
RESILIENT INFRASTRUCTURE 
June 1–4, 2016 

 

 

 

 

STR-937-1 

BEHAVIOUR OF FRP-REINFORCED CFFT COLUMNS UNDER AXIAL 

COMPRESSION LOADING  
 

Asmaa Abdeldaim Ahmed  

M.Sc. Candidate, University of Sherbrooke, Canada 

 

Radhouane Masmoudi, PE., PhD 

Professor, University of Sherbrooke, Canada 

ABSTRACT 

This paper presents the test results of an experimental study aimed at investigating the axial behaviour of CFFT 

columns internally reinforced with steel and FRP bars. A total of eight reinforced concrete (RC) and concrete-filled 

FRP tube (CFFT) columns were constructed and tested until failure. All columns had 1900-mm in height and 213-

mm in diameter. The test parameters were: (1) internal reinforcement type (steel, glass FRP (GFRP), or carbon FRP 

(CFRP) bars) and amount, (2) GFRP tube thicknesses, and (3) nature of axial loading type (i.e. monotonic and 

cyclic). The experimental results revealed that the CFFT columns reinforced with GFRP bars exhibited similar 

responses compared to their counterparts reinforced with steel bars with no significant difference in terms of 

ultimate axial strength and strain capacities. Providing the GFRP tubes of the CFFT columns significantly enhanced 

the strength and strain capacities and attributed to change the mode of failure from axially dominated material 

failure (for the control columns) to instability failure (for the CFFT columns). Furthermore, the envelop curve of the 

CFFT reinforced column tested under axial cyclic loading is almost identical to the axial stress-strain curve of the 

same specimen tested under axial monotonic loading. However, the ultimate axial and hoop rupture strain was 

slightly larger for the specimen subjected to axial cyclic loading. Finally, using FRP bars instead of conventional 

steel bars in the CFFT columns can provide a step forward to develop a promising totally corrosion-free new 

structural system.  
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1. INTRODUCTION 

Fiber-reinforced polymer (FRP) composites have recently gained wide acceptance in the construction industry 

particularly of the aging infrastructures exposed to harsh environment conditions. An important application of FRP 

composites is as a confining material for concrete, both in the seismic retrofit of existing reinforced concrete (RC) 

columns and in the construction of concrete-filled FRP tubes (CFFTs) as earthquake-resistant columns in new 

construction. The promising concept of CFFT system, that may be further reinforced internally with steel or FRP 

bars, has raised great interest amongst researchers. The FRP tube acts as a stay-in-place structural formwork, a 

noncorrosive reinforcement for the concrete for flexure and shear using the multidirectional fiber orientation, 

provides confinement to the concrete in compression, and the contained concrete is protected from intrusion of 

moisture with corrosive agents that could otherwise deteriorate the concrete core (ACI 440. R-07-2007).  

To date, most of the experimental investigations performed on FRP confined concrete columns have considered 

short, unreinforced, small-scale concrete cylinders, tested under concentric and monotonic axial loading (Mirmiran 

et al. 2001; Fam et al 2003; Lam and Teng 2009; Ozbakkaloglu et al 2013; Vincent and Ozbakkaloglu 2014). In 

contrast, only few studies have so far investigated the effects of the slenderness ratio and internal longitudinal 

reinforcement type (steel or FRP bars) on the behavior of FRP confined concrete long columns (Mirmiran et al 

2001, Mohamed et al 2010, Fitzwilliam and Bisby 2010, and Masmoudi and Mohamed 2011). Yuan and Mirmiran 

(2001) carried out a comprehensive parametric study on the buckling of over 11 500 CFFT columns. They found 

that instability of CFFT columns might occur at a lower slenderness ratio than that of ordinary RC columns (without 
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FRP tubes); however, the ultimate capacity of the former might be higher than that of the latter. This attributed to 

the bilinear stress-strain behavior of the CFFT columns in which the buckling mode of failure initiated at the plastic 

branch of the curve, which was characterized by a lower Young’s modulus. They also recommended that the current 

slenderness limit of 22 for steel-reinforced concrete columns bent in single curvature be reduced to 11 for CFFT 

columns. Masmodui and Mohamed (2011) conducted an experimental investigation on the axial behavior of CFFT 

columns internally reinforced with steel or carbon FRP (CFRP) bars with different slenderness ratios ranging from 4 

to 20. The test results showed that the CFFT columns reinforced with CFRP bars behaved similar to that of CFFT 

columns reinforced with steel bars. The axial capacity of steel or CFRP-reinforced CFFT decreased as the 

slenderness ratios increased. This can draw the conclusion that the increase of the slenderness ratio of CFFT 

columns reinforced internally with steel or CFRP bars might be a critical factor that controls the mode of failure and 

might prevent such columns from attaining their ultimate load capacity.  

FRP bars have emerged as a realistic and cost-effective solution to overcome such corrosion problems. Using FRP 

bars instead of conventional steel bars in the CFFT columns can provide a step forward to develop a promising 

totally corrosion-free new structural system. Nonetheless, the axial behavior of FRP bars as longitudinal 

reinforcement in compression members has been quite limited, especially for the CFFT columns. To the knowledge 

of the candidate, no investigations have addressed the behavior of FRP-reinforced CFFT columns under axial cyclic 

compression loading. To address such knowledge gaps and properly understanding the general behavior of FRP-

reinforced CFFT columns under axial cyclic loading more experimental studies are needed.  This paper presents the 

test results of an experimental study aimed at investigating the behavior of CFFT columns reinforced with 

longitudinal steel or FRP bars tested under axial compression loading. A total of eight RC and CFFT columns were 

constructed and tested until failure. All columns had 1900-mm in height and 213-mm in diameter. The effect of 

internal reinforcement type and amount, GFRP tube thicknesses, and natural of loading (i.e. monotonic and cyclic) 

were addressed. 

2. EXPERIMENTAL WORK 

2.1 Material Properties 

All columns were constructed using a ready-mixed normal strength concrete (NSC) with an average compressive 

concrete strength of 44.1 MPa. The actual concrete compressive strength was determined from testing six concrete 

cylinders (150 × 300 mm) on the same day of testing the columns. Three types of longitudinal reinforcement were 

used to reinforce the control and CFFT columns: (1) deformed steel bars M15 (16 mm in diameter; 200 mm2 in 

cross-sectional area); (2) GFRP bars No. 3 and No. 5 (9.5 mm and 15.9 mm in-diameter; 71 mm2 and 199 mm2 in 

cross-sectional area, respectively); and (3) CFRP bars No. 3 (9.5 mm-in diameter; 71 mm2 in cross-sectional area). 

The mechanical properties of steel bars were determined from the standard test according to the ASTM 

A615/A615M-09 (2009) based on five representative specimens. Mild steel bar 3.4 mm in-diameter was served as 

transverse spiral reinforcement for the control specimens. The FRP bars had a sand-coated surface to improve the 

bond between the bars and surrounding concrete. The FRP bars tensile properties as provided by the manufacturer 

(Pultrall, Inc. 2009) are presented in Table 1.  

 

Table 1: Tensile properties of the GFRP, CFRP, and steel bars 

Reinforcement 

 type 

Nominal 

diameter 

(mm) 

Nominal area 

(mm²) 

Tensile modulus 

of elasticity 

(GPa) 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Ultimate strain 

(%) 

GFRP 9.5 71 45.4 - 856 1.89 

15.9 199 48.2 - 751 1.60 

CFRP 9.5 71 128 - 1431 1.20 

Wire (mild steel) 3.4 9 200 675 850 0.30* 

15M (deformed) 16  200 200 419 686 0.21* 

* Yield strain 
 

Two types of GFRP tubes (namely Type A and B), with an internal diameter of 213 mm and 2.9 and 6.4 mm wall 

thicknesses, respectively, were used as structural stay in-place formwork for the tested specimens (see Figure 1). 

The GFRP tubes were fabricated using filament-winding technique; E-glass fiber and Epoxy resin with different 
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fiber angles respect to the longitudinal axis of the tubes. The fiber orientations of the tubes were mainly in the hoop 

direction with no fibers in the longitudinal direction. Table 2 shows the dimensions and mechanical properties of 

FRP tubes. More details regarding the mechanical properties and standard tests of these tubes can be found 

elsewhere (Mohamed and Masmoudi 2010).  

 

 

Figure 1: Filament wound GFRP tubes 

 

Table 2: Dimension and mechanical properties of FRP tubes 

Tube 

type 

D 

(mm) 
frpt

 
(mm) 

No. of layers Stacking sequence 
fFRPU 

(MPa) 

εFRPU 

(%) 

EFRPU 

(MPa) 

fX 

(MPa) 

εX 

(%) 

EX 

(MPa) 

A 213 2.90 6 [60 º, 90 º, 60 º] 548 1.70 32260 55.2 0.62 8865 

B 213 6.40 12 [±60 º, 90 º, ±60 º, 90 º] 510 1.69 30200 59.2 0.75 7897 

D and tfrp are the internal diameter and thickness of the FRP tubes, respectively. fFRPU, εFRPU, and EFRPU  are, 

respectively, the ultimate strength, ultimate tensile strain, and Young’s modulus in the hoop direction; while fX, εX, 

and Ex are the ultimate strength, ultimate tensile strain, and Young’s modulus in the axial direction, respectively. 

2.2 Test Specimens 

A total of eight RC and CFFT circular columns were fabricated and tested under concentric axial monotonic or 

cyclic compression loading. Two RC control columns and six CFFT columns were internally reinforced with steel, 

Glass FRP (FRP) or CFRP bars. All columns had the same height (h=1900 mm) to diameter (D=213 mm) ratio of 

9.0. The investigated test parameters were: (i) GFRP tubes thicknesses (2.9 and 6.4 mm); (ii) internal reinforcement 

type (steel; GFRP; or CFRP bars) and amount; and (iii) natural of loading (i.e. monotonic and cyclic). The control 

RC columns were reinforced longitudinally with reinforcement ratio (ρL) equal to (3.4%), one specimen reinforced 

with steel bars and the other specimen reinforced with GFRP bars. Steel spiral stirrups (pitch = 50.6 mm) were used 

as transverse reinforcement and designed to have approximately similar hoop stiffness as the GFRP tube (Type A). 

The CFFT columns were laterally confined with GFRP tubes (Type A or B). One specimen was internally 

reinforced with deformed steel bars (6 M15; ρL = 3.4%) and laterally confined with tube type (A). Four specimens 

were reinforced with 6 GFRP bars No. 3 or No. 5 (ρL = 1.2 and 3.4%, respectively) and laterally confined with tubes 

type (A and B). Besides, one specimen (A-C(3.4)-C) was reinforced with longitudinal CFRP bars (6 No. 3; ρL = 1.2 

%) and laterally confined with tube type (A) and was designed to have similar axial stiffness as in specimen (A-

G(3.4)-C). All specimens were tested under single complete unloading/reloading axial cyclic compression loading, 

except one specimen (B-G(1.2)-M) which was tested under monotonic axial compression loading. Table 3 shows the 

test specimens’ details.  

 

The test specimens were labeled as follows: the first letter S, A, or B is defining “the type of lateral reinforcement: 

steel spiral stirrups, GFRP tube type (A), or tube type (B)” then followed by a letter S, G, or C indicating “the 

longitudinal reinforcement type: steel, GFRP, or CFRP bars”, respectively. The number between brackets indicates 

“the longitudinal reinforcement ratio”. The final letter refers to the natural of loading type “M for monotonic or C 

for complete unloading/reloading cyclic loading”. 
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2.3 Instrumentations and Testing Procedures 

Several strain gauges were mounted on the internal reinforcement bars prior the concrete casting and on concrete or 

GFRP tube surfaces before testing. Two strain gauges were bonded on two longitudinal bars at 180o degree apart at 

the mid-height of the column. Eight strain gauges were located at the column mid-height in both axial and lateral 

directions to measure the axial and lateral strains, respectively. Figure 2 (a & b) shows the strain gauges 

instrumentation on the reinforcing bars and GFRP tube surface. Two displacement transducers (DTs) were used to 

measure the axial deformation of the column over the full height as shown in Figure 3 (a). Additionally, two in-

plane linear variable displacement transducers (LVDTs) were located at the mid-height to record the lateral 

displacements of each column.  All columns were capped with a thin layer of the high strength sulphur to ensure 

uniform load distribution during testing. Before testing, both ends of the columns were further confined with bolted 

steel collars made from 10 mm thick steel plates in order to prevent premature failure at their ends. The specimens 

were loaded under axial compression loading using a 6000-kN capacity-testing machine. Loading and unloading in 

compression tests were achieved with load control at a rate approximately equal to 2.3 kN/s. During the test, load, 

axial and lateral displacements, and strain gauges were recorded automatically using a data acquisition system 

connected to the computer. Figure 3 shows the test setup: a) the test specimen inside the testing machine and b) data 

acquisition system.  

  
                                            (a)                                                                                 (b)                                                                                                                               

Figure 2: Instrumentations: (a) reinforcement bars instrumentations (Mohamed 2010) and (b) vertical and horizontal 

strain gauges on the GFRP tube surface 

     
                               (a)                                                                        (b) 

Figure 3: Test setup: (a) test specimen inside the testing machine; (b) a data acquisition system 
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3. TEST RESULT AND DISCUSSION 

3.1 Mode of Failure 

Different failure modes were observed for the control and CFFT tested columns. For the control columns reinforced 

with steel or GFRP bars showed similar responses. The failure was typically initiated with vertical cracks started to 

appear at approximately 85% of their peak loads and followed by concrete dilation and lateral deformation of 

transverse and longitudinal reinforcement leading to concrete cover spalling. Thereafter, the concrete core crushed 

and spiral stirrups fractured after buckling of the longitudinal bars. Moreover, inclined diagonal shear surface was 

observed leading to a separation of the concrete core into two column parts causing a sudden drop after reaching the 

peak load. On the other hand, the CFFT columns showed substantially different failure mode compared to that 

occurred for the control columns. The GFRP tube provided significant confinement attributing to shift the failure 

mode from axially dominated material failure for control columns to instability failure for the CFFT columns. The 

instability was evident in a significant single curvature mode shape of the bent column. Despite, the specimens 

experienced much lateral deflections beyond the ultimate load, the deflected columns were still stable and carried 

more axial load. Loading the specimens continued until localized failure occurred near the mid height of the column. 

Finally, GFRP tube rupture, concrete crushing, and local buckling of steel bars or crushing of the FRP bars in the 

compression side of the CFFT columns were observed. This observation is in agreement with the previous research 

works conducted on slender FRP-confined columns (Mohamed et al 2010 and Fitzwilliam et al 2010). Figure 4 

shows typical mode of failure for the tested columns. Table 3 summarizes the test results for all specimens.  

            
(a)                                                                               (b) 

 Figure 4: Typical mode of failure for the tested columns: (a) GFRP-reinforced control specimen; (b) GFRP-

reinforced CFFT column confined with tube (B)  

3.2 Axial and Lateral Stress-Strain Responses 

Figure 5 depicts the axial and lateral stress strain relationships for control and CFFT columns. Axial stress was 

obtained from dividing the axial load by the column cross-sectional. The axial and lateral stress-strain curves were 

plotted from the ultimate strain gauges bonded in the vertical and hoop directions at the mid-height of the column. 

The experimental results of the tested columns are shown in Table 3. In this Table 3, the experimental ultimate load 

(Pu), the confined concrete compressive strength (fcc
’)-that is the maximum compressive strength at the ultimate load, 

the corresponding axial strain (εcc’), the unconfined concrete compressive strength (fc’) from cylinders and the 

corresponding axial strain of unconfined concrete (εco’) are reported. As shown in Fig. 5 that the stress-strain 

diagrams for all columns exhibited almost similar initial stiffness with a relatively linear slope in the elastic range of 

the stress-strain curves, indicating that the elastic axial stiffness is not affected by confinement, regardless the 

investigated tested parameters. The stress-strain responses of the GFRP-reinforced control columns behaved similar 

to that of the steel-reinforced control column up to their peak load. However, the peak axial stress for steel-

reinforced column was slightly higher than that of their counterpart reinforced with GFRP bars by 11% (on 

average).  
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The axial stress-strain curves for GFRP and steel reinforced CFFT columns showed similar shapes of the hysteresis 

loops for the unloading/reloading paths. However, the steel-reinforced CFFT column hysteresis loop starts to open 

after the yielding of steel bars. The unloading paths for the CFFT columns reinforced with steel or FRP bars 

exhibited non-linear behavior. The degree of the non-linearity increases as the unloading axial strain increases. The 

reloading paths can be resembled as straight lines. The envelop curves of the reinforced CFFT- columns, 

representing the upper boundary of the axial cyclic stress-strain responses, showed bilinear responses with a 

transition zone in the vicinity of the unconfined concrete (fc’) followed by nearly stabilization of the load carrying 

capacity as shown in specimens B-G(3.4)-C and B-G(1.2)-C). The initial slope was almost identical for all the 

specimens while the second slope is highly governed by GFRP tubes stiffness rather than the internal reinforcement 

type and amount, particularly in thicker tube thickness.  

  
      (a) Ultimate hoop strains                                                    (b) Ultimate axial strain 

Figure 5: Axial cyclic stress-strain curves for control columns and reinforced-CFFT columns 

 

Table 3: Specimen’s details and test results 

ID 

Later 

reinforcement 

type  

Longitudinal bars 
P u 

(kN) 

f ’cc
a 

(MPa) 

f ’cc
/ f ’c 

 
cc 

(µε) 
cc/o 

h, min. 

(µε) 

h, aver. 

(µε) 

h, max. 

(µε) Type Area 

S-S(3.4)-C ϕ3.4@50.6 Steel 6 M 15 1948 54.60 1.23 -2510 1.04 377 599 836 

S-G(3.4)-C ϕ3.4@50.6 GFRP 6 No. 5 1575 47.20 1.08 -2711 1.12 653 935 1144 

A-S(3.4)-C A Steel 6 M 15 2402 67.38 1.53 -13749 3.83 2442 4697 9707 

A-G(3.4)-C A GFRP 6 No. 5 2603 73.06 1.66 -13718 4.63 5172 8087 9610 

B-G(3.4)-C B GFRP 6 No. 5 3455 96.97 2.20 -15578 5.49 4435 9745 15135 

B-G(1.2)-C B GFRP 6 No. 3 3272 91.82 2.08 -15563 5.96 11456 13787 16113 

B-G(1.2)-M B GFRP 6 No. 3 3068 86.09 1.95 -15514 5.15 3156 11356 16090 

A-C(1.2)-C A CFRP 6 No. 3 2086 58.55 1.33 -15486 4.65 4190 8240 11913 

* X-Y(aa)-Z*: X= lateral reinforcement type, where S=Steel spiral stirrups; A=GFRP tube type; and B= GFRP tube 

type B; Y=longitudinal reinforcement type, where S=steel bars; G= GFRP bars; and C=CFRP bars; aa=longitudinal 

reinforcement ratio; Z=loading type, where C=cyclic axial loading; and M=monotonic axial loading; a fcc’=Pu/Ac 

3.3 Stress-Strain Responses of Longitudinal Reinforcement 

Figure 6 shows the axial stress-strain relationships for the longitudinal reinforcement of the tested specimens. As 

shown in Fig. 6a for the control columns reinforced with the GFRP and steel bars the average axial strains reached 

to 2495 and 2100 µε, respectively. While the load carried by the reinforcement (computed by multiplying the area of 

the longitudinal reinforcement by the average axial strain and modulus of elasticity of the material) indicated that the 

GFRP and steel bars contributed to the ultimate load capacity of the columns by 10 and 15%, respectively. This 

confirms the integration of the GFRP bars used as the steel bars in compression for the tested columns (Mohamed et 

al 2014). For steel-reinforced CFFT column (A-S(3.4)- C), the stress-strain curve for steel bars showed a linear 

response until yielding stress at a stain approximately equal to 2100 µε (Fig. 6b). After yielding, the axial stress-steel 

strain increased progressively in the horizontal direction until failure. It was observed that the yield load occurred at 

load level 83% of the ultimate capacity. This indicated that the ultimate capacity did not show much enhancement 
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after yielding stage as a result of column instability occurred before initiation of the confinement lateral pressure. On 

the other hand, the GFRP-reinforced CFFT column initiated almost similarly response as steel-reinforced ones 

before steel yielding stage. Thereafter, the slope of axial stress-strain curve in the second region continued to 

increase slightly until failure. This can be attributed to the linear behavior of the FRP material. It showed be noted 

that both specimens (A-S(3.4)-C and A-G(3.4)-C) at the same longitudinal ratio (ρ=3.4%) achieved similar axial 

strength. This indicated that the contribution of the GFRP bars in the axial capacity of the CFFT column is 

comparable to that of the steel bars. Furthermore, increasing the longitudinal reinforcement ratio from 1.2 to 3.4% as 

in the tested specimens (B-G(3.4)-C and B-G(1.2)-C) demonstrated slightly increase in the axial load carrying capacity 

by only 5% (see Figure 6c).  

    
(a)                                                                  (b) 

 

 
                                                                                           (c) 

Figure 6: Axial stress-strain relationships for longitudinal bars of the tested columns  

3.4 GFRP Tube Thickness Effect on Confinement 

Table 3 shows the strength and strain enhancement ratios ( ccc ff  and cocc  ). Table 3 indicates that the strength 

and strain enhancement ratios of the CFFT columns (A-S(3.4)-C and A-G(3.4)-C) were increased ranging from 1.3 to 

1.5 and 3.7 to 4.4 times compared to their counterpart control specimens (S-S(3.4)-C and S-G(3.4)-C), respectively. As 

shown Figure 7 that providing the FRP tube as in tube A enhanced the strength and strain capacity by 52% and 

470%, respectively, in comparison with their control specimens which were reinforced with steel spiral stirrups and 

designed to have similar lateral stiffness as in Tube A. This can be attributed to the continuity of the FRP tubes 

rather than the discontinuity of the steel stirrups, which reflects the superior confining behavior of the FRP tubes 

over the steel stirrups to increase not only the strength but also the ductility of the CFFT columns (Mohamed et al 

2010). Increasing the GFRP tube thickness from 2.9 to 6.4 mm enhanced both the strength and strain ratios by 25% 

and 12%, respectively. This can be attributed to the enhancement of lateral confinement, as a result of increasing the 

stiffness of the tube, which increased the ultimate axial stress capacities and strain of the tested CFFT columns (see 

Figure 7).  
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Figure 7: Axial cyclic stress-strain curves for specimens under different confinement type and level (S-G(3.4)-C, A-

G(3.4)-C and B-G(3.4)-C) 

3.5  Effect of Loading Pattern 

The envelop curves of the reinforced CFFT- columns, represent the upper boundary of the cyclic axial stress-strain 

responses.The responses in Figure 8 imply that the envelop curve of the GFRP-reinforced CFFT column (B-G(1.2)-C) 

subjected to axial cyclic loading was almost identical to the axial stress-strain response of the monotonically loaded 

specimen (B-G(1.2)-M). Generally, the ultimate axial strain of the axial cyclic loading specimen’ was slightly higher 

than that of the specimen subjected to monotonic loading. This observation is consistent with the tests on FRP-

confined concrete cylinders (Lam and Teng 2009; Sho et al. 2006; Ozbakkaloglu and Akin 2012). Furthermore, the 

average ultimate lateral strains of specimen (B-G(1.2)-C) were 18% (on average) higher than the specimen (B-G(1.2)-

M), which is in agreement with pervious tests for axial cyclically loaded cylinders conducted by Lam and Teng 2009 

and Theodoros 2001.  

 

Figure 8: Stress-strain curves comparisons under axial cyclic and monotonic compression loading for specimens (B-

G(1.2)-C, and B-G(1.2)-M) 
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CONCLUSIONS 

This paper presented the results of an experimental study on the behavior of circular RC and CFFT columns 

internally reinforced with longitudinal steel or FRP bars tested under axial compression loading. The effect of 

internal reinforcement type and amount, GFRP tube thickness, and natural of loading type (monotonic or cyclic) 

were investigated. On the basis of the experimental test results and discussions of this paper, the following 

conclusions can be drawn: 

1. The CFFT columns reinforced with GFRP bars exhibited similar responses compared to their counterparts 

reinforced with steel bars at the same longitudinal reinforcement amount. No significant difference was 

observed in terms of ultimate axial strength and strain capacities. 

2. Increasing the thickness of the GFRP tubes significantly increased the ultimate axial and strain capacities of the 

CFFT reinforced tested columns. 

3. The envelop curve of the CFFT reinforced column under axial cyclic loading is almost identical to the axial 

stress-strain curve of the same specimen under monotonic loading. However, the ultimate axial and hoop 

rupture strain was slightly larger for the specimen subjected to cyclic loading.  

4. Using FRP bars instead of conventional steel bars in the CFFT columns can provide a step forward to develop a 

totally corrosion-free new structural system. 
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