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ARTICLE

Tyrosine phosphatase SHP2 negatively regulates
NLRP3 inflammasome activation via ANT1-
dependent mitochondrial homeostasis
Wenjie Guo 1, Wen Liu1, Zhen Chen 2, Yanhong Gu3, Shuang Peng1, Lihong Shen1, Yan Shen1, Xingqi Wang1,

Gen-Sheng Feng4, Yang Sun 1 & Qiang Xu1

Aberrant activation of NLRP3 inflammasome has an important function in the pathogenesis of

various inflammatory diseases. Although many components and mediators of inflammasome

activation have been identified, how NLRP3 inflammasome is regulated to prevent excessive

inflammation is unclear. Here we show NLRP3 inflammasome stimulators trigger Src

homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) translocation to the

mitochondria, to interact with and dephosphorylate adenine nucleotide translocase 1 (ANT1),

a central molecule controlling mitochondrial permeability transition. This mechanism

prevents collapse of mitochondrial membrane potential and the subsequent release of

mitochondrial DNA and reactive oxygen species, thus preventing hyperactivation of NLRP3

inflammasome. Ablation or inhibition of SHP2 in macrophages causes intensified NLRP3

activation, overproduction of proinflammatory cytokines IL-1β and IL-18, and increased

sensitivity to peritonitis. Collectively, our data highlight that, by inhibiting ANT1 and

mitochondrial dysfunction, SHP2 orchestrates an intrinsic regulatory loop to limit excessive

NLRP3 inflammasome activation.
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Inflammasomes are multi-molecular signaling complexes that
have a crucial function in host defense against infection, as
well as various autoimmune and inflammatory disorders1.

Inflammsomes are activated upon various cellular stresses that
promote caspase-1-dependent maturation of interleukin-1β (IL-
1β) and IL-182. Among a number of inflammasomes identified,
the Nod-like receptor family, pyrin domain containing 3
(NLRP3) inflammasome is the most extensively studied due to its
robust activation by a variety of stimuli, including infection, tissue
damage, and metabolic stress. Typically, activation of NLRP3
inflammasome requires two signals. The first priming signal
(Signal 1), classically triggered by microbe-derived lipopoly-
saccharide (LPS), upregulates transcription of proinflammatory
cytokines and inflammasome components via activation of
transcription factor nuclear factor-κB (NF-κB). The second acti-
vation signal (Signal 2), stimulated by adenosine triphosphate
(ATP), monosodium urate (MSU) and nigericin, assembles
cytosolic inflammasome components, resulting in cleavage of
caspase-1 and production of pro-inflammatory cytokines, i.e., IL-
1β or IL-183. Mitochondrial dysfunction, exemplified by the
mitochondrial permeability transition, overproduction of reactive
oxygen species (ROS), and the resultant release of mitochondrial
DNA, is crucial for the Signal 2 activation of NLRP3 inflamma-
some4–6. Given the importance of NLRP3 inflammasome in the
pathogenesis of many inflammatory diseases such as peritonitis,
multiple sclerosis and obesity7–9, understanding the positive and
negative regulation of NLRP3 inflammasome may provide insight
into pathology and identify new therapeutic strategies.

Src homology 2 (SH2) domain-containing tyrosine
phosphatase-2 (SHP2) is a ubiquitously expressed non-receptor
protein tyrosine phosphatase (PTP). Encoded by the PTPN11
gene in humans, SHP2 protein consists N-SH2 and C-SH2
domains, both of which are important for its subcellular locali-
zation, and a PTP domain, which is crucial for its enzymatic
activity10. SHP2 has been identified to have critical functions in
cell proliferation and differentiation in response to growth factors
and cytokines11, such as epidermal growth factor and platelet-
derived growth factor-induced Ras-Raf-Erk cascade12–14.
Increasing evidence indicates that SHP2 is also involved in
immune signaling and inflammatory response. For example,
SHP2 has been shown to negatively regulate TLR3-activated and
TLR4-activated interferon (IFN)-β production in macrophages15.
However, whether SHP2 has a regulatory function in NLRP3
inflammasome, the key effector of innate immune response, has
not been investigated.

Adenine nucleotide translocase 1 (ANT1) is an ADP/ATP
translocase located in the inner mitochondrial membrane. Protein
complex comprised ANT1, voltage-dependent anion channel, and
cyclophilin D has a crucial function in the maintenance of
mitochondrial membrane potential and permeability16,17. Mice
with deactivated heart/muscle isoform of ANT1 have character-
istics of myopathy and cardiomyopathy with a severe defect in
mitochondria-coupled respiration18. Phosphorylation of ANT1
by the Src family kinase members Src and Lck has been shown to
be critical for mitochondrial bioenergetics and cardioprotec-
tion19,20. Given the control of ANT1 in mitochondrial home-
ostasis, we hypothesize that the dysregulation of ANT1 is an
underlying mechanism of NLRP3 inflammasome overactivation.

In this study, we investigate the role of SHP2 in NLRP3
inflammasome activation and its implication in inflammatory
diseases. By using macrophage-specific conditional SHP2
knockout (cSHP2-KO) mouse, we demonstrate that SHP2 is a
negative regulator of NLRP3 inflammasome. Furthermore, we
identify ANT1 as phosphatase substrate of SHP2 upon its
translocation to mitochondria, which mediates the negative reg-
ulation of NLRP3 inflammasome by SHP2. Specifically, SHP2-

mediated dephosphorylation of ANT1 at Tyr 191 is essential for
mitochondrial homeostasis and mitigation of NLRP3 inflamma-
some activation. Collectively, our findings provide new insights
into the dynamic regulation of NLRP3 inflammasome activation
through a SHP2-ANT1-mediated negative regulatory loop.

Results
SHP2 inhibits NLRP3 inflammasome activation in macro-
phages. To examine the function of SHP2 in NLRP3 inflamma-
some activation, we generated macrophage-specific (Lyz2-Cre)
cSHP2-KO mice (Supplementary Fig. 1). In primary peritoneal
macrophages isolated from cSHP2-KO mice, NLRP3 inflamma-
some activation by ATP, MSU, or Nigericin was remarkably
intensified, evidenced by increased caspase-1 cleavage, as well as
over-production of IL-1β and IL-18 (Fig. 1a–c). To confirm this
result in human cells, we also stimulated NLRP3 inflammasome
activation in THP-1-derived macrophages. Consistently, SHP2
knockdown significantly augmented NLRP3 inflammasome acti-
vation (Fig. 1d-f). In addition, pharmacological inhibition of
SHP2 with NSC87877 or PHPS1 resulted in a similar potentiation
of IL-1β production (Fig. 1g). As the hallmark of Signal 2, the
assembly of NLRP3/ASC (apoptosis-associated speck-like protein
containing a CARD)/pro-caspase-1 complex was also enhanced
when SHP2 was knocked down (Fig. 1h). Furthermore, ATP-
stimulated ASC oligomerization was higher in cells with SHP2
knockdown, when compared with that in cells transfected with
control short hairpin RNA (shRNA) (Fig. 1i). Collectively, these
observations suggest that SHP2 negatively regulates NLRP3
inflammasome activation in the macrophage.

SHP2 inhibits NLRP3 inflammasome activation in vivo. Given
that SHP2 inhibits NLRP3 inflammasome activation in vitro, we
further examined the role of SHP2 in the alum-induced murine
peritonitis model. Upon alum challenge, cSHP2-KO mice had
higher numbers of total peritoneal exudate cells (PECs), neu-
trophils, and monocytes, when compared with the wild-type
(WT) littermates (Fig. 2a and Supplementary Fig. 2). Such pro-
inflammatory profile in cSHP2-KO mice was also associated with
a significantly higher level of IL-1β in the lavage fluid (Fig. 2b).
Consistently, caspase-1 activation was more evident in PECs from
cSHP2-KO mice compared with WT controls (Fig. 2c). These
findings demonstrate that SHP2 inhibits NLRP3 inflammasome
activation in vivo, and its deficiency leads to overactivation of
NLRP3 inflammasome in the context of inflammatory diseases.

SHP2 deficiency leads to mitochondrial dysfunction. Our data
from Figs. 1 and 2 indicate that the Signal 2 of inflammasome
activation is augmented in macrophages and mice with SHP2
deficiency, evidenced by increased level of caspase-1 cleavage but
not pro-caspase-1. We thus examined the role of SHP2 in the
mitochondrial dysfunction, which subsequently contributes to
NLRP3 inflammasome activation. ATP stimulation of primary
peritoneal macrophages isolated from WT mice caused mem-
brane potential collapse (JC-1 staining), mtROS production
(mitochondrial reactive oxygen species, MitoSOX staining), and
mitochondrial DNA (mtDNA) release to the cytosol, which were
potentiated in macrophages isolated from cSHP2-KO mice
(Fig. 3a–c). Similarly, membrane potential collapse, mtROS pro-
duction and mtDNA release to cytosol were also aggravated in
THP-1-derived macrophages with SHP2 silencing (Supplemen-
tary Fig. 3). Of note, we did not observe any significant change in
cell survival or lysosome activity due to SHP2 knockdown
(Supplementary Fig. 4). In addition, the augmented IL-1β pro-
duction in SHP2-knockdown THP-1-derived macrophages in
response to ATP was abrogated by either ROS scavenger
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NAC (N-acetylcysteine) or caspase-1 inhibitor Ac-YVAD-cmk,
but was marginally affected by E-64d, a lysosome inhibitor
(Fig. 3d and Supplementary Fig. 3d), suggesting ROS release and
caspase-1 activation are required for the excessive activation of
NLRP3 inflammasome due to SHP2 deficiency.

SHP2 translocates into mitochondria and interacts with ANT1.
Next, we aimed to elucidate the mechanism by which SHP2
controls mitochondrial permeability. Immunostaining of SHP2
hinted that SHP2 could translocate from cytosol to mitochondria
upon ATP, MSU or Nigericin treatment (Fig. 4a). Consistently,
immunoblot analysis of mitochondrial and cytosolic fractions
confirmed this phenomenon (Fig. 4b). Considering that SHP2
translocate to mitochondria, another question was raised. Where
was SHP2 located in mitochondria? To answer this issue, we used
proteinase K to digest mitochondrial outer membrane (MOM)
proteins in the mitochondrial fraction isolated from THP-1 cells.

Protein component of MOM, e.g., Tom20 was digested while
SHP2 and Tim23, a mitochondrial inner membrane (MIM) were
protected from the degradation in mitochondrial fraction isolated
from the ATP-treated cells (Fig. 4c), suggesting that SHP2 is not
located in the MOM. By using alkaline extraction of mitochon-
drial matrix21, we found that SHP2 may translocate to the matrix
of mitochondria (Fig. 4d). This mitochondrial localization of
SHP2 was also observed by structured-illumination microscopy
(Deltavision, OMX. GE). Tom20 in MOM was stained and
indicated a tube-like shape of mitochondria (Fig. 4e). SHP2 was
located in this tube-like shape under ATP-stimulation compared
with unstimulated cells (Figs. 4e, and 3D-reconstitution image in
Supplementary Movie 1 and 2).

Furthermore, we examined the SHP2-interacting proteins
using GST-pulldown assay, using GST-SHP2 as a bait. Mass
spectrometry profiling of binding protein partners of SHP2
identified ANT1 as a high-confidence hit (Fig. 5a and
Supplementary Table 1). This observation motivated us to further
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a, b, d, e Enzyme-linked immunosorbent assay (ELISA) of IL-1β and IL-18 in culture supernatants. ND represents not detectable. c, f Immunoblot analysis of
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investigate whether SHP2 indeed interacts with ANT1 during
NLRP3 inflammasome activation. The confocal immunofluores-
cence analysis showed that SHP2 co-localized with ANT1 upon
ATP treatment (Fig. 5b), providing an evidence that SHP2 and
ANT1 are interacting with each other during NLRP3 inflamma-
some activation. Moreover, reciprocal co-immunoprecipitation
assay proved the endogenous association between SHP2 and
ANT1 in THP-1-derived macrophages treated with ATP for
15–30 min (Fig. 5c). Interestingly, the assembly of NLRP3/ASC/
pro-caspase-1 complex was detected as early as 5 min upon ATP
treatment (Supplementary Fig. 5). More importantly, these two
partners interplayed in the mitochondria when NLRP3 inflam-
masome was activated (Fig. 5d). In addition, we confirmed this
result in HEK293T cells, where we detected the interaction
between the exogenous HA-tagged SHP2 and myc-tagged ANT1
(Fig. 5e).

Given the translocation of SHP2 to mitochondria upon NLRP3
inflammasome activation, we searched for a mitochondria-
targeting sequence in SHP2 protein using PSORT II prediction
tool22. Indeed, there was RRWFH motif (Argnine-Argnine-
Tryptophane-Phenylalanine-Histidine) in N-SH2 domain of
SHP2 (Fig. 6a). To validate this prediction, we overexpressed
the RRWFH motif tagged with green fluorescent protein (GFP) in
HEK293T cells. As a result, GFP had no specific location while
RRWFH-GFP predominantly localized in the mitochondria
(Fig. 6b, d). When RRWFH motif was mutated, both SHP2
translocation to mitochondria and the SHP2-ANT1 interaction
were diminished (Fig. 6c, e, f). As a result, this SHP2 mutant did
not exert inhibitory effect on the collapse of mitochondrial
membrane potential (Fig. 6g). Furthermore, to illuminate how
SHP2 translocate to the matrix of mitochondria, we examined the
mitochondrial translocation of SHP2 in THP-1 cells with Tom20
or Tom40, or Tom70 knockdown, as well as Tim22 or Tim23
knockdown (Supplementary Fig. 6), which mediated the protein
crossed MOM and MIM into matrix after targeting to the
mitochondria23. We found that the translocation of SHP2 into
mitochondria induced by ATP treatment was almost completely

blocked when Tom20 or Tom40 was knocked down, respectively
(Fig. 6h). Moreover, localization of SHP2 in matrix triggered by
ATP treatment was remarkably reduced by Tim23 but not Tim22
knockdown (Fig. 6i). These data indicate that Tom20 and Tom40
in MOM, as well as Tim23 in MIM are responsible for the
translocation of cytosolic SHP2 into mitochondrial matrix during
NLRP3 inflammasome activation. Taken together, these results
suggest that during the activation of NLRP3 inflammasome,
SHP2 translocates from cytosol to mitochondrial matrix and
interacts with ANT1.

ANT1 knockdown suppresses NLRP3 inflammasome activa-
tion. The interaction of SHP2 and ANT1 prompted us to
determine the role of ANT1 in mitochondrial permeabilization
and NLRP3 inflammasome activation. We knocked down ANT1
in THP-1-derived macrophages with stable transfection of
ANT1 shRNA and investigated the consequence in terms of
inflammasome activation. Compared with control shRNA group,
we found that in ANT1-knockdown THP-1-derived macro-
phages, (1) secretions of IL-1β and IL-18, and the cleavage of pro-
caspase-1 were significantly inhibited (Fig. 7a–c); (2) the NLRP3/
ASC/pro-caspase-1 assembly was profoundly inhibited (Fig. 7d);
(3) ATP-induced collapse of mitochondrial membrane potential
was attenuated (Fig. 7e); and (4) various danger signal-stimulated
release of mtROS and mtDNA were almost abolished (Fig. 7f,g).
Conversely, overexpression of ANT1 markedly enhanced mito-
chondrial permeabilization (Supplementary Fig. 7). These find-
ings indicate that ANT1 is required for mitochondrial
permeability transition and the subsequent NLRP3 inflamma-
some activation.

SHP2 inhibits NLRP3 activation in an ANT1-dependent
manner. The interaction between SHP2 and ANT1 (Fig. 5),
and the opposite effects of SHP2 and ANT1 shRNAs in the
activation of NLRP3 inflammasome (Figs. 1 and 7) raised the
possibility that the SHP2 may inhibit ANT1 to suppress NLRP3
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inflammasome activation. To test this hypothesis, we compared
the effects of SHP2 only, ANT1 only, and both SHP2 and ANT1
knockdown in THP-1-derived macrophages (Supplementary
Fig. 6). Remarkably, the overactivation of NLRP3 inflammasome
(hallmarked by the excessive production of IL-1β) and damaged
mitochondria (signified by cytosolic mtDNA release) resulted
from SHP2 knockdown was completely reversed by ANT1 and
SHP2 double knockdown (Fig. 8a, b), which is similar to that of
ANT1 only knockdown (Fig. 7a, g). Similarly, the effect of SHP2
inhibitors, NSC87877 and PHPS1, in enhancing IL-1β production
induced by ATP or Nigericin was abrogated in THP-1-derived
macrophages with ANT1 knockdown (Fig. 8c). Furthermore,
ANT1 specific inhibitor bongkrekic acid (BA) and CATR (Car-
boxyatractyloside) interrupted the interaction between SHP2 and

ANT1 (Fig. 8d), and also reversed SHP2 deficiency-induced IL-1β
production (Fig. 8e) and caspase-1 activation (Fig. 8f). These data
indicated that SHP2 negatively regulates NLRP3 inflammasome
activation in an ANT1-dependent manner.

SHP2-ANT1 interaction mediates mitochondrial homeostasis.
Finally, we sought to determine whether the tyrosine phosphatase
activity of SHP2 is involved in ANT1-dependent NLRP3 inflam-
masome regulation. We first overexpressed WT SHP2, or SHP2-
D61A (Asp-61 mutated to Ala in SH2 domain, gain-of-function
mutant), or SHP2-C459S (Cys-457 mutated to Ser in PTP domain,
loss-of-function mutant) in HEK293T cells. As shown in Fig. 9,
overexpression of WT SHP2 or SHP2-D61A but not SHP2-C459S
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inhibited ATP-induced mitochondrial membrane potential col-
lapse (Fig. 9a) as well as caspase-1 activation (Fig. 9b, c), suggesting
the phosphatase activity of SHP2 is required for mitochondrial
homeostasis and attenuation of NLRP3 inflammasome activation.
Indeed, SHP2 phosphorylation level in mitochondria was increased
by ATP treatment in a time-dependent manner (Fig. 4c),

indicating activation of SHP2 in mitochondria. When SHP2 was
knockdown by shRNA, total tyrosine phosphorylation of ANT1
was markedly increased, suggesting that SHP2 may depho-
sphorylate ANT1 (Supplementary Fig. 8). To pin down the specific
ANT1-interacting domain in SHP2, plasmids containing only PTP
domain (SHP2-ΔSH2-HA) or only SH2 domain (SHP2-ΔPTP-
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HA) of SHP2 were overexpressed in HEK293T cells. Co-
immunoprecipitation assay showed that SH2 domain of SHP2
interacted with ANT1 (Supplementary Fig. 9). To further deter-
mine which tyrosine phosphorylation site of ANT1 is depho-
sphorylated by SHP2, we created the dephosphorylated mutant of
ANT1, in which tyrosine was replaced with phenylalanine (Y to F
mutation). As a result, Tyr 191 but not Tyr 195 mutation of ANT1
attenuated the collapse of mitochondrial membrane potential
(Fig. 9d) and suppressed caspase-1 activation (Fig. 9e, f). Notice-
ably, these effects were similar to those of ANT1 knockdown
(Fig. 7). The data presented in Fig. 9 suggest that SHP2-mediated
dephosphorylation of ANT1 at Tyr 191 is critical for mitochondrial
homeostasis and attenuation of NLRP3 inflammasome activation.
Collectively, these data demonstrate that SHP2, by depho-
sphorylating ANT1 and maintaining mitochondrial homeostasis,
constitutes an intrinsic negative regulatory loop to limit NLRP3
inflammasome overactivation (Fig. 10).

Discussion
In this study, we identified SHP2 as a negative regulator of
NLRP3 inflammasome activation. Summarized in Fig. 10, NLRP3

activation triggers SHP2 translocation from cytoplasm to mito-
chondria, where it interacts with and dephosphorylates ANT1, a
central molecule controlling mitochondrial permeability transi-
tion. These molecular events constitute a checkpoint that prevent
mitochondrial damage and thereby inhibit overactivation of
NLRP3 inflammasome and the consequent overproduction of
proinflammatory cytokines IL-1β and IL-18. Loss of SHP2 in
macrophage leads to excessive inflammasome activation in
murine peritonitis model. Together our findings reveal a novel
mechanism by which SHP2, through dephosphorylating ANT1,
provides a crucial negative regulatory loop to prevent uncon-
trolled activation of NLRP3 inflammasome.

As mechanisms leading to inflammasome activation continue
to be intensively investigated, several negative regulators have
been identified to attenuate NLRP3 inflammasome signaling
through different mechanisms. At the molecular level, leucine-
rich repeat Fli-I-interacting protein 224, A2025, small hetero
dimer partner26 and aryl hydrocarbon receptor27 have been
demonstrated to inhibit NLRP3 inflammasome activation in
macrophage. Recently, lipin-2 has been reported to regulate
P2X7 receptor sensitization to limit overactivation of NLRP3
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Fig. 4 SHP2 translocates into mitochondrial matrix during NLRP3 inflammasome activation. a Immunofluorescence analysis of SHP2 and mitochondria
from bone marrow-derived macrophages with untreated (medium) or ATP (5 mM, 15 min), or MSU (500 µg ml−1, 2 h) or Nigericin (10 µM, 2 h) treatment.
Scale bar, 5 µm. b Immunoblot analysis of mitochondrial and cytosolic components of THP-1-derived macrophages treated with ATP (5 mM) for indicated
times. c Immunoblot analysis of SHP2 location in mitochondria from THP-1-derived macrophages. Cells were treated with 5mM ATP for 30min, then
mitochondria were isolated and incubated with 40 μM proteinase K for 30min. Tom20 in mitochondrial outer membrane (MOM) and Tim23 in
mitochondrial inner membrane (MIM) were used as controls, respectively. d Immunoblot analysis of SHP2 expression in submitochondrial fractions from
THP-1-derived macrophages treated with ATP (5 mM, 30min). Tom20, COX IV, and HSP60 were used to represent MOM, MIM, and mitochondrial matrix
protein, respectively. e Immunofluorescence analysis of SHP2 and Tom20 from bone marrow-derived macrophages with untreated (medium) or ATP (5
mM, 30min) by structured-illumination microscopy (SIM). Scale bar, 5 µm. Data are representative of three independent experiments
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inflammasome, which may provide clues to better understand the
molecular features that characterize the high IL-1β production
found in Majeed syndrome patients with LPIN2 mutations28. At
subcellular level, autophagy, the regulated process that allows the
orderly degradation and recycling of cellular components, can
preserve the mitochondrial integrity and consequently inhibits
the mtDNA-activated NLRP3 inflammasome5. Also, NF-κB-p62-

mitophagy axis has also been confirmed to restrain NLRP3
inflammasome activation, serving as a self-limiting loop for NF-
κB-mediated inflammation29. In the present study, we found that
Signal 2 stimuli (i.e., ATP, MSU, and Nigericin), whereas insti-
gating NLRP3 activation on one hand also trigger translocation of
SHP2 into mitochondria, leading to subsequent depho-
sphorylation of ANT1 at Tyr 191 and suppression of
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mitochondrial permeability transition, thus hampering NLRP3
inflammasome activation on the other hand. Notably, we detected
the assembly of NLRP3/ASC/pro-caspase-1 complex as early as 5
min upon ATP treatment (Supplementary Fig. 5). This precedes
the mitochondrial translocation of SHP2 and the depho-
sphorylation of ANT1, both of which were observed at 15–30 min
(Figs. 4b and 5c). The temporal order of signal transduction
suggests that under physiological conditions, the initial activation
of NLRP3 inflammasome (i.e., Signal 2), while induces a burst of
production of pro-inflammatory cytokines IL-1β and IL-18, also
rapidly switches on a negative loop mediated by SHP2. Specifi-
cally, SHP2 is rapidly mobilized to mitochondria and suppresses
ANT1-propagated mitochondrial damage, including collapse of
mitochondrial membrane potential, mitochondrial permeability
transition, and overproduction of mitochondrial DNA and ROS.
When SHP2 was inhibited in macrophages, the negative reg-
ulatory loop became compromised or abrogated, and therefore
led to uncontrolled activation of inflammasome, the extensive
damage of mitochondria and unrestrained release of mitochon-
drial DNA and ROS, which further augment the inflammasome
cascade, leading to aberrant innate immune activation (Figs. 1
and 3). In support of this notion, mice with SHP2 deficiency
developed more severe sterile inflammation, signified by

aggravated peritonitis (Fig. 2). Our data are in line with the
previous study15 demonstrating the negative regulation by SHP2
in TLR3- and TLR4-activated production of pro-inflammatory
cytokines such as IFN-β, IL-6, and tumor necrosis factor-α.
Although we focused on the role of SHP2 in NLRP3 inflamma-
some activation in macrophages in the context of sterile inflam-
mation, SHP2 may also be implicated a variety of pathogen-
associated molecular patterns and other danger-associated
molecular patterns-induced innate immune response in a range
of immune cells. For example, SHP2 is also required for the host
defense against fungal pathogens and the associated production of
pro-inflammatory cytokines and chemokines including IL-1β30.
Future study is warranted to elucidate the comprehensive reg-
ulation of SHP2 in the innate immune response.

As a protein phosphatase, the substrates and the associated
molecular functions of SHP2 largely depend upon the upstream
signals and its subcellular localization31. In the cytosol, SHP2 can
dephosphorylate Gab1, Paxillin or Sprouty proteins32–36, all of
which are involved in the innate immune and inflammatory
response. In the nucleus, SHP2 dephosphorylates STAT1 to
inhibit its transcriptional activity37 or interacts with STAT5 to
regulate prolactin-mediated signaling38. In the mitochondria, the
role of SHP2 remains unclear. Previous studies in the brain and
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Fig. 7 ANT1 knockdown suppresses activation of NLRP3 inflammasome. Two groups of THP-1-derived macrophages, i.e., with shRNA-Ctrl or shRNA-ANT1,
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staining f from THP-1-derived macrophages with shRNA-Ctrl or shRNA-ANT1 lentivirus, followed by LPS treatment and ATP or Nigericin stimulation. g
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endothelial cells suggested that SHP2 can reduce endogenous
mitochondrial ROS formation although the mechanisms are
unclear39,40. This is in line with our finding that mitochondria-
derived ROS was elevated in macrophages with SHP2 knock-
down, which was associated with decreased mitochondrial
membrane potential and increased cytosolic mtDNA (Fig. 3). We
identified in the current study a mitochondria-targeting motif
RRWFH in the N-SH2 domain of SHP2 is required for its
translocation from cytosol to mitochondria and subsequent
interaction with ANT1 (Fig. 6b–f). In order to arrive in the
mitochondrial innermost space—the matrix, SHP2 needs to cross
two membranes, the MOM and MIM41. Our results showed that
this process was mediated by two translocase complexes, the
Tom20/Tom40 complex in the MOM (Fig. 6h), as well as the
Tim23 complex in the MIM (Fig. 6i). Based on mitochondria-
targeting RRWFH motif, with the help of Tom20/Tom40 and
Tim23 complex, SHP2 translocates into mitochondrial matrix
and subsequently interacts with ANT1.

The key regulatory role of SHP2-ANT1 interplay in mito-
chondrial homeostasis and its involvement in inflammasome
activation is supported by the robust rescuing effect of ANT1
inhibition in SHP2 knockdown cells (Fig. 8a,b). Furthermore, the
Y191F mutant of ANT1 mimicked the effect of ANT1 knock-
down in maintaining the mitochondrial integrity (Fig. 9d).
Consistent with previous study, our findings emphasize the
importance of N-SH2 domain in directing SHP2 to the appro-
priate subcellular location, mediating the binding of SHP2 to
other signaling proteins, and determining the specificity of sub-
strate interactions42.

The role of SHP2 has been established in various biological
processes and diseases. Genetically, loss- and gain-of-function

mutations in SHP2-encoding gene PTPN11 have been identified
in Noonan and LEOPARD syndromes43. PTPN11 was first
identified as a proto-oncogene, due to the activating mutations
found in leukemia44. However, loss of SHP2/PTPN11 promotes
hepatocellular carcinoma45, suggesting that PTPN11 also func-
tions as a tumor suppressor. These opposing functions of the
same gene are dependent on cellular context46. Given that innate
immune response and inflammation are closely implicated in
these diseases, the mechanisms we proposed may also contribute
to the development of these pathological conditions. To conclude,
we reveal a previously unknown regulation of SHP2 in NLRP3
inflammasome activation in the macrophages. Such negative
regulation of SHP2, through dephosphorylating ANT1, maintains
mitochondrial integrity and prevents excessive activation of
inflammasome and the ensuing inflammation. Hence, fostering
SHP2-ANT1-mediated mitochondrial homeostasis may offer a
novel therapeutic approach for inducing resolution of NLRP3
inflammasome-dependent inflammatory diseases.

Methods
Chemicals, reagents and antibodies. Phorbolmyristate acetate (PMA, P1585),
4′,6-diamidino-2-phenylindole (D8417), LPS (L2630), ATP (A7699), Nigericin
sodium salt (72445), MSU (U2875), and Ac-YVAD-cmk (SML0429) were purchased
from Sigma-Aldrich (St. Louis, MO). The SHP2 inhibitor NSC-87877 and PHPS1
were purchased from Calbiochem (La Jolla, CA). NAC (S0077) was purchased from
Beyotime (Nantong, China). Disuccinimidylsuberate (21655) was bought from
Thermo Fisher Scientific; enzyme-linked immunosorbent assay (ELISA) kits for
murine or human IL-1β were purchased from Dakewe (Beijing, China). ELISA kits
for murine or human IL-18 were purchased from Raybiotech (Norcross, GA). Anti-
myc-tag (2276, 1 : 1,000 dilution) and anti-HA-tag (3724, 1 : 1,000 dilution) were
purchased from Cell Signaling Technology (Beverly, MA). Anti-NLRP3 (ab17267, 1 :
1,000 dilution), anti-caspase-1 (ab108362, 1 : 1,000 dilution), anti-ANT1 (ab110322,
1 : 1,000 dilution), and anti-p-SHP2 (ab62322, 1 : 500 dilution) were purchased from
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Fig. 8 SHP2 inhibits NLRP3 inflammasome activation in an ANT1-dependent manner. a, b SHP2 knockdown, ANT1 knockdown and SHP2-ANT1 double
knockdown THP-1-derived macrophages were primed with 100 ngml−1 LPS for 3 h, followed by ATP (5mM, 1 h), MSU (500 µg ml−1, 2 h), or Nigericin (10
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Abcam (Cambridge, UK). Anti-PYCARD (ASC, sc-271054, 1 : 2,000 dilution), anti-
Tom20 (sc-136211, 1 : 2,000 dilution), anti-Tom40 (sc-365467, 1 : 1,000 dilution),
anti-Tom70 (sc-390545, 1 : 1,000 dilution), anti-Tim23 (sc-514463, 1 : 1,000 dilu-
tion), anti-HSP60 (sc-376240, 1 : 500 dilution), COX IV (sc-69359, 1 : 400 dilution),
and anti-SHP2 (sc-7384, 1 : 500 dilution) were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA). Anti-Tim22 (14927-1-AP, 1 : 1,000 dilution) was
purchased from Proteintech Group (Wuhan, China). Anti-Actin (M20010, 1 : 2,000
dilution) was purchased from Abmart (Shanghai, China). Anti-mouse Gr1-PE (12-
593, dilution 1 : 50) and anti-mouse CD11b-APC (17-0112, dilution 1 : 50) were
purchased for eBioscience (USA). JC-1 (T-3168), MitoSOX Red Mitochondrial
Superoxide Indicator (M36008), Alexa Fluor 488 goat anti-rabbit IgG (A11008),
Alexa Fluor 488 Donkey Anti-Goat IgG (A11055), Alexa Fluor 594 Goat Anti-Mouse
IgG (A11032), and mitochondrial specific dye MitoTracker Red CMXRos (M7512)
were purchased from Thermo Fisher Scientific (MA, USA) Mitochondria/Cytosol
Fractionation Kit (ab65320) was purchased from Abcam. Incomplete Freund’s
adjuvant was purchased from Sigma-Aldrich. All other chemicals were obtained
from Sigma-Aldrich.

Plasmids and lentivirus. pET21b-caspase-1-His (Plasmid 11809), pCI-ASC-HA
(Plasmid 41553), pGEX-4T1 SHP2 WT (Plasmid 8322), and pCMV-SHP2 (Plas-
mid 8381) were purchased from Addgene. Recombinant vectors encoding human
ANT1, human pro-IL-1β, and human NLRP3 were constructed by PCR-based
amplification of complementary DNA from THP-1 cells, and then were subcloned
into the pcDNA3.1 eukaryotic expression vector. pCMV-SHP2-HA, pCMV-SHP2-
D61A-HA, pCMV-SHP2-C459S-HA, SHP2-mut-HA (R4R5A4A5), SHP2-ΔPTP-
HA, SHP2-ΔSHP2-HA, ANT1-Y191F-myc and ANT1-Y195F-myc were obtained
by PCR-based mutation and amplification of WT expression vector. Plasmids were
transiently transfected into HEK293T cells. The shRNA-Tim22 (sc-94220-V),
shRNA-Tim23 (sc-44155-V) and shRNA-Ctrl (sc-108080) were purchased from
Santa Cruz Biotechnology. The lentivirus for shRNA-SHP2, shRNA-ANT1‚
shRNA-Tom20, shRNA-Tom40, shRNA-Tom70, and shRNA-scramble (shRNA-

Ctrl) were purchased from Shanghai Obio Technology Co. Ltd. (Shanghai, China).
The sequences were 5′-TTCTCCGAACGTGTCACGT-3′ (shRNA-Ctrl), 5′-
ACACTGGTGATTACTATGA-3′ (shRNA-SHP2), 5′-CCTTTGA-
CACTGTTCGTCGTA-3′ (shRNA-ANT1), 5′-GCTCACTTTCCCTCCATTT-3′
(shRNA-Tom20), 5′-GCAAGAACAAGTTTCAGTG-3′ (shRNA-Tom40), and 5′-
GCATGCTGTTAGCCGATAA-3′ (shRNA-Tom70), respectively.

Generation of cSHP2-KO mice. The macrophage-specific cSHP2-KO mice were
generated by crossing SHP2flox/flox mice with Lyz2-Cre transgenic mice (Supple-
mentary Fig. 1). The animals were maintained with free access to pellet food and
water in plastic cages at 21± 2 °C and kept on a 12 h light–dark cycle. All mice are
in C57BL/6 background and are harbored in the specific pathogen-free facility in
Nanjing University. Eight-week-old female cSHP2-KO mice and WT littermates
were used. Animal welfare and experimental procedures were carried out in
accordance with the Guide for the Care and Use of Laboratory Animals (National
Institutes of Health, USA) and the related ethical regulations of our university. All
efforts were made to reduce the number of animals used and to minimize animal
suffering.

Cell culture. Human monocytic THP-1 cell line was purchased from Shanghai
Institute of Cell Biology (Shanghai, China) and cultured at 37 °C in a 5% (v/v) CO2

atmosphere. Before further stimulation, THP-1 cells were treated with PMA (500
nM) for 12 h. Peritoneal macrophages were harvested from mice by flushing the
peritoneal cavity with 5 ml ice-cold phosphate-buffered saline (PBS). Cells were
then centrifuged at 300 g for 10 min and allowed to adhere to glass coverslips
overnight. Non-adherent cells were washed away with PBS and attached cells were
maintained in culture. Bone marrow-derived macrophages were isolated from
C57BL/6 mice and cultured with Dulbecco's modified Eagle's medium supple-
mented with 10% fetal bovine serum and 20 ng ml−1 recombinant murine mac-
rophage colony-stimulating factor (PeproTech, 315-02). Culture fluid was
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Fig. 9 SHP2 dephosphorylation of ANT1 at Tyr 191 is essential for mitochondrial homeostasis. a Flow cytometry analysis of mitochondrial membrane
potential by JC-1 staining of HEK293T cells overexpressing Vector, SHP2-HA, SHP2-D61A-HA, or SHP2-C459S-HA plasmid and left untreated (medium)
or treated with cccp (20 µM, 1 h). b,c HEK293T cells were transfected with pro-caspase-1, ASC, NLRP3, and SHP2-HA, SHP2-D61A-HA, or SHP2-C459S-
HA plasmid, respectively, followed by ATP (5 mM, 1 h) treatment. b Flow cytometry analysis of caspase-1 activation. c Immunoblot analysis of caspase-1
activation. d Flow cytometry analysis of mitochondrial membrane potential by JC-1 staining of HEK293T cells overexpressing Vector, ANT1-myc, ANT1-
Y191F-myc, or ANT1-Y195F-myc plasmid and left untreated (medium) or treated with cccp (20 µM, 1 h). e, f HEK293T cells were transfected with pro-
caspase-1, ASC, NLRP3, and ANT1-myc, ANT1-Y191F-myc or ANT1-Y195F-myc plasmid respectively followed by ATP (5 mM, 1 h) treatment. e Flow
cytometry analysis of caspase-1 activation. f Immunoblot analysis of caspase-1 activation. *P< 0.05, one-way ANOVA for multiple comparisons, NS
represents no significance. Data are representative of three independent experiments (mean and SEM of three independent samples in a, b, d, e)
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exchanged with fresh culture medium every 3 day. Under these conditions, an
adherent macrophage monolayer was obtained at day 7.

Immunoblot assay. Immunoblot assay was performed as described previously47.
Briefly, proteins were extracted in lysis buffer. The proteins were then separated by
SDS–polyacrylamide gel electrophoresis (PAGE) and electrophoretically trans-
ferred onto polyvinylidene difluoride membranes. The membranes were probed
with antibodies overnight at 4 °C, and then incubated with a horseradish
peroxidase-coupled secondary antibody. Detection was performed using a Lumi-
GLO chemiluminescent substrate system. Full-length uncropped blots are pre-
sented in Supplementary Figures 10–16.

Co-immunoprecipitation assay. Proteins from cells were incubated with 1 μg of
appropriate antibody and precipitated with protein A/G-agarose beads (Santa Cruz
Biotechnology). The immunoprecipitated proteins were separated by SDS–PAGE
and immunoblot was performed with the indicated antibodies.

The quantification of mtDNA by quantitative PCR. The quantification of
mtDNA was performed as described previously5. Total DNA was isolated from
cells with a DNeasy Blood & Tissue kit (Qiagen). For the extraction 1 × 107 cells
were homogenized with a Dounce homogenizer in 100 mM Tricine-NaOH solu-
tion, pH 7.4, containing 0.25M sucrose, 1 mM EDTA, and protease inhibitor, then
were centrifuged at 700 g for 10 min at 4 °C. Protein concentration and volume of
the supernatant were normalized, followed by centrifugation at 10,000 g for 30 min
at 4 °C for the production of a supernatant corresponding to the cytosolic fraction.
DNA was isolated from 200 µl of the cytosolic fraction. Quantitative PCR was
performed on BioRadCFX96 Touch Real-Time PCR Detection System (Bio-Rad)
by using iQ SYBR Green Supermix (1708880, Bio-Rad), and threshold cycle
numbers were obtained using BioRad CFX Manager software. The program for
amplification was 1 cycle of 95 °C for 2 min followed by 40 cycles of 95 °C for 10 s,
60 °C for 30 s, and 95 °C for 10 s. The copy number of mtDNA was normalized to

nuclear DNA (cytochrome c oxidase I/18S ribosomal RNA). The primers sequence
was provided in the Supplementary Table 2.

ASC pyroptosome detection. ASC pyroptosomes were detected as described
previously48. THP-1 cells were pelleted by centrifugation and resuspended in 0.5 ml
of ice-cold buffer containing 20 mM HEPES-KOH, pH 7.5, 150 mM KCl, 1%
Nonidet P-40, 0.1 mM phenylmethylsulfonyl fluoride and a protease inhibitor
mixture, and lysed by shearing 10 times through a 21-gauge needle. The cell lysates
were then centrifuged at 5000 g for 10 min at 4 °C, and the resultant pellets were
washed twice with PBS and resuspended in 500 µl of PBS. Next, the resuspended
pellets were cross-linked with fresh disuccinimidylsuberate (4 mM) for 30 min and
pelleted by centrifugation at 5000 g for 10 min. The cross-linked pellets were
resuspended in 30 µl of SDS sample buffer separated using 12% SDS–PAGE and
immunoblotted using anti-mouse ASC antibodies.

Alum-induced peritonitis in mice. Eight-week-old female C57BL/6 mice (10 mice
per group) were intraperitoneally (i.p.) injected with 700 mg Alum (Thermo Fisher
Scientific) as described previously24. For analysis of inflammatory cell subsets, mice
were killed 12 h after Alum injection and peritoneal cavities were washed with 6 ml
of PBS. PECs were collected and analyzed by flow cytometry. The numbers of
neutrophils and monocytes in each mouse were calculated according to its pro-
portion in PECs (Supplementary Fig. 2). For the analysis of IL-1β in the peritoneal
cavity, 8 h after i.p. injection of Alum, peritoneal cavities were washed with cold
PBS. Then the peritoneal fluids were concentrated for ELISA analysis.

Preparation of the subcellular fractions. The cytoplasmic and mitochondrial
fractions were prepared by using the Mitochondria Isolation Kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions. Briefly, THP-1 cells were
lysed by reagents A, B, and C supplied with the kit and centrifuged at 700 g at 4 °C
for 10 min to obtain a postnuclear upernatant. The mitochondria were pelleted by
centrifugation at 10,000 g at 4 °C for 15 min. The supernatant fraction was the
cytosolic protein fraction. The various fractions were analyzed by SDS–PAGE. For
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protease digestion, fractions of mitochondria (resuspended in 20 mM HEPES-
KOH, pH 7.4, 250 mM sucrose, 80 mM KOAc, and 5 mM MgOAc) were incubated
with 40 μM proteinase K (Sigma-Aldrich) for 30 min on ice. Digestion was stopped
with 1 mM PMSF and the samples were determined by immunoblot analysis.
Alkaline extraction was carried out as previously reported21. Briefly, mitochondrial
samples were lysed in 0.1 M Na2CO3, pH 11.5, on ice for 30 min with occasional
vortexing. The membranes were isolated by centrifugation at 100,000 g for 30 min
at 4 °C and analyzed by immunoblot analysis.

Statistical analysis. Data are expressed as mean ± SEM. Statistically evaluated by
Student’s t-test when only two value sets were compared and one-way analysis of
variance (ANOVA) followed by Dunnett’s test when the data involved three or
more groups. P< 0.05 was considered significant.

Data availability. The data that support this study are available within the article
and its Supplementary Information files or available from the authors upon
request.
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