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Ganesh Kumar Venayagamoorthy
Missouri University of Science and Technology, USA

Abstract–The smart electric power grid will evolve into a very complex adaptive system under 
semi-autonomous distributed control. Its spatial and temporal complexity, non-convexity, non-lin-
earity, non-stationarity, variability and uncertainties exceed the characteristics found in today’s tra-
ditional power system. The distributed integration of intermittent sources of energy and plug-in 
electric vehicles to a smart grid further adds complexity and challenges to its modeling, control 
and optimization. Innovative technologies are needed to handle the growing complexity of the 
smart grid and stochastic bidirectional optimal power flows, to maximize the penetration of 
renewable energy, and to provide maximum utilization of available energy storage, especially plug-
in electric vehicles.

Smart grids will need to be monitored continuously to maintain stability, reliability and effi-
ciency under normal and abnormal operating conditions and disturbances. A combination of capa-
bilities for system state prediction, dynamic stochastic power flow, system optimization, and 
solution checking will be necessary. The optimization and control systems for a smart-grid envi-
ronment will require a computational systems thinking machine to handle the uncertainties and 
variability that exist. The importance and contributions of the computational intelligence field for 
developing the dynamic, stochastic, computational, and scalable technologies needed for sense-
making, situational awareness, control and optimization in smart grids are presented in this paper.
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I. Introduction

The North American electric power grid built several 
decades ago is the world’s largest single machine ever 
built by man, and it is ranked as the number one great-
est achievement of the 20th century by the US 

National Academy of Engineering (NAE). It is a complex adap-
tive system under semi-autonomous control. The complexity 
and interconnectivity of the electric power grid increases with 
all forms of distributed integration of renewable sources of 
energy and energy storage. The smart grid’s growing complexi-
ty requires different approaches to traditional methods of mod-
eling, control and optimization in power systems. These new 
approaches need either to be augmented with existing ones or 
completely replaced in some cases, providing capabilities for 
rapid adaptation, dynamic foresight, sense-making, situational 
awareness, fault-tolerance and robustness to disturbances and 
randomness.

The NAE committee on Engineering Grand Challenges has 
identified 14 areas awaiting solutions in the 21st century, 
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including solving energy problems, reverse engineering the 
brain, and securing cyberspace [1]. All these tasks are very 
important for realizing a true smart grid in 21st century.

In many parts of the world today, the electric power infra-
structure is a major area of research and development, especially 
given the introduction of smart grid technologies and task forc-
es [2]-[6]. Professional societies across the world have launched 
task forces and working groups [7]. The IEEE Computational 
Intelligence Society launched its smart grid task force in Octo-
ber 2010 with members from many IEEE regions [8].

The smart grid can be viewed as a digital upgrade of the 
existing electricity infrastructure to allow for the dynamic opti-
mization of current operations as well as the incorporation of 
dynamic gateways for alternative sources of energy production 
and storage. A smart grid [9], sometimes referred to as the 
Intelligent Grid/Intelligrid and FutureGrid, must have certain 
basic functions for modernization of the grid (as indicated in 
the Energy Independence and Security Act of 2007) [2], 
including:

 ❏ Having a self-healing capability.
 ❏ Being fault-tolerant by resisting attacks.
 ❏ Allowing for the integration of all energy generation and 
storage options, including plug-in electric vehicles.

 ❏ Allowing for the dynamic optimization of grid operation 
and resources with full cyber-security.

 ❏ Allowing for the incorporation of demand-response, 
demand-side resources and energy-efficient resources.

 ❏ Allowing electricity clients to actively participate in grid 
operations by providing timely information and control 
options.

 ❏ Improving the electricity infrastructure’s reliability, power 
quality, security and efficiency.
In order to carry out the functions mentioned above, intel-

ligent systems that increase and provide the ability to monitor, 
forecast, plan, learn, understand complexity, share understanding 
across neighboring areas, schedule, make decisions and take 
appropriate actions to ensure stability, reliability and efficiency 
of an electric power grid are required. Intelligent technologies 
that show promise and have the potential to achieve smart grid 
goals are more likely to be those that are Dynamic, Stochastic, 
Computational and Scalable (DSCS). DSCS technologies are 
important to achieve Global Dynamic Optimization (GDO) of 
the electric power grid. 

The Electric Power Research Institute (EPRI) and the US 
National Science Foundation (NSF) co-sponsored an interna-
tional workshop on GDO of the electric power grid in April 
2002 in Playacar, Mexico [10]. At this meeting, some challenges 
and potentials were brainstormed. Computational intelligence 
and adaptive critic designs were presented as a promising 

potential approach for GDO. Four years later, 
NSF sponsored a workshop on Approximate 
Dynamic Programming (ADP) in Cocoyoc, 
Mexico [11], [12]. In this workshop, Werbos 
presented the challenge of how to build/
understand systems with truly brain-like intel-

ligence [13]. In 2007, the NSF Office of Emerging Frontiers in 
Research and Innovation solicitated proposals on the topic of 
Cognitive Optimization and Prediction: From Neural Systems 
to Neurotechnology (COPN) under program directorship of 
Werbos. Neuroscience and Neural Networks for Engineering the 
Future Intelligent Electric Power Grid (the Brain2Grid project) was 
one of four COPN proposals selected for funding [14]. 

The importance and contributions of the Computational 
Intelligence (CI) field in developing DSCS technologies that 
can smarten the electric power grid (smart grid) are described 
in this paper [15], [16]. Section II of this paper briefly 
 introduces the concept of computational systems thinking and 
the role of CI in the development of a Computational Systems 
Thinking Machine (CSTM). Sections III to V describe typical 
smart grid problems where CSTM with DSCS technologies 
are required, and how CI-based approaches address some of the 
complex smart grid challenges.

II. Computational Systems Thinking
Systems thinking is an approach to understanding how compo-
nents in a system influence each other within an entirety and 
where solutions are derived based on coupled dynamics [17]. 
Computational methods and models enable us to solve com-
plex problems that seem impossible otherwise. Computational 
thinking builds on the power and limits of computing processes 
[18]. Computational systems require three strands of thinking 
to handle an evolving, uncertain, variable and complex envi-
ronment such as the smart grid; these are systems thinking for 
sense-making, systems thinking for decision-making, and systems 
thinking for adaptation. In other words, there are sense-making 
agents, decision-making agents and adaptation agents. These 
agents are also referred to as the communication, computation 
and control (C3) agents, respectively. In the center of all this sys-
tems thinking is the real-time wealth of knowledge that con-
tinuously evolves and refines itself as the system undergoes 
changes. The knowledge well learns and unlearns facts and 
insights over time. A single computational systems thinking 
machine is shown in Fig. 1. Note that for a smart grid, several 
of these will co-exist in harmony while coordination and com-
munication are enabled between similar and different agents. 
Collaboration between co-existing agents is essential for sense-
making, decision-making and adaptation. In other words, col-
laborative computational systems thinking is needed between 
levels – horizontally and vertically.

Computational intelligence and Adaptive Critic Designs 
(ACDs) are important in developing a true CSTM. CI is the 
study of adaptive mechanisms to enable or facilitate intelli-
gent behavior in complex, uncertain and changing environ-
ments [19]. These adaptive mechanisms include those 

Smart grid’s growing complexity requires different 
approaches to traditional methods of modeling, 
control and optimization in power systems.
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nature-inspired and artificial intelligence paradigms that 
exhibit an ability to learn or adapt to new situations, to gen-
eralize, abstract, discover and associate. The typical paradigms 
of CI are neural networks, immune systems, swarm intelli-
gence, evolutionary computation and fuzzy systems, as illus-
trated in Fig. 2 [20]. These paradigms can be hybridized to 
form neuro-fuzzy systems, neuro-swarm systems, fuzzy-PSO 
systems, fuzzy-GA systems, neuro-genetic systems, etc., as 
shown in Fig. 2. The hybrids are superior to any one of the 
paradigms in one or more ways [21].

ACDs, proposed by Werbos and based on combined con-
cepts of reinforcement learning and approximate dynamic pro-
gramming, are powerful approaches for the control and 
optimization of complex systems [22], [23]. ACDs use neural 
network (critic and action network) based designs for optimi-
zation over time and for solving the Hamilton-Jacobi-Bellman 
equation of optimal control. The critic network approximates 
the cost-to-go function J of Bellman’s equation of dynamic 

programming (1) and is referred to as the heuristic dynamic 
programming (HDP) approach in ACDs,

 J 1 t 2 5 a
`

k51
gkU 1 t1 k 2 , (1)

where g is a discount factor between 0 and 1, and U(t) is a util-
ity/reward function or a local performance index. The action 
network provides optimal control to minimize or maximize 
the cost-to-go function J. There are different members of the 
ACD family that vary in complexity and power [24]. 

A hybrid approach consisting of conventional and CI-
ACD technologies is sufficiently powerful to develop a 
CSTM for a smart grid. CI attributes towards a CSTM are 
illustrated in Fig. 3.

III. Intelligent Sense-Making 
and Situational Awareness
Sense-making is the process by which individuals attach a 
meaning to an experience. Sense-making is at the heart of 
learning cognitive skills and often must occur in highly uncer-
tain situations. Gathering more information does not always 
reduce uncertainty. Other concerns reside with the information 
sensed. Is it trustworthy? Is it controversial or contrary to what 
is known? If so, then the data to be analyzed becomes complex. 
In the smart grid environment, depending on the type of deci-
sions and controls, the time to act upon the understanding 
derived may be limited. Recognizing/identifying the right dots 
in the data (and information) is the critical component to time 
constrained sense-making. An important characteristic that a 
CSTM should possess is its ability to transform ‘data’ into ‘infor-
mation,’ ‘information’ into ‘knowledge,’ and ‘knowledge’ into 
understanding’ at their respective levels and in a timely manner 
(Fig. 4). For example, based on actual and predicted wind speeds 
across geographical locations, a CSTM should be able to 
dynamically project and dispatch power flows in a smart grid to 

(from) energy storage in order to accom-
modate excess (deficits) in wind power 
generation. For different system distur-
bances, a CSTM should have capabilities 
to predict the modal frequencies that 
would be excited based on sensor data, 
such as phasor measurements, and in-turn 
coordinate power oscillation damping 
controllers to suppress the critical modes.

Situational awareness is critical for 
secure and efficient smart grid operation. 
A general definition of situational aware-
ness (SA) is that it is the perception of 
environmental elements within a volume 
of time and space, the understanding of 
their meaning, and the prediction of their 
states in the near future. SA by control 
room operators is of great importance for 
secure operation of the electric power 
grid. Despite the importance of analytical 
methods, continuous data sense-making 
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FIGURE 1 CSTM – the integrated cycle of sense-making, decision-
making and adaptation. The knowledge base is the domain of 
expertise evolved continuously with experience accumulated.
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is critical for ensuring the stability of the 
smart grid. It is said that more informa-
tion (a lot of data) does not necessarily 
matter in critical operations; rather, what 
is important is to prioritize the under-
standing of what matters at the respective 
instances. It is also critical that an under-
standing be gained from a shared view 
because the power grid is interconnected, 
and its dynamics are spatially and tempo-
rally connected. Researchers at the Pacif-
ic Northwest National Laboratory 
(PNNL) introduced new ways of look-
ing at the problem of SA to increase 
awareness of grid operators [25].

Accurate and timely communication 
of states of generation, transmission and 
distribution systems is critical for ensur-
ing the stability of interconnected smart 
electric power grids. The report on the 
Northeast Blackout on August 14, 2003, 
shows that it was difficult to get reliable information from the 
state estimation software/simulations, contingency analysis 
results, and critical status of power lines relating to the status of 
systems outside of the individual areas [25]. A failure in SA 
occurred mainly to due to a lack of shared information across 
control areas, leading to a cascaded blackout.

In the following subsections, forecasting, voltage stability 
monitoring, real-time stability assessment, and maintenance 
scheduling are discussed. 

Forecasting: Forecasting dynamic loads and sources of electric 
energy is necessary for smart operations of the grid. Unit com-
mitment and economic (and emission) dispatch are carried out 
based on load forecasting [26]. Typically, the amount of the load 
depends on a number of factors, including time of the day, day 
type (weekday or weekend), temperature, humidity, season and 
location. Several classical techniques, such as regression analysis, 
statistical methods and time series analysis, have been tested but 
ultimately ruled out due to their limited accuracy [27]. CI 
techniques have been studied extensively and appear to provide 
accurate load predictions [28]. This is one of the successful areas 
where CI-based software is commercially available and is used 
extensively by many utilities all over the world [29]. 

When alternative sources of energy are connected to a 
power grid, be it wind or solar farms, dynamic load and electric 
energy at a given time must be forecasted 
in order to carry out an efficient and eco-
nomical operation of a smart grid. Pre-
dicting solar and wind power is a 
complex problem due to high spatial and 
temporal dependencies that cause vari-
ability and uncertainties. CI-based hybrid 
approaches have been shown to be prom-
ising tools for wind and solar energy pre-
dictions [30], [31]. Recurrent neural 

networks can be used for characterizing and modeling the 
 performance of wind and solar system installations. These char-
acterization systems simultaneously use weather data and per-
formance data over a period of time to learn the input/output 
relationships between weather and system performance [32]. 
Such systems will become necessary in smart grids for energy 
and load dispatch as renewable source installations spread widely.

Voltage Stability Monitoring: Voltage stability awareness has 
become an issue of great concern for both power system plan-
ning and operation in recent years as a result of a number of 
major blackouts experienced in many countries due to voltage 
stability problems. These problems are due mainly to power 
systems being operated closer to their stability limits because of 
increased demand for electricity [33]. A comparative study and 
analysis of six different voltage stability indices was presented in 
[34]. Neural networks have shown promise for voltage stability 
monitoring. A new method to estimate the voltage stability 
load index (VSLI) at each load bus based on synchrophasor 
measurements of voltage magnitudes and angles at load buses 
using echo state networks (ESNs) was reported in [35]. Figs. 5 
and 6 show the application of an ESN for VSLI estimation in 
an IEEE14 bus system, and the estimation of VSLIs at the 
 different load buses with an outage of one of the system’s paral-
lel transmission lines [35].
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FIGURE 3 CI attributes towards development of a CSTM.

Data Information Knowledge Understanding

FIGURE 4 Transforming data into understanding by the sense-making strand of a CSTM.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 30,2024 at 18:17:37 UTC from IEEE Xplore.  Restrictions apply. 



26    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2011

Real-Time Stability Assessment: Real-time stability assessment 
(RT-SA) of power systems is a challenging and important prob-
lem in electric utility today and is expected to become even 
more important with smart grids. Some key challenges associat-
ed with RT-SA [36] are: the large numbers of contingencies and 
sequences of events that are typically needed to provide accurate 
SA; the wide range of operating conditions and topology of the 
power system that make the operating space very complex; the 
speed with which the SA can be assessed in real-time; the large 
number of measurements available in the power system; the lack 
of methods to enhance the correlations between measurements 
and SA; and the lack of an effective assessment index. The appli-
cation of neural networks to dynamic security contingency 
screening and ranking is summarized in [37]. 

The RT-SA of a power system is an important smart grid 
initiative towards achieving better energy stability, security, effi-
ciency and emergency resilience in the presence of generation 
outages (reflecting N2 1, N2 2, c, N2 k contingencies), 
and better handling load shedding (load outages), major system 
perturbation (through faults), and topology changes (transmis-
sion line outages). First, this requires wide-area measurements, 
dynamic system models, and evaluations of various stability lim-
its to be performed faster than real-time on high-speed com-
puting platforms. Thereafter, an intelligent sense-making 

technology is required to estimate and 
predict the current and future states of 
the grid, respectively, through a network 
index. Fuzzy logic is a suitable CI 
approach for realizing a single network 
stability index. Such an approach further 
allows a system operator to dissect the 
network index to its constituents (such as 
angle stability index, voltage stability 
index and frequency stability index) made 
up of several lower levels. The impact of 
switching in and out of power system 
oscillation damping controllers, voltage 
compensation devices and energy storage 
can be visualized through such a real-

time assessment engine in a control room.
Maintenance Scheduling: One of the visions for a smart grid is 

for it to optimize assets and operate efficiently. Today’s grid has 
minimal integration of limited operational data with asset man-
agement processes and technologies. Grid technologies that are 
effectively integrated with asset management processes lead to 
effectively managed assets and costs [38]. Maintenance schedul-
ing is part of asset management functions. Generator Mainte-
nance Scheduling (GMS) for a large power system has become 
a complex, multi-objective, constrained optimization problem 
with an increased number of generators and a low reserve mar-
gin. CI-based approaches, including genetic algorithms and 
particle swarm optimization (PSO), have been applied to solve 
this complex optimization problem [39]. With the integration 
of wind farms, the GMS problem becomes even more com-
plex. A modified discrete PSO (MDPSO) was applied to solve 
this stochastic optimization problem considering uncertainty in 
wind power generation over the entire maintenance horizon. 
Studies conducted on a Nigerian power system with potential 
wind farms showed annual cost savings and enhanced CO2 
emission reduction for different GMS scenarios (see Fig. 7).

IV. Monitoring and Control
The general configuration of a modern power system features 
widely-dispersed power sources and loads. The inherent non-
linearity in the system becomes a major source of model 
uncertainty, which includes inaccuracies in modeling the 
power system devices such as the transformers, the transmission 
lines and the loads. The loads are dynamic and continuously 
changing. Final control settings are made using field tests at a 
couple of operating points of the power system on the distrib-
uted control devices. The increasing complexity and highly 
nonlinear nature of a smart grid requires an online monitoring 
system that is real-time and accurate. This provides a better 
understanding of the dynamic and complex behavior of a 
smart grid. The monitoring systems should cover both local 
and wide areas. Based on a real-time online model, controllers 
that  operate locally and on a wide area can be adapted and 
made intelligent to sense the operating conditions and generate 
the right action signals. Neural networks can serve as a 

VSLI2
VSLI3
VSLI4
VSLI5
VSLI6
VSLI9
VSLI10

VSLI11

VSLI12

VSLI13

VSLI14

PMUBUS2

PMUBUS6

PMUBUS9

V

V

V

θ

θ

θ

A Discrete-Time ESN

Input:
u (n )

Output:
y (n )

Dynamic Reservoir
States: x (n )

FIGURE 5 VSLI estimation using echo state networks.

0 0.1 0.2 0.3 0.4 0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load Factor (λ ) 

V
ol

ta
ge

 S
ta

bi
lit

y 
Lo

ad
 In

de
x

FIGURE 6 ESN-based VSLI estimation at different load buses in an 
IEEE14 bus system with a transmission line outage.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 30,2024 at 18:17:37 UTC from IEEE Xplore.  Restrictions apply. 



AUGUST 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    27

 universal,  dynamic system representation, 
and they are great at input-output mod-
eling, especially for highly non-linear sys-
tems. Neural networks, which represent 
an extremely successful solution inspired 
by biology, are very versatile in the tasks 
they can solve. In the following subsec-
tions, distributed local monitoring and 
control, wide-area monitoring and con-
trol, and dynamic stochastic optimization 
in power systems are discussed. 

Distributed Local Monitoring and Control: 
Many researchers have reported several 
CI-based approaches that demonstrate 
utility for improving the control perfor-
mances of power system elements, 
including synchronous generators [40], 
[41], wind turbine generators [42], and 
Flexible AC Transmission Systems 
(FACTS) [43]. For example, multilayer 
perceptrons (MLPs) and radial basis functions (RBFs) with time 
delays are able to identify/model multiple-input-multiple-out-
put time varying systems as synchronous generators [40]. With 
continuous online training, these models can track the dynam-
ics of these systems, thus yielding adaptive identification for 
changes in operating points and conditions. Adaptive online 

identification provides up-to-date system modeling to adapt 
controller parameters, thus providing the desired control signals 
for a given disturbance. The successful implementation of these 
networks for adaptive and optimal control of turbogenerators 
has been reported by the author on digital signal processors 
[44]. Fig. 8 shows a Dual Heuristic Programming (DHP) based 
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excitation and turbine controller on the generators in a multi-
machine power system. This DHP controller performs the 
functions of an Automatic Voltage Regulator (AVR), governor 
and Power System Stabilizer (PSS). Fig. 9 shows the load angle 
of generator G2 (Fig. 8) with DHP neurocontrollers on gener-
ators G1 and G2 compared to conventional AVRs, governors 
and a power system stabilizer (on generator G1) when a three 
phase 125 ms short circuit fault was applied in proximity to 
generator G1. It is clear that adaptive, critic-based neurocon-
trollers (with fixed optimal weights) can still outperform the 
conventional PID and lead-lag controllers with changes in 
operating conditions.

A new adaptive control strategy (shown in Fig. 10) for a 
Distribution Static Compensator (DSTATCOM) based on an 
Artificial Immune System (AIS) to reduce the impact of pulse 
loads on bus voltage, thus keeping it at desired level, was pre-
sented for an electric ship power system (categorized as a 
small microgrid) in [45]. Most of the CI techniques are 
offline and require prior knowledge of the system’s behavior. 
But AIS, which is inspired by theoretical immunology and 

observed immune functions, principles and models, has the 
potential for online adaptive system identification and control. 
Abnormal changes in the system’s response are identified and 
acted upon without having any prior knowledge [46]. The 
AIS-based DSTATCOM controller exhibits innate and adap-
tive immune system behaviors. Innate response is for com-
mon disturbances and requires optimal controller parameters. 
The innate controller parameters (optimal PI controller 
parameters) can be determined using an algorithm like PSO. 
The adaptive response is for new and unusual disturbances 
and requires adaptive controller parameters. The AIS strategy 
is applied for adaptation of these parameters. Fig. 11 shows 
the impact of an AIS-based adaptation of the PI controller 
parameters on a bus voltage and controller parameter varia-
tions under a pulse load. The beauty of such an adaptive con-
troller is that the original optimal controller parameters are 
restored as the system returns to normality. This is unique for 
an adaptive controller. Such AIS-based adaptive controllers 
have potential for intelligent control of the many foreseeable 
power electronic devices in a smart grid.

The control of electric power systems relies on the avail-
ability and quality of sensor measurements. However, mea-
surements are inevitably subject to faults caused by broken or 
bad connections, bad communication, sensor failure, or mal-
function of some hardware or software. These faults, in turn, 
may cause power system controllers to fail and consequently 
may lead to severe contingencies in the power system. To 
avoid such contingencies, a sensor evaluation and (missing 
sensor) restoration scheme (SERS) accomplished using auto-
associative neural networks (auto-encoders) and particle 
swarm optimization was developed in [47]. Based on the 
SERS, a missing-sensor-fault-tolerant control (MSFTC) was 
developed for controlling a static synchronous series compen-
sator (SSSC) connected to a power network. This MSFTC 
improved the reliability, maintainability and survivability of 

the SSSC and the power network. Such 
fault-tolerant technologies will be need-
ed in a smart grid to improve its reliabil-
ity and security. 

Wide-Area Monitoring and Control: 
Local controllers can provide good per-
formance when local measurements 
supply all the information about the 
effect of disturbances. But, if there are 
interactions between multiple adjacent 
areas of the power system, a wide-area-
based measurement has the potential to 
provide better stabilizing control [48], 
[49]. The Wide-Area Control System 
(WACS) coordinates the actions of a 
number of distr ibuted agents using 
SCADA (Supervisory Control And Data 
Acquisition), PMUs (Phasor Measure-
ment Units) or other sources providing 
wide area dynamic information [49]. 
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Classical designs, including observer-based state feedback, 
Linear Matrix Inequality (LMI), gain scheduling and H`-
based damping controls, require a nominal model of the sys-
tem, which might not be simple to obtain in practice with an 
acceptable degree of accuracy. An alternative solution is to 
adopt a design strategy based solely on available measure-
ments [50].

ACDs utilize the approximation capabilities of neural net-
works to develop optimal controllers from disturbance mea-
surements of available system inputs and outputs. ACD 
methods yield a fixed controller structure, which is compara-
ble to other classical optimal controller designs. The primary 
differences are (1) ACD yields a nonlinear controller, while 
classical optimal designs typically provide linear controllers; 
(2) classical methods rely on a linear model of the system, 
while ACD can have a measurement-based design. ACD-
based WACS have been demonstrated to be superior on sev-
eral power system models for maximizing system damping to 
inter-area oscillations by intelligently coordinating the actions 
of PSSs, excitation systems, and FACTS devices [50], [51]. 
The adaptability of simultaneous, recurrent neural network-
based WACS allows them to compensate for varying commu-
nication delays in remote measurement and control signals 
[52]. The performance comparison of an ACD controller 
with respect to two well-accepted classical designs was dem-
onstrated on a 16-machine, 68-bus power system. A damping 
controller was designed to enhance damping of the three 
critical inter-area modes (0.39 Hz, 0.50 Hz and 0.62 Hz) 
present in the system with the Thyristor Controlled Series 
Capacitor (TCSC). The development of a Heuristic Dynamic 
Programming ACD neurocontroller is illustrated in Fig. 12(a). 
The training details of the CRITIC, IDENTIFIER and 

1.08

1.06

1.04

1.02

1

0.98

0.96

0.94

0.92

0.9

25

20

15

K
pv

K
iv

1,500
1,480
1,460
1,440

1.2 1.3 1.4 1.5 1.6 1.7
Time (s)

Time (s)
1.2 1.3 1.4 1.5 1.6 1.7 1.8

Time (s)

(a)

(b)

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Without AIS-Based Control
With AIS-Based Control
Without AIS-Based Control
With AIS-Based Control

B
us

 V
ol

ta
ge

 (
p.

u.
)

FIGURE 11 (a) Performance comparison between PSO (without 
AIS) and AIS-based controller for 20 MW/50 MVAR pulse load (b) 
Variation of PI controller proportional and integral gains (Kpv and 
Kiv) [45].

Without Control
With Hinf
With HDP Control

ΔP (t –1, t –2)

∧
∂ P(t +1)

ΔP (t )

ΔP (t )

Power  System
with TCSC

TDL

Identifier/
Model
Neural

Network

TDL

Critic
Neural Network

ΔX (t –1), ΔX (t –2)

TDL

0 5 10 15 20 25
–28

–26

–24

–22

–20

–18

–16

–14

–12

–10

–8

Time (s)

A
ng

le
 G

1–
G

15
 (

°)

(b) 

(a)

ΔX(t )

ΔX(t )

∂ J (t +1)
∂ X (t )

∧

∂ J (t +1)
∧

J (t +1)
∧

∧
P (t , t –1)

1

Action/
Controller

Neural Network

∧
ΔP(t +1)

FIGURE 12 (a) HDP optimal neurocontroller design (TDL is time delay lines) (b) Oscillation in the angle difference between G1 and G15 for a 
3-F line to ground fault and transmission line outage with H` and HDP controllers [50].

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 30,2024 at 18:17:37 UTC from IEEE Xplore.  Restrictions apply. 



30    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2011

Z–1
Z–1

Bus 1

(4 × 3 × 1)

Bus 1
Infinite

Bus

Bus 10

Bus 6

Bus 9

Bus 7 Bus 8 Bus 3

Bus 11

Area 1

Area 2

Area 3

Bus 2

~

G1

G2

~

~

G3

~
G4

Bus 4
Bus 5

VG2

VG4

VG3

V2

V1
V7

V6

V10

V9

V11V3
V8

V5

V4

Z–1

Bus 2

(4 × 3 × 1)

Bus 10

(2 × 3 × 1)

Bus 4

(4 × 3 × 1)

Bus 9

(2 × 3 × 1)

Bus 6

(4 × 3 × 1)

Bus 3

(4 × 3 × 1)

Bus 11

(2 × 3 × 1)

Bus 7

(3 × 3 × 1)

Bus 8

(3 × 3 × 1)

Bus 5

(3 × 3 × 1)

V1(t +1)

\

V2(t +1)

\

V10(t +1)

\

V10(t )

V1(t )

V2(t )

V6(t +1)

\

V8(t +1)

\

V7(t +1)

\

V6(t )

V7(t )

V8(t ) V3(t +1)

\

V11(t +1)

\

V9(t +1)

\

V3(t )

V11(t )

V9(t )

V4(t )

V5(t +1)

\

V4(t +1)

\

V5(t )

(a)

(b)

Z–1

Z–1Z–1

Z–1

Z–1
Z–1

Z–1

Z–1
Z–1

Z–1

Z–1
Z–1

Z–1

Z–1Z–1
Z–1

Z–1

Z–1
Z–1

Z–1
Z–1

FIGURE 13 (a) A 12-bus multimachine power system (b) CNN representation of a 12-bus power system.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 30,2024 at 18:17:37 UTC from IEEE Xplore.  Restrictions apply. 



AUGUST 2011 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    31

CONTROLLER are given in [50]. Fig. 12(b) shows three 
responses, namely: a) without any damping controller, b) with 
a damping design based on Linear Matrix Inequality (LMI), 
and c) with H-infinity robust control design for a 3-F line to 
ground fault placed at bus 53 for 80 ms and cleared by open-
ing transmission line 27-53 permanently, thereby changing 
the post-fault topology of the power system.

If disturbance and ambient measurement data are available 
for a given system, an ACD controller can provide superior 
performance with minimum a priori knowledge of system 
states and operating regions. The main advantage of this 
approach is that it does not require a complete model of the 
system or state-estimators. The IDENTIFIER (Fig. 12(a)), 
based on input and output measurements, is able to identify 
the relevant system dynamics needed to design an optimal 
controller. 

The successful development of a WACS depends on the 
predictive performance of a Wide-Area Monitoring System 
(WAMS). The objective of WAMS is to learn the dynamic 
intra-area and inter-area system information based on some 
sampled system input and output measurements, for example, 
speed deviations of generators and/or power flows in transmis-
sion lines. Neural networks, such as ESNs, are good at captur-
ing wide-area system dynamics. 

With a smart grid’s plug-and-play capabilities, in order to 
allow for several distributed sources of energy that will connect 
and disconnect at different times, it is anticipated that the 
change in system dynamics may be erratic. A scalable approach 
to the development of WAMS and WACS to function in a 
truly smart-grid environment is required. This requires an abili-
ty of neural network architectures to handle many variables 
concurrently, a fast learning time that is independent of the 
number of variables monitored and devices controlled, and a 
high degree of accuracy and optimality to be maintained in 
prediction and control, respectively.

Cellular neural networks (CNNs) have shown promise as 
scalable neural network architectures for handling the com-
plexities of power systems/smart grids. The CNN architec-
ture allows for accurate system equivalent modeling and fast 
prediction. The voltage dynamics of a highly interconnected 
power system can be directly replicated by the connections 
between the cells of the CNN where the cellular connections 
represent the transmission lines connecting the buses of the 
power system. A 12-bus, multi-machine power system and its 
modeling by a CNN is shown in Fig. 13. Ideally, a CNN can 
be used to predict system profiles N time-steps ahead. In an 
online application, if a CNN can predict system voltage pro-
files N steps ahead, then a system operator has that much 
more time to implement the necessary controls or run an 
analysis on the system. Preliminary real-time simulation 
results (Fig. 14) show the performance capabilities of this 
technique for a single-step prediction of bus voltages and 
speed deviations of generators [53].

Dynamic Stochastic Optimization: A conceptual framework 
for applying ACDs to power system optimizations, namely 

Dynamic Stochastic Optimal Power Flow Control (DSOPF), 
was first introduced in [54] to incorporate prediction and 
optimization over power system stochastic disturbances. 
ACDs were applied to carry out dynamic optimization of 
several variables in an IEEE14-bus multimachine power sys-
tem containing an Unified Power Flow Controller (UPFC) 
[55]. In addition, the identifiers and controllers were imple-
mented as ObjectNets. The concept of ObjectNets provides a 
platform for scalability. The objective of the critic network is 
to dynamically optimize the parameters of different control-
lers on the power system in order to minimize the combined 
deviations of all generators’ speeds and terminal voltages, as 
well as the UPFC shunt bus voltage. In other words, the 
global objective is to ensure transient and dynamic rotor 
angle and voltage stability of the generators and the UPFC 
shunt bus during the power system’s operation. A more recent 
paper illustrated an optimal power flow controller using 
ACDs on a 12-bus power system using the DHP-ACD 
approach and standard recurrent neural networks [56]. Simu-
lation results demonstrated promising steady-state and 
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dynamic performances of the designed DSOPF controller 
under various operating conditions and system disturbances.

V. Gridable Vehicles and Smartparks
As increasing numbers of Plug-in Electric Vehicles (PEVs) 
enter the market, the effects of adding large numbers of 

small power electronic devices to the grid become more and 
more predominant. Many of these vehicles also can be 
adopted to participate in Vehicle-to-Grid (V2G) applications 
in the proposed smart-grid framework, which calls for an 
increased amount of bidirectional power flows between 
vehicles and utility grids [57]. Typical CI applications to 
enhance the integration of PEVs and operation of smart 
grids are presented below.

Optimal Tuning of Wind Farm Controllers with SmartPark 
Energy Storage: The introduction of Doubly Fed Induction 
Generators (DFIGs) for wind turbine generators has sparked 
extensive research in the technology of variable-speed wind 
turbines. However, variations in wind speed cause a change 
in the transient response of the Wind Turbine Generator Sys-
tem (WTGS) under grid disturbances. When a DFIG-based 
WTGS integrated into a multimachine power system con-
sisting of SmartParks (large number of plug-in electric vehi-
cles in a parking lot) is subjected to severe disturbances, the 
resulting transients, depending on the controller parameters, 
can lead to a system collapse, especially when the wind 
power penetration fluctuation is significant. This happens 
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despite whether SmartPark energy storage is 
charging or discharging to offset excess or 
compensate shortfalls in wind power, respec-
tively. When a fault is introduced, the vari-
able frequency converter (VFC) is the most susceptible part 
in DFIG-based WTGS. The VFC is controlled by a set of 
Proportional Integral (PI) controllers. The parameters of the 
PI controllers are very difficult to tune using traditional 
methods due to the nonlinearity of a DFIG and the increas-
ing complexity of a smart grid. Therefore, there is a need for 
application of a heuristic method that is capable of intelli-
gently tuning the PI controllers of the Rotor-Side Converter 
(RSC) of the DFIG. 

A study was carried out on the Real-Time Digital Simula-
tor (RTDS) to tune the PI controllers of the RSC of the 
DFIG in a multimachine power system consisting of Smart-
Parks using the Mean-Variance Optimization (MVO). MVO 
is a new stochastic optimization algorithm [58] falling into the 
category of the so-called population-based stochastic optimi-
zation technique. The uniqueness of the MVO algorithm is 
based on the strategic transformation used for mutating the 
offspring based on mean-variance of a n-best dynamic popula-
tion. Its mapping function transforms the uniformly distribut-
ed random variation into a new one characterized by the 
variance and mean of a n-best population attained so far. The 
search space is restricted for the algorithm to the range – zero 
to one, which does not change after applying the transforma-
tion. Therefore, the variables are treated always in this range, 
but the function evaluation is carried out in the problem 
range. The features of MVO make it a potentially attractive 
algorithm for solving many real-world optimization problems, 
such as tuning of PI controllers on a DFIG. When a three-
phase, 167 ms fault is applied at the wind farm bus, the opti-
mization not only improves the stability of the DFIG at a 
wind speed of 13 m/s system but also improves the stability of 
two other generators in the 12-bus, multimachine power sys-
tem. Fig. 15 shows the speed of a generator with MVO opti-
mized and manually tuned RSC PI controllers on the DFIG. 
With optimized parameters, the speed of the generator settles 
down after the fault is cleared; hence, the entire system is sta-
ble. However, with manually tuned parameters, this is not the 
case. Similar results have been observed at other wind speeds.

Improving Stability of a Smart Grid: Vehicles providing auxil-
iary services coordinate their power flows with the utility to 
change grid conditions in some predetermined way. If vehicle 
owners try to buy and sell power according to varying prices, 
there will be large swings in power as groups of vehicles switch 
the direction of their power flows. Therefore, PEVs will signifi-
cantly impact the stability of power grids.

The impact of charging and discharging cycles of the 
PEVs connected to a 12-bus power system on the stability 
of the integrated system have been studied in [59]. An opti-
mal wide-area controller for providing damping signals to 
the individual generators is designed based on the weighted 
sum of the local and global stabilizing signals using the PSO 

technique. The 12-bus power system, PEVs and the designed 
WAC (Fig. 16) are implemented in real-time on the RTDS. 
The design (tuning of the modulation indices) of the WAC 
was carried out on a DSP interfaced with the RTDS. The 
results with and without the WAC for moderate disturbanc-
es, like a sudden discharging of the PEVs, and also for some 
extreme situations, like a sudden transition from discharging 
to charging mode or a three phase fault during a peak 
charging or discharging cycle, were studied. The real-time 
simulation results and a Prony analysis showed that, with the 
PEVs connected to the power system, the WAC improves 
the stability of the integrated system significantly. 

Scheduling Gridable Vehicles for Cost and Emission Reduc-
tions: The main sources of emissions today are from the 
electricity and transportation infrastructures. An objective 
of a Cyber-Physical Power System (CPPS) is to integrate 
Renewable Energy Sources (RESs) and Gridable Vehicles 
(GVs) to minimize cost and maximize emission reduction. 
Gridable vehicles are PEVs that take part in both V2G and 
G2V (Grid-to-Vehicle) operations. GVs can be used as 
loads, sources and energy storages in a CPPS. A smart grid 
is a large CPPS and appears complex taking in account all 
the conventional and green distributed energy resources, 
dynamic data from sensors, and smart operations needed 
(e.g., charging/discharging, control, etc.) from/to the grid 
in order to reduce both cost and emission. If a large num-
ber of GVs are connected to a smart grid randomly, peak 
load will be very high. The use of conventional thermal 
power plants to sustain electrified transportation will be 
economically expensive and environmentally unfriendly. 
Intelligent scheduling and control of energy system ele-
ments have great potential for evolving a sustainable, inte-
grated electricity and transportation infrastructure.

A sustainable, integrated electricity and transportation 
infrastructure was reported in [60]. The primary contribu-
tions and emphases of this study include: i) the effectiveness 
of RESs and GVs for a sustainable CPPS; ii) smart and flexi-
ble charging-discharging operations of GVs as loads and 
sources to obtain benefits from GVs for energy storage in a 
sustainable CPPS; iii) maximum utilization of distributed 
RESs to reduce emissions in a sustainable CPPS; and iv) 
introduction of intelligent load leveling to reduce cost and 
emissions in a CPPS. Three cases listed below were studied to 
illustrate the effect of GVs in an integrated electricity and 
transportation infrastructure. Details on these models and 
their formulations are given in [60].

 ❏ Case 1 – random model: GVs are charged/discharged ran-
domly;

 ❏ Case 2 – intelligent dynamic load-leveling model: GVs are 
charged from conventional generation using load-leveling 
optimization.

A large number of PEVs will significantly impact the 
stability of power grids.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on July 30,2024 at 18:17:37 UTC from IEEE Xplore.  Restrictions apply. 



34    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2011

 ❏ Case 3 – smart-grid model: GVs are charged from the grid 
with RESs at off-peak hours and discharged to the grid at 
peak hours.
Particle swarm optimization was used to minimize cost and 

emissions in a CPPS. The advantages of using this algorithm 
include: i) PSO can optimize binary, integer and real decision 
variables; ii) it can handle constraints; iii) it is easy to imple-
ment, fast and robust; and (iv) it balances local and global 
search abilities. Fig. 17 shows a V2G/G2V operation 
 distribution schedule obtained using PSO for a 10-unit system 
with 50,000 GVs in a CPPS. Most of the vehicles are connect-
ed to the grid at hours 1, 12, 20, and 24 because demand is 

either very high or very low at those hours. V2G takes place 
from hours 8 to 15 and again at hours 19 to 21, when demand 
is high. However, G2V happens from hours 1 to 7, 16 to 18, 
and 22 to 24, when demand is low. Data and results are sum-
marized in Table I for Cases 2 and 3. The smart-grid model 
offers maximum emission reduction.

VI. Conclusion 
The electric power grid is rapidly growing, and in need of 
intelligent technologies for efficient, reliable and secure opera-
tion and control as the demand for electricity increases. The 
complexity of a smart power grid is much more than that of 
the traditional power grid as time-varying sources of energy 
and new dynamic loads are integrated into it. The smart grid 
demands intelligence and innovation in every area and 
requires an inter-disciplinary effort. Computational systems 
thinking capabilities are needed to provide dynamic, stochas-
tic, computational and scalable technologies to handle the 
complexities, challenges and promises of smart grids. The 
computational intelligence community and the IEEE CIS 
smart grid task force have a major role to play in this era of 
smart grid development.
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TABLE 1 [60] Summary of input data and results of ten-unit system in CPPS.

ITEM VALUE

TRANSPORTATION SECTOR

AVERAGE DISTANCE COVERED BY A VEHICLE 12,000 MILES/YEAR
NUMBER OF REGISTERED GVs 50,000
AVERAGE DISTANCE COVERED BY GVs PER kWh 4.00 MILES
ENERGY NEEDED BY A GV PER DAY 8.22 kWh
ENERGY NEEDED BY 50,000 GVs PER DAY 411 MWh
TYPICAL PERCENTAGE TIME A GV IS PARKED  95%
AVERAGE EMISSION FROM A LIGHT WEIGHT VEHICLE 1.2 LB/MILE
EMISSION FROM 50,000 VEHICLES IN TRANSPORTATION SECTOR PER DAY (YEAR) 895.010 TONS (326,678 .766 TONS) 

INTELLIGENT DYNAMIC LOAD LEVELING MODEL

EXTRA EMISSION FROM POWER PLANTS TO SUPPLY ENERGY TO 50,000 GVs DURING ONE 
DAY (YEAR) 491.311 TONS (179,328.515 TONS)
NET EMISSION REDUCTION FROM POWER SYSTEM AND TRANSPORTATION SECTOR FOR 
50,000 GVs PER DAY (YEAR) 403.699 TONS (147,35O.251 TONS)

SMART GRID MODEL: CAPITAL COST

EXTRA ENERGY NEEDED FOR THE SMART GRID MODEL 750 MWh PER DAY
WIND ENERGY AND SOLAR ENERGY RATIO (LOCATION DEPENDENT) 2:1
CAPITAL COST OF SOLAR POWER US$5.0/W
CAPITAL COST OF WIND POWER US$1.0/W
SOLAR FARM SIZE (BASED ON SOME ASSUMPTION OF AVERAGE SOLAR INSOLATION) 40 MW
WIND FARM SIZE (BASED ON SOME ASSUMPTION OF AVERAGE WIND SPEED) 25.5 MW 
TOTAL CAPITAL INVESTMENT FOR RESs IN THE SMART GRID MODEL WITH 5O,OOO GVs US$225.5 MILLION

SMART GRID MODEL: BENEFITS

EMISSION REDUCTION FROM POWER PLANTS FOR 50,000 GVs AND RESs PER DAY 
(YEAR) 1,233.589 TONS (450,259.985 TONS) 
TOTAL EMISSION REDUCTION FROM POWER PLANTS AND TRANSPORTATION SECTOR 
FOR 50,000 GVs AND RESs PER DAY (YEAR) 2128.599 TONS (776,938.751 TONS) 
TOTAL OPERATIONAL COST REDUCTION FROM POWER SYSTEM AND TRANSPORTATION 
SECTORS FOR 50,000 GVs AND RESs IN CPES PER DAY (YEAR) $217,687.73 (US$79,456,021.45)

Note: Per year calculation is shown in the parenthesis.
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