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Abstract  

 

A systematic approach to reprogram protein-DNA interactions has yet to be 

discovered. This study investigates the ability of co-variation analyses to identify 

potential protein-DNA contacts that regulate specificity. Here, 27 LAGLIDADG Homing 

Endonucleases (LHEs) and their 22-basepair DNA targets were collated into a Multiple 

Sequence Alignment (MSA) that was subjected to pairwise co-variation calculations. 

Using the LHE I-OnuI as a reference, an amino acid-DNA pair, lysine (K) 231 and 

adenine +3, generated the highest score. To test if the K231/A3 score was biologically 

relevant we tested protein mutants for altered nuclease specificity at +3 DNA point 

mutants. Randomizing the 231st amino acid did not alone restore cleavage activity on 

substrate mutants but randomization in conjunction with aspartic acid (D) 240 restored 

cleavage activity on A3T and A3G substrates. In conclusion, co-variation analyses 

identified, in part, amino acids that could be mutated to alter DNA specificity. Future 

work should focus on mapping more LHE-DNA target sequences to increase MSA 

diversity. 

Keywords: co-variation, mutual information, protein-DNA interactions, specificity, 

multiple sequence alignment, prediction, LAGLIDADG, homing endonuclease  
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CHAPTER ONE - INTRODUCTION 

1.1 Investigating a protein-DNA code  

Being able to take protein sequence information and determine which amino acids 

contribute DNA specificity would greatly improve the ability to modulate protein-DNA 

interactions, benefiting industrial, medical and academic institutions. Such benefits 

include: retargeting genome-editing reagents to novel genomic sites, modification of 

protein binding affinity to control gene transcription, or modification of chromosome 

organization. The pursuit of a robust protein-DNA code that is minimally dependent on 

crystal structures and generalizable to any protein-DNA interface is ongoing and perhaps 

impossible to achieve. Successfully identifying specific protein-DNA contacts will likely 

require a combination of computational and biochemical approaches, on a case-by-case 

basis.  

In the post-genomic era, the scientific community has shifted its focus from 

sequencing genomes to studying how they are regulated (Lander, 2011). It has become 

evident that proteins largely control the expression, organization and lifecycle of DNA 

within genomes (Mitchell and Tjian, 1989; Ren et al., 2000; Muller and Vousden, 2013). 

As such, aberrant protein-DNA interactions underlie many disease states (Boutell et al., 

1999; Yu et al., 2009; Jimenez, 2010; Lander, 2011), initializing the pursuit of designing 

custom protein-DNA interfaces to rewire genomic networks or create new pathways. To 

do so, we must understand the intricacies of DNA recognition administered by proteins. 

Proteins must facilitate an appropriate level of affinity and specificity for their DNA 

cognates, obtained in part by directly contacting nucleotide (nt) sequences. Identifying 

which amino acids specifically contact nts can be challenging as nt recognition can be 

accomplished by amino acid networks, including metal ions and water molecules. 

Additionally, proteins may indirectly read out 3-dimensional features of nts like twist, 

minor groove distance or flexibility that also contribute specificity to the interaction 

(Rohs et al., 2009; Stella et al., 2010; Thyme et al., 2014).  

One of the first DNA-binding proteins studied were the zinc-finger (ZF) proteins. 

A single ZF motif has a ββα architecture that coordinates a single zinc ion, recognizing a 
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3 nt triplet. Arrays of ZFs can be artificially assembled to extend the recognition 

sequence, with one of the first artificial ZFs recognizing a stretch of 18 nts. Notably, this 

ZF fusion was able to activate or repress expression of genes on a reporter plasmid by 

fusing the ZF to an activator or repressive domain that interacted with the transcription 

machinery (Liu et al., 1997). Although 18 nts is theoretically sufficient to identify a 

unique DNA site, it became apparent that ZF specificity is not exact and that different ZF 

assemblies can tolerate varying degrees of nt mismatches to their predicted binding site 

(Kim and Pabo, 1997; Beerli et al., 1998).  

 Follow-up studies largely focused on reprogramming ZFs to novel nt triplets. 

Initially pursuing ZFs that recognized the 16 5’ – GNN – 3’ variants, studies built and 

screened a library of ZF mutants for altered binding specificities. These studies identified 

regions within the α-helix that contributed to binding specificity (Beerli et al., 1998). 

Mutational investigation into this area produced ZF mutants that discriminated against nts 

at the 3rd  (GNN) position (Dreier et al., 2000). Follow-up studies used similar mutagenic 

approaches to expand binding specificity to 5’ – ANN – 3’ and 5’ – CNN – 3’ sequences 

(Dreier et al., 2001, Dreier et al., 2005). Blancafort et al. (2003) simplified the process of 

assembling ZFs by collating a library of individual ZF motifs that recognized many of the 

5’ – NNN – 3’ triplets. Mutant ZF binding specificities in these studies were tested by 

their ability to repress or activate endogenous genes in model organisms.  

Reprogramming ZFs to recognize all the possible 64 nt triplet combinations was 

laborious and furthermore, some triplets still cannot be recognized (Dreier et al., 2005). 

These studies began to unravel the complexities of DNA-protein interactions, dispelling 

notions of a simple one-to-one protein–DNA code that ubiquitously governs specificity 

of protein-DNA interactions. These studies also demonstrated how amino acids could 

form networks to create an interaction interface to specifically recognize a DNA 

sequence (Dreier et al., 2005), further complicating these interaction interfaces. 

Moreover, it was found that some amino acids suspected of binding DNA participated in 

non-specific nt interactions, non-specifically contributing to the necessary DNA binding 

energy (Dreier et al., 2000). Moving forward in the pursuit of reprogramming protein-

DNA interfaces, it is clear that scientists must strive to intimately understand individual 

amino acids contributions to specific DNA binding. 
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Advances in computation have lead to the development of simulations that 

characterize aa-nt interactions within protein-DNA interfaces (Pabo and Nekludova, 

2000; Havranek et al., 2004; Rohl et al., 2004; Thyme et al., 2014). Computational 

models utilize crystallographic data to characterize the structural and thermodynamic 

features of a protein-DNA interface. These models are then used to predict aa mutations 

that may recognize nt substitutions, maintaining the necessary structural and 

thermodynamic characteristics of the interface. Scientists have successfully used this 

approach to reprogram nt specificity at obvious aa-nt hydrogen contacts, however, they 

had difficulty in efforts to reprogram extensive protein-DNA interfaces (Ashworth et al., 

2006; Thyme et al., 2009; Ulge et al., 2011). Furthermore, when biologically testing the 

DNA-binding specificity of the predicted protein variants, additional genetic selections 

are commonly needed to isolate variants with increased activity or specificity (Ashworth 

et al., 2006; Takeuchi et al., 2011). Arguably, the biggest challenge to computational 

models of protein-DNA interfaces is their ability to assess proteins ability to indirectly 

readout intricate details of DNA molecules. Nonetheless, computational advancements 

have allowed scientists to target mutagenesis studies of proteins, reducing the laborious 

efforts needed to reprogram protein-DNA interfaces.  

1.2 LAGLIDADG homing endonucleases – general properties   

Homing Endonucleases (HEs) are natural DNA endonucleases that have been 

intensely studied because of their potential use as genome editing reagents. HEs are site-

specific DNA nucleases that introduce a double-stranded break (DSB) into DNA at 

specific sites lacking the HE ORF. The HE lifecycle accomplishes gene conversion, 

propagating their own DNA coding region in respect to non-self genetic material. Gene 

conversion occurs when homology directed repair (HDR) uses a DNA template 

containing the HE ORF during DSB repair. Following this repair event, the DNA 

segment includes a HE, disrupting the HE recognition sequence (Fig. 1). This gene 

conversion process is known as homing. HEs are subject to evolutionary pressure that 

maintains a balance between DNA binding specificity and permissivity to facilitate the 

homing process while avoiding cellular toxicity. A common characteristic between HEs 

is their ability to tolerate significant nt variation within their target sites. This sequence-

tolerant binding facilitates cleavage of target sites that have accumulated nt substitutions 
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through genetic drift or other evolutionary processes (Stoddard et al., 2005; Scalley-Kim 

et al., 2007). 

 

 
 

Figure 1. General HE lifecycle. HE ORFs are found in group I introns or inteins (shown 

here) but may also exist in group II introns or free-standing elements. In all cases, HE 

ORFs code for endonucleases that recognize homing sites that lack the HE ORF. The HE 

makes a DSB, activating host repair pathways that may be repaired by HDR. HDR events 

use a template containing the HE ORF. (Printed from Stoddard (2005) with permission 

from publisher).  

 

Many separate instances have resulted in the evolution of HE families that are 

uniquely characterized by their method of recognizing DNA targets and by their means of 

introducing DSBs. The LAGLIDADG homing endonuclease (LHE) family is the best 

characterized HE and contains the most members. A single LAGLIDADG monomer 

consists of an αββαββααα structure, with the LAGLIDADG sequence denoting the amino 

acid consensus sequence that forms an interaction network along an exposed surface of 

the first α-helix (Fig. 2A-C).  
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Figure 2. General LAGLIDADG homing endonuclease features. A) Homodimeric 

LAGLIDADG I-CreI. B) Monomeric LAGLIDADG I-AniI. C) I-CreI –helix 

LAGLIDADG interface. D) I-CreI anti-parallel –sheet binding to major groove of DNA 

target site.  

 

A functional LAGLIDADG protein is formed from the interaction of two 

LAGLIDADG monomers to form a composite active site at the base of the two α1-

helices. LHEs may exist as single genes that homodimerize to recognize a pseudo-

palindromic target site or as a single-chain gene-fused dimer, where individual domains 

can diverge and recognize distinct DNA sequences. DNA recognition by LHEs is 

accomplished by anti-parallel β-sheets that straddle the major groove of DNA from nts  

3 to  11 of the 22 nt target site, making direct, indirect and water mediated contacts to 

DNA (Fig. 2D). The interface is under saturated, with respect to aa-DNA hydrogen 

bonds, participating in 65 – 75 % of possible contacts (Stoddard et al., 2005). The central 

four nts,  1-2 positions, are not in direct contact with amino acids and are flanked by 

scissile phosphates.  
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1.3 LAGLIDADG homing endonucleases – reprogramming  

Many efforts have been made to reprogram LHE specificity from their native sites 

for therapeutic, industrial and academic applications (Seligman et al., 2002; Sussman et 

al., 2004; Thyme et al., 2014). LHEs are inherently more specific than ZFs as they 

recognize longer DNA sequences and offer the benefit of intrinsically containing a 

sequence specific nuclease. To generalize LHE DNA-binding specificity parameters for 

the LHE family is challenging because residues contributing to target site recognition are 

not well conserved. This observation suggests that there is, as of yet, no universal 

protein-DNA code that describes LHE-DNA interactions. Reprogramming LHE 

specificity is therefore done on a case-by-case basis.  

The first approach used to redesign LHE-DNA interfaces relies on 

crystallographic data to determine which amino acids specifically contact DNA. For I-

CreI and other LHEs, the contributions of suspected residues that confer DNA-binding 

specificity are investigated by mutational analysis, screening for LHE mutants that have 

altered nuclease properties. Crystallographic and mutational investigations of different 

LHEs over many years have identified modules of amino acids that contribute to DNA 

specificity. As summarized by Barry Stoddard on the homingendonuclease.net website, 

these modules consist of 8-12 amino acids that contribute specificity of up to 3 nts. 

However, the modules differ between LHEs and to date have been identified only by 

crystallographic and mutational analyses.  

Previous studies that have focused their efforts on reprogramming I-CreI 

identified variants tolerating many nt substitutions. Seligman et al. (2002) screened I-

CreI libraries that contained randomized residues suspected of specifically contacting 

DNA as per the co-crystal structure. One finding from these studies was the realization 

that crystal structures did not entirely describe the importance or flexibility of protein-

DNA contacts, as they identified mutants that ranged from having no effect on binding 

specificity to those resulting in cellular toxicity. Further studies by Sussman et al. (2004) 

successfully reprogrammed DNA specificity at the ± 6 and ± 10 positions by making 

mutations at the 26th, 33rd and 66th amino acid positions, but also reported enormous 

variance in nuclease activity. Taken together, these studies illustrate the challenge of 

producing mutants that preserve sufficient binding affinity and activity while maintaining 
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site discrimination. These studies also demonstrated drastic changes to activity and 

affinity of I-CreI on substrates due to single amino acid mutations. 

Interestingly, a network of amino acids within I-CreI was identified, mutation of 

which lead to expansion of nt specificity at the ± 3, 4 and 5 target site positions (Arnould 

et al., 2006). From crystallographic data, they hypothesized that these target site nts were 

being recognized by R70, Q44 and R68, respectively. Before the specificity of R70, Q44 

and R68 variants were tested, scientists realized that another amino acid would have to be 

altered to accommodate the negative charge generated during the DSB. As a pre-emptive 

suppressor screen, R70, Q44 and R68 mutations were made in the D75N background to 

reduce energetic constraints and allow localized restructuring of the amino acid network 

(Arnould et al., 2006). This study concluded a rough protein-DNA code for which the 

Q44-4A pair reported as A44-4T or K44-4G. Their analysis did not suggest any clear 

protein-DNA code for the other positions. In these cases, isolated I-CreI mutants that had 

altered nt specificity contained randomly assorted amino acids (Arnould et al., 2006). 

A second approach to reengineer protein-DNA interfaces utilizes in silico 

approaches dependent on crystal structures and thermodynamic calculations of protein-

DNA interfaces. Combinatorial approaches to reprogram DNA specificity of LHEs that 

integrated computational and mutagenesis methods have demonstrated the most success. 

This multi-faceted approach has been used to reprogram I-MsoI specificity at  6 nt 

positions (Ashworth et al., 2006; Ashworth et al., 2010). In 2006, K28L and T83R 

mutations were made to accommodate a G  C transversion mutation whereas more 

extensive amino acid mutations were made in 2010 to accommodate substitutions at 3 

adjacent nt positions. Perhaps most successively, Thyme et al. (2014) were able to 

reprogram a LHE to a target site containing 12 nt substitutions. Multiple studies have 

drawn attention to LHE’s capacity to indirectly readout DNA sequences (Molina et al., 

2012; Thyme et al., 2014). Modeling improvements that incorporate protein’s ability to 

indirectly readout DNA parameters (Rohs et al., 2009), while accounting for water 

molecules (Lazaridis and Karplus, 1999; Li and Bradley, 2013) and various backbone 

conformations (Yanover and Bradley, 2011; Thyme et al., 2012), have independently 

been implemented, improving computer’s abilities to reprogram protein-DNA interfaces. 
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However, the intricacies of incorporating all these analyses and predictions together have 

yet to be worked out.  

An additional avenue to enhance LHE reprogramming efforts has been to utilize 

the natural diversity of LHEs and their target sequences found throughout nature. Barzel 

et al. (2011) initialized this approach by developing computational methods to search 

characterized genomes for novel LHEs and their putative target sites, subsequently 

validating the putative LHE target sites. Takeuchi et al. (2011) then phylogenetically 

analyzed 211 LHE sequences to illustrate the conservation of the LHE scaffold contrasted 

by their diverging DNA recognition sequences. This highlighted the potential for the 

LHE scaffold to be repurposed and direct LHEs to relevant human targets. McMurrough 

et al. (2014) then utilized this phylogenetic diversity of LHEs to identify amino acids that 

control the catalytic efficiency of the enzyme. Specifically, this study highlighted the 

potential of using natural LHE diversity to gain insight into LHE function. In this study, 

we capitalize on the phylogenetic diversity of LHEs and their respective target sites to 

identify amino acids that confer DNA specificity. We do so by applying a mathematical 

framework to identify amino acids that are co-varying with nts in their DNA target 

sequence.  

1.4 Using mutual information to assess protein-DNA interfaces 

Conserved residues within a protein family play a significant role in structural and 

functional aspects (Clarke, 1995). Some amino acid positions whose mutations are 

detrimental to protein activity can be rescued by secondary mutations that restore crucial 

features to the protein. Examples of these include compensatory mutations that restore 

internal volumes, salt bridges, H2O contacts or binding and folding energies. This 

mutational dependency between amino acid positions characterizes an intramolecular 

coevolutionary relationship, with residues likely close to each other in 3-dimensional 

space (Atchley et al., 2000; Oliveira et al., 2002). Analyzing the phylogenetic diversity 

within a protein family can identify such relationships using a mathematical procedure to 

characterize sequence entropy in a MSA. Transformed into a mutual information (MI) 

reading, this statistic characterizes interdependency also noted as co-variation between 

MSA columns. Tillier and Liu (2003) improved the quality of this statistic by removing 

sequence variation due to phylogenetic divergence of the protein family. Further 
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corrections were made by Dunn et al. (2008) to additionally remove the average entropy 

within the MSA, resulting in a corrected MIp score. A Z-score procedure is often used to 

assess MIp scores and identify those with the highest co-variation. Little and Chen (2009) 

improved this Z-score procedure by subtracting the average MIp score at each position. 

This calculation was computationally intensive because linear regression on scores 

obtained from each position had to be conducted but was made more efficient by Dickson 

et al. in 2010. This alteration formed a more robust and efficient statistic, Zpx, which is 

less sensitive to local misalignments within the MSA.  

 In this study, we use Zpx scores to identify biologically relevant protein-DNA 

contacts of LHEs. This approach has been previously applied to a LHE MSA, identifying 

intramolecular residues coevolving to maintain steric and chemical properties of residues 

within the active site (McMurrough et al., 2014). Furthermore, this co-variation analysis 

has been previously applied to intermolecular protein-DNA contacts of well-

characterized transcription factors (Mahony et al., 2007). Mahony et al. (2007) used 

alignments containing > 1000 sequences to validate known protein-DNA interactions that 

confer specificity to the protein-DNA interaction.  

1.5 Hypothesis and aims 

In light of previous studies, we believe that it is reasonable to assume that co-

variation analysis can identify residues interacting in 3-dimensional space. Although 

most of these studies investigated intramolecular residues, we believe that intermolecular 

residues can also co-dependently evolve to form complimentary surfaces. Here, we aim 

to demonstrate how co-variation analysis can identify these co-evolving residues. 

Moreover, we aim to show that these residues play a role in the binding specificity of a 

macromolecular interphase. Using LHEs and their DNA cognates as a model system, I 

hypothesize that co-variation calculations will be able to identify specific amino acids 

that are co-varying with DNA. Furthermore, because we believe that these residues are 

specifically recognizing nts in the LHE target site, I hypothesize that mutations of these 

residues will alter binding specificity.  
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CHAPTER TWO - MATERIALS AND METHODS  

2.1 Multiple sequence alignment 

 Mapped LHE target sites identified by Thyme et al., (2014) or collected from an 

online database homingendoniuclease.net, maintained by Barry Stoddard. Twenty-seven 

monomeric LHEs were identified and collated into a MSA (Fig. 3). Cn3D and structural 

alignment algorithms were used to produce the attached alignment in FASTA file format. 

Structural files were used if possible and a local covariation plug-in to Jalview were also 

used to align these sequences (Dickson and Gloor, 2012). For alignment quality and 

accuracy, structures in Cn3D were used to largely direct the alignment. Target sites were 

aligned on the scissile phosphate nts. After we were satisfied with the alignment quality, 

the MSA was subject pairwise calculations of Shannon’s entropy. Under this framework 

the probability of finding a specific amino acid in a column is determined. As amino acid 

identity becomes more predicable at a position within the MSA, entropy is lowered and 

information is gained. Information can be gained if one position in an alignment enables 

better prediction at a distinct position. This calculation results in a quantity known as MI 

and is calculated for every possible column pair. Corrections to these calculations were 

also applied to remove the average phylogenetic entropy producing a MIp score. Further 

analysis reveals pairs of columns with higher than average MIp scores, suspected of co-

evolving in 3-dimensional space.  

2.2 Mutual information calculations 

 The MIp Toolset written by Dickson and Gloor (2013) was used. This software 

imports a MSA as FASTA file and produces a summary spreadsheet that was then further 

processed and plotted using R. A column in the spreadsheet contains the MIp score for 

every pair of residues in the alignment and also calculates a Zpx score that shows the 

number of standard deviations an individual MIp score is from the average MIp score. 

Boxplots of Zpx scores show the distribution of scores and outliers that display higher 

than average MIp suggesting coevolution (Fig. 4A).  
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Figure 3. Sample MSA extract showing the first LAGLIDADG chain. This extract is 

coloured using jalviews taylor schema.  

2.3 Alignment sensitivity  

 DNA target sites were randomly shuffled using custom R scripts and methods 

from the seqin R package. MIp calculations were repeated with these randomly shuffled 

DNA target sequences 10 000 times using custom bash scripts. Bash scripts were used to 

sort the resulting data files and pull out the Zpx scores of K231 and the +3 DNA target 

site position. This file was imported into R to analyze its distribution in a boxplot (Fig. 

4). 

2.4 Plasmid construction 

 DNA point mutants were cloned into pCcbD at two separate sites via restriction 

enzymes Nhe/Sac and Afl/Bgl respectively. Oligonucleotide inserts were ordered from 

Integrated DNA Technologies (IDT) with the appropriate overhangs. Inserts were 

phosphorylated and annealed followed by ligation to appropriately cut and 

dephosphorylated pCcbD. I-OnuI protein libraries at amino acid positions 231, 238 and 

240 were generated by using a NNS codon in a primer used to PCR amplify the coding 

sequence. PCR libraries were then sewn by PCR to wildtype I-OnuI backbone. These I-
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OnuI libraries were restriction enzyme cloned into pMEGA, a pACYCDuet derivative 

purchased from Novagen, using Nco and Not. Individual clones were sequenced for 

quality assurance and library diversity estimation. 

The 231 NNS library (1NNS) has a theoretical complexity of 20 aa’s and was 

cloned with an estimated complexity of 1417. The 231, 238 and 240 NNS library (3NNS) 

has a theoretical complexity of 8000 aa combinations and was cloned with an estimated 

complexity of 8636. Ten independent clones from the 231 NNS library and twenty 

independent clones from the 231, 238 and 240 NNS library were sequenced and nt 

diversity at the first and second positions were determined. Guanine was most abundant 

at both the first and second positions while cytosine and adenine were the most 

underrepresented nts at the first and second positions, respectively leading to biased 

library synthesis. 

2.5 Two-plasmid selection of I-OnuI and I-OnuI libraries 

 A modified bacterial two-plasmid selection was used to screen activity of I-OnuI 

and I-OnuI libraries on various target sites as previously described (Doyon et al., 2006). 

A toxic plasmid contains a lactose repressed gyrase toxin and I-OnuI target sequences in 

wildtype or mutant contexts. Chemically competent NovaXGF’ (Novagen) containing the 

toxic plasmid (pTox) were made as previously described (McMurrough et al., 2014). 

Different batches of competent E. coli corresponded to toxic plasmids with different 

target sequences. Fifty Nano grams of wildtype I-OnuI or I-OnuI libraries plasmid was 

transformed into NovaXGF’ (Novagen) cells harboring the toxic plasmid. Cells were 

incubated on ice for 30 minutes, heat shocked at 42oC for 1 minute and returned to ice for 

2 minutes. 300 L of minimal 2x YT medium (16 g/L tryptone, 10 g/L yeast extract and 

5 g/L NaCl) was added to cultures that were recovered at 37oC for 10 minutes at 200 rpm. 

These cultures were transferred to test tubes containing 1 mL of 2x YT induction medium 

(100 g/mL carbenicillin, 0.02% L-arabinose) and allowed to recover for 1 hour at 37oC 

in a rotating wheel for an outgrowth period. Cultures were then diluted accordingly and 

separated into selective (0.02% L-arabinose, 0.005 mM IPTG) and non-selective media 

(0.02 % glucose) to obtain a survival ratio (McMurrough et al., 2014). This procedure 

can be done on plates to determine precise colony numbers or in liquid culture at 200 rpm 
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to survey complex libraries. For liquid cultures, of the transformation was transferred into 

2 mL of liquid selective or non-selective media. Both plates and liquid selections are 

incubated at 37oC for 16 hours after inoculation. Here, plates were used to identify wt I-

OnuI survival on point mutant substrates whereas libraries were tested both on plates and 

in liquid culture. Biological triplicates were done to determine survival percentage.  

2.6 Bacterial growth curves 

 The two-plasmid selection was used as described above. Outgrown cultures were 

diluted 5-fold with selective media and 200 L was loaded into Cellstar 96-well 

suspension culture plates that were placed into Thermo scientific Multiskan GO with 

SkanIt software 3.2. The instrument was set to shake at 200 rpm at 37oC, taking OD 

readings every 15 minutes at 600 nm for 20 hours. Growth curves were completed in 

technical and biological triplicate. Results were downloaded as a .RTF file and messaged 

using TextWrangler. They were then imported into R and raw data was a time-series of 

OD values for each replicate. Technical repeats were averaged and linear models were 

used to estimate the growth rate using the lm function in R. Results were divided by the 

growth rate of wt I-OnuI cleaving the wt target sequence using biological replicates to 

construct error bars (Fig. 10). 

2.7 In vitro nt competition cleavage assay  

 WT I-OnuI and mutant LHEs were purified as previously described (McMurrogh 

et al., 2014). Proteins with a His tag were purified using a GE nickel column. The His-tag 

was attached by a sequence containing a Tev cleavage recognition sequence that was 

removed. Preps were run out on 10 % stacking 15 % separating SDS-PAGE gels to 

evaluate purity. Bradford assays with a BSA standard (0 – 0.9 mg/mL) were used to 

estimate protein concentration according to Beer’s law. PCR primers were used to make 

2200, 1800, 1600 and 1320 bp fragments equidistance from an I-OnuI cleavage sequence. 

Each fragment size corresponds to a different nt at the +3 target site position. The 

appearance of a product was used as an indicator or successful cleavage. A single pot 

cleavage reaction (5 nM substrate, 50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 10 mM 

MgCl2, 1 mM DTT and 250 nM protein) was incubated at 37oC for allotted time where 

10 L aliquots were removed every 15 minutes for 1 hour. Reactions were stopped with 
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5X 200 mM EDTA, Bromophenol Blue 30 % Glycerol and 0.2 % SDS stop solution. 

Reaction time-points were run on a 1 % agarose gel by electrophoresis at 80 V for 2.5 

hours. Agarose gels were stained with TAE (2 M Tris-HCl (pH 8.0), 0.06 % glacial acetic 

acid, 50 mM EDTA (pH 8.0)) containing ethidium bromide for 10 minutes and destained 

for 15 minutes in TAE (2 M Tris-HCl (pH 8.0), 0.06 % glacial acetic acid, 50 mM EDTA 

(pH 8.0)). Gels were imaged using an AlphaImager 3400 instrument and quantitated 

using the accompanying spot densitometry toolbox. Biological replicates for each protein 

were modeled with the lm function in R to give a rate of cleavage. Models were built 

using band density of the cleavage product over time and then divided by their rate on wt 

substrate (Fig. 11).  

2.8 Profiling nuclease specificities using MiSeq illumine sequencing  

 An I-OnuI target sequence was cloned with random nts at +2, +3, +4 and +5 

target site positions creating a 4N library. This library was cloned with an estimated 

complexity of 42 000 and a theoretical complexity of 256 variants. WT, K231Y, D240A 

and D240E I-OnuI proteins (250 nM) were incubated with 5 nM of the 4N mp under 

cleavage conditions as prepared above. Samples of the reaction were taken at 0, 5, 10 and 

20 minutes, stopped with stop solution and separated on a 1 % agarose gel. Supercoiled 

plasmid was isolated from the gel and subjected to barcoding PCR. Five replicates for 

each protein and a mock sample were completed and sent to the Robarts sequencing 

facility for Miseq illumina sequencing. The sequencing file was transformed into a count 

table for each sequence and replicate using a centered-log ratio approach. Plots specific 

for each protein and sequence were generated plotting the sequence count over time for 

all replicates. Linear models were generated to estimate the rate of change for each 

sequences and R2 values were reported, measuring the accordance among replicates. Each 

sequences rate of change was visualized in a histogram (Fig. 12). Sequences that were 

drastically depleted, ≤ 5 % likelihood, were reported (Table 4).  
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CHAPTER THREE - RESULTS  

3.1 LHE MSA MIp calculations and analysis 

 The MSA containing LHE proteins with mapped DNA target sites was subjected 

to pairwise co-variation calculations to produce MIp between MSA columns (Dickson 

and Gloor, 2013). MIp scores were reported as Zpx values and visualized using boxplots 

to determine pairs of residues with the highest co-variation scores (Fig. 4A). Table 1 lists 

the six highest Zpx scores using I-OnuI as a reference. Notably, the highest Zpx score is 

an intramolecular pair that has been previously validated (McMurrough et al., 2014). The 

second highest Zpx score stems from an intermolecular aa-nt pair, K231 and A+3. 

Diversity of amino acids and DNA at these positions in the MSA are summarized in 

Table 2. Generally, R231-G3, D231-C3, K231-A/T3 and N231-T3 associations are noted.  

 

Table 1. The 6 highest Zpx scores from the aligned LHE MSA MIp calculations. 

Residues with +/– signs represent DNA positions whereas other numbers represent I-

OnuI amino acid residues.  

Residue 1 Residue 2 Residue 1 ID Residue 2 ID Zpx score 

25 181 A G 6.1 

231 + 3 K A 5.5 

79 278 N K 5.0 

- 9 + 2 C C 5.0 

264 266 G K 4.9 

20 97 T H 4.5 

 

Table 2. Summary table of sequence diversity of LHE-DNA pairs at the aa 231 and 

+ 3 DNA substrate.  

Amino Acid 
Purine Pyrimidine 

A G C T 

K 3 0 0 2 

D 0 1 4 1 

R 0 6 0 0 

H 0 0 0 1 

V 1 0 0 0 

N 0 0 0 4 

Y 2 1 0 0 

Q 0 0 0 1 

Total 6 8 4 9 
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To test the procedural sensitivity of this co-variation statistic to the protein-DNA 

alignment, we randomly shuffled the DNA target sequences and recalculated the Zpx 

score for the K231 and +3 DNA positions 10 000 independent times (Fig. 4B). The 

recalculated co-variation scores using shuffled DNA did not obtain a score as extreme 

when using an aligned MSA. This demonstrates that our original analysis was sensitive to 

our alignment and not prone to identifying noise within the MSA at this Zpx extreme. 

Figure 4. Boxplots of Zpx scores from the A) aligned MSA iteration and B) K231 

with randomly shuffled A+3 MSA (n = 10 000). Thick vertical lines represent 

distribution mean. Boxes show the interquartile ranges and whiskers show the remaining 

quartiles. Open circular points represent significant outliers. The red point in both plots 

represents the Zpx score for the K231 and A3 positions in the aligned MSA iteration. A) 

Zpx scores from aligned MSA input separated by those originating between DNA 

(DNA_DNA), protein (AA_AA) and protein-DNA (AA_DNA). B) Zpx scores for the 

K231 and A3 pair from 10 000 independent iterations that used uniquely shuffled DNA 

(DNA_Shuffle) for each calculation.  
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3.2 Experimentally investigating the identified protein-DNA pair K231/A3 

 We investigated the role of the highest scoring amino acid (K231) in regulating 

specificity at the +3 DNA position within the context of I-OnuI. Figure 5 is a crystal 

structure of I-OnuI in complex with its target site.  

 

Figure 5. Crystal structure of I-OnuI in complex with its WT target site (pdb ID: 

3QQY). DNA in complex with the first LAGLIDADG chain are denoted as negative (-) 

while DNA in complex with the second LAGLIDADG chain are said to be positive (+). 

First, we tested I-OnuI-WT activity on +3 DNA point mutants to determine if I-

OnuI was sensitive to nt mutations at this position. A two-plasmid selection assay where 

cleavage activity is coupled to survival (McMurrough et al., 2014) was completed in 

Escherichia coli (E. coli) to measure I-OnuI-WT activity on +3 DNA point mutant 

substrates (Fig. 6). I-OnuI-WT survived 100 % on the WT (A3) and A3C substrates, but 

was inactive on the A3T substrate and showed a slow growth phenotype marked by small 

colony morphology on the A3G substrate (Fig. 6, *). This genetic assay identified A3G 

and A3T point mutants as substrates that could be used to screen I-OnuI variants for 

altered DNA specificity. 
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Figure 6. Survival of I-OnuI on +3 DNA point mutant substrates. Data represent 3 

independent replicates reported as mean +/- standard deviation. The control (left) 

represents survival of cells transformed without an I-OnuI ORF (emptyVector). The 

asterix (*) denotes a small colony phenotype.  

 We screened an I-OnuI library containing all possible amino acids substitutions at 

the 231st position (1NNS) for survivors on the A3T and A3G substrates (Fig. 7; left 

panels). After enriching the library for active I-OnuI variants through successive rounds 

of selection, we only observed survival on the A3 substrate. This result motivated us to 

randomize nearby residues W238 and D240 to allow local restructuring of the protein-

DNA interface, constructing a 3NNS library. Screening the 3NNS library for active 

variants identified I-OnuI mutants that survived on the A3T substrate and restored normal 

growth on the A3G substrate (Fig 7; right panels). Survivors were reproducibly isolated 

on the A3T substrate but only 1 of 3 replicates isolated a survivor on the A3G substrate.  
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Figure 7. Mutant I-OnuI library survival on A3A, A3G and A3T substrates. Two I-

OnuI mutant libraries, 1NNS and 3NNS were screened using successive liquid and plate 

selections (Round1-R1, and Round2-R2) on A3A, A3T and A3G substrates. Libraries 

were screened in triplicate and survival was plotted +/- standard deviation. The 3NNS 

library on the A3G substrate was unable to reproducibly replicate the results with only 

1/3rd of replicates producing I-OnuI mutant survivors.  

Individual survivors from the 1 and 3 NNS libraries were sequenced (Table 3). 

Mutations were isolated from both the 1NNS and 3NNS libraries on the WT A3 

substrate. K231S and K231K along with K231G-W238-D240S, K231G-W238-K240V 

and K231R-W238-D240 were isolated from the 1NNS and 3NNS libraries respectively 

(Table 3). Surviving colonies screened on the A3G substrate were all K231Y-W238-

D240A (I-OnuI-YA) while survivors on A3T substrate were identified as K231-W238-

D240E (I-OnuI-E). 
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Table 3. Surviving mutants from I-OnuI 1NNS and 3NNS libraries on + 3 DNA 

point mutant substrates. After two rounds of enrichment from randomized libraries, 

surviving clones were picked and sequenced. Resulting clones are identified below.  

Library +3 DNA substrate Mutation Isolated # of times 

1NNS A3A K231K 2 

  K231S 2 

 A3G None N/A 

 A3T None N/A 

3NNS A3A K231G-W238-D240S 2 

  K231G-W238-D240V 2 

  K231R-W238-D240 1 

 A3G K231Y-W238-D240A 5 

 A3T K231-W238-D240E 15 

3.3 Mutant I-OnuI survivors I-OnuI-YA and I-OnuI-E 

I-OnuI-YA and I-OnuI-E mutants were subcloned and independently tested for 

activity on the +3 point mutant substrates (Fig. 8). I-OnuI-YA survived on the A3A 

substrate and restored normal colony phenotype on the A3G substrate, but lost activity on 

the A3C substrate. I-OnuI-E was able to survive on all substrates including A3T, showing 

expanded activity, however, it still had a small colony phenotype on the A3G substrate. 

3.4 Deconvoluting identified I-OnuI mutants  

To determine the individual importance of the identified I-OnuI mutations, 

K231Y and D240A substitutions were introduced into WT I-OnuI to produce I-OnuI 

K231Y (Y) and I-OnuI D240A (A) proteins. Additionally, we were interested in possible 

synergetic interactions; therefore, K231Y was introduced into the D240E mutant to 

produce I-OnuI K231Y, D240E (YE).  
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Figure 8. I-OnuI mutant survival on +3 DNA point mutant substrates. Isolated I-

OnuI mutants K231Y-D240A and D240E were selected on +3 DNA substrates in 

triplicate with +/- standard deviation. The asterix (*) denotes a small colony phenotype.  

 

 
 Figure 9. Deconvoluted I-OnuI mutant survival on DNA +3 point mutant 

substrates. Deconvoluted I-OnuI mutants were tested for survival on +3 DNA point 

mutants in triplicate with +/- standard deviation.  

*

K231K_W238W_D240E K231Y_W238W_D240A

0

25

50

75

100

A
3

A

A
3

C

A
3

G

A
3

T

A
3

A

A
3

C

A
3

G

A
3

T

*

*

K231Y

D240A

K231Y_D240E

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

A
3

A

A
3

C

A
3

G

A
3
T

A
3

A

A
3

C

A
3

G

A
3

T

A
3
A

A
3

C

A
3

G

A
3
T

P
e
rc

e
n
t 

S
u
rv

iv
a
l 
(%

)

P
er

ce
n

t 
Su

rv
iv

al
 (

%
) 



 

 22 

These mutants were assessed for activity on +3 point mutant substrates. The single 

mutants Y and A were able to survive on the WT (A3) substrate with small colony 

phenotypes (*) but could not survive on any other point mutant (Fig. 9). The double 

mutant, YE, was unable to survive on any substrate (Fig. 9), showing that this 

combination of amino acid substitutions were not synergistic. 

3.4 Deconvoluting I-OnuI mutants  

To determine the individual importance of the identified I-OnuI mutations, 

K231Y and D240A substitutions were introduced into WT I-OnuI to produce I-OnuI 

K231Y (Y) and I-OnuI D240A (A) proteins. Additionally, we were interested in possible 

synergetic interactions; therefore, K231Y was introduced into the D240E mutant to 

produce I-OnuI K231Y, D240E (YE). These mutants were assessed for activity on the +3 

point mutant substrates. The single mutants Y and A were able to survive on the WT 

substrate with small colony phenotypes (*) but could not survive on any other point 

mutant (Fig. 7). The double mutant, YE, was unable to survive on any substrate (Fig. 7), 

showing that this combination of substitutions was not synergistic.  

3.5 Relative bacterial growth rates of I-OnuI and mutants on nt point mutants 

 To more accurately quantify the slow growth phenotype of I-OnuI-WT and 

variants, we performed growth curves on the +3 DNA point mutant substrates. Linear 

models were generated to estimate the growth rate of the I-OnuI enzymes on +3 DNA 

substrates, which were then divided by the growth rate of WT I-OnuI on the WT A3 

substrate to give a relative growth rate (Fig. 10). As a control, the average growth rate of 

cells harboring a toxic plasmid without an I-OnuI ORF was determined to evaluate 

background cell growth, reported as a dashed line. I-OnuI WT had a growth rate on the 

A3G and A3T substrates that did not exceed background growth rates. The relative 

growth rate of I-OnuI-D240E was compromised only on the A3G substrate. In 

accordance with previous data, I-OnuI-D240E showed robust growth on the A3T 

substrate. I-OnuI-YA is the only enzyme that showed appreciable growth on the A3G 

substrate, while displaying suboptimal growth rates on the A3C and A3T substrates. 
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Figure 10. Relative growth rates of I-OnuI and mutants on +3 DNA point mutant 

substrates. Growth rates were estimated from triplicate growth curves with +/- standard 

error reported. The horizontal dashed line is the average growth rate achieved from cells 

devoid of the HE ORF plasmid, representing background growth rate of cells. 

3.6 in vitro cleavage activity of I-OnuI and mutants on +3 DNA point mutants  

 An in vitro system was used to confirm the I-OnuI WT and mutant activity on +3 

DNA substrates with purified LHEs. A barcode competition assay was performed to 

simultaneously measure the relative cleavage efficiency of the nucleases on all the 

possible +3 substrates (Ulge et al., 2011). In this assay, individual +3 nt substrates were 

PCR amplified such that cleavage products would generate uniquely sized bands. A time-

course cleavage assay was performed over 60 minutes and a linear model was used to 

estimate the rate of product appearance. A relative rate of appearance for each substrate 

was obtained by dividing by the A3 rate of appearance for each I-OnuI variant (Fig. 11). 
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I-OnuI WT was found to be most active on the WT substrate, with 50 % and 25 % 

activity on the A3C and A3G substrates respectively. I-OnuI WT had no measurable 

activity on the A3T substrate. I-OnuI-E showed comparable activity on all four +3 

substrate variants. I-OnuI-YA maintained activity on A3A, lost activity on A3C and 

preferred the A3G substrate.  

 

Figure 11. I-OnuI and mutants relative cleavage activity on +3 DNA point mutant 

substrates; in-vitro nt competition assay. PCR products of all +3 DNA point mutants 

were pooled at equimolar ratios followed by cleavage using I-OnuI variants. Left panels 

are example gels cleavage time-course studies completed in triplicate. SubID shows the 

uncleaved substrate for each +3 nt. Substrate sizes for T, G, C and A are 2200, 1800, 

1600 and 1325 bp respectively. ProdID shows the size of the cleaved product, half the 

size of the substrate, for each +3 nt. The rate of appearance for ProdID bands over time 

were estimated and divided by the rate of appearance of WT (A3) substrate, reported with 

+/- standard error.  
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3.7 Profiling cleavage specificity using Illumina sequencing 

 WT I-OnuI substrates were randomized from positions +2 to +5 to construct a 4N 

library. Illumina sequencing of uncleaved DNA substrates collected over time using WT 

or mutant I-OnuI nucleases was completed to assess how quickly substrates were acted 

on by the respective nuclease. A mock replicate without the use of any nuclease was 

completed to estimate the normal variance we could expect from this analysis. The rate of 

change for each 4N DNA sequence was calculated with respect to its I-OnuI nuclease 

treatment. The distributions of rate of change values were visualized to compare the 

variance of mock and I-OnuI nuclease reactions (Fig. 12). The 4N sequences rate of 

change within the mock replicate shows a normal distribution with less than a 5 % 

likelihood of depletion rates being ≤ – 2. Sequences that were depleted ≤ – 2 in I-OnuI 

nuclease samples were subset from the data and their specific depletion values along with 

a R2 value were reported (Table 4). Nineteen sequences in total fell within this range: 7, 2 

and 3 sequences were uniquely called in replicates using I-OnuI WT, E and YA proteins 

respectively. 1 and 3 sequences were unique to WT & E and WT & YA groups, while 3 

sequences were commonly depleted between all proteins. Notably, 4N sequences ≤ – 2 

uniquely called in samples treated with the I-OnuI-E protein had I-OnuI-WT depletion 

scores that were very close to meeting the ≤ – 2 cutoff. Contrastingly, sequences ≤ – 2 

uniquely belonging to samples treated with the I-OnuI-YA protein displayed normal 

depletion rates when treated with other proteins. Therefore, these results suggest that I-

OnuI-YA has a more distinct DNA specificity than I-OnuI-E compared to I-OnuI-WT. 

 To assess the activity of I-OnuI nucleases on DNA point mutants within the 4N 

substrate, rates of change for these sequences were subset from the data. Rate of change 

values were divided by the rate of change of each nuclease on the WT 4N (CAAC) 

sequence and visualized in a heat map (Fig. 13). All nucleases preferred a C or T at 

position +2 and demonstrated no obvious nt discrimination at the +4 nt position. I-OnuI-

E demonstrated most relative activity on A3T and A3G substrates whereas I-OnuI-YA 

was the only nuclease to show appreciable activity on the C5G substitution.  
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Figure 12. Histograms of rate of change values for 4N sequences in mock and I-

OnuI WT, E and YA cleavage assays. The rate of change for sequences over the 20 

minute time-course were calculated by linear models using 5 replicates for each protein 

cleavage assay and a single mock replicate.  
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Table 4. Rate of change for sequences robustly depleted during the 20-minute 

cleavage assay (p ≤ 0.05). The rate of change for sequences estimated from 5 replicates 

reported with the associate R2 value including a single mock replicate.  

Sequence Protein(s) WT R2 E R2 YA R2 Mock R2 

CACA WT -2.25 0.93 -1.76 0.87 -1.81 0.85 -1.17 0.50 

CACC WT -2.48 0.89 -1.83 0.89 -1.63 0.87 -1.05 0.38 

CACT WT -2.48 0.91 -1.75 0.85 -1.39 0.83 -1.40 0.79 

TATC WT -2.05 0.62 -0.75 0.34 -1.36 0.44 -0.88 0.45 

CGTA WT -2.37 0.86 -1.25 0.67 -1.70 0.80 -0.61 0.77 

CATA WT -3.64 0.77 -1.35 0.51 -1.68 0.76 -0.22 0.02 

CAGC WT -2.40 0.95 -1.94 0.90 -1.53 0.88 -1.17 0.62 

CCCT E -1.93 0.97 -2.16 0.84 -0.51 0.40 -1.88 0.99 

CGCT E -1.71 0.91 -2.21 0.94 -0.53 0.67 -1.91 0.89 

CCGT YA -0.13 0.10 -0.48 0.39 -3.07 0.96 -1.12 0.98 

TATA YA -1.35 0.24 -0.73 0.11 -4.19 0.84 0.44 0.01 

TCGT YA 0.07 0.04 -0.05 0.01 -2.37 0.86 -0.74 0.40 

TCCC WT, E -2.46 0.96 -2.82 0.94 -0.40 0.32 -1.23 0.84 

CGTT WT, YA -2.28 0.95 -1.68 0.72 -2.06 0.80 -1.01 0.83 

CAGT WT, YA -2.24 0.89 -0.75 0.63 -2.91 0.98 -0.90 0.47 

TCTC WT, YA -2.51 0.84 -1.75 0.63 -2.66 0.88 -0.91 0.46 

CATC WT, YA, E -3.04 0.83 -2.03 0.65 -2.59 0.79 -1.43 0.45 

CCTT WT, YA, E -2.72 0.81 -2.77 0.86 -2.49 0.87 -1.62 0.87 

CGTC WT, YA, E -2.54 0.95 -2.61 0.82 -2.41 0.86 -1.64 0.79 
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Figure 13. Heat map of I-OnuI WT, E and YA nuclease activity on +2 to +5 DNA 

point mutants. Rates of change for WT (CAAC) and point mutant nt substrates for 

positions +2 – +5 (pos_+2, pos_+3, pos_+4 and pos_+5) were used to build this heat 

map. The rate of change for each sequence was divided by their respective nucleases rate 

of change value calculated on the WT substrate (CAAC) to give a relative rate of change 

for point mutant substrates. 
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CHAPTER FOUR - DISCUSSION  

4.1 MI as a technique for characterizing protein-DNA interactions 

 Here we apply a mathematical analysis to a MSA of LHEs with their mapped 

DNA target sites. This analysis, characterizing pairwise co-variation between MSA 

columns, identified an aa-nt pair with abnormally high MI. Using I-OnuI as a 

representative of the MSA, our analysis identified aberrant co-variation between I-OnuI-

K231 and the A3 nt of its DNA substrate (Table 1). Randomizing K231 in combination 

with a local aa D240, resulted in I-OnuI variants that had altered DNA specificity 

compared to I-OnuI WT (Fig. 8; Fig. 11). I-OnuI-YA’s specificity profile was shown to 

be distinctive from I-OnuI WT while I-OnuI-E appeared to reduce DNA specificity 

(Table 4). We believe that aa 231 and 240 contribute to an interaction surface governing 

substrate recognition, in part, at +2 and +5 nt positions (Fig. 13). These results encourage 

us to accept that positions in a MSA with extreme co-variation can reveal important 3-

dimensional interactions that can be targeted for reprogramming efforts. In conclusion, 

MIp analysis was successfully used to reprogram LHE DNA specificity.  

Assessing solved LHE contact maps in light of our MI results reveals 

discrepancies. Some solved crystal structures agreed that the 231st residue directly 

contacts the +3 nt, while other crystal structures disagreed with our predictions, 

suggesting that the +3 nt position was specifically contacted by another aa residue. 

Specifically calling attention to the contrast between I-OnuI and I-LtrI contact maps 

(Takecuhi et al., 2011), I-LtrI coincided with our MI analysis, resolving that aa 231 

directly contacts the +3 nt substrate. In contrast, the I-OnuI contact map designates aa 

231 as directly contacting the +5 nt. Without our co-variation analysis, efforts to 

reengineer I-OnuI binding at the +3 nt position would have been directed to T203, 

possibly unable to restructure the specificity at the +3 DNA nt. LHEs have been 

described as rapidly evolving proteins that have little evolutionary pressure maintaining 

specific protein-DNA contacts (Lucas et al., 2001). Thus, this co-variation analysis may 

have identified a variable aa-nt contact that is utilized by some LHEs, like I-LtrI, but has 

been restructured in other LHEs, like I-OnuI. This would mean that our I-OnuI mutant nt 

contacts have been restructured to match a distinct evolutionary trajectory taken by 
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homologous LHEs like I-LtrI. However, further investigation into the relationship 

between I-OnuI 231 and the +5 nt position is required to robustly draw this conclusion.  

 Takeuchi et al. (2011) previously characterized I-OnuI’s DNA specificity and its 

tolerance to nt point mutations. This study revealed I-OnuI to have approximately 25 % 

relative activity on A3G and A3C nt substitutions compared to its activity on the WT A3 

substrate. Furthermore, Takeuchi et al. (2011) found I-OnuI to have approximately 10 % 

relative activity on the A3T substrate. These findings are in accordance with data 

presented here, showing I-OnuI-WT to have appreciable activity on A3, A3C and A3G 

substrates (Fig. 6; Fig. 9). Additional observations from Takeuchi et al. (2011) showed I-

OnuI tolerance to nt substitutions at the +4 nt position. The lack of discrimination against 

the +4 nt has been attributed to the process of HEs developing nt specificity. HEs target 

essential genes to ensure conservation of their target sequences and maximize the 

efficiency of homing. Furthermore, HEs contact strongly conserved nts that contribute 

essential structural/functional features to the gene. The +4 nt position within the I-OnuI 

target site is a wobble position (Takeuchi et al., 2011), deterring I-OnuI from strongly 

recognizing this nt, as it would be poorly conserved (Edgell et al., 2004; Scalley-Kim et 

al., 2007). Notably, Takeuchi et al. (2011) also showed that the C5G nt substitution was 

detrimental to I-OnuI-WT activity, coinciding with our findings (Fig. 13). 

Mutation of I-OnuI at the 231st and 240th positions altered DNA specificity and 

activity distinct from the WT I-OnuI protein using in vivo and in vitro assays. Illumina 

sequencing results showed that the I-OnuI-YA mutant was able to target novel substrates 

at +3 and +5 positions (Table 4; Fig. 5). Contrastingly, WT I-OnuI and I-OnuI-E seem to 

be very similar regarding their specificity profiles. This, along with in-vitro and in-vivo 

cleavage data (Fig. 8; Fig. 11; Fig. 13) suggests that I-Onu-YA has an altered specificity 

profile compared to WT I-OnuI, whereas I-OnuI-E is an increased activity mutant of the 

WT protein. This study used assays that measured cleaved substrate as an indication for 

binding between LHEs and their DNA substrate. To resolve the changes I-OnuI 

mutations may have on binding and cleavage, Electric Mobility Shift Assays (EMSAs) 

should be done. EMSAs should be completed in suboptimal salt conditions to ensure 

LHEs are binding without cleaving substrate. 
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Scientists who have previously applied this co-variation analysis suggest that 

these analyses should be conducted on alignments containing more than 100 sequences 

(Mahony et al., 2007, Dickson et al., 2010). MI studies completed by Mahony et al. 

(2007) used alignments containing more than 1000 protein-DNA pairs; the MSA used in 

this analysis was limited to the number of experimentally determined LHE target 

sequences. Our co-variation analysis was able to successfully take sequence alignment 

information, using a modest 27 LHE-DNA pairs, to identify an aa necessary for 

specifically interacting with the +3 nt. The unexpected success of this study may be 

attributed to the extensive variability within LHEs and their respective DNA substrates. 

Variability within the MSA allows co-variation analysis to robustly characterize 

meaningful dependencies between alignment positions. In summary, results presented 

here along with those conducted by Mahony et al. (2007) were able to use MI analysis of 

sequence information to pinpoint protein positions that contribute specific intermolecular 

contacts in 3-dimensional space. MI is suitable as a preliminary analysis to localize 

mutational efforts aimed at restructuring interaction specificity of molecules.  

4.2 Comparing LHE reprogramming results with previous findings  

 Previous studies characterizing homodimeric LHE DNA specificity identified a 

homologous network of amino acids identified in this study. The homodimer I-CreI was 

mutated at residues 70 and 75, homologous to monomeric LHE positions 231 and 240, to 

alter specificity at the ± 3 DNA positions. Specifically, I-CreI Q44A-R70L-D75N and 

R68A-R70N-D75N mutants were able to accommodate C3T substitutions. Although they 

did not isolate specific amino acid mutations identified in our study, they found that 

modulating homologous residues in I-CreI within the homologous beta-sheet were 

sufficient to alter recognition of nts at  ± 3 DNA positions (Arnould et al., 2006).  

I-OnuI itself has been reengineered to recognize novel substrates. Takeuchi et al. 

(2011) reengineered I-OnuI recognition at 5 nt positions, -11, -10, -4, +2 and +11, to 

recognize a malignant human gene. N32S, S35R, S40A, T48C, I51N, K80R, E178D, 

K189N and K229R were the aa substitutions made to accommodate the DNA substrate. 

All these amino acid mutations are distinct from those identified in this study.  

Having worked extensively on reengineering LHEs to recognize novel substrates, 

Barry Stoddard has identified amino acid modules that recognize stretches of nts. The 
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identified module restructuring I-OnuI recognition at +3 - +5 positions includes K231 

and D240 among 6 additional residues. Altering K231 and D240 residues to reprogram I-

OnuI specificity at +3 nt, drastically reduces the library complexity to be screened and 

increases the efficiency of reprogramming efforts.  

4.3  Future directions  

 4.3.1 Enhancing co-variation analysis 

The most significant improvement that could be made to this analysis would be to 

add LHE-DNA pairs to the MSA. An increased number of LHE-DNA pairs will give the 

co-variation analysis more power to identify significant co-dependencies. Furthermore, 

including additional parameters that accurately assess LHEs ability to indirectly readout 

DNA features would also improve this analysis (Molina et al., 2012; Thyme et al., 2014). 

Tuning the MI statistic to biological data has been essential to the success of this 

procedure; further corrections to the MIp statistic to better enable its characterization of 

biological data is of interest.  

 4.3.2 Additional applications of MI 

 Working to synthesize genetically modified organisms or accurate disease models 

can greatly benefit from the ease of CRISPRs, however, it is paramount that genome-

editing reagents display stringent specificity to be suitable in clinical use. In a post 

CRISPR era, LHEs utility for genome editing may not be realized until the limits of 

CRISPR specificity have been well characterized.  

Here we show how computational techniques, specifically co-variation analysis, 

can identify residues that modulate interaction specificity. Knowledge gained from these 

computational techniques comes from relatively small amounts of biological data and can 

greatly reduce uncertainty when initiating study of a biological interaction.. Furthermore, 

this technique could also be used used to disrupt contacts that hinder utility of a genome 

editing reagent. Co-variation analysis of the Cas9-CRISPR system could identify residues 

that govern PAM specificity and possibly alleviate this restriction (Kleinstiver et al., 

2015).  

Moreover, with the onslaught of the –omics datasets, many view interpretation as 

the greatest impairment. Interpretation can be cumbersome because of our limited 
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understanding of the intricate genetic networks behind complex cellular processes. 

Identifying co-variation between transcript expression profiles within the proteome could 

be useful to identify networks of enzymes underlying expression systems or scaffolding 

complexes.  

  



 

 34 

References

 
Arnould, S., Chames, P., Perez, C., Lacroix, E., Duclert, A., Epinat, J.-C., Stricher, F., 

Petit, A.-S., Patin, A., Guillier, S., et al. (2006). Engineering of Large Numbers of Highly 

Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets. 

Journal of Molecular Biology 355, 443–458. 

 

Ashworth, J., Havranek, J.J., Duarte, C.M., Sussman, D., Monnat, R.J., Stoddard, B.L., 

and Baker, D. (2006). Computational redesign of endonuclease DNA binding and 

cleavage specificity. Nature 441, 656–659. 

 

Ashworth, J., Taylor, G.K., Havranek, J.J., Quadri, S.A., Stoddard, B.L., and Baker, D. 

(2010). Computational reprogramming of homing endonuclease specificity at multiple 

adjacent base pairs. Nucl. Acids Res. 38, 5601–5608. 

 

Atchley, W.R., Wollenberg, K.R., Fitch, W.M., Terhalle, W., and Dress, A.W. (2000). 

Correlations Among Amino Acid Sites in bHLH Protein Domains: An Information 

Theoretic Analysis. Mol Biol Evol 17, 164–178. 

 

Barzel, A., Privman, E., Peeri, M., Naor, A., Shachar, E., Burstein, D., Lazary, R., 

Gophna, U., Pupko, T., and Kupiec, M. (2011). Native homing endonucleases can target 

conserved genes in humans and in animal models. Nucleic Acids Res 39, 6646–6659. 

 

Beerli, R.R., Segal, D.J., Dreier, B., and Barbas, C.F. (1998). Toward controlling gene 

expression at will: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl 

zinc finger proteins constructed from modular building blocks. PNAS 95, 14628–14633. 

 

Blancafort, P., Magnenat, L., and Barbas, C.F. (2003). Scanning the human genome with 

combinatorial transcription factor libraries. Nat Biotech 21, 269–274. 

 

Boutell, J.M., Thomas, P., Neal, J.W., Weston, V.J., Duce, J., Harper, P.S., and Lesley 

Jones, A. (1999). Aberrant Interactions of Transcriptional Repressor Proteins with the 

Huntington’s Disease Gene Product, Huntingtin. Human Molecular Genetics 8, 1647–

1655. 

 

Chevalier, B.S., and Stoddard, B.L. (2001). Homing  endonucleases: structural and 

functional insight into the catalysts  of intron/intein mobility. Nucleic Acids Res 29, 

3757–3774. 

 

Clarke, N.D. (1995). Covariation of residues in the homeodomain sequence family. 

Protein Science 4, 2269–2278. 

 

Dickson, R.J., and Gloor, G.B. (2012). Protein Sequence Alignment Analysis by Local 

Covariation: Coevolution Statistics Detect Benchmark Alignment Errors. PLOS ONE 7, 

e37645. 

 



 

 35 

Dickson, R.J., Wahl, L.M., Fernandes, A.D., and Gloor, G.B. (2010). Identifying and 

Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein 

Covariation. PLOS ONE 5, e11082. 

 

Dickson, R.J., and Gloor, G.B. (2013). The MIp Toolset: an efficient algorithm for 

calculating Mutual Information in protein alignment. arXiv preprint arXiv:1304.4573. 

 

Doyon, J.B., Pattanayak, V., Meyer, C.B., and Liu, D.R. (2006). Directed Evolution and 

Substrate Specificity Profile of Homing Endonuclease I-SceI. J. Am. Chem. Soc. 128, 

2477–2484. 

 

Dreier, B., Segal, D.J., and Barbas III, C.F. (2000). Insights into the molecular 

recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains1. Journal 

of Molecular Biology 303, 489–502. 

 

Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., and Barbas, C.F. (2001). Development 

of Zinc Finger Domains for Recognition of the 5′-ANN-3′ Family of DNA Sequences 

and Their Use in the Construction of Artificial Transcription Factors. J. Biol. Chem. 276, 

29466–29478. 

 

Dreier, B., Fuller, R.P., Segal, D.J., Lund, C.V., Blancafort, P., Huber, A., Koksch, B., 

and Barbas, C.F. (2005). Development of Zinc Finger Domains for Recognition of the 5′-

CNN-3′ Family DNA Sequences and Their Use in the Construction of Artificial 

Transcription Factors. J. Biol. Chem. 280, 35588–35597. 

 

Dunn, S.D., Wahl, L.M., and Gloor, G.B. (2008). Mutual information without the 

influence of phylogeny or entropy dramatically improves residue contact prediction. 

Bioinformatics 24, 333–340. 

 

Edgell, D.R., Stanger, M.J., and Belfort, M. (2004). Coincidence of Cleavage Sites of 

Intron Endonuclease I-TevI and Critical Sequences of the Host Thymidylate Synthase 

Gene. Journal of Molecular Biology 343, 1231–1241. 

 

Gloor, G.B., Martin, L.C., Wahl, L.M., and Dunn, S.D. (2005). Mutual Information in 

Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions. 

Biochemistry 44, 7156–7165. 

 

Havranek, J.J., Duarte, C.M., and Baker, D. (2004). A Simple Physical Model for the 

Prediction and Design of Protein–DNA Interactions. Journal of Molecular Biology 344, 

59–70. 

 

Jiménez, J.S. (2010). Protein-DNA interaction at the origin of neurological diseases: a 

hypothesis. J. Alzheimers Dis. 22, 375–391. 

 

Jurica, M.S., and Stoddard, B.L. (1999). Homing endonucleases: structure, function and 

evolution. CMLS, Cell. Mol. Life Sci. 55, 1304–1326. 



 

 36 

 

Kim, J.-S., and Pabo, C.O. (1997). Transcriptional Repression by Zinc Finger Peptides 

EXPLORING THE POTENTIAL FOR APPLICATIONS IN GENE THERAPY. J. Biol. 

Chem. 272, 29795–29800. 

 

Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., 

Gonzales, A.P.W., Li, Z., Peterson, R.T., Yeh, J.-R.J., et al. (2015). Engineered CRISPR-

Cas9 nucleases with altered PAM specificities. Nature 523, 481–485. 

 

Lander, E.S. (2011). Initial impact of the sequencing of the human genome. Nature 470, 

187–197. 

 

Lazaridis, T., and Karplus, M. (1999). Effective energy function for proteins in solution. 

Proteins 35, 133–152. 

 

Li, S., and Bradley, P. (2013). Probing the role of interfacial waters in protein–DNA 

recognition using a hybrid implicit/explicit solvation model. Proteins 81, 1318–1329. 

 

Little, D.Y., and Chen, L. (2009). Identification of Coevolving Residues and Coevolution 

Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein 

Evolution. PLOS ONE 4, e4762. 

 

Liu, Q., Segal, D.J., Ghiara, J.B., and Barbas, C.F. (1997). Design of polydactyl zinc-

finger proteins for unique addressing within complex genomes. PNAS 94, 5525–5530. 

 

Lucas, P., Otis, C., Mercier, J.-P., Turmel, M., and Lemieux, C. (2001). Rapid evolution 

of the DNA-binding  site in LAGLIDADG homing endonucleases. Nucleic Acids Res 29, 

960–969. 

 

Mahony, S., Auron, P.E., and Benos, P.V. (2007). Inferring protein–DNA dependencies 

using motif alignments and mutual information. Bioinformatics 23, i297–i304. 

 

McMurrough, T.A., Dickson, R.J., Thibert, S.M.F., Gloor, G.B., and Edgell, D.R. (2014). 

Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic 

residues. PNAS 111, E2376–E2383. 

 

Mitchell, P., & Tjian, R. (1989). Transcriptional Regulation in Mammalian Cells by 

Sequence-Specific DNA Binding Proteins. Science, 245(4916), 371-378. Retrieved from 

http://www.jstor.org/stable/1703794 

 

Molina, R., Redondo, P., Stella, S., Marenchino, M., D’Abramo, M., Gervasio, F.L., 

Epinat, J.C., Valton, J., Grizot, S., Duchateau, P., et al. (2012). Non-specific protein–

DNA interactions control I-CreI target binding and cleavage. Nucl. Acids Res. 40, 6936–

6945. 

 



 

 37 

Muller, P.A.J., and Vousden, K.H. (2013). p53 mutations in cancer. Nat Cell Biol 15, 2–

8. 

 

Oliveira, L., Paiva, A.C.M., and Vriend, G. (2002). Correlated Mutation Analyses on 

Very Large Sequence Families. ChemBioChem 3, 1010–1017. 

 

Pabo, C.O., and Nekludova, L. (2000). Geometric analysis and comparison of protein-

DNA interfaces: why is there no simple code for recognition?1. Journal of Molecular 

Biology 301, 597–624. 

 

Pabo, C.O., Peisach, E., and Grant, R.A. (2001). Design and Selection of Novel 

Cys2His2 Zinc Finger Proteins. Annual Review of Biochemistry 70, 313–340. 

 

Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., 

Schreiber, J., Hannett, N., Kanin, E., et al. (2000). Genome-Wide Location and Function 

of DNA Binding Proteins. Science 290, 2306–2309. 

 

Rohl, C.A., Strauss, C.E.M., Misura, K.M.S., and Baker, D. (2004). Protein Structure 

Prediction Using Rosetta. In Methods in Enzymology, (Elsevier), pp. 66–93. 

 

Rohs, R., West, S.M., Sosinsky, A., Liu, P., Mann, R.S., and Honig, B. (2009). The role 

of DNA shape in protein-DNA recognition. Nature 461, 1248–1253. 

 

Scalley-Kim, M., McConnell-Smith, A., and Stoddard, B.L. (2007). Coevolution of a 

homing endonuclease and its host target sequence. J Mol Biol 372, 1305–1319. 

 

Segal, D.J., and Barbas III, C.F. (2000). Design of novel sequence-specific DNA-binding 

proteins. Current Opinion in Chemical Biology 4, 34–39. 

 

Seligman, L.M., Chisholm, K.M., Chevalier, B.S., Chadsey, M.S., Edwards, S.T., 

Savage, J.H., and Veillet, A.L. (2002). Mutations altering the cleavage specificity of a 

homing endonuclease. Nucleic Acids Res 30, 3870–3879. 

 

Stella, S., Cascio, D., and Johnson, R.C. (2010). The shape of the DNA minor groove 

directs binding by the DNA-bending protein Fis. Genes Dev. 24, 814–826. 

 

Stoddard, B.L. (2005). Homing endonuclease structure and function. Quarterly Reviews 

of Biophysics 38, 49–95. 

 

Stoddard, B.L. (2011). Homing Endonucleases: From Microbial Genetic Invaders to 

Reagents for Targeted DNA Modification. Structure 19, 7–15. 

 

Sussman, D., Chadsey, M., Fauce, S., Engel, A., Bruett, A., Monnat Jr, R., Stoddard, 

B.L., and Seligman, L.M. (2004). Isolation and Characterization of New Homing 

Endonuclease Specificities at Individual Target Site Positions. Journal of Molecular 

Biology 342, 31–41. 



 

 38 

 

Takeuchi, R., Lambert, A.R., Mak, A.N.-S., Jacoby, K., Dickson, R.J., Gloor, G.B., 

Scharenberg, A.M., Edgell, D.R., and Stoddard, B.L. (2011). Tapping natural reservoirs 

of homing endonucleases for targeted gene modification. Proc Natl Acad Sci U S A 108, 

13077–13082. 

 

Thyme, S.B., Jarjour, J., Takeuchi, R., Havranek, J.J., Ashworth, J., Scharenberg, A.M., 

Stoddard, B.L., and Baker, D. (2009). Exploitation of binding energy for catalysis and 

design. Nature 461, 1300–1304. 

 

Thyme, S.B., Baker, D., and Bradley, P. (2012). Improved Modeling of Side-Chain–Base 

Interactions and Plasticity in Protein–DNA Interface Design. Journal of Molecular 

Biology 419, 255–274. 

 

Thyme, S.B., Song, Y., Brunette, T.J., Szeto, M.D., Kusak, L., Bradley, P., and Baker, D. 

(2014a). Massively parallel determination and modeling of endonuclease substrate 

specificity. Nucl. Acids Res. gku1096. 

 

Thyme, S.B., Boissel, S.J.S., Quadri, S.A., Nolan, T., Baker, D.A., Park, R.U., Kusak, L., 

Ashworth, J., and Baker, D. (2014b). Reprogramming homing endonuclease specificity 

through computational design and directed evolution. Nucl. Acids Res. 42, 2564–2576. 

 

Tillier, E.R.M., and Lui, T.W.H. (2003). Using multiple interdependency to separate 

functional from phylogenetic correlations in protein alignments. Bioinformatics 19, 750–

755. 

 

Yanover, C., and Bradley, P. (2011). Extensive protein and DNA backbone sampling 

improves structure-based specificity prediction for C2H2 zinc fingers. Nucl. Acids Res. 

39, 4564–4576. 

 

Yu, H., Pardoll, D., and Jove, R. (2009). STATs in cancer inflammation and immunity: a 

leading role for STAT3. Nat Rev Cancer 9, 798–809. 

  



 

 39 

Curriculum Vitae 

 
EDUCATION 

Master of Science – Biochemistry with bioinformatics component               2014 – Summer 2016 

Western University, London, Ontario  

 Performed literature reviews and stayed current on pertinent literature 

 Mined databases for biological data of interest to construct custom datasets 

 Applied predetermined and ad-hoc analyses on datasets in R and Unix environments 

 Regularly performed common molecular biology procedures such as DNA purification, 

PCR, gel electrophoresis and sample preparation for sequencing 

 Text parsed and visualized Next-Generation Sequencing (NGS) datasets in R  

 Maintained meticulous laboratory notes 

 Followed standard operating and quality assurance procedures 

 Mentored volunteers and undergraduate students 
 

Bachelor of Science – Honors Specialization in Biochemistry and Cell Biology         2010 – 2014 

Western University, London, Ontario  

 Gold Medal recipient (highest GPA in major from graduating class) 

 Fourth year thesis & biochemistry laboratory – PCR, cloning, DNA preps, analytical 

digests, mass spectroscopy, spectrophotometry and protein purification  

 Cell biology laboratory – advanced microscopy, karyotyping and cell blotting/staining 

 Microbiology laboratory – unknown bacterial identification and microbial analysis of 

body fluids 
 

WORK EXPERIENCE  

Teaching Assistant (TA)                                                                          Fall/Winter 2015 – 2016 

Western University, London, Ontario  

 Biochemical regulation (Fall 2015) – 3rd year Biochemistry 

o Led weekly tutorials, marked assessments and answered student questions 

o Content included old, current and emerging sequencing technologies 

o Content also included DNA replication, regulation of gene expression, 

epigenetics, molecular and synthetic biology 

 Biochemistry Laboratory (Winter 2015) – 3rd year Biochemistry  

o Led a group of students during their weekly laboratories 

o Acquainted group with common biochemical and molecular biology procedures 

o Helped students analyze experimental results generated from DNA sequencing, 

PCR, gel electrophoresis and DNA profiles generated from saliva samples 
 

Campus Program Coordinator – Leave the Pack Behind                   Fall/Winter 2013 – 2014 

Western University, London, Ontario  

 Managed a team of 30 volunteers 

 Coordinated campus wide smoking cessation campaigns to improve community health 

 Liaison between campus health services and LTPB head office personal 
 

Assistant Aquatic Coordinator / Lifeguard                                                                2008 – 2012 

Town of Halton Hills, Georgetown, Ontario  

Managed staff in the operation of a public swimming pool, ensuring adherence to regulations and 

the safety of visiting patrons. 


	Using mutual information to reprogram DNA specificity of LAGLIDADG endonucleases
	Recommended Citation

	tmp.1478562725.pdf.YUiIa

