some of the 

data have limited SNR (Figure 3.5, center top) which interfere with drawing strong conclusions. 

Instead, these results support previously shown simulations (Figure 3.4). 

 

Voxel-wise kPL maps were calculated for CSI and EPI data in implanted tumors (Figure 3.6). In 

one mouse, the kPL values within the liver tumor were very similar between CSI and EPI 

sequences, and ranged from 0.08–0.11 1/s. In another mouse, EPI kPL values were consistent 

between two consecutive days for the same liver tumor with average tumor kPL of 0.029 1/s and 

0.028 1/s. The three mice with the same type of implanted RCC tumors also demonstrated 
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relatively similar kPL values of 0.02–0.035 1/s across the tumors, with some differences in 

heterogeneity between the animals. All kPL values were similar to the previous literature 27. 

 

Figure 3.5: SNR over time and area-under-the-curve (AUC) values for various in vivo mice 

experiments. Tumor model and location from left to right: LuCap93 kidney; LTL kidney; and 

LTL kidney. 
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Figure 3.6: Pharmacokinetic model fits of kPL for in vivo mice overlaid on 1H T2 RARE images. 

(A) CSI vs EPI kPL maps are compared for the same mouse with an LTL liver tumor. (B) EPI kPL 

maps are compared for three different mice with RCC tumors. (C) EPI kPL maps are compared 

for the same mouse with an LTL liver tumor imaged on two consecutive days.  

 

3.5 Discussion 

We have successfully implemented and optimized a preclinical two-dimensional (2D) spsp EPI 

sequence to better match the state-of-the-art clinical hyperpolarized 13C metabolic imaging 
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studies. These are being performed as part of a co-clinical trial of metastatic prostate cancer 

patients prior to and after chemotherapy which is a project funded under the Co-Clinical Imaging 

Research Program (U24CA253377). 

 

3.5.1 Spectral–Spatial Pulse 

We have presented testing procedures and results of RF power calibration and spatial selectivity 

that can be unique to the vendor implementation of the spsp pulse and its implementation in a 

sequence. Both parameters are critical for the spsp pulse performance. 

 

3.5.2 CSI vs. spspEPI 

A metabolite-specific EPI sequence with a spectral–spatial pulse can improve flexibility and 

innovation in preclinical hyperpolarized 13C studies. In this work, we demonstrate how a 

preclinical spspEPI pipeline may work as well as highlighting some of the advantages in 

comparison to CSI methods. 

 

An advantage of a spspEPI sequence is its speed which can allow for shorter temporal 

resolutions for multi-metabolite studies, multi-slice, or even 3D acquisitions without losing 

spatial resolution. In addition, using a spspEPI acquisition may make translation of preclinical 

studies to the clinic straightforward in terms of expectation of signal observation, dynamics, and 

kinetic rates. 

 

SpspEPI sequences also allow for flexibility in acquisition trajectories and flip angles. With a 

spsp pulse, the flip angle of an individual metabolite can be adjusted allowing for manipulation 
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of the signal to improve the SNR of downstream metabolites 28. The EPI trajectory supports 

variable spatial resolutions for an individual metabolite which can also be used to manipulate the 

signal to improve SNR29. 

 

Another consideration is signal blurring in CSI due to T1 decay and metabolic conversion 

experienced between signals acquired across phase encodings. This may be minimized with 

center-out k-space trajectories, but still leads to a broadening of the PSF especially compared to 

EPI. This was confirmed in this work with a simulation (Figure 3.2) and in vivo data (Figure 

3.3). This blurring is particularly impactful when imaging small animals where the vasculature is 

anatomically close to regions or organs of interest. The higher vasculature signal may bleed into 

the signal from other organs making them difficult to differentiate and more difficult to quantify 

the metabolism. In our experience, a spspEPI acquisition allowed for better localization of signal 

in small animals. 

 

3.5.3 Optimization of EPI Parameters 

A spspEPI acquisition allows for more flexibility which in turn specifies more parameter choices. 

In this work, three parameters were optimized through simulations and confirmed with in vivo 

experiments. With a fast EPI readout, there is flexibility in the choice of temporal resolution 

dependent on the delay between time point acquisitions. Simulations demonstrated shorter 

temporal resolutions resulted in higher pyruvate SNR as expected since more of the 

hyperpolarized signal is captured before T1 decay. In contrast, lactate SNR peaks at a temporal 

resolution of 3 s as there is more time for metabolic conversion from pyruvate to lactate (Figure 

3.4). 
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A metabolite-specific flip angle scheme can be used to adjust SNR for downstream metabolites 

in spsp acquisitions. For example, pyruvate flip angle is a trade-off between pyruvate and lactate 

SNR. Higher pyruvate flip angles result in more pyruvate signal, but the RF uses up more of the 

limited hyperpolarized signal and there is limited lactate signal. A smaller pyruvate flip angle 

scheme will result in higher lactate SNR (Figures 3.4 and 3.5). 

 

Spatial resolution can also be adjusted easily with a fast readout such as EPI. A finer resolution, 

although more advantageous for anatomical specificity, can result in lower SNR, although this is 

dependent on the metabolism within the animal, tumor, or organ imaged. Considerations for a 

coarser resolution may be appropriate for anatomy with lower perfusion, such as bone, and when 

vasculature is further from the ROI. 

 

Other parameters may also need to be considered for spspEPI studies that were not explored in 

this work. For example, the imaging delay after start of injection was kept constant at 10 s. 

Shorter delays may capture more of the metabolic signal and lead to better quantification and 

pharmacokinetic model fitting. 

 

3.5.4 Pharmacokinetic Modelling and Quantification 

One method of quantification for hyperpolarized 13C-Pyruvate imaging is to use a 

pharmacokinetic model to fit for the apparent rate constant, kPL. This biomarker holds promise to 

be comparable across different acquisition methods and timings. In this study, the generality of 

kPL was demonstrated as it remained consistent across different acquisitions (CSI vs. EPI), 

different days of acquisition, and different mice for the same tumor type (Figure 3.6). The values 
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were also consistent to previous studies using the same pharmacokinetic model for in vivo RCC 

tumors 27. 

 

3.6 Conclusions 

In this study, a 2D metabolite-specific EPI sequence was developed, calibrated, and tested for 

use on a preclinical Bruker system. A spectral–spatial pulse for hyperpolarized [1-13C]pyruvate 

was tested and implemented for acquisition. PSF simulations and in vivo data suggest this 

developed spspEPI sequence may be more favorable for preclinical studies in comparison to CSI 

sequences, due to minimized blurring from signal loss across phase encoding. The spspEPI 

sequence parameters (flip angles, temporal, and spatial resolution) were optimized to improve 

SNR and rate constant fitting precision using simulations and found to provide good results with 

in vivo experiments. Pyruvate to lactate rate constant, kPL, fitting using a pharmacokinetic model 

revealed comparable values across sequences, days, mice with similar tumors, and the previous 

literature 27. 
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CHAPTER 4: A PHARMACOKINETIC MODEL FOR HYPERPOLARIZED 13C-

PYRUVATE MRI WHEN USING METABOLITE-SPECIFIC BSSFP SEQUENCES 

4.1 Abstract 

Metabolite-Specific bSSFP (MS-bSSFP) sequences are increasingly used in Hyperpolarized [1-

13C]Pyruvate (HP 13C) MRI studies as they improve SNR by refocusing the magnetization each 

TR. Currently, pharmacokinetic models used to fit conversion rate constants, kPL and kPB, and 

rate constant maps do not account for differences in the signal evolution of MS-bSSFP 

acquisitions.  

 

In this work, a flexible MS-bSSFP model was built that can be used to fit conversion rate 

constants for these experiments. The model was validated in vivo using paired animal (healthy 

rat kidneys n=8, transgenic adenocarcinoma of the mouse prostate n=3) and human renal cell 

carcinoma (n=3) datasets. GRE acquisitions were used with a previous GRE model to compare 

to the results of the proposed GRE-bSSFP model. 

 

Within simulations, the proposed GRE-bSSFP model fits the simulated data well whereas a GRE 

model shows bias due to model mismatch. For the in vivo datasets, the estimated conversion rate 

constants using the proposed GRE-bSSFP model are consistent with a previous GRE model. 

Jointly fitting the lactate T2 with kPL resulted in less precise kPL estimates. 

The proposed GRE-bSSFP model provides a method to estimate conversion rate constants, kPL 

and kPB, for MS-bSSFP HP 13C experiments. This model may also be modified and used for other 

applications, e.g., estimating rate constants with other hyperpolarized reagents or multi-echo 

bSSFP. 
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4.2 Introduction 

Hyperpolarized [1-13C]Pyruvate (HP 13C) MRI is a powerful method of spatially measuring 

metabolic activity within healthy, inflamed, stressed, cancerous, or diseased tissue in vivo1–3. For 

cancer, HP 13C MRI is particularly advantageous as it can provide in vivo measurements of the 

Warburg effect. This effect states that aggressive, growing tumors rely more readily on aerobic 

glycolysis rather than oxidative phosphorylation, resulting in increased lactate production4,5.  

 

With HP 13C studies, we can probe the glycolysis and oxidative phosphorylation pathways as we 

capture 13C-pyruvate and its’ products, 13C-lactate and 13C-bicarbonate, dynamically within a few 

minutes1,2. To assess tumor aggressiveness we are interested in the rate of lactate production 

from pyruvate3. The rate of bicarbonate production from pyruvate serves as a surrogate marker 

for oxidative phosphorylation1,6 and is valuable for identifying dysfunctional glucose 

metabolism, for example, in the brain and heart. 

 

To quantify the rate of lactate and bicarbonate production from pyruvate, pharmacokinetic (PK) 

models have previously been used to describe the dynamics and estimate values for kPL, the 

pyruvate-to-lactate conversion rate constant, and kPB, the pyruvate-to-bicarbonate conversion rate 

constant7–10. As a metric, kPL is critical for cancer treatment planning to differentiate aggressive 

tumors from indolent ones4,5. PK models are used to describe the biochemical interactions of 

pyruvate and its conversion to its metabolic products described by a set of differential equations. 

These equations can be solved to model the pyruvate, lactate, and bicarbonate dynamics given 

values of kPL and kPB in 1/s. With such a model, acquired dynamics per voxel can be used to fit 

kPL and kPB, and estimate kPL and kPB maps. 
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Existing PK models do not currently account for the signal progression of a metabolite-specific 

balanced SSFP (MS-bSSFP) acquisition. MS-bSSFP HP 13C studies have recently emerged as an 

alternative to typical spoiled GRE sequences due to their improved SNR. With a bSSFP 

sequence, the transverse magnetization is refocused every TR rather than spoiled, which 

preserves more of the quickly decaying HP magnetization. Previous studies have demonstrated 

two to three-fold SNR improvement when a MS-bSSFP sequence was used to acquire 13C-

lactate11, [13C,15N]-urea12 and 13C-bicarbonate13. The improved SNR is paramount to furthering 

HP 13C technologies and improving resolution in low-yield metabolites.  

 

To fully take advantage of the MS-bSSFP studies, PK models must be adapted for bSSFP 

acquisitions which have inherent differences compared to spoiled GRE acquisitions, such as 

T2/T1 contrast and refocusing of transverse magnetizations across each TR. The objective of this 

work is to derive a bSSFP PK model that can be used for MS-bSSFP HP 13C acquisitions14–16. 

We have built a flexible framework to model both bSSFP and GRE acquisitions for HP 13C 

metabolites to estimate kPL and kPB values per voxel. The bSSFP PK model-based kPL and kPB 

estimates will be validated using two previously acquired paired datasets11,13 with MS-bSSFP 

and GRE acquisitions. Estimates will be compared to a previous GRE method9. Simulations and 

in vivo data will be used to assess the model’s sensitivity to input parameters particularly, 13C-

lactate T2 (T2L).  

 

4.3 Theory 

For HP C13 data acquisition with a metabolite-specific methodology, we can effectively use a 

different sequence for each metabolite where the excitations and readouts of different 
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metabolites are interleaved with each other. We developed a model supporting multiple pulse 

sequences, which we will call the GRE-bSSFP model, that includes a GRE acquisition for 

pyruvate followed by a bSSFP or GRE acquisition for lactate and bicarbonate.  

Thus, the objective of this work is: 

1. Model the bSSFP signal 

2. Incorporate the modeled bSSFP signal for a single metabolite within an acquisition where 

other metabolites may be acquired with a GRE acquisition 

3. Account for acquisition and reconstruction differences between bSSFP and GRE  

4. Estimate the arterial input function 

 
Figure 4.1: Overview of bSSFP model. Model diagram shows the interleaved metabolite-

specific 2D GRE pyruvate and 3D bSSFP lactate acquisitions. Lactate is acquired with a 3D 

bSSFP acquisition with alternating flip angles. New hyperpolarized signal is introduced every 

time point via the input function (U). Note the catalyzation pulses (bSSFP preparation echoes) 

are simplified in the diagram. (B) Sample dynamics of simulated pyruvate and lactate dynamics 

with added noise. (C) Diagram of the one physical compartment, two-site pharmacokinetic 

model with unidirectional conversion. U = input function, P = pyruvate, L = lactate,  = RF flip 

angles, M = net magnetization vector, cat = catalyzation, t = time point, I = excitation number, 

ETL = echo train length, kPL = pyruvate-to-lactate rate constant 
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4.3.1 Alternating MS-GRE and MS-bSSFP Model 

A pharmacokinetic model with one physical compartment was used to estimate magnetization 

evolution across repetition times for a MS-bSSFP acquisition. This GRE-bSSFP model is flexible 

and allows for pyruvate and up to three metabolites. For each of these metabolites, there is a 

choice as to whether they were acquired with a 3D bSSFP, 2D GRE or 3D GRE metabolite-

specific acquisition. For simplicity, Figure 4.1 and Eqs. 4.1-4.11 will outline the two-site 

situation where pyruvate is acquired with a 2D GRE sequence and lactate is acquired with a 3D 

bSSFP sequence.  

 

During each TR, we can assume there are three conversion and decay processes happening: (1) 

pyruvate is converted to lactate (this is assumed to be unidirectional, but can trivially be made bi-

directional), (2) pyruvate and lactate decay due to T1 and T2 relaxation and (3) some pyruvate 

and lactate magnetization is lost due to excitation pulse effects. Some further assumptions can 

also be made to simplify the model: there’s no off-resonance, the excitation pulse is 

instantaneous (i.e. there is no signal decay during excitation), metabolic conversion between 

pyruvate and lactate only occurs in the longitudinal (z) components and pyruvate-to-lactate 

conversion is unidirectional (i.e. kLP, lactate-to-pyruvate conversion is neglected). The model 

also neglects any equilibrium magnetization, as this is typically orders of magnitude lower than 

the hyperpolarized magnetization. With these assumptions, we model the magnetization in a 

discrete-continuous fashion as follows. 
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The magnetization at the end of time point, t, M[t], for the two metabolites can be separated into 

its transverse and longitudinal components as a vector: 

 
𝑀[𝑡] = [𝑃𝑥[𝑡], 𝑃𝑦[𝑡], 𝑃𝑧[𝑡], 𝐿𝑥[𝑡], 𝐿𝑦[𝑡], 𝐿𝑧[𝑡]]

𝑇
 

4.1 

For pyruvate acquisition (2D GRE), the input for timepoint t, U[t], is added to the prior 

magnetization. Then, the magnetization is calculated after an excitation pulse with flip angle, , 

which is modelled as a rotation matrix: 

 𝑀𝐺𝑅𝐸[𝑡] = 𝑟𝑜𝑡𝑃(𝛼𝑃) ∙ 𝑠𝑝𝑜𝑖𝑙 ∙ (𝑀[𝑡 − 1] + 𝑈[𝑡]) 4.2 

where 

 
𝑟𝑜𝑡𝑃(𝛼𝑃) =  [

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝛼𝑃) 0
0 𝐼3

] 4.3 

 

 
𝑠𝑝𝑜𝑖𝑙 = [

𝑑𝑖𝑎𝑔([0 0 1]) 0

0 𝑑𝑖𝑎𝑔([0 0 1])
] 4.4 

Here, rotation(P) is a 3D rotation matrix about the y-axis with rotation angle P. The final 

pyruvate signal at timepoint t, P[t], is: 

 𝑃[𝑡] = 𝑀𝐺𝑅𝐸
(1) [𝑡] + 𝑖𝑀𝐺𝑅𝐸

(2) [𝑡] 4.5 

Where (1) and (2) are the first and second elements of the MGRE vector at time t. The rest of the 

pyruvate acquisition period is modeled to get the magnetization at the end of pyruvate 

acquisition for time t, M+
GRE: 

 𝑀𝐺𝑅𝐸
+ [𝑡] = 𝑠𝑝𝑜𝑖𝑙 ∙ 𝑒𝑥𝑝(𝑅 ∙ 𝜏𝐺𝑅𝐸) ∙ 𝑀𝐺𝑅𝐸[𝑡] 4.6 

where GRE is the total acquisition time for the GRE acquisition and R is the matrix that contains 

the metabolic rate constants and relaxation rates: 
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𝑅 =

[
 
 
 
 
 
 
−𝑅2,𝑃 0 0 0 0 0

0 −𝑅2,𝑃 0 0 0 0

0 0 −𝑘𝑃𝐿 − 𝑅1,𝑃 0 0 0

0 0 0 −𝑅2,𝐿 0 0

0 0 0 0 −𝑅2,𝐿 0

0 0 𝑘𝑃𝐿 0 0 −𝑅1,𝐿]
 
 
 
 
 
 

 4.7 

Here, kPL is the apparent rate constant for pyruvate to lactate conversion, and R1 and R2 are the 

reciprocals of the T1 and T2 relaxation rate constants. Eqs. 4.6 and 4.7 are the solution to a one 

physical compartment, two-site exchange model, with unidirectional conversion and no input to 

the system9. Note that because of the result of the spoil operation, 𝑅2,𝑃 is ultimately not included 

in the model fit. 

 

For lactate acquisition (3D bSSFP) including a series of catalyzation pulses (labelled “cat”) the 

magnetization vector at each phase encode, i, can be calculated: 

 

𝑀𝑆𝑆𝐹𝑃,𝑖[𝑡] = (∏𝑟𝑜𝑡𝐿(𝛼𝐿,𝑗) ∙ 𝑒𝑥𝑝(𝑅 ∙ 𝑇𝑅𝑆𝑆𝐹𝑃,𝑗)

𝑖

𝑗=1

)

∙ (∏𝑟𝑜𝑡𝐿(𝛼𝑐𝑎𝑡,𝑘) ∙ 𝑒𝑥𝑝(𝑅 ∙ 𝑇𝑅𝑐𝑎𝑡,𝑘)

𝐾

𝑘=1

) ∙ 𝑀𝐺𝑅𝐸
+ [𝑡] 

4.8 

Where TR is the repetition time, K is the number of catalyzation pulses and 

 
𝑟𝑜𝑡𝐿(𝛼𝐿) =  [

𝐼3 0

0 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝛼𝐿)
] 4.9 

Catalyzation pulses, or bSSFP preparation echoes, gradually increase in flip angle prior to image 

acquisition and are necessary for efficiently and smoothly reaching a stable, pseudo steady-state 

bSSFP frequency response17,18. After image acquisition, reversed catalyzation pulses are used to 

restore magnetization to Mz to preserve magnetization. For the bSSFP acquisition, the sign of the 

flip angle is alternated each TR. The final lactate signal for time point, t, is calculated as follows: 
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𝐿[𝑡] =  
∑ 𝐿𝑥𝑦,𝑖[𝑡]
𝑁𝑃𝐸
𝑖=1

𝑁𝑃𝐸
=  
∑ (𝑀𝑆𝑆𝐹𝑃,𝑖

(4)
[𝑡] + 𝑖𝑀𝑆𝑆𝐹𝑃,𝑖

(5) [𝑡])
𝑁𝑃𝐸
𝑖=1

𝑁𝑃𝐸
 4.10 

where NPE is the number of phase encodes for the lactate acquisition. Finally, the magnetization 

at the end of the timepoint, M[t+1], after reversed catalyzation can be calculated as: 

 

𝑀[𝑡 + 1] = 𝑀𝑆𝑆𝐹𝑃
+ [𝑡] = (∏𝑟𝑜𝑡𝐿(−𝛼𝑐𝑎𝑡,𝑘) ∙ 𝑒𝑥𝑝(𝑅 ∙ 𝑇𝑅𝑐𝑎𝑡,𝑘)

𝐾

𝑘=1

) ∙ 𝑀𝑆𝑆𝐹𝑃,𝑁𝑃𝐸[𝑡] 4.10 

For simplicity, the two-site case of pyruvate to lactate conversion is described in the Eqs. 4.1-

4.11 above but these equations can be expanded to allow for additional metabolites, such as 

bicarbonate. These updated equations can be found in the supporting materials.  

 

4.3.2 Acquisition differences between GRE and bSSFP acquisitions 

Either a 2D or 3D GRE pyruvate acquisition followed by a 3D bSSFP acquisition was used to 

acquire the in vivo data. The bSSFP and GRE acquisitions have different acquisition times, and 

the SNR is dependent on the total acquisition time as follows: 

 𝑆𝑁𝑅 ∝  𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 ⋅ √𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑞 𝑡𝑖𝑚𝑒 =  𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 ⋅ √𝑁𝑃𝐸  𝑇𝑅𝐸𝐴𝐷 4.12 

Where TREAD is the readout duration in a single TR.   

 

The signal scaling in the resulting images will depend on whether the raw data is averaged or 

accumulated. However, this expected SNR change can be used to normalize the acquisitions 

regardless of what signal scaling is present between the two sequences.  

 



 63 

4.3.3 Arterial Input Function Estimation 

An important modeling consideration is the perfusion of the 13C-pyruvate into the tissue of 

interest, otherwise known as the input function. Previously, there has been success modeling the 

input function from pyruvate dynamics, called inputless fitting19,9. With inputless fitting, the 

model of choice, in this case the GRE-bSSFP model, is used to estimate the pyruvate signal for 

time point t given pyruvate at time t-1. As the model inherently does not take into account added 

signal from pyruvate coming into the tissue, the difference between the modeled signal at time t 

and the acquired signal at time t is estimated as the input for time t. In this work, the input 

function is estimated with this method, i.e., inputless fitting using the model and acquired 

pyruvate signal.  

 

4.4 Methods 

4.4.1 In Vivo Data Acquisition and Reconstruction 

Previously acquired datasets were used to evaluate the model in vivo11,13. The following is a brief 

description of the parameters. For a complete description of the acquisition protocols, imaging 

parameters and reconstruction please reference the original texts11,13. 

 

Tang et al.11 measured pyruvate and lactate in healthy rat data (n=3), transgenic adenocarcinoma 

of the mouse prostate (TRAMP, n=3), and human kidney data from patients with renal cell 

carcinoma (RCC, n=3). For each of these datasets, two HP C-13 scans were acquired on the same 

day: one where pyruvate and lactate were acquired with a MS-GRE acquisition (“GRE-all”) and 

another where pyruvate was acquired with MS-GRE and lactate was acquired with a MS-bSSFP 

acquisition (“lactate-bSSFP”). The MS-bSSFP acquisition included a spectrally selective lactate 
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excitation pulse and 3D stack-of-spirals acquisition with four in-plane interleaves and 16 stack 

encodes11. For the animal acquisitions, the MS-GRE acquisitions were a 3D stack-of-spiral 

acquisition with one in-plane encoding and 16 stack encodes and for the human kidney data the 

MS-GRE acquisitions were 2D multi-slice single-shot spiral acquisition. The GRE acquisitions 

used a spectral-spatial RF excitation pulse20.  

 

The animal studies had a resolution of 4 mm x 4 mm x 10mm, 3° flip angle for pyruvate, 60° flip 

angle with a nonlinear catalyzation sequence for lactate, TR of 100 ms for pyruvate, TR of 15.29 

ms for lactate and a temporal resolution of 4s. For the human study, the resolution was 15 mm x 

15 mm x 21 mm, 20° flip angle for pyruvate, 60° flip angle with a nonlinear catalyzation 

sequence for lactate, TR of 100 ms for pyruvate, TR of 15.29 ms for lactate and temporal 

resolution of 4 s. Single slice Bloch-Seigert B1
+ maps were acquired prior to metabolic imaging 

for the human dataset. The B1
+ maps were centered along the center slice of the kidneys. 

 

Liu et al.13 measured pyruvate, lactate and bicarbonate in healthy rats (n=5). Two HP C-13 scans 

were acquired on the same day: one where pyruvate, lactate, and bicarbonate were acquired with 

an MS-GRE acquisition (“GRE-all”) and another where pyruvate and lactate were acquired with 

an MS-GRE acquisition and bicarbonate was acquired with an MS-bSSFP acquisition 

(“bicarbonate-bSSFP”). The MS-GRE acquisitions used a pyruvate flip angle of 20°, lactate and 

bicarbonate flip angles of 30°, a TR of 100 ms and temporal resolution of 2.5 s. The MS-bSSFP 

acquisition in this study included a spectrally selective bicarbonate excitation pulse, a 3D stack-

of-spirals acquisition with four in-plane interleaves and 16 stack encodes, a TR of 9.8 ms, a flip 

angle of 60° with a non-linear catalyzation sequence, and a temporal resolution of 2.8 s. This 
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study used a multi-resolution technique: pyruvate had a resolution of 2.5 mm x 2.5 mm x 21 mm, 

lactate of 5 mm x 5 mm x 21 mm, and bicarbonate of 7.5 mm x 7.5 mm x 21 mm.  

For reconstruction for all in vivo datasets, the k-space data was gridded, followed by a 2D or 3D 

Fourier transform. For the human dataset, the RefPeak coil combination method was used with 

pyruvate signals as the coil sensitivity maps21.  

 

Animal studies were conducted under protocols approved by the University of California San 

Francisco Institutional Animal Care and Use Committee and patient studies were conducted 

under a University of California San Francisco Institutional Review Board approved protocol. 

 

4.4.2 Preprocessing 

For the dataset from Liu et al.13, the lactate and bicarbonate data was zero-padded in order to 

match pyruvate resolution after reconstruction. The noise was normalized across the different 

studies for the MS-bSSFP images. 22,23 To account for the multi-resolution acquisition, the lactate 

and bicarbonate signal amplitudes were scaled relative to pyruvate based on the expected change 

in SNR due to the varying voxel sizes. Specifically, lactate was scaled by 1/4 and bicarbonate 

was scaled by 1/9 (Eq. 4.12). 

 

4.4.3 GRE-to-bSSFP Scaling 

For the cases where pyruvate was acquired with a 2D GRE sequence and lactate or bicarbonate 

was acquired with 3D bSSFP sequence, additional signal scaling was found to be necessary in 

the model to match the acquired in vivo data from the different sequences. Different approaches 

were used for the lactate and bicarbonate bSSFP studies to determine the scaling factor. 



 66 

To determine the scale used for the human dataset from Tang et al.11, a phantom experiment was 

performed using a cylindrical 8M 13C-Urea phantom doped with a Gd-based contrast agent such 

that T1 ≈ 1 s. The acquisition parameters were matched with those of the in vivo data except for 

the 3D bSSFP acquisition, where the TR was lengthened to 500 ms to mitigate T2 relaxation 

effects. The phantom data was reconstructed, and the maximum urea signal was used to calculate 

the ratio between the 2D GRE acquisition and the 3D bSSFP acquisition. From this phantom 

data, the scale was found to be 6.905 for bSSFP/GRE for the FOV and flip angle parameters 

used in the human in vivo data. The scale was validated with simulations by comparing the 

relative peak amplitudes between pyruvate and lactate with the scaled modeled data and the in 

vivo data. During the fitting procedure, the modeled bSSFP (lactate) signal curves were scaled 

by 6.905 before fitting to the in vivo data. 

 

For the dataset from Liu et al.13, a range of scaling factors were iterated over to determine the 

scale that would result in the best correspondence between the fit kPB from the “GRE-all” and 

“bicarbonate-bSSFP” acquisitions. This scale value was found to be 1.8. 

 

4.4.4 kPL and kPB Fitting 

The model described in Eqs. 4.1-4.11 was implemented in MATLAB (Mathworks, Natick, MA, 

USA). A nonlinear least squares optimization (lsqnonlin() on MATLAB) was used to fit the 

signal dynamics to one or more variables. The normalized root mean square error (NRMSE) 

between simulated and fit curves was calculated to evaluate fit quality. The model and fitting 

function are available in the Hyperpolarized MRI Toolbox11. 
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During fitting, pyruvate T1 was fixed to 30 s, lactate T1 was fixed to 25 s and bicarbonate T1 was 

fixed to 10s9,13,24. The input functions were estimated from pyruvate using the model 

(inputless9,19).  

 

For Tang et al.11 data, kPL and/or lactate T2L were fit while all other parameters were fixed. 

Lactate T2 was either jointly fit with kPL or fixed to 0.8 s (for healthy rat kidney and human 

kidney datasets) or 1.3 s (for TRAMP dataset). These T2L values were chosen empirically to give 

the best fits and lowest NMRSE across all datasets. For the animal data, no scaling was used but 

for the human studies a scale of 6.905 was used. Additionally, when fitting kPL for the human 

RCC dataset, the Bloch-Seigert B1
+ maps were used to scale the flip angles in the fitting model 

either per voxel for voxel-wise kPL fitting or as an average scale for average signal kPL fitting.  

For Liu et al.23 data, kPL and kPB were fit while the remaining parameters were fixed. Bicarbonate 

T2 (T2B) was fixed to 0.5 s for this study13.  

 

For the healthy rat kidney and human RCC datasets, ROI masks of the kidneys were manually 

drawn. The same was done for the tumor of the TRAMP dataset. When fitting rate constants 

voxel-wise on the datasets from Tang et al.11, the ROI mask that was dilated in 2D was used for 

rate constant fitting and then masked with the true ROI mask for display. For the Liu et al.13 

dataset, true ROIs were used for the entire analysis. For scatter plot displays of the kPL and kPB 

maps, a linear trend line was fit with a fixed y-intercept of 0. Outliers were removed using the 

interquartile range method when fitting the linear trend line. Pearson correlation coefficient 

(PCC) was computed including outliers. Lactate/pyruvate and bicarbonate/pyruvate area-under-
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the-curve (AUC) ratio maps were calculated by dividing the sum of the lactate and bicarbonate 

images over time by the sum of pyruvate images over time.  

 

For validation, the fit kPL and kPB values were compared to kPL and kPB values fit using the 

inputless GRE fitting model on the corresponding “GRE-all” datasets9. The pyruvate T1 was 

fixed to 30 s, lactate T1 was fixed to 25 s, bicarbonate T1 was fixed to 10s, and the input was 

estimated from pyruvate. This GRE model is available publicly in the Hyperpolarized MRI 

Toolbox22. 

 

4.4.5 Simulation 

To evaluate the robustness of the model and fitting method, simulated “lactate-bSSFP” data was 

created using the GRE-bSSFP model using a gamma-variate input function and added random 

noise. The following parameters were used: T1P=30 s, T1L=25 s, T2L=1 s, kPL=0.02 1/s, 

std_noise=0.02, Tarrival=0, Tbolus=8, TRP = 0.18 s, TRL=0.01529 s to best mimic the acquired 

dataset. The flip angle for pyruvate was 20°, and the flip angle for lactate was 60° with 76 phase 

encodes, including the catalyzation sequence. The kPL was then fit and the effect of perturbations 

to the input variables was observed using Monte Carlo simulations (N=100).  

 

4.5 Results 

4.5.1 Simulations 

A Monte Carlo simulation was used to compare fitting methods of simulated “lactate-bSSFP” 

experiment signal curves with added random noise (Figure 4.2). Using a GRE signal model for 

bSSFP data resulted in biased kPL results (Figure 4.2A) whereas the kPL values fit with the GRE-
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bSSFP fitting method matched the simulated kPLs (Figure 4.2A, 4.2B). The GRE fitting method 

overestimated the kPL due to model mismatch as it fails to take into account increased lactate 

SNR from the refocusing during the bSSFP acquisition.  

 
Figure 4.2: The estimated vs simulated kPL for the bSSFP & GRE models for the Monte Carlo 

simulations (Monte Carlo iterations = 100). For GRE fitting, flip angle was set to half of the 

bSSFP flip angle (30°).  

 

A Monte Carlo simulation was also used to test the robustness of the fitting methods to 

perturbations in various experimental parameters (Figure 4.3). The models were accurate across 

the range of kPL and low noise levels. They were also robust to changes in the bolus 

characteristics (Tarrival, Tbolus)9 and T1P. However, the models show strong sensitivity to variations 

in T2L when T2L was fixed, as well as modest sensitivity to variations in T1L. This indicates that 

kPL is strongly coupled to T2L in this acquisition. Jointly fitting lactate T2L and kPL reduced this 

sensitivity of the model, but at the expense of increased expected variance. When fixing T2L, the 

model also showed strong sensitivity to B1
+ errors. However, jointly fitting lactate T2L and kPL 

reduced sensitivity to B1
+ error meaning the model may be adjusting the fit lactate T2L values to 

account for errors in B1
+. Additionally, with increasing added noise, jointly fitting lactate T2L and 

kPL resulted in both higher error margins and a negative bias of fit kPL. The jointly fitting method 

generally resulted in larger error margins than fixing lactate T2L.  
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Figure 4.3: Simulated kPL errors of the GRE-bSSFP fitting with perturbations to model 

parameters (std of noise = 0.02, Monte Carlo iterations=100).  

 

4.5.2 Lactate-bSSFP In Vivo 

To show sample fitting results, the average signal dynamics within ROIs were calculated and 

used to fit average kPL values (Figure 4.4). The NRMSE between the actual signal curves and fit 

curves for both experiments were all below 0.16 indicating good fits. Using the GRE-bSSFP 

fitting model on the “lactate-bSSFP” data and the GRE model on the “GRE-all” data, resulted in 

very similar kPL values. 
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Figure 4.4: Sample data and fitting results across the Tang et al.11 datasets used. For each in vivo 

dataset, an example case is displayed with localizers annotated with the ROI, and pyruvate and 

lactate AUC images from the “lactate-bSSFP” experiment. The average signal within the ROI is 

fit to kPL using the GRE-bSSFP fitting model for the “lactate-bSSFP” experiment with fixed T2L 

(middle row). The average signal from the “GRE-all” experiment is fit to kPL using the GRE 

model (bottom row). Examples used are subject 2 for healthy rat kidneys, subject 2 for TRAMP, 

and subject 1 for human RCC.  

 

Next, the individual voxel data was used to fit kPL parameter maps in the lactate-bSSFP 

experiments. These parameter maps were compared to kPL parameter maps fit using the GRE 

fitting method on the GRE-all dataset (Figure 4.5). The kPL values and parameter map patterns 

matched between the two methods and datasets. The maps showed similar patterns of spatial 

heterogeneity, including higher kPL in the medulla of the kidneys and lower kPL in the center of 

the human kidney which likely reflects necrosis in the RCC tumor. The kPL maps also showed 

similar patterns and heterogeneity to the lactate/pyruvate AUC ratio maps. 
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Figure 4.5: Sample metabolism maps across the Tang et al.11 datasets used. An example case 

from each dataset of the fit kPL maps using the GRE-bSSFP model on the “lactate-bSSFP” data 

(first row) compared with kPL values fit with a GRE model9 on the “GRE-all” data (second row) 

and lactate/pyruvate AUC ratio maps of the “lactate-bSSFP” data (third row). Examples used are 

subject 1 for healthy rat kidneys, subject 2 for TRAMP and subject 2 for human RCC. For the 

healthy rat kidneys and human RCC the T2L was fixed to 0.8 s and for the TRAMP the T2L was 

fixed to 1.3 s. 

 

The voxel-wise kPL values were compared in scatter plots for all datasets (Figure 4.6 and 4.7). 

Each point in the plots correspond to one voxel where kPL was estimated using the GRE-bSSFP 

model on the “lactate-bSSFP” data and kPL was estimated using the GRE model on the “GRE-

all” data. The lactate/pyruvate AUC ratio values were also calculated per voxel for “lactate-

bSSFP” and “GRE-all” data. These lactate/pyruvate AUC ratio values are often used as 

metabolism metrics in HP 13C studies. When comparing AUC ratio values to kPL values a positive 

linear relationship is expected9. For each scatter plot a line of best fit was fit and the slope 

reported after removing outliers. With fixed T2L, the Pearson correlation coefficients for bSSFP 

AUC ratio vs bSSFP kPL were 0.476, 0.229, and 0.915 for the healthy rat kidneys, TRAMP, and 

human RCC, respectively, suggesting positive linear correlations. Other than the healthy rat 

kidneys, the correlation coefficients were similar to the GRE AUC ratio vs GRE kPL coefficients.  
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Across animal and human datasets, the GRE-bSSFP fitting method matched the GRE results 

better when fixing T2L versus fitting T2L (Figure 4.7). With fixed T2L, for GRE kPL vs bSSFP kPL 

the best fit line slopes were 0.816 for healthy rat kidneys, 0.833 for TRAMP, and 0.632 for 

human RCC. These slopes were all close to 1 and to the x=y reference line. The correlation 

coefficients for GRE kPL vs bSSFP kPL showed positive linear correlations for the TRAMP and 

human RCC datasets. In contrast, when kPL and T2L were jointly fit, the best fit line slopes 

deviated further from 1 and the x=y reference line. The fit T2L values when jointly fitting kPL and 

T2L demonstrated high variability in all three datasets for at least one subject. 
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Figure 4.6: Voxel-wise comparisons of the metabolism fitting methods. For each dataset in Tang 

et al.11 and all voxels within each ROI, bSSFP kPL values compared to “lactate-bSSFP” 

lactate/pyruvate AUC ratios and GRE kPL values fit using the GRE model on “GRE-all” data. 

Note for TRAMP “lactate-bSSFP” AUC plots, one outlier is not displayed. 
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Figure 4.7: Comparison of fitting versus fixing T2L when comparing voxel-wise GRE model and 

GRE-bSSFP model fits across the Tang et al.11 datasets. Additionally, distribution of fit T2L 

values across voxels for each subject is shown (right column). 

 

The sensitivity of the model to the value of the fixed lactate T2 was also explored on the lactate-

bSSFP in vivo data (Figure 4.8). Scatter plots comparing the two fitting methods with their 

respective datasets per voxel were visualized for a range of fixed lactate T2s. For all datasets, the 

slope of the best fit line decreased with increasing T2L. The fit bSSFP kPL values approached zero 
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as T2L increased. The slope of the trend lines also varied per subject. For example, TRAMP 

subject 1 had higher slopes than the other two subjects for the range of T2Ls. 

These results agree with the Monte Carlo parameter sensitivity simulations in Figure 4.3. Using 

these plots, across all subjects, a lactate T2 of 1.3 s for TRAMP data and 0.8 s for healthy rat 

kidney and human RCC data provided the best matching between the two fitting methods. This is 

how the fixed T2L values were chosen. 

 
Figure 4.8: Impact of T2L on the fitting results. For each in vivo dataset from Tang et al.11, the 

GRE kPL fit (using the GRE model on the “GRE-all” data) versus the bSSFP kPL fit (using the 

GRE-bSSFP model on the “lactate-bSSFP” data) per each voxel was plotted for a range of fixed 

T2Ls. The slope for the best fit line for each T2L value is reported across all subjects and per 

subject.  

 

4.5.3 Bicarbonate-bSSFP In Vivo 

Similar analysis was performed on the bicarbonate-bSSFP healthy rat dataset from Liu et al.13 

The average signal in the kidneys was used to fit kPL and kPB for both the bicarbonate-bSSFP 

using the GRE-bSSFP model and GRE-all data using the GRE model (Figure 4.9A). The kPL and 

kPB values fit between the two experiments were very similar.  

Next, kPB was fit voxelwise within the healthy rat kidneys for the bicarbonate-bSSFP and GRE-

all experiments. The fit values matched well and showed similar spatial patterns. 
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Figure 4.9: Sample data, average fitting results and voxelwise fitting results for the Liu et al.13 

dataset that included bicarbonate. (A) An example healthy rat dataset (subject 1) is displayed 

with localizers annotated with the kidney ROI, and pyruvate, lactate and bicarbonate AUC 

images from the bicarbonate-bSSFP experiments. The average signal within the ROI is fit to kPL 

and kPB using the GRE-bSSFP fitting model for the “bicarbonate-bSSFP” experiment (middle 

row). The average signal from the “GRE-all” experiment is fit to kPL and kPB using the GRE 

model (bottom row). The lactate signal is scaled by a factor of 2 and bicarbonate by a factor of 

10 for better visualization. (B) Sample kPB maps from one subject (subject 1) using the GRE-

bSSFP model on the “bicarbonate-bSSFP” data (first row) compared with kPB values fit with a 

GRE model9 on the “GRE-all” data (second row) and bicarbonate/pyruvate AUC ratio maps of 

the “bicarbonate-bSSFP” data (third row).  

 

Voxel-wise kPB values were compared in scatter plots for the healthy rat kidney data from Liu et 

al.13 (Figure 4.10). The Pearson correlation coefficients between AUC ratio vs kPL were 0.730 

and 0.517 for the “GRE-all” and “bicarbonate-bSSFP” data, respectively, suggesting a positive 

linear correlation. The GRE kPB vs bSSFP kPB best fit line slope was 0.697. Subject 5 notably 
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showed the worst correlation in GRE kPB vs bSSFP kPB and demonstrated less linearity with 

respect to the other subjects in the GRE AUC ratio vs GRE kPB plot as well.  

 
Figure 4.10: Voxel-wise comparisons of the metabolism fitting methods. For each dataset and all 

voxels within each ROI, bSSFP kPB values are compared to “bicarbonate-bSSFP” 

bicarbonate/pyruvate AUC ratios and GRE kPB values fit using the GRE model on “GRE-all” 

data. (B/P = Bicarbonate/Pyruvate) 

 

4.6 Discussion 

In this work, a novel pharmacokinetic model for MS-bSSFP HP 13C MRI was described and 

validated. Through simulations (Figures 4.2 and 4.3), the GRE-bSSFP model performed better 

than the GRE model on “lactate-bSSFP” simulated data due to differences in the acquisition. A 

bSSFP sequence refocuses transverse magnetization and has T2/T1 contrast, which is 

advantageous to preserve SNR of the transient HP signals, but also differs greatly from spoiled 

GRE acquisitions, necessitating this updated PK model. The simulations demonstrated that 

jointly fitting T2L and kPL resulted in higher noise variance but greater robustness to T2L and B1
+ 

errors.   

 

To validate the model, previously acquired animal and human datasets were used that included 

two HP 13C injections, one where pyruvate was acquired with GRE and lactate or bicarbonate 
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were acquired with bSSFP acquisitions (“lactate-bSSFP”, “bicarbonate-bSSFP”) and another 

where all metabolites were acquired with a GRE sequence (“GRE-all”)11,13. The GRE-all data 

was fit to kPL and kPB values using a previous GRE model9. These values served as comparisons 

for the kPL and kPB values that were fit with our GRE-bSSFP model to the “lactate-bSSFP” and 

“bicarbonate-bSSFP” data.  

 

We showed high consistency and similar spatial patterns in kPL and kPB values across the healthy 

rat kidneys, TRAMP mouse, and human RCC datasets. Across the datasets, the human RCC data 

from Tang et al.11 showed the most consistency in kPL between the methods in Figure 4.6 with 

the highest correlation coefficient. Meanwhile, the Tang et al.11 healthy rat kidney results were 

the most variable with a low correlation coefficient, which could in part be explained by model 

mismatch, as the kidneys may accumulate lactate substantially due to their role in filtering the 

blood. Our model does not account for lactate originating outside of the voxel. We expect that 

some inconsistency in these results could also be explained by B1
+ calibration errors, as this can 

directly lead to changes in kinetic rates and AUC ratios. 

 

The results from the bicarbonate-bSSFP data from Liu et al.13 demonstrated that when the GRE-

bSSFP model was extended to incorporate another metabolite, bicarbonate, the fit kPB values 

matched the GRE-all results. Subject 5 in the Liu et al.13 dataset had the worst correlation in 

GRE kPB vs bSSFP kPB and was not as linear with respect to the other subjects in the GRE AUC 

vs kPB plot (Figure 4.10). These results could suggest a difference in the acquisition of subject 5, 

such as acquisition timing or B1
+ power calibration9. 
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4.6.1 13C-Lactate and 13C-bicarbonate T2 

An important consideration while fitting kPL and kPB with the GRE-bSSFP model is the T2L and 

T2B. It is difficult to measure T2 in vivo from these metabolic products and thus few previous 

sources exist which have measured or estimated T2L and T2B in vivo13,25,26. With the in vivo data 

results (Figure 4.7), we showed that fitting T2L may lead to errors in kPL estimation especially in 

the voxel-wise scenario where noise is more of a concern. Conversely, we also showed the 

accuracy of the fixed T2L is important as changes in T2L varied the bSSFP kPL relationship with 

GRE kPLs (Figure 4.8).  

 

The results from Figure 4.8 also potentially suggest some variation in T2L across subjects and 

experiments, which could potentially be due to the different microstructure and 

compartmentalization between vasculature, intracellular, and extracellular spaces. The variation 

across subjects could also be explained for the human RCC cases by their different pathologies. 

Subject 1 is a chromophobe subtype, subject 2 is a low-grade clear cell case, and subject 3 is a 

high-grade clear cell case. The variations in apparent or fitted T2L values could also be due to 

unknown B1
+

 errors. Figure 4.3 shows that T2L and B1
+ lead to strong changes in kPL meaning 

these parameters are tightly coupled in the model. For example, an increase in fit kPL can be due 

to either increase in T2L or a decrease in B1
+ error. The fitting of kPB is similarly tightly coupled 

to bicarbonate T2. Thus, in this work, the bicarbonate T2 was fixed to 0.5s when fitting kPB
13. 

As a result, we recommend fixing T2 values to an estimate based on a literature review13,26,27. If 

possible, an empirical experiment can be used to validate chosen T2.  
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4.6.2 GRE to bSSFP Scaling 

For cases where there were 2D GRE and 3D bSSFP metabolite-specific acquisitions, the 

modeled data was not scaled properly to in vivo data. In order to compensate for this difference, 

we used an empirical scale. This empirical scale was found to be highly dependent on the field-

of-view, flip angles of the data, and even the reconstruction. Particularly important to consider 

are noise characteristics between the GRE and bSSFP studies, noise decorrelation before coil 

combination, and gridding, which can also lead to significant changes in image scaling. In this 

work, we used two different methods to arrive at the empirical scale. For the Tang et al.11 human 

RCC dataset, we used a phantom study to determine the scale and validated this scale with the 

data. In contrast, for the Liu et al.13 rat kidney dataset, the scale was arrived at by using an 

iterative approach. For future studies with new parameters, one of these methods would have to 

be used to arrive at a scale. However, the iterative method may not be sustainable for finding the 

scale value, as it necessitates an additional “GRE-all” acquisition. The in vivo metabolite data 

cannot be used to determine the scale as the bSSFP and GRE acquisitions were acquired for two 

different metabolites, so the scaling would be obscured by metabolite dynamics and 

concentrations. Large inaccuracies in the scaling parameter would lead to inaccuracies in 

estimated kPL and kPB, so it is important to validate this scale with a comparison between scaled 

simulation and in vivo data, as was done in this work.  

 

4.6.3 Multi-Resolution Data 

In Liu et al.13, 13C-lactate and 13C-bicarbonate were acquired at a coarser resolution than 

pyruvate to improve SNR for low concentration metabolites28. The resolution mismatch was 

handled by zero-padding the k-space of the coarser resolution metabolites to match the pyruvate 
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image resolution. Increasing the resolution of metabolites rather than decreasing that of pyruvate, 

allows for the visualization of smaller structures and may provide more accurate quantification 

of kPL and kPB
29. However, it is important to note that this approach assumes uniform signal 

distribution, meaning finer spatial variations are not captured in the zero-padded 13C-lactate and 

13C-bicarbonate images. The healthy rat kidney data displayed low pyruvate AUC in the medulla, 

and due to its small size, it could not be captured by the 13C-lactate and 13C-bicarbonate images, 

thus kPL and kPB might be incorrectly inflated in the medulla voxels.  

 

4.6.4 Model Compartment Size 

In this work, the model described has one physical compartment. More physical compartments, 

although more accurate to the biochemistry, result in more unknown parameters that are typically 

not measured in HP 13C studies. Prior work has shown that using two physical compartment PK 

models is more appropriate for in vivo HP 13C-pyruvate studies7. The model presented here can 

be integrated into this approach in future work. 

 

4.6.5 Extended Applications 

In these experiments, the focus was on experiments where pyruvate was acquired with GRE, and 

lactate acquired with bSSFP. However, the fitting and modeling framework is flexible and can 

support pyruvate plus multiple metabolites with each metabolite acquired with bSSFP or GRE. 

The model could also be readily adapted for variable flip angle acquisitions, or other 

hyperpolarized reagents. A further application is to other HP bSSFP studies such as multi-echo 

bSSFP or bSSFP with off-resonant excitations30–33. 
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4.7 Conclusions 

In this work, we propose and define a MS-bSSFP pharmacokinetic model to use for fitting 

conversion rate constants, kPL and kPB, for dynamic HP 13C studies. With preclinical and human 

in vivo acquisitions, this fitting method is shown to provide high quality fits to the data that are 

relatively consistent with a previous GRE model. Through simulations the model is shown to fit 

kPL accurately especially with fixed T2L. The choice of T2L is important and directly impacts kPL. 

Additionally, the model was extended to include bicarbonate and validated with bicarbonate 

bSSFP data to estimate kPB values which were found to be consistent with those fit with the GRE 

model. This model provides a strong backbone for MS-bSSFP HP 13C studies, which are 

increasing in popularity, and can be adjusted for a variety of specific applications or acquisition 

parameter sets. For fitting kPL, the GRE-bSSFP model is pertinent to quantify and evaluate tumor 

metabolism for HP 13C studies with metabolite-specific bSSFP acquisitions.  
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CHAPTER 5: SPATIALLY CONSTRAINED ESTIMATION OF HYPERPOLARIZED 

13C MRI PHARMACOKINETIC RATE CONSTANT MAPS USING A U-NET 

5.1 Abstract 

Current methods for fitting rate constants, like kPL, to Hyperpolarized [1-13C]Pyruvate (HP C13) 

MRI data fit each voxel of the dataset using a least-squares objective based on the difference 

between the model and the data. Typically, each voxel is considered independently, and the 

spatial relationships are not considered during fitting. 

 

In this work, we use a convolutional neural network, a U-Net, with convolutions across the 

spatial and temporal dimensions to estimate kPL maps from dynamic HP C13 datasets. A 

framework for creating simulated anatomically accurate brain phantom data that also matches 

typical HP C13 characteristics is described to provide large amounts of data for training. The U-

Net is initially trained with the simulated phantom data and then finetuned with in vivo datasets. 

In simulation, the U-net outperforms voxel-wise fitting with and without spatiotemporal 

denoising, particularly for low SNR data. However, on in vivo data before finetuning, the U-Net 

predicted kPL maps appear oversmoothed. After finetuning with in vivo data, the resulting kPL 

maps appear more realistic. 

 

This study demonstrates how to use a U-Net to estimate rate constant maps for HP C13 data, 

including a comprehensive framework for generating realistic simulated data. It provides a 

foundation that can be built upon in the future for improved performance. 
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5.2 Introduction 

Hyperpolarized [1-13C]Pyruvate (HP C13) MRI is a powerful and robust minimally-invasive 

method to dynamically image metabolism within the body1–3. To fully leverage HP C13’s power, 

acquired dynamic metabolite images must be translated to clinically relevant results. The 

metabolite dynamics can be modelled using pharmacokinetic (PK) modelling, where the 

apparent rate constants between metabolites, describe the rate of exchange. The pyruvate to 

lactate PK apparent rate constant, kPL, has previously shown to be an important clinical 

biomarker to quantify metabolic reprogramming3–5.  

 

In previous work, PK models have been fit to the dynamics of each voxel to obtain kPL maps6–11. 

With these methods, each voxel is considered independently of one another regardless of spatial 

proximity. However, spatial relationships are particularly relevant to consider when estimating 

kPL maps from HP C13 MRI which can suffer from low SNR. With noisy data, spatial constraints 

may minimize anomalies during kPL fitting and smooth kPL maps. 

 

Limited previous work has explored this challenge within the field of HP C13. Maidens et al.12 

proposed a spatio-temporally constrained PK model fitting using L2 and total variation 

regularizations. Their method resulted in improved appearance of in vivo parameter maps 

particularly in low SNR cases. 

 

As an alternative to this optimization-based method, we propose a deep-learning method: to use 

a convolutional neural network, a U-Net, to estimate kPL maps from dynamic HP C13 data. The 

convolutional layers will inherently spatially constrain the kPL maps. Additionally, a deep 
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learning solution could speed up the kPL quantification task compared to least-squares fitting or 

other iterative methods. In the field of DCE MRI, several others’ have found promise in using 

convolutional neural networks to estimate pharmacokinetic parameters13–17. 

 

A challenge to training a U-Net to estimate kPL maps is the limited number of HP C13 training 

data available and the lack of kPL ground truths. As a solution, we propose to develop an 

anatomically accurate HP C13 brain phantom that matches typical HP C13 characteristics and 

use this synthetic phantom data for training. The pretrained model will then be further finetuned 

using in vivo HP C13 brain datasets to improve generalization to in vivo datasets. The objective 

of this work is to explore the feasibility of using a convolutional neural network to estimate PK 

parameter maps for HP C13 data.  

 

5.3 Methods 

5.3.1 Anatomical Phantom Data Creation 

Segmented proton MR data from the BrainWeb18–24 database from 19 different brains was used 

as a base of the anatomical phantom (Figure 5.1). For each brain, the segmented grey matter, 

white matter and vasculature masks were each assigned model parameters of kPL, kPB, kTRANS and 

Mz0 values. These maps were down sampled, then, per voxel a single physical compartment 

pharmacokinetic model was used to generate dynamics (Eqs 5.1-5.3). The dynamic images were 

multiplied by coil sensitivity maps, Rician noise was added and then the dynamic images were 

up sampled to the output size. The data was simulated as a “multi-resolution” or “variable 

resolution” dataset25 by varying the sample matrix size when generating the dynamics. The input 
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function was modeled as a gamma variate function where Tbolus was set to 8s and Tarrival was 

varied between -4s and 4s.  

 
Figure 5.1: Overview of the creation of anatomical BrainWeb-based phantom datasets. Briefly, 

kTRANS, kPL, Mz0 maps are derived using BrainWeb masks (A). The maps are downsampled and 

randomly spatially altered (B). Dynamics of each voxel are then modeled using pharmacokinetic 

equations (Eqs 1-3, C). The dynamics are multiplied by coil sensitivity maps and noise is added 

to the dynamics (C,D).  
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The dynamics were modeled including the effect of RF excitation pulses using the 

sim_Nsite_model() function from the Hyperpolarized MRI Toolbox6,26 which can be described 

with the following equations: 

 For 1 < 𝑡 ≤ 𝑁𝑡 ∶ 

𝑀𝑧
+[𝑡] = exp(A ∙ TR) (𝑀𝑧[𝑡 − 1] + [

𝑘𝑇𝑅𝐴𝑁𝑆  ∗ 𝑢[𝑡 − 1]

0
] ) 

𝑀𝑧[𝑡] =  [
𝑃𝑧[𝑡]
𝐿𝑧[𝑡]

] =  𝑀𝑧
+[𝑡] [

cos 𝛼𝑃
cos 𝛼𝐿

] 

𝑀𝑥𝑦[𝑡] =  [
𝑃𝑥𝑦[𝑡]

𝐿𝑥𝑦[𝑡]
] =  𝑀𝑧

+[𝑡] [
sin𝛼𝑃
sin 𝛼𝐿

] 

5.1 

 

 For 𝑡 = 1 ∶ 

𝑀𝑧[𝑡] =  [
𝑃𝑧[𝑡]
𝐿𝑧[𝑡]

] =  𝑀𝑧,0 [
cos 𝛼𝑃
cos 𝛼𝐿

] 

𝑀𝑥𝑦[𝑡] =  [
𝑃𝑥𝑦[𝑡]

𝐿𝑥𝑦[𝑡]
] =  𝑀𝑧,0 [

sin 𝛼𝑃
sin𝛼𝐿

] 

5.2 

where: 

A = [
−𝑅1𝑃 − 𝑘𝑃𝐿 0

𝑘𝑃𝐿 −𝑅1𝐿
] 5.3 

In these equations, Nt is the number of time points, TR is the temporal resolution or time 

between subsequent pyruvate image acquisitions, u is the input function modeled as a gamma 

variate function and 𝛼𝑃 and 𝛼𝐿 are the flip angles for pyruvate and lactate, respectively, 𝑀𝑧,0 is 

the initial longitudinal magnetization of pyruvate and lactate. Mxy[t] is used as the signal 

dynamics for each voxel of the anatomical brain phantom.  
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To create a diverse training, validation and test set, many parameters for the anatomical brain 

phantom were randomly varied. Parameter ranges were chosen based on previous literature8,9,27–

29 and in vivo data characteristics. The flip angles and temporal resolution were kept consistent 

and matched the in vivo data acquisition. For most of the parameters the random value was 

sampled from a normal distribution. The full set of parameters for the anatomical phantom used 

for training data can be found in Table 5.1. The final MATLAB function used to generate the 

anatomical brain phantom data is available in the Hyperpolarized MRI Toolbox26. 

 

Using the parameters and ranges from Table 5.1, a dataset of 500 was created with 8 slices each 

for a total of 4000 2D data examples. These were split into a training set of 3200, a validation set 

of 400 and a test set of 400 (referred to as the “simulated test set”).  
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Table 5.1: Parameter values or ranges for various simulation parameters for the anatomical 

phantom data creation. (*= sampled from a uniform distribution, otherwise ranges are sampled 

from a normal distribution) 

Parameter 
Vasculature 

(Vasc) 
Grey Matter (GM) White Matter (WM) 

kTRANS low limit (s-1) 

[min, max] 
[1, 1] [0.15, 0.25] 

[GM kTRANS,LOW-0.015,  

GM kTRANS,LOW -0.005] 

kTRANS upper limit (s-1) 

[min, max] 
[5, 11] [0.35, 0.45] 

[GM kTRANS,HIGH-0.015,  

GM kTRANS,HIGH -0.005] 

kPL (s-1) [min, max] [0, 0] [0.007, 0.035] 
[GM kPL-0.005,  GM 

kPL+0.005] 

kPB (s-1) [min, max] [0, 0] [0.002, 0.007] GM kPB 

    

 Pyruvate Lactate Bicarbonate 

Mz,0 Scale 

[min, max] 

Vasc: [1, 1] 

GM/WM: [0.5, 1] 

Vasc: [0, 0] 

GM/WM: [0, 0.01] 

Vasc: [0, 0] 

GM/WM: [0, 0.005] 

Flip Angle (deg) 20 30 30 

T1 (s) 30 25 25 

SNR [min, max] [70, 320] [15, 75] [10, 35] 

Sample Matrix Size 

[Nx, Ny, Nz] 
[32, 32, 8] [16, 16, 8] [16, 16, 8] 

    

 Value   

Temporal Resolution (s) 4   

Tarrival (s) [min, max] [-4, 4]   

Tbolus (s) 8   

Coil Sensity Dropoff 

Scale [min, max] 
[0.2, 0.6]   

Output Matrix Size 

[Nx, Ny, Nz] 
[64, 64, 8]   

X Translation (# voxels)* 

[min, max] 
[-2, 2]   

Y Translation (# voxels)* 

[min, max] 
[-2, 2]   

X Reflection* True/False   

Scale* [min, max] [0.95, 1.2]   

Rotation (deg)* 

[min, max] 
[-5, 5]   

Brain Index* 

[min, max] 
[-5, 5]   
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Out of distribution (OOD) simulated datasets were created with the following parameters: high 

SNR: 350 and 90 for pyruvate and lactate, low SNR: 50 and 10 for pyruvate and lactate, high 

kPL: 0.05, 0.051, 0 for grey matter, white matter and vasculature, low kPL: 0.001, 0.002, 0 for 

grey matter, white matter and vasculature. 

 

5.3.2 In Vivo Dataset 

To test generalization to in vivo data and as training data for finetuning the model, a dataset of 21 

healthy volunteer in vivo HP C13 brain images were used for validation30–32. All of these datasets 

were variable resolution acquisitions25,28 where lactate was acquired at 2x coarser resolution than 

pyruvate. The data was acquired with a broadband EPI (bbEPI) sequence with a spectrally and 

spatially selective RF excitation. The flip angles used for acquisition were 20°, 30°, 30° for 

pyruvate, lactate and bicarbonate. Metabolite data was acquired dynamically for 20 time points 

with a temporal resolution of 3s. All datasets were acquired with a 24 channel RAPID 

Biomedical receive coil.  

 

Briefly, EPI reconstruction was performed using MATLAB and the GE Orchestra Toolbox. 

Nyquist ghost artifact correction was performed, the data was prewhitened and coil combination 

was performed using the RefPeak method33.  

 

The in vivo dataset was split into finetuning (n=16) and test (n=5) 3D sets randomly. The 

finetuning dataset was further split so 12 2D slice images were used for validation and the 

remaining 116 images were used for training during finetuning. 
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5.3.3 U-Net Model & Training 

A 2D Basic U-Net model34 from MONAI35 was used with feature layers of (32, 32, 64, 128, 256, 

32). The input into the model was the simulated dynamics of pyruvate and lactate concatenated 

in the time dimension (Figure 5.2). The output was a single channel kPL map. The model was 

trained for 1500 epochs and the weights that resulted in the lowest validation loss were used 

(epoch 106). A voxel-wise L1 loss was used and summed across the kPL map. ADAM optimizer 

was used with a learning rate of 1e-3. For training and validation, the batch size was 2 and 

dropout probability was set to 0.3. The model was trained in Python with PyTorch and PyTorch 

Lightning. A Quadro RTX 8000 GPU was used to speed up training. 

 

After initial training with the simulated data, the in vivo training and validation dataset was used 

for finetuning. During this finetuning experiment, all the layers of the network were updated. For 

finetuning, the learning rate was decreased to 1e-5 and was trained for 3000 epochs with model 

weights saved every 300 epochs.  

 
Figure 5.2: A graphical representation of the U-Net architecture used. This model is taken from 

MONAI’s35 Basic U-Net implementation which was inspired by Falk et al34. The dynamics are 

input into the model with pyruvate and lactate concatenated in the time dimension. The output is 

a single channel kPL map. 
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5.3.4 Pharmacokinetic Modeling & Denoising 

As comparisons to the U-Net results, pharmacokinetic fitting was performed with and without 

data denoising to obtain kPL maps. The data was denoised using the global-local higher order 

SVD (GL-HOSVD) denoising method36 with the following parameters: kglobal=0.4, klocal = 

0.8, patchsize =5, step=2 and search window radius=11 as recommended in prior work36. The 

data with or without denoising was fit to kPL maps using an inputless one physical compartment 

pharmacokinetic model6,8,26. For fitting, initial kPL = 0.02, initial kPB = 0.005, pyruvate T1=30s, 

lactate T1=25s, bicarbonate T1=25s. Pharmacokinetic model-derived kPL maps were masked with 

a brain mask. For simulated data, the kPL map was thresholded to derive a brain mask. For in 

vivo data, the lactate SNR was thresholded to obtain a brain mask. 

 

As another comparison to the U-Net results, a spatio-temporally constrained modeling technique 

proposed by Maidens et al.12 was used to derive kPL maps. The parameters used were pyruvate 

T1=30s, lactate T1=25s, 𝜌 = 1e4, 𝜆𝑇𝑉 = 20 and 𝜆𝑙2 = 500. The 𝜌 and 𝜆 values were chosen such 

that the model converged in less than 100 iterations and the resulting kPL values were similar to 

the inputless pharmacokinetic model. The spatio-temporally constrained model maps were only 

compared with in vivo data maps as a new set of parameters would have to be chosen for 

simulated datasets. 

 

5.4 Results 

5.4.1 Simulated Anatomical Brain Phantom Data 

Examples from the simulated brain phantom data are shown in Figure 5.3. The simulated data 

examples resemble in vivo datasets. The sagittal sinus signal dominates the pyruvate signal. The 
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typical signal drop-off in the center of the brain is also modeled using the simulated coil 

sensitivity maps. The third simulated example depicting slice 2 is less similar to in vivo 

examples as the pyruvate maps have high signal regions outside of the sagittal sinus. 

Additionally, in the simulated examples, pyruvate signal is higher for more time points whereas 

in the in vivo examples the signal decays faster. The reverse is true for lactate. In the simulated 

examples lactate decays faster than the in vivo examples. 

 
Figure 5.3: Three examples of simulated anatomical brain phantom datasets and two examples 

of in vivo datasets. Each example is a different dataset and a different image slice (5, 7 and 2, top 

to bottom). On the left are the dynamics of pyruvate (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) (PYR) and lactate (LAC) and on the right is 

pyruvate & lactate AUC, kPL, kTRANS, pyruvate & lactate Mz0 maps.  

 

5.4.2 Base U-Net 

A 2D U-Net was trained with the simulated anatomical brain phantom data. The validation loss 

reached a minimum at epoch 106. Figure 5.4 shows examples of U-Net predicted kPL maps on 

the simulated test set. These are compared with using pharmacokinetic model fitting and using 

pharmacokinetic model fitting after HOSVD denoising. 

 

The U-Net predicted results were more robust to added noise compared with the PK model 

results even with HOSVD denoising (Figure 5.4). The U-Net inherently ignores low SNR 

regions outside the brain, whereas the PK model maps had to be manually thresholded. Using 

denoised data for the PK model only resulted in small improvements to using raw data as input 

into the model. Comparing these methods quantitatively, the U-Net predictions performed better 

on the simulated test data (Table 5.2).  
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Figure 5.4: U-Net kPL map predictions for three examples of slices from the simulated test set. 

The U-Net predictions are compared to using a Voxelwise PK model without denoising data and 

a Voxelwise PK model with HOSVD denoised data. Error maps for each kPL map estimation 

method are below. The PK model maps are thresholded.  
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Table 5.2: Simulated Test Metrics for U-Net, PK Model and PK Model with HOSVD denoising.  

Metrics U-Net Prediction 
Voxelwise PK 

Model 

HOSVD Denoising 

+ Voxelwise PK 

Model 

Sum of Abs Error 0.164 3.178 3.217 

Sum of Sq Error 0.00003 0.049 0.051 

Avg SSIM 0.905 0.352 0.357 

 

The U-Net model was tested further with out of distribution (OOD) simulated data examples, 

where the datasets were created with SNR or kPL values outside of the training range (Figure 

5.5). In the low SNR case, the U-Net performed significantly better than PK modeling, but still 

suffered in recreating the ground truth kPL map, specifically in the locations of the ventricles. In 

the high SNR case, the U-Net predicted maps performed better than the PK model. For both low 

kPL and high kPL, the U-Net either overestimated or underestimated the kPL, resulting in large bias 

in the kPL map.  
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Figure 5.5: U-Net and PK model kPL map estimations shown for four out of distribution cases. 

The data had either kPL values or SNR above or below the training data. The PK model maps are 

thresholded. 
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The U-Net’s performance was next tested with in vivo data (Figure 5.6). The U-Net predicted 

kPL maps were compared with the PK model derived kPL. Similar to the simulated test data, the 

U-Net successfully SNR thresholded the resulting kPL maps, ignoring regions outside the brain 

with no signal. The U-Net predicted maps were more uniform in kPL value compared to the 

voxelwise PK model and spatio-temporally constrained results. Quantitatively, the U-Net 

predicted maps reflected kPL values within the same range as the PK model maps.  

 
Figure 5.6: Five examples of the U-Net’s performance on the in vivo test set. For each example, 

the U-Net predicted kPL map is compared with the PK model estimated maps with or without 

HOSVD denoising and spatio-temporally constrained maps. The voxelwise PK model maps are 

manually SNR thresholded whereas the U-Net internally SNR thresholds the estimated kPL maps. 

The spatio-temporally constrained maps are also not thersholded.  

 

5.4.3 Finetuning 

To improve generalization of the model to the in vivo dataset. All of the layers of the previously 

simulated data-trained U-Net were finetuned with more training steps using the in vivo dataset 

with PK model derived kPL maps as the ground truth. To investigate the effect of finetuning, the 

U-Net predicted kPL maps were compared before finetuning and after finetuning for 300, 1200 
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and 3000 epochs (Figure 5.7). As finetuning proceeded, the U-Net predictions gained more 

similarities to the voxelwise PK model and spatio-temporally constrained kPL maps, and similar 

regions had the same kPL values. Compared with the results prior to finetuning, the U-Net 

predictions no longer fully SNR threshold and fit a kPL values greater than 0 to the background.  

 
Figure 5.7: U-Net predicted kPL maps for five images from the in vivo test set before finetuning 

and after 300, 1200 and 3000 epochs of finetuning. The voxelwise PK model maps are SNR 

thresholded.  

 

5.5 Discussion 

To our knowledge, we are the first group to estimate kPL maps for HP C13 data using a U-Net. 

One of the biggest disadvantages of the most common least-squares based PK models to estimate 

kPL is evaluating each voxel independently rather than taking advantage of the relationships 

between voxels. Convolutional layers within the U-Net naturally spatially constrain and can 

improve kPL estimation for noisy HP 13C data. Additionally, at inference time the U-Net 

estimates a full kPL map in less than a second which is a large time improvement compared with 

iterative, least-squares methods.  

 

In this work, to overcome the limited HP C13 data available for supervised learning, an 

anatomically accurate HP brain phantom was developed. Using simulated phantom data for 
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training, a base U-Net was trained. Although this U-Net performed well on the simulated test 

data (Figure 5.4, Table 5.2), it resulted in over-smoothed kPL maps in the in vivo datasets 

(Figure 5.6). To improve performance on in vivo data, the model was finetuned using a limited 

in vivo dataset. The finetuned models performed more similarly to the PK model while also 

minimizing, potentially erroneous, deviations in kPL when using the PK model (Figure 5.7). The 

level of finetuning (number of epochs for a given learning rate) must be optimized in future work 

to obtain the correct tradeoff between spatial blurring and kPL accuracy.  

 

5.5.1 Anatomical Phantom Limitations 

The anatomical phantom developed and used for training data of the U-Net is a good 

approximation of in vivo data, yet it makes some assumptions and has limitations.  

During simulated data generation, the kPL values for WM were chosen based on kPL of GM 

(Table 5.1) which resulted in low contrast between WM and GM. This may have contributed to 

the over-smoothing seen in the in vivo maps when using the base U-Net. In future work, the WM 

and GM kPL should be chosen independently.  

 

Another limitation of the phantom was that the simulated coil sensitivity maps were simple and 

didn’t include much variation across subjects. The input function, including arrival time were 

kept constant across the brain and resulted in dynamics that are somewhat varied from in vivo 

data (Figure 5.3).  Additionally, a single physical compartment PK model is used to simulate the 

dynamics whereas more complicated models may be more reflective of the biochemistry. This 

framework could easily be adapted for other PK models when generating the dynamics.  
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5.5.2 Matrix Size & Resampling 

An important consideration in this work is resampling. The anatomical phantom data during 

generation is resampled in multiple steps during the process. Since the in vivo data is multi-

resolution, the coarser resolution lactate must be resampled to match the matrix size of pyruvate. 

In some of the error maps (Figure 5.4, 5.5), a pattern is visible which may be attributed to 

resampling operations.  

 

5.5.3 Extensions & Future Work 

This work was specifically concerned with estimating kPL maps using a U-Net. However, the 

same pipeline be extended to estimating other rate constant maps of interest, such as kPB or kPA. 

To estimate more than one rate constant map using the U-Net, one could output multiple 

channels from the U-Net and calculate a multi-channel loss.  

The low lactate SNR example (Figure 5.5) may reflect the U-Net’s performance in estimating 

kPB or kPA as bicarbonate and alanine typically have lower SNR than lactate.  

 

The in vivo dataset used here was uniform and had the same acquisition parameters using the 

same scanner. The question remains as to how well the U-Net would generalize to external HP 

C13 cases, specifically those with different acquisition parameters such as flip angles. We did not 

explore whether full training would need to be repeated or just the finetuning when 

implementing this framework for a completely new dataset.  

 

To overcome the limited number of HP C13 datasets, the simulated anatomical brain phantom 

data was used for training. A different and perhaps more direct workaround to this challenge 
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could instead be considering unsupervised deep learning methods. Taking inspiration from DCE 

parameter estimation, Oh et al.17 and Ottens et al.14 both used unpaired methods with a physics-

informed loss. This could be readily applied to HP C13 data to overcome the lack of paired data. 

 

Other neural network architectures may also be considered. Again in the field of DCE MRI, there 

has been promising work using recurrent neural networks (GRU, LSTM)14 or attention-based37 

networks for PK parameter estimation which could be explored in addition to convolution-only 

networks.  

 

5.6 Conclusion 

In this work, we have provided a demonstration of convolutional neural networks to estimate kPL 

maps as well as a framework to generate anatomically accurate dynamic brain HP C13 datasets. 

The simulated anatomical phantom data resembled in vivo data and constituted a diverse training 

dataset. In simulation, the U-net outperforms voxel-wise fitting with and without spatiotemporal 

denoising, particularly for low SNR data.  The base U-Net trained with the simulated data 

resulted in over-smoothed appearing kPL maps for in vivo datasets. After finetuning the U-Net, 

the U-Net predicted parameter maps more similar to PK model derived maps. The U-Net showed 

advantages over using a PK model in low SNR datasets. Further exploration of using neural 

networks to estimate kPL for HP C13 datasets is valuable and feasible.  
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CHAPTER 6: CURATION OF A MULTI-PHASE RENAL CELL CARCINOMA CT 

DATASET WITH TUMOR SEGMENTATIONS 

6.1 Abstract 

To optimize treatment planning for patients with renal tumors, assessing the pathology of the 

tumor and the tumor grade is imperative. Current standard of care imaging practices cannot 

reliably differentiate among certain renal tumors such as benign oncocytoma and clear cell renal 

cell carcinoma (RCC), and between low and high grade RCCs.  

 

Previous work has explored using deep learning, radiomics, and texture analysis to predict renal 

tumor subtypes and differentiate between low and high grade RCCs with mixed success. All 

studies have struggled with access to a large diverse dataset. Access to more datasets with a 

diverse representation of institutions and patient populations will improve deep learning model 

performance.  

 

In this work, a dataset of 500+ multiphase 3D CT exams was curated. Each contained at least 

one contrast-enhanced CT phase (arterial, portal venous and delay) that was registered in space 

to the unenhanced pre-contrast CT. Tumor outlines or bounding boxes were annotated and 

registered to the image volumes. The pathology results for each tumor are included as well as 

relevant patient metadata. 

 

6.2 Introduction 

Accurate pathology grade and characterization of renal masses is crucial for proper treatment 

planning. CT imaging is the gold standard and most common imaging for renal tumor diagnosis 
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and staging. These CT exams usually consist of an unenhanced pre-contrast CT scan, and one or 

more post-contrast phases with varied delay times after contrast administration. However, even 

with contrast-enhanced CT, it is difficult to reliably differentiate malignant renal masses from 

benign renal masses1–5. The most common malignant renal masses are renal cell carcinomas 

(RCCs), which are further characterized as clear cell (ccRCC), papillary (pRCC) and 

chromophobe (chRCC) subtypes. The most common type of benign renal masses are 

oncocytomas and angiomyolipomas (AMLs). Oncocytomas and lipid-poor AMLs are particularly 

difficult to distinguish from RCCs using CT1–5. It is similarly challenging to differentiate 

between the subtypes of RCCs with contrast-enhanced CT1,2,6.  

 

Another important consideration for treatment planning is the differentiation between low-grade 

and high-grade RCC cases. Low-grade RCCs may benefit from active surveillance to avoid 

overtreatment and poor outcomes post surgery7. The current gold standard for tumor grading 

prior to surgery uses an invasive procedure called percutaneous biopsy which may underestimate 

tumor grade, and has been reported to have a diagnosis failure rate of 20 percent8,9.  

 

Previously, researchers have explored deep learning10–17 and radiomics with texture analysis18–21 

to differentiate pathologies or pathology grades using unenhanced or contrast enhanced CT. Uhm 

et al.13 presents an end-to-end segmentation and classification neural network pipeline to classify 

multiphase CT images as AML, oncocytoma, ccRCC, chRCC, or pRCC. They report that the 

network performed better at classifying chRCC, AML and oncocytoma correctly than 

radiologists who misclassified as ccRCC. Coy et al.10 leveraged transfer learning to classify 

ccRCC vs oncocytoma on multiphase CT datasets and achieved the highest accuracy of 75% 



 118 

using the excretory phase. Lin et al.  predicted low vs high grade of ccRCC cases using ResNet 

for multiphase CT and reported 73-77% accuracy. A meta-analysis of 11 studies by Yu et al.18 

using CT texture analysis to differentiate low-grade vs high-grade RCC notes an ROC-AUC of 

0.88 suggesting strong diagnostic power.  

 

Of these previous studies, most studies had datasets smaller than 500 renal tumor cases and most 

training sets have been acquired at a single institution. Larger datasets from a diverse set of 

institutions could improve the results of these techniques and improve the model’s generalization 

to new data during inference.  

 

Other publicly available multiphase renal tumor CT datasets are limited in the number of patient 

cases. The TCGA-KIRC22 (n=267), TCGA-KIRP23 (n=33), TCGA-KICH24 (n=15) datasets 

include ccRCC, pRCC, and chRCC CT datasets, respectively, hosted on the Cancer Imaging 

Archive (TCIA)25. The 2023 Kidney and Kidney Tumor Segmentation challenge (KiTS)26 hosted 

by MICCAI also offers a publicly available dataset with a total of 599 cases combined from the 

2021 and 2023 challenge (489 training, 110 test) including ccRCC, chRCC, AML, oncocytoma, 

and unclassified RCC. However, this data only includes a single CT phase, either 

corticomedullary or nephrogenic, making it unsuitable for multi-phase approaches.  

 

In this work, we provide and describe a 3D multiphase renal mass CT dataset with tumor masks 

gathered from over 15 years of data from UCSF. The data inclusion and exclusion criteria, and 

curation steps, are described along with suggestions of further additions to this dataset.  

 



 119 

6.3 Methods 

6.3.1 DICOM Retrieval & Inclusion Criteria 

For the time range between 2002-2018, the UCSF pathology database was searched for renal 

masses 7cm (T1 stage). The exams were included only if they patient had a preoperative CT 

which included an unenhanced pre-contrast scan and at least one post-contrast scan. The DICOM 

images were imported from UCSF PACS, and the images headers were anonymized and 

deidentified. 

 

6.3.2 Conversion to NifTI 

DICOM data was converted to Neuroimaging Informatics Technology Initiative (NifTI) file 

format for easy volume manipulation using the dicom2nifti Python package. Of the full dataset, 

172 images could not be converted into volumes as multiple phases were stacked on top of each 

other. For these cases, the individual DICOMs corresponding to each phase were separated into 

folders before converting to NifTI. The Python package Nibabel was used to load, save and 

manipulate NifTI data.  

 

6.3.3 Tumor Segmentations & Phase Labeling  

Renal lesions were identified and segmented by an experienced Radiology resident on MD.ai. 

During this segmentation, the resident also labeled the phase of the post-contrast images as 

arterial, portal-venous or delay.  

 

Using MD.ai, for each labelled phase scan, one of three types of tumor annotations were used: 

(1) Polygonal tumor annotation defined by vertices, (2) Bounding box tumor annotation and (3) 
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Bounding box on center slice and center point of tumor on superiormost and inferiormost slice of 

tumor (Figure 6.1). All annotations were made on axial slices. Annotation type (2) was used to 

accelerate the annotation process. Annotation type (3) was used where the tumor boundary was 

not visible and difficult to annotate, which is common on images without contrast.  

 

The annotations were exported from MD.ai as Javascript Object Notation (JSON) files and 

converted to NifTI masks. For annotation types (1) and (2) the polygonal or bounding box 

vertices were used to determine the masks. For annotation type (3), the bounding box was 

extended and linearly interpolated to the superiormost and inferiormost slice using the center 

markers.  
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Figure 6.1: Example renal mass segmentations on MD.ai. Three examples of each type of renal 

mass annotation: (1) polygonal segmentation, shown on an arterial phase image, (2) bounding 

box segmentation on each slice, shown on a portal-venous phase image, and (3) bounding box on 

center slice as well as center markers on the superiormost and inferiormost slices, shown on an 

unenhanced pre-contrast image. For each example, the superiormost (top row), central (middle 

row) and inferiormost (bottom row) slice is shown. Note: For the polygonal annotation (first 

column) the images also show bounding box annotations. The yellow annotations are the 

polygonal annotation referenced.  

 

6.3.4 Registration 

For each patient, the post-contrast phase images and their tumor masks (moving images) were 

registered to the pre-contrast image (static image). Prior to registration the post-contrast images 

and tumor masks were cropped in the slice dimension to match the FOV of the pre-contrast 
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image. Then affine registration was performed using the ANTS toolbox. Following phase 

registration, the same deformation matrix was applied to the tumor masks to register the masks to 

the pre-contrast image.  

 

Each case was manually quality controlled to ensure proper registration by visualizing the first, 

middle and last 5 slices of the post-contrast images overlaid on to the pre-contrast image. As 

there were many cases that failed ANTS registration, an affine registration from the Dipy toolbox 

was used on the cases that failed.  

 

6.3.5 Conversion to hdf5 

For each exam, the best tumor mask was chosen by annotation type with preference rank in the 

following order: (1) polygonal segmentation, (2) bounding box on all slices, (3) bounding box on 

central slice and center markers at end slices. The pre-contrast volume, the registered post-

contrast phase volumes, best tumor mask and relevant metadata (tumor type, pathology, 

pathology grade) were all saved together as a single Hierarchal Data Format 5 (HDF5) file for 

each exam.  

 

6.4 Results 

6.4.1 Data Curation 

In the end 573 exams were registered with tumor masks and converted to 573 HDF5 files to 

make up the final dataset. During the data curation process, 389 exams were excluded in total 

(Figure 6.2). For 21 exams, there was no identified pre-contrast scan. Another 86 exams were 

excluded as they were repeat exams from subjects who had another exam included. These were 
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excluded so that each exam was completely independent of the other exams. For 10 exams, there 

were errors converting from DICOM to NifTI and were thus excluded. One patient had errors 

converting the annotation to masks and was excluded. 

 

During registration, a total of 271 exams failed quality control (Figure 6.3 and 6.4). Of these 121 

cases failed because the pre-contrast image was acquired with patient supine on the exam table 

whereas the post-contrast phase images were acquired with the patient prone on the table. These 

resulted in images that were very difficult to register to one another due to organ movement and 

orientation changes. Another 150 cases failed for other reasons, such as imperfect registration, 

cropped FOV of one or more scans, failure of registration algorithm to register in the S/I-

direction etc. 

 



 124 

 
Figure 6.2: Flowchart of Dataset describing each step of data curation and excluded cases (red 

boxes). The dataset started with 962 patient DICOMs with annotations and ended with 573 

registered HDF5 datasets including a tumor mask.   
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Figure 6.3: Five registration examples that passed quality control (QC). Examples of pre-

contrast scans (top row) with corresponding post-contrast phase scans before and after 

registration. Bottom row displays the post contrast scan overlaid on top of the pre-contrast scan 

after registration.  
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Figure 6.4: Five examples of registrations that failed. Top row shows pre-contrast scans, 

corresponding post-contrast phase scans before and after registration. Bottom row displays the 

post contrast scan overlaid on top of the pre-contrast scan after registration. First three columns 

are cases that failed when the pre-contrast image was taken with the patient prone and post-

contrast images with the patient supine.  

 

6.4.2 Final Dataset Demographics 

For the final dataset, the pathologies (Figure 6.5) and the included phases (Figure 6.6) were 

analyzed to determine the dataset diversity. Most of the dataset consists of RCC cases, with the 

most common subtype being clear cell (Figure 6.5). Of the graded exams, more tumors were low 

grade versus high grade. Also, most cases were the middle grades (grade 2 or 3) in between low 

vs high grade and very few exams were the highest grade, grade 4.  
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Figure 6.5: The pathologies & pathology grades for the final registered dataset. Note for 

pathology grades not all pathologies are graded so the bottom plots represent a subset of the full 

dataset. Some of the pathologies (like chRCC) were not given a grade number but labelled more 

generally as low or high grade NOS. The majority of the dataset was made up of clear cell RCC 

and many of the graded cases were low grade with very few cases being of the highest grade, 

grade 4. NOS= not otherwise specified 

 

Most of the exams included at least one post-contrast phase scan other than the pre-contrast scan 

(Figure 6.6). Of these, the most common case two post-contrast phase scans. There were almost 

equivalent numbers of scans from each phases, although portal-venous had a slight majority. 

Less than 100 exams included all three post-contrast phases.  
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Figure 6.6: The number of scans and phases included for the exams in the the final registered 

dataset. Most exams included the pre-contrast scan and one or two post-contrast phase scans. The 

most common post-contrast phase was portal venous, although the number of images was similar 

for all three post-contrast phases. Noncon = pre-contrast, portven = portal venous 

 

6.5 Discussion 

In this work, we introduce and describe the curation of a 3D CT Renal Mass dataset with post-

contrast phase scans. We intend to make this dataset available at 

https://imagingdatasets.ucsf.edu/ and/or on The Cancer Imaging Archive to use for further 

exploration of renal mass pathology and pathology grade using data driven methods. At the end 

of data curation, the final dataset contains 573 exams in HDF5 files where each exam has a pre-

contrast volume, most cases have one or more post-contrast phase scan volume, a lesion mask 

and pathology metadata (Figure 6.2). 

https://imagingdatasets.ucsf.edu/
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The dataset includes a variety of renal mass pathologies, but most are RCCs (Figure 6.5). Of the 

graded RCCs, the dataset is imbalanced and includes more than twice the number of low-grade 

cases as compared to high-grade cases. Similarly, ccRCC exams severely outnumber 

oncocytoma, pRCC and chRCC cases. If the dataset is used for low vs high grade, RCC subtype 

or benign vs malignant classification tasks, the class imbalance must be considered. Although 

imbalanced, the distribution of pathologies and pathology grades is representative of renal mass 

incidence at UCSF.  

 

Another feature of the dataset is the inclusion of pre-contrast volumes along with post-contrast 

phase scan volumes: arterial, portal venous or delay phases (Figure 6.6). Most exams do not 

include all phases but the pre-contrast exam plus one or two more phases. In the final registered 

dataset, 22 exams only included the pre-contrast scan even though the initial DICOM inclusion 

criteria specified at least one post-contrast scan. For these exams, the post-contrast phases could 

not be registered and therefore were not included. 

 

Along with CT volumes, masks of the renal tumors are also included. Although most of these are 

bounding boxes, the masks help localize the tumor quickly for analysis. Within this dataset, the 

CT volumes are provided as-is and no cropping, resampling or normalization has been done. 

Resampling and normalization would be necessary for input into a deep learning network to 

ensure consistent pixel spacing across data sampling and avoid exploding gradients during 

training. Cropping the volumes near the tumor may also be needed for improved model 

performance11,13. These steps are not included to allow for flexibility in preprocessing.  
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6.5.1 Registration 

Registration was a significant bottleneck in the data curation and about 30% of exams were 

excluded due to failed registration. Particularly, the cases where the pre-contrast image was 

acquired with the patient supine on the table, and the contrast enhanced phase images were 

acquired with the patient prone, proved to be a challenge.  

In this work, a select number of registration tools were attempted, including both affine and 

deformable registrations. None of the tools were able to improve results for the prone-supine 

registration cases. However, there are tools that were not attempted which could yield improved 

result. Some of these registration tools may require further fine-tuning for abdominal CT 

application.  

  

6.5.2 Expansion of Dataset 

The inclusion of more exams would only improve the utility of the dataset, and therefore the 

expansion of the dataset must be considered. For one, more of the excluded datasets may be 

included in the future, such as the 86 exams removed for patient redundancy or the 30% of 

exams that failed registration. Additionally, the data curation only included renal mass exams 

from up to 2018 and any since then could be supplemented. For the addition of new data, the 

functions and scripts used for the described curation steps will be made available on GitHub.  

During the described curation process, each scan was converted from DICOM to NifTI to HDF5. 

The choice to use HDF5 as the final format was decided after starting conversions to NifTI. This 

pipeline could be optimized by directly converting DICOM to HDF5 in the future. 
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6.6 Conclusion 

Here, a 3D multi-phase renal tumor CT dataset from UCSF with 573 exams is described to 

supplement available data for pathology characterization and grading tasks. During the curation 

process, the post-contrast images are registered to pre-contrast image and radiologist annotations 

are converted to tumor masks and phase labels. The image volumes, masks, and relevant 

metadata are all packaged together for ease of use in classification tasks. This renal tumor CT 

dataset can be used in deep learning and texture analysis work in the future to improve 

performance of models.  
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CHAPTER 7: SUMMARY & FUTURE WORK 

 

7.1 Summary 

In this dissertation, acquisition and quantification advancements for Hyperpolarized [1-

13C]Pyruvate (HP C13) MRI were described. The implementation and optimization of a 

preclinical 2D spectral-spatial EPI for HP C13 MRI was detailed (Chapter 3). Simulations and in 

vivo results suggested the spectral-spatial EPI sequence in preclinical experiments decreased 

blurring from phase encodes compared to a CSI sequence. The optimal flip angles for a spectral-

spatial EPI sequence were explored through simulation. The fit kPL maps were found to be 

consistent between the EPI and CSI acquisitions.  

 

For HP C13 MRI quantification efforts, two projects were focused on improving rate constant 

fitting. The first effort introduced and described a novel pharmacokinetic model for metabolite-

specific bSSFP acquisitions (Chapter 4). This model was validated with paired lactate-bSSFP and 

bicarbonate-bSSFP in vivo datasets and shown to result in similar kPL and kPB values when using 

a previous pharmacokinetic model. The other project used a U-Net to estimate kPL maps directly 

from dynamic HP C13 data (Chapter 5). For simulated data, the U-Net estimated maps 

performed better than voxel-wise fitting methods. For in vivo data, the U-Net predicted maps 

appear over-smoothed before finetuning. After finetuning, the U-Net predicted maps appear more 

realistic and resemble the voxel-wise pharmacokinetic model fit maps.  

 

Finally, a 3D multiphase renal tumor CT dataset is detailed (Chapter 6). This dataset can be used 

in renal tumor classification tasks, such as tumor grade classification or malignant vs benign 

classification.  
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7.2 Future Work 

Renal cell carcinoma (RCC) is a strong candidate for HP C13 MRI due to the metabolic 

reprograming present in RCC. Although preliminary studies are promising1,2, there is a need for 

larger scale studies studying kPL and possibly other rate constants, kPB and kPA in RCC to fully 

evaluate their clinical value.  

 

Ideally, more consistency and a consensus on the best method of deriving kPL is also required. 

The strength of kPL is that it should be comparable across studies, acquisition parameters and 

institutions. In evaluating possible methods of deriving kPL, fitting to a pharmacokinetic model 

has been the most popular approach. One consideration with fitting to a model is determining 

which model to use. Although more complicated models may be more accurate, they usually 

include more parameters. Especially if these parameters are not known, they may need to be fit 

along with the rate constants. The fitting becomes challenging, inaccurate and sometimes not 

possible when there are many unknown parameters. For example, the accuracy of the kPL fits 

decreased when lactate T2 was fit instead of fixed in Chapter 4. The most useful pharmacokinetic 

model will have to balance complexity and simplicity as well as be accurate and applicable 

across varied acquisition choices.  

 

Deep learning may also be an option for deriving kPL and was shown for the first time here 

(Chapter 5). This still needs to be further explored, developed and potentially even integrated 

with pharmacokinetic fitting methods. Particularly, unsupervised or physics-based deep learning 

may be interesting and worthwhile to pursue. Although promising, there is still a lot of 

development left for adoption of using neural networks to estimate kPL maps. 
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For the proposed renal tumor CT dataset (Chapter 6), the most important next step is exploring 

the effect of adding this dataset as additional examples within neural networks that have already 

had success in renal tumor classification. More data should help generalize or further evaluate 

successful frameworks. In the larger picture, there may be further challenges for deep learning or 

radiomics with texture analysis for renal characterization to be adopted clinically. New contrasts, 

like HP C13 MRI, may be the key to improving performance to get it closer to adoption. 
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