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Abstract 

The Vredefort central uplift, or ‘dome,’ represents the erosional remnant of one of the largest 

(~300 km diameter) and oldest (~2.020 Ga) terrestrial impact structures. This investigation 

was performed to help elucidate the complexity of the shock process on zircon, incorporating 

various electron beam methods, including BSE and SE imaging, EBSD, CL, and EDS 

(mapping and semi-quantitative compositional analysis). A new shock microstructural 

progression in terrestrial zircon is suggested, as well as a complete structure-wide analysis of 

impact melt inclusions in zircon. Regional trends in the effects of shock on zircon are 

included. Impact melt glass inclusion compositions vary widely, from felsic to mafic 

inclusions, and are related to the partial melting of local minerals. This study is significant 

for the future study of similar impact structures on other rocky planets, and the quantification 

and qualification of shock conditions as recorded in zircon. 

Keywords 

Vredefort impact structure, zircon, impact melting, shock microstructures, shock 

metamorphism, impact melt glass inclusions. 
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Chapter 1 

1 Introduction 

1.1 Introduction 

A fundamental principle of geology is that Earth was formed from gradual, endogenic 

processes occurring over an appreciable amount of geological time. This concept, aptly 

named uniformitarianism, was proposed by James Hutton in 1785, and later popularized 

by Charles Lyell. Starkly distinguishable from catastrophism, the popularity of 

uniformitarianism pushed the scientific community away from the study of catastrophic 

processes such as impact cratering. It may come as some surprise, then, that Alfred 

Wegener (the architect of the plate tectonic theory, a distinctly gradual process) was one 

of the first to publish his belief that the familiar craters on the lunar surface were of an 

exogenic, impact origin (Wegener, 1921). Still, it was not until relatively recently that 

impact cratering, and catastrophism as a whole, became recognized by the geological 

community as a significant contributing process to the formation of the inner solar 

system. This relatively newfound interest has been encouraged by the notion that large 

impacts have also played an important role in Earth’s biological evolution, as 

demonstrated by the temporal relation between Mexico’s Chicxulub impact structure and 

the Cretaceous-Paleogene (K-Pg), formerly known as the Cretaceous-Tertiary (K-T) 

boundary extinction (Alvarez et al. 1980; Hildebrand et al. 1991; Vellekoop et al. 2014). 

The key linkage between the boundary layer and the location of the impact crater was 

established with dating of shocked zircon (Krogh et al., 1993).  

Impact craters are roughly circular depressions in the surface of a solid planetary body, 

formed instantaneously by the hypervelocity impact of a cosmic projectile impacting a 



2 

 

solid target (French, 1998). Often confused with volcanic craters, impact craters are 

differentiated by their raised outer rims, and a crater floor that is lower than the nearby 

unaltered terrain. While impact craters may be easily recognizable on extraterrestrial 

bodies such as the Moon, Mars and Mercury, significant tectonic and erosional activity 

on Earth has masked many of the visual macro-scale indicators of an impact crater. 

Predominantly due to extensive ocean cover (over 70% of the Earth is covered by water), 

and the adverse effects of tectonics and erosion, there are only 188 confirmed impact 

craters on Earth, situated primarily on the stable cratons of the Americas, Australia, and 

Europe. Additionally, many of these craters are very young, such as the ~49 kyr Meteor 

Crater, near Flagstaff, Arizona. The recent development of satellite imagery has 

contributed greatly to the discovery of many new impact craters on Earth, however 

diagnostic microstructural features are often the best way to confirm the presence of an 

impact crater. 

The precise chronology of impact events on planetary surfaces has implications for the 

understanding of crustal and bio-evolution on Earth and other planetary bodies. U-Pb 

isotopic dating of minerals such as zircon has proved valuable in the pursuit of an 

improved impact chronology, as sufficient shock damage and heating can cause up to 

100% Pb-loss while preserving microstructures diagnostic of specific shock 

environments (Moser et al., 2011). Fitting such minerals into their corresponding crater 

setting (in-situ) is also important to the success of crater studies. Unfortunately, 

exploration projects to study craters on planetary bodies other than Earth are not currently 

feasible. With the exception of rare meteorite finds and sample returns, it is very difficult 

to determine how they relate to their genetic extraterrestrial impact environment(s). 
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Terrestrial analogues are therefore quite useful to establish a calibration set for the effects 

of cratering processes on minerals that can be applied in the rest of the inner solar system. 

The Vredefort impact structure, South Africa, is a unique terrestrial analogue site. Its size 

and morphology provide the best insight into the types of large, complex impact events 

that played a role in the crustal evolution of planetary bodies in the state of the inner solar 

system. 

1.2 The importance of impact cratering 

The evolution of the inner solar system has been immensely affected by impact cratering, 

largely relating to a period of heavy bombardment early in Earth’s history (Late Heavy 

Bombardment (LHB) ca. 3.9 Ga) (Ryder et al., 2000). It has been suggested that the Earth 

would have experienced many more impacts than the lunar surface (Koeberl et al., 2006), 

possibly as many as 1.3-1.5 times the impacts per unit area (Frey, 1980). Impact-driven 

crustal evolution is responsible for the terrestrial surface we observe today, including the 

origin of the dichotomy between the lower density continental and higher density oceanic 

crust that is now maintained by modern plate tectonics (Frey, 1980). Biologically, this 

intense period of impact cratering would have had significant effects as well. Despite the 

obvious negative aspects of bombardment (i.e. impact-driven mass extinction), it is 

believed that impacts also produced thermophilic niches that eventually gave rise to the 

beginning of life on Earth (Pace, 1997). The early atmosphere was presumably affected 

by a high impact flux during the LHB (Ahrens, 1993). Of course, making assumptions 

about processes that would have shaped the crustal and biological profile of Early Earth 

is relatively difficult without a rock record. This is why we look to other rocky surfaces, 

especially ones which are smaller and thus, less likely to have large-scale resurfacing due 



4 

 

to erosion or tectonism. Two prime examples are the lunar and Martian surfaces, where 

the increased impact record provides an exceptional insight into the processes that would 

have shaped the Early Earth. In fact, the very existence of the Moon is believed to be the 

product of a collision between a Mars-sized impactor and Earth (Canup and Asphaug, 

2001). Understanding the timing and magnitude of impacts on Earth is vital to piece 

together the development of our inner solar system.  

1.3 The impact cratering process 

Impact cratering is a very complex process which is regionally and locally 

heterogeneous. 

This complexity is an important factor to consider when analyzing any data related to 

impact cratering. Outlined in this section is a description of the major stages in the 

progression of the impact cratering process.  

1.3.1 The shock wave 

The impactor generally does not penetrate very deeply in the target, perhaps penetrating 

~1-2 times its diameter, dependent primarily upon on the impacting velocity and target 

rock composition (Kieffer and Simonds, 1980; O’Keefe and Ahrens, 1982; Melosh, 

1989). After the projectile has ceased its downward movement, the energy from the 

initial impact is released as intense shock waves, which propagate radially throughout the 

target rock at high velocities. The kinetics of the shock wave are illustrated in Figure 1-1, 

below. The stages listed in the sections below are the product of the propagation of the 

shock waves and the resultant modification effects of the unstable crater. 



5 

 

 

Figure 1-1: A visual aid used to describe the progression of a shock wave. The two 

blue trains are used to show the target and impactor, which, upon collision, releases 

a roughly hemispherical shock wave, known as the shock front. This shock front 

travels through the target, subsequently moving the material front forwards. The 

shock front also moves backward into the impactor, until it reaches the other side of 

the impactor, where it transforms into a rebounding rarefaction front that acts to 

decompress the impactor and target material, leading to the vaporization, melting, 

and ejection of that material (Langenhorst, 2002). 

1.3.2 Stage 1: Contact and Compression 

Stage 1 commences immediately at the moment of contact between the impacting 

projectile and its target. As mentioned above, the projectile is unable to penetrate more 

than 1-2x its diameter, and instead generates shock waves (Kieffer and Simonds, 1980; 

O’Keefe and Ahrens, 1982, 1993; Melosh, 1989). Once the shock waves reach the top of 

the projectile, they rebound or reflect off the surface and return as a rarefaction wave. 

These rarefaction waves act to rapidly decompress the projectile, explaining why the 

projectile is often completely melted or vaporized and solid remnants are rarely found 
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(French, 1998). The primary shock front, which may have original shock pressures of up 

to or exceeding 100 GPa, attenuates quickly with distance; a result of both the decrease in 

shock density with increasing hemispherical area upon expansion as well as the energy 

lost to the target rocks through deformation and heating (French, 1998). A record of the 

energy lost from the shock waves is often preserved as shock features.  

At a distance defined primarily by the target rock composition and original shock wave 

velocity, the shock waves will transform into elastic or seismic waves, travelling 

approximately at the speed of sound (~5-8 km/s) and with pressures of ~1-2 GPa, which 

are low enough to not cause significant shock transformation (Kieffer & Simonds, 1980). 

The contact and compression stage ends when the release or rarefaction wave has passed 

through the projectile and is at the contact between the projectile and the impacted 

surface. This entire process typically takes a fraction of a second, even for large, complex 

impact events (Melosh, 1989).  

1.3.3 Stage 2: Excavation 

The excavation stage commences directly after the completion of the contact and 

compression stage. The excavation stage can be described as the stage where the crater is 

actually formed, developing due to a number of complicated interactions between the 

propagating shock and rarefaction waves and the original target surface (Melosh, 1989; 

Grieve, 1991). For example, the reflected wave from the contact and compression stage is 

converted into kinetic energy, which causes the affected rock to accelerate outwards as an 

excavation flow. As long as the energy is high enough, the crater will expand to sizes of 

up to 20-30x the size of the original projectile (French, 1998). Once the energy is low 

enough such that excavated debris is not able to reach past the developing crater rim, the 



7 

 

excavation stage ends, and the near surface rocks are uplifted to form the crater rim. For 

large craters (~200 km, in the realm of the size of Vredefort), this stage takes about 90 

seconds to complete (Melosh 1989; French 1998). 

1.3.4 Stage 3: Modification and collapse 

As soon as the transient crater has reached its maximum diameter, the modification stage 

commences. The beginning of the modification stage occurs when the expanding shock 

waves transform into lower pressure elastic waves, forming the transient crater rim 

(French, 1998). The degree of modifications to the transient crater is primarily a function 

of the planet’s gravity and size of the transient crater itself. The most significant parts of 

the modification stage, where the major structural transformations occur, typically take 

less than one minute for small structures and as little as a few minutes for larger 

structures (Melosh, 1989). Major post-impact modifications in a small, simple impact 

crater are relatively absent, leaving the transient crater structure well preserved. In larger 

complex craters, however, post-impact modifications are quite dramatic. Driven by 

gravity, two primary modifications occur: the in folding and collapse of crater wall rocks, 

mostly by down-faulting to infill the transient crater; and the uplift of rocks in the center 

of the structure, called the central uplift. The end of the modification stage is difficult to 

determine, as post-impact modifications can continue for millions of years, however this 

stage is typically considered to be the time when the majority of the bulk of the structural 

changes have completed in the seconds to minutes after impact.  

1.3.5 Types of impact craters 

When a meteorite impacts a solid surface, it first creates a bowl-shaped depression. 

Mainly dependent upon impact velocity, impactor size, and surface geology, this bowl-
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shaped depression has the ability to transform into a much larger structure, or remain 

relatively unmodified. 

A. Simple Craters 

The formation of a simple crater involves only minor transformations from the original 

transient crater. Typically, these transformations will involve collapse of the steep upper 

walls of the crater, and by re-deposition of ejected crater debris (French, 1998). This 

collapse may increase the measured diameter of the crater by up to 20%, however, the 

depth of the transient crater remains essentially unchanged (Melosh, 1989). Dependent 

primarily upon the target material and gravity, simple craters are typically small in 

diameter, often less than between 2 km (for sedimentary target rocks) and 4 km (for 

crystalline targets) on Earth (Grieve, 1987). An example of a simple crater on Earth is 

Meteor Crater, shown in Figure 1-2. 

 

Figure 1-2: Example of a simple crater at Meteor Crater, Arizona. Note the absence 

of a prominent central uplift and the relatively small diameter of the crater. Photo 

taken in October, 2014 (C. Davis). 
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B. Complex Craters 

Above the transition diameter (Grieve, 1987), a transient crater will collapse in a much 

more dramatic and extensive fashion than that of a simple crater. This transformation is 

characterized by the upheaval and exhumation of the deep, central target and the collapse 

of the outer rim, creating unique features such as a prominent central uplift, extensive and 

shallow crater floors, and terraced walls, as seen in Figure 1-3. Another distinguishable 

feature of a complex impact crater is the presence of a cohesive impact melt sheet, as 

seen in many large impact craters on Earth. This melt sheet, however, is often missing in 

ancient impacts due to preferential erosion. 

At the intermediate sizes, the central uplift of a complex crater reaches its maximum 

stable height, thus collapsing and forming what is known as a peak-ring basin. A peak-

ring basin is the transitional stage between typical complex craters and multi-ring basins 

(Baker et al., 2011). For the largest complex craters, these “peak rings basins” fade from 

prominence, transitioning into multi-ring basins.  
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Figure 1-3: Simple crater vs. complex crater morphology (NASA, 2004). 

1.3.6 Impact Melting  

A common characteristic of most simple and complex impact craters is the presence of a 

cohesive melt sheet, melt glass spherules (tektites, etc.), or melt injection dykes (Osinski 

et al., 2013). Impact melt sheets have been documented at ~60% of terrestrial impact 

craters (Grieve et al., 1977), and are presumed to have been present at more craters if not 

for the adverse effects of erosion. Impact-related melting is invariably related to 

unloading (decompression) of intense shock pressures and temperatures related to the 

shockwave (Grieve et al., 1977). This decompression occurs upon passage of the 

rarefaction wave mentioned previously. Figure 1-4 displays the P-T conditions necessary 

for complete shock melting in comparison to normal crustal metamorphism conditions 

and common polymorphs and shock features. A standard impact melt rock should bear no 

shock deformation features, and is often quite homogeneous. For example, the Vredefort 

Granophyre represents an impact melt rock (Koeberl et al., 1996). It should be noted that 
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partial melting has been related to the impact process as well, and can occur at lower P-T 

conditions than those shown in this figure. Macro-scale evidence of impact-related partial 

melting at Vredefort is seen at the Central Anatectic Granite, which represents partial 

melt of the surrounding ILG host rock (Gibson et al., 1997; Cupelli et al., 2014).  

.  

Figure 1-4:  P-T plot displaying the shock pressure and temperatures necessary for 

shock melting, in comparison with 'normal crustal metamorphism.' (Osinski & 

Pierazzo, 2013). 

1.4 The Vredefort impact structure, South Africa 

The Vredefort impact structure (S27°0’, E27°30’) is located approximately 120 km 

southwest of Johannesburg, South Africa (Fig. 1-5). Estimates place the original crater at 

approximately 250-300 km wide (Therriault et al, 1997), and 2.020 Ga (Spray et al., 

1995; Kamo et al. 1996). The original crater would have been the largest, and second 

oldest (only to the ~2.400 Ga Suavjärvi Crater in Russia) on Earth. What remains, aptly 

named the Vredefort dome, is the ~90 km wide remnant of the central uplift of that 

original, eroded structure. The presence of this central uplift deems Vredefort a complex 
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crater, and it has been suggested that Vredefort represents one of the few multi-ring 

basins remaining on Earth (Grieve et al., 1981). Estimates suggest that the rocks of the 

central uplift have been exhumed from a depth of up to 36 km, based on exposure of both 

Precambrian and Archean rocks (Moser et al., 2001; Hart et al., 2004). Further study by 

Tredoux et al. (1999) discovered the presence of ~3.5 Ga mantle ultramafic at the center 

of the impact, thus promoting the ~36 km “crust on edge” model. The “crust on edge” 

model proposes that a radial traverse from the collar to the core of the dome represents a 

journey through progressively deeper sections of the Archean crust. The estimated degree 

of erosion based on geobarometric studies of between 7-10 km (Stevens et al., 1997; 

Gibson et al., 1998), also allows for a unique view into the roots of a giant impact 

structure. Figure 1-6 provides a visual depiction of the Vredefort area pre-impact, directly 

post-modification, and at the currently accepted estimates of erosion. 

 

Figure 1-5: Map indicating the location of the Vredefort dome within the greater 

Witwatersrand Basin (Fagereng et al., 2008). 
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Figure 1-6: A visual depiction of local geology at the site of the Vredefort impact A) 

pre-impact (pre-2.020 Ga), B) immediately after modification (~2.020 Ga), and C) at 

the present level of erosion. Stratigraphic units are not to scale, and these images are 

only to be used as a rough guide. Images modified from Oggmus (2014).  

1.4.1 Geology of the Vredefort central uplift or ‘dome’ 

The Vredefort dome is the ~90 km wide central uplift left behind from the post-impact 

rebound of Archean crystalline basement rocks from the original transient crater floor. 

The dome itself is comprised of an ~40 km wide core of Mesoarchean gneisses (from the 

Archean Basement Complex), as well as an ~20-25 km outer collar of topographically 

high metasediments and metavolcanics (Henkel & Reimold, 1998). The southeastern 

portion of the dome is completely covered by ~300-180 Ma Karoo sediments and dolerite 

sills, and general exposure of the impact structure is quite limited throughout the entire 
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dome (Henkel & Reimold, 1998). The gneisses in the center of the dome have been 

metamorphosed to amphibolite to granulite facies, and can be further divided on the basis 

of geochemical studies (Hart, 1978; Stepto, 1990) and metamorphic grade, into the Outer 

Granite Gneiss (OGG) and Inlandsee Leucogranofels (ILG).  

Single-zircon U-Pb dating (Kamo et al., 1996) and 40
Ar 

- 39
Ar

 dating of an OGG 

amphibolite (Reimold et al., 1992) from the core of the dome indicated that the Archean 

core is between 3.2 and 3.1 Ga, and underwent a stage of metamorphism at ~3.08 Ga. 

There is a component of granitoid that is approximately 3.3-3.4 Ga, as indicated by U-Pb 

zircon dating by Armstrong et al. (2006). The OGG region is typified by amphibolite 

grade migmatitic gneisses, typically of granodioritic, adamellitic, and tonalitic 

composition (Hart, 1978; Stepto, 1990). The OGG is thought to represent the middle to 

upper crust. The ILG region is defined by granulite grade metamorphism, comprising the 

inner annulus of the crystalline core. The gneisses of the ILG are typically strongly 

banded and often folded, felsic, tonalitic gneisses (Hart, 1978; Stepto, 1990). An early 

theory that the ILG represented portions of an impact melt that was subsequently 

crystallized was disproved based on the lack of a considerable Ni values in the 

leucogranofels that would have provided evidence of a meteoritic component (Palme, 

1980; Schreyer, 1983). The ILG rocks are often found to have an overprinting 

granophyric texture, displaying an intergrowth of feldspar and quartz formed as a direct 

result of a cotectic or eutectic crystallization from a melt (Schreyer, 1983). At the same 

time, the ILG is well-known for its intensely recrystallized grains and glomerogranular 

quartz texture that nevertheless decorates rather than erases the dm-scale compositional 

layering and gneissic fabric of their Archean protolith (Reimold & Gibson, 2010). The 
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interesting spatial relationship between granophyric textures and fabric unit textures in 

the ILG rocks suggests that they contained a component of granitic melt formed by 

anatectic melting within the ILG host rocks (Schreyer, 1983). A large-scale surface 

expression of this partial melting, called the Central Anatectic Granite, can be found near 

the Inlandsee Pan (Hart et al., 1991). Near the center of impact, within the ILG zone, 

borehole drilling exposed serpentinized amphibole-bearing harzburgite of 3.3-3.5 Ga 

(Tredoux et al., 1999). When combined, the evidence indicates a “crust-on-edge” model, 

with the OGG representing middle-upper crust, the ILG representing lower crust, and 

harzburgites in the core representing possible Archaean upper mantle material (Hart et 

al., 1990; Tredoux et al., 1999; Hart et al., 2004). This evidence signifies that the exposed 

central uplift of the dome uplifted rocks from the lower crust, comparable to some of the 

large impacts on other planetary bodies. 

The transition zone between the OGG and ILG has been the subject of numerous 

formation propositions. Fletcher & Reimold (1989) proposed that the transition zone 

represented a mega-shear zone, while Hart et al. (1990) calls the transition zone the 

Vredefort discontinuity, asserting that the abutment of the OGG and ILG terranes 

represents the upper and lower crust, respectively. More recently, it was suggested that 

this transition likely resembles that of a more gradual change in lithologies rather than a 

structural discontinuity, demonstrated by the melt-rich amphibolites and melt-depleted 

granulites created during the high-grade metamorphic event at ~3.09-3.08 Ga (Gibson & 

Reimold, 1996; Hart et al., 1999; Lana et al., 2003, 2004). This is what would be 

expected by a traverse from upper to lower crustal levels (Reimold & Koeberl, 2014). 
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Exposed along the northwestern, western, northeastern, and northern arcs of the 

Vredefort dome are the subvertical to overturned collar rocks. These metasedimentary 

and metavolcanic rocks have the same general geology as the rest of the Witwatersrand 

Basin, shown in Figure 1.5. The strata of the collar can be divided into the basaltic 

andesites, felsic lavas, and rift-related clastic sediments of the Dominion Group (~3074 ± 

6 Ma, Armstrong et al., 1991), overlain by the clastic sediments of the Witwatersrand 

(~2.97-2.71 Ga, Robb et al., 1997; Robb and Robb, 1998; McCarthy et al., 2006), the 

tholeiitic flood basalts of the Ventersdorp (~2.714 Ga, Armstrong et al., 1991), and the 

shales, dolomites, and volcanics of the Transvaal Supergroup (~2.5-2.25 Ga, Walraven et 

al., 1990). Subsidiary intrusions, possibly related to the Bushveld event at ~2.06 Ga, also 

intrude the collar rocks (i.e. Schurwedraai) (Gibson & Reimold, 2008). At the contact of 

the core and collar, the collar strata are upturned 80 degrees (and overturned in places), 

and at 50 degrees at areas higher in the Witwatersrand sequence (Lilly, 1980). 

The entire region was overprinted by a later metamorphic event induced by the Kibaran 

orogeny ca. 1.110-1.021 Ga. This event is the cause of U-Pb resetting in some zircons 

yielding a younger, secondary ~1.0 Ga age (Moser et al., 2011).  

1.4.2 Evidence of an impact origin for Vredefort 

The origin of the Vredefort impact structure was a hotly debated topic for quite some 

time, outlining the difficulties in early studies of impact craters. Early work by the likes 

of Shand (1916), Hall & Molengraaff (1925), Nel (1927), and Boon & Albritton (1936) 

proposed a possible impact origin for Vredefort, and their work gained some traction 

when Daly (1947) reiterated their findings, placing an estimate of minimum structure 

diameter at approximately 50 km. However, the origin of Vredefort remained enigmatic 
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for quite some time. Many suggested that the crater was endogenic, forming from one of 

or a series of mantle explosions (Nicolaysen et al., 1963). Many of the early studies 

focused on the macro-evidence of impact cratering. Fortunately, as science and 

technology have evolved, so too has the ability to identify key indicators of shock on the 

micro-scale. Evidence which is often invisible to the naked eye is now being used in the 

forefront of identifying impact craters and ejecta layers across the world, and was used to 

verifiably attribute the formation of the Vredefort dome to a hypervelocity impact. 

In order for a transient crater the size of Vredefort to form, there must be an immense 

amount of energy released upon impact from a hypervelocity bolide. The impact 

instantaneously transforms the consolidated target rock into the rheology of a Bingham 

fluid (Morgan et al., 2000). This incredible energy release also creates many macroscopic 

and microscopic shock features that are indicators of a shock event. Some of these impact 

features at Vredefort are shown in Figure 1.7 and include but are not limited to: planar 

features in quartz that turned out to be distinctive planar deformation features (Carter, 

1965, 1968; French, 1972; Grieve et al., 1990; Leroux et al., 1994) (Fig. 1-7a); 

granophyre with a meteoritic component demonstrated by increased siderophile-element 

abundances (Koeberl et al., 1996) (Fig. 1-7b); pseudotachylite (Shand, 1916; Killick & 

Reimold, 1990; Schwarzman et al., 1983; Reimold & Colliston, 1992) (Fig. 1-7c); 

foliated norite impact melt rocks (Moser, 1997); possible impact ejecta in the form of 

spherules found in Russia (Huber et al., 2014)(Fig. 1-7d); shatter cones (Hargraves, 1961; 

Dietz, 1961)(Fig. 1-7e); zircon crystallized from impact norite (Moser, 1997) (Fig. 1-7f) 

and high-pressure quartz phases such as coesite and stishovite (Martini, 1978; Martini, 

1991). The presence of these features now substantiates earlier exogenic origin claims 
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with irrefutable evidence that is not solely based on the circular shape of the structure or 

overturned strata observations in the collar (Boon & Albritton, 1936). 

 

Figure 1-7:  Shock evidence at Vredefort, including: a) petrographic image of 

quartz PDF’s (Grieve et al., 1990), b) granophyre (Davis, 2014), c) pseudotachylite 

(Davis, 2014), d) BSE image of impact ejecta spherules (Huber et al., 2014), e) 

shattercones (Hargraves, 1961), and f) newly crystallized zircon from impact-related 

norite (Moser, 1997).  

1.4.3 Shock microstructures in quartz and other minerals 

Often the most useful indicator of a shock event are the shock microstructures contained 

in rock-forming and accessory minerals. Microstructures have been documented 

extensively in minerals throughout impact structures, including Vredefort, Chicxulub, 

and Sudbury. Early microstructural studies of minerals at Vredefort focused primarily on 
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rock-forming shock-indicator minerals such as quartz and feldspars. Planar features (later 

named planar deformation features (PDF’s)) in quartz were shown to be extensively 

present across the Vredefort dome by Carter (1965, 1968). Lilly (1981) noted that there 

was a correlation between estimated shock pressures and the average sets of planar 

deformation features per grain, based on the shock pressure calibration system of 

Robertson (1975) and Grieve & Robertson (1976). He also noted that there was an 

increase in the degree of recrystallization in quartz moving from the collar to the core, 

typical of increased shock temperature gradients. The confusion imposed by the 

troublesome quartz planar features led Lilly (1981) to propose multiple shock events 

associated with some form of a cryptoexplosion event. Grieve et al. (1990) reconciled the 

controversy suggesting that the relative lack of planar deformation features (Grieve et al., 

1990a-shocked minerals and K/T controversy) in quartz from the core was due to post-

impact recrystallization due to high post-shock temperatures. This recrystallization was 

present extensively in the core of the impact, leading to the skewed and confusing shock 

pressure calculations. His conclusion, however, led to another problem; quartz, although 

fairly refractory, was often overprinted by metamorphism and/or alteration, making it 

unreliable as a shock indicator. Leroux et al. (1994) subsequently confirmed the presence 

of impact-induced planar features in quartz that are locally overprinted by the post-shock 

annealing effects of high temperatures. In some cases, remnants of planar elements in the 

quartz hosted trails of fluid inclusions, thought to be annealed planar deformation 

features. Because of the moderate susceptibility of quartz and feldspars to erosion, 

annealing, and recrystallization, a better shock indicator mineral was necessary.   
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1.5 Zircon 

Zircon (ZrSiO4) is a highly refractory and chemically inert nesosilicate mineral, making it 

extremely resilient to weathering, transport, and intense metamorphism. Zircon is also 

quite common in the Earth’s crust, as it forms ubiquitously in silicate melts which are the 

foundation of igneous rocks. These characteristics have allowed zircon to become an 

important tool in determining geological history, including various igneous and 

metamorphic episodes that the mineral has recorded. These episodes include primary 

crystallization, secondary igneous crystallization, and metamorphic recrystallization, 

allowing for a single zircon to contain individual parts of a crystal with entirely different 

origins (Hinton & Upton, 1991). This is especially true for shocked zircons, which are 

known to recrystallize under high post-shock temperatures (Bohor et al., 1993; Kamo et 

al., 1996). 

Zircon has two different cation substitution sites, including a tetragonal and a triangular 

dodecahedral site, hosting Si and Zr, respectively (Speer, 1980). Chemically, zircons are 

quite elementary, with ZrO2, HfO2, and SiO2 making up the majority of the oxide 

component. Hafnium is always present in some respect, acting as a substitute for Zr. A 

typical zircon does not have a significant amount of Hf, with HfO2/ZrO2 ratios on the 

order of 0.01, and metamict varieties having slightly more (Rankama & Sahama, 1950).  

Much of the effectiveness of zircon in piecing together geological history is related to the 

mineral’s ability to act as an incredibly accurate and superior geochronometer. Although 

many minerals have been used as reliable shock indicators, including quartz and 

feldspars, they are far less refractory than zircon, and are at a significant disadvantage for 

use in geochronometry. Zircon has the ability to both preserve shock microstructures and 
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primary and secondary U-Pb ages, effectively dating the event that generated the shock 

microstructures. 

1.5.1 Shock microstructures in zircon 

Shock microstructures in zircon were first described by Krogh et al. (1984). Many of 

these microstructures have been found to survive billions of years of erosion (Cavosie et 

al., 2010), tectonism and metamorphism, even up to granulite facies. A number of zircon 

microstructures have been used as diagnostic indicators of shock metamorphism, 

including planar and curviplanar features/fractures (Moser et al., 2011), granular zircon 

(Bohor et al., 1993), decomposition of zircon to its oxide constituents baddeleyite and 

silica (El Goresy, 1965; Kleinmann, 1968; Glass et al., 1990), the presence of high-

pressure zircon polymorph reidite (Cavosie et al., 2015), and microtwinning (Moser et 

al., 2011; Erickson et al., 2013). It has, conversely, also been suggested that the presence 

of planar and curviplanar fractures are, in fact, not diagnostic of a shock environment, 

and that these microstructures may also be indicative of a highly seismically active area 

(Kovaleva et al., 2015). The question of whether these planar and curviplanar fractures 

are similar to the previously accepted diagnostic planar and curviplanar fractures is still 

to be determined. A comprehensive overview of the progression of shock microstructures 

in zircon from the Vredefort dome (Moser et al., 2011) revealed the following 5 phases: 

1) planar fracturing in {1K0} and {1K2} due to initial shock compression; 2) curviplanar 

fractures in {1K1} that have been annealed and now host melt glass inclusions; 3) 

microtwins oriented 65° about [110] due to rarefaction of the shockwave; 4) impact age 

crystallites recrystallized due to high post-shock heating by intruding impact melt; and 5) 

crystal plastic deformation associated with post-impact crater modification. Erickson et 
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al. (2013) were successful in correlating planar microstructures from exterior scanning 

electron images to submicron-scale transmission electron and electron backscatter 

diffraction images. Similar to Moser et al. (2011), they proposed the following 

chronology of shock microstructures: 1) c-axis parallel PF’s (010) and (100), 2) four 

{112} PF’s, some including microtwins, 3) curviplanar fractures and impact melt 

inclusions, 4) (011) PF’s from compression, and 5) crystal plastic deformation. Krogh et 

al. (1984) established a link between shock microstructures in zircon and U-Pb 

systematics, where they attributed an ~1850 Ma isotopic disturbance to impact-induced 

planar microstructures at the Sudbury impact structure, Canada. This interpretation was 

reinforced with studies by Bohor et al. (1993), Moser et al. (2011) and Cavosie et al. 

(2015). Completely recrystallized zircon (granular/polycrystalline zircon), and zircon 

crystallized from impact melt have been identified as the best targets for complete U-Pb 

impact resetting (Moser et al., 2011; Cavosie et al., 2015). Zircons which are not 

recrystallized, but host microtwins, planar fractures, or low angle boundaries are 

commonly partially reset (Moser et al., 2011; Cavosie et al., 2015).  

A significant setback in the progress of shock microstructural studies in zircon is the 

confusion over terminology. An attempt is made in this thesis to elucidate this confusion 

and provide a suggestion for a set of guidelines for the classification of terrestrial shock 

microstructures. For the purposes of this study, we recommend the following 

terminology: 

A) Planar features: Defined as any crystallographically-controlled planar element in 

zircon. Planar features can be divided in the following ways: 



23 

 

a. Microtwins: Planar ‘features,’ which appear as a doublet of lamellae 

composed of zircon in twinned orientation relative to the surrounding 

crystal. Microtwins, oriented {112} have angle-axis pair values of 65° 

about [110] (Moser et al., 2011).  

b. Planar fractures (PF’s)- Crystallographically-controlled planar elements 

that originally appear as open cracks or fractures in the zircon lattice. 

Planar fractures can be either: 

i. Open: Completely open fractures that are not filled. 

ii. Closed: Infilled by melt, and commonly at least partially annealed. 

Very similar to curviplanar ‘features’ defined below.Referred to as 

annealed or filled-fractures. 

c. “Microcleavage”- Planar elements representing low angle boundaries 

(<10°) that remain closed, but are not filled by melt. ‘Microcleavage’ is 

similar to those described by Leroux et al. (1999). 

d. Planar deformation bands (PDB’s): can be divided into two types: 

i. Kinks: PDB ‘kinks’ have been previously documented in zircon, 

however they have not been called ‘PDB kinks.’ They are 

displayed as small bars of colour change in EBSD misorientation 

maps, often associated with other planar features. 

ii. Twists: PDB ‘twists’ are a newly documented zircon 

microstructure that is described fully in Chapter 2. Tapered planar 

bands are referred to as ‘twists’ because of the twisted appearance 

in EBSD misorientation maps.  
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B) Curviplanar features-Through-going fractures that are not planar. In previous 

publications, these were referred to as ‘fractures,’ however because of the 

common infilling by impact melt and subsequent annealing, we recommend that 

they be called ‘features’. They should also be differentiated from NPF’s (Timms 

et al., 2012), which are not impact-related. Curviplanar features can be divided 

into two types for the purposes of this study: 

a. Closed (annealed) and in-filled by melt (IMG inclusions). 

b. Closed, but offsetting grain boundaries due to increased strain exerted on 

the zone of weakness. 

C) Granular-textured zircon: Recrystallized zircon can be divided into three types for 

the purposes of this study: 

a. Fine-granular zircon: Identified as a decomposition feature of zircon 

(French, 1998). Often associated with decomposition to baddeleyite. 

b. Fine (ejecta-type) granular zircon- Similar to that identified by (Bohor et 

al., 1993; Timms et al., 2012), finer-scale granular zircon is induced by 

incredibly high instantaneous shock P/T conditions, rather than long-term 

exposure to high post-shock temperatures (as in coarse-granular zircon). 

c. Coarse-granular zircon- Identified in this study, coarsely granular zircon 

appears as polycrystalline zircon. This zircon recrystallizes into coarse 

granules under high post-shock temperatures common in the core of the 

Vredefort dome.   
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1.5.2 Melt inclusions in zircon 

Melt inclusions in zircon are well-documented, and typically take the form of primary 

inclusions of silicate melt separated from the bulk melt during zircon crystallization 

(Thomas et al., 2003). These melt inclusions (MI’s) have been found in zircon from 

various rock-types, such as gneisses, granitoids, basalts, and sandstones (Li, 1994; 

Chupin et al., 1998; Chesner, 1998). MI’s are typically trapped at magmatic conditions, 

therefore capturing a glimpse of the original melt composition. A unique quality of zircon 

is that it has the ability to preserve these melt inclusions unlike any other mineral, 

meaning that zircon can often provide insight into original melt composition and 

evolution. The presence of melt inclusions in detrital zircons found in sandstones 

(Thomas et al., 2003) is especially remarkable because it displays the preservation 

potential of melt inclusions in zircon. Chupin et al. (1998) was even able to use MI’s in 

zircon to correlate zircons to their host terranes, by studying melt compositions. Melt 

inclusions (MI’s) in zircon have been described by Li (1994), Chesner (1998), Chupin et 

al. (1998), Hoskin and Black (2000) and Frezzotti (2001). These melt inclusions have 

been observed as both glass and crystalline inclusions, which is primarily a function of 

cooling rate and composition of the melt (Roedder, 1979). Crystalline melt inclusions in 

zircon tend to form in slow-cooling environments such as in plutonic rocks, whereas 

glassy primary inclusions are often found in volcanic rocks, where the melt is rapidly 

cooled. The study of MI’s in accessory minerals such as zircon provide the opportunity to 

constrain igneous processes that are difficult to understand via conventional methods 

(Thomas et al., 2003).  

Impact-related melt inclusions have been documented in zircons from the Vredefort 

impact structure, South Africa (Moser et al., 2011). These inclusions were suggested to 



26 

 

be glass, based on their amorphous electron backscatter patterns (EBSP’s). The 

connection of these melt inclusions to impact-induced melting was their preservation 

along curviplanar and planar fractures which are diagnostically generated by the 

shockwave. Similar melt inclusions have been recently reported in Apollo zircon grains 

by Crow (2015), who found both glass and crystalline impact melt inclusions.  

1.5.3 Alkali mobility in glasses under an electron beam 

When put under the stress of an electron beam, alkali elements (specifically Na and K) in 

glasses often become mobile. This is a direct result of beam heating and charging effects 

within the sample (Spray & Rae, 1995). The mobility phenomenon is observed even 

under low-energy beams (Gedeon et al., 2008), and therefore must be considered in 

compositional analysis (EPMA, EDS, etc.). The decay line of alkali elements begins as a 

linear trend during the incubation time, but progresses to an exponential trend as time 

continues (Gideon et al., 2008). In an effort to diminish the effects of alkali mobility in 

glasses, various authors have attempted to adjust settings and parameters. For example, 

Morgan & London (2005) suggest using a wider or defocused beam or lower current 

densities for the compositional analysis of melt glass inclusions. Reducing the beam 

current will reduce heating within the irradiated volume (Spray & Rae, 1995). 

Defocusing or widening the beam itself will also reduce heating and charging effects.  

The settings used in this study are listed in Tables C-5 & C-6, and discussed in the 

Methods section. 
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1.5.4 Geochronology of zircon 

1.5.4.1 Microstructural geochronology 

One aspect that will be discussed in this thesis is the geochronology of zircon 

microstructures. In a sense, shock microstructural geochronology provides a relative 

timeline of very tightly spaced events, and can help distinguish between the different 

formational mechanisms. Crosscutting relationships are used to understand the order of 

formation for shock microstructures, and how they are interrelated. Moser et al. (2011) 

provided a very comprehensive review of microstructural geochronology in zircons from 

the Vredefort dome, South Africa, in which he distinguished five different ‘phases’ of 

shock microstructure progression in zircon (outlined in section 1.4.1).  

1.5.4.2 U-Pb geochronology  

The ability of zircon to remain a relatively closed system for millions and even billions of 

years, combined with the exclusion of Pb from its initial crystal structure, makes it a 

formidable geochronometer (Bowen, 1988). The decay of U
238

 to Pb
206

 and U
235

 to Pb
207

 

provides a double decay chain that is used to pinpoint the age of Pb-loss, attributable to 

events such as metamorphism or impacts. When combined with geologic and 

microstructural evidence, U-Pb ages can be used to deduce the timing and type of Pb-

loss, a valuable asset to understanding impact events or other geological events.  

An example of the link of microstructures and U-Pb ages was provided by Moser et al. 

(2011). In this study, they suggested the existence of a “hot-shock” and “cold-shock” 

zone at Vredefort. The “hot-shock” zone consisted of zircons that are shocked and had 

complete to partial age resetting related to the impact, whereas the cold shock zircons had 

many shock microstructures (i.e. twins, planar fractures), yet were not age-reset by the 
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impact. This relationship suggests that temperature may be a major player in the resetting 

of zircon U-Pb ages, and that shock microstructures, in the absence of necessary 

temperatures do not always provide a Pb-loss pathway. 

1.6 Sample Suites 

All samples analyzed in this thesis have been summarized in Appendix C, and described 

geographically in Appendix B. The majority of the samples collected were of varying 

granitoid composition, as granitoid rocks constitute the bulk of the exposure of the 

Vredefort dome. An effort was made to cover as much ground as possible with sample 

collection, despite relatively poor exposure. This poor rock exposure is the major reason 

that there remain ‘gaps’ in the sample record across the dome. A visual representation of 

sample locations is provided in Figure 1-8, below. To help produce this map, a Google 

Earth map showing the location of all samples collected from this study and any related 

ZAPLab field excursions was created.  
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Figure 1-8: Geologic bedrock map of Vredefort impact structure, South Africa, 

showing the locations of samples used in this study. Map adapted from Moser et al. 

(2011) and Grieve et al. (1977). 

1.7 Overview of thesis  

This thesis presents a variety of integrated electron beam techniques that were used to 

further the understanding of some of the microstructures in zircon from the Vredefort 

impact structure, South Africa. This thesis can be divided into two distinct sections, or 

papers: 

Chapter 2: Microstructural evolution of in-situ zircon across the central uplift of 

highly shocked Archean crust at the Vredefort impact structure, South Africa. 

 The results of an extensive core-to-collar study of zircon microstructures from 

the Vredefort impact structure will be presented, including some of the trends 

and disparities in the formation of shock microstructures. 
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 A quantitative study of shock feature prevalence at multiple sites across the 

dome is established, and shock microstructures are placed into a chronological 

order. 

Chapter 3: Impact melt glass inclusions in zircon from the central uplift of the 

Vredefort impact structure, South Africa. 

 We have established a best method for the semi-quantitative analysis of melt 

inclusions in zircon using standard SEM-EDS technology.  

 Multiple impact melt inclusion compositions are documented, and 

compositions are compared to local mineralogy.  

Chapter 4 integrates the findings presented in Chapter 1 and 2 and discusses the 

implications for future research of shock microstructures in zircon. Suggestions are 

provided for future work in this field, and how to best develop the methods for these 

analyses.  

The purpose of this thesis is to present the analysis and findings represented in both 

papers to further the understanding of shock microstructures in zircon from the Vredefort 

dome, South Africa. These findings will be used to further establish Vredefort as an 

analogue to other large, complex impact structures and even zircons from ex-situ solar 

system samples (i.e. meteorites, breccias). Fitting the microstructures of zircon into a 

relatively well-constrained regional P/T shock environment will be useful for the study of 

other impact environments. This study will contribute to the development of zircon as a 

tool for the reconstruction of planetary history by advancing our knowledge of shock 

effects on zircon, including the incorporation of impact melt inclusions.  
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2 Microstructural evolution of in-situ zircon across the 
central uplift of highly shocked Archean crust at the 
Vredefort impact structure, South Africa 

 

Connor L. Davis and Desmond E. Moser 

2.1 Introduction 

Impact cratering is known to have played a principal role in the crustal and biological 

evolution of the Early Earth (Frey, 1980; Pace, 1997). The absolute age and pace of 

putative events such as the Late Heavy Bombardment (LHB) (Turner et al., 1973) will 

remain largely unknown until methods for reading physical impact records and 

understanding shock metamorphism are further developed. Current end-member 

modeling of impact flux results in divergent evolution of the Early Earth’s crust; from 

highly heterogeneous effects leaving areas of primary lithosphere intact (Grieve et al., 

1990) to wholescale re-melting of the outer 10 km of the Earth by impact melting and 

impact-triggered mantle melting (Marchi et al., 2014). Large-scale, surficial records of 

terrestrial impacts from events such as the LHB have largely been removed due to the 

destructive forces of billions of years of tectonism and erosion on Earth. In fact, only 188 

terrestrial impact craters have been confirmed (Spray & Hines, 2009), identified 

primarily based on large-scale morphological or structural evidence. Fortunately, 

evidence of impact cratering is also seen on the microscopic level, as the passage of a 

shockwave creates a variety of unambiguous shock microstructures in minerals such as 

zircon which are able to persist over extensive geological time and in some cases can be 

used to directly date shock metamorphism. Often, these minerals are the only remaining 

vestiges of long destroyed impact craters, and can provide key evidence for the location 
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and shock conditions of an otherwise enigmatic impact event on planetary crusts. 

Exploring the range and nature of zircon shock microstructures across a variety of shock 

conditions promises better reconstruction of the shock history of the Earth as well as 

other rocky planets and planetesimals. This work represents the first in-situ analysis of 

shocked zircon across a major complex impact structure. The study presents details on 

the sequence of microstructure development at different radial distances in the crater 

floor and the relative frequency of occurrence of these features within a rock and across 

the central uplift. 

2.1.1 Shock metamorphic studies of quartz and other rock-forming 
minerals 

Historically, microscopic-scale studies of shock metamorphism have focused on quartz. 

Quartz is a useful shock indicator mineral because it is common in crustal target rocks, 

and preserves a large array of shock effects, including planar deformation features 

(PDF’s), planar fractures (PF’s), and mechanical twinning (Stöffler and Langenhorst, 

1994). High-pressure quartz polymorphs coesite and stishovite have also been attributed 

to the shock process (Stöffler, 1971). However, quartz microstructures are rather 

susceptible to post-shock alteration by processes such as recrystallization, as noted in 

Grieve et al.’s (1990) analysis of recrystallized quartz at the Vredefort impact structure, 

South Africa. The orientation and distribution of planar deformation features (PDF’s) in 

quartz (Grieve et al., 1990) were analyzed in the hopes that they could be used to infer 

shock pressures experienced in the central uplift. The results of this study were 

anomalous, as intense post-shock recrystallization in the core of the central uplift resulted 

in annealing of many of these PDF’s. The general zones of quartz recrystallization are 

displayed overlain on a bedrock geology and sample map in Figure 2-1. 
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Figure 2-1: Bedrock geology map of Vredefort central uplift, South Africa, showing 

locations of samples, and centre of impact. Map adapted from Moser et al. (2011), 

geology modified from Nel (1921) and stages of quartz recrystallization (1-4) from 

Grieve et al. (1990). 

 

Feldspars have also been used to characterize the shock process, but suffer from many of 

the same adversaries as quartz. Moreover, neither of these common minerals are suitable 

for high temperature geochronology methods such as U-Pb dating, the benchmark 

method for the geological timescale. In essence, a more robust and stable indicator of 

shock is necessary to progress the absolute timing of impact cratering history, especially 

in large craters which are predisposed to high post-shock temperatures that can cause 

widespread recrystallization.  
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2.1.2 Zircon shock microstructures 

Zircon (ZrSiO4) has recently become an important tool in impact crater research, largely 

due to its robustness and resilience against the adverse effects of erosion, tectonism, and 

metamorphism, as well as its capacity as a powerful U-Pb and Lu-Hf geochronometer. 

Shock microstructures that have been documented in zircon can be considered as two 

main groups. The dominant group are those created in very short time scales experience 

by ejecta materials and fallback deposits such as breccias and suevites (e.g. Bohor et al., 

1993; Krogh et al., 1993). The other less-explored group of microstructures are those 

generated in target rocks that remain in the crater basement (i.e. the volume of crust 

beneath impactites and impact melt). Zircons in these environments have been shown to 

host a spectrum of microstructural and isotopic responses to a single cratering event. This 

spectrum is a consequence of large radial pressure gradients and extreme thermal 

gradients accompanied by equally extreme times of exposure to post-impact heating and 

strain in crater floor environments. For example, an ejecta zircon and crater zircon may 

experience instantaneous loading and unloading cycles as high as 100 GPa, whereas the 

thermal exposure of the two grains will range from seconds in an ejecta plume to 

hundreds to thousands of years in the central uplift of the crust beneath a crystallizing 

melt sheet.  

Crater basement zircons have previously been shown to record a wide range of shock 

microstructures. Planar fractures have been identified in orientations: (010), (100), {112}, 

(011) (Moser et al., 2011; Erickson et al., 2013). Some {112} planar features host 

microtwins oriented 65° about <110>, and are thought to form when an increased shear 

stress is exerted on regular {112} PF’s (Moser et al., 2011). Microtwins are thought to 

form at shock pressures between 20-40 GPa (Moser et al., 2011), although this remains 
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an estimate, and further study to properly constrain these conditions is necessary. 

Curviplanar features, occasionally referred to as curviplanar fractures (Moser et al., 2011) 

or non-planar fractures (Cavosie et al., 2010) have been identified at Vredefort, and are 

attributed to the rarefaction shockwave. These features are commonly annealed and are 

sub-parallel to {112} PF’s (Erickson et al., 2013). Impact melt glass inclusions have also 

been documented along annealed curviplanar and planar features by Moser et al. (2011). 

Occasionally, these open fractures can lead to grain margin displacement (Krogh et al., 

1984). Reidite, a high pressure ZrSiO4 polymorph (Glass et al., 2002), has yet to be 

discovered at Vredefort, despite the fact that much of the central uplift believed to have 

reached shock pressures above the 40 GPa transition. Assuming it was originally present, 

it has likely reverted back to zircon due to high post-impact temperatures, and would 

possibly have been present along microtwin lamellae. Two types of granular-textured 

zircon have been reported, including decomposition of single grains to very fine-grained 

zircon formed in ejecta environments (Bohor et al., 1993), and coarser granular zircon 

formed from the immense post-shock temperatures in a complex impact structure (Kamo 

et al., 1996; Moser, 1997; Cavosie et al., 2015). Both of these textures have been 

documented at Vredefort. The distinction between these two textures is further discussed 

in this study. At even greater temperatures, zircon can decompose into its oxides, 

baddeleyite (ZrO2) and silica (SiO2), beginning at ~60 GPa and 1700°C (Wittmann et al., 

2006). This has yet to be documented at Vredefort. 

As shown, the zircon microstructures associated with shock metamorphism are diverse 

and, as we report, still growing. There has also been some ambiguity in the nomenclature 

of shock microstructures in zircon. For the purposes of this study, we define planar 
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features as any of the following: planar ‘fractures’ that are either annealed or filled by 

melt; planar fractures that remain open and unfilled; microtwins oriented 65° about [110]; 

‘microcleavage,’ or low-angle (<10°) planar boundaries; and planar deformation bands 

(PDB’s) (Cavosie et al., 2015). PDB’s have been identified in terrestrial and lunar impact 

environments (Cavosie et al., 2015; Nemchin et al., 2009) and terrestrial tectonic 

environments (Kovaleva et al., 2015), and appear as bands of misoriented zircon (less 

than 2.7°) oriented parallel to {110}. Curviplanar features are defined as non-planar filled 

fractures that are impact-related, and typically delineated by impact melt glass inclusions, 

as in Moser et al. (2011). These fractures have been largely annealed due to remnant heat 

related to the impact melt glass inclusions, hence the abandonment of the term ‘fracture’ 

for the purposes of this study.  

The compatibility of zircon for U uptake (in place of Zr
+4

) and its exclusion of Pb makes 

it an incredible age indicator, providing precise U-Pb ages that can be linked to igneous, 

metamorphic, and impact events. Krogh (1984) provided a direct link between shock 

microstructures and U-Pb discordance in zircon, the understanding of which was 

enhanced by later terrestrial and lunar impact studies by Bohor et al. (1993), Pidgeon et 

al. (2011) and Moser et al. (2011). 

2.1.3 Purpose of this study 

Undeformed by tectonic processes, and eroded to expose the deep roots of the complex 

structure, the Vredefort central uplift, South Africa, is among the best terrestrial analogue 

sites for the study of zircons from similar rock types in an array of shock metamorphic 

environments in the crater basement. Despite the recent focus on zircon at Vredefort, no 

study has yet provided an in-situ analysis of zircons across the full extent of the central 
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uplift. The microscale record in zircon has the potential to be used to deduce the timing 

and magnitude of large impacts in terrestrial and ex-situ solar system samples, provided 

we have a more complete understanding of mineral and isotopic response and variability 

to complex impacts. The purpose of this study was to enhance the understanding of the 

variability of shock processes on zircon by analyzing zircons from a suite of granitoid-

composition rocks (+1 quartzite) from various known shock environments across the 

Vredefort impact structure, South Africa. An attempt is made to provide a quantitative 

scale of the effects of shock on zircon based primarily on the location of these zircons 

within the regional context of a large complex impact crater. 

2.2 Geological Setting 

The Vredefort impact structure (S27°0’, E27°30’) is located approximately 120 km 

southwest of Johannesburg, South Africa, and is expressed surficially as a semi-annular 

array of topographically high supracrustal rocks constituting the outer limit of the 

Vredefort dome. The dome itself is approximately 70 km in diameter, including an ~45 

km inner core of primarily Archean gneisses and an ~25 km outer core of Archean to 

Proterozoic rocks (Gibson & Reimold, 2008). Persisting after ~2.02 Ga of erosion (~8-10 

km; Gibson et al., 1998), the dome represents the remnant central uplift of the once larger 

Vredefort impact structure, which would have been between 250-300 km in diameter 

(Therriault et al., 1997). The inner annulus of the central uplift at Vredefort hosts poorly 

exposed mid to lower crustal rocks (amphibolite to granulite, respectively) exhumed 

during the impact event (Stepto, 1979; Hart et al., 1981; Lana et al., 2004). This cross-

section through the Kaapvaal Craton was emplaced at the surface by fluid-like rebound 

within the crater, leading to the higher-grade granulites surrounded by amphibolite-facies 
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rocks. Further evidence for this “crust-on-edge” model was provided by Hart et al. (1991) 

and Tredoux et al. (1999) who discovered harzburgite and other upper mantle ultramafic 

rocks at the centre of the central uplift.  

2.3 Methods & Sample Locations 

2.3.1 Methods 

Roughly 30 samples (~1 kg each) were collected during field work in February, 2015. A 

subset was chosen for more intensive analysis, and were prepared as thin or thick 

sections, polished for ~3 hours with 0.06 um colloidal silica (neutral NaOH solution) on a 

Buehler VibroMet 2 vibratory polisher and carbon coated to ~25 um with an Edwards 

Auto 306 carbon coater.  

The bulk of the analytical results for this study were collected with the Hitachi SU6600 

field emission gun scanning electron microscope (FEG-SEM) from Western University's 

Zircon and Accessory Phase Laboratory (ZAPLab). Samples were characterized using a 

combination of feature mapping and phase mapping to locate the various ‘features’ (i.e. 

zircon, monazite) and main phases (i.e. quartz) in each sample. Upon location of the 

important features and phases, backscatter electron imaging (BSE) and secondary 

electron imaging (SE) were performed on ~15 of the largest (by length) grains for basic 

sample characterization (conditions listed in Table 2-1). Approximately 40-50 grains 

from six of the samples were analyzed with BSE/SE in order to obtain a survey of shock 

microstructures. Cathodoluminescence (CL) images were taken of select grains using a 

Gatan ChromaCL detector attached to the FEG-SEM (Table 2-1). Further microstructural 

data was captured with an Oxford Instruments Nordlys electron backscatter diffraction 

(EBSD) detector (Table 2-1). Energy dispersive spectroscopy (EDS) was performed with 
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an Oxford Instruments X-max silicon state detector (SSD) incorporated into the FEG-

SEM (Table 2-1).  

 
Shock Survey 

(BSE/SE) 
CL EBSD EDS Mapping 

SEM 

System 
Hitachi SU6600 

Hitachi SU6600 

Gatan 

ChromaCL 

Hitachi SU6600 

Oxford Instruments 

Channel 5 

Hitachi SU6600 Oxford 

Instruments INCA 

Carbon coat Yes Yes Yes Yes 

Acc. voltage 15 kV 10 kV 20 kV 10 kV 

Probe 

current 
Variable 3.5-4.3 nA ~12 nA Variable 

Tilt -- -- 70° -- 

Working 

distance 
10.0 mm 12.5 mm 19.0 mm 10.0 mm 

Apertures 
3/1  

(50μm/200μm) 

2/3 

(100μm/50μm) 
3/2 (50μm/100μm) 2/1(100μm/200μm) 

Gain Medium-High Medium High Medium 

Table 2-1: Analysis conditions for the shock survey and backscatter electron & 

secondary electron (BSE/SE) imaging, cathodoluminescence (CL), electron 

backscatter diffraction (EBSD), and energy dispersive spectroscopy (EDS). 

Advanced EBSD parameters are found in Appendix A. 

2.3.2 Sample Locations 

Samples were collected from locations at different radial distances within the Vredefort 

central uplift to provide a complete transect from core to collar. The specific locations, 

and how they fit into the regional geology, are shown in Figure 2-1. Sample coordinates 

and rock types are listed in Table 2-2. Primarily granitoid composition samples were 

collected as they are the most common and volumetrically significant rock type in the 

crustal section. This reduced the bias attributed to the variance of shock effects in 

different rock types. To extend the radius of the survey deeper into the supracrustal rocks 
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of the collar, one quartzite sample from the Witwatersrand Supergroup was collected as 

well. 

Sample 

Name 
Lithology Sample Type 

Radial 

distance 
Coordinates (UTM) 

V15-55 Quartzite  Thick Section ~24.5 km 563809 m E 7030330 m S 

V-62 Alkali Feldspar Granite Thick Section ~22.8 km 534627 m E 7029025 m S 

V15-56 Outer Granite Gneiss Thin Section ~19 km 560295 m E 7025905 m S 

V15-46 Outer Granite Gneiss Thin Section ~17.1 km 539943 m E 7025719 m S 

V2-1 Charnockitic Gneiss Thick Section ~11.4 km 540804 m E 7019340 m S 

V49-1 Charnockitic Gneiss Thick Section ~8.9 km 542531m E 7015741 m S 

V15-16 Inlandsee Leucogranofels Thin Section ~8.6 km 540091 m E 7010527 m S 

V15-39 Inlandsee Leucogranofels Thin Section ~5 km 543699 m E 7014140 m S 

V15-45-1 Inlandsee Leucogranofels Thin Section <1km 550161 m E 7011662 m S 

Table 2-2: Sample list indicating lithology type, sample type, distance from the 

currently accepted centre of impact (~4km N of Inlandsee Pan), and coordinates in 

UTM. 

2.4 Results 

2.4.1 Shock microstructures across the core-collar transect 

This section describes the shock microstructures observed in each sample to portray some 

of the disparities in the formation and preservation of shock microstructures along the 

core-to-collar transect.  

2.4.1.1 V15-55 Quartzite (~24.5 km from centre of impact) 

Sample V15-55 is a quartzite unit in the Central Rand Group (2.89-2.71 Ga) of the 

Witwatersrand Supergroup. It is known to host SiO2 polymorphs coesite and stishovite 

(Martini, 1978), constraining the shock metamorphic conditions to at least 2-3 GPa, 

700°C and >10 GPa, >1200°C, respectively. Quartz grain boundaries exhibit triple 
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junctions, and the grains contain impact-induced planar deformation features. Detrital 

zircon grains in the sample analyzed are rare, and igneous, oscillatory zonation patterns 

are present in the majority of these grains. The zoning is cross-cut by random short and 

curved fractures that are typical products of differential expansion of zircon during 

metamictization, as well as sets of shock-induced conjugate planar fractures (Figure 2-2). 

In some cases, there is minor displacement along these fractures as shown by offset grain 

margins. No other shock-induced features were observed. To our knowledge, this is the 

first report of in-situ shocked zircon at this radial distance from the centre.  

 

Figure 2-2: Shocked zircon F397 from V15-55, showing two orientations of planar 

fractures (white arrows) and some more typical irregular cracking due to 

differential expansion due to metamictization. 

2.4.1.2 V-62 Alkali Feldspar Syenogranite (~22.8 km from centre of 
impact) 

Sample V-62, a syenogranite from the Baviaanskrantz-Schurwedraii granitic complex 

(2052 ± 14 Ma) (Graham et al., 2005; Moser et al., 2011) is a coarse grained, massive 

grey-green rock composed of quartz+albite+k-feldspar+acmite+minor biotite. Zircons are 

almost exclusively hosted within acmite, which displays many planar microstructures and 
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melt inclusions, similar to the zircons that they host. Zircons range from 5 μm’s to over 

500 μm’s in size. Zircons are mostly irregularly shaped and anhedral to subhedral.  

Zircons from V-62 preserve a variety of different shock microstructures, including planar 

and curviplanar features, multiple orientations of microtwins (Fig. 2-3), impact melt glass 

inclusions, and grain-margin displacement. The quality of preservation of these features 

in this sample is notable. Microtwins {112} rotated 65° about <110> in F3313 

significantly disrupt zonation patterns, which is seen in both the CL and BSE images 

(Fig. 2-3a and b, respectively). A conjugate set of microtwins is observed. There is 

almost no recrystallization in the zircons, except in a few grains where a plagioclase-

composition melt pocket has induced a zone of recrystallization. This melting is likely 

attributed to the impact process, as vestiges of this melt can be found pervasively tracing 

infilled planar fractures and curviplanar features within the zircons as well. 
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Figure 2-3: V-62 F3313 a) CL image showing zonation and shock microstructures, 

b) inset BSE image showing planar features, twins, and IMG inclusions (dark), c) 

EBSD misorientation map with microtwins outlined in red. 

2.4.1.3 V15-56 Outer Granite Gneiss (OGG) (~19 km from centre 
of impact) 

V15-56 is a coarse-grained gneissic rock, composed of plagioclase+quartz+orthoclase+ 

muscovite+hornblende. This sample is found within the amphibolite-grade Outer Granite 

Gneiss (OGG) zone (~3.1 Ga; Hart et al., 1981; Hart et al., 1990), in a quarry cross-cut 

by 30 cm-scale pseudotachylite dykes a few hundred metres below the base of the 

Witwatersrand quartzite contact. Quartz grains in this sample display abundant PDF’s 

and undulose extinction. Zircons are preferentially found within or near plagioclase and 

biotite grains, with an average size of ~25 μm’s, with the largest being ~116 μm’s. The 

majority of the zircon grains are euhedral. Zircons have relatively few higher-pressure 

deformation microstructures (i.e. lack of microtwins). Zircons are not recrystallized, and 

largely retain their original magmatic zonation patterns. Planar features (annealed or 

filled planar fractures) and curviplanar features are present, but not as plentiful as in 

many of the other samples. These features are often delineated by traces of tiny, ovoid 

melt inclusions that often continue into larger “pods” of melt within the interiors of the 

grains (Fig. 2-4). Displacement is present in some of the grains (Fig. 2-4). No evidence of 

the high-pressure polymorph reidite or breakdown to baddeleyite and silica was detected 

in this sample. 
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Figure 2-4: V15-56 F3037 A) SE image, B) BSE image showing curviplanar features 

and annealed planar fractures delineated by impact melt glass inclusions (with pod 

of melt in the middle of the grain), and a displaced curviplanar feature. Note the 

absence of microtwins. This grain is not typical of the main population. 

2.4.1.4 V15-46 Outer Granite Gneiss (OGG) (~17.1 km from centre 
of impact) 

Sample V15-46 is from a quarry area near a popular field stop to illustrate m-scale 

pseudotachyllite dykes. It is a medium-coarse grained granitic gneiss composed of 

plagioclase+quartz+myrmekite+orthoclase+minor biotite+minor muscovite+/-

hornblende. This rock is also found within the Outer Granite Gneiss (OGG) zone. The 

outcrop from which this sample was collected hosts extensive pseudotachylite. Quartz 

grains display multiple orientations of annealed PDF’s. Zircons are found preferentially 

within the feldspars (or along grain boundaries), and occasionally within quartz. Average 

zircon length is ~76 μm’s, with a maximum size of 175 μm’s. Morphologies are variable, 

but the majority of the grains are euhedral and long-prismatic. Zircons rarely show 

evidence of recrystallization, and primary magmatic zonation patterns are often well 

preserved. Zircons seem to host an abundance of melt inclusions (Fig. 2-5, 2-6), but very 

little evidence of shock microstructures (i.e. microtwins, planar features, etc.). Annealed 

or filled planar fractures and planar and curviplanar features are present in the majority of 
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the grains (albeit not as extensively as in other samples), traced by tiny ovoid melt 

inclusions that often lead to a larger pod of melt within the zircon (Fig. 2-5). Of the 

grains imaged with EBSD, no grains displayed evidence of microtwins, a notable 

observation given the abundant macroscopic shock features in the outcrops in which this 

sample was situated. 

 

Figure 2-5: a) BSE image of V15-46 F725 showing multiple compositions of IMG 

inclusions, b) CL image showing relatively undisturbed zonation, c) EBSD 

misorientation map showing amorphous (metamict) zones and planar features.  

 

Figure 2-6: V15-46 F24565 a) SE image and b) BSE image showing pervasive melt 

along planar and curviplanar features. 
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2.4.1.5 V2-1 Charnockitic Gneiss (~11.4 km from centre of impact)  

The absence of microtwins in V2-1 is a coarse-grained green-greyish rock located at the 

gradational transition from amphibolite to granulite-facies rocks. This area is rich in m-

scale pseudotachylite veins, and is known as the Vredefort Discontinuity. V2-1 is 

classified as a charnockitic gneiss and the mineralogy of this rock is quartz + plagioclase 

+ hypersthene +/- orthoclase. The rock has been previously dated by Moser et al. (2001), 

who dated zircons at ~3.094±0.007 Ga. Zircons in V2-1 are primarily concentrated near 

or within hypersthene, and seldom found within quartz and feldspars. The average grain 

length is ~70 μm’s, with the largest being ~170 μm’s. The majority of the zircons are 

euhedral. Zircon shock microstructures in this sample are quite variable. Some grains 

appear relatively unshocked, while others are intensely shocked. F3655, for example, 

displays three cross-cutting orientations of microtwins, oriented 65° about [110], a 

considerable degree of crystal plastic deformation, curviplanar and planar features, and 

numerous impact melt glass inclusions (Fig. 2-7). Crosscutting twinned domains 

noticeably displace each other as well (Fig. 2-7c). An example of newly described planar 

deformation ‘twist’ bands (PDB-twist) is present in F3655 (Fig. 2-7c) emanating from the 

large amorphous inclusion in the lower left of the zircon. This feature is an ~4-5 μm’s in 

length and tapers out into a pointed end. This is the only feature of its kind in this zircon, 

and appears ‘twisted’ in misorientation EBSD maps (Fig. 2-7c). ‘PDB-kinks,’ similar to 

PDB’s identified by Cavosie et al. (2015 and Kovaleva et al. (2015) are identifiable in the 

centre of the grain along planar features as μm-scale parallel domains of misoriented 

zircon (white arrow, Fig. 2-7c). Twins terminate along amorphous zones (impact melt 

glass inclusions) and appear to be crosscut by one set of planar features as well. Low 

angle boundaries detected in EBSD are often related to shock microstructures 
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(microtwins and planar/curviplanar features often delineate the boundaries). Pervasive 

impact melt glass inclusions are found in trails along curviplanar and planar features, 

spatially related to microtwins, and exhibiting a bright CL response (Fig. 2-7b). 
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Figure 2-7: V2-1 F3655 a) BSE image displaying impact melt inclusions tracing 

twins and curviplanar features, b) CL image showing undisturbed zonation, c) 

EBSD misorientation map with microtwins outlined in red, white arrow indicates 

PDB kinks, d) inset EBSD IPF map with associated pole figures below. 

2.4.1.6 V49-1 Tonalitic (Charnockitic) Gneiss (~8.9 km from centre 
of impact) 

V49-1 (~3.1 Ga, Moser et al. (2001)) is a medium grained tonalitic (charnockitic) gneiss 

crosscut by a tonalite dyke of the same age. Similar to V2-1, this sample is from the 

gradational contact between middle and lower-crustal rocks. The mineralogy of this rock 

is plagioclase + quartz + minor orthoclase + minor hypersthene. Zircons are primarily 

concentrated within or near hypersthene grains, with average lengths at ~70 μm’s. 

Zircons are typically euhedral to subhedral and regularly shaped, elongate. Planar 

features and curviplanar features are present in the majority of grains, and very small, 

ovoid impact melt glass inclusions are typically present along these planar and 

curviplanar features. Displacement is variably present, and many zircons show late-stage 

shearing along a displacement zone, in which the margins are often recrystallized into 

relatively fine granules (Fig. 2-8). Curviplanar features can sometimes be traced across 

this sheared displacement zone (Fig. 2-8c). Any recrystallization in this sample is usually 

associated with these displacement zones. 
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Figure 2-8: V49-1 F3481 a) SE image, b) BSE image, c) CL image, and F3890 d) SE 

image, e) BSE image, and f) CL image. White arrows indicate displacement zones. 

2.4.1.7 V15-16 Granodioritic Gneiss (~8.6 km from centre of 
impact) 

Sample V15-16 is a fine-to-medium-grained, milky grey-white granodioritic gneiss 

(plagioclase + quartz + biotite + orthoclase +/- clinopyroxene). This rock is located near 

the granulite-amphibolite facies transition. Quartz grains do not display any obvious 

shock features, however biotite is often kink-banded. Zircons are primarily found 

associated or directly within biotite, with some within orthoclase and plagioclase. Zircons 

average ~45 μm’s, ranging up to 160 μm’s, with most grains less than 65 μm’s in length. 

There is a noted diversity in zircon morphology, from short and stubby, to elongate. The 

majority of the grains in this sample contain planar features, curviplanar features, impact 

melt glass inclusions +/- microtwins and displacement. There is a bright CL response 

along many planar/curviplanar features and along some of the displacement-associated 

recrystallization zones. A number of grains in this sample display what we have defined 

as planar deformation ‘twist’ bands emanating from the exteriors of the grains and 
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exhibiting twisted interior misorientation (Fig. 2-9, 2-10). The planar deformation twist 

bands do not exceed 15-25 μm’s in length, and are typically only a few μm’s in 

maximum width, tapering along strike. These features have not, to our knowledge, been 

reported in any other shock studies of zircon. Zircons in this sample tend not to be 

recrystallized, largely preserving their primary magmatic zonation patterns. Minor 

recrystallization is sometimes prevalent, but only along grain margin displacement zones 

within the zircon.  

Figure 2-9: V15-16 F36 a) BSE image where planar deformation band ‘twists’ are 

slightly detectable, b) CL image showing relatively undisturbed zonation, c) EBSD 

misorientation map showing up to ~14° misorientation with associated pole figures 

(left), and d) IPF map with associated pole figures (right). Figure displays 

interesting shock-induced ‘planar deformation twist bands’ emanating from 

exteriors of grains, as well as a conjugate set of microtwins (Fig. c, outlined in red). 
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Figure 2-10: V15-16 F279 a) CL image showing bright areas around curviplanar 

feature-hosted impact melt glass inclusions, b) EBSD misorientation map showing 

up to 12° of misorientation mostly accommodated in zircon ‘planar deformation 

twist bands’ emanating from exterior  of grain. These twist bands are inferred 

across the zircon grain. c) EBSD misorientation map of zoom-in from b), showing 

twist-band morphology. 

 

An almost complete shock microstructural sequence, including planar features and 

curviplanar features, microtwins, impact melt glass inclusions, displacement, post-shock 

recrystallization and crystal plastic deformation is displayed in V15-16 zircon F617 (Fig. 

2-11), whereas the surrounding minerals show no record of any of this. Shock microtwins 

in {211}, oriented 65° to [110] are prevalent in the lower left zone of the grain, and 

appear to bend slightly to the right as they approach the recrystallized domain, where 

they then disappear. Planar features and curviplanar features are mostly prevalent in the 

upper right of the grain, where they too disappear upon contact with the recrystallized 

zone. Recrystallization occurs along a dextral (right-lateral) displacement contact within 

the zircon that can be traced outwards to the boundaries between orthoclase and 

plagioclase (Fig. 2-11b). The occurrence of displacement and recrystallization in this 
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zircon can be visibly related to the surrounding mineralogy and associated shock 

impedance contrasts. The preservation potential of zircon is highlighted in Fig. 2-11f, 

when compared to surrounding anorthite and orthoclase that are completely 

recrystallized. 

 

Figure 2-11: V15-16 F617 a) BSE image showing IMG inclusions, b) EDS map 

image (pink=Zircon, blue=orthoclase, green=anorthite) showing intersection of 

different phases at approximate location of displaced zircon boundary, c) CL image 

indicating brighter CL response along displaced, recrystallized boundary, d) EBSD 

misorientation map showing microtwins (red line) and up to 20° misorientation, e) 

EBSD inverse pole figure map showing microtwins (light blue lines), a heavily 

recrystallized displacement zone, and a zone of planar microstructures  (upper 

right), including associated pole figures, below, f) euler angle map of anorthite and 
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orthoclase, outlining triple junctions that are comparable to triple junctions in 

recrystallized displacement zone in zircon. 

2.4.1.8 V15-39 Inlandsee Leucogranofels (ILG) (~5 km from centre 
of impact) 

V15-39 (ILG, ~2.8 Ga; Hart et al., 1981, Hart et al., 1990) is a fine-medium grained pink-

white syenogranitic gneiss (quartz + plagioclase + orthoclase), bearing many textural 

similarities to V15-45-1. These textural similarities include domains of glomerogranular 

quartz that retain the original gneissic foliation that is obvious in hand sample (ILG 

glomerogranular texture). In thin section, minerals have triple junctions, confirming the 

metamorphic nature of this rock. Optically, quartz grains do not display obvious shock 

features, as is expected from Grieve et al.’s (1990) analysis of rocks from the UHT core. 

The zircons in this sample are small, averaging ~17 μm’s in size, with a maximum of 89 

μm’s. Zircons preferentially appear along grain boundaries, specifically between quartz 

and the feldspars. Zircon grains in V15-39 are often recrystallized, displaying nodular 

and granular zircon growth, however most grains retain at least some of their original 

magmatic zonation. An example of this is F5348, shown in Fig. 2-12a-c, where half of 

the grain exhibits fairly consistent primary zonation, where the other half (top right) is in 

the process of recrystallization. Very few grains display any other shock features, 

however some grains display minor planar features (Fig. 2-12d), curviplanar features and 

displacement. Another notable observation in this sample is the presence of baddeleyite 

grains rimmed by zircon (Fig. 2-12g). The presence of baddeleyite with a zircon rim 

(surrounded by quartz) suggests this sample experienced peak conditions >1700°C (El 

Goresy, 1965). 
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Figure 2-12: V15-39 F6348 a) BSE image, b) CL image, c) EBSD misorientation 

image, d) F5913 BSE image, e) F5627 BSE image showing sinistral (left-lateral) 

displacement. The left half of the grain appears to be missing, f) baddeleyite BSE 

image, g) EDS map of baddeleyite BSE image, g) EDS map of baddeleyite with 

zircon and quartz surrounding. 

2.4.1.9 V15-45-1 Inlandsee Leucogranofels (ILG) (<1 km from 
centre of impact) 

V15-45-1 is an ~2x1m boulder of fine-medium grained ILG from a farm field at the 

approximate geographic centre of impact (taken as ~4 km N of the Inlandsee Pan). To our 

knowledge, this sample may be the closest to the centre of impact ever examined. The 

rock is composed of quartz + orthoclase + plagioclase + minor muscovite. Quartz has 

been recrystallized into micrometer sized granules that retain the original primary fabric 

of the rock (classic ILG glomerogranular texture (Fig. 2-13b). Quartz grains do not 

preserve shock features (i.e. PDF’s). Zircons are preferentially found within the 

glomerogranules of quartz (Schreyer, 1983; Stepto, 1990), providing insight into how 

zircon reacts to extreme recrystallization in comparison to quartz (Fig. 2-13c). Average 

zircon length is ~30 μm’s, however lengths range up to ~260 μm’s in some zircons 

undergoing recrystallization that remained intact and grew in clusters. Morphologies vary 

greatly, from small, stubby zircons, to longer, more acicular zircons. All grains display at 
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least minor recrystallization, with some grains fully recrystallized into coarsely granular 

zircon, as in F445 (Figure 2-14c). Maximum granule size is ~40-50 μm’s in F445, with 

many other grains displaying smaller granules. In large granules, individual and newly 

formed concentric zonation is present, visible in BSE and CL (Fig. 2-15b, d). Many 

grains have a bright BSE response (Fig. 2-14), where the granule interiors appear brighter 

than their rims. None of the grains analyzed in this sample show any obvious evidence 

for planar or curviplanar features, microtwins, crystal plastic deformation, or impact melt 

glass inclusions. EBSD response is typically null for zircons from this sample, and a CL 

halo is seen around the majority of the zircons due to radiation damage from 

metamictization (Fig. 2-15d). Similar to V15-39, there is an obvious difference in the 

degree of recrystallization from grain to grain, however V15-45-1 represents the only 

sample in the central uplift where there are no distinct shock features preserved. 
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Figure 2-13: a) V15-45-1 hand sample, b) Recrystallized quartz grains, typical of 

ILG rocks at Vredefort, c) V15-45-1 ArcGIS map showing preferential location of 

zircons (yellow circles), and baddeleyite (blue circles) within quartz 

glomerogranules (orange). Blue is orthoclase and red is plagioclase. 

 

 

Figure 2-14: BSE images of three V15-45-1 zircon grains showing the variance in 

levels of recrystallization, from a) minor recrystallization, primary zonation 

remaining largely intact, b) displacement and the beginning of relatively 

undeveloped granularization, and c) complete granularization into a coarsely 

polycrystalline zircon. 
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Figure 2-15: V15-45-1 F445 a) SE image, b) BSE image with inset zoom image 

showing compositional dichotomy between core and rims of zircon granules, c) EDS 

map showing plagioclase (green), orthoclase (blue), quartz (red), and zircon (pink), 

d) CL image that displays the newly formed zonation patterns in individual 

granules. 

2.4.2 Proportions of pre-impact and shock-related features in 
zircon populations 

A subset of six samples was chosen to represent the shock metamorphic gradient at 

roughly equal intervals of radial distance. An in-depth accounting of microstructures of 

~40-50 in-situ zircons was performed on a petrographic polished thin or thick section of 

each sample.  The transect ended at station V15-39, the in-place bedrock sample nearest 

to the centre of impact. This survey catalogued the presence of the following features: 

primary, pre-impact zonation (oscillatory or sector); planar features (including planar 

fractures, microtwins, ‘microcleavage,’ and planar deformation bands), curviplanar 

features; impact melt glass inclusions; granular/polycrystalline zircon; and grain margin 

displacement by through-going fracture networks. Grains were primarily imaged with 
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BSE/SE to determine the presence of the above listed features. A subset of grains from 

each sample were analyzed with other methods such as EBSD and CL to confirm the 

presence of microtwins or impact melt glass inclusions.  

For the purpose of this survey, ‘shock features’ are defined as any impact-related 

deformation or crystallographic change in the zircon that alters its pre-impact state. This 

includes a variety of features created by the spectrum of processes in the crater 

environment, including: shock loading and unloading, impact-triggered melting, 

annealing, and recrystallization, and post-shockwave deformation of the crater floor 

during the modification stage. We acknowledge the possibility that not all shocked 

zircons will exhibit definitive shock features in the plane exposed through a given 

sample, and hence our values may be considered as minimum estimates. Nevertheless, 

the effort is justified in view of the novelty of the attempt.  

The primary, Archean magmatic and metamorphic chemical zonation patterns are the 

dominant feature present in the majority of the samples. These zonation patterns were 

only lost in cases of intense post-shock recrystallization in one sample. Across the 

majority of the transect, nearly 100% of the zircons retained primary zoning with minor 

recrystallization. This was most significantly reduced to ~75% in the high temperature 

granular textures found in V15-39, where the majority of grains exhibited partial 

recrystallization, but still retained some of their primary zonation (Fig. 2-16). The 

proportion of grains exhibiting shock, as herein defined, is also fairly consistent across 

most samples (Fig. 2-16), although the occurrence frequency of different shock features 

is variable. The percentage of shocked zircons ranges from 80% to 100%, with the 

exception of collar quartzite V15-55, which could be due to a number of factors, 
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including: 1) decreased shock conditions due to radial distance from the core, and/or 2) 

rock type (quartzite) being less susceptible to shock than the other granitoid samples.  

 

Figure 2-16: Bar graphs showing the percentage of zircons retaining at least partial 

domains of primary zonation patterns and those that are ‘shocked’ from samples 

across the Vredefort central uplift. 
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2.4.3 Types of shock-related features in zircon populations 

A bar graph displaying the prevalence of different types of shock features in zircons from 

the six subset samples is shown in Figure 2-17. The findings are summarized below by 

feature type.  

Figure 2-17: Bar graph displaying the percentage of each microstructure from the 

largest 40-50 grains of each sample. The line represents the trend of decreasing 

planar feature prevalence with increasing distance from the centre. The dotted line 

represents a rough estimate of planar feature prevalence in V15-39 if it did not 

undergo post-shock recrystallization. 
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Planar features (open or melt-filled fractures, ‘micro-cleavage’, microtwins, planar 

deformation bands) 

With regard to planar features, prevalence can be roughly correlated with radial distance 

from the centre of impact (Fig. 2-17). Open (unfilled) planar fractures are only observed 

in the quartzite sample V15-55 (~24.5 km radial distance) (Fig. 2). All other planar 

features from sites closer to the centre of impact are either impact-melt filled fractures 

which have been annealed or are ‘micro-cleavage’ surfaces (Leroux et al., 1999). “Micro-

cleavage” features and annealed planar fractures are present in some respect in almost all 

samples the exception of V15-55. With the exception of the largely recrystallized V15-

39, there is a roughly linear increase in the prevalence of planar features, from 55% to 

90%, as the centre of impact is approached. The trend (Fig. 2-17) indicates that the 

number of expected planar features in V15-39 would be nearly 100% if not for the effects 

of post-impact recrystallization. A precise radial distance at which some form of planar 

feature in zircon would completely disappear is difficult to predict.  

The scope of this study precluded the time for EBSD analysis that would allow full 

quantification of microtwin abundance in the full zircon population. Nevertheless, 

microtwins were documented in V49-1, V15-16, and V-62, and are notably absent from 

intervening sites V15-39, V15-46 and V15-55. V15-39 is largely recrystallized, and thus 

is unlikely to preserve microtwins.  
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Curviplanar features (annealed low-angle boundary networks, grain displacement) and 

impact melt glass inclusions 

Curviplanar features were found in all samples other than V15-55. Curviplanar features 

are quite common in V15-16, V49-1, V15-46, and V-62 (Fig. 2-17). The visual evidence 

and statistical relationship between curviplanar features and impact melt glass inclusions 

indicates a close connection, both temporally and spatially, between the two respective 

formation mechanisms (Fig. 2-17). Impact melt glass (IMG) inclusions are found along 

both planar and curviplanar features. The majority of samples analyzed host IMG 

inclusions, however the morphology of these inclusions is variable. IMG inclusions range 

from elongate melt inclusions (Fig. 2-7) to tiny, ovoid inclusions (Fig. 2-3) and larger, 

irregularly shaped pods of melt (Fig. 2-5). IMG inclusion prevalence is relatively 

consistent across all samples (Fig. 2-17), except for V15-39 and V15-55. Detailed 

information about IMG inclusions is provided in Chapter 3. Strain along some 

curviplanar features is sufficient to cause visible displacement of the margin of the grain 

by tens of μm’s. This grain margin displacement is typically present in 15-20% of the 

zircon population in most samples except V15-39. In some cases, grains appear to be 

displaced along planar fractures as well (e.g. V15-55). 

Crystal-plastic deformation 

Crystal plastic deformation (CPD) is observed in most zircons from all samples analyzed 

except those exposed to high post-shock temperatures (V15-45-1, and to some degree, 

V15-39). These zircons typically hosted a number of low-strain granules. CPD typically 

forms gradual misorientation changes of several degrees with glide accommodated along 

[001]. Data was not collected for CPD prevalence across the entire structure, due to time 
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limitations involved with EBSD, but it should be noted that CPD could be identified in 

the majority of zircons analyzed. 

Granular zircon/recrystallization 

The presence of granular/polycrystalline zircon is highest in V15-39 at ~70% of grains, 

and drops off considerably in the other samples to levels of ~10% (Fig. 2-17). The 

average diameter of granules in this texture also increases toward the centre of impact. 

For example, the granule diameter in the collar in sample V-62 is typically sub-micron, 

whereas average diameter at V15-39 is between 1 to 5 μm’s. Granules at the nearest-

centre sample (V15-45-1) are much larger, ranging to >10 μm’s. 

2.5 Discussion 

2.5.1 Proportion of pre-impact and shocked zircon features in 
impacted crust 

There has been much speculation as to the survivability of Early Earth zircon in a Late 

Heavy Bombardment scenario. This speculation is in response to the failure, thus far, to 

identify shock metamorphic features in 4.0 Ga to 4.4 Ga Hadean Jack Hills zircons 

(oldest minerals on Earth) (Valley et al. 2014), or to find evidence of high crystallization 

temperatures typical of zircon crystallized from impact melts (Wielicki et al. 2012).  

Modeling has suggested ~15% of the early zircon record will be shocked and 

subsequently age-reset in a heavily bombarded Earth (Abramov & Mojzsis, 2013). Our 

results show that most zircons (~90%) at Vredefort retain at least partial pre-impact 

internal zonation, and that a similiar proportion display shock metamorphic features. 

With estimated erosional levels of approximately 7-10 km (Stevens et al., 1997; Gibson 

et al., 1998), and shocked zircon in this study found at radial distances of ~24.5 km (V15-

55), this translates into an absolute minimum constraint of ~5000 cubic km of shocked 
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zircon in the crust at Vredefort. It follows, then, that an Early Earth scenario of 

widespread granitoid crust, and a pervasive bombardment at ~3.9 Ga should have also 

produced a crust that is rich in shocked zircon. The preservation of ~2.020 Ga shocked 

zircon in modern detrital systems (Cavosie et al., 2010) suggests that poor preservation is 

not a likely explanation for the absence of shocked zircon in the Jack Hills suite.  

With regard to the types of microstructures, it can be seen that microtwins are found 

throughout most of the central uplift, and their absence in quartzite sample V-55 suggests 

that they are broadly diagnostic of the central uplift of the target. There is a noted absence 

of microtwins in V15-46 (as well as V15-56). This could be related to the 

pseudotachylite-rich environment from which they are found, where an increase in local 

melting may lead to a decrease in the relatively ‘brittle’ deformation. Likewise, the 

curviplanar features, domains of crystal plastic deformation and the impact melt glass 

inclusions are present through most of the central uplift but absent in the coherent strata 

in the collar (V15-55). These features are also characteristic of the central uplift, in 

particular the post-impact modification stage. The coarse (i.e. μm to >10-μm granule 

diameter) within 4-5 km of the centre of impact are the only shock related features that do 

not exhibit crystal plastic deformation, and therefore seem diagnostic of UHT 

environments in the central uplift proximal to high-temperature mafic impact melts 

(Moser, 1997; Cupelli et al., 2014). This suite of observations can be used to characterize 

the central uplift, basement ‘facies’ of large impact craters, and is of potential use for 

determining the provenance of detrital and meteoritic samples from our moon and other 

planets.  
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2.5.2 Microstructural evolution 

The value of zircon as a superior mineral archive of the structural evolution of impact 

events can be seen in samples such as V15-16 (Fig. 2-11), where surrounding feldspar 

and quartz grains are in stable and undeformed (completely recrystallized) states. The 

spatial inter-relationships among the different microstructures in zircon display a general 

pattern that allows us to place the microstructures in a temporal framework from oldest to 

youngest, tracing the evolution of impacted crust. 

i. Early planar features (‘microcleavage,’ open and melt-filled planar fractures) 

Planar features have previously been suggested to be the earliest formed shock 

microstructure in the sequence (Moser et al., 2011), which is also demonstrated in our 

findings. Planar features are often crosscut by curviplanar features, a relationship that is 

dramatically evident where planar features terminate against displaced curviplanar 

features (Fig. 2-11). Planar features are themselves often crosscut by other orientations of 

planar features (Fig. 2-7), indicating multiple generations related to the shock loading 

process. Figure 2-11 (V15-16) displays c-axis parallel planar features crosscut by twinned 

domains in a {112} orientation, and twins also crosscut obvious planar features in Fig. 2-

7 (V2-1). Planar features are found throughout the Vredefort impact structure (Fig. 2-17), 

and require the lowest shock conditions of any shock microstructure identified in this 

study, previously suggested to be ~20 GPa (Wittmann et al., 2006). All samples analyzed 

in this study, therefore, are assumed to have experienced shock pressures of at least 20 

GPa. Open planar fractures in V15-55 and annealed planar fractures in other samples are 

considered to be coeval and associated with the formation of these early planar features. 

These open fractures do differ from some of the planar features in other areas of the 
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central uplift, and may be a lower pressure equivalent of crystallographically-controlled 

planar features. 

ii. Zircon planar deformation bands (PDB’s) 

Zircon planar deformation bands (PDB’s) (Cavosie et al., 2015; Kovaleva et al., 2015) 

have been documented in both impact and tectonic zircons. In this study, we identified 

two different ‘types’ of PDB’s. We identify conventional PDB’s as ‘kinks,’ which can be 

compared to previously documented PDB’s. The presence of these PDB-kinks in V2-1 

(white arrow, Fig. 2-7), a verifiably shocked zircon, indicates that this microstructure 

may be impact-related. They are typically represented as crystallographically-controlled 

(planar) tabular regions of low degrees of misorientation. PDB ‘twists’ are a zircon 

microstructure found in three different grains in this study, which, to our knowledge, 

have not been documented before. Two grains from V15-16 (F36 and F274) display these 

features emanating from the exterior of the zircon (Fig. 2-9, 2-10) while in V2-1 F3655, 

the feature is observed extending from a primary inclusion which has been variably 

replaced by impact melt (Fig. 2-7). These features are crystallographically-controlled and 

are discontinuous across the zircon, often extending just ~15-25 μm’s, before tapering out 

into a pointed end. Maximum thickness of these features is between 1-5 μm’s, and 

average spacing is between 1-5 μm’s as well (Fig. 2-9). Within the features themselves, 

there is a twisted appearance of local misorientation (Fig. 2-9c, 2-10c), which appears to 

represent a ‘twist’ in the zircon lattice. This is best seen in Fig. 2-10, where both sides of 

the zircon have PDB-twists that can be inferred across the crystal. These features are 

difficult to place into a geochronological timeline, however microtwins, curviplanar 

features and impact melt glass inclusions are found crosscutting some PDB-twists in 
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Figure 2-7, providing a latest possible formation time. PDB-twists are always oriented 

perpendicular relative to the host zircon margin (Fig. 2-9, 2-10). In V2-1 (Fig. 2-7), the 

PDB extends from an exposed primary inclusion that has been variably replaced by 

impact melt. This inclusion represents a weakness in the zircon lattice, and in this respect, 

is treated similiarly to a grain margin from which the typical PDB-twists extend. We 

suggest that due to the planar appearance and crosscutting relationships, PDB-twists may 

be related to early planar features, represented as a reactivation of these features as a twist 

of the zicon lattice. Both kinks and twists are planar elements, however kinks are the 

microstructural effect of a ‘kinking’ of the zircon lattice in response to strain, while twists 

are strain accommodated as a twisting of the zircon lattice, hence the nomenclature. 

iii. Microtwins 

Microtwins found in this study form along {112} planar features, and are oriented 65° 

about <110>. Similar to other planar features, there are numerous cross-cutting 

microtwins (Figs. 2-7, 2-3), indicating multiple generations of twinning in zircon. The 

formation of these different twin generations is likely relatively coeval. Microtwins 

crosscut early planar features, but appear to pre-date later planar features, curviplanar 

features (Fig. 2-7) and recrystallization (Fig. 2-11). Twins are discontinuous across 

recrystallized zones and sometimes appear slightly curved, or ‘dragged,’ along displaced 

and recrystallized margins (Fig. 2-11), displaying the influence of the later curviplanar 

features and subsequent displacement. 

iv. Late planar features 

Despite crosscutting relationships that show planar features crosscut by microtwins, there 

also appear to be some planar features that crosscut microtwins (Fig. 2-7). This second 
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generation of planar features post-dates microtwins, which are generally thought to form 

during the rarefaction shockwave. These cross-cutting relationships may imply a more 

complex shockwave progression illustrated in these rocks, indicating that the initial 

compressional shockwave may still be active during and after the rarefaction that 

generates microtwinning in zircon. 

v. Curviplanar features  

Curviplanar features are commonly annealed due to heat associated with the impact melt 

glass inclusions, and are sometimes only visually identifiable by the non-linear trails of 

melt inclusions that they host. Curviplanar features likely form after the release of initial 

shock compression (Moser et al., 2011), during shock unloading (rarefaction). They 

should not be confused with non-planar features (NPF’s) (Timms et al., 2012) which are 

not likely impact-related. Curviplanar features crosscut planar features and microtwins, 

and themselves are often crosscut by recrystallized domains (Figs. 2-11). The absence of 

curviplanar features in V15-55 is evidence that impact-related curviplanar features form 

at higher pressures (and thus later) than planar features in the microstructural sequence, 

and that V15-55 may, in fact, be outside of the zone of sufficient shock conditions for 

curviplanar feature formation.  

vi. Impact melt glass (IMG) inclusions 

IMG inclusions are typically not found in granular zircon from core samples (i.e. Figs. 2-

12, 2-14). The recrystallization process appears to exsolve the melt from the granules. 

IMG inclusions are absent from V15-55, which could be due to a number of factors, 

including: 1) lower shock conditions (P/T not sufficient for melting or sufficient pathway 

(fracture) formation, 2) rock type, as there may be a lack of local low melting 
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temperature minerals to derive partial melt from (i.e. plagioclase, orthoclase), and 3) a 

different P/T pathway history, where the rarefaction wave has an absent or minimal effect 

on zircon, as evidenced by the lack of microtwins and curviplanar fracturing in this 

sample. IMG inclusions form soon after formation of planar and curviplanar features, and 

have been related to small-scale decompression melting of local minerals. More in-depth 

description and analysis of these IMG inclusions is provided in Chapter 3. 

vii. Grain margin displacement  

Displacement in zircon (e.g. Figs. 2-8, 2-11) has not been established as a definitive 

shock indicator, however the presence of displacement in shocked zircons and noted 

absence in unshocked grains indicates a probable shock-related formation mechanism. 

Displacement occurs along planar or curviplanar features, and is present in approximately 

15-20% of the grains in the majority of the samples. There are relatively few zircons in 

V15-39 that exhibit displacement, largely due to the high post-shock temperatures and 

recrystallization in this sample. The majority of the displaced zircons in this study occur 

at contacts along grain boundaries (i.e. zircon in contact with plagioclase and orthoclase) 

(i.e. Fig. 2-11f). We suggest that the variable shock impedance contrasts between the 

minerals concentrates shock pressures and may increase the possibility of displacement 

along an open fracture. Displacement likely occurs somewhat contemporaneously with 

curviplanar feature formation, as planar features and twins are often crosscut by displaced 

boundaries (Fig. 2-4).  

viii. Crystal-plastic deformation 

Ductile deformation forms during the later modification stages of crater formation. 

Ductile deformation is expressed microstructurally as crystal plastic deformation (CPD), 



80 

 

and is present in almost all zircons analyzed with EBSD that were not affected by post-

shock recrystallization. Microstructural evidence for the timing of CPD is provided by 

the deformation (bending) of microtwins (Fig. 2-3). 

ix. Recrystallization into coarse granular/polycrystalline zircon 

Outside of the UHT zone where high post-shock temperatures are present, granular or 

polycrystalline zircon is only found in some atypical zircons, and thus, we have defined 

two different primary mechanisms observed in this study for the formation of coarse 

granular/polycrystalline zircon, including:  

1) partial to complete recrystallization due to high, regional post-shock 

temperatures (i.e. Figs. 2-12, 2-14). 

2) partial recrystallization, primarily along a grain margin displacement zone (i.e. 

Fig. 2-11). 

Within ~4-5 km from the centre of impact, zircons typically exhibit at least partial 

recrystallization, ranging up to complete recrystallization into large (40-50 μm) granules 

(Fig. 2-14). These granules are defined by their own, independent zonation patterns 

observable in BSE and CL (Fig. 2-15c), and have cores that appear brighter than their 

rims in BSE (Fig. 2-15c). These textures are unique, and are caused by prolonged 

exposure to high, regional post-shock temperatures from remnant heat related to the 

impact event, and are distinguishable from high-P finely-granular zircon identified in 

other studies of ejecta-type zircons (Bohor et al., 1993; Timms et al., 2012). It is 

interesting that a zircon from the crustal ILG bears similarities to impact melt-crystallized 

zircons from the Acraman impact melt sheet (Timms et al., 2014). These similiarities 

speak to the immense and prolonged post-shock temperatures present even at depth in the 
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crustal ILG rocks, which were not in direct contact with a cohesive melt sheet. The zone 

of zircon recrystallization at Vredefort matches relatively well with the “extreme” levels 

of quartz recrystallization identified by Grieve et. al (1990). V15-45-1, assumed to be 

taken from the approximate centre of impact, displays varying degrees of zircon 

recrystallization, but also displays a consistent lack of any shock microstructures. V15-

39, located approximately 5 km from the proposed centre of impact, is still well within 

the ILG zone. The recrystallization of some domains in the zircon and not others 

highlights the heterogeneity of temperature effects at this radial distance (Fig. 2-11). It is 

noteworthy that there are a number of zircons that display planar features, displacement, 

and curviplanar features, which indicates that V15-39 (~5 km from centre) represents a 

transitional sample between large-scale zircon recrystallization and preservation of shock 

features. This relative lack of shock microstructural preservation is a result of the intense 

post-shock heating and recrystallization in this sample, to a lesser degree, but much like 

V15-45-1. We can thus establish an approximate limit of the large-scale UHT zircon 

recrystallization zone at ~4-5 km.  

Zircon can also be recrystallized along a displacement zone formed from shearing along a 

previously opened fracture (Fig. 2-11). Shock pressures and temperatures may be focused 

along previously open fractures that represent a weakness in the zircon lattice due to 

shock impedance contrasts. Subsequently, localized recrystallization may occur due to an 

increased quantity of defects along this curviplanar fracture area, predisposing the area to 

the effects of high-temperature recrystallization. In both cases, overprinting relationships 

indicate that zones of recrystallization post-date the formation of any other shock-related 
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microstructure, and therefore share the same formation mechanism (extensive high post-

shock temperatures) (Figs. 2-8, 2-10, 2-11, 2-15).  

The samples analyzed in this study are placed on a regional cross section (Fig. 2-18). 

Temperature isotherms are estimates at 400 seconds post-impact, while isobars are 

suggested to be immediate peak pressures (Ivanov, 2005). Moser et al. (2011) have 

already indicated that the shock gradient proposed in this figure may be flawed, as 

evidenced by the presence of planar features and microtwins (20 GPa formation) outside 

of the 20 GPa isobar. These findings are reinforced by our microstructural observations 

as well. For example, zircons in V15-55 host multiple orientations of PF’s (20 GPa), yet 

is outside the realm of the 20 GPa isobar on Fig. 2-18.  
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Figure 2-18: Regional cross-section map indicating location of samples as a function 

of radial distance and estimated pre-erosion depth. Estimated shock temperature 

(°C) and pressure (GPa) at ~400s post-impact are also shown on the diagram. 

Modified from Ivanov (2005), Gibson & Reimold (2008), Moser et al. (2011). 

 

Within this general sequence of events, there are a number of different P/T shock 

pathways experienced in zircons from the Vredefort impact structure. For the purposes of 

this study, a pressure-time diagram was created to differentiate the microstructural 

progression in zircons from the “hot-shock” (i.e. V15-45-1), and “cold-shock” (i.e. V-62) 

locations identified by Moser et al. (2011) (Fig 2-19). This pressure-time diagram is 

adapted from Timms et al. (2012). A noted difference between the zircons in this study 
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and the those in the Timms et al. (2012) study is the microstructural sequence. This 

difference is likely attributable to the distinction between terrestrial zircons and lunar 

impact environments. A visual depiction of the observed crosscutting microstructural 

relationships as they relate to the pressure-time diagram is outlined in Figure 2-20. 

 

Figure 2-19: Pressure-time diagram showing shock pathways of a) a standard zircon 

from the “hot-shock” zircons (i.e. V15-45-1, V15-39, V2-1, V15-16), and b) a 

standard zircon from the “cold-shock” zircons (i.e. V15-46, V15-56, V-62). Modified 

from Timms et al. (2012). 
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Figure 2-20: Microstructural progression in zircon from the Vredefort impact 

structure. a) Representative zircon from the core (i.e. V15-45-1), b) representative 

zircon from intermediate to collar locations (i.e. V2-1, V15-16, V-62). Relative 

sequence stages are listed, and colors identify the various mechanism for the 

formation of each microstructure: yellow=microstructures formed by initial shock 
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compression, green= microstructures formed by rarefaction wave and 

decompression, blue= microstructures formed by crater modification, 

red=microstructures formed by high post-shock temperatures. 

 

2.6 Conclusion & Scientific Implications 

We analyzed zircons from samples throughout the Vredefort central uplift, South Africa, 

and established a qualitative and quantitative guideline of microstructural progression. 

Cross-cutting relationships were observed to place the microstructures in a relative 

timeline, that was similar to previous reports (Moser et al. 2011). The standard zircon at 

Vredefort recorded the following progression: early planar features → planar deformation 

bands (‘kinks’ and ‘twists’), likely coeval with early planar features → microtwinning → 

late planar features → curviplanar fracturing (and in some cases, grain margin 

displacement) → impact melt glass inclusion injection → ductile deformation (CPD) → 

post-shock recrystallization. A shock survey of ~40-50 zircons from 6 samples across the 

central uplift was conducted to understand the prevalence of various shock 

microstructures. The findings can be summarized as follows:  

i. Planar features (early, late, and fractures) show a clear decrease in prevalence with increasing 

radial distance. They are present in zircons from ~24.5 km radial distance, indicating minimum 

shock pressures of 20 GPa at this location, which contradicts previous model-based shock 

estimates (Ivanov, 2005).  

ii. Planar deformation bands, which can be separated into ‘kinks’ and newly documented ‘twists,’ 

but appear interrelated. Zircon PDB-twists are a newly documented microstructure found in 3 

zircons in this study that post-date early planar features, but pre-date microtwins and curviplanar 

features, and appear to be related to grain-scale “twisting” of the zircon lattice. 
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iii. Microtwinning, formed during shock rarefaction, was present in many samples analyzed with 

EBSD, but absent from V15-39, V15-46, and V15-55.  

iv. Curviplanar features, also formed during shock rarefaction are present in most samples but 

notably absent from V15-55. 

v. Impact melt glass inclusions of locally-derived partial melt injected along curviplanar (and 

subsequently annealed planar fractures). Melt is formed due to decompression melting upon 

unloading of the shockwave, and thus relatively contemporaneous with curviplanar feature and 

twin formation. Again, impact melt glass inclusions are absent from V15-55. 

vi. Displacement of grain margins, which may occur throughout the previous stages, but does, in 

some cases, post-date curviplanar fracturing.  

vii. Crystal Plastic Deformation related to the crater modification stage is present in the majority of 

zircons not recrystallized by later post-shock temperatures.  

viii. Recrystallization, which mainly operates in the ~4-5 km radius from the centre of impact, but 

which is variably present as partial recrystallization in some zircons from areas not affected by 

these post-shock UHT. Recrystallization is a direct result of heating to a point just below zircon’s 

melting temperature (1676°C). 

This study displayed some of the benefits of using zircon as a shock indicator in 

comparison to quartz. Zircon is much more resilient to post-shock temperatures, as 

indicated by the preservation of shock features up to ~4-5 km from the centre of impact 

where quartz grains are entirely recrystallized (Grieve et al., 1990). Zircons partially 

affected by recrystallization still retain a variety of shock microstructures, even if the 

surrounding minerals are completely recrystallized (Fig. 2-11f). The preservation 

potential of zircon is much better than quartz, and allows us to better constrain shock 

conditions. 
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The results of this study show that microstructural evidence refutes some of the shock-

condition estimates based on numerical modeling (Ivanov, 2005). Planar fracturing in 

samples as far as 24.5 km from the centre of impact indicates that a minimum initial 

shock pressure of 20 GPa operated throughout the entirety of the Vredefort central uplift, 

and even into the collar rocks, meaning the shockwave likely did not dissipate to the 

degree previously estimated by Ivanov (2005). The discovery of shock evidence at this 

radial distance also indicates an absolute minimum of 4849-5310 km
3
 of crust that hosts 

shocked zircon at Vredefort. Timms et al. (2012) created a shock progression sequence 

for lunar zircons. We determined that the microstructural sequence experienced by 

terrestrial, deep crater-floor zircons was much different than lunar zircons. Therefore, we 

recommend that the microstructural progression in lunar “ejecta-type” zircons be treated 

differently than those in standard terrestrial deep-crater environment zircons. 

This study has significant implications for the future study of zircon in terrestrial crater 

environments. Progressing our understanding of U-Pb ages in shocked zircon requires 

studies such as this to advance our comprehension of the relationships between shock 

microstructures and U-Pb ages. Microstructural information in this study can be used to 

understand the cratering processes that generate such features, and the timescales 

associated with them. Moreover, the microstructural evidence presented in this study may 

be used as a basis for future applications to the study of impact craters on other rocky 

(lunar or Martian) surfaces, contributing advancements to the existing microstructural 

knowledge in these environments.  
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Chapter 3 

3 Impact melt glass inclusions in zircon from the central 
uplift of the Vredefort impact structure, South Africa 

Connor L. Davis and Desmond E. Moser 

3.1 Introduction 

A significant component of the energy of a meteorite impact with planetary crust is 

accommodated in the generation of impact melts (Dence, 1971; Grieve et al., 1977; 

Grieve and Cintala, 1992). These melts differ from endogenic melts in that they carry 

signatures of the much higher temperatures (>2000°C) and sometimes unique chemistry 

derived from impact melting of the target (French, 1998).  A large body of research has 

described such macroscopic impact melt-rich features in the ejecta deposits (e.g. 

spherules and tektites) and crater facies (suevites), as well as the kilometres-thick impact 

melt sheets that fill large craters (French, 1998). Another aspect of impact melting, 

however, is at the microscopic level in the form of residual impact melt trapped within 

shocked minerals. This field has been explored in main phase minerals such as pyroxene 

and plagioclase in meteoritic samples (El Goresy et al., 2013), but much less attention has 

been directed to such features in accessory minerals such as zircon.  Impact-generated 

glass inclusions of melted host rock have recently been reported for zircon from the 
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terrestrial Vredefort impact structure (Moser et al., 2011) and Apollo lunar soil samples 

(Crow et al., in press).   

Zircons preserve diagnostic shock features, which have the ability to persist over billions 

of years, through cycles of tectonism (Krogh et al., 1984), erosion, transport, and 

incorporation into a new sedimentary host rock (Cavosie et al., 2010; Thomson et al., 

2014; Erickson et al., 2015). The possibility that they may also carry melt products and a 

compositional fingerprint of their source crater as impact-melt glass inclusions raises the 

prospect of a potentially valuable tool for reconstructing impact conditions and 

provenance using ex-situ grains from sediments and meteorites. The specific zircon that 

yielded the original discovery of impact-melt glass (IMG) inclusions was discovered near 

the center of the central uplift of the 2.02 Ga Vredefort impact structure, in a loose grain 

separated from Archean granitoid for the purpose of geochronology (Moser et al., 2011). 

Regional mapping of these IMG inclusions shows that they are widespread in the central 

uplift out to a radial distance of 23 km but that they range in size and abundance (Chapter 

2; Davis & Moser, in prep.). The purpose of this study is to characterize the chemistry of 

these features in the ‘type’ zircon near the centre of impact from Moser et al. (2011) and 

at two other sites at greater radial distance as a first step to understanding the origin of 

these novel and poorly-understood products of impact.  

3.2 Geological Setting & Background  

The Vredefort impact structure (S27°0’, E27°30’) is located approximately 120 km 

southwest of Johannesburg, South Africa. An ~25 km wide quasi-annular group of 

topographically high supracrustal rocks surrounds an ~45 km wide inner core of Archean 

gneisses (Gibson & Reimold, 2008), together representing the deeply eroded central 
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uplift of the once larger Vredefort impact structure, estimated to be between 250-300 km 

in diameter (Therriault et al., 1997). The ~2.020 Ga impact crater has experienced erosion 

to a depth of ~8-10 km (Gibson et al., 1998), and now exposes mid to lower crustal rocks 

in the core (amphibolite to granulite-facies, respectively). The exposure of amphibolite 

rocks surrounding granulite rocks is thought to have occurred by exhumation during the 

Vredefort impact event, highlighting the magnitude of this event (Stepto, 1979; Hart et 

al., 1981; Lana et al., 2004). The discovery of harzburgite and other upper mantle 

ultramafic rocks at the center of the dome provided further evidence for this “crust-on-

edge” model (Hart et al., 1991; Tredoux et al., 1999). The impact melt sheet, which is 

assumed to have been quite extensive, has now long been eroded. However, there 

remains various other local evidence of impact melting throughout the structure, 

including: foliated norite impact melt rocks (Moser, 1997); granophyre with a meteoritic 

component (Koeberl et al., 1996); Inlandsee Leucogranofelsic Gneisses, which have been 

shown to host domains of partial melting (Kamo et al., 1996); and partial melting in the 

Central Anatectic Granite (Gibson, 1997). 

3.3 Zircon and melt inclusions  

Zircon is widely recognized as being the most physically and chemically resilient 

minerals on Earth, as evidenced by ~4.4 Ga Hadean zircons that are the oldest known 

pieces of our planet (Wilde et al., 2001). These grains have preserved their primary 

chemical features such as zoning and inclusions despite repeated travel through the rock 

cycle (Valley et al., 2014).  The remarkable range of internal features in zircon that 

remain stable through geologic time has expanded to include chains of impact-generated 

inclusions that have remained in a glass state for over 2 billion years (Moser et al., 2011).  
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These are very different from primary melt inclusions that have long been recognized in 

igneous zircons from magma chambers (Thomas et al., 2003). Dependent primarily upon 

cooling rate, primary igneous inclusions can occur as a crystalline, single-phase glass, or 

a multi-phase mineral inclusions of co-crystallizing phases such as apatite, feldspar and 

quartz (Thomas et al., 2003). Primary igneous inclusions are randomly distributed and 

their boundaries are discordant to concentric growth zoning, indicating that the phases 

were captured or surrounded during growth of zircon and cooling of the parent magma.  

Impact-related melting is invariably related to the unloading (decompression) phase of 

shock metamorphism (Grieve et al., 1977) in that, while the pressure wave releases 

within microseconds, the residual temperature rise of >2000°C remains, prompting 

instantaneous melting. The impact melt glass inclusions from the Vredefort impact 

structure were found spatially related to shock microstructures such as curviplanar 

features and along offsets related to microtwin domains. The association of the inclusions 

with the microstructures that are ‘late’ in the shock metamorphic sequence, such as 

curviplanar features, led to the proposal that they were generated and injected during the 

shock wave rarefaction (unloading) stage of the impact (Moser et al., 2011). Local 

derivation of the melt from the host granitoid gneiss was presumed based on the broad 

similarity of inclusion chemistry to the host granitoid. The glass (amorphous) state of the 

inclusion material was determined based on electron backscatter diffraction (EBSD) 

results using a step size as low as 60 nm and unpublished laser Raman spectroscopy 

carried out with Prof. S. Shieh (Moser, personal communication). It was recognized that 

melt inclusions could be useful indicators of shock conditions based on the melting 

temperature of the incorporated melted minerals, and potentially relate the zircons to their 
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original, partially melted host rock, but much more understanding of these features was 

necessary. Since the initial report of this new melt inclusion type in a separated zircon 

grain, there has not been an in-depth study of the local and regional variation in 

morphology, composition and method of emplacement of these inclusions, and no study 

of such features in zircon still contained (i.e. in- situ) in its host rock.  

3.4 Samples & Standards 

Ten samples were selected (Table 3-1, Figure 3-1) of granitoid composition (+1 

quartzite) to limit any bias that rock type may have on shock metamorphic response of 

the zircons. 

Sample Lithology Sample Type Distance from 

center 
Coordinates (UTM) 

V15-45-1 ILG Thin Section <1.0 km 550161 m E 7011662 m S 

V09-237* ILG Grain Mount ~4.0 km 549589 m E 7006647 m S 

V15-39 ILG Thin Section ~5.0 km 543699 m E 7014140 m S 

V15-16 ILG Thin Section ~8.6 km 540091 m E 7010527 m S 

V49-1 Charnockite Thick Section ~8.9 km 542531 m E 7010527 m S 

V2-1* Charnockitic Gneiss Thick Section ~11.4 km 540804 m E 7019340 m S 

V15-46 OGG Thin Section ~17.1 km 539943 m E 7025719 m S 

V15-56 OGG Thin Section ~19 km 560295 m E 7025905 m S 

V-62* Alkali Syenogranite Thick Section ~22.8 km 563809 m E 7030330 m S 

V15-55 Quartzite Thin Section ~24.5 km 563809 m E 7030330 m S 

Table 3-1: Samples included for impact melt glass inclusion analysis. Included in 

this table are the sample number, sample type, distance from the center of impact, 

and UTM coordinates. ILG=Inlandsee Leucogranofels, OGG=Outer Granite 

Gneiss. *=samples included in compositional and in-depth microstructural analysis. 
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Figure 3-1: Geologic bedrock map of Vredefort impact structure, South Africa, 

showing the locations of samples used in this study. Map adapted from Moser et al. 

(2011) and Grieve et al. (1977). 

 

Glass standard materials were cast in an epoxy plug, following the same preparation 

procedure as the samples. Standards used are listed in Table 3-2. Some mineral standards 

were used in certain cases. No glass standard was found with sufficient wt. % K for 

quantitative results, hence the use of a mineral K standard. It was also difficult to get 

accurate measurements for Fe, as the Kα line could not be used at the lower accelerating 

voltage (7 kV) at which this study operated. All Zr would have come from the mineral 

zircon, and as such, the zircon mineral standard was used. 
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Element Glass Standard Reference 

K SEM mineral std. MAD-10 feldspar 

Mg K-412 

Na K-373 

Fe SEM mineral std. Fe 

Si NMNH Rhyolite (VG-568) 

Al K-495 

Ca K-411 

Zr SEM mineral std. zircon 

Table 3-2: Table displaying the elements standardized in this study, and their 

corresponding glass standard reference. Glass standard sources are SPI supplies, C. 

M. Taylor Company, and Jarosewich (2002). Mineral standards were built-in 

standards within the SEM. 

3.5 Methods 

Samples were prepared as both thin and thick sections (+1 epoxy grain mount), polished 

with a Buehler VibroMet 2 vibratory polisher and carbon coated to ~25 nm with an 

Edwards Auto 306 carbon coater. Based on the regional shock microstructural survey 

(Chapter 2), representative grains were selected from select samples across the Vredefort 

central uplift for energy dispersive spectroscopy (EDS) analysis.  

All grains were characterized in the Western University’s Zircon and Accessory Phase 

Laboratory (ZAPLab) with a Hitachi SU6600 field emission gun scanning electron 

microscope (FEG-SEM). Analyses performed on these grains included secondary 

electron (SE) and backscattered electron (BSE) imaging, cathodoluminescence mapping 

(CL), electron backscatter diffraction (EBSD), and energy dispersive X-ray spectroscopy 

(EDS). EDS was performed for hundreds of inclusions from a variety of zircons 

throughout the Vredefort dome. The conditions for each of the basic imaging analyses are 
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listed in Table 3-3. EBSD analysis were performed with a Nordlys HKL system and 

Channel 5 software. EBSD data are uncorrected with the exception of wild spike noise 

reduction. Development of the EDS method and EDS conditions are described in Section 

3.6.1 and Table 3-4.  

 BSE/SE CL EBSD 

SEM Detector BSE/SE detector Gatan ChromaCL 
Oxford HKL Nordys 

electron detector 

Carbon coat ~25 nm ~25 nm ~25 nm 

Acc. voltage 15 kV 10 kV 20 kV 

Probe current Variable 3.5-4.3 nA ~12 nA 

Tilt -- -- 70° 

Working distance 10.0 mm 12.5 mm 19.0 mm 

Apertures 3/1 (50 μm/200 μm) 2/3 (100 μm/50 μm) 3/2 (50 μm/100μm) 

Gain Medium Medium Medium 

Table 3-3: Hitachi SU6600 FEG-SEM analysis conditions. Advanced EBSD 

parameters are provided in Chapter 1. 

3.6 Results 

3.6.1 Methodology development 

Two categories of sample preparation and method development were necessary to 

perform this study. These involved modified polishing and coating techniques to permit 

electron beam micro-analysis while simultaneously refining electron beam conditions to 

permit qualitative and semi-quantitative elemental analysis by SEM-EDS.  

3.6.1.1 Polishing and carbon coat methodology 

It is difficult to properly polish melt inclusions in zircon due to the heterogeneity in 

hardness difference between the inclusions and host zircon. Basic polishing (9, 6, 1 and 



102 

 

0.25 μm) does not preferentially polish the μm-submicron melt inclusions, however a 

problem arises with the fine (0.05 μm) vibratory polish that is necessary for EBSD 

imaging. Standard ZAPLab vibratory polishing time for EBSD preparation is between 

2.5-3 hours, using a basic aqueous solution of colloidal alumina. For the purposes of this 

study, it was found that a more neutral NaOH solution minimized inclusion destruction, 

and samples were polished for ~1-1.5 hours in order to avoid preferential polishing of the 

inclusions. EBSD images were not adversely affected by the lower vibratory polishing 

period. In fact, all mean angular deviation values (a measure of fit between the observed 

electron diffraction pattern and the ideal reference value) were between <0.2-0.5°, well 

below the threshold for zircon of 1.3°. 

Knowledge and control of carbon coat thickness on samples is necessary in order to 

correct for X-ray absorption during EDS analysis and perform semi-quantitative 

elemental analyses of inclusions. The carbon coat was applied using an Edwards Auto 

306 carbon coater, which does not have a thickness measurement device. The optimal 

carbon coat thickness for EDS analysis has been suggested to be ~20-25 nm (Kerrick et 

al., 1973). Carbon thicknesses on samples and standards in this study were determined by 

simultaneously coating a pure silicon chip and measuring coat thickness within the SEM, 

using a program developed and shared by Dr. Yves Thibault. Reproducibility of coat 

thickness was ensured by observing the interference colours on a polished brass disc 

(Kerrick et al., 1973). For the purposes of this study, samples were coated with a 

consistent ~25 nm thickness, as it is this thickness that produces the most noticeable 

interference colour change (Kerrick et al., 1973).  
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3.6.1.2 Development of energy dispersive spectroscopy (EDS) for 
μm to sub-μm impact melt glass inclusions in zircon 

The EDS technique is known to be an excellent method for measuring the major element 

compositions of glass inclusions (Spray & Rae, 1995). Quantitative compositional 

analysis with such electron beam methods is, however, challenging in the analysis of 

small (μm-to-submicron) and shallow inclusions. This difficulty is because the target 

domain is similar or sometimes smaller than the spatial resolution of EDS due to electron 

scattering beneath the sample surface and excitation of X-rays to a distance of ~1 μm 

from the point of incidence of the ~1 nm diameter beam. In order to combat these issues, 

the following procedures for EDS mapping and semi-quantitative EDS were developed. 

3.6.1.2.1 Energy dispersive spectroscopy (EDS) mapping 

Qualitative EDS mapping provides an excellent method to visually characterize the 

compositional variations in IMG inclusions. Due to the microscopic scale of these 

inclusions, SEM beam conditions must be tailored and consistent. Table 3-4 lists the 

settings used for EDS mapping of zircon, melt inclusions, and surrounding minerals. 

These settings are recommended as the best settings for IMG inclusion characterization in 

that they minimize activation volume effects while maximizing signal intensity. For 

example, 7 kV was used for the semi-quantitative analysis, as using a lower accelerating 

voltage will decrease the interaction volume of the beam (Fig. 3-2). The settings in Table 

3-4 were developed to reduce compositional inaccuracy.  
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Figure 3-2: Schematic showing the difference in interaction volume (red) between 10 

kV and 7 kV accelerating voltages. With 10 kV, a significant component of 

surrounding zircon would be included in impact melt glass inclusion (IMG) 

analysis. 7 kV acts to eliminate this zircon component.  

3.6.1.2.2 Semi-quantitative energy dispersive spectroscopy 
(EDS)  

There are a number of factors that must be considered when quantifying the major 

element chemistry of submicron-μm sized melt inclusions. Based on previous studies, 

many of the inclusions are assumed to be glass, and thus we must account for, and 

minimize well known beam-alteration effects on glass such as local alkali (Na and K) 

mobility. A block of glass standards (Table 3-3) was therefore created to most closely 

match the compositions of the melt inclusions. Two to three replicate measurements of 

each spot were taken of glass standards and melt inclusions, in an effort to control and 

record alkali mobility. Figure 3-3 displays an example of alkali mobility in one of the 

standards. The decline in Na wt. % is essentially negligible for the purposes of this study. 

Due to the difficulty of directly measuring oxygen in glasses, oxygen was calculated by 

stoichiometry, as we assume the source of these inclusions was their local mineral 

counterparts. All analyses were normalized to 100%. Normalization was performed 
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because totals were typically low. Low totals in glass analysis are generally accepted and 

attributed to the presence of H2O or a loss of alkalis (Nash, 1992). 

 EDS mapping Semi-quantitative EDS 

Detector 
X-max SSD detector (Oxford 

Instruments) 
X-max SSD detector (Oxford 

Instruments) 

Carbon coat 

thickness 
~25 nm ~25 nm 

Accelerating 

voltage 
10 kV 7 kV 

Probe current Variable Variable (typically ~0.10 nA) 

Working distance 10.0 mm 10.0 mm 

Apertures 2/1(100 μm/200 μm) 4/3 (30µm/50µm) 

Gain Medium 6.0  Medium 6.0 

Image res. 512x512 512x512 

Process time 5 seconds 5 seconds 

Map dwell 100 μs -- 

Linescan dwell 2000 -- 

Frames 6.55 sec/frame 1 frame (26.7 sec/frame) 

Spectrum range 0-20 keV 0-20 keV 

Table 3-4: Advanced settings used for EDS mapping and semi-quantitative EDS 

analysis. Variable magnification was used. 
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Figure 3-3: Na-loss in five different spots on the K-373 standard. Three repeat 

analyses (5 seconds each) were performed to mimic the impact melt glass inclusions 

analysis. Na shows a distinct decline in weight % over time, however the values are 

essentially negligible for the purposes of this study. 

3.6.2 Results of FEG-SEM analysis 

3.6.2.1 Regional distribution of impact melt glass inclusions  

IMG inclusions are absent in the samples affected by ultra-high temperature (UHT) post-

shock heating and extensive recrystallization. Where zircon grains are recrystallized into 

granular (polycrystalline) zircon (i.e. V15-45-1), impact melt inclusions are not present 

(Fig. 3-3d). The first (nearest to the center of impact) occurrence of IMI’s at Vredefort is 

in V09-237 and V15-39. These samples are ~4 and 5 km from the center of impact, 

respectively, and host impact melt inclusions in some zircons, but not all. IMI’s are 

present in all other samples analyzed in this study, except V15-55 (Fig. 3-4a). There 

appears to be more extensive (larger, higher abundance) of melt inclusions in zircons 

from samples spatially associated with pseudotachylite (Fig. 3-4b, c), indicating a 
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potential correlation between macroscale melting and partial melting on the microscale. 

Inclusions vary in prevalence, morphology, spatial distribution, size, and composition 

from sample to sample. A subset of the samples included in this study were chosen for an 

in-depth study of ~50 zircons (Figure 3-5), described in full in Chapter 2, which displays 

the high prevalence of impact melt inclusions in all samples except the intensely 

recrystallized (V15-39) and lower shock environment quartzite (V15-55). There is an 

almost perfect correlation between curviplanar fractures and impact melt inclusion 

prevalence that can be traced across the impact structure (Fig. 3-5).  

 

 

Figure 3-4:  a) BSE image of V15-55 zircon grain displaying some planar fracturing 

but no IMG inclusions, b) and c) BSE images of zircons F24565 and F725, 

respectively, from pseudotachylite rich showing chains of elongate and ovoid IMG 
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inclusions, and some filling fractures, d) BSE (zoom) image of V15-45-1 F445 

showing coarse granular texture zircon without IMG inclusions. 

 

Figure 3-5: Bar graph displaying the percentage of each microstructure from ~50 

grains of each sample. 

3.6.2.2 Impact melt glass (IMG) inclusions at three sites across the 
central uplift 

Impact melt glass inclusions were found in zircons in granitoid samples at radial 

distances between 4 km and 23 km in the central uplift (Chapter 2) (Fig 3-5). Zircons 

from V09-237, V2-1, and V-62 were selected to represent the core (~4.0 km radial 

distance), intermediate (~11.4 km radial distance) and collar (~22.8 km radial distance) 

locations, respectively. The three samples also represent varying granitoid compositions, 

including Inlandsee Leucogranofels (ILG) (V09-237), charnockitic gneiss (V2-1), and 
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syenogranite (V-62). A detailed investigation into the type (morphology, crystallinity, 

size, distribution), and composition (EDS mapping, semi-quantitative EDS) of IMG 

inclusions was performed on representative zircons from each sample.  

3.6.2.2.1 Collar sample: V-62 F3440 and F123 

V-62 is a syenogranite from ~23 km radial distance from the center of impact, originally 

a sill intruded into the deep levels of the Witwatersrand basin and rotated to a vertical 

attitude in the collar of the central uplift. Zircons are almost invariably hosted within 

pyroxene (aegerine, NaFeSi2O6) which appears to exhibit similar shock features and melt 

inclusions as many of the zircon grains (Fig. 3-6a, e, f). The zircon shock features include 

planar features such as microcleavage and microtwins, but melt inclusions are the most 

prominent impact-related features. There are, however, distinct morphological 

differences in these inclusions compared to samples closer to the center of impact. The 

size of the inclusions in V-62 are much smaller (1 μm or less on average) and the contacts 

with zircon are generally highly irregular as they are commonly bounded within fracture 

networks. Two zircons were chosen to represent the types of microstructures and 

inclusions characteristic of the population.  

F3440 is an irregularly shaped zircon at a boundary between aegerine and a Na-rich 

aluminosilicate melt phase (Fig. 3-7). Criteria used to define IMG inclusions includes a 

spatial association with shock microstructures, and the absence of an electron diffraction 

pattern when analyzed using EBSD consistent with an absence of atomic order. In this 

case, there are two types of domains that meet these criteria; amorphous, submicron 

diameter inclusions within the zircon and aegerine, and domains along the zircon grain 

margin that lead into fractures. These glass domains are composed of Na-Al-O-Si, 



110 

 

distinct from feldspar and pyroxene by the absence of Ca and Fe, respectively. Both types 

of impact melt glass domains have margins, or are infilling features, that post-date both 

primary igneous zoning in the zircon (Fig 3-6c) and shock microstructures such as 

microtwins (Fig. 3-6 d).  

The vast majority of the inclusions in this zircon are submicron, with occasional larger 

‘pods’ of impact melt presiding within the center of grains. Open fractures in the zircon 

lattice appear to offer a principal pathway for impact melt into the zircon. These large, 

open fractures may be related to planar and curviplanar features present elsewhere in the 

grain in similar orientations. For instance, the large fracture emanating from the top right 

of the grain in Fig. 3-6 appears to coincide with the orientation of microtwins and planar 

features (Fig. 3-6 d, e, f). Regular curviplanar features, planar features and microtwins 

host the typically ovoid, submicron inclusions. The size of the IMG inclusions was below 

the spatial resolution for semi-quantitative EDS analysis however qualitative inspection 

indicated that the inclusions are similar in major element chemistry to the fracture-filling 

material (Fig. 3-7), with the exception of slight Al-variations. 
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Figure 3-6: Electron beam data for V-62 F3440 a) SE image showing network of 

fractures and planar features in-filled with a secondary phase, b) BSE image 

indicating a low density (average Z) for the phase infilling fractures c) CL image 

showing primary igneous trace element zoning cross-cut by microtwins (linear zones 

of lower intensity), d) EBSD misorientation map image showing crystal plastic 

deformation,  “bent” microtwins (red lines), local  planar subgrain boundaries off-

setting twins, and amorphous (black) inclusions , e) EBSD phase map showing 

zircon (green), aegerine (red), and null EBSD results (black), and f) EBSD band 

contrast map showing high quality diffraction for zircon and aegerine except in 

zones of planar features. 
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Figure 3-7: V-62 F3340 EDS map showing zircon (purple), aegerine (NaFeSi2O6) 

(red), and a Na-Al-Si-O phase (green) around the margins of the zircon and  

infilling fractures in zircon and aegerine. Orange is also Na-Al-Si-O, but appears to 

be the mineral constituent contributing to the melted phase (likely plagioclase). 

There does appear to be a slight difference in the amount of Al between the melt and 

surrounding mineral. 

 

A second zircon grain, F123, is shown here to represent another IMG inclusion texture. 

An interesting texture is seen in Figure 3-8, where submicron, ovoid melt inclusions 

appear along annealed curviplanar features to create outline polygonal domains. These 

melt inclusions do little to disrupt zonation in CL (Fig. 3-8d). Again, these inclusions 

match the melt compositions tracing planar features in surrounding acmite (Fig. 3-8a,c). 

There is a noted absence of twins or planar features in this zircon.  
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Figure 3-8: Electron beam data for V-62 F123 a) SE image showing similar 

inclusions and shock features in zircon and surrounding aegerine, b) BSE image 

showing polygonal melt inclusion domains, c) EDS map with purple=Zr 

representing zircon, red=Na representing aegerine, and black/dark green=Na+Al, 

representing plagioclase melt within aegerine and zircon, d) colour CL image. Note 

planar and curviplanar bright features perhaps relict annealed fractures. They 

coincide with chains of impact melt glass inclusions. 

3.6.2.2.2 Intermediate sample: V2-1 F3655 

Sample V2-1 is a charnockitic gneiss (plagioclase + quartz + orthopyroxene 

(hypersthene) + minor titanomagnetite) collected ~11.4 km from the center of impact. It 

is located in the gradational contact between middle and upper crustal rocks (ILG and 

OGG, respectively), in an area affected by Archean charnockitization (alteration by 



114 

 

anhydrous metamorphic fluids) and m-wide impact-generated pseudotachylite veins. 

Zircon F3655 has a core domain featuring typical igneous concentric zoning (Fig. 3-9c) 

patterns, surrounded by a brighter discontinuously zoned metamorphic rim. Both zoning 

patterns are disturbed by shock microstructures many of which host chains of inclusions. 

This grain is pervaded by numerous IMG inclusions as well as what was likely once a 

primary igneous inclusion. The primary feature is a single, roughly rectangular domain in 

the lower, central part of the grain filled with low density phases (Fig. 3-9b). It fits the 

criteria for a primary inclusion and its shape is reminiscent of apatite mineral inclusions 

commonly observed in igneous zircon grains. IMG inclusions in V2-1 are also dark 

(lower average atomic number (Z)) in BSE images, but instead occur along microtwinned 

domains, and curviplanar features, varying in morphology. The inclusions found along 

microtwins are typically either elongate, or small and ovoid (Fig. 3-9). Curviplanar 

feature-hosted inclusions are either small and ovoid or larger, irregularly shaped pods 

(Fig. 3-9b). Sometimes, these pods appear to delineate planar features. The average size 

of elongate inclusions is 3-5 μm’s in length and 1-3 μm’s in width, while the ovoid 

inclusions are typically submicron, and the pods found along curviplanar features are ~5-

15 µm’s in length. EBSD analysis of this grain indicates that inclusions are amorphous 

(Fig. 3-9d, 3-10c). as well as the primary inclusion domain except for the remnant 

crystalline FeO that has not been replaced.  
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Figure 3-9: Electron beam data for V2-1 F3655 a) SE image, b) BSE image showing 

low density, c) CL image, showing pre-impact igneous core and metamorphic rim 

cross-cut by lighter CL traces along features containing inclusions,, d) EBSD 

misorientation map showing microtwins (red lines), melt inclusions (black), and 

misorientation across the zircon. Note that some black (non-indexed) domains are 

high-U metamict domains (also black in CL) 
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Figure 3-10: Electron beam data for V2-1 F3655 a) BSE image indicating the 

morphological differences between impact melt pods, abundant submicron-μm sized 

ovoid IMG inclusions, and primary inclusion variably replaced by impact melt, b) 

zoom-in EBSD inverse pole figure image showing different crosscutting microtwins 

(pink and yellow), as well as amorphous inclusions (black), c) EBSD misorientation 

map showing twins with different sizes, and inclusions (black). EBSP’s of high-

quality zircon and amorphous inclusions are inset. 

 

EDS mapping and semi-quantitative analysis 

Qualitative EDS mapping of the region around V2-1 F3655 indicates that the zircon is 

hosted primarily within plagioclase, with minor amounts of orthoclase and mafic 

minerals (orthopyroxene) (Fig. 3-11). Zircon F3655 has one dominant and two minor 
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melt inclusion compositions. In the central upper region of the grain (Figure 3-11a, b) 

Mg(+Fe)-rich inclusion compositions are dominant. Such Mg(+Fe) aluminosilicate 

inclusions are present throughout the grain, and constitute the dominant composition of 

melt inclusion. K-rich inclusions appear, mainly near the edge of the zircon in Figure 3-

11b, in contact with orthoclase at the grain boundary. Na-rich inclusions are very small, 

and often difficult to resolve in EDS maps. A relatively larger expression of each of these 

melt compositions (Fe+Mg-rich, K-rich, and Na-rich) is observed replacing the primary 

inclusion domain in the lower left of the grain (3-11a). Inclusions are relatively 

homogeneous across strike. 

  

Figure 3-11: EDS mapping of V2-1 zircon F3655 a) EDS map of zircon (white) and 

matrix minerals, red=Na, green=K, purple=Mg(+Fe) showing melt inclusions 
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compositions are variable but dominantly Fe and Mg bearing. Associated elemental 

maps (Zr, O, Mg, K, Na) are shown below. b) inset image showing melt inclusions. 

Inclusions 1-4, as they relate to Table 3-5, are denoted. 

 

The compositional data for V2-1 IMG inclusions can be grouped into three inclusion 

types and several large and representative inclusions were targeted for semi-quantitative 

analysis (Table 3-5). Slight heterogeneity in similiar inclusions was detected as shown by 

Incl. 1 and 2 (Table 3-5). Inclusions 1 and 2 appear to be similar in composition to 

hypersthene, a mineral (considered discredited as a formal ‘mineral’ by the IMA in 1998) 

which has a significant amount of both Fe and Mg. For the purposes of describing a 

pyroxene with both Fe and Mg components, and because of the relationship between 

charnockites and so-called hypersthene, we will continue to use the term hypersthene to 

describe these non-endmember pyroxenes. The formula for hypersthene is (Mg,Fe)SiO3, 

and the presence of Al in our analyses may be due to substitution with Si. Inclusion 3 

appears to match the stoichiometry of ideal end-member orthoclase (KAlSi3O8) relatively 

well. Inclusion 4 appears to match the stoichiometry of an ideal Na-Ca plagioclase such 

as andesine (Na,Ca)(Si,Al)4O8.  

 Incl. 

modal% 
Na Mg Al Si K Fe Ca Zr O Total 

Incl. 1 90% -- 10.32 

±0.40 
5.41 

±0.28 

21.52 

±0.34 
-- 20.45 

±0.21 
-- -- 42.3 

±0.38 

100 

Incl. 2  -- 9.91 

±0.21 

4.98 

±0.51 

21.32 

±0.46 

-- 22.37 

±0.62 

-- -- 41.42 

±0.65 

100 

Incl. 3 7-8% -- -- 9.31 

±0.53 

31.39 

±0.23 

12.66 

±1.13 

-- -- -- 46.64 

±0.44 

100 

Incl. 4 2-3% 5.32 

±0.20 

-- 12.12 

±0.64 

29.58 

±1.72 

-- -- 4.75 

±1.77 

-- 48.23 

±0.71 

100 

Table 3-5: V2-1 semi-quantitative EDS results of four representative inclusions. 

Inclusions 1 and 2 are the dominant Mg (+Fe) aluminosilicate inclusion. Incl. 3 is the 
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less common K aluminosilicate inclusion. Incl. 4 is the composition found along very 

tiny ovoid inclusions (Na-Ca) aluminosilicate. Standard deviation (2σ) provided.  

3.6.2.2.3 Core sample: V09-237 grain 4 

V09-237 is a sample of Inlandsee Leucogranofels (ILG) taken from near the Inlandsee 

Pan, approximately 4 km north of the estimated center of impact (Fig. 3-1). This sample 

has been prepared as a grain mount of zircons separated from the host rock. Grain 4 is 

typical of the main zircon population, an elongate, euhedral zircon with primary, 

concentric oscillatory zonation surrounded by a sector-zoned rim (Moser et al., 2011). 

BSE and SE images (Figs. 3-12a, 3-13a) show dark ovoid to elongate linear inclusions of 

IMG inclusions tracing planar and curviplanar features. CL images display a bright 

response along these inclusion-hosting microstructures (Fig. 3-12b). Inclusions vary in 

morphology, from elongated inclusions to much smaller, ovoid inclusions. Elongate 

inclusions are typically between ~20 and 50 µm’s in length, and ~1-2 µm’s in width. 

They tend to pinch and swell along strike, and are thus somewhat irregular. The tiny, 

ovoid inclusions in this grain typically vary between submicron to 3 µm’s in diameter, 

and are also irregular in shape. Inclusions are invariably located along planar and 

curviplanar features, often in direct association with microtwins. Microtwins appear 

discontinuous, and are disrupted by these IMG inclusions. They also tend to occur closer 

to the edges of the zircon. All are amorphous in EBSD whereas zircon diffracts well 

(Figure 3-13b, c). As seen in the SE image (Fig. 3-13a), there is absolutely no difference 

in polish quality between zircon and the melt inclusions.  
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Figure 3-12: Electron beam data for V09-237 grain 4 a) BSE image, b) CL image, c) 

EBSD misorientation image, d) EBSD inverse pole figure image. Pole figures are 

shown on the stereonets on the right. Figure from Moser et al. (2011). 

 

Figure 3-13: Electron beam data for V09-237 grain 4 a) SE image of IMG inclusions 

tracing annealed curviplanar features within zircon, b) EBSP indicating high-

quality zircon pattern, and c) EBSP of an amorphous IMG inclusion. 
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Energy dispersive spectroscopy (EDS) mapping and semi-quantitative analysis 

Grain 4 is an ex-situ zircon (grain-mounted), and thus, it is not possible to directly 

compare IMG inclusion compositions to the immediate surrounding mineralogy. It has 

been documented (Moser et al., 2011), that this zircon originates from a classic medium-

grained Inlandsee Leucogranofels Gneiss (ILG) sample. Stepto (1990) classified this ILG 

rock based on its mineralogy, predominantly consisting of quartz, orthoclase, and 

plagioclase.  

Grain 4 has two dominant melt inclusion compositions. The two types contain Al, Si and 

O but differ in the proportions of Na and K. (Fig. 3-14), and these variations are 

somewhat spatially controlled. The K-rich inclusions are present throughout Grain 4 (Fig. 

3-14), however Na-rich inclusions are only present on the right side of the grain. 

Inclusion compositions often change along strike (Fig. 3-14c), which was not observed in 

V-62 or V2-1. This compositional change is not gradational, but rather quite distinct (as 

in Fig. 3-14c Incl. 3). Despite the spatial variance in general inclusion composition, there 

does not appear to be a preference for either composition to occupy only one particular 

type or orientation of shock microstructure. 
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Figure 3-14: EDS map of V09-237 Grain 4 a) full-scale map of zircon, showing melt 

inclusions of various compositions, b) inset image showing melt inclusions in the 

lower right portion of the grain, c) zoomed-in inset image showing how melt 

inclusions change composition along strike. Inclusions, as they relate to Table 3-6, 

are denoted. Pink=Zr, green=K, purple=Na.  

 

Semi-quantitative EDS analyses of three representative IMG inclusions were made within 

one domain of the zircon (Figure 3-14c) and results are listed in Table 3-6. Both the K 

and Na IMG inclusion types (inclusions 1 and 2) appear to match with the stoichiometry 

of minerals from the rock (albite and orthoclase) given by Moser et al. (2011). Inclusion 

1 is very similar in elemental abundance to the stoichiometry of ideal end-member albite, 
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NaAlSi3O8. Inclusion 2 is similar in elemental abundance to the stoichiometry of 

KAlSi3O8. There are no mafic inclusions in this zircon. Inclusion 3 was known from 

mapping to have a bimodal alkali composition along strike (Fig. 3-14c). The semi-

quantitative results are also mixed and could be due to impingement of the activation 

volume of the beam on an interface between the Na and K-rick IMG domains, or could 

indicate that contacts are more gradational than they appear on the elemental maps. 

 

3.6.2.3 Chronology of impact melt glass inclusion injection 

IMG inclusions are only found in grains with curviplanar features. This relationship is 

evident in Figure 3-5, where an almost perfect statistical correspondence is observed. In 

many cases, melt inclusions are also found along planar fractures and microtwins. 

Microtwins, generally thought to be later planar fracturing during rarefaction, terminate 

against melt inclusions (Fig. 3-10c). There is, however, a spatial relationship between 

twins and melt inclusions, and therefore the two are thought to be relatively 

 

 
Incl. 

modal 

% 

Na Mg Al Si K Fe Ca Zr O Total 

Incl. 

1 
~15% 8.05 

±0.62 
-- 10.14 

±0.35 

32.50 

±0.52 

-- -- -- -- 49.09 

±0.24 
100 

Incl. 

2 

~85% -- -- 9.18 

±0.57 

31.80 

±0.03 

11.79 

±0.15 

-- -- -- 46.95 

±0.25 

100 

Incl. 

3 

-- 2.53 

±0.40 

-- 9.71 

±0.26 

33.60 

±0.64 

5.28 

±0.83 

-- -- -- 48.88 

±0.36 

100 

Table 3-6: V09-237 semi-quantitative EDS results of three representative inclusions. 

Incl. 1 is the Na-rich inclusion, incl. 2 is the K-rich inclusion, and incl. 3 is a mixed 

component with both Na and K, likely due to beam impingement on multiple 

inclusion compositions. Inclusions are denoted in Figure 3-13c. Estimated inclusion 

composition abundances are listed. Standard deviations are given at 2σ. 

 



124 

 

contemporaneous. Twins are often deformed (Fig. 3-6d), providing evidence for later-

stage crystal plastic deformation related to crater modification. Post-shock 

recrystallization (Fig. 3-3d) destroys all shock microstructures, and is therefore post-melt 

inclusion injection. Based upon cross-cutting relationships in this study, it appears that 

IMG inclusions are incorporated into the zircon post-planar fracturing, microtwinning, 

and curviplanar features, but pre-post-shock recrystallization. This recrystallization is 

sometimes locally due to the heat related to impact melting, but typically occurs during a 

period of immense regional heating commencing immediately post-impact.  

3.7 Discussion 

3.7.1 Nature of IMG inclusions across the Vredefort central uplift 

A comparison of the nature and distribution of IMG inclusions in the three samples 

across the ~23 km range of occurrence reveals many broad similarities and differences. 

IMG inclusions are always associated with shock microstructures, dominantly 

curviplanar features, but also planar features (filled fractures and microtwins) (Fig. 3-5). 

There is, occasionally, a greater abundance of melt inclusions near grain margins as 

opposed to the centre of the zircon. This observation is likely linked to the placement of 

the melt inclusions’ local source mineral. EBSD successfully verified that all inclusions 

analyzed were amorphous at the 60 nm average length scale, similar to original reports 

(Moser et al., 2011). This reinforces the interpretation that all of these inclusions are, in 

fact, glass. The walls of host zircon surrounding IMG inclusions often show signs of a 

chemical change, as displayed by the change (typically increase) in CL emission (Fig. 3-

9c, 3-12b). IMG inclusions are heterogeneous with regard to their major element 

chemistry, with three main compositional types identified throughout the crater. These 
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compositions are similar to that of host minerals in the respective sample, and are 

variable between different rock types. The main differences that exist in inclusions from 

across the transect are in respect to size. The sample furthest from the centre of impact 

typically has the smallest (submicron) IMG inclusions. Those inclusions from the closest 

to the centre of impact often extend to over tens of nm’s. The variance in inclusion size 

likely points to the respective degree of melting at various points throughout the crater. 

These common characteristics allow us to comment on the sources of the IMG inclusions, 

and the mechanisms for their entrainment in zircon and preservation for over two billion 

years. 

3.7.2 Source of IMG inclusions 

The Vredefort structure hosts several types of impact melt bodies such as gabbronorite 

intrusions (Cupelli et al., 2014) and 2.02 Ga bronzite granophyre dykes with a crustal and 

meteoritic composition that have been introduced into the crater floor environment during 

cratering (Koeberl et al., 1996). At the microscopic scale, evidence of localized partial 

melting (Kamo et al., 1996; Stepto, 1990; Gibson & Reimold, 2005) has been recognized 

as the cm-scale glomerogranular quartz aggregates and granophyric texture (Kamo et al., 

1996) in the Inlandsee Leucogranofels unit (V09-237) near the center of impact. A 

macroscale expression of this partial melting is the nearby central anatectic granite (2017 

± 5 Ma (Gibson et al., 1997)) (Moser et al., 2011; Cupelli et al., 2014), so despite the ex-

situ nature of this zircon, we can establish a potential source mechanism for the IMG 

inclusions. There is no evidence that the IMG inclusions are derived from local primary 

inclusions, as evacuation of primary inclusions and re-distribution along shock features 



126 

 

would leave cavities or large crystal-shape pores in the zircon. This scenario is not 

observed in these samples. 

Qualitatively, inclusion compositions in V09-237 were comparable to orthoclase and 

albite; two dominant feldspars existing in this rock before grain separation (Moser et al., 

2011). The qualitative characteristics of the IMG inclusions in zircon in the two in-situ 

samples (V2-1 & V-62) likewise indicate a local source of melt generation. In collar 

sample V-62, Na-rich aluminosilicate glass at the margins of the zircon can be seen 

leading into and filling shock related fracture zones that lead into trails of IMG 

inclusions. In sample V2-1, the mineralogical compliment to the K-rich IMG inclusions 

can also be seen at the margin of the grain. Mafic inclusions of hypersthene and 

plagioclase composition appear to qualitatively match hypersthene and plagioclase 

minerals sparsely found outside of the zircon as well. It should be noted that no zircon 

analyzed in this study had any melt inclusions that could not be associated to local 

mineralogy, often within the field of view used for EDS mapping. This places a relative 

bound on the distance these melts travel before incorporation into the zircon.  

The variable composition of the IMG inclusions between samples also argues for a local 

source. The observation that V09-237 does not have any mafic melt inclusions indicates 

that the major control on melt inclusion types is not necessarily P/T conditions, but rather 

local mineralogy. Semi-quantitative EDS is not possible for most V-62 zircons, however 

EDS maps indicate that the melt composition consists only of Na, Al, Si, and O, which 

likely originates from nearby plagioclase grains. In V2-1, the compositions match 

relatively well with mineral standards of orthoclase (KAlSi3O8), plagioclase (NaAlSi3O8-

CaAl2Si2O8), and hypersthene ((Mg,Fe)SiO3), with estimated abundances of ~7-8%, 2-
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3%, and 90%, respectively (Table 3-7). Interestingly, in the case of V09-237, inclusion 

compositions match well (within ~1 wt. % per element) with mineral standards of 

plagioclase (albite) (NaAlSi3O8) and orthoclase (KAlSi3O8), with estimated abundances 

of ~15% and 85%, respectively (Table 3-8).  

V2-1       

Wt. % Incl. 1 

 

Hypersthene 

USNM 746 

Incl. 3 Orthoclase 

SPI 

Incl. 4 Plagioclase 

SPI 

Na --  -- 0.35 5.32 ± 0.20 3.23 

Mg 10.32 ± 0.40 16.16 -- -- -- -- 

Al 5.41 ± 0.28 0.65 9.31 ± 0.53 8.93 12.12 ± 0.64 15.10 

Si 21.52 ± 0.34 25.28 31.39 ± 0.23 30.23 29.58 ± 1.72 25.34 

K --  12.66 ± 1.13 13.25 -- 0.34 

Fe 20.45 ± 0.21 15.22 -- 1.39 -- -- 

Ca -- 1.08 -- -- 4.75 ± 1.77 8.43 

Zr --  -- --  -- 

O 42.3 ± 0.38 44.00 46.64 ± 0.44 45.84 48.23 ± 0.71 47.08 

Table 3-7: V2-1 comparisons of impact melt glass inclusions vs. ideal source 

mineral. Mineral wt. %’s are taken from standard minerals (SPI supplies, 

Smithsonian Microbeam Standards). Hypersthene differences are likely due to Al-Si 

and Fe-Mg substitution. Slight plagioclase differences are due to solid solution 

between Na-Ca. Analyses errors given at 2 σ. 
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V09-237     

Wt. % Incl. 1 Albite SPI Incl. 2 Orthoclase SPI 

Na 8.05 ± 0.62 8.50 -- 0.35 

Mg  -- -- -- 

Al 10.14 ± 0.35 10.46 9.18 ± 0.57 8.93 

Si 32.50 ± 0.52 31.85 31.80 ± 0.03 30.23 

K -- 0.20 11.79 ± 0.15 13.25 

Fe -- -- -- 1.39 

Ca -- 0.30 -- -- 

Zr -- -- -- -- 

O 49.09 ± 0.24 48.70 46.95 ± 0.25 45.84 

Table 3-8: V09-237 comparison of impact melt glass inclusions vs. ideal source 

mineral. Mineral wt. %’s are from standard minerals (SPI supplies). Analyses 

errors given at 2 σ. 

 

Fig. 3-15 shows the melt inclusion compositions from V2-1 and V09-237 on ternary (Al-

K-Na) diagrams. A local source for IMG inclusions is also likely given that their 

compositions, in aggregate, can be closely matched with compositions of the host rock. 

Fig. 3-15 shows the melt inclusion compositions from V2-1 and V09-237 on ternary (Al-

K-Na) diagrams. Figure 3-16 plots the inclusion compositions on total alkali vs. silica 

(TAS) diagram. Partial melt inclusions from V2-1 and V09-237 closely match the 

composition of the igneous rock type from which they originated. For example, a triangle 

between the three major inclusion types of V2-1 encompasses the approximate bulk 

composition of V2-1. This bulk composition was estimated by phase mapping, optical 

petrography, and references to the literature of charnockitic rocks at Vredefort (Flowers 
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et al., 2003; Lana et al., 2003) which describe the central Vredefort charnockites as being 

quartz monzodioritic to dioritic in composition. Inclusions from V09-237 plot as a line 

(binary) which is similar, but not identical, to the silica-rich granite composition of the 

ILG.  

 

Figure 3-15: a) ternary diagram of V2-1 melt inclusion compositions, and b) ternary 

diagram of V09-237 melt inclusion compositions. Ternary diagrams created with 

Trinity software. 
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Figure 3-16: Total alkali vs. silica (TAS) diagram adapted from Cox et al. (1979); 

Pompa-Mera et al. (2013). This diagram plots the various inclusion compositions 

found in V2-1 (green) and V09-237 (red) on plutonic classification diagram. Na-rich 

inclusions fall on diagram, but K-rich inclusions in both V2-1 and V09-237 fall on 

the “alkaline” chart. Mafic inclusions from V2-1 are found at the bottom of the 

chart due to lack of alkalis. Estimated bulk compositions of V2-1 and V09-237 are 

shown. 

 

3.7.3 IMG inclusion formation and preservation mechanisms  

3.7.3.1 Conditions of melting 

The IMG inclusions are products of impact melting, which occurs during decompression 

after the passage of a shockwave (Grieve et al., 1977). Our observations can be used to 

place brackets on the temperatures necessary for IMG inclusion formation. The upper 

bracket is the melting temperature of zircon itself at 1676°C. There is no evidence of 

zirconium in the IMG inclusions or textural evidence for zircon melting in these samples 

so this temperature is taken as the ceiling for the IMG inclusion forming processes.  The 
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lower bracket would be the melting temperature of the lowest Tm mineral (typically albite 

Tm=~1100°C). The absence of impact melt inclusions in zircons at V15-55 could be due 

to the fact that they are hosted in a quartzite (quartz Tm= ~1700°C) and the lack of local 

lower-melting temperature minerals (i.e. albite Tm=~1100°C, anorthite Tm=~1500°C, 

orthoclase Tm=~1200°C). It is also situated at a radial distance outside of the zone of 

pressure sufficient to cause melting/curviplanar feature/microtwin formation (Chapter 2) 

and high post-impact temperatures (Ivanov, 2005). Given the occurrence of coesite in the 

same outcrop (Martini, 1978) we can establish a minimum pressure for IMG inclusion 

formation in zircon at ~3 GPa. 

The presence of both mafic and felsic inclusions within V2-1 F3655 indicates exposure to 

a wide range of shock conditions perhaps up to the melting temperature of pyroxene 

(Tm=~1400°C).  An average temperature of IMG inclusion formation in the range 

~1100°C to 1700°C (i.e. below the melting temperature of quartz), would account for the 

fact that, in the ILG sample, inclusion population does not match the composition of the 

bulk rock and is relatively quartz-poor. 

Assuming our model is correct, the composition of zircon IMG inclusions has the 

potential to serve as a proxy for the maximum temperature (and inferred pressure) 

experienced by its host rock, as well as fingerprinting the host rock lithology. This would 

be of value for zircons, for instance, that have been removed from their host rock by 

erosion and/or impact-driven transport (e.g. lunar regolith breccia). 

3.7.3.2 Timing of injection 

Based upon the cross-cutting relationships established in this study, it appears that impact 

melt inclusions are incorporated into the zircon after planar features, microtwinning, and 
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curviplanar features, and before high-temperature post-shock recrystallization. The 

inclusions of shock melt seen in V-62 F123 may actually play a significant role in 

nucleating the recrystallization of domains that date the impact event. Annealed 

curviplanar features hosting IMG inclusions in V-62 F123 appear to outline polygonal 

zones that may be a precursor to defect-nucleated crystallization seen in other zircons. 

We conclude that, just as twins have been shown to act as nucleation sites for 

recrystallization (Timms et al., 2014), as should IMG inclusions. Further description and 

a schematic displaying these microstructural relationships is available in Chapter 2.  

We suggest, based on the strong spatial and statistical (Fig. 3-5) association, that the 

timing of IMG inclusion intrusion is intimately related to the formation of the curviplanar 

features. The curviplanar family of microstructures has only recently been recognized in 

the literature, and appears to be unique to the crater-basement environment. Given the 

large displacements that take place on a subset of curviplanar features that offset the grain 

margin, it is again likely that minerals were locally impact-melted and introduced into the 

host zircon, as in V-62. This type of strain in the rock, as a whole, does not fit with very 

short-lived high pressure shock wave. It does, however, match the behaviour expected by 

the post-impact rebound of the crater floor through a vertical process of 10 km, and/or the 

continued motions of the crater floor during longer-term isostatic rebound of the impact-

traumatized crust. It has been suggested that rarefaction and decompression could cause 

movement and negative pressures in zircon grains to offer a primary pathway for the 

impact melt into the zircon (Moser et al., 2011), which also sets a temporal constraint for 

the development of this melting. The absence of melt inclusions in zircons that do not 

exhibit shock microstructures related to rarefaction or unloading (i.e. curviplanar 
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features, microtwins), as in V15-55 (Fig. 3-3) is further evidence that compression 

(planar fracturing) alone does not introduce melt into the zircon. 

The relationship between planar and curviplanar features and IMG inclusions highlights 

the rate at which these structures are formed, as planar fractures must have remained 

open long enough to be penetrated by melt introduced along the later curviplanar 

features. In Chapter 2, we documented curviplanar features crosscutting microtwins, 

which is contrastable with the findings of Moser et al (2011).  Melting, injection into 

open fractures, and the formation of these other microstructures must happen very rapidly 

(ms
-1

), based on the microstructural relationships observed. The bright response in CL 

and annealing of these microstructures implies that melt remained hot for long enough to 

allow for trace element exchange with the host zircon, although this trace element 

diffusion and exchange may have been quite rapid if accelerated by high defect densities 

along the curviplanar feature margins.  

Different compositions also sometimes occur along certain microstructures (as in Fig. 3-

11), implying that there is a mechanical or morphological constraint on the composition 

of impact melt preserved. This may imply that certain minerals melted first and were 

incorporated along a specific microstructure, whereas later melts were incorporated along 

later-formed microstructures. This scenario may have been followed by a stage of mixing 

followed by segregation as we found no strong association of a certain orientation or type 

of microstructure with a particular IMG inclusion composition. Another process, perhaps 

operating in parallel, is the possibility of large immiscibility differences between different 

glass compositions as they intruded the zircon and expanded and cooled at different rates 
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based on density and composition. Answering these questions will require additional 

detailed study. 

3.7.3.3 Glass formation and preservation 

All IMG inclusions analyzed in this study appear amorphous (glass) under the ~60 nm 

EBSD resolution limit. All possible precautions were taken to ensure IMG inclusions 

were not preferentially polished, and as shown in Fig. 3-13, the melt inclusions have an 

equal polish quality to the surrounding zircon. This indicates that the amorphous nature 

of inclusions in EBSD is, in fact, due to a lack of long-range crystallographic order rather 

than poor polish quality. Additionally, the primary inclusion replaced by impact melt 

(Fig. 3-11a) retains a portion of the primary magnetite (FeO) crystal which does return an 

EBSP pattern. 

Crystalline melt inclusions and glass melt inclusions in zircon are differentiated as a 

function of their cooling rate, size, and composition (Roedder, 1979). It can thus be 

expected that the Vredefort melt inclusions would be glass, as an impact setting is 

comparable to a volcanic setting in terms of cooling rate. Zircons from volcanic settings 

are known to host melt glass inclusions in rocks 74 ka and 56 Ma (Thomas et al., 2003). 

The presence of glass inclusions in this study, and their preservation as glass over the last 

~2.020 Ga, is surprising. It is suggested that the zircon structure may retard or diminish 

the effects of devitrification, which is supported by the presence of glass inclusions in 

zircons as old as 56 Ma (Thomas et al., 2003) and ejecta zircons from a lunar soil sample 

>4 Ga (Crow, 2015). The presence of Na in many of these inclusions is also known to 

inhibit the acts of devitrification in glasses (Snyder, 2012). The lack of zircon 

incorporation into the inclusion composition is further evidence for quick cooling 
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(Thomas et al., 2003). The overwhelming presence of glass inclusions in this study as 

opposed to crystalline inclusions could be related to the small (submicron to μm) size of 

most inclusions. Thomas et al. (2003) found that small, primary MI tend to remain glass 

while the larger MI in the same zircon often crystallized. The existence of these features 

2 billion years after impact in an upper crustal environment is intriguing and suggests a 

glass-stabilization mechanism that could be quite applicable to materials science 

applications if further understood and developed.  

3.8 Conclusions 

Our microstructural relationship findings are mostly similar to those of Moser et al. 

(2011), with a few minor exceptions: 

i. Curviplanar features appear to crosscut microtwins. We suggest that curviplanar 

feature formation alone may be the driving force for melt injection, creating the 

negative pressure that Moser et al. (2011) attributed to microtwins. We recognize 

that curviplanar feature and microtwin formation are relatively coeval, which may 

be a contributing factor to this microstructural confusion.  

ii. There is a second set of planar features (appearing as ‘microcleavage’) that appear 

to crosscut twins and earlier planar fractures. These features do not appear to host 

melt inclusions as they do not appear as open fractures. 

In many of the zircons analyzed, there were multiple melt inclusion compositions. The 

partial melting of various minerals implies multiple generations of impact melt injection 

occurring in rapid succession. Because of the rate of these ‘pulses’ of melting and 

injection, it is difficult to illustrate the relative timing of different mineral melting phases. 
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However, there is potential to fit minerals into a temporal schematic based on their 

relative melting temperatures. 

We suggested a multi-step process for the preparation and analysis of impact melt 

inclusions in zircon. This process included a new polishing and carbon coat method. We 

also identified the best parameters for the energy dispersive spectroscopy (EDS) mapping 

and semi-quantitative EDS analysis of melt inclusions. These settings were chosen so as 

to diminish the contribution of surrounding zircon into the composition measurements 

and limit alkali mobility. It is difficult, and sometimes impossible, to get accurate EDS 

analyses of particularly small (<submicron) melt inclusions. We concede that this 

problem is not exclusive or inherent to EDS, and would impact the results of EPMA or 

other compositional analyses as well. 

Between 80-100% of the zircons not affected by post-shock recrystallization have IMG 

inclusions (Fig. 3-5). This prevalence means that IMG inclusions may represent the most 

abundant shock microstructure (along with curviplanar features) in zircon from the 

Vredefort impact structure. This also indicates that the majority of zircons from a deep-

crater granitoid environment will host impact melt inclusions, providing incredible and 

substantial exploration potential. 

The preservation of these glass inclusions in zircon from a ~2.020 Ga impact crater has 

far-reaching implications for the discovery of ancient impact events that lack surficial 

expression. The variation in melt inclusion compositions, and ability to relate these 

compositions with the stoichiometry of local rock-forming minerals, has implications for 

the association of ex-situ lunar zircons to their host terranes. The analysis of plagioclase-

rich charnockitic gneiss samples (i.e. V2-1) provide a valuable link to similarly 
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plagioclase-rich lunar samples, highlighting the value of terrestrial analogue sites. Shock 

conditions experienced by zircons which host impact melt inclusions may be reconcilable 

based on the melting conditions of incorporated mineral melts. With further study and 

advancements, these results will hopefully help resolve the mechanisms underlying the 

dichotomy between reset and non-reset U-Pb ages of zircon, and ultimately improve the 

accuracy of bombardment chronologies. 
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Chapter 4 

4 Discussion & Conclusions 

4.1 Introduction 

The primary objectives of this thesis were to: a) further the understanding of how shock 

microstructures form in zircon from the different shock environments of a complex 

impact structure; b) to establish a best method for the preparation and compositional 

analysis of impact melt inclusions in zircon; and c) to document the presence of impact 

melt inclusions in zircon across the Vredefort impact structure, and constrain their timing 

and formational mechanisms. In order to achieve these main objectives, we employed the 

use of a variety of electron probe techniques, including backscattered electron (BSE) and 

secondary electron (SE) imaging, electron backscatter diffraction (EBSD), 

cathodoluminescence (CL), energy dispersive spectroscopy (EDS) mapping and semi-

quantitative analysis. All techniques were performed on a Hitachi SU6600 field emission 

gun scanning electron microscope (FEG-SEM) from Western University’s ZAPLab. In 

the following sections, I outline how the various components of my thesis can be 

integrated to further the understanding of shock processes in zircon, and the impact they 

will have on future research.  

4.2 Shock microstructural progression in zircon 

We defined a new microstructural progression observed in the zircons at Vredefort. The 

general progression sequence is as follows: 

1. Early planar features (fractures, ‘microcleavage’). 

2. Planar deformation bands (‘kinks’ and ‘twists’). Likely temporally related to early planar 

features. 



144 

 

3. Microtwinning. 

4. Late planar features (‘microcleavage’ domains). 

5. Curviplanar fracturing primarily at an oblique angle to the c-axis, and grain margin displacement. 

6. Injection of impact melt glass inclusions along curviplanar (+/- planar fractures). 

7. Ductile deformation (crystal plastic deformation). 

8. High-T post-shock granularization/recrystallization. 

1. Some zircons exhibit only partial granularization/recrystallization. 

Two different general shock pathways were defined for the zircons in this study. The 

variety of shock pathways, based primarily on shock conditions experienced (e.g. “hot-

shock” vs. “cold-shock”), highlight the complexity of zircon reactions to shock, and the 

need to further study these various shock pathways. These two pathways are also distinct 

from those experienced in extraterrestrial zircons, such as zircons from lunar breccias or 

meteorite samples. We recommended that the microstructural study of zircon in 

terrestrial, deep-crater environments be distinguished from those of extraterrestrial or 

‘ejecta-type’ zircons. 

4.2.1 Applications to deciphering the stages of the impact process 

By establishing these microstructural relationships, we can begin to interpret the 

complexity of the impact process. It is now understood that early planar features are 

related to the passage of the initial compressional shockwave, while later, cross-cutting 

twins and curviplanar features are related to the rarefaction shockwave. Microstructural 

interrelationships such as these have allowed us to relate planar deformation bands (kinks 

and twists) discovered in this study to the initial shockwave. These zircon microstructure 

relationships have also allowed us to fit general temporal restraints on each of the 

respective cratering processes. For example, this study demonstrated that the formation of 
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planar fractures (compression) and curviplanar features (rarefaction) is very rapid (ms
-1

), 

as impact melt introduced coevally with curviplanar features also intrudes planar 

fractures. These planar fractures must have remained open long enough for this to occur, 

which appears to point toward the rate of the various shock processes. We are able to 

determine that impact melt glass inclusions are related most strongly to curviplanar 

features, thereby placing a temporal constraint on their injection. Zircon recrystallization 

related to high post-shock temperatures may also allow us to constrain new 

microstructures as ‘shock-related’ if they are cross-cut by such recrystallized domains. 

4.3 Zircon as a quantitative scale of the shock process 

The study of shock features in zircon is somewhat complicated by the diversity of impact 

settings from which zircon is found. For example, the types and prevalence of shock 

features varies from classic terrestrial deep-crater settings versus that of ejecta-

environment zircons (ejecta layers, lunar soil samples, etc.). Using a microstructural 

survey, we quantified terrestrial shock microstructures from across the Vredefort impact 

structure, South Africa. In this survey, we found that the degree of planar features 

(including planar fractures, microtwins, planar deformation bands, and “microcleavage”) 

decreases with increasing distance from the center of impact. Despite the heterogeneity of 

the impact process (and associated P/T conditions), this would suggest that a decrease in 

P/T conditions is reflected in the number of grains that host planar features at Vredefort. 

Curviplanar features, often annealed, are one of the most abundant shock microstructures 

in zircon at Vredefort. Their prevalence is consistent across most of the samples in this 

survey, except in V15-55. A strong statistical correspondence is observed between 

curviplanar features and impact melt inclusions, which is strengthened by their spatial 
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relationships. Impact melt glass inclusions are often found tracing curviplanar features, 

indicating a close temporal relationship and similar formational mechanism. In 

approximately 15-20% of zircons from most samples, grain margins appear displaced, 

which seems to be due to extreme levels of strain exerted on previously open (planar and 

curviplanar) features. There is a zone of zircon recrystallization that operates within ~4-5 

km of the center of the dome.  

A number of interesting and, to the best of our knowledge, novel zircon microstructures 

were identified. One such microstructure has been identified as a form of planar 

deformation band (PDB). We call this PDB a ‘twist’ as it is represented by a twisted 

appearance in EBSD misorientation maps. It appears as though these microstructures 

represent a twist in the zircon lattice around a planar central axis. The other 

microstructure is extremely coarse granular zircon found near the centre of impact. These 

coarse granules host their own, independent, oscillatory zonation patterns. They have 

darker (in BSE) rims than cores as well. This microstructure is interesting, given that 

these zircons were not in direct contact with a cohesive impact melt sheet, as the textures 

would suggest. We determined that the heat present in the deep crater (central uplift) was 

sufficient to closely replicate the heat present in an impact melt sheet. The presence of 

these rare, newly documented microstructures highlights the need for further 

microstructural study of zircon from complex impact structures to not only quantify the 

prevalence of such features, but discover new features as well.  

4.4 Impact melt glass inclusions in zircon 

As shown in Chapter 3, impact melt glass inclusions are one of the most common shock 

microstructures in zircon at Vredefort. Because of their abundance across the majority of 
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the central uplift, it is apparent that impact melt glass inclusions are of much significance 

to the future study of shocked zircon. Impact melt glass inclusions were originally 

documented by Moser et al. (2011). Since then, they have been further documented by 

Erickson et al (2013), and Crow (2015). There remained a need for a comprehensive 

study of impact melt inclusions across the entirety of a complex impact crater, hence the 

purpose of this study. Inclusions were discussed in detail in Chapter 3, and the findings 

are summarized and discussed below.  

In this study, energy dispersive spectroscopy (EDS) was established as a valuable 

alternative to conventional electron microprobe analysis (EPMA) for compositional 

analysis. EDS is an effective compositional tool because of its incorporation into many 

standard scanning electron microscopes. This is exceptionally beneficial for impact melt 

inclusion analysis, as it allows for the time-efficient integration of classic SEM methods 

(i.e. EBSD, CL, BSE/SE) with EDS. The analysis of such small inclusions within a 

higher density phase (zircons) is difficult, and a detailed methodology was provided. This 

included new polishing, carbon coating, and EDS analysis methods.  

Impact melt glass inclusions at Vredefort are variable from sample to sample, but also 

within individual zircons. Analyses show that melt inclusions always occur as 

homogenous compositions, and no evidence of mixing of impact melt inclusions was 

found. This reinforces the interpretation of partial melting as the mechanism for the 

generation of these inclusions. Multiple different melt inclusion compositions were 

found, including Na-aluminosilicate glass inclusions, K-rich aluminosilicate, and mafic 

inclusions, roughly matching the mineralogy of external minerals plagioclase, orthoclase, 

and hypersthene (orthopyroxene), respectively. The relationship of these glass inclusions 



148 

 

to external (and local) mineralogy (typically between ~1 wt. % difference in elemental 

abundances) indicates that partial melting and incorporation into the host zircon was a 

locally-driven process. Petrographic evidence of melting was found in the majority of 

samples, including granophyric textures, melt pockets, and Inlandsee Leucogranofels 

(generated by partial melting) texture. Impact melt glass inclusions appear to have been 

introduced to the host zircon sometime during shockwave rarefaction, and subsequent 

curviplanar feature formation. The impact melt glass inclusions are most intimately 

related to these curviplanar features, but are also found along annealed planar fractures. 

All inclusions analyzed were glass, as identified by EBSD.  

4.5 Zircon as a dominant shock indicator mineral 

It is well-documented that many rock-forming minerals (i.e. quartz, feldspar) suffer with 

the preservation of shock effects through continued igneous, metamorphic, and distal 

sedimentary transport events (Grieve et al., 1990). Zircon, which is incredibly robust and 

has a much higher melting temperature (~1676°C) than quartz or feldspar, has recently 

become an important tool in recording the shock history of large, complex impact 

structures.  

4.5.1 Zircon as an archive of shock microstructures 

As outlined in this study, zircon has the potential to preserve a number of shock 

microstructures that can be related to all key impact processes, from initial compression, 

to shockwave rarefaction, crater modification, and high post-shock temperatures. This 

preservation is in stark contrast to most minerals, which are typically known for the 

preservation of minimal (e.g. one or two) shock microstructures. We documented the 
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presence of at least 10 different shock microstructures from zircons in this study. One 

zircon (F617) from an intermediate location in the central uplift (V15-16) displays 

features related to the initial compression, rarefaction, impact-related partial melting, 

crater modification, and high post-shock temperatures. The incredible preservation of 

such an array of shock features in a single grain reveals the potential of zircon as a unique 

and adaptable shock indicator mineral.   

4.5.2 Preservation of shock microstructures in zircon 

As mentioned above, the preservation of such a high quantity of shock microstructures in 

zircon is incredible, but is even more impressive when compared to the surrounding main 

phases. Quartz and feldspar from the same rock (V15-16) are completely recrystallized, 

and display no shock microstructures. This particular zircon (F617) is not a rare example; 

in fact, the majority of zircons analyzed in this study appeared to display incredible 

preservation of shock microstructures in comparison to surrounding minerals. The further 

documentation of 2.02 Ga shock microstructures in zircon is supplementary testimony to 

the robustness and ability of zircon to both record and retain shock microstructures. 

The microstructural preservation potential of zircon is perhaps best realized in its 

preservation of impact melt glass inclusions. The successful determination that glass 

inclusions exist in these zircons is interesting, showing that zircon is even more robust 

than previously thought, and acting as a natural ‘shield’ from processes that may cause 

devitrification or re-heating and compositional mixing of these glasses over the past 2.02 

Ga. This fact may have significant applications to glass-stabilization studies in materials 

science. Of course, the presence of various impact melt inclusion compositions is also of 

potential significance for understanding shock (melting) conditions in impact craters. 
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4.5.3 Usefulness of zircon as a U-Pb geochronometer for the 
dating of impact events 

U-Pb age dating is a main method of choice for dating ancient geological events due to its 

double U-decay chain, which provides an ‘internal verification’ of U-Pb behaviour over 

extended timescales (Schoene, 2014). These unique attributes allow for a consistent and 

reliable source of information regarding the age of various events (i.e. igneous, 

metamorphic, shock). 

Krogh (1984) established the link between U-Pb ages and shock microstructures in 

zircon. This development was further advanced by studies by Bohor et al. (1993), 

Pidgeon et al. (2011) and Moser et al. (2011). There still remain many unanswered 

questions in regard to the nature of the relationship between U-Pb ages and shock 

microstructures. Crater-wide studies of zircon, such as in this study, are necessary to 

provide a catalogue of different shock features before attempting to correlate U-Pb 

impact ages with the various microstructures. The preservation of shock microstructures 

across the majority of the central uplift speaks to the potential for zircon to date impact 

events. Shock microstructures such as microtwinning and curviplanar features may lead 

to partial age-resetting in zircon (Moser et al., 2011). The abundance of these features 

discovered in this study highlights the potential for future U-Pb studies across the 

exposure of the Vredefort central uplift. Impact melt glass inclusions, which in some 

cases appear to outline polygonal domains, may represent a precursor to the formation of 

granules that date the impact. Even in the complete zircon recrystallization zone (within 

~1 km of the centre of impact), the unfortunate lack of shock microstructure preservation 

is balanced by the ability to establish reliable U-Pb ages in recrystallized zircon.  
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4.6 Implications of this study on the search for and 

study of ancient impacts 

This study has provided further proof that zircon is one of, if not the most, robust mineral 

on Earth. Combining its incredible ability to act as a mineral catalogue of a variety of 

shock processes, as well as its ubiquity in the Earth’s crust and usefulness as a U-Pb 

geochronometer indicates that zircon should be the focus of future impact studies. As 

previously mentioned, between 80-100% of zircons not affected by post-shock 

recrystallization retained impact melt inclusions. Additionally, nearly every zircon 

(<90%) analyzed in this study hosted at least one type of shock microstructure. The 

number of shock microstructures and impact melt inclusions in these zircons implies that 

nearly the entire Vredefort central uplift displays some form of zircon shock evidence. 

The implications for this are significant, as there are many ancient impact craters that 

remain undiscovered or eroded, and may only be recognizable on the microstructural 

level. The findings of this study suggest that we should be focusing on the hunt for shock 

microstructures in ancient impact structures. The preservation of impact melt inclusions 

as glass for ~2.020 Ga is an incredible finding which only reinforces the idea that ancient 

impact evidence is preserved in zircons, perhaps since the Late Heavy Bombardment (ca. 

4.1-3.8 Ga), of which there is no macroscopic surficial evidence on Earth. Shock 

evidence in zircon is not only confined to terrestrial studies, but should also be a focus in 

extraterrestrial materials (i.e. Apollo zircons, lunar regolith breccias, etc.). 
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4.7 Recommendations for future work 

The progress made for impact research in this study must be continued with more 

comprehensive studies of zircon in other impact settings (i.e. other complex structures 

and ex-situ grains from lunar or detrital samples), for example, building on studies such 

as Crow (2015). Furthering the understanding of the reaction of zircon to shock will have 

far-reaching implications for understanding shock conditions in other settings. We 

suggest that more in-situ studies should also be performed, with a focus on quantifying 

the prevalence of shock effects (i.e. planar features, microtwins, impact melt glass 

inclusions) in zircon. Because of the heterogeneity of shock effects observed in zircon, 

these quantitative studies provide an important perspective on the impact process.  

We established a method for the preparation and compositional analysis of impact melt 

inclusions in zircon, which should be expanded on and used in future studies of other 

impact structures or ex-situ zircon grains (i.e. lunar or Martian). This method is still in the 

developmental stage, and requires further advancement in order to perfectly analyze all 

sizes and compositions of melt inclusions. With further study, zircons may be able to be 

correlated with host terranes based on the composition of the melt inclusions they host. 

These melt inclusions could also provide a rough estimate of the shock conditions 

necessary to melt those minerals. It would be of interest to heat these melt inclusions in a 

vacuum furnace and record the recrystallization of the glasses to gain insight into 

remnant (post-impact) temperature conditions. Additionally, Raman spectroscopy and 

transmission electron microscopy (TEM) studies would be beneficial for further 

confirming the lack of crystallinity in these impact melt glass inclusions.  
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Understanding of the mechanisms for Pb-loss in impact-affected zircons still remains in 

development. Building on the work from Moser et al. (2011), and microstructural 

findings from this study, future investigations may benefit to focus on the link between 

shock microstructures in zircon and Pb-loss. Specifically, it would be interesting to 

understand the potential effect of impact melt inclusions on U-Pb ages in zircon. 
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Appendices 

Appendix A: Detailed Methodology 

All samples used for this study followed a similar sampling and preparation procedure. 

Some samples were prepared as thin sections, while others were prepared as thick 

sections so as not to disturb the sample surfaces that were, in some cases, already 

analyzed. The exact sampling and preparation procedure followed is described below. 

Sampling 

A total of 11 samples were analyzed. Of these, six samples (V15-39, V15-45-1, V15-16, 

V15-46, V15-56, V2-2, V15-55) were collected during fieldwork in February, 2015. The 

other samples (V-62, V49-1, V2-1, V09-237) were taken from the pre-existing sample 

collection at Western University’s ZAPLab.  

Final sample selection followed the following ‘protocol’: 1) sample as many areas of 

granitoid exposure from a variety of areas throughout dome, focusing on areas of known 

geological relevance (i.e. proximal to pseudotachylite quarries etc.) 2) from these 

collected samples, an effort was made to study specific samples that would represent a 

consistent transect from the core to the collar of the central uplift. Due to sparse exposure 

in some areas, we studied samples from every ~2-4 km across the structure. 

The samples collected during fieldwork followed a consistent collection procedure. First, 

regional field photographs were taken to characterize the sample locations, followed by a 

sample photograph and notes on the surrounding geology. Each sampling station required 

a UTM (+/-3m) coordinate to be recorded (Appendix B). This, combined with the 

photographs and notes taken, ensured that the locations could be easily found again if 

necessary. Using a sledgehammer, hand samples were collected from the most pristine, 

unweathered sample surfaces available. The samples were separately bagged in order to 

decrease the likelihood of potential contamination. After collection, all samples were 

entered into a Google Earth map. This Google Earth map consists of an amalgamation of 

samples from February 2015 field work, as well as samples from previous field 

excursions, resulting in an electronic map of over 150 sample locations.   

Sample Preparation  

As previously mentioned, due to the state of the pre-existing samples from previous 

work, not all samples were prepared exactly the same. Where possible, samples were 

made into thin sections in Steve Wood’s laboratory at Western University. 

A total of seven samples were prepared as thin sections. One sample (V09-237) was a 

zircon mount. The other three samples remained as thick sections, as any further cutting 

or polishing would destroy many important features on the already exposed surface of the 

thick section. 
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Thin and thick sections were polished successively with 120 grit, 9 μm, 6 μm, 1 μm, and 

0.25 μm polishing pads. This was followed by between 1.5-3.0 hours on a Buehler 

VibroMet 2 vibratory polisher with a neutral colloidal alumina polishing solution at 

Western University’s ZAPLab. The use of this vibratory polisher was necessary for 

successful electron backscatter diffraction. In order to reduce charging and beam drift in 

the SEM, all samples were carbon coated with ~25 nm of carbon in an Edwards Auto 306 

carbon coater at Western University. The carbon coat thickness is also very important for 

accurate compositional analysis with energy dispersive spectroscopy; therefore, the 

amount of carbon coating on each sample was measured with a combination of two 

techniques. First, a polished brass disk was placed beside the standards and samples, and 

was used to roughly estimate the thickness (~25 nm) based on interference colours, 

following the method of Reed, 1975, shown in Table A-1. Once a satisfactory 

approximation of carbon thickness was obtained, the samples and standards were 

analyzed under the SEM. A piece of pure silicon standard coated simultaneously with the 

samples and standards was analyzed for carbon thickness. The k-ratios of carbon and 

silicon were used to calculate the actual carbon thickness on the samples and standards 

with a program created by Yves Thibault. This provided a verifiable and reproducible 

carbon coat thickness result, which is imperative to the proper analysis of composition 

with energy dispersive spectroscopy.   

 

Thickness (nm) Interference Colour 

15 Orange 

20 Indigo Red 

25* Blue 

30 Bluish-Green 

35 Green Blue 

40 Pale Green 

Table A-1: Chart of interference colours on carbon coated brass (Reed, 1975). 

*Target carbon coat thickness used in this study. 

 

 

 

 



157 

 

 

 

Standard Preparation 

The standard materials used for semi-quantitative energy dispersive spectroscopy (EDS) 

were selected based on the elements within the samples being analyzed. Table A-2 shows 

the standards used for each element in this study. 

Element Glass Standard Reference 

K SEM mineral std. MAD-10 feldspar 

Mg K-412 

Na K-373 

Fe SEM mineral std. Fe 

Si NMNH Rhyolite (VG-568) 

Al K-495 

Ca K-411 

Zr SEM mineral std. zircon 

Table A-2: Table displaying the major elements standardized in this study, and 

their corresponding glass standard reference. Glass standards provided by SPI 

supplies and C. M. Taylor Company, and Jarosewich (2002). Mineral standards 

were built-in to the SEM-EDS system. 

 

The standard materials were prepared in an epoxy mount. The epoxy mount was made by 

pouring a combination of Struers Epofix Resin and Struers Epofix Hardener together (5:1 

ratio) onto a piece of carbon tape with the standard materials attached. The epoxy was 

then cured overnight so that it hardened properly. Once hardened, the standard materials 

were polished with the same procedure as the thin and thick section samples. Finally, the 

standard mount was coated with approximately 25 nm of carbon, the same amount as the 

samples. Coating the standards and samples with the same amount of carbon reduces the 

error associated with any corrections that need to be made. 

Optical Petrography 

Thin sections were analyzed with optical petrography to observe mineralogy and textural 

relationships that can be used in tandem with scanning electron microscopy observations. 

The grain mount and thick section samples were not analyzed with optical petrography. 
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Optical petrography was performed with a Nikon Eclipse LV100 POL microscope at 

Western University’s ZAPLab. Sample descriptions are provided in Appendix B. 

Analytical Techniques 

The majority of the analytical work for this study was performed on a Hitachi SU6600 

field emission gun scanning electron microscope (FEG-SEM) at Western University’s 

ZAPLab.  

Samples were first feature mapped and phase mapped in order to locate accessory phases 

of interest, such as zircon, and to provide insight into the mineralogy of the sample. After 

this mapping, the samples could be analyzed by techniques which included: backscattered 

electron (BSE) and secondary electron (SE) imaging; electron backscatter diffraction 

(EBSD); cathodoluminescence (CL); quantitative energy dispersive spectroscopy (EDS); 

and EDS mapping. 

 

Feature Scanning 

Each thin and thick section was initially feature scanned using INCA software in order to 

identify the various accessory phases within the sample. A formula was used to identify 

zircon, baddeleyite, monazite, and zirconalite. The locations of these features were saved 

and later georeferenced so that they could be relocated. The settings used for feature 

scanning were as follows (Table A-3): 

 

Feature Scanning  

Carbon coat thickness ~25 nm 

Accelerating voltage 15 kV 

Probe Current -- 

Gain Medium 

Working distance 10 mm 

Apertures 3/1 (50 μm/200 μm) 

Magnification 150x 

Table A-3: Settings used for feature mapping. 

 

Phase Mapping 

All samples were mapped with INCA’s phase map feature. This mapping identified the 

various main phases (i.e. quartz, plagioclase, etc.) within the sample, and assisted in the 
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optical petrography analysis (Appendix B). The settings used for the phase mapping are 

shown in Table A-4. 

 

Phase Mapping  

Carbon coat thickness ~25 nm 

Accelerating voltage 15 kV 

Probe current -- 

Gain Medium 

Working distance  12 mm 

Apertures 3/1(50 μm/200 μm) 

Magnification  90x 

Table A-4: Settings used for phase mapping. 

 

Backscattered Electron (BSE) and Secondary Electron (SE) Imaging 

All samples were examined with backscattered electron imaging (BSE). Incident 

electrons will backscatter based on elastic scattering from interactions with specific 

atoms. This scattering is controlled by the atomic number of the elements being analyzed. 

Heavier elements (high atomic number) will backscatter electrons more powerfully than 

lighter elements, ultimately creating a contrast difference between different minerals 

(Okabe et al., 2000). BSE was used in this study to characterize the mineralogy and 

textures of each sample, and for a reconnaissance survey of zonation patterns and shock 

microstructures in zircon. Images were taken at low magnification (typically 90-150x), 

medium magnification (~300x), and high magnification (fully zoomed). In some distinct 

cases, highly zoomed images of areas of interest were taken to further characterize the 

grain textures. 

Simultaneously, samples were analyzed with secondary electron imaging (SE). In SE, 

incident electrons collide with sample atoms, displacing electrons down from outer 

shells, and creating weaker secondary electrons that are emitted and caught by a detector. 

SE imaging provides information about surface topography, as a scan moving across a 

hole or depression, the number of secondary electrons emitted is reduced. Likewise, a 

scan moving across a bulge or topographic high will emit a higher number of secondary 

electrons. Again, images were taken at low magnification (typically 90-150x), medium 

magnification (~300x), and high magnification (fully zoomed). Samples were imaged 

with the following BSE/SE settings (Table A-5). 
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BSE/SE Settings  

Carbon coat thickness ~25 nm 

Accelerating voltage 15 kV 

Gain Medium 

Probe current -- 

Working distance  10.0 mm 

Apertures 3/1 (50 μm/200 μm) 

Tilt -- 

Table A-5: Standard settings used for backscattered electron and secondary 

electron imaging. 

 

Zircon grains analyzed by BSE/SE were chosen due to length, with the larger zircon 

grains (by length) being imaged first. Due to inherent time constraints with this analysis, 

typically between 15-20 of the largest zircon grains were imaged in each sample. The 

analysis by BSE/SE imaging was used in order to identify target grains for further 

analysis by methods such as electron backscatter diffraction, cathodoluminescence, and 

energy dispersive spectroscopy, as outlined below. 

Samples V15-39, V15-16, V49-1, V15-46, V-62, and V15-55 were selected for a 

comprehensive zircon shock microstructure survey (Appendix D). Approximately 40-50 

of the largest (by area) zircon grains were selected from each sample to provide an 

unbiased survey. These grains were all observed to account for various shock features. 

Where possible, to best display the variety of shock features in BSE, the survey was 

conducted with lower kV settings. Samples that were not favorable under low kV were 

imaged with standard BSE/SE settings.  

 

Electron Backscatter Diffraction (EBSD) 

Following the initial BSE/SE imaging, certain zircons were selected for electron 

backscatter diffraction (EBSD). These grains were selected based primarily on the 

presence of interesting microstructures, including impact-related melt inclusions.  

In EBSD, an electron beam is directed at a tilted, polished sample. If the sample is 

crystalline and well-polished, then the electrons that are diffracted tend to form 

recognizable patterns called Kikuchi bands on a fluorescent screen (detector). The 

patterns created are related to the crystal structure and orientation of the sample under the 
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beam, which provides information on micro-scale crystallographic orientation. This 

information can be portrayed in a number of different ways. In this study, we use inverse 

pole figure (IPF) maps and misorientation maps. IPF maps show the distribution of 

crystallographic directions parallel to various sample directions. IPF maps are convenient 

for visualizing certain textures, such as microtwinning in zircon, or different growth 

phases of zircon. Misorientation maps display the misorientation of a crystal relative to a 

single point. This representation is better for the visualization of lower angle grain 

boundaries (i.e. planar/curviplanar features) or crystal plastic deformation which may not 

be represented in IPF maps. Tables A-6 and A-7 show the parameters used for the EBSD 

analyses in this study.  

 

EBSD Settings  

Carbon coat thickness ~25 nm 

Accelerating voltage 20 kV 

Gain Medium 

Probe current -- 

Working distance  19.0 mm 

Apertures 3/2 (50 μm/100 μm) 

Tilt 70° 

Table A-6: Electron backscatter diffraction (EBSD) parameters. 

 

SEM model Hitachi SU6600 

EBSP collection time per frame (ms) 19 

Background (frames) 64 

EBSP noise reduction (frames) 7 

(binning) 4x4 

(gain) High 

Hough Resolution  80 

Band Detection min/max 5/7 

Step distance (μm) Between 0.1 – 0.3 μm 
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Average mean angular deviation (zircon) Between 0.2-0.5° 

Noise reduction- “wildspike” yes 

n neighbor zero solution extrapolation 0 

Kuwahara Filter -- 

Table A-7: Advanced electron backscatter diffraction settings. Average mean 

angular deviation values (MAD) are well below zircon cutoff of 1.3° in all cases. 

 

Cathodoluminescence (CL) 

Cathodoluminescence (CL) is a useful tool in the reconstruction of geological histories, 

especially for luminescent minerals such as zircon. Cathodoluminescence (CL) is the 

emission of photons with a characteristic wavelength after bombardment by high-energy 

electrons. Some minerals are more fluorescent than others, and luckily, zircon is highly 

fluorescent. CL emission is controlled by a number of factors, including composition, 

strain or damage, and lattice structure. Upon bombardment, electrons belonging to the 

lower energy valence band jump up to the higher energy conduction band. When these 

electrons relax and return to their ground state, they can be trapped momentarily by 

structural defects or impurities (traps). Energy lost in these traps is emitted as energy 

(wavelength in visible spectrum). The density of these traps generally provides the 

function of CL intensity.  

CL can be used to provide information about the growth history of a zircon, including 

recrystallization events from high temperature exposure, as well as identify any 

deformation within the zircon crystal. CL was performed on many of the zircon grains 

analyzed. The settings used in this analysis are listed in Table A-8, below. 

 

CL Settings  

Carbon coat thickness ~25 nm 

Accelerating voltage 10 kV 

Gain Medium 

Probe current  -- 

Working distance 12.5 mm 

Aperture  2/3 (100 μm/50 μm) 

Tilt -- 

Table A-8: Settings used for cathodoluminescence analysis. 
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Quantitative Energy Dispersive Spectroscopy (EDS) 

Energy dispersive spectroscopy (EDS) is an analytical technique designed to 

communicate the elemental and chemical information of a sample. The technique relies 

on a series of interactions which emit a characteristic X-ray corresponding to a certain 

element. An electron beam emits a stream of electrons which excite electrons from an 

inner orbital shell, causing that electron to be released, and an outer shell electron to fill 

the void left behind. The energy difference between the higher energy outer shell and the 

lower energy inner shell is emitted as a characteristic X-ray (Kα, Kβ, or Lα radiation). A 

characteristic X-ray is a distinguishable peak among continuum X-rays (background). 

They correspond to certain elements, and therefore a measurement of count rates and X-

ray energies can be used to measure elemental composition of a sample.  

One of the main issues that arises in performing quantitative EDS is the failure to 

properly account for carbon coat thickness, which can lead to incorrect compositional 

totals. As carbon coating is essential to avoid beam drift during EBSD, CL, and BSE/SE, 

an accurate measurement of thickness was necessary. This measurement was established, 

and is outlined in Section 3.2. Another common issue that occurs with EDS analysis of 

glass is alkali mobility. Na and K in glass are quite mobile under an electron beam 

(Morgan & London, 2005). Considering these issues, we attempted to diminish the 

effects of alkali mobility by modifying the parameters used in analysis (i.e. accelerating 

voltage, beam current, time of beam on sample etc.) (Table A-9). Specifically, we used a 

lower accelerating voltage and beam current to reduce the penetration depth and sample 

heating. We used a shorter beam count-time to reduce the chance of significant alkali 

mobility. We also routinely took 2-3 analyses of each spot in order to track the mobility 

of Na and K. After the fine-tuning of the parameters, we saw no significant alkali 

mobility in any of the analyses taken. This was likely due to the relatively short duration 

that the samples (and standards) were exposed to the beam, as well as the lower 

accelerating voltage and beam current that was used. 

 

Detector X-max SSD detector (Oxford Instruments) 

Carbon coat thickness  ~25 nm 

Accelerating voltage 7 kV 

Probe current Variable 

Working distance 10.0 mm 

Apertures 4/3 (30µm/50µm) 

Gain Medium 6.0? 

Image res. 512x512 
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Process time 5 seconds 

Frames  1 (26.7 seconds/frame) 

Spectrum range 0-20 keV 

Speed Medium 

Table A-9: Run conditions for Quantitative EDS analyses. 

 

For the analysis to be fully quantitative, the elements in the sample must be 

“standardized.” Using a suite of standards (Table A-1 & Appendix F) of known elemental 

composition as a reference for the analysis of a sample, increased accuracy can be 

obtained, which is an essential component to any elemental analysis. The conditions used 

for the quantitative EDS work are included in Table A-9. These settings were chosen 

based on numerous trial and error attempts, as the inclusions being analyzed are often 

both submicron-sized and quite shallow. The chosen settings reduced the incorporation of 

surrounding zircon into the analysis while still collecting enough data from the inclusions 

themselves. These settings could be considered the best EDS settings for the analysis of 

μm -submicron scale impact melt inclusions in zircon.   

Despite relatively high totals (typically between 95-100%), we have normalized all 

results in order to provide an accurate depiction of relative elemental totals in each grain. 

The elemental abundances were calculated while calculating oxygen by stoichiometry.  

EDS elemental mapping was also performed on a number of samples. The run conditions 

are listed in Table A-10. All quantitative results are displayed in Appendix E. 

 

Detector X-max SSD detector (Oxford Instruments) 

Carbon coat thickness  ~25 nm 

Accelerating voltage 10 kV 

Probe current Variable 

Working distance 10.0 mm 

Apertures 2/1(100 μm/200 μm) 

Gain Medium 

Image res. 512x512 

Process time 5 seconds 

Map dwell  100 μs 
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Linescan dwell 2000 

Frames  6.55 sec/frame 

Spectrum range 0-20 keV 

Table A-10: Run conditions for EDS elemental mapping analyses. 
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Appendix B: Sample Locations 

 

Sample Lithology Sample Type 
Distance from 

center 
Coordinates (UTM) 

V15-45-1 
Inlandsee 

Leucogranofels 
Thin Section <1.0 km 550161 m E 7011662 m S 

V09-237 
Inlandsee 

Leucogranofels 
Grain Mount ~4.0 km 549589 m E 7006647 m S 

V15-39 
Inlandsee 

Leucogranofels 
Thin Section ~5.0 km 543699 m E 7014140 m S 

V15-16 
Inlandsee 

Leucogranofels 
Thin Section ~8.6 km 540091 m E 7010527 m S 

V49-1 Charnockite Thick Section ~8.9 km 542531 m E 7010527 m S 

V2-1 Charnockitic Gneiss Thick Section ~11.4 km 540804 m E 7019340 m S 

V15-46 Outer Granite Gneiss Thin Section ~17.1 km 539943 m E 7025719 m S 

V15-56 Outer Granite Gneiss Thin Section ~19 km 560295 m E 7025905 m S 

V-62 Alkali Syenogranite Thick Section ~22.8 km 563809 m E 7030330 m S 

V15-55 Quartzite Thin Section ~24.5 km 563809 m E 7030330 m S 

Appendix B-1: Sample lithology, type, and locations within the Vredefort dome. 
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Appendix B-2: Geologic bedrock map of Vredefort impact structure, South Africa, 

showing the locations of samples used in this study. Map adapted from Moser et al. 

(2011) and Grieve et al. (1977). 
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Appendix C: Sample Descriptions  

V15-45-1:  

V15-45-1 is a typical Inlandsee Leucogranofels (ILG)-type rock. The sample was 

retrieved from a large boulder outcrop, as is evidenced by the light weathering of the rock 

itself (orange-colouring) (Figure C-1). The mineralogy of this rock is quartz + orthoclase 

+ minor plagioclase + minor muscovite (Figure C-2, Table C-1). This fine-medium 

grained rock contains recrystallized quartz grains into micrometer sized fragments, as is 

typical of ILG rocks (glomerogranular texture) (Fig. C-3). Triple junctions are present at 

the boundaries of these quartz grains. Upon close examination, there is a weak coarser 

grained foliation delineated by these recrystallized quartz grains, but the rock remains 

relatively granoblastic. There are absolutely no optically-resolvable shock features in the 

quartz or feldspars of this sample. This observation is to be expected based on Grieve et 

al.’s (1990) analysis of core samples. According to the phase map (Fig. C-2), almost all 

zircons are found within the orthoclase, which is also heavily recrystallized. Few zircons 

are found within quartz, and even those are spatially related to the orthoclase.  

 

Figure C-1: V15-45-1 hand sample. 
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Figure C-2: V15-45-1 phase map showing quartz (orange), orthoclase (blue), and 

plagioclase (red). 

Table C-1: Mineralogy of V15-45-1 

 

 

 

Figure C-3: BSE texture and optical photography of recrystallized 

"glomerogranular" quartz grains. 

 

 

Mineral Shape Modal % Estimate Colour in PPL 

Quartz subhedral-anhedral 30 white/yellow 

Orthoclase euhedral-anhedral 65 white/clr 

Plagioclase anhedral 5 white/clr 

Muscovite anhedral less than 1% colourless 
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V09-237:  

This sample is an epoxy grain mount. See Moser et al. (2011) for full sample description. 

V15-39: 

V15-39 is a pink-white rock (Fig. C-4) with a significant contribution of plagioclase, 

orthoclase and quartz (Fig. C-5). There is a distinct gneissic (compositional) banding that 

is seen primarily from the pink to lighter ‘layers.’ This is also seen in the thin section as 

well (Fig. C-6). Based upon the hand sample, this could be called a syenitic gneiss (ILG). 

Quartz in thin section is intensely recrystallized (much like V15-45-1). These quartz 

grains are recrystallized into glomerogranular quartz grains, retaining the shape and 

orientation of their original quartz grains. V15-39 is fine-medium grained, with triple 

junctions at the boundaries of quartz grains, as typical of metamorphic and recrystallized 

samples. Plagioclase grains are typically quite fine-grained, probably due to 

recrystallization effects from the impact. Quartz grains do not appear to host many (if 

any) shock features, as is noted by Grieve et al.’s (1990) analysis of ILG rocks from the 

core. The foliation is evident in thin section as well, with quartz (even if recrystallized) 

still displaying the gneissic foliation that is obvious in hand sample. There does not 

appear to be any exclusivity to the location of the zircons in this sample, however they do 

preferentially appear along grain boundaries, specifically between quartz and the 

feldspars.  

 

Figure C-4: V15-39 hand sample photograph. 
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Figure C-5: V15-39 showing plagioclase (red), quartz (orange), and orthoclase 

(blue), with yellow dots (zircon), and white dots (monazites). 

 

 

 

 

 

 

Table C-2: V15-39 Mineralogy 

 

V15-16:  

This sample is a milky grey-white rock with significant biotite and minor pyroxene 

contribution. No major or obvious foliation is visible in the hand sample, however a weak 

foliation/lineation may be present. V15-16 is a fine to medium grained rock that has been 

metamorphosed to ~granulite facies, based partly on the noted presence of clinopyroxene. 

Based on the hand sample, this rock could be called a granodioritic gneiss, however the 

foliation in the sample is quite weak. This fine-medium grained rock contains 

recrystallized quartz grains into micrometer sized fragments, as is typical of ILG rocks 

(glomerogranular texture). The extent of this is less than in ILG rocks from closer to the 

core (V15-45-1/V15-39). Triple junctions are present at the boundaries of these quartz 

grains. There may be a weak coarser grained foliation followed by the recrystallized 

grains (difficult to tell), but the rock remains relatively granoblastic. Clinopyroxene is 

evident, but in very minor proportions. The presence of cpx probably displays the 

amphibole→ cpx + H2O that often accompanies granulite facies metamorphism. 

Plagioclase and orthoclase grains are heavily recrystallized into very small grains, 

Mineral Shape Modal % Estimate Colour in PPL 

Orthoclase Subhedral-anhedral ~40 white 

Quartz Euhedral-subhedral ~30 white 

Plagioclase subhedral-anhedral ~15-20 white 
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however there do remain some larger, not recrystallized k-spar. What appear to be 

apparently annealed and (decorated?) PDF’s show up in optical microscopy in orthoclase. 

Kink-bands are seen in biotite grains. Interestingly, the quartz does not show any obvious 

evidence of shock features (PDFs). This matches Grieve’s analysis of quartz from the 

core of the dome, and these PDF’s were likely erased by high post-shock thermal action. 

The zircons in this sample are preferentially found within or directly related to the biotite 

grains.  

 

Figure C-6: V15-16 hand sample. 

 

 

Figure C-7: Phase map of V15-16 showing plagioclase (red), quartz (orange), biotite 

(brown), orthoclase (blue), and clinopyroxene (pink). Yellow dots (zircon), white 

dots (monazites). 
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Mineral Shape Modal % 

Estimate 

Colour in PPL 

Plagioclase subhedral ~58% white 

Quartz euhedral-

subhedral 

~23% white-yellow 

Biotite sub-anhedral ~8% light-dark 

brown 

Orthoclase sub-anhedral ~8% colourless 

Clinopyroxene subhedral <1% light green 

Table C-3: Mineralogy of V15-16. 

 

V49-1:  

V49-1 is a deformed tonalitic gneiss dated at ~3.1 Ga (Moser et al., 2001). Further 

information is provided by Moser et al. (2001).  

 

 

V2-1:  

V2-1 is a coarse-grained green-grey rock. There appears to be some type of gneissic 

foliation, with bands of predominantly quartz cutting through the rock. This rock is 

located at approximately the gradational change from granulite-amphibolite facies rocks. 

It is assumed that this rock underwent granulite facies metamorphism. The mineralogy 

that is seen in hand sample includes quartz, plagioclase, and hypersthene (orthopyroxene) 

with minor clinopyroxene. The proper name for this rock would be charnockitic gneiss. 

In thin section, the mineralogy is plagioclase feldspar + quartz + pyroxene (hypersthene) 

+ minor titanomagnetite. The zircons (and monazites) in V2-1 are primarily concentrated 

within or near the pyroxene grains. Very seldom are they found in the feldspar or quartz-

dominated zones. 
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Figure C-9: V2-1 hand sample. 

 

 

 
Figure C-10: V2-1 phase map. Red=quartz, opx=purple, cpx=blue, 

plagioclase=green, yellow=titanomagnetite. Red dots=zircon, green dots=monazite. 

 

V15-46: 

This rock is a predominantly white-grey, medium-grained granitic rock composed of 

plagioclase, quartz, and orthoclase. There appears to be a considerable contribution of 

biotite as well, with potentially some hornblende. In thin section, the mineralogy 

identified is plagioclase + quartz + orthoclase + biotite + muscovite + minor horneblende. 

V15-46 is a medium-coarse grained (with some minor fine-grained areas) granitoid rock. 

It appears as though there is a weak foliation delineated predominantly by the alignment 

of the darker biotite grains. This is also apparent in hand sample. This rock belongs to the 

Outer Granite Gneiss (OGG), and as such, has been weakly amphibolitilized. The high 

presence of quartz indicates that the amphibolite-facies metamorphic event was not that 



175 

 

strong, which is also indicated by the low percentage of hornblendes. Quartz grains quite 

obviously display PDF’s (planar deformation features), multiple orientations of which 

appear to be found in each individual grain. There is some myrmekite, which is common 

in amphibolite-facies rocks. The zircons in this sample are preferentially found within the 

feldspars (plagioclase and orthoclase), and along grain boundaries with quartz.  

 

Figure C-11: V15-46 hand sample. 

 

Figure C-12: V15-46 phase map showing plagioclase (red), quartz (orange), 

orthoclase (blue), and biotite/muscovite (pink). Horneblende not shown (minor 

phase). Yellow dots (zircon), white dots (monazite), blue dots (baddeleyite). 

 

 

 

Mineral Shape Modal % Colour in PPL 
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Estimate 

Plagioclase anhedral ~30 colourless 

Quartz subhedral-anhedral ~20-25 colourless-yellow (thickness) 

Orthoclase subhedral-anhedral ~20 colourless 

Biotite subhedral-anhedral ~5 brown 

Muscovite subhedral-anhedral less than 1 colourless 

Hornblende anhedral-subhedral less than 1 green-brown 

Table C-4: Mineralogy of V15-46. 

 

V15-56: 

The V15-56 hand sample displays a typical gneissic form, with some potassium feldspar, 

quartz, plagioclase, muscovite and hornblende. The sample is coarse grained, with mm to 

cm-scale grain size. The obvious compositional banding of orthoclase tells us this sample 

is a gneiss (Outer Granite Gneiss-OGG). V15-56 is a typical OGG rock, metamorphosed 

to ~amphibolite facies (hornblende). The gneissic form is seen in thin section as well, 

delineated best by the amphiboles and feldspars. There has not been much evidence of 

large-scale melting or recrystallization in this sample. The feldspars appear to be riddled 

with inclusions. Orthoclase is only found locally in one section of the thin section, as it is 

present in gneissic bands. Quartz grains show extensive undulose extinction, as well as 

obvious PDF’s (annealed). Plagioclase is quite abundant, and is also riddled with 

inclusions. Zircons in this sample appear to be preferentially found within plagioclase or 

spatially related to biotite grains. They appear to avoid congregation within the quartz 

grains and orthoclase. 
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Figure C-13: V15-56 hand sample 

 

Figure C-14: V15-56 phase map showing plagioclase (red), quartz (orange), 

orthoclase (blue), horneblende (purple). Zircons (yellow dots), monazites (blue) 

 

 

 

 

 

 

 

 

 

Mineral Shape Modal % Colour in PPL 
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Estimate 

Plagioclase anhedral 55-60 colourless 

Quartz subhedral-euhedral 20 colourless 

Orthoclase anhedral 10-15 colourless 

Muscovite sub-anhedral less than 1 colourless 

Hornblende sub-euhedral 5 or less green-brown 

Table C-6: Mineralogy of V15-56 

V-62:  

V-62 (2.052 Ga; Graham et al, 2005) is a primarily dark grey-green rock with some pink 

zones (feldspar). The grey-green appearance of the bulk of the rock comes from the 

quartz (grey-white) and acmite (green). V-62 is a coarse grained rock with a massive 

appearance, lacking the typical gneissic foliation seen in the granite gneisses from the 

core. The zircons in this sample are preferentially found within or directly related to the 

acmite grains. Interestingly, the acmite seems to have preserved similar planar features as 

those seen within the zircons, and there is often a ‘moat’ of material around zircons that 

appears similar in composition to the melt inclusions in zircons. Further information is 

provided in Moser et al. (2011). 
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Figure C-14: Phase map of V-62 showing quartz (orange), orthoclase (blue), apatite 

(white), and acmite (brown). Plagioclase was difficult to differentiate from quartz in 

this phase map, and is also shown as orange. Zircons are yellow dots, monazites are 

white dots. 

 

Mineral Modal % Estimate 

Quartz ~45 

Plagioclase Feldspar ~15-20 

Alkali Feldspar ~30 

Acmite ~5 

Apatite ~less than 1 

Table C-7: Mineralogy of V-62 

 

 

V15-55: 

V15-55 is a quartzite from an area of the Witwatersrand Supergroup that is known to host 

stishovite and coesite (Martini, 1978). No evidence of stishovite or coesite was 

specifically found in the thin section analyzed. This rock is a medium-grained quartzite, 

defined by triple junctions between quartz grains. A phase map for this sample was not 

created, as it was evident that the sample was entirely consisting of quartz.  

 

 

Appendix D: Shock Survey Results 
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Appendix E: Quantitative Energy Dispersive Spectroscopy Results 

 

 

V2-1 Quantitative EDS Results 
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V09-237 Quantitative EDS Results 
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Appendix F: Energy Dispersive Spectroscopy Glass Standards 

 

 

 

Table F-1 cont’d: 

 

Table F-1: Glass standard compositions. Standards provided by SPI supplies and 

C.M. Taylor Company. See Jarosewich (2012) for further information on many of 

these standards. 
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Figure F-1: Standard epoxy mount (bottom view), with silicon chip used for the 

carbon coat thickness measurements done on both the samples and standards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



195 

 

Curriculum Vitae 
Name:    Connor Davis 
 
Post-secondary  The University of Western Ontario 
Education and  London, Ontario, Canada 
Degrees:   2010-2014 BSc. Geology for Professional Registration 
 

The University of Western Ontario 
London, Ontario, Canada 
2014-2016 MSc. Geology 

 
Honours and    
Awards:   Dean’s Honours List (2014) 
 
 
Related Work   Graduate Teaching Assistant 
Experience   The University of Western Ontario 

2014-2016 
 
CSA-ASTRO Summer Student 
The University of Western Ontario 
2014 

 
 
 
 
 


	Microstructural Geochronology of Zircon Across the Central Uplift of the Vredefort Impact Structure, South Africa
	Recommended Citation

	ETD word template

