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Professor Liang Gao, Co-Chair 

 

 

The continuous advancement in microscopy has been unveiling the hidden world of tissues, cells, 

and molecules. In the quest for deeper spatiotemporal insights into biological processes, light field 

microscopy (LFM) has emerged as a powerful and intriguing tool. Unlike traditional imaging 

systems that capture focused images, LFM records multiplexed signals with single snapshot that 

encodes information within a three-dimensional (3D) volume. By leveraging computational 
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reconstruction algorithms, this approach enables the observation of transient volumetric dynamics 

with remarkable efficiency and speed.  

This thesis presents a series of efforts to apply LFM in functional imaging, enabling researchers 

to monitor real-time changes in live organisms, including ion fluxes, electrical signaling, and cells 

interactions. The exceptional temporal resolution makes LFM a unique tool to visualize and 

analyze rapid processes that are difficult to capture with conventional 3D microscopy. We 

demonstrated calcium imaging of motor neurons in freely moving C. elegans and tracked flowing 

blood cells in-vivo within a beating zebrafish heart. The excessive and unpredictable motion 

observed in these processes requires capturing hundreds of 3D volumes per second, a demanding 

but necessary task that provides insights into the underlying mechanisms of neural and cardiac 

functions. We further moved forward to voltage imaging, a frontier in neuroscience, which directly 

measures the neural action potential as well as sub-thresholding activities. Our LFM provides 

kilohertz volumetric imaging on leech ganglion and mouse hippocampus. It measures 7.3 

gigavoxels per second in a 3D field of view of 550 × 550 × 300 𝜇𝜇𝑚𝑚3, which makes it capable of 

recording the accurate timing and waveform of neural spikes across entire volume.  

These demonstrations are achieved through several innovative redesigns of LFM, detailed in 

Chapter 3 to 5. The first approach, VCD-LFM, addresses the inherent trade-off between spatial 

resolution and depth information in light field imaging by introducing a learning-based 

reconstruction algorithm. By incorporating data priors and constraints, this method aims to 

mitigate the issues of low spatial resolution and artifacts in conventional LFM without 

compromising imaging speed. The second approach, Squeezed Light Field Microscopy (SLIM), 

leverages data redundancy in light fields and revises the optical hardware to achieve kilohertz 

volume rate. Designed to meet the high-speed demands of voltage imaging, SLIM offers a 
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powerful and robust imaging tool for sparse volumetric processes. Lastly, the third approach, Light 

Field Tomography (LIFT), adapts LFM for one-dimensional (1D) measurements through optical 

Radon transformation. This method enables the use of low-dimensional detectors, such as line 

sensor, to capture high-dimensional light fields, resulting in enhanced sensitivity, reduced cost and 

even greater temporal resolution.   
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Chapter 1  

Introduction 

 

The dynamic nature is a hallmark of life. In its continuous transformation, movement and evolution, 

the living systems create biological order from the fundamental elements and adapt themselves in 

the changing environment. This inherent dynamism presents an ill-posed problem to infer true 

physiological relevance solely from structural imaging of fixed specimens. The unbiased 

understanding of life must rely on the continuous observation of the spatiotemporal processes 

displayed by the organism in their natural state.  

This thesis focuses on three-dimensional (3D) processes occurring at millisecond scale. This 

temporal scope encompasses several vital functions that sustain life and coordinate response to 

external stimuli, such as the cardiovascular processes and neural activities. For instance, zebrafish 

embryos, a widely used model organism, have a heart rate of up to 120 beats per minute. Within 

just a few hundred milliseconds, their heart completes a complex electrochemical process 

involving the synchronized propagation of electrical signals and muscle contraction. The pumped 

blood interacts with the deforming heart chambers, imposing varying mechanical forces based on 

the local geometry. To elucidate such cardiac function, visualization requires a sampling rate in the 
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hundreds of Hz across the entire 3D heart, without interfering with the normal heartbeat. However, 

high-speed volumetric in vivo imaging has yet to become a readily available tool in the biological 

research community. 

Conventional 3D fluorescence microscopes, such as confocal and light-sheet microscopes, 

capture entire volumes by scanning a focused laser spot or a thin plane, respectively. The speed of 

these serial approaches is largely constrained by the bandwidth of mechanical scanners and camera 

sensors, leading to an inherent trade-off between temporal resolution, 3D field of view (FOV), and 

spatial resolution. Additionally, high-speed imaging inevitably reduces the signal-to-noise ratio 

(SNR) of measurements. This occurs because the already limited photon budget of fluorescence is 

further diminished due to shorter exposure times, increasing the demands on the sensitivity and 

noise performance of the image sensors. Due to these challenges, very few microscope systems 

have achieved fluorescence detection across 3D volume at a temporal resolution of milliseconds.  

To address the challenges, this dissertation discusses the application of a novel detection 

strategy, namely light field imaging, in the high-speed function microscopy. As a single-shot 

computational imager, LFM encodes 3D information onto 2D multiplexed measurements within 

one camera exposure, and digitally reconstructs the 3D volume in post-acquisition. This scanless 

approach fundamentally alleviates the bandwidth limitations in conventional methods. And the 

multiplexed signals also simultaneously increase the SNR of single measurement, which makes 

LFM a promising tool for high-speed fluorescence detection. 

In this thesis, I will first introduce the basic concepts of light field microscopy (LFM) in 

Chapter 2, covering its optical design, reconstruction methods, and the intrinsic trade-offs involved. 

To address the limitations of LFM, Chapter 3 proposes a novel reconstruction algorithm that 

significantly enhances spatial resolution without compromising imaging speed. Chapter 4 presents 
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an innovative hardware design that reduces data load in LFM, enabling kilohertz imaging 

capabilities. Chapter 5 extends LFM to a line sensor configuration, further increasing imaging 

speed. We successfully demonstrate volumetric functional imaging at rates ranging from one 

hundred to three thousand Hz in various animal models, including C. elegans, zebrafish larvae, 

bacteria, and mice. The potential and promise of LFM for high-speed microscopy are thoroughly 

explored. 
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Chapter 2  

Light field microscopy 

 

Light field, or plenoptic function, refers to a complete description of light in the given space. It 

attempts to characterize all the visual information, embodied by a seven-dimensional (7D) function 

that records the intensity of ray of every spatial location (𝑥𝑥,𝑦𝑦, 𝑧𝑧), angle (𝜃𝜃,𝜙𝜙), wavelength 𝜆𝜆 and 

time 𝑡𝑡 1. The modern light field photography and microscopy usually deal with the subset of 

original plenoptic function, where only spatial and angular information are considered. In contrast 

to conventional 2D imaging, the additional angular information allows us to back trace the light 

and reconstruct the irradiance image at different depths in post-processing. This 3D reconstruction 

ability, also known as synthetic refocusing, removes the necessity of depth scanning in traditional 

3D imaging, thus dramatically increasing the speed of volumetric detections in various 

applications such as particle velocimetry, cell imaging, cardiovascular imaging and neural imaging.  

2.1 Fundamentals of light field imaging 

The monochromatic ray space at a certain time inside the camera can be modeled by a two-plane 

light field, ℒ(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑡𝑡), assuming that light doesn’t attenuate when traveling in free space. We put 
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the (𝑢𝑢, 𝑣𝑣) plane at the exit pupil and (𝑠𝑠, 𝑡𝑡) plane at the sensor (Figure 1a). With this definition, the 

irradiance image value that would appear on the sensor will be given by2: 

𝐸𝐸(𝑠𝑠, 𝑡𝑡) =
1
𝐷𝐷2�ℒ(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑡𝑡)𝐴𝐴(𝑢𝑢, 𝑣𝑣) cos4 𝜃𝜃 𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣, (1) 

where 𝐷𝐷 is the distance between two planes, 𝐴𝐴 is the aperture function that defines one within the 

pupil and zero outside it, and 𝜃𝜃 is the angle of incidence that ray (𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑡𝑡) makes with the sensor 

plane. 

 

Figure 1. The two-plane parameterization of light field. 

 

With a paraxial approximation and ignoring the constant 𝐷𝐷 , we can further simplify the 

imaging equation to  

𝐸𝐸(𝑠𝑠, 𝑡𝑡) ≈�ℒ(𝑢𝑢, 𝑣𝑣, 𝑠𝑠, 𝑡𝑡)𝐴𝐴(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 (2) 

It becomes intuitive that the irradiance at a certain location (𝑠𝑠, 𝑡𝑡) is calculated by integrating 

over all rays from different angles that are indexed by (𝑢𝑢, 𝑣𝑣)  (Figure 1b). Instead of physical 

sensor plane, we can also consider a virtual image plane (𝑠𝑠′, 𝑡𝑡′) that has been shifted away by a 

ratio 𝛼𝛼 (Figure 2a). A new light field function ℒ′(𝑢𝑢, 𝑣𝑣, 𝑠𝑠′, 𝑡𝑡′) can be defined so that the irradiance 
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image is computed by equation (2). Figure 2a further illustrates the relationship between ℒ′ and ℒ 

as 

ℒ′(𝑢𝑢, 𝑣𝑣, 𝑠𝑠′, 𝑡𝑡′) = ℒ �𝑢𝑢, 𝑣𝑣,𝑢𝑢 +
𝑠𝑠′ − 𝑢𝑢
𝛼𝛼

, 𝑣𝑣 +
𝑡𝑡′ − 𝑣𝑣
𝛼𝛼

� , (3) 

since they are expressing the same ray. 

Therefore, we can write the virtual image on plane (𝑠𝑠′, 𝑡𝑡′) with original light field function ℒ: 

𝐸𝐸(𝑠𝑠′, 𝑡𝑡′) ≈�ℒ′(𝑢𝑢, 𝑣𝑣, 𝑠𝑠′, 𝑡𝑡′)𝐴𝐴(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣 = �ℒ�𝑢𝑢, 𝑣𝑣,𝑢𝑢 +
𝑠𝑠′ − 𝑢𝑢
𝛼𝛼

, 𝑣𝑣 +
𝑡𝑡′ − 𝑣𝑣
𝛼𝛼

�𝐴𝐴(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣(4) 

Note that this equation indicates that we are able to calculate irradiance on a shifted virtual image 

plane in post-processing, given the light field function. The digital refocusing capability allows us 

to reconstruct focused image on different depths of the scene without taking extra measurements 

(Figure 2b).  

 

Figure 2. Digital refocusing on virtual image plane with light field. 

 

By fixing coordinate (𝑢𝑢, 𝑣𝑣), the light field function ℒ(𝑢𝑢0, 𝑣𝑣0, 𝑠𝑠, 𝑡𝑡) becomes essentially a sub-

aperture image captured by placing a ‘pinhole’ at location (𝑢𝑢0, 𝑣𝑣0). It provides a view of the scene 

with infinite depth of field and at a certain perspective angle. Further examining equation (4) 
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reveals that digital refocusing is conceptually a summation of laterally shifted sub-aperture images. 

This shift-and-add approach has been used in early implementations of light field imaging2–4. 

2.2 Light field microscope (LFM) 

The post-processing refocus makes light field imaging an appealing tool for high-speed 3D 

microscopy. However, this claim is under the assumption that light field can be captured more 

efficiently and faster than an image stack using scanning-based counterparts. Thus, this article only 

focuses on implementations providing snapshot light field acquisition with single objective and 

camera. There are mainly two types: conventional/unfocused light field microscope3,5,6 and 

Fourier/focused light field microscope7–9. They both utilize microlens array to redistribute the light 

rays of different angles to different pixels, therefore multiplexing a 2D sensor for 4D information.  

 

Figure 3. Two types of LFM. (a) Conventional/unfocused LFM; (b) Fourier/focused LFM. 

 

The conventional LFM inserts a microlens array (MLA) at the native image plane. The sensor 

is then placed at the back focal plane of MLA (Figure 3a). The array has a small pitch (usually 

around one hundred microns) that determines the sampling rate on the spatial components of the 

light field. In other words, each lenslet provides a (𝑠𝑠, 𝑡𝑡)  coordinate in the two-plane 
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parameterization. By matching the numerical aperture (NA) of the lenslet and objective, the pixels 

behind the lenslet make one-to-one mapping to different angular components within the light cone.  

The Fourier LFM places the MLA at the Fourier (or pupil) plane of the objective. In the cases 

where the exit pupil (XP) is not accessible, a separate lens, namely Fourier lens, is appended behind 

the tube lens to relay the XP from the microscope. The sensor, located at the back focal plane of 

the lenslet, captures an array of sub-aperture images. These images resemble what would have 

been captured with a normal widefield microscope, but with lower NA (thus larger depth of field) 

and varying perspective. Compared to conventional LFM, the (𝑢𝑢, 𝑣𝑣) and (𝑠𝑠, 𝑡𝑡) planes are swapped 

and the location of lenslet now determines the (𝑢𝑢, 𝑣𝑣) coordinate in the previously discussed two-

plane parameterization. The lenslets are designed to have a larger aperture (around millimeters) as 

they decide the field of view (FOV) of the Fourier LFM. 

Both modalities attempt to map a 4D light field function onto a 2D sensor. The limited number 

of pixels introduces a trade-off between the resolution of spatial and angular information, therefore 

making LFM generally a low spatial resolution technique. Conventional LFM often suffers from 

severe frequency aliasing due to large MLA pitch, which is addressed by Fourier LFM with lenslets 

sampling angular rather than spatial components5,9. Therefore, the latter can provide less artifacts 

and smoother images. But Fourier LFM has to deal with the trade-off between the number of sub-

aperture images (i.e. angular resolution) and FOV. An array of large lenslets also expects larger 

objective NA and sensor form factor. Despite their differences in design trade-offs, conventional 

and Fourier LFM share similar reconstruction algorithms ranging from native shift-and-add3,8 to 

iterative deconvolution5,9. We can also find shared applications such as neuron imaging in 

zebrafish brain6,10 and live cell imaging11–14. They both extend to confocal configurations15,16. And 
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conventional LFM demonstrates capability in adaptive optics17 while Fourier LFM supports DOF 

extension by using MLA of multiple focal lengths10. 

2.3 Reconstruction algorithm 

The digital refocusing, or 3D reconstruction, aims to synthesize a focal stack of the sample by 

processing the light field. In contrast to photography, the diffraction effects become considerable 

in LFM, so a full wave optics treatment is often necessary for light field processing. The most 

common approach is deconvolution, where we either simulate or experimentally measure the point 

spread functions (PSFs) to map the relationship between sample space signal and LFM raw 

measurement. Then we iteratively solve the inverse problem (i.e. estimate original sample from 

final measurement) using numerical methods such as Richardson-Lucy deconvolution.  

The widefield fluorescent microscope is often modeled as an incoherent linear optical system. 

The diffraction pattern generated by an ideal point source, namely PSF, is the impulse response 

function. And the intensity image becomes a convolution of the sample feature and PSF. However, 

the assumption for such model, that the PSF is shift-invariant, becomes invalid in LFM. The light 

field PSF changes with respect to the 3D position of the point emitter. From a PSF engineering 

perspective, such variation encodes the 3D position in the detected 2D pattern and is crucial for 

the 3D reconstruction. In this context, we adopt a more general linear superposition integral to 

describe the formation of image 𝑓𝑓(𝑥𝑥)  

𝑓𝑓(𝒙𝒙) = �|ℎ(𝒙𝒙,𝒑𝒑)|2 𝑔𝑔(𝒑𝒑)𝑑𝑑𝒑𝒑 (1)  

where 𝒑𝒑 = (𝑝𝑝1,𝑝𝑝2,𝑝𝑝3) denotes the 3D position of the point source in object space whose intensity 

is defined as 𝑔𝑔(𝒑𝒑), and 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2) represents the coordinate on sensor plane. The optical transfer 
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function ℎ(𝒙𝒙,𝒑𝒑)  is derived from the wave optic model we are going to discuss soon, where a 

squared modulus is used to convert to PSF owing to the incoherence nature of fluorescent imaging.  

To derive the theoretical PSF, both conventional5 and Fourier LFM9 start with the wavefront 

at the native image plane. For an objective with circular aperture, the complex amplitude  𝑈𝑈𝑖𝑖(𝒙𝒙,𝒑𝒑) 

at position 𝒙𝒙 of the image plane produced by a point source at location 𝒑𝒑 in the object space can 

be described by scalar Debye theory18: 

𝑈𝑈𝑖𝑖(𝒙𝒙,𝒑𝒑) =
𝑀𝑀

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜2 𝜆𝜆2
exp�−

𝑖𝑖𝑢𝑢

4 sin2 �𝛼𝛼2�
�� 𝑃𝑃(𝜃𝜃) exp�

𝑖𝑖𝑢𝑢𝑠𝑠𝑖𝑖𝑛𝑛2 �𝜃𝜃2�

2 sin2 �𝛼𝛼2�
� 𝐽𝐽0 �

sin(𝜃𝜃)
sin(𝛼𝛼) 𝑣𝑣� sin(𝜃𝜃)𝑑𝑑𝜃𝜃   (2)

 

𝛼𝛼

0
 

where 𝐽𝐽0(∙) is the zeroth order Bessel function of the first kind. The variables 𝑣𝑣 and 𝑢𝑢 represent 

normalized radial and axial optical coordinates which are defined as 

𝑣𝑣 = 𝑘𝑘��
𝑥𝑥1
𝑀𝑀
− 𝑝𝑝1�

2
+ �

𝑥𝑥2
𝑀𝑀
− 𝑝𝑝2�

2
sin (𝛼𝛼) 

𝑢𝑢 = 4𝑘𝑘𝑝𝑝3 sin2(
𝛼𝛼
2

) 

The 𝑀𝑀 and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 are the magnification and the focal length of the objective; the wavenumber 𝑘𝑘 =

2𝜋𝜋𝑛𝑛/𝜆𝜆 is calculated using the emission wavelength 𝜆𝜆 and the refractive index 𝑛𝑛 of the immersion 

medium; the half-angle of the NA is 𝛼𝛼 = sin−1(𝑁𝑁𝐴𝐴/𝑛𝑛). The 𝑃𝑃(𝜃𝜃) is the apodization function of 

the microscope and 𝑃𝑃(𝜃𝜃) = �cos (𝜃𝜃) for abbe-sine corrected objectives. The equation (2) only 

holds for low to moderate NA objective. The high NA objective requires a vectorial diffraction 

theory instead14.   
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For conventional LFM, the MLA will directly modulate the wavefront at native image plane. 

Considering MLA as a phase mask Φ(𝒙𝒙), it can be expressed as a convolution of a single lens 

𝜙𝜙(𝒙𝒙) and an array of unit impulse functions. In the case where a grid array is used, we can use a 

2D comb function, such as 

Φ(𝒙𝒙) = 𝜙𝜙(𝒙𝒙)⨂𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐(𝒙𝒙/𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀) = �𝐴𝐴(𝒙𝒙) exp �
−𝑖𝑖𝑘𝑘

2𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
‖𝒙𝒙‖22��⨂𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐(𝒙𝒙/𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀) 

given the aperture function 𝐴𝐴(𝒙𝒙) of single on-axis lenslet, focal length of the MLA 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 and the 

pitch 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀. The symbol ⨂ represents the convolution operator.  

Next, a Fresnel diffraction integral19,20 is used to propagate the modulated wavefront to the 

sensor plane 

ℎ(𝒙𝒙,𝒑𝒑) = ℱ−1 �ℱ�𝑈𝑈𝑖𝑖(𝒙𝒙,𝒑𝒑)Φ(𝒙𝒙)� exp �−𝑖𝑖𝜋𝜋𝜆𝜆𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑥𝑥2 + 𝑓𝑓𝑦𝑦2��� (3)   

where 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are spatial frequencies along 𝑥𝑥 and 𝑦𝑦 directions in the sensor plane. 

For Fourier LFM, the MLA is placed at the pupil plane of the microscope. Therefore, an optical 

Fourier transformation is applied to 𝑈𝑈𝑖𝑖(𝒙𝒙,𝒑𝒑)  before being modulated by Φ(𝑥𝑥) . The final 

wavefront is therefore calculated by 

ℎ(𝒙𝒙,𝒑𝒑) = ℱ−1 �ℱ �ℱ�𝑈𝑈𝑖𝑖(𝒙𝒙,𝒑𝒑)�Φ(𝒙𝒙)� exp �−𝑖𝑖𝜋𝜋𝜆𝜆𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑥𝑥2 + 𝑓𝑓𝑦𝑦2��� (4) 

While the PSFs of an LFM can be simulated by equation (3) or (4), they can also be 

experimentally measured by mechanically translating a sub-diffraction fluorescent bead under a 

real setup10,15,21. However, due to the shift-variance nature of LFM PSFs, experimental 

measurement requires massive scanning steps over the entire 3D FOV. To make it a more practical 

approach, we usually adopt certain level of assumptions. For example, we assume the Fourier LFM 
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to have a laterally shift-invariant PSF since the sub-aperture images are essentially widefield image 

except for lower NA and off-axis location. The sub-diffraction bead is only scanned axially to 

profile the LFM PSFs10.  

 

Figure 4. Example PSFs of conventional LFM (a) and Fourier LFM (b). PSFs from different depths are color 
coded. 

 

With PSF known, we could use equation (1) to model the formation of a light field raw image. 

To write equation (1) in discrete form, we have the following linear model: 

𝒇𝒇 = 𝐻𝐻𝒈𝒈 (5) 

where 𝒇𝒇  and 𝒈𝒈  are vectorized pixels on camera sensor and voxels in the volume being 

reconstructed. The 𝐻𝐻 is a measuring matrix whose coefficients are dependent on PSFs. In specific, 

each column of 𝐻𝐻 is the corresponding PSF of a voxel in 𝒈𝒈 and has same size as 𝒇𝒇.  

Our reconstruction, which attempts to inversely solve 𝒈𝒈  given 𝐻𝐻  and 𝒇𝒇 , is highly ill-posed 

because of the dimension mismatch (i.e. from 2D to 3D). One typical approach is to incorporate 

prior knowledge, such as signal sparsity, and solve the following constrained optimization 

𝒈𝒈� = argmin
𝒈𝒈≥0

‖𝐻𝐻𝒈𝒈 − 𝒇𝒇‖22 + 𝜏𝜏𝜏𝜏(𝒈𝒈) (6) 
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The function 𝜏𝜏(∙) provides the prior term. For example, for Total Variation (TV) regularization, 

𝜏𝜏(𝒈𝒈) = ‖∇𝒈𝒈‖1  and it forces sparsity in 3D gradients of the reconstructed volume. 𝜏𝜏  is a 

hyperparameter to tune the weight of regularization term. Problem (6) can be effectively tackled 

by algorithms like fast iterative shrinkage-thresholding algorithm (FISTA), alternating direction 

method of multiplier algorithm (ADMM), as demonstrated in relevant works22–25. 

Another important reconstruction method is based on Richardson-Lucy deconvolution. It 

assumes the photon shot noise dominance and can be formulated as a maximal likelihood 

estimation (MLE). The Poisson likelihood of the measured light field raw image 𝒇𝒇  given a 

particular volume 𝒈𝒈 is  

𝑃𝑃(𝒇𝒇|𝒈𝒈) = �
(𝐻𝐻𝒈𝒈)𝑖𝑖

𝒇𝒇𝒊𝒊 exp(−(𝐻𝐻𝒈𝒈)𝑖𝑖)
𝒇𝒇𝑖𝑖!

 
𝑖𝑖

(7) 

where 𝑖𝑖 is the index of the pixel in image 𝒇𝒇. Maximizing the log-likelihood of (7) over 𝒈𝒈 yields 

the following update strategy: 

                                              𝒈𝒈𝑘𝑘+1 = 𝒈𝒈𝑘𝑘 × (𝐻𝐻𝑇𝑇(𝒇𝒇 ∕ 𝐻𝐻𝒈𝒈𝑘𝑘)) ∕ (𝐻𝐻𝑇𝑇𝟏𝟏)                                          (8) 

The operator × and ∕ denote element-wise product and division; 𝟏𝟏 is an all-one vector; 𝐻𝐻𝑇𝑇 is the 

transpose of measuring matrix 𝐻𝐻. 𝐻𝐻 and 𝐻𝐻𝑇𝑇are often referred as forward and backward projector. 

Through iterate projection between light field and volume domain, the 3D image stack will be 

estimated. The initialization can start with an all-one volume 𝒈𝒈0 or an initial backward projection  

𝐻𝐻𝑇𝑇f.  

This algorithm is widely used in LFM and known as light field deconvolution 

(LFD)5,6,9,10,14,15,26,27. It proves to be a robust and effective method to reconstruct 3D image stack 

from light field raw measurement but is also prone to artifacts and heterogeneous resolution. In 



 14 

chapter 3, we will propose a new reconstruction algorithm, namely VCD-Net, to address the 

limitations of LFD so that the potentials of LFM can be better exploited for high-speed microscopy. 

In chapter 4, we will present a novel hardware design of ever faster LFM system, i.e. SLIM. The 

LFD is modified and improved, and a specific implementation is presented for readers who are 

interested in more details in LFD. And in chapter 5, we adopt aforementioned optimization 

algorithm, FISTA, to exemplify other variants of light field reconstruction algorithms. 
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Chapter 3  

Light field microscopy with deep learning 

reconstruction  

 

3.1 Motivations for a data-driven approach in LFM 

reconstruction 

A LFM captures 3D volume simultaneously with a single snapshot. In contrast to scanning-based 

methods, such as confocal microscopes and light sheet microscopes, it avoids the mechanical 

constraints of scanners and provides high-speed volumetric detection up to the camera’s frame rate. 

This distinct capability has enabled the study of transient biological processes in living animals. 

Representative demonstrations include motor neuron calcium imaging in freely moving C.elegans 

at 50 Hz6, and whole brain calcium imaging in freely swimming zebrafish larvae at 77 Hz10.  

Despite its advantage in imaging speed, the widespread application of LFM has been impeded 

by its low and nonuniform spatial resolution and the presence of reconstruction artifacts. The small 

aperture lenslet in MLA introduces band limiting filtering that blurs the image. Especially in 

conventional LFM design, the low spatial sampling rate, determined by the MLA pitch divided by 

microscope magnification, further introduces aliasing in the high frequency content. Moreover, the 
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spatial sampling pattern varies as different axial locations5. Therefore, the major reconstruction 

algorithm, light field deconvolution (LFD), struggles to restore spatial resolution given such poorly 

sampled signals. The iterative scheme of deconvolution also imposes heavy computation burden 

and LFM can easily generate data to overwhelm even offline processing pipelines. 

Deep learning (DL) offers a robust framework to address these challenges. Instead of relying 

on analytical models of image formation and sample priors, a neural network is trained to map raw 

measurements to final images. During training, the network is fed low-resolution images as inputs 

and high-resolution images as targets, enabling it to learn the statistical properties of sample 

structures and to infer higher resolution images from lower resolution ones28. In the context of 

MRI, a deep neural network can simultaneously learn the image formation process and sample 

priors, effectively reducing noise and reconstruction artifacts29.  

In this chapter, we are going to explore the possibility of a DL approach for LFM reconstruction. 

The data-driven reconstruction has the potential to include implicit sample priors in its 

approximation of LFM’s image formation process. We demonstrated this algorithm on the motor 

neuron imaging of moving C.elegans and blood flow of a beating zebrafish heart. The efficiency 

and effectiveness of DL reconstruction will advance LFM into a more powerful tool in 

instantaneous volumetric imaging of biological processes. 
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3.2 The design of VCD-LFM 

 

Figure 5. The VCD-Net reconstruction pipeline, containing: (1) forward light-field projection (LFP) from 
the HR image stacks; (2) VCD transformation of synthetic light-field inputs into intermediate 3D image 
stacks; (3) network training via iteratively minimizing the difference between VCD inferences and confocal 
ground truths and (4) inference of 3D images from the recorded light-field images by a trained VCD-Net. 

 

The VCD-LFM30 attempts to utilize a convolutional neural network (CNN) to directly infer a 

conventional 3D image stack from the light field raw measurement (Figure 5). With massive 

dataset of paired light field and ground truth sample images, the network is trained to recover the 

high-frequency features from sample while refraining from structured artifacts that are typical of 

existing light field reconstruction algorithms.  
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3.2.1 Dataset  

 

Figure 6. Light field projection (LFP). (a) The pipeline to synthesize a 2D light field measurement from 
3D image stack. (b) Example fluorescent beads images of 3D ground truth and corresponding synthetic light 
field raw image. 

 

To create the data for network training, we first obtain high resolution 3D images of stationary 

samples using synthetic or experimental methods. For example, embryonic zebrafish were sedated 

to pause the heartbeat to enable data acquisition on cardiac blood cells using commercial laser 

scanning confocal microscope. Data variation was created by both the large number of fish and 

different field of view and orientation of the animal.  
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The spatial-variant point spread functions (PSFs) can be calculated by the scalar wave optics 

model of LFM (Chapter 2.3).  Due to the periodic property of the lenslet array, the PSF also repeats 

itself by shifting the point source one lenslet pitch laterally, which reduces the necessary 

computation to a smaller field of view.  A linear forward model (Equation (1)) is applied to simulate 

the formation of light field image from a ground truth 3D stack (Figure 5, step 1), i.e. light field 

projection (LFP). Figure 6 shows the discrete model of the LFP process. 

 

Figure 7. Comparison between synthetic and experimental light-field raw images. (a)-(g) The light-field 
raw images of identical sub-diffraction beads (z = -15 μm to 15 μm) by experimental LFM (top) and synthetic 
LFP (light-field projection) (bottom), respectively. (h) The PSNR indices of the synthetic and experimental 
light-field images. The high-level values (greater than 30) indicate the high similarity between the synthetic 
and experimental data, quantitatively proving the accuracy of the light-field projection model. Scale bar, 5 
μm. 

 

The accuracy of this light-field projection is crucial for the VCD-Net to implement reliable 

data training, and accurate inference afterwards. Therefore, we evaluated the similarity between 

the synthetic (projection from HR data) and experimental (acquired using LFM) light-field raw 

images of the same sub-diffraction beads. In Figure 7, we show the synthetic and measured PSFs 
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of the identical beads located at different depths (-15 μm to 15 μm), and quantitatively compared 

them via calculating the PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity). The 

synthetic light fields by light-field projection were thus verified to be enough accurate for VCD-

Net training. 

3.2.2 Network 

The VCD-Net is a fully convolutional network (FCN) with a 2D U-Net as its main body. Each 

synthetic light-field image is first rearranged into different views. The features are extracted and 

incorporated into multiple channels in each convolutional layer. The final output channels are then 

assigned to a number of planes representing different depths to generate a 3D image stack. By 

cascaded convolution layers repetitively extracting features, the network generates intermediate 

3D reconstructions (Figure 5, step 2) for a pixel-wise mean square error (MSE) based loss function 

to evaluate these outputs in reference to ground-truth. Through iteratively minimizing the loss 

function (Figure 5, step 3), the network gradually optimizes until it could transform the synthetic 

light fields into 3D images that are similar to the ground-truth images (Figure 8). After training 

on gigavoxels of data, the network is capable of reconstructing sequential experimental 

measurements of dynamic processes and inferring a sequence of 3D volumes from light field raw 

images (Figure 5, step 4). 
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Figure 8. Iterative convergence of the network. (a) The decreasing tendency of the loss function (MSE 
between the outputs and the targets) during the network training. The parameters of the neural networks were 
initialized randomly. The training process updated them iteratively so that the network outputs would be more 
and more similar to the targets, with the decrease of the value of the loss function. (b) The intermediate 
outputs of the VCD-Net at different training time points shown in a. Scale bar: 10 μm.  

 

After the 2D light field raw image (dimensions 𝑎𝑎 × 𝑐𝑐, height × width) is reformatted into a 

stack of different views (dimensions 𝑎𝑎/𝑑𝑑 × 𝑐𝑐/𝑑𝑑 × 𝑑𝑑2, height × width × views) according to their 

relative positions to each lenslet center, a series of subpixel convolutional later first interpolates 

these views to dimension 𝑎𝑎 × 𝑐𝑐 × 𝑑𝑑2 (height × width × views). The following 2D U-Net contains a 

downsampling path and a symmetric upsampling path with skip connections. Along both paths, 

each layer has three parameters, n, f and s, denoting the output channels number, the filter size of 

convolution kernel and the step size of the moving kernel, respectively, as specified in Figure 9.  

 

Figure 9. Our approach adopted the well-known U-Net for feature extraction and image reconstruction. 
Before the U-Net part, we designed a subnet to interpolate the extracted views into its original size (i.e., the 
size of the light-field measurement). The interpolation net contains 4 subpixel convolutional layers2, with 
each up-scaling the image by a factor 2. The following U-Net has down-sampling and up-sampling parts for 
feature encoding and decoding, respectively. The down-sampling part contains down-sampling blocks for 
feature extraction, where each down-sampling block consists of a convolutional layer, an activation function, 
a batch normalization and a max pooling. Accordingly, up-sampling blocks in the up-sampling part up-scale 
the feature maps. Each up-sampling block consists of a convolutional layer, an activation, a batch 
normalization and an up-sampling operation. Concatenations merge the feature maps of the corresponding 
down-sampling and up-sampling blocks.  
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In geometric optic model of light field imaging, a view is formed by the bundle of rays of same 

angle and observes the sample from a specific perspective (Figure 10).  The digital refocusing 

algorithm in the light field photography can be interpreted as a superposition of laterally shifted 

version of different views. And the multichannel convolution at each layer of the CNN is more 

than competent for such linear image operations. Therefore, we attempt to mimic the digital 

refocusing algorithm by manually re-arranging light field raw image into pack of views before the 

input of VCD-Net. 

 

Figure 10. The pixel re-arrangement to convert light field raw measurement to light field views. 

 

The time consumption for the VCD-Net procedure depends on the dataset size and 

computational resources. As a reference point, the VCD-Net converged after training on 4,580 

pairs of blood cell image patches (size 176 × 176 × 51 pixels) with 110 epochs. The time cost was 

roughly 4 h on a single graphical processing unit. Then the trained network spent around 15 s to 

reconstruct 450 consecutive volumes (size 341 × 341 × 51 pixels) from acquired light-field videos. 

This four-dimensional reconstruction throughput was compared to roughly 11.8 h (roughly 

42,467 s) by running LFD (eight iterations) on the same workstation. The computation was 
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performed on a workstation equipped with Intel(R) Core i9-7900X CPU at 3.3 GHz, 128 Gb of 

RAM and Nvidia GeForce RTX 2080 Ti graphic cards.  

 

3.2.3 Optical hardware setups 

We have two optical setups to study different types of animals: an epifluorescence setup for 

C.elegans and a selective volume illumination setup for embryonic zebrafish.  

 

Figure 11. Epi-illumination light-field and wide-field microscopy setup. (a) Schematic drawing of our 
epi-illumination light-field and wide-field setup for beads and C. elegans experiments. The fluorescence 
signals collected by the detection objective (LUMPlanFLN 40×/0.8w NA, Olympus) were either focused 
onto the camera sensor 1 (Flash 4.0 V2, Hamamatsu) for wide-field imaging or onto the microlens array 
(APO-Q-P150-F3.5 (633), OKO Optics) for light-field imaging. In the latter case, a 1:1 relay system (AF 60 
mm 2.8D, Nikon) was used to focus the camera sensor 2 (Flash 4.0 V2, Hamamatsu) on the back focal plane 
of MLA. DM (Dichromatic mirror) or BS (Beam splitter) was used for sequential or simultaneous light-
field/wide-field imaging, respectively, depending on the experiments. A DM can be optionally added in front 
of the sCMOS in the light field path for dualcolor light-field imaging. The system was based on an 
epifluorescence upright microscope (Olympus, BX51), as shown in (c), with its customized wide-field and 
light-field detection paths shown as (b). A microfluidic chip (inserted picture) was used to permit the worm 
acting within the FOV of 40× objective. 
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The epifluorescence light-field setup (Figure 11) was built on an upright microscope (BX51, 

Olympus). The light-field and wide-field detection paths were appended to the camera port of host 

microscope, using a flip mirror to switch between two detection modes. A motorized z stage 

(Z812B, Thorlabs) together with a water chamber were directly mounted onto the microscope stage 

(xy), to three-dimensionally control the samples inside the chamber. A water immersion objective 

(LUMPlanFLN ×40/0.8 W, Olympus) was used to collect the epifluorescence signals from samples. 

For recording the light field, a microlens array (MLA) (APO-Q-P150-F3.5 (633), OKO Optics) 

was placed at the native image plane to collect the light-field signals. A 1/1 relay system (AF 

60 mm 2.8D, Nikon) was used to conjugate the back focal plane of MLA with the camera sensor 

plane (Flash 4.0 V2, Hamamatsu). The light-field path was optionally extended to dual-channel 

detection by dividing after MLA and adding an extra camera sensor for the C. elegans experiments.  

We also developed an LFM setup based on selective volume illumination (Figure 12). Two 

pairs of beam reducers combined with an adjustable iris were used to generate a scalable rod-like 

beam (473 or 532 nm), which was finally projected onto the sample through a ×4 illumination 

objective (Plan Fluor ×4/0.13 W, Nikon) placed perpendicular to the detection path. It confined the 

fluorescence excitation within the heart region of zebrafish embryo, reducing the excessive 

emission from out of the volume of interest that could smear the desired signals. This selective 

volume illumination mode provided light-field image with less background noise and increased 

contrast31. For observing the dynamic process of blood flowing through vessels, we also integrated 

a standard SPIM channel (473 nm, 4-μm thick laser sheet) to implement the in-situ 3D imaging of 

static vessels. The illumination paths were aligned, providing double excitation to the sample from 

its dual sides. The detection path used a water immersion objective (Fluor ×20/0.5 W, Nikon) to 

collect the fluorescence signals. A dichroic mirror splits the green fluorescent protein (GFP) 
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(vessels) and DsRed (RBCs) signals for wide-field and light-field detection, respectively, when 

performing dual-channel imaging. The light-field detection here followed the same design used in 

the epi-illumination LFM.  

 

Figure 12. Selective plane and volume illumination based LFM setup. (a) Schematic drawing of our 
custom-built selective plane and volume illumination setup for hybrid SPIM and LFM imaging of 
hemodynamics. A tunable rod-like laser beam (100-200 μm) for volumetric excitation and a thin laser-sheet 
(~4 μm) for planar excitation could be projected to the sample simultaneously, thereby enabling light-field 
and light-sheet imaging, respectively. (b) Overview of the system. (c) Top view of the dual-mode light-field 
and wide-field detection 

 

3.3 Performance characterization 

To demonstrate the capability of the VCD-LFM, we reconstructed subdiffraction beads captured 

using a ×40/0.8 W objective and quantified the resolution improvement resulting from the network 



 26 

by comparing the results with those from conventional LFD (Figure 13). As verified by 3D wide-

field imaging of the same volume, the fluorescence of individual beads was correctly localized 

throughout the volume.  

 

Figure 13. VCD-LFM and its performance. (a) Maximum intensity projections (MIPs) of the same 
fluorescent beads and achieved resolution (FWHM) by wide-field microscopy, LFDM and VCD-LFM trained 
with anisotropic and isotropic HR data, respectively. White lines, intensity profiles of all the resolved beads 
shown in the MIPs. Blue lines, intensity profiles across a selected bead (indicated by a vertical line) at 20 µm 
off the focal plane. Scale bars, 10 µm. (b) Average axial (dashed lines) and lateral (solid lines) FWHM of the 
beads across the volumes reconstructed by LFD (n = 2,039 beads), anisotropic (n = 2,527 beads) and isotropic 
VCD-LFM (n = 2,731 beads), respectively. Center lines represent means and error bars denote standard 
deviations. (c) Cross-sectioning image (y-z plane) of fluorescent beads by 3D wide-field microscopy (GT), 
VCD-Net and LFD. (d) Data-driven reconstruction imposes different constraints on the signals by different 
fluorescent datasets f1-f4.  

 

The VCD-LFM with a network trained on wide-field 3D image yielded an average resolution 

of 1.1 μm (x,y) and 3.0 μm (z) (n = 2,527 beads), which was uniform across a 60-μm imaging depth 

(1.0 μm (x,y) and 2.9 μm (z) at the best plane, 1.3 μm (x,y) and 3.1 μm (z) at the outer edge of the 
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axial field of view (FOV)) (Figure 13b). This demonstrates notable improvements compared to 

light field deconvolution microscopy (LFDM) on the same image data with an average resolution 

of 2.6 μm (x,y) and 5.0 μm (z), and a broader distribution (1.6 μm (x,y) and 3.8 μm (z) at the best 

plane, 4.0 μm (x,y) and 7.0 μm (z) at the outer edge of the axial FOV). We note that the 

performance of VCD-LFM is dependent on training data; hence, the beads can be reconstructed 

isotropically (1.0 μm x,y,z) by including higher-resolution data in the training (Figure 13d).  

 

Figure 14. Comparison of VCD-Net and LFD on recovering low-SNR noisy signals. (a) MIPs in xy and 
xz planes of high-resolution high-SNR 3D image by light-sheet microscopy. (b) Five synthetic light-field 
images of (a) with different levels of background noise (Gaussian noise at LFP and Poisson noise at final 
sensor image) added. The calculated SNR is from 1.15 to 10. (c)-(d) MIPs in xy and xz planes of the 3D 
reconstructions of these different-SNR light-field images by VCD-Net and LFD, respectively. The VCD-Net 
was trained with different SNR light-fields with ground truth high-SNR 3D images. (e) Reconstruction error, 
termed normalized root mean square error (NRMSE, lower is better), of VCD-Net and LFD under different 
SNR conditions. Results in (c) to (e) validate the robustness of VCD-Net for recovering noisy data. Scale 
bars, 50 μm. 
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Furthermore, VCD-LFM substantially removed the mosaic-like artifacts near the focal plane 

that are common in LFDM (Figure 13), and it performed well even when the signals were weak 

with high background noise (Figure 14). 

 

Figure 15. VCD-Net performance on tracking the signal fluctuation in moving neuron activities. We 
generated sequence of volumes containing synthetic point-like neurons with time-varying positions and 
intensities, to simulate the ground truth status of a GCaMP-labelled freely moving worm. The positions were 
collected from empirical data (Supplementary Video 2) and calcium signals were acquired following 
measurements in published work3. The synthetic light-field movie was generated and then input into the 
trained VCD-Net to reconstruct a 3D movie. (a) Trajectories of neurons (neuron candidate in green dot; 
trajectory color indicates the time: purple, beginning; red, end) within the first 5 seconds. (b) Intensity 
fluctuations of three selected signals, which simulated the calcium signaling of VA10, VA11 and DA7 
neurons of the worm, in ground truth (black lines, upper), VCD-Net (green lines, middle) and LFD (red lines, 
lower) reconstructions, were compared throughout a 180-second period. (c),(d),(e) Comparative analysis 
correlating the ground-truth signals with VCD-Net and LFD signals reconstructed from light-field images at 
different signal-to-background ratios (SBR, 7.08 to 1.55), with consideration to samples with strong baseline 
background and noise. Gaussian and Poisson noise were added while the neural signal magnitude was altered 
to achieve different SBRs. Boxplots show the median as thick lines, and the 25th and 75th percentiles as box 
edges. Whisker: maximum and minimum after excluding outliers (red cross). Dot and number, the mean 
correlation. The VCD-Net was trained on high-SBR data and applied to all the three different SBR levels. 
VCD-Net* was specifically trained on low-SBR data. The signal traces shown in (b) were based on the results 
in (e). 

 

To further validate the accuracy of reconstructed signals, we applied VCD-Net to the 

reconstruction of synthetic firing neurons that are adjacent to each other. The improved image 

quality achieved by VCD-Net suppressed signal cross-talk from blurring and artifacts, and thus 
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contributed to accurate recovery of signal fluctuations when recording the activity of densely 

labeled neurons. We further validated the reconstruction accuracy of VCD-Net on both static and 

moving neurons with varying signal magnitude and density (Figure 15, 16). 

 

Figure 16. VCD-Net performance on static neuron activities with different signal densities. (a) Synthetic 
firing neurons with fixed positions and various densities were generated. Neurons (spheres of 8 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 
diameter) were randomly seeded in the volume of 116 × 116 × 30 𝜇𝜇𝜇𝜇𝑚𝑚𝑚𝑚3 with signals simulated as 
Poissonian spike trains (firing rate 0.1 Hz, 200 time step at sampling rate 5 Hz) convolved with an 
exponentially decaying kernel (mean decay time constant 1.2s). (b) After reconstruction by VCD-Net (green 
lines, left panel) and LFD (red lines, right panel), neuron signals have been measured to compare with the 
Ground truth (black lines). 6 example traces are shown. (c),(d),(e) Intensity accuracy of reconstruction at 
different neuron densities. Boxplots show the median as thick lines, and the 25th and 75th percentiles as box 
edges. Whisker: maximum and minimum after excluding outliers (red cross). Dot and number, the mean 
correlation. The signal intensity traces shown in (b) were based on the results in (e). 
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3.4 Imaging of locomotion-associated neural activity in moving 

C. elegans 

We demonstrated VCD-LFM by capturing dynamic processes in live animals such as the neuronal 

activity in moving C. elegans. A microfluidic chip was used to permit C. elegans (L4 stage) to 

rapidly move inside a micro-chamber (300 × 300 × 50 µm3, Figure 17). We used the 

epifluorescence setup with a 40×/0.8 water objective and imaged the activity of fluorescently 

labeled motor neurons (ZM9128 hpIs595[Pacr-2(s)::GCaMP6(f)::wCherry]) at a 100-Hz 

acquisition rate, yielding 6,000 light fields in both green and red channels in a 1-min observation. 

VCD-Net reconstructed the neuronal signals at single-cell resolution during fast body movement 

(Figure 17). In contrast, LFD suffered from suboptimal cellular resolution and deteriorated image 

quality around the focal plane, as shown on the same image data.  

 

Figure 17. Whole-animal Ca2+ imaging of moving C. elegans using VCD-LFM. (a) Configuration 
combining LFM with a microfluidic technique for imaging motor neuron activity in L4-stage C. 
elegans (strain ZM9128 hpIs595[Pacr-2(s)::GCaMP6(f)::wCherry]) moving in a microfluidic chip 
(300 × 300 × 50 µm3, top panel) at a 100-Hz recording rate. (b),(c) MIPs as well as magnified views of the 
indicated regions of one instantaneous volume reconstructed by VCD (b) and LFD (c), respectively. The data 
shown are representative of n = 10 independent C. elegans. Scale bars, 10 µm. 

 

We identified A and B motor neurons that have been associated with motor-program selection 

and mapped their calcium activity over time (Figure 18) after ratiometrically correcting the 
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calcium signals (GCaMP6(f)) using red fluorescent protein (RFP) baselines (wCherry) to remove 

motion noise (Figure 18b). By applying an automatic segmentation of the worm body contours, 

we calculated the worm’s velocity and curvatures related to its locomotion and behavior (Figure 

19), thereby allowing classification of the worm motion into forward, backward or irregular 

crawling (Figure 18b-e). 

 

Figure 18.  Motion-correlated neuron activities  of moving C. elegans. (a) Schematics of the worm with 
identified motor neurons labeled (left) and body curvature annotated (right). (b) Heatmap visualizing the 
neuronal activity of 18 identified motor neurons during a 1-min observation of the moving worm. Each row 
shows the Ca2+ signal fluctuation of an individual neuron with color indicating the percentage fluorescence 
changes (ΔF/F0), where F is ratiometrically corrected by the ratio of GCaMP6(f) fluorescence to wCherry 
fluorescence. (c) Curvature kymograms along the body of the moving worm. (d) Velocity plot shows the 
displacement in the direction of body. An ethogram describing the worm behavior over time (lower panel) is 
obtained by analyzing the curvature and velocity change. (e) Selected volumes with time-coded traces 
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(duration left and middle, 150 ms; right, 500 ms) in accordance with the ethogram visualizing the backward 
(left), forward (middle) and irregular (right) crawling tendency of the worm. Scale bars, 20 μm. (f) The 
reconstruction throughput of VCD-LFM and LFDM for processing the same C. elegans light-field video. 

 

We found the patterns of transient calcium signaling to be relevant to the switches from forward 

to backward crawling of the worm, which is consistent with previous findings. Furthermore, the 

noniterative VCD reconstruction could sequentially recover 3D images at a volume rate of 13.5 Hz, 

roughly 900 times faster than the iterative LFD method (Figure 18f). Our VCD-LFM thus 

demonstrated advantages for visualizing sustained biological dynamics, which is computationally 

challenging using conventional deconvolution methods. 

 

Figure 19. Pipeline for behavior analysis of C. elegans behavior. Steps of image processing to extract center 
line from raw fluorescence image for behavior analysis. The body curvature and movement velocity were 
then inferred from the center line. 

 

3.5 Imaging of fast dynamics in the beating zebrafish heart 

We captured the cardiac hemodynamics in the beating zebrafish heart. To reduce the 

background from body tissue, we generated a rod-like laser beam to selectively illuminate the heart 

region, and recorded the light-field video at a 200-Hz volume rate using a 20×/0.5 water objective. 

We reconstructed red blood cells (RBCs) (labeled with Tg(gata1a:dsRed)) and beating 

cardiomyocytes (nuclei were labeled with Tg(myl7:nls-gfp)) in four dimensions using VCD-Net 
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with resolution, structural similarity and processing throughput notably better than conventional 

LFD approaches (Figure 20). VCD-LFM reconstruction with single-cell resolution permitted 

quantitative investigation of transient cardiac hemodynamics. We tracked 19 individual RBCs 

throughout the entire cardiac cycle of 415 ms, during which the blood was pumped in and out of 

the ventricle at a speed of over 3,000 µm s−1 (Figure 21). 

 

Figure 20. Imaging of beating heart and hemodynamics in embryonic zebrafish using VCD-LFM and 
previous LFDM 

 

 

Figure 21. Blood cell tracking. (a) Tracks of 19 single RBCs throughout the cardiac cycle. A static heart is 
outlined for reference. (b) Velocity map computed from two consecutive volumes of RBCs during systole. 

 

Furthermore, through a combination of VCD-LFM and selective plane illumination 

microscopy (SPIM), we visualized and analyzed both blood flow and myocardium in the 
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embryonic zebrafish heart Tg(gata1a:dsRed; cmlc2:gfp)32. The combination features a sequential 

imaging pipeline along with a modified retrospective gating method for hybrid light-field and 

light-sheet imaging (Figure 22). Using the LFM for capturing the traveling blood cells, we 

acquired light fields at up to 200 frames per second (fps). The heart was selectively illuminated by 

a rod-shaped laser beam to eliminate background noise and to enhance image contrast (Figure 22a, 

upper panel). We used VCD-Net for 3-D reconstruction of the blood cells acquired from the raw  

 

Figure 22. A pipeline for high speed imaging for ventricular contraction and intracardiac flow 
dynamics. (a) The integration of light-sheet and light-field microscopy captures the contracting myocardium 
(cmlc2:GFP) and traveling blood cells (gata1a:dsRed) at 200 volumes per second. The light field-generated 
blood cell images (upper illustration) are synchronized with the light sheet-generated myocardial cross-
section images (lower illustration). (b) GFP-labeled cardiomyocyte light chain (cmlc2) and dsRed-labeled 
blood cells (gata1a) are simultaneously visualized in a 3-D reconstructed embryonic heart. The red arrows 
indicate the direction of blood flow. A: atrium; V: ventricle. (c),(d) A time sequence of a cardiac cycle is 
illustrated in the coronal (C) and sagittal (D) plane, respectively. During diastole (light-blue bar), the blood 
cells traverse the atrioventricular canal (AVC) into ventricle. During systole, the blood cells travel through 
the outflow tract (OFT). 

 

2-D light-field sequences. This algorithm reconstructed an equivalent 3-D imaging speed at 200 

vps. Using the LSFM for imaging cardiac contraction, we captured the cross section of beating 
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myocardium with high spatial resolution and signal-to-noise ratio (SNR). At each scanning step, 

we acquired the time sequence at the same frame rate as LFM at 200 fps. By adopting a modified 

retrospective gating method33–36, we synchronized all the sequences from both LSFM and LFMs 

at the identical cardiac phases, and we performed 3-D reconstruction of the contracting 

myocardium in synchrony with the blood flow (Figure 22a, lower panel, Figure 22b-d). We 

demonstrated the atrium and ventricle, along with the intracardiac blood cells, during a cardiac 

cycle in the Tg(cmlc2:GFP; gata1a:dsRed) transgenic line from 3 to 5 dpf . Thus, the reconstructed 

dual-channel zebrafish heart enabled dynamic and simultaneous analyses of the myocardial 

displacement and blood flow. 

Images acquired by our pipeline embraced the time- and position-dependent information for 

vector analysis of the myocardial displacement (Figure 23). We computed the myocardial 

displacement between two consecutive frames by using the deformable image registration (DIR) 

to infer the voxel-based vector field (Figure 23b). Each vector, divided by the time interval, 

indicated the direction and magnitude of myocardial velocity (μm/s). A heatmap could reveal the 

spatial variations of the myocardial velocity (Figure 23c). The increase in velocity toward the apex 

and atrioventricular canal (AVC) suggested a large displacement and myocardial kinetic energy, 

as previously reported37. This image-based analysis provided a robust platform to demonstrate the 

3-D myocardial motion in an unsupervised manner, while the previous methods (e.g. strain 

analysis, fractional shortening) often involved human-annotation33,38. Therefore, the result 

acquired from our pipeline reduced inter-observer variations and increased experimental 

reproducibility. 

To address the intracardiac blood flow, we employed the Particle Tracking Velocimetry (PTV) 

to track the individual cells during two cardiac cycles. We mapped the trajectories of 81 blood cells 
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traversing from AVC to the outflow tract (OFT) (Figure 23d), and extracted the velocity vectors 

of the individual cells frame-by-frame (Figure 23e). We integrated DIR with PTV techniques to 

merge the vectors for myocardial velocity (Figure 23b) and the traveling blood cells (Figure 23e), 

capturing the synchronized myocardial contration with intracardiac hemodynamics (Figure 23f). 

 

Figure 23. Post-imaging computation to reconstruct 3-D vector fields for myocardial displacement and 
blood flow. (a) Images of the myocardium from 2 different time points are overlaid to demonstrate the 
myocardial displacement. The arrow indicates the direction of displacement. (b) Deformable image 
registration (DIR) is used to infer the myocardial displacement between frames. Each vector indicates the 
direction and magnitude of the displacement velocity as color-coded by the magnitude (μm/s) in the 
corresponding voxel. Intracardiac blood cells (red) and flow direction (white arrow) are superimposed with 
the vector field. (c) A representative heatmap depicts the segmental variations in the magnitude of the 
myocardial velocity. (d) Particle tracking velocity follows the trajectories of the blood cells during the cardiac 
cycles. V: ventricle; OFT: outflow tract; AVC: atrioventricular canal. (e) The vector field represents the 
direction and speed of the blood cells. Dissected myocardium (green) and flow direction (white arrow) are 
superimposed with the vector field. (f) The velocity vector fields for myocardial displacement and the 
traveling blood cells are merged. 
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To quantify the flow pattern, we defined the flow direction along the centerline that was fitted 

to the distribution of the traveling blood cells (Figure 24a). We projected the velocity vectors 

along the flow centerline to generate a mean velocity (Figure 24c, upper panel). The negative 

values during the end of systole and diastole represented flow reversal across the valves, resulting 

in a decrease in the net forward flow at 3 days post fertilization (dpf). The regurgitation was 

reported to be a biomechanical cue to valvulogenesis39. 

 

Figure 24.  Frame-to-frame analyses of the myocardial contraction and intracardiac blood flow at 3 
dpf. (a) The trajectory of the blood cells is depicted as the flow centerline, starting from the AV canal (dark 
colors) to the outflow tract (light colors). (b) The myocardium is divided into 4 segments to assess regional 
variations in the vector field. (c) The velocity of individual blood cells is projected onto the flow centerline, 
and the mean flow velocity is plotted as a function of time. Myocardial velocity in each segment is quantified 
as the magnitude-weighted mean vector for each segment, as plotted in the color line. The black dotted line 
demonstrates the average velocity magnitude of the entire ventricle. (d) Six representative time points (from 
t1 to t6) of the heatmaps are presented for the myocardium (upper panels, color-coded in vector magnitude) 
and vector maps (lower panels). Red arrows indicate the rotational direction of the mean vector for each 
segment. 
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The ventricle was divided into 4 segments with reference to the flow centerline to compare 

with the myocardial velocity in the individual segment (Figure 24b). We calculated the magnitude-

weighted mean vectors for each segment (Figure 24c, lower panel, color lines), as compared with 

the global average magnitude (black dotted line). These myocardial vectors quantified the spatial 

variations in myocardial motion during a cardiac cycle. Using the heatmap and velocity field, we 

demonstrated the time-dependent myocardial velocity. We further revealed that the myocardial 

velocity vectors in each segment rotated clockwise or counterclockwise during a cardiac cycle 

(Figure 24d). 
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Figure 25. Velocity profiles in myocardial displacement and intracardiac blood flow at 3 dpf. (a) Blood 
flow velocity is depicted during a cardiac cycle. To compare different heart rates, we normalize the time to 
one cardiac cycle for each zebrafish embryo. (b) The ventricle is divided into 4 segments. Arrows indicate 
the flow direction. The dotted line delineates the atrium. (c) The tracing of the myocardial velocity is 
normalized to one cardiac cycle in each segment. (d) The mean of relative displacement velocity is depicted 
in each segment during systole and diastole. The relative velocity in each segment is compared as the ratio 
of the segmental velocity to the mean of global velocity during a cardiac cycle. Kruskal-Wallis test and 
Dunn’s multiple comparisons test are performed in GraphPad Prism (** p≤0.01; *** p≤0.001, n = 7). 

 

At 3 dpf, we observed similar temporal profiles in the blood flow velocity among several 

zebrafish, where blood flow was steady and slow during systole, but instantaneous and rapid 

during diastole (Figure 25a) in synchrony with the myocardial velocity (Figure 25b,c). To 

minimize the fish-to-fish variation, we normalized the segmental velocity of the myocardium to 

the global velocity for the individual zebrafish hearts during systole and diastole. We observed that 

myocardial contraction (systole) was more prominent in segments 1 and 2 (near the apex) as 

compared to segments 3 and 4, whereas myocardial relaxation (diastole) was more prominent in 

segments 1 and 4 (near the atrium) as compared to segments 2 and 3 (Figure 25d). 

 

3.6 Comparison between direct reconstruction and post-

reconstruction image enhancement 

We further compared our 2D-3D VCD-Net reconstruction with a 2D-3D-better3D procedure 

accomplished by LFD reconstruction combined with state-of-the-art deep-learning image 

restorations (iso-CARE, 3DCARE)28. The computation workflows, including the data training and 

image application, of VCD-Net, LFD + iso-CARE, and LFD + 3D-CARE were illustrated in 

Figure 26. The sparse pointlike cardiomyocyte nuclei and densely-labeled continuous 

myocardium reconstructed by these three procedures were visually and quantitatively compared 

in Figure 26b, c and d, e, respectively. Though LFD + iso-CARE didn’t necessarily require HR 

labelling data for training, this strategy showed limited enhancement to LFD, for either myocyte  
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Figure 26. Comparison between VCD-Net and LFD + deep-learning image restoration. (a) Workflows 
of LFD + 3D-CARE (left), VCD-Net (middle) and LFD + iso-CARE (right) reconstruction procedures. (b) 
Comparative MIPs in y-z (top) and x-z (bottom) planes of the labeled cardiomyocyte nuclei by confocal 
microscope (GT, b1), LFD (b2), LFD plus iso-CARE (b3), LFD plus 3DCARE (b4), and our VCD-Net (b5) 
from left to right, respectively. White boxes show the regions near the native focal plane. (c) Structure 
similarity (SSIM) curve across the depth of the reconstructions, indicating the accuracy of each method when 
reconstructing non-dense nuclei signals. (d) Comparative MIPs in y-z (top) and x-z (bottom) planes of the 
densely-labeled myocardium by light-sheet microscope (GT, d1), LFD (d2), LFD plus iso-CARE (d3), LFD 
plus 3D-CARE (d4), and our VCD-Net (d5) from left to right, respectively. (e) SSIM curve of each method 
when reconstructing dense myocardium signals. Scale bar, 25 μm 

 

nuclei or myocardium (Figure 26b3, Figure 26d3), owing to the still suboptimal lateral quality of 

LFD result (Figure 26b2, Figure 26d2). Unsurprisingly, the addition of 3D-CARE, which was 

trained by HR labelling data and corresponding synthetic LFD images, showed more significant 

improvement to LFD results (Figure 26b4, Figure 26d4). However, while LFD + 3D-CARE could 

reconstruct non-dense myocyte nuclei signals with similar quality (Figure 26b4, Figure 26b5) 
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except for a few lost signals near the focal plane (white boxes), its recovery on densely-labeled 

myocardium was still far worse, as compared to VCD-Net (Figure 26d4, Figure 26d5). Noticeable 

restoration hallucinations arose from the excessive artefacts in LFD results, and also caused 

unacceptably low structure similarity (SSIM) to the ground-truth data (Figure 26e). 

 

Figure 27. Table comparing the efficiency of 4 light-field reconstruction strategies, in terms of the model 
implementation time and reconstruction speed. The data preparation and model training time of each method 
was calculated based on the same 800 groups of myocyte data. The reconstruction time of each approach was 
calculated by recovering a 3D output of myocytes (330*330*51) from the same light-field input (330*330). 
All the tests were performed on the same workstation equipped with RTX 2080 Ti graphic card. 

 

It’s also noted that while these combinatorial recovery strategies show more or less 

enhancement to LFD results, they have issue of low application efficiency. Since they need to first 

go through the iterative LFD for each frame of a light-field video, the processing speed is even 

lower than LFD only, over threeorder-lower than VCD reconstruction, and thus impractical for 

many applications (Figure 27). Furthermore, such additional deep-learning restoration to LFD 

results also requires a lot of LFD data prepared for model training, which is more time consuming 

than generating LFP data for VCD-Net training (~10× slower, Figure 27). Therefore, from the 

perspectives of reconstruction quality, reconstruction speed and model implementation, which are 

all important factors for a computational imaging technique, we have shown the notable 

advantages of our VCD-Net approach, even when compared with the combination of two 

established restoration methods. Especially under dense labelling conditions, only VCD-Net can 
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realize accurate light-field reconstruction at high resolution, which remains unachievable by 

alternative approaches. 

 

3.7 The generalization ability of VCD-Net 

Generalization ability has been an important characteristic of a deep-learning-based model. In this 

section, we demonstrate hybrid data training and multi-sample recovery, and cross-sample or 

transfer learning applications, to evaluate the generalization ability of VCD-Net. 

3.7.1 Performance of VCD-Net trained on hybrid cardiac data 

 

Figure 28. Performance of VCD-Net trained on hybrid cardiac data. (a) High resolution confocal images 
of the myocyte nuclei (row 1), RBCs (row 2), and light-sheet microscopy image of myocardium (row 3). 
(b),(c) Reconstructions of the same samples by separate VCD-Nets with each trained on a single type of data, 
and hybrid VCD-Net trained on mixed cardiac datasets, respectively. Scale bar, 30 μm. 
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Unlike the conventional network implementation based on a single type of sample data, here a 

hybrid cardiac VCD-Net was first trained on mixed datasets containing GT-LFP image pairs of 

myocyte nuclei, red blood cells and myocardium (Figure 28), and then applied to the light-field 

reconstruction of all the three types of samples. The results by such a hybrid VCD-Net (Figure 

28c) were compared with those by three individual VCD-Nets that were trained on myocytes nuclei, 

RBCs and myocardium separately (Figure 28b). The similar reconstruction quality by the hybrid 

network indicates that the VCD-Net could generalize well when trained on many datasets and 

applied to many samples. 

3.7.2 Cross-sample and transfer learning applications of VCD-Net 
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Figure 29. Cross-sample and transfer learning applications of VCD-Net. (a)-(c) Cross applications to 
myocyte nuclei, RBCs, and myocardium, by VCD-Net models which are solely trained on myocyte nuclei, 
RBCs, and myocardium, respectively. This limitation from different signal types can be overcome by 
introducing transfer learning (red boxes). Scale bar, 30 μm 

 

We trained 3 VCD-Nets, using image pairs of the sparse red blood cells, mid-density myocyte 

nuclei, and highly dense myocardium, respectively, and applied each of networks to the 

reconstruction of all the three types of samples (Figure 29). As compared to the high-quality 

reconstruction for the same types of samples (a1, b1, c1), the quality of cross-applications was also 

acceptable (a2, b2) when recovering the similar types of signals (point-like myocyte nuclei 

network for point-like RBCs in a2, or vice versa b2). At the same time, the reconstruction quality 

was severely compromised when applying pointsignals-trained networks to continuous 

myocardium data (a3 middle, b3 middle), or vice versa (c2 middle, c3 middle). 

To overcome the barrier between such different signal types, we also introduced transfer 

learning, which leveraged the knowledge already learned by the previously trained network and 

thus required much fewer training data and iterations, to further enhance the generalization ability 

of VCD-Net. In practice, we saved the best checkpoints of the pre-trained point-signal-based and 

continuous-signal-based VCD models, and then trained them using small amount (~20%) of data 

from continuous sample and point-like samples, respectively. As shown in the right columns of a3, 

b3, c2, c3, after transfer learning applied, the previously corrupted reconstructions caused by style-

mismatching were mitigated. Sufficiently accurate reconstructions have been provided, as 

compared to the GT data. Therefore, the VCD-Net could be highly generalizable when trained on 

one type of data and applied to another, especially when a transfer learning based on small amount 

of target data involved. 
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3.8 Discussion 

The VCD-LFM achieves real-time recording and video-rate reconstruction of instantaneous 3D 

processes in whole moving C. elegans. Combined with efficient network-based locomotion 

analysis, it offers an efficient pipeline for the study of sustained worm neural activity and related 

locomotion behavior at high throughput. The robust performance of VCD-LFM enables the 

suppression of signal artifacts, elimination of motion blurs and accurate quantification of calcium 

signaling. For cardiovascular imaging, recent scanning-based approaches for volumetrically 

imaging in zebrafish larvae have required complicated optics, an ultra-fast camera and high-

intensity excitation34,40. In contrast, our method based on a relatively simple system and easily 

adoptable deep-learning framework offers a compelling solution for investigating the dynamic 

properties and functions of the cardiovascular system. Therefore, VCD-LFM could be a valuable 

tool for studying dynamics on fast timescales, potentially benefiting a variety of applications such 

as behaviorally relevant neuronal activity studies and dysfunctions of the heart and blood transport 

system in model organisms. 

In summary, we introduced a VCD-LFM approach and demonstrated its ability to image 

transient biological dynamics with improved spatial resolution, minimal reconstruction artifacts 

and increased reconstruction throughput compared to conventional LFDM approaches. The 

network-based VCD computational model is robust, versatile and ready for widespread application. 

While VCD-LFM improves the reconstruction quality from one originally determined by the 

optical system to one that can be optimized via the training procedure, it requires the preacquisition 

of a considerable number of training images. We expect this will improve with the continued 

development of deep-learning technique, which aims for strong generalization ability and weak 

training supervision, thus allowing the model implementation with much fewer training data 
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required. Aside from the combination with a basic LFM setup5,6, we note that VCD-Net is 

compatible with modified LFM modalities, such as a dual-objective setup26 or a Fourier LFM 

setup41. Finally, we expect that VCD-LFM could potentially bring new insights for computational 

imaging techniques by raising the possibility of restoring image beyond the system optical limit 

rather than just approaching it and showing the capability of increasing the image dimension while 

minimally compromising the image quality. Taken together, we can further push the spatiotemporal 

limits for in toto observation of dynamic biological processes. 
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Chapter 4  

Light field microscopy with squeezed camera 

readout 

 

4.1 Motivations for kilohertz volumetric microscopy 

High-speed fluorescence microscopy has been playing an indispensable role in revealing the 

dynamic interplay and functionality among cells in their native environment. With continuous 

improvements in fluorescent markers, many transient biological processes, such as the blood 

flow42 and neural action potentials43–45,  become trackable and, thus, demand microscopy with an 

ever higher spatiotemporal resolution. Traditional three-dimensional (3D) imaging tools, such as 

confocal microscopy, light sheet microscopy, and two-photon microscopy, heavily rely on 

scanning to acquire a volumetric image. Despite advancement in beam shaping46,47, remote 

refocusing mechanisms48 and detection geometry40, there persists an inherent trade-off between 

temporal resolution, the 3D field-of-view (FOV), and spatial resolution in these techniques. This 

constraint marks a significant challenge to obtain optimal performance across a large 3D field of 

view (FOV) for robust ultrafast detection exceeding kilohertz (kHz). 
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Computational imaging mitigates this trade-off by encoding high-dimensional information, 

such as depth49, time50, and spectra51–53, into two-dimensional (2D) multiplexed camera 

measurements. Among these techniques, light-field microscopy (LFM) excelled in various 

biological applications, including observation of neural activity in freely moving animals6,10,54 and 

visualization of hemodynamics in the brain15 and heart26,30,55. By simultaneously collecting the 

spatial and angular information of light rays, LFM enables volumetric reconstruction post hoc from 

snapshot measurements. Without scanning, the sensor bandwidth becomes the primary bottleneck 

for LFM 3D imaging speed. While modern scientific Complementary Metal-Oxide Semiconductor 

(sCMOS) sensors typically offer a full framerate lower than 100 Hz, increasing the imaging speed 

can be achieved by reading out only selected low-format regions of interest (ROI). However, this 

approach comes at the cost of sacrificing either the spatial and/or angular components associated 

with the field of view (FOV) and axial resolution.  

The integration of ultra-high-speed cameras40,48,56 and event cameras57 holds promise for 

providing higher bandwidths to LFM. However, their current limitations in sensitivity and noise 

performance present challenges, especially for photon-starved applications like imaging 

genetically encoded voltage indicators (GEVIs).48 On the other hand, the compressibility of four-

dimensional (4D) (two spatial dimensions plus two angular dimensions) light fields has been 

leveraged for compressive detection. Coded masks58–60 and diffusers61 are employed to modulate 

and integrate the spatio-angular components originally recorded by distinct pixels. Sparse nonlocal 

measurements can also be utilized across different angular views to acquire light fields with 

sensors of arbitrary formats.22,62,63 Nevertheless, compressive imaging relies on sparsity priors and 

optimization algorithms for signal recovery from the sub-Nyquist measurement dataset. These 
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methods are primarily validated on natural photographic scenes under ample lighting conditions. 

Their robustness and effectiveness in high-speed fluorescence microscopy remain elusive. 

To address the unmet need for high-speed light-field imaging, we present herein Squeezed 

LIght field Microscopy (SLIM)64, which allows the capture of 3D fluorescent signals at kilohertz 

volume rates in a highly data-efficient manner. SLIM operates by acquiring an array of rotated 2D 

sub-aperture images. An anamorphic relay system applies anisotropic scaling, effectively 

‘squeezing’ the image along one spatial axis. This allows the camera sensor to detect the light field 

using only a low-format letterbox-shaped ROI. Leveraging the row-by-row readout architecture of 

modern CMOS sensors, SLIM achieves a more than fivefold increase in acquisition rate compared 

to traditional LFM. Each squeezed sub-aperture image complements the others, facilitating high-

fidelity 3D reconstruction from compressed measurement while preserving the nominal FOV and 

spatial resolution.  

We demonstrated SLIM by capturing the flowing red blood cells in an embryonic zebrafish at 

1,000 volumes per second (vps), neural voltage spikes in leech ganglions at 800 vps and planktonic 

Vibrio cholerae swimming motility at 200 vps. SLIM enables tracking high-speed cellular motion 

and millisecond membrane action potentials across a 550 μm FOV within a 300 μm depth range. 

Furthermore, we showcased that the high framerate of SLIM could be exploited to enhance axial 

resolution when combined with multi-layer scanning light-sheet microscopy. This allows for 

imaging densely labeled structures, previously challenging with LFM, such as contracting 

myocardium in a zebrafish, at 4,800 frames per second (fps), leading to a volume rate of 300 vps.   

 

 

 



 50 

4.2 Principle and design of SLIM 

In a typical SLIM camera (Figure 30), the input scene is imaged by a combined system consisting 

of an array of dove prisms and lenslets (Figure 30i, Figure 31). Each dove prism within the array 

is rotated at a distinct angle relative to its optical axis. This arrangement gives rise to an array of 

perspective images, each rotated at twice the angle of its corresponding dove prism's rotation, all 

converging at an intermediate image plane situated behind the lenslets. Subsequently, these rotated 

perspective images are further processed through an anamorphic relay system consisting of two 

cylindrical doublets with orthogonal optical axes (Figure 30ii, Figure 32). This relay system 

imparts anisotropic scaling to the image array, where the images experience de-magnification 

(0.2X) along one spatial axis while preserving the original magnification along the orthogonal 

direction. Finally, the rescaled image array is acquired by a 2D camera, where we read out only 

pixel rows that receive light signals (referred to as active readout ROI in Figure 30). 

 

 

Figure 30. Schematic of SLIM detection system. L1-L3, achromatic doublet. CL1-CL2, achromatic 
cylindrical doublet. SLIM records light field at kilohertz frame rates by using a reduced active readout ROI 
on the camera. 
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Figure 31. Design of lenslet and dove prism array. (i) The lenslet array is in-house fabricated on a PMMA 
substrate. (ii) The holder of dove prims, the dove prism, and the angle arrangement of dove prisms. 
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Figure 32. Design of anamorphic relay lens. (a) Layout of the relay system, consisting of one spherical 
achromatic doublet and two orthogonally placed cylindrical achromat doublets, where off-the-shelf 
components (Thorlabs) were used. (b)  Spot diagram shows aberration (within two times the pixel size, 6.5 
𝜇𝜇𝑚𝑚) across the field of view of the lenslet array image (16 mm × 10 mm). (c) OpticStudio Zemax simulations 
on an image of a grid. The red dotted box shows the zoom-in picture. Scale bar, 1 mm. (d) Horizontal and 
vertical magnification measured from the grid simulation. The results show a uniform and constant scaling 
factor across the field of view, which ensures correct image transformation for all sub-aperture images. 

 

One of the key advantages of employing squeezed optical mapping is the improved readout 

speed. Modern CMOS sensors are equipped with parallel analog-to-digital converters (ADCs) for 
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each column of pixels, ensuring consistent frame rates regardless of the number of pixel columns 

being readout. The frame rate is, therefore, solely determined by and inversely proportional to the 

number of pixel rows being readout. For example, on the Kinetix sCMOS developed by Teledyne, 

using an ROI of 200×3200 pixels allows SLIM to capture a 19 sub-aperture image array at 1,326 

fps and 7,476 fps in 16-bit and 8-bit mode, respectively. In contrast, the full-frame mode achieves 

frame rates of only 83 fps (16-bit) and 500 fps (8-bit).    

 

Figure 33. The optical transformation in SLIM comprises image rotation and squeezing, performed by a 
dove prism/lenslet array (a.i) and a customized anamorphic relay (a.ii). 

 

 

The forward model of SLIM is illustrated in Figure 33. Similar to Fourier LFM (FLFM)9,10, 

SLIM can be conceptualized as a tomographic system, where each sub-aperture image is 

essentially a parallel projection of a 3D volume along a line of sight at the sub-aperture’s view 

angle3,5. However, unlike FLFM, where these sub-apertures images are directly captured by a 2D 

camera, SLIM applies in-plane rotation and vertical scaling operations to these images before 

recording.  
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Figure 34. The frequency analysis of SLIM. (i) Each sub-aperture, after reversing the squeezing and 
rotation, gives an image with anisotropic spatial resolution but complementary to others. By merging different 
sub-aperture images, SLIM estimates the original features. (ii) Transfer functions of SLIM by analyzing sub-
aperture images as geometrical projections. Each gives an elliptical slice in the 3D frequency space, 
depending on its rotation angle and sub-aperture location. 

 

In the 3D spatial frequency space, the Fourier spectrum of a SLIM sub-aperture image 

manifests as a 2D elliptical slice (Fourier Slice Theorem). The short axis of this ellipse corresponds 

to the low-resolution sampling along the squeezing direction. By using an array of sub-aperture 

images rotated at complementary angles, SLIM fills in the missing high-frequency information. 

This process results in a synthesized power spectrum with a bandwidth that approximates that of 

the original unsqueezed FLFM (Figure 34). In addition, the rotation angles of sub-aperture images 

are carefully crafted to maximize the horizontal projections of their 3D point spread functions 

(PSFs) (Figure 35). In other words, when imaging a 3D object, the sub-aperture images of SLIM 

 

Figure 35. x-y MIP of the SLIM PSFs with depth color-coded. 
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 exhibit lateral disparity shifts due to their view angle difference. We optimize the rotation angle 

of each sub-aperture image to align its disparity shift with the unsqueezed spatial axis (i.e., camera 

pixel row direction), thereby maximizing the samplings of disparity and consequently enhancing 

the axial resolution. This forward model can be further extended to wave optics by using a sum of 

2D convolutions between the sample sliced at each depth and the corresponding sub-aperture 

PSF9,10. Through an iterative deconvolution algorithm, SLIM reconstructs the 3D fluorescence 

distribution by fusing all sub-aperture images. 

Figure 36a,b show the 3D reconstruction of fluorescent beads of sub-diffraction size imaged 

by SLIM. At a magnification of 3.6X, the imaging volume spans a 3D space of ∅550 μm × 300 

μm with a spatial resolution of 3.6 μm laterally and 6.0 μm axially (Figure 36c-f). Despite a 

different sampling strategy, SLIM inherits the first-order parameters (e.g., resolution, FOV, and 

depth range) of FLFM. More importantly, its highly efficient data acquisition manner alleviates 

the strain on the camera’s bandwidth, thereby enabling kilohertz frame rates.  



 56 

 

Figure 36. SLIM performance demonstrated on fluorescent beads. (a) 3D MIPs of fluorescent beads. 
Scale bar, 50 μm. (b) Cross-sections of single bead showing representative PSFs. Scale bar, 3 μm. (c) 
Fluorescent beads captured by statistic analysis. (d) Average axial (z) and lateral (x,y) FWHM of the beads 
across the volumes reconstructed by SLIM. Center lines represent means and error bars denote standard 
deviations. (e) Analysis of the reconstructed images of two virtually separated beads obtained by SLIM with 
cross-section profiles along the dashed lines. We imaged the same 1μm bead at two positions, adjusting the 
interval gradually using a piezo translation stage. By combining the images obtained from these two positions, 
we created two virtually separated beads with an arbitrary distance. The first and second columns (A and B) 
are the reconstructed images of resolved beads (A) and unresolved beads (B). The third and fourth columns 
are the Fourier analysis of the first and second columns using function: f(x)=log(|F(x)|), where F(x) represents 
the Fourier transform. (f) FWHM resolution of two virtually separated beads obtained by SLIM along three 
directions. 

 

4.2.1 Optical setups 

We implemented selective volume illumination to suppress fluorescence outside the imaging 

volume (Figure 37). Depending on the specific applications, we have the option to choose between 

two variants: 1. Scanning light sheet generated by a high-power laser source, capable of delivering 
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up to 500 mW (Figure 37i); 2. Static LED featuring ultra-low-noise performance (Figure 37ii). 

The light sheet scanning is controlled by a galvo-mirror, and we synchronize the camera’s exposure 

with a complete scan for synthetic volumetric illumination. On the other hand, we shape the LED’s 

beam using a slit and project its conjugate image to the sample. The two methods share the same 

orthogonal illumination geometry. 

 

Figure 37. Selective volume illumination with a scanning light sheet (i) and LED (ii). 

 

The detection setup features a 20X water-dipping objective (N20X-PFH, Olympus 

XLUMPLFLN 20X, 1.0 NA). A 4F relay system (AC508-180-A, AC508-200-A, Thorlabs) forms 

a conjugate plane of the objective’s back pupil, accommodating a customized dove prism and a 

spherical lenslet array. The dove prism (aperture length: 1.3 mm, material: H-K9L, fabricated by 

Changchun Sunday Optics) is positioned anteriorly to the plano-convex lenslet (aperture diameter: 

1.3 mm, focal length: 36 mm, material: PMMA, fabricated in-house). Each pair generates a rotated 

sub-aperture image with a magnification of 3.6X and NA of 0.065. In total, 29 pairs are utilized 

and securely housed in 3D-printed mechanical holders (refer to Figure 31 for detailed designs of 

the prism, lenslet, and holder). Our anamorphic relay system comprises a spherical achromat 

doublet (ACT508-250-A, Thorlabs) and two orthogonally oriented cylindrical achromat doublets 

(ACY254-250-A, ACY254-50-A, Thorlabs). The back focal planes of two cylindrical lenses are 
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co-located, producing an image with an anisotropic scaling factor (Figure 32). A sCMOS camera 

(Kinetix, Teledyne) captures the final image, with a 320×3200 pixels ROI covering all 29 sub-

aperture images, or a 200×3200 pixels ROI for 19 sub-aperture images. The maximal readout 

speeds for two ROIs are 830 fps and 1,326 fps in 16-bit dynamic range mode and 4,790 fps and 

7,476 fps in 8-bit speed mode. The 29 sub-aperture configuration collects around 50% more light 

than the 19 sub-aperture one. 

The illumination sources include blue and green continuous lasers (MBL-FN-473-500mW and 

MGL-III-532-300mW, CNI Laser) and an ultra-low-noise blue LED (UHP-T-470SR Prizmatix). 

For scanning light sheet setup, we use a knife-edge mirror (MRAK25-G01, Thorlabs) to combine 

two beams with adjustable spacing and a galvo-mirror (GVS011, Thorlabs) to scan them together. 

Planar illumination is formed perpendicular to the detection axis by a cylindrical lens and a dry 

objective (RMS4X-PF, Olympus 4X, 0.13 NA). We use a sawtooth function to drive the galvo-

mirror. In synthetic volume illumination configuration, we block one light sheet beam. The camera 

is then triggered at the beginning of the sawtooth waveform and exposed for the entire scan. In 

scanning plane illumination configuration, we use two light sheet beams and trigger the camera 

multiple times during a scan. The static LED setup shares the same illumination objective and  

perpendicular geometry. We built a Koehler illumination system and used an adjustable slit as a 

field aperture. The conjugate image of the slit is relayed to the sample, and the slit controls the 

depth range of the beam. The LED provides ultra-stable illumination power and thus suppresses 

excitation source noise during our voltage imaging experiments. See Figure 38 for system 

schematics. 
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Figure 38. Schematics of the microscope with different illumination systems. L1-L8, lens; CL1-CL2, 
cylindrical lens.  
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4.2.2 Reconstruction algorithm 

The light field of the fluorescent sample is acquired by dividing the objective’s back pupil with a 

lenslet array and recording a group of sub-aperture images. Depending on their sub-aperture 

locations, they display disparity, that is the distinct displacement shown by the same signal. After 

calibrating the displacement at every axial position, the formation of each sub-aperture image can 

be modeled as a sum of laterally shifted depth slices. We replace the shifting operator with a 

convolution with PSF to account for both the diffraction and displacement. A dove prism is a 

truncated right-angle prism and used to rotate the incident beam. The rotation of the prism around 

its longitudinal axis causes the beam to rotate at twice the rate of the prism’s rotation. By placing 

a dove prism array in the infinity space between the objective and lenslet array, we apply varying 

in-plane rotations to sub-aperture images. Finally, we adopt an anamorphic relay system to 

introduce anisotropic scaling to the image array: we de-magnify (squeeze) the image in the 

direction perpendicular to the camera read-out axis while maintaining the original scale in the other 

direction. This one-axis scaling and the aforementioned in-plane rotation are both directly applied 

to the 3D fluorescent image in our model. 

Given a 3D fluorescence distribution 𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  and system PSF, the formation of camera 

measurement 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑣𝑣) can be modeled as: 

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑣𝑣) = ��𝑆𝑆 ∙ 𝜏𝜏(𝑣𝑣) ∙ 𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧)�⨂𝑃𝑃𝑆𝑆𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑣𝑣)  
𝑧𝑧

(9) 

where v is the index of sub-aperture, ⊗ represents the 2D convolution, R(v) applies sub-aperture-

dependent rotation from the dove prism, and S introduces image scaling from the anamorphic relay 

system.   
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The volume reconstruction algorithm was derived from Richardson-Lucy deconvolution6,9,10,65. 

Based on the forward model (8), the 3D fluorescence distribution 𝑂𝑂(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is iteratively solved 

from the camera measurements 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑣𝑣) and empirical point spread functions PSF. The rotation 

angles and image scaling factor are pre-calibrated as known priors in the reconstruction. The 

measurement patch 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑣𝑣)  is cropped from the raw sensor image according to the center 

location of each sub-aperture image. We experimentally measure the point spread functions by  

 

 

Figure 39. Pseudocode of SLIM reconstruction algorithm. 
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imaging a sub-diffraction fluorescent bead. The point source is placed in the middle of FOV and 

axially scanned over a broad 600 μm depth range with a 2 μm step size using a motorized 

translation stage. The actual axial range and step size in the reconstruction depends on the specific 

experiments. The PSF is assumed to be spatially invariant within each sub-aperture image.  

With our implementation, each measurement patch 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑣𝑣)  has a resolution of 301 × 61 

pixels. The numbers of channels (𝑣𝑣 ) and axial slices (𝑧𝑧 ) are configured based on the targeted 

framerate and depth range/step size. For example, with 19 sub-aperture measurements to 

reconstruct a volume of 305×305×151 pixels, the deconvolution takes around 30 seconds via eight 

iterations using a desktop computer with a modest GPU (Nvidia RTX 3070). 

4.3 Imaging of flowing red blood cells in an embryonic 

zebrafish 

Experimental characterization of blood flow in living organisms provides valuable insights into 

local metabolism, vascular development, and disease states. Using fluorescently labeled blood 

cells, various imaging methods have been demonstrated in single-cell velocimetry, such as in the 

larval zebrafish heart30,32,40, tail66,67, and mouse brain15,42. However, these methods are often 

limited to 2D imaging or restricted by a limited volumetric frame rate, which hinders the detection 

of fast flow and necessitates sedation of the animal to reduce motion artifacts. Here, we show that 

SLIM could be used to capture the fast-circulating red blood cells (RBCs) in a zebrafish at a 

kilohertz volumetric rate, both with and without sedation.  

We imaged the transgenic zebrafish embryos expressing DsRed in RBCs at three days post 

fertilization (dpf). We excited the zebrafish brain using light-sheet-synthesized volumetric 

illumination and recorded fluorescence using SLIM with 19 sub-aperture images at 1,000 frames 

per second. The reconstruction reveals the 3D distribution of RBCs and allows for cell tracking 
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over time. Figure 40a shows two separate recordings from the dorsal and ventral view, each 

visualizing RBCs at representative time points (red) and the vasculature network by maximum 

intensity projection (MIP) throughout all frames (cyan). The flowing velocity is pulsatile 

temporally and varies spatially in the aorta and vein. The tracking reveals the velocity distribution 

in 3D and highlights vessels with a high-speed flow of up to 6 mm/s (Figure 40a). SLIM’s 

kilohertz imaging seizes the transient motion at a millisecond time scale (Figure 40b), effectively 

eliminating the motion blur and enabling robust cell tracking compared to a lower imaging rate 

(Figure 40c). 
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Figure 40. 3D imaging of hemodynamics in the embryonic zebrafish brain and tail at 1,000 vps. (a) 
MIPs of flowing blood cells at representative time points (red) and vascular network obtained by combining 
frames over time (cyan). The velocity maps show overlaid RBC trajectories color-coded by their 
instantaneous velocity. Two views, the dorsal view, and ventral view, are two datasets taken with differently-
orientated embryos. Scale bar, 100 μm. (b) Zoom-in time-lapse of the region labeled by the white dotted box 
in (a) Scale bar, 30 μm. (c) Temporal projection color-coded by the time visualizes the motion blur with a 
lower imaging speed. (d) MIPs of a free-moving fish tail. (e) RBC trajectories from (d) are color-coded by 
time. The coordinate system has been rotated so that the x-y plane shows the RBC movement perpendicular 
to the tail swing direction. The single trajectory on the bottom right exhibits the compound motion of a single 
RBC during fish swimming. Scale bar, 100 μm. 

 

We further demonstrated the speed advantage by imaging the free-moving tail of a zebrafish 

without sedation. The embryo was mounted on a cover glass with its head restrained using agarose 

while allowing the tail to move freely in the water. SLIM captured the high-frequency tail swings 

without any motion blur (Figure 40d), maintaining its capability to track individual RBCs and 

revealing the compound movement that combines oscillation vertical to the tail plane and normal 

progression along the vessels (Figure 40e). By combining with closed-loop tracking and a 

translational stage10, SLIM’s high-speed volumetric imaging holds promise for studying 

hemodynamics under natural conditions during locomotor behavior.  

4.4 Optical recording of membrane action potentials in 

medicinal leech ganglions 

The development of voltage imaging has enabled neuroscientists to examine neural dynamics with 

a high spatio-temporal resolution. However, it has long been a challenge to capture voltage signals 

in vivo across a large volume due to the extremely fast transients and low signal-to-noise ratio. 

With its millisecond temporal resolution, SLIM can precisely detect spike timings across a large 

3D neural network, opening avenues for mapping the intricate interaction of neuronal components 

and elucidating the mechanisms underlying sensory processing and behavioral generation.  
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Figure 41. 3D imaging of membrane action potentials in medicinal leech ganglions at 800 vps. (a) 
Brightfield snapshot of leech ganglions. Microelectrode is denoted by a dotted line, which allows for 
simultaneous stimulation and electrophysiological recording. (b) Average spike waveform. The yellow area 
marks the standard deviation of signals. Orange dots represent temporally sampling points, with an interval 
of 1.25 ms. (c) MIP of SLIM reconstruction for voltage dye fluorescent signals. Scale bar, 50 μm. (d) 
Recording of stimulation current, electrophysiological readout, and optical measurements of ganglion cells: 
the impaled cell (top), its contralateral partner that is electrically coupled to it (middle), and an unconnected 
cell (bottom). Grey boxes represent the time window when stimulation is injected. Deeper color stands for 
larger stimulation. Spikes are detected and marked as black dots above the traces. 

 

As a demonstration, we loaded a voltage-sensitive dye (FluoVolt, F10488, Thermo Fisher 

Scientific) into a dissected ganglion from a medicinal leech (Hirudo verbana)68, obtained from 

leech.com and housed in artificial pond water maintained at 15°C. Detailed dissection procedures 

have been described before.68,69 Briefly, an adult leech was anesthetized in ice-cold leech saline 

and an individual segmental ganglion (M10) was dissected out. The ganglion was pinned down 

ventral side up on a rectangular-shaped flat substrate made of Polydimethylsiloxane (PDMS) 

(Sylgard 184, Dow Corning). After removing the sheath that covers the ganglion, a voltage-

sensitive dye70 (FluoVolt, ThermoFisher) was bath-loaded using a peristaltic pump.  
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Fluorescent signals were recorded using SLIM with 29 sub-aperture images at 800 Hz, under 

illumination from an ultra-low-noise LED. Simultaneously, we introduced a microelectrode for 

electrophysiological stimulation and recording (Figure 41a). Glass microelectrodes (20–50 MΩ) 

filled with a recording solution (3 M potassium acetate and 60 mM potassium chloride) were used 

to penetrate the membrane of the target cell. Small negative holding currents were injected to 

maintain stability. Electrophysiological recordings were performed using Neuroprobe amplifiers 

(Model 1600; A-M Systems). Membrane voltage and electrode current were digitized at 10 kHz, 

synchronized with the camera trigger signal using a 16-bit data acquisition board (NI USB-6002; 

National Instruments). The camera triggers served as time stamps to align recorded frames with 

electrophysiological data. 

After image reconstruction, we corrected for sample movement by running a 2D registration 

and demotion (Figure 42) between adjacent frames using a modified version of SWiFT-IR71. The 

3D ROIs were then manually defined for each neuron. And the optical readout 𝑃𝑃𝑡𝑡 was calculated 

by averaging the pixel intensities in the ROI and normalized by the temporal baseline: 𝑃𝑃 = (𝑃𝑃𝑡𝑡 −

𝑃𝑃0)/𝑃𝑃0 , where 𝑃𝑃0  is the temporal mean value. To detect spikes from the optical signal, we 

detrended the trace 𝑃𝑃 by subtracting its median-filtered version (window size, 50 ms). It was then 

binarized by a Schmitt trigger, and a peak detection was performed to locate the voltage spikes. 

Timing and waveforms (Figure 41b) of neuronal action potentials are adequately sampled 

from the reconstructed 3D image sequence (Figure 41c). The resultant time-lapse fluorescence 

intensities at selected neurons are shown in Figure 41d. SLIM measurements agreed with the 

electrophysiological record in quantitative detail, including the reduction of spike amplitude while 

strong depolarizing currents were applied.  
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Figure 42. Image demotion for optical recording of membrane action potentials in leech. (a) The ground-
truth electrophysiological signal provided by electrode on cell 1. (b) By assuming the sample being static 
during recording, motion correction has been applied to the image sequence by image registration between 
adjacent frames. With motion correction, the noise induced by sample/environment vibration can be 
suppressed. The blue boxes label the example time window when such noise appears severe and affects the 
detection of voltage spikes. 

 

4.5 Imaging of free-swimming Vibrio cholerae bacteria 

Bacterial chemotaxis is a behavior in which cells sense and respond to chemical gradients in order 

to swim using their flagellar appendages towards favorable chemoattractants and avoid harmful 

substances.72,73 Chemotaxis and flagellar swimming motility are important components of 

virulence pathways and bacterial pathogenicity.74 Fully capturing this behavior in 3D, however, is 

difficult due to the high swimming speeds of the cells and the 3D nature of their trajectories. The 

current standard for imaging bacterial swimming involves a computational approach by matching 

diffraction patterns in a 2D image to a reference library in order to reconstruct the 3D positional 

information of the cell for tracking.75 A major limitation of this technique is the imaging rate, which 

is typically around 10-30 Hz. For a swimming bacterium (Vibrio cholerae average swim speeds 

are around 100 μm/s), this imaging rate will result in about 5-10 μm of displacement between 
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sequential images. Since this displacement is several cell body lengths long, much of the detailed 

behavior will not be captured.  

 

Figure 43. 3D imaging of free-swimming Vibrio cholerae bacteria at 200 vps. (a) 3D rendering volume 
of Vibrio cholerae bacteria. (b) MIP from x-y and y-z slices of Vibrio cholerae bacteria. Vibrio cholerae are 
stained with an external membrane stain. The total recording time was 5s. (c) MIPs of the swimming bacteria 
trajectory obtained by combining frames over time. (d) Representative trajectories of swimming bacteria 
with their respective Radius of Gyration (RoG) and Mean Squared Displacement (MSD) slope measurements 
labeled. Scale bar, 120 μm. 

 

To demonstrate SLIM’s capability in addressing this challenge, we imaged the dynamic 

behaviors of swimming Vibrio cholerae. Our setup involved capturing 29 sub-aperture images at 

a rate of 200 frames per second, facilitated by light-sheet-synthesized volumetric illumination 

(Figure 43a). This allows us to track each individual bacterium within imaging space 

simultaneously (Figure 43b) and obtain information about its swimming trajectory (Figure 43c) 

by MIP throughout all frames. This higher imaging volume rate reduces the spatial displacement 

in a cell’s trajectory between sequential images allowing for observation of finer details in 
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swimming behaviors, such as reversal events occurring during the “run-reverse-flick” behavior in 

Vibrio cholerae (first picture of Figure 43d), where a change in flagellar rotation direction causes 

a buckling of the hook protein and subsequent reorientation of the swimming direction out of the 

conventional 2D plane of imaging.76 The high volumetric imaging speed also allows us to quantify 

the diffusivity of swimming cells by calculating the Mean Squared Displacement (MSD) slope and 

Radius of Gyration of their trajectories, as labeled in Figure 43d77, a task that is typically 

challenging with conventional 3D microscopy techniques.    

4.6 Imaging of a beating embryonic zebrafish heart with 

scanning multi-sheet illumination   

Although LFM techniques, including SLIM, offer the ability to numerically refocus to specific 

depths, they typically lack intrinsic optical sectioning capability. Its application is potentially 

hindered by the spatial resolution and reconstruction artifacts, and it favors objects with high 

sparseness.78 Here, we demonstrated that SLIM can be combined with scanning multi-sheet 

illumination. The synergy enables high-contrast 3D imaging of densely-labeled fluorescent objects. 

We constructed a dual-light-sheet illumination module and scanned the beams using a galvo-

mirror driven by a sawtooth function. Rather than synchronizing the camera exposure with the 

entire scan range as in previous experiments, we operated the camera at a higher rate, allowing 

each frame to capture a subset of depth layers of the fluorescent object (Figure 44a). This approach 

significantly suppresses out-of-focus light and improves axial resolution in the reconstruction, as 

shown on fluorescent beads and zebrafish vasculature networks (Tg(flk:mCherry)) (Figure 44b,c).  

On the other hand, SLIM offers an ultra-high framerate and supports simultaneous multi-plane 

detection. These features enable SLIM to maintain a high volume rate even within this scanning 

scheme.  
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Figure 44. 3D imaging of a beating zebrafish heart with multi-plane scanning light sheet illumination 
at 300 vps. (a) Dual scanning light sheet replaces the flood illumination (i.e., illuminating entire sample 
volume). In synchrony with the light sheet, the camera captures multiple frames at different scanning 
positions, each reconstructing two layers of the entire volume. By combining all measurements in one scan 
cycle, a 3D volume is synthesized for that time point. (b) The x-z MIPs of fluorescent beads show the 
enhancement of image contrast and axial resolution. Scale bar, 100 μm. (c) The structural images of the 
vasculature network in an embryonic zebrafish. Scale bar, 100 μm.  (d) Comparison of x-y cross-section 
images between scanning light sheet illumination and flood illumination on cardiomyocytes in the zebrafish 
heart. The orange arrows mark the muscle structures that are clearly resolved in scanning mode but 
challenging to flood illumination. Scale bar, 50 μm. (e) The 3D rendering of myocardium at a representative 
time point. Scale bar, 50 μm. (f) Kymographs calculated by sampling the time-dependent distance of the 
cavity along the white dotted line in (e) The black arrows indicate the beat-to-beat variance of cardiac 
contraction. Scale bar, 50 μm. 

 

We demonstrated this acquisition scheme by imaging a beating zebrafish heart 

(Tg(cmlc2:GFP)) at 300 vps (Figure 44d). This is achieved by scanning the dual light sheets at 
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300 Hz, synchronized with camera recording at 4,800 fps (8-bit speed mode). This setup allowed 

us to reconstruct the heart with 30 planes across 200 μm depth range with the microstructures like 

ventricular trabeculation clearly delineated (Figure 44d,e). The enhanced spatial resolution and 

contrast offer the potential for accurate segmentation of the heart chamber’s geometry, facilitating 

cardiac studies, such as regional myocardial contractility analysis32 and computational fluid 

dynamics (CFD) for hemodynamic forces simulation79. While current LFM cardiac imaging is 

mostly demonstrated on sparse markers like cardiomyocyte nuclei26,30,80 and blood cells30,55,81, 

SLIM with scanning multi-sheet illumination proves effective in resolving the densely labeled 

muscle tissue. It provides high 3D imaging speed to capture the beating heart in real time and 

outlines the time-dependent chamber dimension to detect beat-to-beat variations (Figure 44f).   

4.6 Discussion   

We presented SLIM as an innovative snapshot 3D detection method that addresses the pressing 

need for high-speed volumetric microscopy operating at kilohertz speeds. SLIM accomplishes this 

by capturing a condensed representation of the original light field using a compact ROI on the 

sensor. The sampling strategy is grounded in the principle that the inherent spatio-angular 

correlation in the light field can be exploited to recover signals from compressive 

measurement.22,58 Validations across a range of applications, including hemodynamics, neural 

imaging, cardiovascular imaging, and bacterial dynamics, demonstrated SLIM’s versatility and 

robustness.  

SLIM’s kilohertz 3D imaging speed, rarely provided by existing methods and often entailing 

significant design tradeoffs and demanding hardware requirements57,82, presents new opportunities 

to investigate millisecond-scale dynamics in emerging fields like voltage imaging. It is universally 

adaptable to the vast majority of CMOS sensors, which generally allow higher frame rates at 
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reduced readout pixel rows. While we set kilohertz as a milestone for 3D fluorescence microscopy, 

SLIM has the potential to achieve tens and even hundreds of thousands of vps with current high-

speed cameras83. It mitigates the trade-off between speed and other sensor characteristics, allowing 

us to prioritize cameras with higher sensitivity, lower noise, or other favorable attributes. It also 

presents great potential in imaging applications where limitations exist on camera pixel count due 

to fabrication complexity and cost, such as fluorescence lifetime imaging microscopy84 and short-

wave-infrared imaging85.  

SLIM offers a snapshot acquisition that effectively addresses the trade-off between pixel 

exposure time and volumetric frame rate encountered in conventional scanning-based 3D optical 

microscopy techniques. This unique approach gives SLIM distinct advantages in terms of photon 

efficiency and signal-to-noise ratio (SNR), especially beneficial for high-speed imaging of weak 

fluorescence. 

The in-plane rotations and anisotropic scaling in SLIM are co-designed for reconstructing a 

FOV with a higher resolution than that of each sub-aperture image. This design is specifically 

tailored to utilize a low-format rectangular sensor, marking a fundamental departure from existing 

compressive light field photography.58–60 The latter, stemming from coded aperture imaging, 

retrieves light fields at the same or lower resolutions than the multiplexed measurement. Moreover, 

SLIM does not require multiple shots58 or learning on a sparse basis prior to reconstruction60. Our 

algorithm also bypasses the computational complexity associated with solving the 4D light field 

and directly reconstructs the 3D image stack for microscopy applications. 

SLIM inherits the first-order parameters from FLFM, including magnification, numerical 

aperture (NA), and FOV. It can transform an existing FLFM9,10,41,78 into a high-speed 3D imager 

with a significantly higher frame rate. However, like FLFM, SLIM faces challenges such as 
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compromised spatial resolution, depth-variant performance, and limited considerations for tissue 

scattering and lens aberrations. These factors constrain its applicability in complicated intravital 

environments. We have shown that multi-sheet scanning can extend SLIM’s capability to densely-

labeled tissue imaging. The refocusing capability within a largely extended depth of field makes 

SLIM compatible with various 3D illumination structures.  Additionally, the literature presents 

several strategies to enhance SLIM’s performance, such as background rejection by hardware15 

and computation86, multi-focus optics for extended DoF10,87, and sparsity-based resolution 

enhancement78,88. Furthermore, ongoing advancements in data-driven reconstruction algorithms, 

particularly physics-embedded deep learning models11,30,55,80, hold great promise for addressing 

the ill-posed inverse problems associated with limited space-bandwidth and compressive detection 

in SLIM. These developments are expected to significantly enhance SLIM’s capabilities and 

broaden its utility across diverse imaging scenarios. 
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Chapter 5  

Light field microscopy with line sensors 

 

5.1 Line sensor and light field imaging 

The demand for single-shot high-speed imaging is ever-growing89–91. To circumvent the bandwidth 

limitation of electronic image sensors, strategies like compressed sensing encode high-

dimensional spatiotemporal data and transform it into a low-dimensional format for fast readout: 

one single camera pixel thus carries multiplexed spatial or temporal information92. The scene can 

be numerically reconstructed provided that the signals are sparse in a specific domain. Such data 

compression has been implemented with encoders like a high-speed digital mirror device 

(DMD) 93–96, a piezoelectric stage50, pixel shutters97, and temporally shifting detectors such as a 

streak camera93 and a time delay integration (TDI) camera98.  

Despite significant advances, most compressed imaging cameras can only capture two-

dimensional (2-D) dynamics. To break this barrier, we recently developed light field tomography 

(LIFT)62, which reformulates light field photography as a sparse-view CT problem and enables 

three-dimensional (3-D) imaging at an unprecedented frame rate. Rather than recording a 2-D 

image at each view angle, LIFT acquires en-face projections of perspective images and records the 
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data using a one-dimension (1-D) detector array (Figure 45) 22,62. Such a measurement scheme 

significantly reduces the data load and allows the recording of light traveling at a sub-ten-

picosecond temporal resolution by using streak camera62. Even with a regular 1D line sensor we 

still benefit from its excellent readout speed (hundreds of kilohertz), high sensitivity, high filling 

factor (~100%) and cost efficiency.   

However, like other compressed imaging modalities, LIFT’s image resolution is largely 

dependent on the data compression ratio. Additionally, sharing the same problem with sparse-view 

CT, the LIFT reconstruction bears artifacts and an anisotropic resolution as a result of a limited 

number of projection measurements99–101. Although these problems can be alleviated by filling the 

aperture of the main lens with more perspective image channels, this reduces each channel’s 

aperture and, therefore, compromises the channel’s diffraction-limited resolution (Figure 46).  

 

Figure 45. The principle of light field tomography (LIFT). Replacing spherical lens with cylindrical lens 
creates line projection of the object (which are four dots here). The combination of dove prism array and 
cylindrical lens array projects the image at different angles and thus allows a line sensor to record the light 
field information.  

 

To solve this problem, we will present augmented LIFT through parallel spectral encoding in 

this chapter63. Our method is inspired by the fact that most imaging systems record only the spatial 
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coordinates of an optical field. The other dimensions of light, such as polarization102, 

wavelengths94,103,104, and angles105, can be used for signal multiplexing. We previously showed that, 

by using a diffractive element like a grating, we could disperse the 1-D projections in LIFT and 

enable spectral imaging53. Here we utilize this spectral dimension and encode wavelengths with 

optical rotations for a significantly enriched projection angle set within a snapshot. This maintains 

the perspective image channel’s aperture and provides LIFT with scalability to deal with signals 

with various sparsity. 

 

Figure 46. Simulation showing the trade-off between the number of projections and the sub-aperture 
size. (a) Without spectral encoding, more projections require smaller sized lenslets, resulting in a larger PSF 
and a smaller FOV as well as an increased difficulty in lens mounting and assembly. (b) PSFs, sinograms, 
and reconstructions with 5x5 lenslets (diameter, 2 mm, left column), 10x10 lenslets (diameter, 1mm, middle 
column) and 5x5 lenslets (diameter, 2mm, spectral encoding by four channels, right column). Multiplexing 
signals in wavelength maintains the PSF and FOV while increasing the number of projections. All simulations 
above use system parameters in Method sections (Objective, 4X0.13NA; Relay, 750mm/300mm, cylindrical 
lenslet, focal length 20mm). The USAF target ground truth has been scaled to occupy a large field of view. 
We consider ideal Objective and relay system under paraxial approximation.  Scale bar, 2 mm. 
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5.2 Principle of spectral encoding in LIFT 

We employ three Dove prisms to rotate the image with slightly different angles (Channel 1: 0; 

Channel 2: 2.3 degree; Channel 3: 5.3 degree). Each of them performs only in a given spectral 

bandwidth (Channel 1: 565 – 600nm; Channel 2: 550 – 565nm; Channel 3: 540 – 550nm), and 

three channels are merged as a single output (Figure 47a). The following detection system 

implements a Dove prism array and a cylindrical lens array to capture the light field in the form of 

1-D projections (Figure 47b). Each lenslet occupies a sub-pupil area of the main lens, and the 

disparity enables synthetic refocusing in post-processing. Since the projection makes the 

information redundant in the non-power axis of the cylindrical lens, it reduces the necessary pixels 

readout to one row per sub-pupil image and thus boosts the imaging speed. In the end, to separate 

channels from the merged image, a diffractive grating disperses the 1-D projection and thus gives 

simultaneous acquisition of multiple channels of light field tomography.  

 

Figure 47. Schematic of the optical system and image formation. (a) Dove prisms with different angles 
followed by dichroic mirrors encode rotation into three color channels. Images are merged at the intermediate 
image plane. The pseudo color in the schematic does not indicate the actual wavelength used in the system. 
(b) Dove prism and cylindrical lens array are used to capture light field of the object. Each lenslet is located 
at a different position of the Objective’s aperture and forms a 1-D projection of the original 2-D light field 
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sub-image.  A transmissive grating disperses the 1-D projection so that we can separate three channels 
previously encoded with different image rotations. The slit is perpendicular to the non-power axis of 
cylindrical lens and the dispersing direction of the grating. Only three lenslets in the array are shown for 
simplicity. (c) The pipeline of our imaging method. We read out only a few rows of pixels and rearrange them 
to get the sinogram within each channel. The color dotted lines show example sampling positions for three 
channels. By combining the computational tomography and light field imaging, we can reconstruct the object 
in 3D with much fewer pixel readout and a higher imaging speed.  

 

The schematic of the system is illustrated in Figure 48. We use a microscopic objective 

(4X0.13NA, RMS4X-PF, Olympus). In the infinity space of the objective, beamsplitters (BS1: 

30(R):70(T), BS019; BS2: 50(R):50(T), BS013, Thorlabs) split three channels, and dichroic 

mirrors (DM1: AT565dc; DM2: T550lpxr, Chroma) merge them after Dove prisms (PS995M, 

Thorlabs).  

 

Figure 48. (a) The schematic of the entire system. OBJ, Objective; BS, beamsplitter; M, mirror; DP, Dove 
prism; DM, dichroic mirror; L, achromatic doublet; DPA, Dove prism array; CLA, cylindrical lens array; SA, 
slit array; TG, transmissive grating; CAM, sCMOS camera sensor. (b) The image at the camera sensor plane 
of a pinhole (50 μm). Three channels are separated in the vertical direction and encoded in pseudo colors for 
visualization. By sampling in the horizontal direction, we acquire 1-D projections of the pinhole. 

 

The pupil plane of the objective is then relayed by a 4f system (ACT508-300-A, ACT508-750-

A, Thorlabs) to an array of custom Dove prisms and cylindrical lenses (Figure 49). Each Dove 

prism in the array has a clear aperture of 2 mm, while each cylindrical lens (focal length = 20 mm) 

covers five Dove prisms with an extended length of 17 mm. The 1D projections are focused onto 
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a slit array (slit width = 50 𝜇𝜇𝑚𝑚), followed by being dispersed by a grating (300 groves/mm, GT50-

03, Thorlabs) in the Fourier plane of another relay system (f = 100mm). The raw image is captured 

by an sCMOS sensor (Prime BSI or Kinetix, Teledyne). We selected multiple ROIs for exposure 

and readout, which allows us to convert a 2-D sensor into an array of fast 1-D detectors. This 

configuration enables a higher speed because of a lighter data load. Compared to a streak camera 

in the original LIFT implementation, an sCMOS camera is less costly and easier to maintain. More 

importantly, it allows configurable 2-D sensor areas where the encoded signals can be 

demultiplexed. For illumination source, we used a Halogen lamp (HL250-AY, AmScope) with 

diffuser (DG10-120, Thorlabs) for static scenes and a LED (UHP-F-5-560, Prizmatix) with 

collimator (LLG5-CM1, Prizmatix) for dynamic scenes.  Overall, the systematic magnification is 

0.178x with a FOV around 4.2 𝑚𝑚𝑚𝑚 × 4.2 𝑚𝑚𝑚𝑚.  

 

Figure 49. Lens and mount designs. (a) 3D printed mount for the lenslet array. The angles of dove prism 
slots are uniformly distributed between -45 to 45 degrees. (b) The parameters for custom Dove prisms and 
cylindrical lens lenslets.  
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Figure 47c shows the pipeline of our imaging process. The vertical direction spans the 

spectrum of the projection measurement associated with the perspective image. By sampling 

corresponding wavelength for each channel, we read out 15 rows of pixels (five rows per channel) 

to acquire three sinograms (25 projections for each) from the same snapshot. Each channel differs 

in the global rotation applied during the spectrum encoding stage, thus complementing each other 

to mitigate the sparse-view problem in computed tomographic (CT).  

For the channel 𝑖𝑖, we model the formation of the vectorized sinogram 𝑐𝑐𝑖𝑖 as 

𝑐𝑐𝑖𝑖 = 𝑻𝑻𝑻𝑻𝑭𝑭𝒊𝒊𝑔𝑔 = 𝑨𝑨𝒊𝒊𝑔𝑔 (10) 

where 𝑔𝑔  is the vectorized 2-D image, 𝑭𝑭𝒊𝒊  is the geometrical transformation between channels 

during spectral encoding, 𝑻𝑻 is the rotation operator applied by the Dove prism array, and T denotes 

the signal integration by the cylindrical lens.  

𝑻𝑻 is the collection of n (n=25) rotation operators, which can be expanded as  

𝑻𝑻 = �

𝜏𝜏𝜃𝜃1
𝜏𝜏𝜃𝜃2
⋮

𝜏𝜏𝜃𝜃𝜃𝜃

� 

𝑨𝑨𝒊𝒊 will be the forward operator of the channel 𝑖𝑖, and the image reconstruction of a 2D slice can 

be achieved by iteratively solving the following optimization problem: 

𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛
𝑔𝑔�

�‖𝑐𝑐𝑖𝑖 − 𝑨𝑨𝒊𝒊𝑔𝑔‖22 +  𝜌𝜌𝜌𝜌(𝑔𝑔)
𝑖𝑖

(11) 

where 𝜌𝜌(𝑔𝑔) is a transform function sparsifying the image. We chose total variation while other 

functions like 𝑙𝑙1 and wavelet transform can also be applicable. 𝜌𝜌 is a hyperparameter that weighs 

the regularization term. Equation (11) is solved using the FISTA algorithm106. 
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In conventional light field imaging, the synthetic refocusing is performed by shifting and 

adding the sub-pupil images107.  To extend our method to a 3D scene, we shift each sub-pupil 

image with respect to its pupil location before passing it to the iterative reconstruction 53,62. If we 

define the spatial coordinate of each dove prism in the array as (𝑢𝑢, 𝑣𝑣), we translate the sub-pupil 

image in the direction and distance of vector 𝑠𝑠 ∗ (𝑢𝑢, 𝑣𝑣), where 𝑠𝑠 is a parameter depending on the 

axial location of synthetic focal plane. Since we acquire only a 1-D projection of a sub-pupil image, 

we need to find the amount of translation perpendicular to the projection axis. Assuming that one 

Dove prism lenslet rotates the image by 𝜃𝜃  counterclockwise and the non-power direction of 

cylindrical lens aligns with the sub-pupil coordinate axis 𝑣𝑣, we shift each 1-D sub-pupil projection 

by53 

𝑠𝑠 ∗ 𝑢𝑢 ∗ cos(𝜃𝜃) + 𝑠𝑠 ∗ 𝑣𝑣 ∗ sin(𝜃𝜃) (12) 

During the system calibration, we measure the rotation angles of each channel by aligning 

images of the same object acquired at the intermediate image plane within different spectra. We 

place a pinhole at the nominal focal plane of the objective lens. From the full-frame sensor image, 

we can locate and store the center positions of each projection. Then we translate the pinhole 

axially with a known distance and find the shifting parameter 𝑠𝑠 that gives the sharpest refocused 

image. By this means, we map 𝑠𝑠  with the depth position in experiments. We further capture a 

standard USAF resolution target image at each depth and compute the geometrical transformation 

among channels using image registration. This step is crucial because the transformation is depth-

dependent. After the system calibration, we only readout limited pixels at projection positions for 

a higher framerate. The pixel rearrangement and reconstruction will be using the same calibration 

data for all following experimental measurements. 
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5.3 Results of augmented LIFT 

Sparse-view CT is prone to noise and structural artifacts. When testing our system on the USAF 

resolution target, a single channel measurement can frequently fail by generating deteriorated line 

pairs and stripe-like structures (Figure 50a). With an insufficient number of projection angles, the 

resolving capability is also subject to the object’s orientation and its relative location in the FOV. 

Since each channel observes the sample with slightly different rotations, reconstruction varies 

given the same group of line pairs (Figure 50). This underlies the misinterpretation of the sample 

structures. Combining all three channels, the augmented measurement provides twice more 

projections than a single channel, leading to higher contrast and lower noise. The resolving 

capability also gains robustness in dealing with samples of different orientations (Figure 50).  

 

Figure 50. Enhancement of image quality by combining three channels measurement. (a) Comparison 
of reconstruction results of multi-channel vs. single channel when imaging a USAF resolution target. By 
combining all three channels information, the image gains higher image quality, a higher contrast, reduced 



 83 

artifacts, and stable resolving capability on differently oriented objects. Yellow and blue box mark the area 
enlarged for a close-up comparison. (b) The pixel intensity profile of sampling line i and ii, which are labeled 
in a. Our proposed method delivers a more reliable spatial resolution, while single channel suffers from fewer 
number of projections, and it is dependent on the object orientation. For multi-channel results, contrast levels 
(𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐼𝐼𝑚𝑚𝑖𝑖𝜃𝜃)/(𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥 + 𝐼𝐼𝑚𝑚𝑖𝑖𝜃𝜃)  are calculated for line pair groups 2-2 to 2-5 as 0.60, 0.43, 0.41 and 0.28. The 
resolvable line pair 2-5 indicates a lateral resolution of 157 𝜇𝜇𝑚𝑚.   

To further validate the enhancement, we tested our method on synthetic images displayed on 

an LCD panel and used structure similarity index measure (SSIM) as a metric to quantify the 

reconstruction quality. We found that the images with complex structures like retinal vessels 

(Figure 51) benefit the most from the multichannel reconstruction. This is because objects with 

fine details and textures are less compressible, and thus it requires more projection measurements 

(i.e., a lower compression ratio) for CT reconstruction. 

 

Figure 51. Validation of reconstruction fidelity and synthetic refocus. (a) We display various samples on 
an LCD display panel in front of our system and quantify the reconstruction fidelity and quality using SSIM 
(structural similarity index measure). The color-coded merged image shows the similarity of our 
reconstruction to the ground truth. We observe a more significant advantage of our multi-channel over single-
channel measurement when imaging samples with more complex structure.  (b) The USAF resolution target 
is placed at different defocus positions to show the synthetic refocusing ability of our imaging method. c. We 
adopt the classical ‘shifting and add’ algorithm for image refocusing. By shifting each sub-image of the light 
field with regard to their position at the aperture, we can bring sharp focus back to a defocused object. The 
relation between the shifting and object depth is plotted. Red dots denote each measurement, and the dotted 
line is the fitting. 
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LIFT captures the light field of the scene, which permits 3-D reconstruction. To demonstrate 

the improvement in image quality through spectral encoding also applies to refocused depths, we 

translated the resolution target axially with various defocus. By shifting each projection 

accordingly in post-processing, the augmented LIFT can focus on different depths with the same 

enhancement from multichannel reconstruction (Figure 51b, c).  

 

Figure 52. High-speed 3-D imaging experiments. (a) We designed an experiment where a rotating optical 
chopper is relayed to the sample to generate a mask in high-speed motion. The chopper and the sample are 
displaced at different depths. To represent the chopper wheel plane, we attached a small grid. The data was 
acquired at 1111 Hz.  (b) Representative time-lapse frames of the grid (upper row) and the USAF resolution 
target (lower row). Through synthetic refocus, we can reconstruct sharp images of dynamics at different 
depths in post-processing. Scale bar, 1 mm. (c) Displaced alphabet characters are used to replace USAF 
resolution target in (a). (d) Representative time-lapse frames of each character masked by the rotating optical 
chopper. White dotted line delineates the shape of chopper, and the arrow is the rotating direction. Scale bar, 
1 𝑚𝑚𝑚𝑚. 

 

The parallel spectral encoding preserves the LIFT’s snapshot 3-D imaging ability, which allows 

us to capture fast dynamics at different depths simultaneously. The measurement of 5 x 5 sub-

aperture images, which would occupy the entire sensor frame in a conventional light field camera, 

is now compressed in a format of 15 x 3200 pixels. By reducing the full frame to a few rows of 
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pixels, we can record the light field at a kilohertz frame rate by reading out only selected ROIs in 

a scientific CMOS (3200 x 3200 px, 16-bit mode, full frame rate, 83 Hz). We demonstrated the 

speed by imaging a rotating optical chopper wheel (MC1F6P10, Thorlabs), which was relayed to 

the sample to generate a mask in motion (Figure 52a). The slit moved at an approximate speed of 

200 𝑚𝑚𝑚𝑚/𝑠𝑠 and crossed the entire FOV within 20 ms. And our system could seize the transient 

movement without motion blur. We mounted a grid pattern on the chopper wheel and positioned a 

USAF resolution target at a defocused distance. We reconstructed a sharp image sequence for both 

objects via digitally refocusing in post-processing (Figure 52b). We performed a similar 

experiment using axially displaced alphabet characters (Figure 52c, d). While each frame benefits 

from the augmented sinogram via spectral encoding, it’s flexible to adjust the frame rate by 

configuring the camera ROIs for the actual number of channels read out. For example, when 

dealing with simple objects where a high compression ratio is permissible, we can switch to a 

single channel for higher imaging speed. 

5.4 Discussion 

Conventional light field acquisition is redundant for 3-D imaging because the sub-aperture images 

duplicate each other except for a disparity cue62. LIFT solves this problem by reducing the data 

dimension and thus provides an efficient way for high-speed volumetric imaging. In this work, we 

further augmented LIFT with spectral encoding to mitigate the common drawbacks of sparse-view 

CT reconstruction. Kilohertz 3-D microscopic imaging was demonstrated over a large volume 

(~4.2 mm x 4.2 mm x 4.5 mm) with reduced reconstruction errors and aliasing artifacts.  

In the current system, the sCMOS sensor is the bottleneck for the imaging speed. Because the 

ROIs are sequentially exposed and there exists an extra overhead time for each readout, the 

achievable framerate (1111 Hz) is far below the theoretical limit (>17 kHz). This problem can be 



 86 

alleviated by optimizing the camera’s firmware. The current method is not directly compatible 

with the 1-D sensors like the streak camera, because spectral multiplexing requires an extra sensor 

area for dispersion. Despite the technical challenge, we could seek to stack synchronized 1-D 

sensor arrays as a solution. Additionally, because the encoding system introduces aberrations 

(mainly astigmatism), we can’t directly concatenate sinograms from different channels. Instead, 

our algorithm approaches it by iteratively merging 2-D reconstructions in the image space, which 

relies on the prior knowledge of the geometrical transformation between the channels. Lastly, an 

underlying assumption of our method is the sample has a similar appearance across wavelengths, 

a condition that holds if the image contrast is dominated by a single chromophore. Although 

beyond the scope of current work, fluorescence imaging can also be made possible by tailoring the 

channel wavelength to the fluorophore’s emission. We expect our augmented acquisition method 

will expand the application realm of LIFT by enabling a higher image quality while maintaining 

its snapshot advantage. 
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Chapter 6  

Conclusion 

 

The speed advantage of LFM arises from the significantly reduced digital readout. A 3D image 

stack is estimated from single 2D or even 1D measurement of far fewer pixels. Despite being 

inherently ill-posed, this approach performs remarkable well in capturing critical dynamic signals 

across various animal models. These successful demonstrations suggest that many transient 

processes in organism exhibit high spatiotemporal sparsity which can be effectively exploited by 

compressive reconstruction algorithms22. When designing microscopy for high-speed functional 

imaging, the key may not be to capture more pixels in short time but to employ a more efficient 

sampling strategy, as exemplified by LFM. 

The recording duration and imaging speed often conflict in high-speed imaging due to the 

limited bandwidth of cameras and storage devices, which constrains the total number of frames 

that can be saved within a given timeframe. For similar reasons, high-speed cameras used in slow-

motion cinematography are equipped with massive on-board storage yet still support only a few 

seconds of maximum recording time (e.g., Phantom TMX 7510 with 512 GB RAM can record for 

4.4 seconds at 76,000 fps). However, extended recording durations are crucial in fields such as 
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brain function study, where mapping neural activities to animal behaviors requires longer 

observation periods. LFM offers a cost-efficient solution for long-term, high-speed recording. 

This thesis introduces several LFM systems with volumetric imaging speeds ranging from 100 

Hz to 3,333 Hz. Although each system is optimized for different types of processes, they 

collectively represent a trade-off between imaging speed (data compression rate) and spatial 

resolution. This inherent limitation is common to all LFM systems and poses a challenge to their 

broader adoption within the biological research community. How can we build a microscope with 

both high temporal and spatial resolution? 

Data-driven algorithms55,80 like VCD-LFM can recover high-frequency features from aliased 

measurements by training on large, relevant datasets. These algorithms work in tandem with 

compressive imaging, shifting the information burden from optical hardware to post-acquisition 

software. However, challenges such as the "black box" nature of these models and the risk of 

hallucinations still need to be addressed before they can be widely adopted by biologists without 

deep learning expertise.  

From a hardware perspective, advancements in camera technology are expected to yield 

sensors with more sensitive, finer, and lower-noise pixels, alongside larger array formats and 

higher frame rates. However, while these improvements enhance the sampling of the spatioangular 

components of the light field, optical diffraction inevitably becomes a limiting factor. For example, 

the lenslet array in Fourier LFM divides the pupil of the microscope objective into multiple sub-

aperture images, resulting in each image having a lower numerical aperture (NA) than the objective 

and, consequently, reduced resolving power. Additionally, each lenslet must balance depth of field 

and spatial resolution, with higher spatial resolution typically compromising depth range. 

Overcoming these optical constraints requires moving beyond traditional optical components and 
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design methodologies, exploring alternatives like diffusers23,61,108, metasurfaces109, and end-to-end 

optics optimizations110,111. 
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