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ABSTRACT  

Timber I-joists are a popular product in light-frame wood construction in North America. The design with timber I-

joists, however, has not yet achieved the same level of refinement compared to reinforced concrete or steel 

structures. One of the reasons is that timber I-joists have higher variability in their material properties than more 

homogeneous building materials. Additionally, although very commonly applied in practice, engineers and 

practitioners have limited knowledge and guidance for I-joists with web opening. As a result, in many cases the 

design of timber I-joists based on manufacturer’s specifications lead to very conservative solutions. The present 

research predicts the capacity of unreinforced and reinforced timber I-joists with openings from experimental 

results. A total of 100 unreinforced and 100 reinforced I-joists with opening were tested under four point loading. 

The capacity of the I-joists with opening was predicted from regression analysis. A sensitivity analysis was 

performed for the predicted equations using Meta-model of Optimal Prognosis (MOP) to evaluate the contribution 

of each parameter on the model responses. The research demonstrates that the reinforcement technique was efficient 

for I-joists with openings and the proposed equations were very accurate to predict the I-joists capacity.  
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1. INTRODUCTION 

Wooden I-joists are prefabricated engineering wood products which are popular in light frame construction as floor 

and roof elements because of their high strength and stiffness, low weight, dimensional stability and low cost in 

comparison to solid timber (AFPA 1999). During construction, openings are common to the webs of I-joists for 

passage of service ducts, plumbing and wiring. However, the presence of the web openings leads to reductions in 

stiffness and capacity. The current edition of the Canadian Standard for Engineering Design in Wood (CSAO86 

2014) provides no guidance for such openings in I-joists and the National Design Specification for Wood 

Construction in the US (NDS 2015) recommends manufacturer specifications for I-joists with openings.  

 

Previous research evaluated the failure mode and capacity reduction of wood I-joists with web openings. Morris et 

al. (1995) summarized three failure modes as web fracture, web buckling, and de-bonding of web-flange adhesive 

joint. Fergus (1979) studied the effect of circular openings on moment-governed 7.3m long I-joists and shear-

governed 2.4m long I-joists and found no significant change in stiffness with a web removal of up to 70% of total 

height. On the contrary, Maley (1987) and Wang and Cheng (1995) reported that openings reduced stiffness and 

shear capacity. Wang and Cheng (1995) investigated 2.8m to 3.6m long I-joists with rectangular web openings of 

33% to 100% web height placed at a distance of 0.5m to 1.0m from the support and observed that the shear strength 
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was reduced up to 79% when the opening height was equal to the height of web. No significant change occurred for 

opening heights of 33% of web height. Afzal et al. (2006) performed tests on wood I-joists with circular and square 

openings. The I-joists were 302mm and 406mm deep and the opening size was varied up to 100% of web height. 

While the opening size-to-web depth and the span-to-depth ratio both affected the capacity, the types of opening 

(circular/square) were found insignificant. Zhu et al. (2005) investigated the failure load of wood l-joists with and 

without web openings, observed that capacity decreases linearly with opening size, whilst location of opening has 

little effect on the reduction of capacity. Guan and Zhu (2004) performed finite-element-analyses (FEA) to predict 

the behavior of wood I-joists with openings where the opening sizes were varied from one-quarter to three-quarter to 

the height of the I-joists. They observed that the predicted capacity for I-joist with circular openings was 20% higher 

than the I-joists with rectangular openings. Islam et al. (2015) investigated the capacity of I-joists with flange 

notches and found that the capacity reduced up to 80% compared to without any notches.  

 

Previous studies used several techniques to increase the flexural and shear capacity of timber beams such as: (a) 

attaching metal, (b) solid timber, (c) EWP plates, and (d) Fiber-Reinforced-Polymer (FRP) sheets either by 

mechanical means or adhesive bonding (Franke et al. 2015). Morrissey et al. (2009) investigated reinforced I-joists 

with steel angles attached to both sides of the web and the flange above and below the openings. They obtained an 

increase in capacity up to 39%. Polocoser et al. (2013) reinforced wood I-joists around the openings with U-shaped 

LSL, OSB patches and OSB collars. Some of the tested reinforced specimens regained the capacity of the original 

joists and among the three different techniques, the OSB collar was found to be most effective.  

2. EXPERIMENT 

2.1 Objective 

Placing web openings in I-joists is common practice that can lead to significant reduction in stiffness and capacity 

which – if not appropriately considered in design – may cause excessive deflections and premature failure of the 

element and possibly the structure. Practitioners, however, are not provided with sufficient design guidance that 

captures the reduction in capacity and stiffness of I-joists with web openings. The objectives of this research are to 

investigate the impacts of: i) reinforcing I-joists with web openings with OSB collars on the failure modes, capacity 

and stiffness on I-joists with web openings; ii) predict the capacity of I-joists with opening with sensitivity analysis.  

2.2 Materials and Methods 

All wood I-joists’ specimens for experiment were prepared at the facility of AcuTruss Industries Ltd., Canada. The 

specifications were chosen from the NASCOR NJH12 I-joist series (Nascor 2010). Flanges were made of LVL from 

SPF No2, webs were made from OSB manufactured to meet the requirements of the Performance Standard for 

Wood-Based Structural-Use Panels (PS2 2010) and CSA-O325 (2012). The height of the specimens was 302mm, 

the flange width and height were 63.5mm and 38mm, respectively, and the thickness of the web was 9.5 mm, see 

Figure 1. The material for the subsequent retrofit was OSB from the I-joist fabrication. I-joists with two different 

span lengths of 3.66m (12ft) and 6.10m (20ft) were tested. They were categorized into five series (series A to E) of 

specimens. Ten beams from each series of a total of 100 specimens were tested. Series A was the control beam 

without any openings. Series B and C had an opening of diameter (D) equal to the height of the web (212.7mm). 

The distance of the opening from the edge (Le) in series B was 305mm for both 12ft and 20ft specimens, while in 

series C opening were located at 610mm and 915mm for 12ft and 20ft specimens, respectively. In series D and E, 

the diameter of the opening was 152.4mm and 101.6mm respectively and the opening was located 305mm from the 

edge. The size and location of the openings are described in Figure 1 and Table 1. 

 

I-joists with the same dimensions and openings as series B to E were reinforced with OSB collars to investigate the 

impact of the retrofit on capacity and stiffness. Five more series (series F to J) of specimens with the same span 

length of 3.66m (12ft) and 6.10m (20ft) were tested after being reinforced around the opening with an OSB collar. 

Collars were located on only one side of the web and consisted of two layers, each layer composed of 9.5mm 

(3/8inch) OSB. The first layer was arranged around the opening and glued directly onto the web. The second layer 

was glued on top of the first collar. The reinforcement length (Lr) of the OSB collar on each side of the opening was 

kept equal to the diameter of the opening (series F to I). Only for series J, the collar (reinforcement) length was 

doubled to evaluate the capacity improvement due to OSB collar length. The details of the reinforced I-joists are 

given in Figure 2 and Table 1. A total of 100 reinforced specimens were tested with ten replicates in each test series. 
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Figure 1: Schematic of I-Joists with web opening and retrofitting (left), cross section (right). 

 

Table 1: Summary of test series and test results 

I-Joist 
Series 

ID 

L D Le Lr k Fexp 

mm mm mm mm N/mm COV kN COV 

Control 
12-A 3650 - - - 1220 17 40.5 30.4 

20-A 6100 - - - 310 10 28.9 14.3 

I-
Jo

is
ts

 w
it

h
 O

p
en

in
g

 

12-B 3650 213 305 - 1000 10 18.3 11.7 

12-C 3650 213 610 - 1035 10 17.1 9.72 

12-D 3650 150 305 - 1080 14 27.5 9.5 

12-E 3650 100 305 - 1165 16 36.5 18.9 

20-B 6100 213 305 - 364 12 20.7 13.1 

20-C 6100 213 914 - 315 14 20.1 13.1 

20-D 6100 150 305 - 345 11 27.9 15.2 

20-E 6100 100 305 - 305 9 26.3 24.8 

R
ei

n
fo

rc
ed

 I
-J

o
is

t 

12-F 3650 213 305 D+D+D 1045 13 21.9 13.4 

12-G 3650 213 610 D+D+D 1085 8 20.5 9.7 

12-H 3650 150 305 D+D+D 1115 9 35.2 13.9 

12-I 3650 100 305 D+D+D 1180 14 40.7 24.1 

12-J 3650 100 305 2D+D+2D 1240 15 45.9 24.7 

20-F 6100 213 305 D+D+D 310 12 21.1 13 

20-G 6100 213 914 D+D+D 310 8 22.2 10.6 

20-H 6100 150 305 D+D+D 305 9 30.5 16.8 

20-I 6100 100 305 D+D+D 320 15 29.2 9.9 

20-J 6100 100 305 2D+D+2D 315 11 26.7 15.1 
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Figure 2: Retrofit of I-joists with two OSB ply in collar system 

The specimens were tested as simply supported beams in four-point bending according to ASTM D5055 (2013). The 

loads were applied by a hydraulic actuator with a loading rate of 4mm/min. Hollow structural section (HSS) 

rectangular tubes were placed vertically on both sides of the flanges along the length of I-Joists at a spacing of 

305mm to ensure concentric loading and to prevent lateral buckling (see Figure 1). The joist deflections were 

measured by placing an extensometer at mid-span. The stiffness was calculated for the range of 10% to 40% of 

capacity according to EN 26891 (CEN 1991) Three cameras, focused at the mid-span, at the location of opening and 

at the loading point, were installed to monitor the crack pattern and failure of the specimens.  

2.3 Results  

The load-deflection all specimens were linear up to failure. The average capacities and stiffness for all test series as 

well as the corresponding coefficient of variations (COV) are summarized in Table 1.  

 

Series A represents the control beams without any opening. The 12ft I-joists failed in either shear at support or 

flexure at mid-span. The failure was initiated mostly by the presence of knots in the flanges or due to de-bonding of 

the OSB webs. In the case of 20ft I-joists, all the specimens failed in flexure at mid-span and there was no shear 

failure in any of the 20ft specimens. The presence of an opening changed the failure mode and capacity of the I-

joists. Series B specimens featured an opening equal to the height of the web and located 305mm from the leading 

edge. All 12ft and most 20ft series B I-joists failed in shear at the opening, the exceptions being specimen 20-B9 

which failed in shear right next to the opening and specimen 20-B10 which experienced flexural failure at mid-span. 

In both specimens failure was initiated at a knot. Series C featured the same opening size as series B but located at 

610mm and 915mm from the support for 12ft and 20ft I-joists, respectively. All specimens of series C failed in shear 

at the location of the opening. All specimens of series D (openings 66% the height of the web and located 305mm 

from the support) failed in shear, with failure starting diagonally at the opening by cracking of OSB followed by 

web-flange joint de-bonding and finally diagonal splitting of the flange. Half of the 12ft specimens of Series E 

(openings about 50% of the web height, also located at 305mm from the support) failed in shear diagonally along 

the opening similar to series D. The failure patterns of the 20ft I-joists were similar to the control series A with all 

specimens failing in flexure close to mid span and capacity was similar to the control beams. 

 

The opening in each I-joist of series F through I were reinforced by attaching an (Lr = D) OSB collar around the 

opening. This collar prevented abrupt failure at the location of the opening. The majority of specimens still failed in 

shear diagonally which was followed by de-bonding of web-flange joint. The OSB collar de-bonded at the end of the 

failure process. In two series F specimens (20-F2 and 20-F10), the OSB collar prevented the shear failure and 

instead induced a flexural failure. In series G, all 12ft I-joists and all but two 20ft specimens failed in shear 

diagonally at opening. The exceptions failed in flexure at mid-span. Compared to unreinforced series B the capacity 

of both 12ft F and G series specimens was found to be 19% higher. Most 12ft and all 20ft specimens from series H 

failed in flexure, similar to control I-joists series A, and compared to unreinforced series D, their capacity increased 

27% and 13%12ft20ft, respectively. Likewise, in series I the reinforcement collar efficiently prevented failure at the 

opening and the failure of the both 12ft and 20ft I-joists was in flexure.  Compared to unreinforced series E, average 

capacity improved by 4% and 13%, respectively, for 12ft and 20ft reinforced I-joists. In series J, the length of the 

OSB Collar (Layer 1) OSB Collar (Layer 2)

+

a = 30 mm

b = 60 mm

a b a b
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OSB collar on each side of the opening was doubled compared to series I to Lr = 2D. Most of the 12ft and all of the 

20ft reinforced I-joists failed similar to the control specimens either in flexure at mid-span or in shear at the loading 

point. The capacity of the 12ft and 20ft I-joists increased 17% and 8%, respectively, compared to unreinforced series 

E and even 14% and 5% compared to the control series.  

3. I-JOISTS CAPACITY PREDICTION 

A regression analysis was performed using the test results to develop models to predict the capacity of unreinforced 

and reinforced I-joists with web openings. I-joist span length-to-height ratio (L/h) and opening size to web height 

ratio (D/hw) affect the capacity of I-joist (Afzal et al. 2006) and were considered in the regression model. The 

proposed equations for unreinforced and reinforced I-joists with web opening are: 

 

[1] 
unreinforced 64.8 1.5( / ) 54.3 1.9( / )

w w

D DP L h L h
h h

         
   

            

 

[2] 
reinforced 105.6 3.5( / ) 90.8 3.8( / )

w w

D DP L h L h
h h

         
   

             

 

where, L is the I-joist span length (m), h is the height of I-joists, D is the size of opening size and hw is the height of 

web. The predictions using these models compared against the test results are illustrated in Figure 3.  

 

 
 

Figure 3: Predicted vs experimental capacity: unreinforced I-joists (left) and reinforced I-joists (right). 

4. SENSITIVITY ANALYSIS 

4.1 Methods 

Sensitivity analysis quantifies the uncertainty in the output of a model qualitatively or quantitatively, to different 

sources of variation in the input of a model. In addition, it also analyzes the contribution of each input variable to the 

model response. In this research, the sensitivity analyses were performed using the commercially available software 

package OptiSlang by Dynardo (Most and Will 2008). The design of experiments (DOE) for random sampling for 

sensitivity analysis utilizes Advanced Latin Hypercube Sampling (ALHS). ALHS is very effective to represent the 

non-linearity of the model in a reduced space. Meta-models were used to represent the model responses of surrogate 

functions in terms of the model inputs. A surrogate model is often advantageous due to the inherent complexity of 

many engineering problems to approximate the problem and to solve other design configurations in a smooth sub-

domain (Sacks et al. 1989, Simpson et al. 2001). However, most meta-models, i.e. Moving Least Square (MLS) 

approximation, Kriging or Neural Networks requires a high number of samples to represent high-dimensional 

problems with sufficient accuracy. To overcome these limitations, the Meta-model of Optimal Prognosis (MOP) was 
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developed (Most and Will 2008), an automatic approach for the optimal filter meta-model configurations. By doing 

this, a surrogate model of the original physical problem can be used to perform various possible design 

configurations without computing any further analyses. To develop an automatic approach requires defining a 

measure for the characterization of the approximation quality. The MOP uses the generalized coefficient of 

determination (CoD) which results for the special case of pure polynomial regression. The CoD assesses the 

approximation quality of a polynomial regression by measuring the relative amount of variation explained by the 

approximation (Montgomery and Runger 2003) as follows: 

[3] 2 21 ; 0 1R E

T T

SS SS
R R

SS SS
                             

where, SST is the equivalent to the total variation, SSR represents the variation due to the regression, and SSE 

quantifies the unexplained variation as follows: 

[4] 2 2 2

ˆ

1 1 1

ˆ ˆ( ) , ( ) , ( )
N N N

T i Y R i E i iY
i i i

SS y SS y SS y y 
  

                      

However, in order to penalize the over-fitting, Montgomery and Runger (2003) also introduced the adjusted 

Coefficient of Determination as in Equation 5.  

[5] 2 21
1 (1 )adj

N
R R

N p


  


                            

where, N is the number of sample points and p is the number of regression co-efficient. The quality of an 

approximation was evaluated in terms of the prognosis quality by using an additional test data set. The agreement 

between this real test data and the meta-model estimates is measured by the coefficient of prognosis, CoP (Most and 

Will 2008) defined as in Equation 6.  

[6] 

2

ˆ

ˆ.
; 0 1

Test Test

Test Test

Y Y

Y Y
CoP CoP

 

  
    

 
 

E
                    

An optimal metamodel can be searched with a defined CoP. Each meta-model is investigated for all possible 

significance by varying the significance quantile from 99% to a given minimal value. A polynomial regression is 

developed thereafter amd the coefficients of importance (CoI) are calculated for each variable following Equation 7.  

 

[7] 2 2

, , ,iY X Y YCoI R R X X i:
                            

 

Where, 2

,YR X
is the CoD of the full model including all terms of the variables in X and 2

,YR X i:
is the CoD of the 

reduced model, where all linear, quadratic and interactions terms belonging to Xi are removed from the polynomial 

basis. The threshold CoImin is varied from 1% to a given value.  Based on the CoI of each variable the meta-model is 

built up and the coefficient of prognosis is computed. The optimal meta-model is chosen from the maximum CoP 

configuration. The training data set is used for the construction of meta-model, while the test data set is used for the 

calculation of the CoP. On the contrary, a merge data set from training and test data is used for the correlations for 

the significance filter and the regression for the importance filters. However, if no additional test data set is 

available, the initial data set is split into training and test data in a way that each data set the response ranges are 

represented with maximum conformity to the entire data set.  

The sensitivity analysis in Optislang involves following steps: 

 

1. A solver chain was created in Optislang for the sensitivity analysis.  

2. The range of the input parameters and their types (i.e., deterministic and/or stochastic) were defined.   

3. ALHS sampling technique was used for DOE and total 1,000 samples were created randomly with the defined 

input parameters range.  

4. An input file created for the equation which link to the ALHS for sampling. 

5. Python script was used as a solver and calculates the output.  

6. The solver chain was run for n times (1000 times) to generate all output.  

7. The MOP was created to quantify the contribution of each parameter on the proposed model.  
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The algorithm for the sensitivity analysis is presented in Figure 4. The parameters setting for the sensitivity analysis 

is given in Table 2.  

 

Table 2: Parameters for Sensitivity analysis in Optislang 

Sampling method ALHS 

Number of samples 1,000 

Meta-models Polynomial, Clasic MLS, Interpolating MLS 

Solver Python script 

Sample splitting ratio 50% 

Number of steps 10 

CoI limit 0-5% 

Rank criteria CoDadj 

Parameters (range):  

L/h (x1) 4.0-25.0 

D/hw (x2) 0.1-1.0 

 

 

 
 

Figure 4: Algorithm for sensitivity Analysis in Optislang 

 

4.2 Results  

The impact of each input parameter on the output along with the models three dimensional space is illustrated in 

Figures 5 and 6 showing the MLS approximation of the unreinforced and reinforced I-joist’s capacity with respect to 

the model input parameters L/h (x1) and D/hw (x2). The MLS approximation exhibited the variation of the output in 

the predicted model space. A smooth surface of the output (see Figure 5 and 6) indicated a good approximation of 

the proposed model. By using 1,000 samples, a CoP of 100% was achieved for the proposed models which indicated 

a perfect approximation using MOP. By comparing the CoP value of each parameter, it was found that both 

parameters L/h (x1) and D/hw (x2) influenced I-joists capacity significantly, where, D/hw (x2) showed higher impact 

compared to L/h (x1).  

 

Input file for 

Equation 

Solver (Python 
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Output: 

Capacity 
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ALHS) 

Solver 

Chain 

 

Meta Model of Optimal Prognosis (MOP) 

Post Processing 

Se
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An
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sis 

Runs solver chain for n times 
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Figure 5: MLS approximation of the unreinforced capacity, Pu with respect to the two input parameters, L/h (x1) and 

D/hw (x2) (left) and CoP values of each parameter (right). 

 
Figure 6: MLS approximation of the reinforced capacity, Pu with respect to the two input parameters, L/h (x1) and 

D/hw (x2) (left) and CoP values of each parameter (right). 

5. CONCLUSION 

The experimental and analytical investigation on 12ft and 20ft wood I-joists with web openings (unreinforced and 

reinforced) allows the following conclusions to be drawn: 

 

1. An opening had more impact on smaller span beams. Most of the 12ft test specimens with openings showed 

premature shear failures at the location of the opening. The capacity of 12ft I-joists was reduced up to 54%, 

while for 20ft I-joists, the capacity was reduced only up to 21%.  

2. In the case of 20ft I-joists, presence of openings about half of the web height did not have any effect on longer 

span beams. The statistical analyses confirmed these findings. 
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3. The reinforcement of I-Joists with OSB collars significantly increased the capacity (27% and 20% respectively 

for 12ft and 20ft I-joists). Furthermore, the capacities of the reinforced I-Joists (series I and J) were found 

almost equal to the control series capacity.   

4. The proposed regression model to predict the capacity of an I-joist with reinforced openings was also 

sufficiently accurate. 

5. The sensitivity analysis using MOP and ALHS sampling technique showed a smooth variation of the proposed 

model with respect to input parameters. 
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