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Abstract: In the coming decade, artificial intelligence systems are set to revolutionise every
industry and facet of human life. Building communication systems that enable seamless and
symbiotic communication between humans and AI agents is increasingly important. This
research advances the field of human-AI interaction by developing an innovative approach to
decode imagined speech using non-invasive high-density functional near-infrared
spectroscopy (fNIRS). Notably, this study introduces MindGPT, the first thought-to-LLM (large
language model) system in the world.

This study focuses on enhancing human-AI communication by utilising fNIRS data to
develop a proprietary AI model called MindGPT capable of decoding imagined speech.
Hemodynamic responses representing neural activity were collected from four participants
instructed to imagine three different sentences. An Extra Trees Classifier (XTC) model was
employed to decode neural patterns and differentiate imagined speech from rest conditions,
achieving an average accuracy of ~66% across participants, with the best average accuracy
at 71%. To further decode neural signals associated with specific imagined sentences, a
convolutional neural network (CNN) and a ridge regression model were used as decoders.
The CNN model demonstrated an advantage with minimally preprocessed optical density
data, outperforming the ridge regression model in this task.

Our results showed significant decoding accuracy for imagined speech, with the ridge
regression model achieving a best accuracy of 57% for one participant (chance level: 33%,
p-value < 0.001) and the CNN model achieving 47% (chance level: 33%, p-value < 0.001). This
study expands our understanding of semantic representation within the brain and supports
the crucial role of the dorsolateral prefrontal cortex (DLPFC) in imagined speech processing.

To showcase the practical implementation of our findings, we developed a proof-of-concept
near real-time AI communication system using fNIRS technology and a Flask application
(i.e., MindGPT), enabling early-stage thought-based communication between participants
and the OpenAI GPT-4 API. The implications of this direct communication channel extend
across various fields, offering exciting opportunities for human-AI interaction.

By advancing our knowledge of imagined speech processing and demonstrating the
potential of fNIRS-based AI communication systems, this study highlights the transformative
possibilities of this technology, potentially shaping the future of neurotechnology and AI
communication through the monitoring of brain function using fNIRS. Future work will focus
on improving decoder accuracy by incorporating a wider range of semantic meanings and
employing more advanced machine learning techniques.

Keywords: Human-AI Interaction, Artificial Intelligence, AI model, Brain to text AI, Imagined
speech decoding, Functional near-infrared spectroscopy (fNIRS), Large language model (LLM),
Text generation, Semantic representation.
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1.Introduction

Human-AI interaction and human-computer interaction could be radically enhanced if
humans had the direct capability to transmit their thoughts to artificial intelligence. The
concept of humans imagining language in their mind without any physical involvement is
sometimes referred to as imagined speech. Therefore decoding imagined speech using an
AI model trained on brain data of participants imagining speech offers the potential for a
natural and intuitive means of communication. An imagined speech system could make life
better for people who have difficulty communicating and also revolutionise consumer
technology and interaction with future AI assistants.
To date there has been some research into extracting neural representations of imagined
speech.

Non-invasive neuroimaging techniques traditionally used to investigate the neural
underpinnings of imagined speech include electroencephalography (EEG) (with a review by
Lopez-Bernal et al., 2022), magnetoencephalography (MEG) (e.g., Dash et al., 2020; Orpella
et al., 2022), and functional magnetic resonance imaging (fMRI) (Huth et al., 2016; Tang et
al., 2023). These modalities have been successful in revealing temporal as well as spatial
patterns associated with language processing but are less precise when it comes to
measuring brain activity at high spatial resolution (EEG) or practical application in real-world
environments (MEG and fMRI). Presently, invasive methods including electrocorticography
(ECoG) have exhibited precision rates for speech comprehension at levels upwards of 60%
(e.g., Moses et al., 2019). However, the usage of ECoG is constrained as it demands
surgery, and this feature increases doubts regarding its acceptability by users and safety.

Functional near-infrared spectroscopy (fNIRS) has been considered as a promising method
of neuroimaging for BCI applications involving imagined speech decoding. fNIRS is a
non-invasive technique that measures blood oxygenation changes in the brain as an indirect
measure of neural activity, through monitoring the associated vascular responses (slow
signal), similar to that of fMRI (Naseer & Hong, 2015). In contrast to EEG, fNIRS provides
better spatial resolution and is less sensitive to motion artefacts, allowing it to be applied in
more naturalistic settings (Quaresima & Ferrari, 2019). fNIRS, being portable, harmless and
cost-effective, as well as not requiring conductive gels or any elaborate set-up procedures,
provides a number of advantages (Naseer and Hong, 2015). High-density fNIRS systems,
and high-density diffuse optical tomography (HD-DOT) as an extension, can provide better
coverage and have been shown to report similar neuroimaging capabilities to fMRI (e.g.,
Cao et al., 2018; Eggebrecht et al., 2012) with better temporal resolution given the higher
sampling rate. This advancement is significant, as it aligns with and extends the growing
body of work exploring the application of fMRI in decoding thoughts and semantic
information (Tang et al., 2023).

Despite the potential advantages of fNIRS, its application in imagined speech decoding
remains relatively underexplored compared to other neuroimaging modalities. Previous
studies have demonstrated the feasibility of using fNIRS to decode perceived speech (e.g.,
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Liu and Ayaz, 2018) and speech decoding associated with reading (e.g., Hofmann et al.,
2014). However, research specifically focused on decoding imagined speech using fNIRS is
limited. Cao et al. (2018) and Rybář et al. (2021) have used fNIRS to investigate the
decoding of semantic categories of imagined concepts, highlighting the potential of fNIRS for
capturing semantic information. The decoding of single words using fNIRS has also been
previously explored, e.g., by Naseer and Hong (2014) who developed an online binary
decision (“yes”, “no”) decoding system. These studies provide compelling evidence of the
potential of using fNIRS for semantic decoding; however, they focus on single-word
decoding, this way limiting the decoding of larger imagined speech extracts. To our
knowledge, only Tang et al. (2023) have reported successful identification of 5 1-min stories
from brain data; however, the authors used fMRI neuroimaging method, which is renowned
for its high spatial resolution. Nevertheless, no study has systematically investigated the use
of fNIRS for decoding imagined sentences.

The current study aims to address this gap in the literature by exploring the feasibility of
using fNIRS to decode imagined speech compared to rest condition and in decoding one of
three imagined sentences in a classification task. We propose a novel fNIRS-based system
that combines advanced signal processing techniques and machine learning algorithms to
classify imagined sentences with different semantic content from a predefined set, based on
the analysis of brain activity patterns. The primary objective of this study is to achieve
above-chance decoding accuracy in detecting imagined speech, demonstrating the potential
of fNIRS as a viable modality for imagined sentence decoding. Different levels of fNIRS data
preprocessing were also implemented and tested to investigate which data preparation
method would lead to best model performance. This decision was driven by the fact that
previous studies (e.g., Eastmond et al., 2022) suggested that deep learning can be used to
reduce lengthy preprocessing. In addition, we aim to identify brain regions associated with
imagined speech, and those specific to the different imagined sentences, to extend our
knowledge of semantic representation in the brain (Brumberg et al., 2016; Eggebrecht et al.,
2014; Petersen et al., 1988). Finally, we present a proof-of-concept near real-time
fNIRS-based system that enables direct human-AI interaction through imagined speech.
More specifically, the sentences decoded by our developed models are then utilised as
prompts for a language model, i.e., ChatGPT (Achiam et al., 2023), to facilitate telepathy-like
and direct human-AI communication.

In summary, this paper presents a novel approach for decoding imagined speech using
high-density fNIRS and crucially shows the first demonstration of direct imagined sentences
interaction with an LLM. We demonstrate successful decoding of imagined sentences as the
first step towards implementing a practical and non-invasive solution for imagined speech
decoding through the following innovations: (i) Demonstrating the feasibility of fNIRS
recording using off-the-shelf commercially available headgears for collecting high
signal-to-noise ratio (SNR) signals during imagined speech, compared to rest brain function;
(ii) Implementing decoding algorithms that can decipher and classify imagined sentences
from a limited dictionary with relatively high accuracy; (iii) Extending our knowledge of
semantic representation in the brain; and (iv) Establishing an early-stage thought-based
communication channel as a platform for new possibilities in human-AI interaction and
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synergy. This BCI paradigm can be further optimised and refined for intriguing applications
involving human-AI interaction, beyond imagined speech decoding.

2.Material and Methods

2.1 Participants
This study included a total of 4 participants (male = 3, female = 1), ranging in age from 25 to
28 years, with a mean age of 26.5 years. Participants were required to be fluent in English,
free from any neurological disorders, and not currently undergoing any form of psychological
treatment. Participants were also asked to refrain from drinking coffee and make use of any
other substance that may alter their state before each data collection session. Participants
wearing glasses were asked to use contact lenses for data collection for ease when setting
up the fNIRS neuroimaging cap. All participants provided informed consent and were
compensated for their time. All participants completed data collection in less than 9
sessions.

2.2 Experimental Setup
In this study, we employed a Continuous-Wave (CW) high-density 48x48 fNIRS system that
provides full-head coverage. The commercially available fNIRS system (NIRx Inc.),
consisted of 48 sources and 47 detectors (the extra detector is used for the short-distance
channels). The system consists of a total of 388 channels (194 source wavelength at 760
nm and 194 source wavelength at 850 nm); sampling rate: 5.9 Hz; channel distances
ranging from ~21 mm to ~42 mm), and 8 short-distance channels (channel distances: < 10
mm) providing high-density full-head coverage (see Figure 1), to monitor changes in
oxygenated blood levels in the brain as a proxy for neural activity.
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Figure 1. Whole head high-density fNIRS montage, including 48 sources, 47 detectors and 8
short-distance channels.

Participants were asked to sit in front of a computer screen, with their hands resting on the
table, and the fNIRS fibre bundles arranged in a ponytail attached to the main fNIRS box. An
example setup is illustrated in Figure 2. Participants memorised three sentences before the
onset of the experiment. At the start of the experiment, participants were reminded using a
beeping metronome tone to imagine the sentences at a set pace, while their brain was
recorded with fNIRS. Using a metronome ticking at 100 beats per minute as a reference
pace for the imagined sentences ensured consistent timing and speed with the intention for
participants to imagine the sentences at 100 words per minute.

Figure 2. Example of a participant imagining the sentences during a fNIRs brain scanning
session

To avoid an effect of sentence duration on decoding performance, the sentences used in the
experiment were carefully designed to have similar lengths of approximately 25 seconds
when imagined. Moreover, the selected sentences (reported in Table 1 below) were crafted
to have distinct semantic content (BERT score calculation between sentences was used as
a measure of semantic similarity (Zhang et al., 2019)). To obtain a robust dataset, each
sentence was imagined repeatedly by participants in a randomised order. The total number
of imagined speech trials collected from participants were: 423 for participant 1, 378 for
participant 2, 423 for participant 3, and 419 for participant 4. These repetitions were
collected across 11 to 16 separate experimental sessions for each participant. All imagined
speech trials included an equivalent number of the three imagined sentences (e.g., the 423
imagined speech trials collected from participant 1 included 141 trials for each of the three
imagined sentences). Rest condition trials were also collected (n = 25 for participant 1, n =
126 for participant 2, n = 141 for participant 3, and n = 140 for participant 4) with the same
duration (25s) as imagined sentence trials. Please note that the number of rest condition
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trials collected from participant 1 is significantly lower compared to the other participants.
This is due to the fact that rest condition trials were implemented in our paradigm when
participant 1 had already started data collection, while all other participants started data
collection after this point and thus completed a higher number of rest condition trials. These
were presented to participants in a randomised order and were used in the brain activation
analyses. During rest condition trials, the participant was instructed to clear their mind and
refrain from doing or thinking anything in particular.

Table 1. Imagined sentences with distinct semantic content selected for the 3-class
classification

Prompt Imagined Sentence

Call I have a great time speaking to Mom on the phone, and I know that she
does too. As we live so far away from each other, texting just does not
do it justice. I think giving her a call is the only way to fully catch up.

Restaurant We have not had a date night in forever, and I would love to try that new
Italian place that opened downtown. There is always a big queue outside
the restaurant, let me just make a reservation so we do not miss out.

Venus If I were on Venus, I'd be in a world of extremes. The pressure here feels
like being a kilometre underwater, crushing me from all sides. The air is
a corrosive nightmare, capable of dissolving metal.

2.3 fNIRS Data Preprocessing
In this work, we tested different levels of preprocessing of our raw fNIRS data to identify
which data preparation method would lead to best model performance. With this choice, we
aimed to illustrate the balance between a lengthy preprocessing of fNIRS data to extract
relevant information to decode imagined speech and the complexity of the models used.
More specifically, while CNNs are more complex models compared to a ridge regression
model, the former is renown for being able to extract features from minimally preprocessed
data (e.g., Kumar et al., 2023), while a higher level of preprocessing may be needed for the
latter. We therefore reasoned that raw or minimally preprocessed (optical density) data might
result in higher performance when selecting the CNN decoder, while fully preprocessed data
might be more suitable for the ridge regression, simpler model. Initially, the brain data
collected during sentence imagining was streamed through the NIRx acquisition software,
Aurora fNIRs (NIRx Medical Technologies LLC), and saved in the XDF format. The saved
data was then loaded and subjected to a series of preprocessing techniques. Specifically, we
trained our models using (a) raw data, i.e., intensity only, (b) optical density data, i.e.,
minimally preprocessed data which underwent conversion of raw signals to optical density
data [-log(Intensity_task/Intensity_rest)], and (c) fully preprocessed data, i.e., data
underwent conversion of raw signals to optical density, detrending, short channel regression
correction, motion artefact correction, conversion to haemoglobin concentration using a
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partial pathlength factor (ppf) of 6, and bandpass filtering between 0.01 and 0.7 Hz (Huppert
et al., 2009). Finally, regardless of the level of preprocessing, data was trimmed to a fixed
shape of 145 time points by 388 channels (optical density and fully preprocessed data: 194
oxy-haemoglobin and 194 deoxy-haemoglobin channels) and saved as HF5 files, with the
filenames corresponding to the respective sentence names.

2.4 Imagined Speech Detection Decoder
In this study, we applied an Extra Trees Classifier (XTC) model to fully preprocessed brain
signals to decode imagined speech. This model was implemented using the
ExtraTreesClassifier from the scikit-learn library (Geurts, et al., 2006) with the following
parameters: bootstrap = False; criterion = "entropy"; max_features = 0.2; min_samples_leaf
= 6; min_samples_split = 7; n_estimators = 100. The XTC is an ensemble learning method
based on the random forest algorithm, which fits multiple decision trees on various
sub-samples of the dataset and uses averaging to improve predictive accuracy and control
over-fitting. A stratified k-fold cross-validation with 3 folds was employed and tests were
conducted over 5 different seeds to ensure the model's robustness and versatility capability.
Stratified sampling maintained the class distribution across folds. Decoder performances
were assessed using decoding accuracy as the metric of success, which is defined as the
accuracy of classification of the predicted test set over many trials. To assess the
significance of the classification results, a p-value was calculated using the cumulative
distribution function (CDF) of the binomial distribution. The p-values from each fold were
combined using Chi-squared distribution to obtain a single p-value representing the overall
statistical significance of the results. Class-wise accuracy distribution was also tracked to
analyse the model's performance across different classes (imagined speech vs rest
condition). All models were trained on single-subjects to determine best accuracy per
subject, although results from subjects were also averaged to identify overall performance of
our models in successfully completing imagined speech detection. Participant 1 was
excluded from this test, as not enough rest condition trials were collected to allow for this
classification.

2.5 Imagined Sentences Decoder
In this study, we employed advanced machine learning techniques to decode brain signals
and classify the sentences that participants were imagining into one of the 3 predefined
classes. We developed and implemented two decoding models to achieve this goal. The first
model was based on a one-dimensional Convolutional Neural Network (1D-CNN)
architecture to analyse time-series fNIRS data. In addition, we used the widely used ridge
regression model for imagined sentence classification as the baseline. Ridge regression
models have been used in previous language-related brain decoding studies (Huth et al.,
2016, Tang et al., 2023), which can be used as baseline models to compare with our
innovative CNN model. Both models can be used in the final near real-time demonstration
(see section 2.4). All models were trained on single-subjects to determine best accuracy per
participant, although results from participants were also averaged to identify overall
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performance of our models in successfully completing imagined sentence classification
across participants. As a slightly different number of trials was collected from participants,
the total number of trials included per participant considered are following: (1) Participant 1:
423 imagined speech trials, (2) Participant 2: 378 imagined speech trials, (3) Participant 3:
423 imagined speech trials; (4) Participant 4: 419 imagined speech trials. All imagined
speech trials include an equivalent number of the three imagined sentences (e.g., Participant
1 has a total of 423 imagined speech trials, which include 141 trials for each of the three
imagined sentences). We do not expect this variation among participant trials to greatly
affect the performance of our decoding algorithms, as overall a similar number of trials were
collected for all participants.

Decoder performances were assessed using decoding accuracy as the metric of success,
which is defined as the accuracy of classification of predicted test set over many trials. The
imagined sentence and rest condition labels were selected as the ground truth. A 3-fold
cross validation was run 5 times with different random seeds. We reported average and best
fold accuracy by seed and participant, and we combine those values to determine a single
value for participants’ average and best accuracy across different seeds. For each fold, a
p-value is calculated using the cumulative distribution function (CDF) of the binomial
distribution. The combined p-value of all 3 folds across seeds is then calculated using a
Fisher’s test (see Supplementary Information for detailed results).

2.5.1 1D-CNN Model

A 1D-CNN with multiple layers was developed for each participant (subject-specific) for the
analysis of time series fNIRS data. Similarly, 1D-CNNs have been previously used in BCI
applications to decode fNIRs brain signals to remove the requirement for complex brain
image processing (e.g., Kumar et al., 2023), as they are quite effective at extracting features
from noisy signals. However, to the best of our knowledge, direct application of 1D-CNN to
decode imagined speech has not been demonstrated before. The 1D-CNN represented a
good balance between model complexity and effectiveness at extracting relevant features for
imagined speech decoding, thus they were preferable to the more complex 2D- or 3D-CNNs.
Regularisation techniques, including dropout and fully connected layers, were incorporated
into our model. Xavier initialization (Glorot & Bengio, 2010) was employed for weight
initialization, and following softmax activation (for two-class classification for imagined
speech vs rest condition) or sigmoid activation (for three-class classification for the three
imagined sentences), the final layer's output was determined.

The recorded fNIRS data was partitioned into training, validation, and test subsets. The
scikit-learn’s Robust scaler was fitted with training data and applied to validation and test
data separately. The model was trained and subsequently evaluated on the validation set
before final performance assessment on the test set. The Cross Entropy Loss was utilised
as the loss function, while the Adam optimizer was employed for optimization steps. The
learning rate was optimised using the ReduceLROnPlateau scheduler. Furthermore, L1 and
L2 regularisation, early stopping, and cross-validation were implemented, along with a
search for L1 and L2 coefficients. Model performance was evaluated using the accuracy of
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the predicted test set, where imagined sentence and rest condition labels were selected as
ground truth. This same procedure was followed for all data, regardless of the preprocessing
steps taken to prepare the data, and for all participants.

2.5.2 Ridge regression model
A cross-validated ridge regression model was also implemented for each participant
(subject-specific) as the baseline model to convert fNIRS brain signals to sentence
embeddings. Scikit-learn’s RidgeCV was used with the alpha range set to 10e-3 - 10e3

(following Tang et al., 2023) where the best alpha value that determines regularisation
strength is determined with cross validation. The sentence embeddings were created using
SentenceTransformer, where each sentence is encoded into 768-element 1D vectors. The
base model ‘all-mpnet-base-v2’ was used. The predicted embeddings from ridge regression
is then fed into a logistic regression classifier to output the predicted identity of the sentence.

For pre-processing, the fNIRS data was scaled with scikit-learn’s Robust scaler. The first 10
samples of each trial were averaged to obtain the baseline, which was then subtracted from
the rest of the signal for removing the baseline. Delta Hb/HbO value over 16 (μMol for
haemo data) was clamped in order to remove outliers. The scaler was fitted with training
data and applied to validation and test data separately. This same procedure was followed
for all data, regardless of the preprocessing steps taken to prepare the data, and for all
participants.

2.6 Imagined speech related brain activations
In addition to applying decoding models directly to the imagined speech data, analyses
involving haemodynamic response modelling and GLM-based statistical testing were
conducted to identify imagined speech-related activations in the brain. To identify semantic
representation in the brain, brain activations during imagined speech and rest condition were
compared (fully preprocessed fNIRS data were used; see section 2.3). This was repeated for
all participants. During our experiments, a slightly different number of trials was collected for
each participant: (1) Participant 1: 423 imagined speech vs 25 rest condition trials, (2)
Participant 2: 378 imagined speech vs 126 rest condition trials, (3) Participant 3: 423
imagined speech vs 141 rest condition trials; (4) Participant 4: 419 imagined speech vs 140
rest condition trials. All imagined speech trials included an equivalent number of the three
imagined sentences (e.g., the 423 imagined speech trials collected from participant 1
included 141 trials for each of the three imagined sentences). GLM works best when multiple
trials can be averaged, therefore, we expect that the few rest condition trials collected for
participant 1 might have a negative impact on this analysis. However, we do not expect this
variation among the other participant trials to affect our analyses greatly, as a high number of
trials was consistently collected for participants 2, 3, and 4.

The fNIRS data was fully preprocessed using the steps described in section 2.3. A first-level
design matrix is constructed to model the hemodynamic response associated with neural
activity, using the python package mne-nirs (version 0.6.0). Processed haemo data was
obtained by converting raw fNIRS signals to optical density signals, and then into haemo
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data using the Beer Lambert law with ppf=6. Channels (distance > 10mm) are used in the
general linear model (GLM, Friston et al., 1994), with a cosine function to model and correct
for low-frequency drift in the signal, and a high-pass filter of 0.005Hz to remove slow signal
variations not contributed to neuronal activities. The adopted hemodynamic response
function (HRF) model is based on the Statistical Parametric Mapping (SPM) approach, a
standard model for estimating the brain's vascular response to neural activity. Lastly,
different stimulus durations were considered to assess the temporal progression of brain
activations throughout the 25s interval (durations of 5s, 10s, 15s, 20s, and 25s) (please note
that temporal progression of brain activations was not generated for participant 1 due to
computer memory insufficiency to process data saved in the used file format - data was
saved in a more efficient data format for all other participants). While the full brain activation
results are outlined in Supplementary Figure S1, we report the most characteristic activation
for each participant in our results section. Short channel data (distance < 10mm) are
included as nuisance regressors in the design matrix. Conditions ‘Imagined speech’ and ‘rest
condition’ are specified and the GML parameters are estimated. The contrast 'Imagined
speech > rest condition’ is then estimated from GLM theta values, and z-scores are
calculated. Surface plots are generated with the estimated z-scores.

To verify the accuracy of our method to localise brain areas recruited during the cognitive
tasks and compare this accuracy in localisation across participants, we also conducted
finger tapping experiments at the start and end of each session and compared brain
activation in response to right vs left finger tapping and their localisation within the cortex
(please note that brain activation visualisation for the finger tapping task was not developed
for participant 1, as the finger tapping task was added to our paradigm after this participant
completed data collection). Right vs left finger tapping tasks have been previously shown to
lead to a quite strong and clear differential activation in the contralateral motor cortex, with
respect to the hand completing the finger tapping (e.g., Batula et al., 2017). Therefore,
identifying the correct localisation of brain activation during the finger tapping experiment
would confer us with increased confidence with respect to precise cap placement and brain
region coverage, as well as good quality of data collected. See Supplementary Figure S2 for
a brief explanation of the finger tapping paradigm used, as well as the brain activations.

2.7 Illustrative MindGPT Application
To demonstrate a practical application of our fNIRS-based system, we consider a scenario
where our BCI enables early-stage human-AI thought-based communication, which we refer
to as MindGPT. For demonstration purposes, we developed an innovative Flask-based
application aimed to show a proof-of-concept use case that automates sending decoded
human thoughts to ChatGPT. The core of our MindGPT system involved integration of brain
activity data, captured during sentence imagery tasks, with the capabilities of the OpenAI
GPT4 API (OpenAI, 2023) for a direct mind to OpenAI communication. The initial phase of
our workflow was the acquisition of brain data via the NIRx acquisition software (Aurora
fNIRs) which was subsequently stored in the SNIRF format. This raw data underwent a
series of preprocessing steps described in section 2.3.
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Leveraging the preprocessed fNIRS data, we evaluated various models to facilitate effective
interaction with OpenAI GPT4. The 1d-CNN model served as the foundation for classification
tasks. This setup enabled dynamic retrieval of corresponding texts through a dictionary
lookup mechanism, with the decoded sentence being stored, subsequently fetched by a
Flask server, and presented within a web interface. Interactions with the OpenAI GPT4 API
were driven by these queries, with the system capable of receiving and displaying responses
to users in near real-time (Figure 3). We define our application as ‘near real-time’ as a slight
delay is present between new data collection from a user and the decoded output, resulting
from the need to start and stop the data recording system between decoding attempts. This
limitation is driven by the NIRx acquisition software (Aurora fNIRs) used to collect fNIRS
data, but we aim to improve the seamlessness in the future to allow for a traditional real-time
application. GPT4 was instructed to provide useful suggestions based on the user’s
imagined input, in an attempt to create a coherent dialogue.

Figure 3. Illustration of MindGPT application. A user first imagines their preferred sentences
from a predefined set of 3 sentences, while their brain data is being recorded using fNIRS. In
this example, the participant is imagining the sentence related to going to the ‘Restaurant’.
Then, the participant’s brain data is provided as input into a 1d-CNN decoder which
processes fNIRS data and classifies the data into one of the 3 sentence options (‘Call’,
‘Restaurant’, ‘Venus’). The text associated with the classified sentence is then retrieved from
a look up table and sent as a prompt to ChatGPT in the Flask application. ChatGPT then
generates an answer based on the user’s imagined input, attempting this way to create a
coherent dialogue. Please note this process happens in near real-time (see text for details).

To demonstrate the potential and impact of MindGPT for implementing an effective
communication link between humans and machines, we showcase the application of
MindGPT for human dialogue with OpenAI GPT-4 (OpenAI, 2023) (Figure 4). For each
imagined sentence, 10 related questions to the specific topic were generated using
ChatGPT itself prior to the MindGPT experiment, each of which was also converted to
embeddings using SentenceTransformer. After decoding the first sentence and sending it to
GPT4, the next round of dialogue was introduced by comparing the ridge
regression-generated sentence embeddings. The closest matching ChatGPT generated
question to the imagined sentence, measured by cosine similarity of sentence embeddings,
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is then picked from a lookup table and sent to GPT4 again to continue the conversation. This
is similar to a zero-shot learning approach (Palatucci et al., 2009), where new test cases are
unseen by the trained model.

Figure 4. Illustration of continuous MindGPT application. A user first imagines their preferred
sentences from a predefined set of 3 sentences, while their brain data is being recorded
using fNIRS. In this example, the participant is imagining the sentence related to going to the
‘Restaurant’. Then, the participant’s brain data is provided as input into a 1d-CNN decoder
which processes fNIRS data and classifies the data into one of the 3 sentence options
(‘Call’, ‘Restaurant’, ‘Venus’). The closest matching ChatGPT-generated question from a list
of 10 questions to the classified imagined sentence (i.e., Restaurant in this case), measured
by cosine similarity of sentence embeddings, is then picked from a lookup table and sent to
GPT4 to create a coherent dialogue. These steps are repeated multiple times to allow for a
continued conversation. Please note this process happens in near real-time (see text for
details).

3.Results

3.1 Imagined Speech Decoding vs Rest Condition
In this section we report the performance of our XTC model in detecting imagined speech
from the rest condition when classifying neurovascular signals associated with the two
conditions (see Figure 5). A total of 162 imagined speech and 162 rest condition trials were
included for participants 2 and 3, while participant 4 counted 123 imagined speech and 123
rest condition trials due to time constraints. As mentioned previously, participant 1 was
excluded from this analysis since not enough rest condition trials were collected from
participant 1 to train and test a decoder (n = 25 rest condition trials only). Overall, our XTC
model achieved an average accuracy of ~66% (p-value < 0.001) when considering averaged
accuracies across folds in the 3 subjects included in this test. Our best participant
(participant 1) reported a best average accuracy across the 3 folds of ~71% (p-value <
0.001). See Supplementary Table S1 for detailed results.
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Figure 5. Summary of XTC model performance (accuracy %) in classifying imagined speech
vs the rest condition when using fully preprocessed fNIRS data. Data, standard deviation
and p-values are reported for participants 2, 3, and 4. Comparison to chance (50%) is also
reported.

3.2 Imagined Sentence Decoding
In this section, we report and compare the performance of our two models in decoding brain
data into one of the 3 predefined imagined sentence classes across participants. We also
compare the accuracy of our 1d-CNN and ridge regression-based language models, when
using different preprocessing steps for our raw fNIRS data, in order to identify which level of
preprocessing leads to the best performance. Table 2 shows that our models were able to
decode all participants’ fNIRS neural signals associated with different imagined sentences
and identify which of the three predefined sentences the participants were imagining to a
significant level (chance level: 33%) (see Supplementary Tables S2-S7 for detailed results).
Best accuracy was achieved in participant 2 with the language model-based decoder, when
using fully preprocessed data (~57.4% accuracy, chance: 33%, p < 0.001). When comparing
results more in detail across participants, the 1D-CNN was seen to outperform the ridge
regression-based language model-based decoder in 2 out of 4 participants (participants 1
and 4), whereas the opposite was valid for participants 2 and 3. Interestingly, highest
accuracy using the 1D-CNN was achieved when data underwent minimal preprocessing, i.e.,
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conversion of raw signals to optical density data. In contrast, highest accuracy using the
Ridge Regression was obtained when fully preprocessed data was used. No preprocessing
achieved worse performance in both models, compared to both minimally and fully
preprocessed data. See Table 2 and Supplementary Tables S2-S7 for detailed results.

Table 2. Summary of 1D-CNN and language model decoder performance in decoding
imagined brain data into one of the three predefined sentences. Averaged accuracies across
different folds and seeds were reported for each participant. These are presented by (a)
model used - 1D-CNN or Ridge Regression-based language model; and (b) data type - Raw:
no preprocessing, OD: optical density (or minimal preprocessed data), Preproc:
preprocessed data (or fully preprocessed data with pipeline described). Standard deviation
and statistical testing are reported in Supplementary Tables S2-S7. The highest accuracy
level achieved using each of the two models (1D-CNN and Ridge Regression-based
language model) is shown in bold-face numbers for each participant. Finally, the winning
model was reported for each participant, indicating the model that achieved highest accuracy
for that specific participant.

1D-CNN Ridge Regression-based
language model

Winning
Model

Participant Raw OD Preproc Raw OD Preproc

Participant 1 0.355 0.418 0.398 0.355 0.404 0.397 1D-CNN

Participant 2 0.315 0.454 0.467 0.405 0.504 0.574 Ridge
Regression

Participant 3 0.303 0.396 0.400 0.359 0.379 0.433 Ridge
Regression

Participant 4 0.308 0.457 0.419 0.389 0.377 0.393 1D-CNN

3.2.1 1D-CNN Model
A total number of 423, 378, 423, and 419 imagined speech trials were collected from
participants 1, 2, 3, and 4, respectively. All imagined speech trials included an equivalent
number of the three imagined sentences (e.g., the 423 imagined speech trials collected from
participant 1 included 141 trials for each of the three imagined sentences). The model was
trained on 70% of all data (11-16 sessions based on the participant considered), while the
test dataset included 30% of all trials. When using raw data, the 1D-CNN model achieved an
average accuracy of 32.0% across the 4 participants included in this study (averaged
highest fold accuracy 35.5% in participant 2), therefore performing around chance level
(33.3%). The p-value did not achieve significance in any of the participants (see
Supplementary Tables S2). In contrast, when using minimally preprocessed (i.e., optical
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density) data, the 1D-CNN model achieved an average accuracy of ~43.1% across the 4
participants included in this study (highest average fold accuracy of ~45.4% in participant 4).
The p-value achieved significance across 5 tests (p<0.05) in 3 fold cross validations with
different seeds in all participants (see Supplementary Tables S3). Finally, when using fully
preprocessed data, the 1D-CNN model achieved an average accuracy of 42.1% (highest
average fold accuracy of ~46.7% in participant 2). Again, the p-value achieved significance
across 5 tests (p<0.05) in 3 fold cross validations with different seeds in all participants (see
Supplementary Tables S4). See Supplementary Tables S2-S4 for detailed results, including
fold and seed-specific accuracies by participant, as well as standard deviations and
statistical testing. Overall, the 1D-CNN model seems to perform best when optical density
data are used, thus highlighting the advantages of CNNs for extracting features from noisy
and minimally processed data.

3.2.2 Ridge regression model
The same number of trials were used for training and testing as in the CNN model. When
using raw data, the ridge regression model achieved an average accuracy of 37.7%
(averaged highest fold accuracy 40.5%), where p-value achieved statistical significance
(p<0.05) in 3 out of 4 participants (3 fold cross validations tested 5 times with different
seeds) (see Supplementary Tables S5). In contrast, when using minimally preprocessed
(i.e., optical density) data, the ridge regression model achieved an average accuracy of
41.6% (averaged highest fold accuracy 44.7%), where p-value achieved high significance
(p<0.05) for all participants (see Supplementary Tables S6). Finally, when using fully
preprocessed data (see section 2.3), the ridge regression model achieved an average
accuracy of 44.9% (averaged highest fold accuracy 48.7%), where p-value achieved
significance (p<0.05) for all participants (see Supplementary Tables S7). Fully preprocessed
data achieved the highest accuracy compared to minimally preprocessed (optical density) or
raw data. See Supplementary Tables S5-S7 for detailed results.

3.3 Brain areas underlying imagined speech
Figure 6A illustrates the surface cortex plots of HbO activations of the contrast between
imagined speech and rest condition conditions for all four participants included in this study.
While different stimulus durations were considered to assess the temporal progression of
brain activation throughout the 25s during which participants imagined each sentence
(durations of 5s, 10s, 15s, 20s, and 25s), we here report the most characteristic activation
for each participant (see Supplementary Figure S1 for details on the temporal progression of
brain activations). This analysis identified a recurrent brain region recruited across 3 out of 4
participants during imagined speech, i.e., the dorsolateral prefrontal cortex (DLPFC).
Interestingly, one of our participants (participant 4) showed a decrease in activation in the
dorsolateral prefrontal cortex during imagined speech, which is an unexpected result. We
make some speculations in the discussion with respect to this result. Additional regions
differentially recruited between participants included the lateral temporal cortex, visual
related regions near MT+ complex, auditory cortex, and early sensorimotor cortex. These
activations have similarities to early imagined speech studies with PET and fNIRS (Figure
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6B and 6C, Brumberg et al., 2016; Eggebrecht et al., 2014; Petersen et al., 1988), where
auditory cortex, DLPFC, frontal eye field, premotor and motor regions were implicated in
speech processing. This suggests that fNIRS is capable of capturing imagined speech
processing brain activation.
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Taken from Brumberg et al., 2016. The spatial topography of statistically significant
relationships between brain signals in the overt and covert condition over the entire
continuous session. Colour values represent values of activation index (see colour bar).
Strong auditory cortex involvement is observed in the superior temporal gyrus, along with
lesser activation along a path from the DLPFC, FEF, premotor and motor regions; IFG and
vMC sites found in the overt and covert conditions alone are notably absent.
https://doi.org/10.1371/journal.pone.0166872.g007
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Figure 6. Surface cortex plots showing HbO activations with the contrast Imagined speech >
rest condition across all participants. (A) Outlines shown are regions defined in the HCP
MMP1 atlas (Glasser et al., 2016), where the green outline is the Lateral Temporal Cortex,
the yellow outline is the DorsoLateral Prefrontal Cortex, and the blue outline is the MT+
Complex and Neighboring Visual Areas. The colorbar indicates z-score values. Brain

activations reported for all participants during the imagined speech task. (B) Brain activations
shown in previous research relating to different forms of speech (Petersen et al., 1988)
(Collated by Eggebrecht et al., 2014). (C) Brain activations shown in previous research

relating covert vs overt speech processing (Brumberg et al., 2016).

3.4 Illustrative MindGPT Application
To demonstrate a practical application of our fNIRS-based BCI, we consider a scenario
where our MindGPT BCI enables early-stage human-AI thought-based communication (see
Figure 3, section 2.7 for a schematic of the mindGPT application). Figure 7 illustrates an
example of MindGTP in action, i.e., a near real-time fNIRS-based BCI which enables
telepathy-like human-AI communication. Brain signals are collected and processed in near
real-time while the user imagines one of the three predefined sentences (see section 2.7).
The data is then decoded by our models (see section 2.5) and classified into one of the three
imagined sentences upon which the models were trained. The decoded sentence is then
utilised as a prompt for a language model (in this case ChatGPT), enabling telepathy-like
communication between the user and ChatGPT. The latency of our MindGPT thought-based
communication is 27.62 seconds (CPU: AMD Ryzen 9 5900X 12-Core Processor; GPU:
NVIDIA GeForce RTX 3080 Ti; RAM: 64.0 GB). The main bottleneck lies in the extended
time required to imagine a sentence (25 seconds), while decoding is pretty fast once the
decoder is trained (2.62 seconds - loading fNIRS data file: 0.66 seconds; preprocessing
fNIRS data: 0.61 seconds; imagined sentence decoding: 1.34 seconds; trigger sent to
ChatGPT: 0.01 seconds). Therefore, the long latency of our near real-time MindGPT is a
result of task (imagining sentences) limitations, rather than decoding approach limitations
(e.g., long preprocessing needed or long decoding time).

When running instances of MindGPT with our user in near real-time, we observed several
errors from our decoders, leading to suboptimal human-AI communication. This is due to the
fact that our best decoder (i.e., 1D-CNN) achieved an average accuracy of 42% (see section
3.2.1); therefore, it is bound to commit errors when decoding the sentences the user is
imagining. However, the importance of this illustration lies in the instances in which the
decoder correctly decodes the sentence the user is imagining, due to the decoder accuracy
being significantly above chance (see section 3.2). When imagined sentences are decoded
correctly, our MindGPT shows successful early-stage human-AI thought-based
communication. This is a significant result as this is the first case of human-AI telepathy-like
and direct communication. Figure 7 below shows successful MindGPT decoding different
imagined sentences (pretrained three imagined sentences) from brain data collected from
the user at different instances of imagined speech (Figure 7A, 7B and 7C show successful
decoding of sentences ‘Restaurant’, ‘Call’, ‘Venus’, respectively). See Figure 8B for an
example of decoder errors.
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Figure 7. MindGPT in action. Different sentences (out of a preset of three sentences) are
decoded from brain data collected from the user at different instances of imagined speech
and inputted as prompts into ChatGPT to allow telepathy-like communication. (A) Sentence
“Restaurant” is decoded and inputted into ChatGPT, which starts a conversation about
making a reservation; (B) Sentence “Call” is decoded and inputted into ChatGPT, which

starts a conversation about regularly calling a mother; and (C) Sentence “Venus” is decoded
and inputted into ChatGPT, which starts a conversation about exploring Venus.

To further illustrate the future capabilities and impact of MindGPT, we implemented a
continuous thought-based conversation between our user and ChatGPT, starting from the
same three imagined sentences (Figure 4). More specifically, we developed 10 different
potential follow-up prompts per each imagined sentence topic, e.g., 10 prompts associated
with the imagined sentence topic “Restaurant” (see Table 3 below for an example of
generated questions for follow-up of decoded imagined sentence topic “Restaurant”). These
follow-up prompts were generated using chatGPT itself prior to the MindGPT experiment. To
do this, we prompted ChatGPT with the 3 imagined sentences and asked it to generate 10
extra sentences related to the imagined sentence topics. During near real-time testing, after
decoding the imagined sentences from brain signals, one out of the 10 follow-up prompts
belonging to the decoded imagined sentence topic was chosen as a prompt to ChatGPT
(see Figure 8). This was achieved by comparing the ridge regression-generated sentence
embedding and selecting the closest matching questions to the generated sentence
embedding (cosine similarity) to continue the conversation (see section 2.7 for further details
on methodology). This implementation therefore allowed the user to sustain a continued
conversation with ChatGPT on the same topic. Similarly to the results reported in the
previous paragraph, this human-AI thought-based communication was not optimal (see
Figure 8B for erroneous continuation of topic decoding), owing to the 42% max accuracy of
our models. In addition, hard-coding the input of one of the language model-generated
sentences (based on the user’s imagined sentence) (see Table 3 for example follow-up
generated questions) also meant that the user had limited control on how the conversation
was continued with ChatGPT, apart from setting the ‘topic’ of conversation by imagining one
of the three imagined sentences the decoder was trained on. Regardless of these limitations,
this implementation nevertheless exemplifies the first continuous thought-based
communication between a human user and AI (ChatGPT).
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Table 3. Example questions generated for imagined sentence “Restaurant” which are
selected as follow-up prompts based on cosine similarity of sentence embedding.

1. Are they recognized for any particular beverages such as wines or cocktails?

2. What kind of ambiance or setting is the establishment known for?

3. Is there a signature dish that stands out on their menu?

4. How far in advance are reservations typically required?

5. Do they offer any dishes that are specific to certain seasons?

6. How does its reputation compare to other establishments in the city?

7. Has the restaurant been awarded any culinary accolades?

8. Who is the head chef and what is notable about their culinary background?

9. How is the overall service quality rated by patrons?

10. Is there a recommended dress code for diners?
11. Are they recognized for any particular beverages such as wines or cocktails?
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Figure 8. Continuous MindGPT in action. Different sentences (out of a preset of three
sentences) are decoded from brain data collected from the user at different instances of

imagined speech and inputted as prompts into ChatGPT to allow telepathy-like
communication. To allow for a continuous conversation, after the first decoded imagined
sentence, the closest matching question to the generated sentence embedding (cosine
similarity) out of ten available questions related to the first decoded imagined sentence is

selected as a follow-up prompt to ChatGPT. (A) Example of two correctly decoded imagined
sentences in a row (“Venus”) and use of a follow-up questions following the method outlined;

(B) Example of a correctly decoded imagined sentence (“Restaurant”) followed by an
erroneously decoded imagined sentence (“Call”) and a correctly decoded imagined sentence

(“Restaurant”).

Overall, although at its infancy and needing improvement to become a real-world application,
MindGPT provides the basis for future human-AI telepathy communication. The successful
examples provided in this section were included for the readers to gauge the user
experience and impact that our MindGPT would allow once it reached its full capability. The
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potential applications of MindGPT appear limitless, spanning across various domains and
disciplines.

4.Discussion
This paper discusses a groundbreaking advance in the field of human-AI interaction and
neurotechnology by demonstrating the feasibility of decoding imagined speech and imagined
sentences with different semantic meaning using high-density fNIRS. Through the
development of an innovative fNIRS pipeline, we achieved above-chance accuracy (average
accuracy of ~66%, best accuracy: ~71%, chance level: 50%, p-value <0.001) to determine
whether participants (n = 4) engaged in imagined speech or not (i.e., rest condition brain
activity). A previous study (Lesaja et al., 2022) showed a ~90% accuracy in detecting overt
speech using invasive stereo-EEG. In contrast, our innovative method shows the feasibility
of decoding covert (imagined) speech using non-invasive neuroimaging (fNIRS), with a
reasonably high level of accuracy. Additionally, we achieved above-chance accuracy (overall
best model accuracy: 57% in participant 2, chance level: 33%, p-value < 0.001) in identifying
three distinct imagined sentences with different semantic meanings and deployed this
capability for human-AI telepathy-like communication in our MindGPT application. This sets
our research apart from previous studies that primarily focused on perceived speech
(Eggebrecht et al., 2014; Huth et al., 2016; Tang et al., 2023), silent reading (Martin et al.,
2014), single-word imagined speech decoding (Naseer and Hong, 2014), or imagined
concepts categorisation (e.g., Cao et al., 2018; Rybář et al., 2021). While there has been a
previous study on decoding imagined sentences using fMRI (e.g., Tang et al., 2023), our
study is the first to successfully decode imagined sentences using a high-density fNIRS
system, surpassing the limitations of fMRI in terms of applicability to practical real-world
scenarios. We presented the first successful example of a direct human-AI telepathy-like
communication, i.e., our MindGPT illustrative demonstration using our imagined speech
decoding BCI paradigm.

Our results show that both our models (1D-CNN and ridge regression-based language
model) perform above chance to different extents, based on the participant and the level of
fNIRS data preprocessing (i.e., raw, optical density, or fully preprocessed data), possibly
indicating subject-specific differences to consider when decoding imagined speech from
different participants. Our 1D-CNN model outperformed the simpler ridge regression model
used in fMRI pipelines (Tang et al., 2023) when extracting semantic features from minimally
preprocessed brain data using fNIRS. This suggests that the more complex CNN
architecture may better represent the semantic space during imagined speech without
significant preprocessing, although further studies are needed to confirm this hypothesis.
This is in concordance with previous literature (e.g., Eastmond et al., 2022) suggesting that
deep learning can be used to reduce lengthy preprocessing, and again highlights the
advantages of using deep learning for extracting features of interest from fNIRS neural data.
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Additionally, we identified imagined speech-related brain activations consistent with previous
literature (Brumberg et al., 2016; Eggebrecht et al., 2014; Petersen et al., 1988), validating
our results and contributing to the understanding of imagined speech representation in the
brain. In particular, activities identified in DLPFC highlighted its recently acknowledged
importance in language and speech processing (Hertrich et al., 2021). Interestingly, one of
our participants (participant 4) showed a decrease in activation in the DLPFC during
imagined speech, which is an unexpected result. We could speculate that this result could
be attributed to the fact that this participant was a female and that the fNIRS cap was too big
for this participant (please note that the same cap was used for all participants), resulting in
cap misplacement and noisy data. Indeed, finger tapping brain activation localisation (see
Supplementary Figure S2) also showed poor results, indicating that data from this participant
may require additional processing or feature extraction to be useful.

Our system shows immense promise compared to other neuroimaging tools. EEG has
limited spatial resolution and decoding accuracies, while fMRI, despite providing valuable
insights, has limited practical applications. In contrast, our system is the first to demonstrate
early-stage telepathy-like, direct communication between a human and an AI system,
offering a more natural and efficient user experience compared to previous BCI systems that
rely on motor activations during imagined speech or employ neuroimaging tools that are
difficult to use in real-life scenarios. While our fNIRS-based BCI system needs improvements
in decoding accuracy, it shows the rich prospect of thought-based communication between
humans and AI.

The field of neurotechnology and its societal impact could be revolutionised by the
development of an fNIRS-based system for decoding imagined speech. This technology has
the potential to provide individuals with communication disorders an alternative means of
expressing their thoughts and intentions, ultimately improving their quality of life and social
interactions. Additionally, the integration of imagined speech decoding with AI systems could
lead to more natural and intuitive human-machine communication, opening up new
possibilities in various domains and potentially propelling human evolution forward. Our work
represents a significant step in this direction, demonstrating the feasibility and potential of
direct brain-to-AI communication using fNIRS.

In interpreting the results of this study, it is important to be mindful of decoding accuracy,
sample size, and ethical considerations. First, a primary limitation with the current system is
the accuracy. There are several steps that can be taken to improve the accuracy of the
system. These include, collecting more data from more participants, trying a wider range of
sentences with a larger variety of semantic meanings and also improving the decoding
models. An approach which can potentially achieve these improvements would be the use of
a more versatile model that is trained off of a wide range of semantic text rather than just 3
discrete sentences. The versatility of the model would not only allow it to detect a larger
corpus of imagined thoughts but might be able to increase the accuracy of decoding by
recognising higher order relationships between different semantic thoughts with enough
data. To improve the accuracy of our model, we will be conducting future work aimed at
collecting additional data and data from additional participants, widening our semantic
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coverage by moving away from the 3 discrete sentence decoding, and improving our
decoding models further.

Second, given this study's reliance on data from only four subjects, we are unable to provide
remarks about the generalisability of its findings. Individual variability in neural activity means
the current results may not apply broadly, in particular for real-time use cases; future studies
should test generalisability concerns directly. To address this limitation, we plan to collect
data from additional participants to build a more versatile model and validate our findings
from a single-subject.

Finally, when it comes to the development and application of imagined speech decoding
systems, there are numerous ethical considerations that need to be taken into account. One
of the main concerns is data privacy, as these BCIs have the potential to reveal an
individual's private and personal thoughts and intentions. It is crucial to ensure the protection
and confidentiality of the collected brain data in order to safeguard the privacy of users.
Another potential issue is the possibility for misuse and abuse of BCI technology in the
context of imagined speech decryption. While this technology has the potential to greatly
benefit human life, it also carries the risk of harm if it is misused. To prevent such abuse and
ensure responsible application, it is imperative to establish ethical principles and regulations
for the development and utilisation of BCI systems. This will help ensure that the technology
is used for its intended purpose and to promote the greater good.

5.Conclusion
In conclusion, this study represents a groundbreaking advancement in the field of human-Ai
interaction and neurotechnology by demonstrating the feasibility of decoding imagined
speech and imagined semantic information using high-density fNIRS. The innovative fNIRS
pipeline developed in this research has achieved above-chance accuracy in distinguishing
between imagined speech and rest condition (average accuracy of ~66%, best accuracy:
~71%, chance level: 50%, p-value <0.001), as well as different three predetermined
imagined sentences (overall best model accuracy: 57% in participant 2, chance level: 33%,
p-value < 0.001), enabling its successful implementation in the MindGPT application for
human-AI early-stage thought-based communication. In addition, this study supports
previously identified brain areas associated with imagined speech and shows the suitability
of fNIRS to correctly localise brain areas recruited during such cognitive function.

Despite the notable progress made, it is essential to acknowledge the limitations of this
study, such as the need for improved decoding accuracy and the reliance on a small sample
size in this study. We will be conducting further research to address these limitations by (a)
collecting data from additional subjects to validate and investigate the generalisability of our
findings, and (b) improving our decoder accuracy by collecting additional data per
participant, covering a wider range of semantic meaning and using more advanced machine
learning techniques.
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To the best of our knowledge, this study serves as the first demonstration of an fNIRS-based
imagined speech decoding paradigm and can be considered as pioneering work, paving the
way for future advancements.
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Supplementary Information
Supplementary Figure S1. Temporal progression of brain activations throughout the 25s
during which participants imagined each sentence (durations of 5s, 10s, 15s, 20s, and 25s).
Please note that temporal progression of brain activations was not generated for participant
1 due to computer memory insufficiency to process data saved in the used file format - data
was saved in a more efficient data format for all other participants. Brain activation
visualisations built using general linear modelling (GLM, Friston et al., 1994).

Participant 2

5s 10s 15s 20s 25s

33



Participant 3

5s 10s 15s 20s 25s
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Participant 4

5s 10s 15s 20s 25s
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Supplementary Figure S2. Description of the finger tapping paradigm conducted at the
start and end of each session in this study (A). Participants’ brain activations in response to
10s of right or left finger tapping trials and their localisation within the cortex (B-C-D). Please
note that brain activation visualisation for the finger tapping task was not developed for
participant 1, as the finger tapping task was added to our paradigm after this participant
completed data collection. Brain activation visualisations built using general linear modelling
(GLM, Friston et al., 1994).

A. Finger tapping paradigm

Supplementary Figure S2 (A). Finger tapping paradigm used in this
study, consisting of alternating right vs left finger tapping trials lasting 10s
each, and rest periods of 15s. Right vs left finger tapping trials were
random and counterbalanced. One block consisted of 1 right or left finger
tapping trial + 1 rest trial. A total of 16 task blocks (or 8 right and 8 left
finger tapping trials + 16 rest trials) were included in each finger tapping
data collection session.

B. Participant 2

Right Finger Tapping

Left Finger Tapping
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C. Participant 3

Right Finger Tapping

Left Finger Tapping

D. Participant 4

Right Finger Tapping
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Left Finger Tapping
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Supplementary Table S1. Decoding accuracy performance of the XTC model when
inputting fully preprocessed data from participants 2, 3 and 4, assessed over 5 different
seeds, and 3 k-folds. Best model accuracy and average model accuracy across the different
folds and different seeds per participant are reported; as well as significance (p < 0.05).
Averaged values across participants are also outlined.

Supplementary Table S1. XTC Model tests results across all participants - fully
preprocessed data

Model Best
Accuracy

Avg
Accuracy

p-value Distribution seed

Imagined Rest

Participant 2 0.704 0.677 <0.001 0.70 0.70 0

Participant 2 0.663 0.656 <0.001 0.72 0.66 6

Participant 2 0.745 0.728 <0.001 0.73 0.71 12

Participant 2 0.724 0.711 <0.001 0.72 0.65 24

Participant 2 0.714 0.697 <0.001 0.74 0.71 42

Participant 2
Avg.

0.710 0.694 <0.001
(Fisher’s
test)

0.72 0.69 -

Participant 3 0.694 0.673 <0.001 0.73 0.66 0

Participant 3 0.684 0.667 <0.001 0.72 0.66 6

Participant 3 0.704 0.677 <0.001 0.70 0.64 12

Participant 3 0.684 0.670 <0.001 0.70 0.66 24

Participant 3 0.704 0.690 <0.001 0.75 0.68 42

Participant 3
Avg.

0.694 0.675 <0.001
(Fisher’s
test)

0.72 0.66 -

Participant 4 0.649 0.622 0.006 0.69 0.65 0

Participant 4 0.635 0.604 0.022 0.72 0.60 6

Participant 4 0.662 0.613 0.007 0.66 0.60 12

Participant 4 0.662 0.631 0.002 0.65 0.65 24

Participant 4 0.649 0.626 0.003 0.63 0.65 42
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Participant 4
Avg.

0.651 0.619 <0.001
(Fisher’s
test)

0.67 0.63 -

Tot. Avg. 0.685 0.663 - 0.70 0.66 -
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Supplementary Table S2. Decoding accuracy performance of the 1D-CNN model when
inputting raw data, assessed over 5 different seeds, and 3 k-folds, across all participants.
Best model accuracy and average model accuracy across the different folds and different
seeds per participant are reported; as well as significance (p < 0.05). Averaged values
across participants are also outlined.

Supplementary Table S2. 1D-CNN Model tests results with raw data across
participants

Participant Best Accuracy Avg Accuracy p-value seed

Participant 1 0.381 0.356 0.56 0

Participant 1 0.373 0.355 0.78 6

Participant 1 0.349 0.312 0.61 12

Participant 1 0.357 0.333 0.94 24

Participant 1 0.408 0.347 0.32 42

Participant 1
Avg.

0.374 0.355 0.89
(Fisher’s test)

-

Participant 2 0.325 0.313 0.912 0

Participant 2 0.360 0.330 0.889 6

Participant 2 0.333 0.310 0.817 12

Participant 2 0.307 0.298 0.609 24

Participant 2 0.368 0.326 0.506 42

Participant 2
Avg.

0.339 0.315 0.977
(Fisher’s test)

-

Participant 3 0.362 0.300 0.138 0

Participant 3 0.346 0.333 0.969 6

Participant 3 0.331 0.315 0.892 12

Participant 3 0.315 0.294 0.406 24

Participant 3 0.291 0.273 0.078 42

Participant 3
Avg.

0.329 0.303 0.345
(Fisher’s test)

-
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Participant 4 0.349 0.307 0.450 0

Participant 4 0.349 0.312 0.555 6

Participant 4 0.310 0.296 0.523 12

Participant 4 0.345 0.307 0.450 24

Participant 4 0.339 0.320 0.841 42

Participant 4
Avg.

0.338 0.308 0.814
(Fisher’s test)

-

Tot. Avg. 0.345 0.320 - -
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Supplementary Table S3. Decoding accuracy performance of the 1D-CNN model when
inputting minimally preprocessed (i.e., optical density) data, assessed over 5 different seeds,
and 3 k-folds, across all participants. Best model accuracy and average model accuracy
across the different folds and different seeds per participant are reported; as well as
significance (p < 0.05). Averaged values across participants are also outlined.

Supplementary Table S3. 1D-CNN Model tests results with optical density data
across participants

Participant Best Accuracy Avg Accuracy p-value seed

Participant 1 0.417 0.412 0.01 0

Participant 1 0.465 0.433 <0.001 6

Participant 1 0.433 0.412 <0.001 12

Participant 1 0.441 0.415 <0.001 24

Participant 1 0.425 0.497 0.1 42

Participant 1
Avg.

0.536 0.418 <0.001
(Fisher’s test)

-

Participant 2 0.500 0.444 <0.001 0

Participant 2 0.456 0.456 <0.001 6

Participant 2 0.509 0.480 <0.001 12

Participant 2 0.509 0.450 <0.001 24

Participant 2 0.509 0.439 <0.001 42

Participant 2
Avg.

0.497 0.454 <0.001
(Fisher’s test)

-

Participant 3 0.402 0.368 0.444 0

Participant 3 0.441 0.426 0.002 6

Participant 3 0.409 0.381 0.189 12

Participant 3 0.425 0.407 0.020 24

Participant 3 0.417 0.398 0.071 42

Participant 3
Avg.

0.419 0.396 <0.001
(Fisher’s test)

-
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Participant 4 0.505 0.484 <0.001 0

Participant 4 0.469 0.434 <0.001 6

Participant 4 0.452 0.447 <0.001 12

Participant 4 0.499 0.463 <0.001 24

Participant 4 0.460 0.458 <0.001 42

Participant 4
Avg.

0.477 0.457 <0.001
(Fisher’s test)

-

Tot. Avg. 0.482 0.431 - -
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Supplementary Table S4. Decoding accuracy performance of the 1D-CNN model when
inputting fully preprocessed data, assessed over 5 different seeds, and 3 k-folds, across all
participants. Best model accuracy and average model accuracy across the different folds
and different seeds per participant are reported; as well as significance (p < 0.05). Averaged
values across participants are also outlined.

Supplementary Table S4. 1D-CNN Model tests results with fully preprocessed data
across participants

Participant Best Accuracy Avg Accuracy p-value seed

Participant 1 0.405 0.397 0.057 0

Participant 1 0.437 0.418 0.005 6

Participant 1 0.381 0.368 0.478 12

Participant 1 0.413 0.386 0.136 24

Participant 1 0.445 0.421 <0.001 42

Participant 1
Avg.

0.416 0.398 <0.001
(Fisher’s test)

-

Participant 2 0.518 0.488 <0.001 0

Participant 2 0.465 0.427 0.001 6

Participant 2 0.552 0.497 0.001 12

Participant 2 0.491 0.439 <0.001 24

Participant 2 0.491 0.483 <0.001 42

Participant 2
Avg.

0.503 0.467 <0.001
(Fisher’s test)

-

Participant 3 0.441 0.417 0.006 0

Participant 3 0.441 0.402 0.029 6

Participant 3 0.433 0.387 0.079 12

Participant 3 0.449 0.404 0.020 24

Participant 3 0.417 0.391 0.085 42

Participant 3
Avg.

0.436 0.400 <0.001
(Fisher’s test)

-
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Participant 4 0.492 0.421 0.001 0

Participant 4 0.444 0.437 <0.001 6

Participant 4 0.413 0.397 0.061 12

Participant 4 0.421 0.410 0.017 24

Participant 4 0.452 0.426 <0.001 42

Participant 4
Avg.

0.444 0.419 <0.001
(Fisher’s test)

-

Tot. Avg. 0.450 0.421 - -
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Supplementary Table S5. Decoding accuracy performance of the Ridge Regression model
when inputting raw data, assessed over 5 different seeds, and 3 k-folds, across all
participants. Best model accuracy and average model accuracy across the different folds
and different seeds are reported; as well as significance (p < 0.05). Averaged values across
participants are also outlined.

Supplementary Table S5. Ridge Regression Model tests results with raw data
across participants

Participant Best
Accuracy

Average
Accuracy

p-value Seed

Participant 1 0.397 0.376 0.023 0

Participant 1 0.421 0.360 0.457 6

Participant 1 0.373 0.333 0.922 12

Participant 1 0.357 0.347 0.505 24

Participant 1 0.405 0.360 0.042 42

Participant 1
Avg.

0.390 0.355 0.075
(Fisher’s test)

-

Participant 2 0.439 0.427 <0.001 0

Participant 2 0.447 0.401 0.001 6

Participant 2 0.395 0.374 0.028 12

Participant 2 0.43 0.415 <0.001 24

Participant 2 0.439 0.409 0.001 42

Participant 2
Avg.

0.43 0.405 <0.001
(Fisher’s test)

-

Participant 3 0.381 0.357 0.463 0

Participant 3 0.437 0.392 <0.001 6

Participant 3 0.341 0.339 0.712 12

Participant 3 0.389 0.347 0.212 24

Participant 3 0.389 0.360 0.405 42

Participant 3
Avg.

0.387 0.359 0.009
(Fisher’s test)

-

Participant 4 0.405 0.399 0.002 0
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Participant 4 0.444 0.413 <0.001 6

Participant 4 0.444 0.402 <0.001 12

Participant 4 0.381 0.373 0.137 24

Participant 4 0.389 0.360 0.118 42

Participant 4
Avg.

0.413 0.389 <0.001
(Fisher’s test)

-

Tot. Avg. 0.405 0.377 - -
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Supplementary Table S6. Decoding accuracy performance of the Ridge Regression model
when inputting minimally preprocessed (i.e., optical density) data, assessed over 5 different
seeds, and 3 k-folds, across all participants. Best model accuracy and average model
accuracy across the different folds and different seeds are reported; as well as significance
(p < 0.05). Averaged values across participants are also outlined.

Supplementary Table S6. Ridge Regression Model tests results with optical density
data across participants

Participant Best
Accuracy

Average
Accuracy

p-value Seed

Participant 1 0.421 0.402 0.001 0

Participant 1 0.444 0.413 <0.001 6

Participant 1 0.373 0.352 0.296 12

Participant 1 0.421 0.402 0.001 24

Participant 1 0.500 0.450 <0.001 42

Participant 1
Avg.

0.432 0.404 <0.001
(Fisher’s test)

-

Participant 2 0.509 0.482 <0.001 0

Participant 2 0.491 0.477 <0.001 6

Participant 2 0.588 0.538 <0.001 12

Participant 2 0.535 0.509 <0.001 24

Participant 2 0.526 0.512 <0.001 42

Participant 2
Avg.

0.530 0.504 <0.001
(Fisher’s test)

-

Participant 3 0.405 0.397 0.004 0

Participant 3 0.389 0.352 0.580 6

Participant 3 0.381 0.333 0.313 12

Participant 3 0.452 0.423 <0.001 24

Participant 3 0.421 0.389 0.001 42

Participant 3
Avg.

0.410 0.379 <0.001
(Fisher’s test)

-

Participant 4 0.389 0.354 0.140 0
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Participant 4 0.405 0.386 0.005 6

Participant 4 0.444 0.378 <0.001 12

Participant 4 0.452 0.410 <0.001 24

Participant 4 0.389 0.354 0.254 42

Participant 4
Avg.

0.416 0.377 <0.001
(Fisher’s test)

-

Tot. Avg. 0.447 0.416 - -

51



Supplementary Table S7. Decoding accuracy performance of the Ridge Regression model
when inputting fully preprocessed data, assessed over 5 different seeds, and 3 k-folds,
across all participants. Best model accuracy and average model accuracy across the
different folds and different seeds are reported; as well as significance (p < 0.05). Averaged
values across participants are also outlined.

Supplementary Table S7. Ridge Regression Model tests results with fully
preprocessed data across participants

Participant Best
Accuracy

Average
Accuracy

p-value Seed

Participant 1 0.460 0.399 0.012 0

Participant 1 0.452 0.41 <0.001 6

Participant 1 0.413 0.384 0.006 12

Participant 1 0.452 0.418 <0.001 24

Participant 1 0.381 0.376 0.081 42

Participant 1
Avg.

0.432 0.397 <0.001
(Fisher’s test)

-

Participant 2 0.596 0.564 <0.001 0

Participant 2 0.632 0.553 <0.001 6

Participant 2 0.667 0.602 <0.001 12

Participant 2 0.614 0.599 <0.001 24

Participant 2 0.579 0.553 <0.001 42

Participant 2
Avg.

0.618 0.574 <0.001
(Fisher’s test)

-

Participant 3 0.492 0.455 <0.001 0

Participant 3 0.468 0.437 <0.001 6

Participant 3 0.452 0.423 <0.001 12

Participant 3 0.500 0.444 <0.001 24

Participant 3 0.413 0.405 0.002 42

Participant 3
Avg.

0.465 0.433 <0.001
(Fisher’s test)

-

Participant 4 0.484 0.397 <0.001 0
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Participant 4 0.437 0.397 <0.001 6

Participant 4 0.429 0.397 <0.001 12

Participant 4 0.429 0.397 <0.001 24

Participant 4 0.389 0.378 0.088 42

Participant 4
Avg.

0.433 0.393 <0.001
(Fisher’s test)

-

Tot. Avg. 0.487 0.44925 - -
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