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When there is a sick or injured person requiring immedi-
ate assistance, we typically dial an emergency number to 
request help. Once the emergency is confirmed, an ambu-
lance is dispatched to the scene, with an average response 
time of ten minutes, as depicted in Fig. 1 for various regions 
(Liu et al. 2022). In reality, the ambulance’s arrival time 
often exceeds the ten-minute standard in many cases due to 
various obstructions during the dispatch process, which may 
cause a delay in receiving timely services for the patient. 
Factors contributing to this issue include traffic congestion, 
difficulty in locating the address, long distances, and so on. 
Any of these delays can result in a longer response time.

The prompt transportation of patients to the hospital by 
ambulance is of utmost importance, particularly in life-
threatening emergency situations. However, in some cases, 
patients require emergency treatment at the scene before 
transportation to the hospital, such as in cases of sudden 
cardiac arrest. The timely application of treatments such as 
Automated External Defibrillator (AED) can significantly 
improve patient outcomes. AEDs are small, portable defi-
brillators designed for use by minimally trained or untrained 
non-medical personnel (Karlsson et al. 2020). These 
devices can generate both single-phase and double-phase 
waveforms. While single-phase waveforms can produce a 

1  Introduction

Emergency situations can occur unexpectedly at any time, 
and they can cause signifi-cant harm to people’s lives. While 
the number of reported deaths due to natural calamities 
appears to be decreasing according to data from The Inter-
national Disaster Database (EM-DAT) (Moraes and Luiz 
2022), the number of people affected by natural disasters is 
increasing dramatically. Therefore, reducing the mortality 
rate is generally regarded as the most effective approach. In 
such emergencies, timely medical intervention is critical to 
saving lives and minimizing harm.
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Abstract
This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous 
Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate 
an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is 
equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is imple-
mented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper pro-
vides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, 
and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position 
in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving 
survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localiza-
tion is required.
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high-energy output that can cause damage to the heart and 
skin, double-phase waveforms generate a low energy output 
that shocks the heart twice simultaneously, thereby reducing 
the complications associated with defibrillation.

In accordance with AED guidelines, it is recommended 
that the person rendering assistance immediately call for 
an ambulance prior to administering the AED. In situations 
where two individuals are present, one should call for an 
ambulance while the other manages the AED. Although lay-
people are able to use this device to provide initial aid to a 
victim experiencing cardiac arrest, it would be preferable 
for a person who has completed first aid training to operate 
it. Despite the fact that AEDs are widely available in public 
places, locating them during an emergency is challenging 
in practice (Rothmier and Drezner 2009). This difficulty is 
often exacerbated by initial panic that occurs when indi-
viduals are faced with such circumstances. To address these 
challenges and ensure patients remain alive until the arrival 
of the ambulance, we have developed the Ambulance Robot 
(Ambubot (Samani and Zhu 2016) application, which car-
ries an AED and, according to our long-term plans, is able to 
perform CPR on an individual experiencing cardiac arrest.

Ambubot, equipped with tele-operated capabilities, is 
capable of navigating challenging indoor and outdoor ter-
rains to locate the victim. This robot can effectively commu-
nicate with human rescuers to gather important information, 
such as the location of the victim on a map, and the best way 
for human rescuers to reach the victim (Arif and Samani 
2014). Additionally, Ambubot can address the constraint of 
human limitations in locating the nearest AED to the victim, 
thereby increasing the victim’s chances of survival. In navi-
gating the environment, the robot must determine its loco-
motion before moving to different positions, given that it 
lacks prior knowledge of its initial position and must there-
fore self-localize from scratch. Ambubot must integrate 
advanced navigation and positioning systems to overcome 
the challenges of self-localization and effectively perform 
its rescue operations. Therefore, achieving precise position-
ing of the robot is a key issue to be addressed in this article.

Inertial Navigation Systems (INS) and Global Posi-
tioning Systems (GPS) are utilized to provide precise and 
reliable navigation and positioning in applications such as 
aerospace, maritime, military, and autonomous vehicles 
(Zhang et al. 2021; Cheng et al. 2024). It is known that 
GPS-like signals are susceptible to interference or loss due 
to the limitations of electromagnetic waves (Hu et al. 2023). 
Additionally, small errors in angular velocity and accelera-
tion measurements consolidate into larger errors in velocity 
and position. Due to these limitations, some scholars have 
proposed efficient sensor fusion algorithms and methods 
based on the Kalman filter (Lyu et al. 2024). To improve 
the accuracy of autonomous driving navigation informa-
tion, a navigation technology based on an adaptive Kalman 
filter with an attenuation factor has been proposed to sup-
press noise. According to test results, the accuracy of the 
proposed algorithm is 20% higher than that of a traditional 
adaptive Kalman filter (Liu et al. 2018).

Since the standard Kalman filter is only applicable to lin-
ear systems, and the actual systems we encounter often have 
certain nonlinear characteristics. Bucy and Sunahara per-
formed a nonlinear extension of the Kalman filter algorithm 
and proposed the famous Extended Kalman Filter (EKF). 
For systems with lower dimensions and weak nonlinearity, 
the Extended Kalman Filter is widely used because of its 
simple algorithm structure, small computational load, and 
minimal linearization error (Xu et al. 2023).

In this study, we have employed the Extended Kalman 
Filter (EKF) technique for the Ambubot to determine its 
locomotion. The Inertial Measurement Unit (IMU) with 
9 degrees of freedom, including a 3-axis accelerometer, 
3-axis gyroscope, and 3-axis compass, is utilized to gather 
data related to the Ambubot. The implementation of the 
Extended Kalman Filter is described explicitly in Matlab 
through offline data. Subsequent sections of the paper will 
provide a detailed explanation of this research. The remain-
der of the paper is organized as follows: Sect. 2 presents the 
robot model and sensor device equipment. Section  3 out-
lines the adaptive algorithm of EKF. Section 4 describes the 

Fig. 1  Response Times of Ambulance Services in Various 
Territories
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experimental tests carried out on Matlab. Finally, in Sect. 5, 
concluding remarks are provided.

2  The mobile robot-ambubot

Ambubot (Samani and Zhu 2016), a mobile robot with a 
simple design, is designed to operate efficiently in indoor 
and outdoor environments with rapid maneuverability. The 
robot is equipped with a 9 DOF IMU (Gyro/Accelerom-
eter/Compass) and outdoor GPS for autonomous naviga-
tion. Its weather and water-resistant features coupled with 
a low power consumption rate make it a highly advanta-
geous device. Furthermore, its compact size allows for a 
large payload capacity and its light gripper can lift objects 
up to 10  kg. The gripper’s functionality extends to han-
dling, object inspection, and an articulated sensor platform. 
Ambubot’s two high-resolution video cameras offer the 
operator a remote zoom-in and zoom-out functionality to 
enhance object visibility. Its four powerful motors, one for 
each wheel, enable it to move faster than its contemporaries. 
The key components of Ambubot are illustrated in Fig. 2.

As previously mentioned, Ambubot was utilized as a 
platform for saving the life of an individual experiencing 
cardiac arrest. Two methods were employed to achieve this, 
namely a body-attached sensor and a mobile phone applica-
tion, as depicted in Fig. 3. When either of these techniques 
was activated, a warning message and GPS information 
were immediately transmitted to the Ambubot center. Sub-
sequently, the center utilized a GPS and GIS parser to con-
vert the received longitude and latitude coordinates into 
a street map location. Additionally, the location data was 
integrated with other pertinent information such as personal 
contacts and characteristics, blood type, height, weight, and 
photograph to generate the necessary data required to assist 
the victim.

After processing the data packet, the Ambubot center 
generated two commands, namely a dispatch command, 
which directed Ambubot to move from the station to the 
location of the incident as a precautionary measure to save 
the patient’s life before the arrival of the ambulance, and 
another command, which sent an emergency message to 
family members through the Global System for Mobile 
Communication (GSM) network. In the case of victims 
with the body-attached sensor, family members would 
receive an alert message containing relevant information 
concerning the fallen individual via their mobile phones. 
Furthermore, confirmation of the incident would prompt 
informing the nearest hospital’s ambulance. Ambubot has 
a maximum speed of 10 km/hour and can pass slopes of up 
to 45 degrees. With its faster maneuverability, the robot is 
capable of traversing rough terrain and ascending staircases 
to mitigate the ambulance’s delay.

The body-attached sensor, which is a crucial component 
in the life-saving system, comprises a GPS satellite loca-
tion module, a gyro sensor, a microprocessor, and a GSM 
communication module, as depicted in Fig. 4. To ensure that 
the body-attached sensor does not impede the daily lives 
of individuals, it is integrated into frequently used objects 
such as glasses frames, belts, and watches. The sensor is 
designed with dimensions that are suitable for attaching it 
to the human body, and it consumes minimal power. Addi-
tionally, a tag that contains the patient identification code is 
concatenated with the body-attached sensor. When a patient 
is registered, the identification code can be used to retrieve 
information such as their name, date of birth, age, photo-
graphs, relatives’ contact information, and personal health 
history from Ambubot center, which is critical for ensuring 
the patient’s safety. The microprocessor is the primary intel-
ligent hardware module responsible for computation, while 
the GSM communication module facilitates communication 
between the sensor and Ambubot center for transmitting 

Fig. 2  General structure of 
Ambulance Robot (Ambubot) (a) 
Front view (b) Side view
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can be dispatched to a destination using various methods, 
such as tele-control, partially autonomous, or fully autono-
mous, which are detailed below.

2.1  Tele-control

Tele-control is a system that aids human operators in direct-
ing the maneuvering of Ambubot via a visual display and a 
control pad. The proposed tele-control system’s overview 
is depicted in Fig. 5. Generally, the primary function of a 
tele-control system is to help human operators perform and 
complete complex and uncertain tasks in hazardous and 
less structured environments. In this method, an Ambubot 
requires a human driver who is responsible for controlling 
the robot using a remote control device, which is similar 
to a controller panel, and monitoring the real-time video 
stream from two surveillance cameras on the Ambubot. In 
this scenario, when Ambubot approaches the victim, human 
operators from the control center give detailed instructions 
to people in the vicinity of the victim to operate the AED 
device, which is carried by Ambubot.

2.2  Partially autonomous

Partially autonomous mode combines the autonomous func-
tions of the robot with direct maneuvering by human opera-
tors. The robot can perform some tasks autonomously, but 

emergency rescue messages and receiving commands. To 
ensure proper functioning of the body-attached sensor, it is 
vital to have a power supply that can provide the appropri-
ate amount of power. The sensor sends a message to family 
members to replace the battery when only 10% of the power 
remains, to ensure the system’s normal operation. Ambubot 

Fig. 5  Workflow of the search assistance for tele-control

 

Fig. 4  Block diagram of body-attached sensor

 

Fig. 3  Overview of the system 
workflow
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guidance. This approach differs from the previous sections 
where lay rescuers applied the pads of the AED themselves 
on the victim’s chest. In future plans, Ambubot could also 
perform CPR as the first aid to save the victim’s life in car-
diac arrest. The Ambubot grabber has been designed to be 
light enough to apply the AED pads to the victim’s chest 
and strong enough to withstand the weight of the AED. 
Nonetheless, an obstacle may arise when the victim is in an 
unsuitable posture to apply the AED (see Fig.7).

2.4  System architecture

During the development of Ambubot, we prioritized the par-
tially autonomous method which involves a robot stationed 
in a central location and a control server equipped with a 
computer. The Ambubot center service platform consists of 
three servers: the database server, message controller server, 
and GIS server, as depicted in Fig. 8. All three servers are 
located within a firewall to ensure system security. The data-
base server is designed to store and manage data, while the 
message controller server is linked to the telecom’s short 
message server to improve message processing efficiency, 
including the acceptance and transmission of a large volume 
of short messages through network packets. The GIS server 
is responsible for converting GPS longitude/latitude coor-
dinates into location information such as street addresses 
and landmarks, enabling family members and Ambubot 
to acquire geographic spatial information about the fallen 
patient and dispatch Ambubot more effectively. Addition-
ally, this server is solely responsible for assisting Ambubot 
in finding the possible shortest path between itself and the 
victim.

The system’s connectivity to the GSM network enables 
it to address the issue of invalid GPS signals. The system 
utilizes the GSM-locating service offered by a local GSM 
network company to track the victim’s location. While the 
location of the victim may not be pinpointed accurately, this 
approach resolves the challenge of locating the victim in 
adverse weather conditions.

The block diagram depicted in Fig. 9 illustrates the prac-
tical implementation of dispatching Ambubot to the scene. 
The telepresence technique enables an operator to control 
Ambubot remotely and guide it to the victim’s location. 
Two applications, namely body attached sensors and a 
mobile phone application, work in tandem to generate an 
emergency message along with the current position of the 
victim. The generated data is automatically evaluated and 
transmitted to Ambubot center without any delay as soon as 
a sudden cardiac arrest occurs.

With the widespread use of smart mobile phones, the 
development of a mobile phone application that connects 
to the Ambubot center has become a convenient means of 

human intelligence and flexibility are still needed to adjust 
the task procedures to the real environment and ensure 
safety. In this mode, when Ambubot center receives GPS 
information regarding the victim, the server computes the 
shortest path and transmits it to the robot. Ambubot then 
navigates autonomously while avoiding obstacles and 
streams video through two cameras mounted on the robot to 
display its motion (Arif et al. 2012). This operation method 
can improve navigation and reduce stress for the operators. 
However, human intervention is still needed to provide addi-
tional information to the robot based on the circumstances. 
In the case of cardiac arrest, humans near the victim still 
play an important role in applying the pads of AED on the 
victim’s chest (Fig.6).

2.3  Fully autonomous system

As discussed previously, Ambubot can be dispatched through 
tele-control or partially autonomous methods. However, the 
most advanced method involves a fully autonomous navi-
gation system that delivers an AED to the victim’s loca-
tion and operates it without the need for continuous human 

Fig. 7  Workflow of the search assistance for fully autonomous

 

Fig. 6  Workflow of the search assistance for partially autonomous
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The GIS server, upon obtaining accurate location infor-
mation of the victim, will integrate this data with the mes-
sage controller server, which in turn will connect to the 
telecom’s short message server to send a message to the vic-
tim’s family members. The message will include important 
details about the victim, such as personal contacts, physical 
characteristics, blood type, height, weight, photograph, and 
medical history during cardiac arrest. Ambubot will then be 
dispatched to the scene based on the received information.

Although Ambubot has the capability to perform simple 
tasks autonomously, it still requires human intervention in 
the event of communication failure. This can be achieved 
through a control pad or computer, as illustrated in Fig. 10. 

providing timely medical care to the victim. However, in 
the case of a lack of a smart phone, calling the center can 
serve as an alternative method. The Ambubot center stores 
the history of the victim during the cardiac arrest in the data-
base server, which is extremely useful for family members 
to gain new insights and understand the victim’s healthcare. 
Once the GIS server obtains the location information of the 
victim, it tracks down the victim’s location and converts it 
into important landmarks, thereby producing highly precise 
and accurate information about the victim’s current posi-
tion. Subsequently, the history and location information of 
the victim are integrated with the message controller server.

Fig. 9  The entire scenario of dispatching Ambubot to the scene

 

Fig. 8  System architecture of 
Ambubot center
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squares estimate of a process state (Bai et al. 2023; Xiao et 
al. 2024). This algorithm is particularly useful in estimating 
the state variables of a noisy linear dynamical system, even 
when the modeled system is unknown (Zanetti et al. 2009). 
In the present study, the Extended Kalman Filter (EKF) 
has been selected as a pervasive tool for implementation 
in Ambubot, specifically in the domain of navigation and 
global positioning.

The loop of Ambubot is composed of three modules: 
the control or vehicle path module, the observation module 
which utilizes the IMU sensor, and the estimation module 
utilizing EKF. The IMU sensor on Ambubot has 9 degrees 
of freedom, allowing it to output roll, pitch, and yaw esti-
mates. The accelerometer generates pitch estimates, the 
gyroscope generates roll estimates, and the compass gener-
ates yaw estimates. The complete loop of Ambubot is illus-
trated in Fig. 12.

3.1  Control module

The input of the control module is the angular position pro-
vided by the estimation module. By using the two-stage 
correction and quaternion approaches, the angular position 
can be efficiently adjusted in the system. The primary objec-
tive of the control module is to aid Ambubot in following 
an intended path by utilizing the knowledge of the angular 
position and a set of predefined routines, namely GoPoint 
and FollowPath.

The GoPoint routine enables Ambubot to reach a spe-
cific point in space. The control module also features the 
FollowPath routine that enables Ambubot to follow a path. 

Additionally, as depicted in Fig. 11, Ambubot is equipped 
with high-resolution video and audio capabilities, allow-
ing human operators to obtain detailed information about 
the surroundings. Upon reaching the victim’s location, the 
human operator instructs lay rescuers on how to apply the 
AED pads to the victim’s chest.

3  Position estimation with an extended 
kalman filter

The Kalman Filter (KF) is a recursive algorithm that can 
estimate the state variables of a dynamic system by inte-
grating all available measurements and providing a least 

Fig. 11  Ambubot controller 
interface
 

Fig. 10  Remote operation of Ambubot in Ambubot center
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Inaccuracies in the angular position estimation were subse-
quently rectified using data from both the accelerometer and 
magnetic compass, which functioned as fixed references.

The observation module started with defining a discrete-
time state equation x̂−k that describes the evolution of the 
system statexk . It is started from the system state at the pre-
vious step xk. with the evolution law described by the matrix 
Ak  and responding to some system inputs uk. with the evo-
lution law Bk.. Accordingly, this equation can be written as

x̂ −
k = Akx̂k−1 + Bkuk � (3)

Equation  (2) is called priori system state estimation. It is 
denoted by superscript minus and by the hat on the system 
state xk. Those signs represented by this equation aim to 
describe that the real system state is unknown. Therefore, 
the Kalman Filter is used to provide estimation.

3.3  Estimation module

In order to represent the angular position as system state, we 
used the quaternion in the state equation. With using quater-
nion, the system can be better linearized despite the fact that 
the inclusion of other variables in the system state leads to 
greater processing power (Kim and Golnaraghi 2004; Yuri 
et al. 2008). Further, it does not significantly improve accu-
racy of the angular estimation. On the other hand, it tends 
to make bigger matrix operations. The angular position is 
represented using a quaternion q

The linear velocity is the output of these routines, and the 
velocity of each wheel is determined using the following 
equations:

Vright =
2πRrightnright

NT
� (1)

Vleft =
2πRleftnleft

NT
� (2)

where Rright  and Rleft  are the radii of the right and left 
wheels, nright  and nleft  are the pulse frequencies for the 
right and left wheels, N  is the motor resolution (pulse per 
revolution) and lastly, T  is the gear ratio from the driving 
motor to the wheels (Hardt et al. 1994).

3.2  Observation module

In this particular module, we utilized the IMU sensor of 
Ambubot, which provides accurate, reliable, and wide-
ranging sensor data, to obtain full 9 degrees of freedom. 
During the initial movement of Ambubot, three distinct 
input data types, namely the gyroscope, accelerometer, and 
magnetic compass, were employed. The gyroscope mea-
sured the angular rate on each of the three axes in degrees or 
revolutions per second (Chang et al. 2010) and also served 
as an input to update the angular position. The accelerom-
eter, on the other hand, measured the acceleration in grams, 
while the magnetic compass data measured the magnetic 
field in gauss (Tan and Park 2005; Bird and Arden 2011). 

Fig. 12  Sensor fusion algorithm principles for Ambubot
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external input with the evolution law uk. Bk  [see (2)] and 
thus a time-varying ATC = (1/2)Ωn

nb  matrix was obtained. 
The time-continuous form can be written as in (11) by mak-
ing explicit the derivative operation

q̇bn = limT→0
qbn (t + T )− qbn (t)

T
= ATCq

b
n (t)� (12)

For the digital Kalman Filter implementation, we need to 
convert Eq. (11) to a discrete-time one with using the time 
step T between each execution of the algorithm. As a result, 
we derive

qbn (t + T ) = qbn (t) + ATCq
b
n (t) T = (I + ATCT ) q

b
n (t) � (13)

Ak  is the discrete-time matrix with the form shown in

Ak = (I + ATCT ) =

(
I +

1

2
Ωn
nbT

)
� (14)

The quaternion norm is not preserved in the state equation. 
As the angle position can be correctly represented only 
with unit quaternions, a normalization unit was thus used to 
ensure data integrity.

As mentioned earlier, the angular position is updated 
using Eq.  (2) with gyro data only. Therefore, we need to 
determine the correction equation of the Kalman Filter. 
Basically, there are two correction equations in our system, 
one for each stage: the first correction stage uses data from 
the accelerometers to correct the system state and the sec-
ond correction stage uses data from the magnetic compass. 
Using the Kalman Filter theory, the correction equation can 
be calculated with the following

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
� (15)

In Eq.  (14), the residual is derived from the difference 
between the actual measurement zk., which is the accel-
erometer or the magnetic compass data, and the expected 
measurement Hx̂−k  that is calculated from (2). In order to 
calculate a posteriori estimation of the system state x̂k , the 
residual must be weighted with the Kalman gain Kk.. In 
addition, we used an extended Kalman Filter and the nonlin-
ear relationship h

(
x̂−k

)
 to calculate the estimated gravity or 

the magnetic field (Sabatini 2006; Roetenberg et al. 2007).
The Kalman gainKk is calculated with involving many 

matrix operations. Consequently, we need to define a priori 
noise covariance P−

k in the state estimation using a priori 
state equation. This can be expressed as

P−
k = AkPk−1A

T
k +Qk−1� (16)

q = [q0, q1, q2, q3]
T � (4)

where q0. represents the real number, and v = [q1, q2, q3]
T  

represents the vector.
A rotation can be uniquely defined by the axis of rotation, 

in this case vector v, and by the angle of rotation α  around 
a given axis. This expression can be shown in

q = cos
(α
2

)
+ sin

(α
2

)
∗ v � (5)

The quaternion must have unit norm to correctly represent a 
rotation. The quaternion norm is given by

|q| =
√

q20 + q21 + q22 + q23 � (6)

The angular rotation is subsequently converted from the 
quaternion to the Euler angle version using standard formu-
las. In this case, the X Y Z sequence of Euler angles was 
chosen. Based on this form, the roll, pitch, and yaw angles 
can be expressed as

ϕ = atan2
(
2 (q2q3 + q0q1) ,

(
q20 − q21 − q22 − q23

))
� (7)

θ = asin

(
2 (q0q2 − q1q3)

(q20 + q21 + q22 + q23)

)
� (8)

ψ = atan2
(
2 (q1q2 + q0q3) ,

(
q20 + q21 − q22 − q23

))
� (9)

The state equation in the time-continuous form can be 
expressed by

q̇bn =
1

2
Ωn
nbq

b
n � (10)

where the quaternion qbn  represents the rotation of the body 
frame, united to the IMU sensor, with respect to the inertial 
n-frame. Besides, the rotational matrix Ωn

nb  is derived from 
the quaternion’s properties

Ωn
nb =





0 −wx −wy −wz

wx 0 wz −wy

wy −wz 0 wx

wz wy −wx 0



� (11)

In the matrix (10), wx, wy, wz are the angular velocities mea-
sured by the gyroscope sensor. The gyro data are used to 
determine the matrix deriving the evolution of the system 
from the previous state. Consequently, there is no explicit 
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Hk1 =
∂h1[i]
∂q|j|

=




−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
2q0 −2q1 −2q2 2q3



� (21)

The current angular position is not affected by the acceler-
ometer noise as well as the magnetic compass noise. There-
fore, the Jacobian matrix Vk  is an identity matrix. The roll 
and pitch angles can be easily corrected with the gravity 
vector measurement. To ensure the applicable corrections 
do not influence yaw estimation, the third vectorial part of 
the correction quaternion qε1 is set equal to zero.

qε1 = qε1,0 + qε1,1 + qε1,2 + 0 · qε1,3� (22)

In the second stage of our method, we used the same algo-
rithm but using different noise covariance matrices to cal-
culate a second Kk2 gain. The magnetic field, normalized to 
one, is considered directed along the y.–axis only, and the 
vertical component is neglected. It is owing to the Earth’s 
magnetic field has a variable intensity from 0.25 to 0.65 G 
and the vertical component is geographically dependent. 
The magnetic field of the Kalman Filter is calculated with 
the following

h2 (qk) = m̂ = Rb
n




0

1

0



 =




2q1q2 + 2q0q3

q20 − q21 − q22 − q23
2q2q3 − 2q0q1



� (23)

The Jacobian matrix Hk2 is calculated with the following

Hk2 =
∂h2[i]
∂q|j|

=




2q3 2q2 2q1 2q0
2q0 −2q1 −2q2 −2q3
−2q1 −2q0 2q3 2q2



� (24)

In this case, only yaw angle is affected by magnetic anoma-
lies while others are not. Therefore, the first two vectorial 
parts of the correction quaternion qε2 are set equal to zero.

qε2 = qε2,0 + 0 · qε2,1 + 0 · qε2,2 + qε2,3� (25)

4  Experimental results

This section outlines the simulation results of the system’s 
performance using the Extended Kalman Filter (EKF) 
algorithm. The experiment was conducted to evaluate the 
system’s performance while moving along a path mainly 
composed of straight lines that are 6 m in length. Moreover, 
the experiment used real data acquired by an Ambubot while 
navigating an indoor environment located on the fourth 
floor of National Taipei University Humanity building. The 

where the matrix Pk−1 is a posteriori noise covariance matrix 
at the previous filter iteration [see (17)], while the matrix 
Ak is the system evolution that contains the gyro data. In 
our system, the process noise covariance matrix Qk−1 is 
directly depending on the noise of the gyro and other gyro 
error sources. Additionally, the Qk−1value is related to the 
noise during the system evolution.

In the extended Kalman Filter, the Kalman gain is esti-
mated with the following

Kk = P−
k H

T
k

(
HkP

−
k H

T
k + VkRkV

T
k

)−1 � (17)

whereHk  and Vk  are the Jacobian matrices of the partial 
derivatives with respect to the noise of the nonlinear equa-
tions h1 and h2 [see (18) and (22)] and to the quaternion. 
These equations relate the quaternion to the estimated grav-
ity and magnetic field. Moreover, an Extended Kalman 
Filter is used in these equations owing to the nonlinearity 
of these equations. In this system, the measurement noise 
covariance matrixRk  directly depends on the accelerometer 
and magnetic sensor noises, also other error sources that are 
considered as noise.

At the end, it is necessary to define a posteriori error 
covariance matrix Pk  to be used in the subsequent filter 
iteration.

Pk = (I −KkHk)P
−
k � (18)

The first correction stage in our system uses accelerometer 
data to correct the system state. To calculate the expected 
gravity vector, it is necessary to calculate the estimated 
angular position and is subtracted from the value measured 
from the accelerometer, obtaining the so-called residual. 
The direction cosine matrix Rb

n  in Eq. (19) is used to calcu-
late the estimated gravity vector ĝ  with the g–force accel-
eration |g|  constant.

h1 (qk) = ĝ = Rb
n




0

0

|g|



 = |g|




2q1q3 − 2q0q2
2q0q1 + 2q2q3

q20 − q21 − q22 + q23



� (19)

Rb
n =




q20 + q21 − q22 − q23 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q20 − q21 + q22 − q23 2q2q3 + 2q0q1
2q1q3 + 2q0q2 2q2q3 − 2q0q1 q20 − q21 − q22 + q23



� (20)

Apart from measuring gravity, the accelerometer is also used 
to measure the external accelerations in a dynamic state. 
However, this tends to make the measured gravity suffers 
from significant errors. Thus, the residual must be weighted 
with theKk1gain which is a coefficient calculated from the 
statistics of the noise covariance matrices of the system. The 
Jacobian matrix Hk1of the Kalman gain is calculated with:
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Figure 13 illustrates the angular displacement of Ambubot 
obtained by applying the moving average methodology. 
It is noteworthy that the instantaneous errors between the 
measured and estimated positions are considerably large. 
Unlike the EKF, the moving average technique does not 
continuously update the angular position to produce a more 
accurate estimation, even though its overall performance is 
acceptable on average.

In Fig.  14, the angular estimation of Ambubot based 
on the EKF is presented. It can be observed that the errors 
derived from the EKF are smaller in comparison to those 
obtained from the moving average technique. This can be 
attributed to the two correction stages of the EKF utilized in 
our system. As a result, the EKF provides position estimates 
that are nearly identical to the measured data. Moreover, the 
application of the EKF technique enables the correction of 
angular position errors that arise from the IMU, leading to 
accurate localization of Ambubot.

Any bias present in the IMU sensor’s output can have 
a direct impact on the accuracy of the Ambubot’s position 

system’s performance was evaluated to confirm the accurate 
estimation of the initial position. The data collection was 
carried out using a laptop mounted on the Ambubot, which 
also sent commands to the robot.

The position of Ambubot is calculated using data col-
lected by its IMU, which provides acceleration, gyroscope, 
and magnetic compass data. These data are gathered during 
Ambubot’s navigation and are used as input to the simula-
tion program. The angular displacement results obtained by 
applying the EKF to the IMU data are shown in Figs. 13 
and 14. The true position of Ambubot is represented by a 
red line, the EKF estimate by a green line, and the noisy 
IMU measurements by the remaining curve. The IMU is 
highly sensitive to its surroundings. Therefore, to assess 
Ambubot’s comparative performance, we ran the program 
in Matlab using two different methodologies: a moving 
average approach and the EKF. Table 1 displays the angular 
displacement between the measured and estimated positions 
obtained from each method.

Fig. 14  The plot of measured angular position and esti-
mated angular position using the EKF
 

Fig. 13  The plot of measured angular position 
and estimated angular position using a moving 
average
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AED. In fully autonomous mode, Ambubot carries out the 
AED on its own without any human intervention, while in 
partially autonomous mode, laypeople must apply the AED 
pads to the victim’s bare chest.

During the system modeling and design, we developed 
an Extended Kalman Filter as a sensor fusion algorithm, 
and we used quaternions to represent angular position data. 
Quaternions offer more flexibility than Euler angles, as they 
can be easily linearized and converted to other rotation rep-
resentation methods. To enhance flexibility and simplify 
our system, we utilized two correction stages of the EKF. 
The first correction stage uses accelerometer data to correct 
the system state, while the second correction stage employs 
magnetic compass data for angular position correction. Our 
simulation results show that the EKF performed well with 
Ambubot, with a smaller error effect on the angular position 
compared to the moving average technique.

Author contributions  Conceptualization, C.Y.and C.L.; methodology, 
C.Y. and H.S.; validation, C.Y., H.S., Z.T; formal analysis, C.Y., H.S., 
Z.T; resources, C.Y. and C.L.; writing—original draft preparation, 
C.Y., H.S., Z.T; writing—review and editing, C.Y., H.S., Z.T; supervi-
sion, C.L.; project administration, C.L.; funding acquisition, C.L.

estimation. However, when a bias was introduced to the 
accelerometer, as shown in Fig. 15, the estimation position of 
Ambubot was not significantly affected, and the performance 
remained superior to that of the moving average technique. 
Overall, the EKF method performed satisfactorily in our sys-
tem, even when a bias was present in the IMU sensor’s out-
put. Although the experiments were conducted in an offline 
manner, it was evident that the EKF method is highly effec-
tive and can be implemented in real-time scenarios.

5  Conclusion

The dispatch process of Ambubot to victim locations can 
be achieved through tele-control, partially autonomous, or 
fully autonomous methods. In tele-control, a remote opera-
tor uses a remote control device to steer Ambubot and moni-
tors the live video stream from two surveillance cameras to 
locate and approach the victim. In contrast, Ambubot oper-
ates in autonomous navigation and obstacle avoidance mode 
in partially and fully autonomous methods. The primary dif-
ference between these two methods lies in the execution of 

Table 1  Comparison of the angular displacement errors in different approaches
Time/s Angular Position (Radian) Moving Average EKF EKF

(Bias: 2.05)
Estimated Error Estimated Error Estimated Error

1 1.8 4.8 3 1.78 0.02 1.8 0
2 4.3 4.3 0 4.28 0.02 4.35 0.05
3 8.6 8.6 0 8.65 0.05 10 1.4
4 12.7 17.4 4.7 12.7 0 12.71 0.01
5 20 19.5 0.5 20.18 0.18 20 0
6 28.8 30.9 2.1 28.8 0 27.9 0.9
7 39.4 38.2 1.2 39.46 0.06 39.5 0.1
8 50.2 50.2 0 50.3 0.1 51.1 0.9
9 62.1 63.9 1.8 62.1 0 62.4 0.3
10 77.5 77.8 0.3 76.8 0.7 76.5 1

Fig. 15  The plot of measured angular position and 
estimated angular position using the EKF by adding the 
measurement bias of accelerometer 2.05
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