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ABSTRACT  

Cross-laminated timber (CLT) is gaining popularity in residential and non-residential applications in the North 

American construction market. An accurate quantification of in-plane stiffness of the CLT walls with openings is 

required to design a CLT structure subjected to lateral loads. Nevertheless, till today, no general approach is 

available for the design of CLT-members loaded in plane and there are no standardized methods for determining the 

stiffness of CLT shearwalls in the respective material design standards: the CSA O86 in Canada, and the NDS in the 

US. This study aims to quantify the stiffness of CLT walls with openings under in-plane loading. A finite element 

(FE) model of CLT walls was developed modelling wood as orthotropic elastic material and the glue-lines between 

layers using non-linear contact elements. The FE model was verified from test results of CLT panels under in-plane 

loading. A parametric study was performed to evaluate the change in stiffness of CLT walls with the variation of 

opening size and shape. A simplified equation to predict the in-plane stiffness of CLT walls with openings was 

proposed. Subsequently, a sensitivity analysis was performed using Meta-model of Optimal Prognosis (MOP) to 

evaluate the contribution of each parameter on the model response.  
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1. INTRODUCTION 

Cross-laminated timber (CLT) is an engineered wood product categorized as “mass” timber. The use of CLT is 

increasingly gaining popularity because of its many benefits when compared to either light-fame wood construction 

or concrete and steel construction. The cross lamination provides dimensional stability, strength and rigidity. CLT 

has a low carbon footprint due to low embodied greenhouse gas emissions and carbon storage capacity of wood. The 

good thermal insulation and a fairly good behaviour in case of fire are added benefits. Furthermore, it is a clean 

product to work with resulting in less waste and dust produced on site which is better in terms of health and safety. 

CLT panels consist of several layers of boards stacked crosswise and glued together. A CLT element has usually an 

uneven number of layers of boards glued orthogonally to form a solid panel. Pre-cut wall and floor panels are 

assembled on the construction site using various types of screws and steel connectors to form the structural system.  

 

To design CLT shear walls, understanding of the mechanical properties of CLT panels and connectors connecting 

them is needed. Several studies have been carried out and some analytical equations to predict the mechanical 

properties of CLT panels loaded in plane are proposed. E.g., Blass and Fellmoser (2004) developed a method for the 

design of CLT panels under in-plane loading based on the composite theory. The composition factors (k-factors) a 

count for the strength and stiffness of CLT panels in various directions, based on single layer properties. 

Moosbrugger et al. (2006) proposed a model based on the regular periodic internal geometric structure of the CLT 
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wall element, considering uniform shear loading on wall boundaries. They defined the complex internal structure of 

CLT elements with a unit cell called Representative Volume Element (RVE). The RVE extends over the whole plate 

thickness and is sub-divided into Representative Volume Sub-Elements (RVSE). Bogensperger et al. (2007) 

experimentally investigated the in-plane behavior of CLT panels and verified their results with FE analyses. The 

effective shear modulus was calculated and a deviation of the shear modulus of up to 26% was reported comparing 

tests results and FE analyses. Bogensperger et al. (2007) also performed FE analysis and further verified the studies 

by Moosbrugger et al. (2006). Their FE model accurately predicted the effective shear of CLT panels. Finally, Flaig 

and Blass (2012) developed another method for shear design of CLT beams loaded in plane and proposed equations 

for shear stress and stiffness and verified them with test results. Few of these studies, however, addresses openings 

in CLT walls. 

 

Openings for doors and windows are very common in the CLT wall panels. The areas around an opening experience 

stress concentrations that can reduce in-plane stiffness and load bearing capacity of the panel. Moosbrugger et al. 

(2006) performed FE analyses as an attempt to quantify the stiffness of a CLT panel with a quadratic opening at the 

center. They estimated the reduced stiffness by taking the ratio of the effective wall area (Awall) to total area (Atotal) 

where, Awall =Atotal – Aopening. However, the results from this estimate overestimated the reduced stiffness when 

compared to the test results. Dujic et al. (2007) experimentally investigated the behavior of CLT wall panels with 

different opening locations. Four cyclic tests were performed. It was observed that for a wall with an opening equal 

to 30% of the wall area, the strength of the wall did not change. However, the stiffness was reduced by about 50%. 

A FE parametric study was conducted to determine the influence of the size and layout of openings on the strength 

and the stiffness of CLT walls. Equation (1) was proposed to calculate the reduced stiffness of the CLT wall panels: 
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where, Kopening is the stiffness of CLT walls with opening, and r is the panel area ratio given in Equation 2. 
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where, H is the height of wall, ∑Li is the summation of length of full height wall segments (excluding length of 

openings from total length), and ∑Ai is the summation of openings area. 

 

Accurate quantification of the in-plane stiffness of the shear-walls is required to design a CLT structure subjected to 

lateral loads. Nevertheless, till today, no general approach is available for the design of CLT-members loaded in 

plane. In fact, the strength and the stiffness properties reported in different technical approvals for verification of in 

plane resistance of CLT walls vary significantly (Flaig and Blass 2012). In addition, there are no standardized 

methods for determining the stiffness and resistance of CLT shearwalls in the respective material design standards: 

the CSA O86 (2014) in Canada, and the NDS (2015) in the US. The objectives of this research are to calculate the 

in-plane stiffness of CLT walls with the variation of size and shape.  
 

2. NEW MODEL FOR STRENGTH AND STIFFNESS OF CLT WALLS WITH OPENINGS 

2.1 Experiments 

Two sets of experiments were used for model calibration. The first set consisted of four point bending tests on CLT 

panels was performed at FPInnovations, Canada. Three series of CLT panels (2 replicates of each type) were tested 

with a span length of 3.5m, 5.9m, and 8.4m, see Figure 1. The specimens were 1.2m high and laterally supported. 

The 5-ply boards with a thickness of 175mm were from Canadian S-P-F and manufactured at NORDIC. The 

deformation under quasi-static monotonic loading was measured at mid span by LVDT which allowed calculating 

the in-plane stiffness. The second set of tests consisted of quasi-static monotonic tests on CLT walls at 

FPInnovations, Vancouver, Canada (Popovski et al. 2010). The CLT panels were 3-ply with 2.3m x 2.3m panel size 

and thickness of 94mm made of European spruce and manufactured at KLH. Several types of connectors (hold-

downs and steel brackets) and fasteners (annular ring nails, spiral nails, screws, and timber rivets) were used for the 

connections.  
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Figure 1: CLT beam (left) and wall (right) test configurations. 

2.2 FE Model Development 

A 3D FE model of CLT panel was developed in ANSYS (Figure 2). The CLT panel was modelled using 20-node 

SOLID186 element where each node has three degrees of freedom. Elastic material properties were assigned in each 

orthogonal direction of the lamella as provided by the manufacturers’ specifications. The glue line in between panels 

was modelled using contact elements (Conta_174 and Targe_170). Test results showed a very stiff glue-line, 

therefore, a friction coefficient of 1.0 was used. The connection between the CLT wall and floor was modelled using 

linear COMBIN14 spring elements. The stiffness properties for the connections were taken from previous research 

(Schneider 2015). The FE model was validated using the load-deformation curves from the test results, see Figure 3. 

The elastic stiffness from the FE analysis closely matched with the experimental results. 

   

Figure 2: FE models of CLT beam (left) and wall (right).  
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Figure 3: Experimental vs FE load-deflection curves.  

2.4 CLT walls with openings 

Subsequently, a parametric numerical study was performed with variation of the size and shape of openings. The 

stiffness reduction of CLT walls with different number, size, and shape of openings was investigated. Typical 

openings like, a window and/or a door as seen in Figure 4 were considered. A maximum of up to half of the total 

wall area was removed in the FE analysis. It was found that with a removal of half of the wall area the stiffness of 

the wall reduced more than 60%. As seen Figure 5(a), the stiffness reduction is non-linear with respect to wall area 

reduction. 

 

Figure 4: Typical openings in CLT Walls. 
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Figure 5: Effect of opening on CLT wall stiffness. 

 

2.5 Proposed equation  

The objective of the research was to propose an analytical model to calculate the in-plane stiffness of CLT walls 

with openings. From the FE analysis, it was found that the ratio of opening to wall area, Ao/Aw, the aspect ratio of 

opening, ro, and the aspect ratio of opening to wall, ro/w affect the reduction in wall stiffness (Figure 5). Therefore, 

these parameters are considered, see Equation 3. The equation was accurate in predicting stiffness of CLT walls with 

opening when compared to a previously proposed model by Dujic et al. (2007), see Figure 6.   
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where, Ko and Kw are the stiffness of walls with and without opening, respectively; Ao and Aw are the area of walls 

with and without opening, respectively; ro is the aspect ratio of opening (smaller to larger dimension); and ro/w is the 

maximum aspect ratio of opening to wall dimension (max of lo/L or ho/H, where, L and H is the wall length and 

height, respectively, and lo and ho is the opening length and height, respectively).   
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Figure 6: FE vs calculated stiffness of CLT wall. 

3. SENSITIVITY ANALYSIS 

3.1 Methods 

A sensitivity analysis quantifies the uncertainty in the output of a model qualitatively or quantitatively, to different 

sources of variation in the input of a model. In addition, it also analyzes the contribution of each input variable to the 

model response. In this research, a sensitivity analysis was performed in the commercial software package 

optiSLang (Most and Will 2008). The design of experiments (DOE) for random sampling for sensitivity analysis 

utilizes Advanced Latin Hypercube Sampling (ALHS) technique. ALHS is effective to represent the non-linearity of 

the model in a reduced space. Meta-models were used to represent the model responses of surrogate functions in 

terms of the model inputs. A surrogate model is often advantageous due to the inherent complexity of many 

engineering problems to approximate the problem and to solve other design configurations in a smooth sub-domain 

(Sacks et al. 1989, Simpson et al. 2001). However, most meta-models i.e., Moving Least Square (MLS) 

approximation, Kriging or Neural Networks requires an high number of samples to represent high-dimensional 

problems with sufficient accuracy. To overcome these limitations, the Meta-model of Optimal Prognosis (MOP) 

approach was developed for the optimal filter meta-model configurations (Most and Will 2008). By doing this, a 

surrogate model of the original physical problem can be used to perform various possible design configurations 

without computing any further analyses. To develop an automatic approach requires defining a measure for the 

characterization of the approximation quality. The MOP uses the generalized coefficient of determination (CoD) 

which results for the special case of pure polynomial regression. The CoD assesses the approximation quality of a 

polynomial regression by measuring the relative amount of variation explained by the approximation as follows: 
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where, SST is the equivalent to the total variation, SSR represents the variation due to the regression, and SSE 

quantifies the unexplained variation as follows: 
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However, in order to penalize the over-fitting, Montgomery and Runger (2003) also introduced the adjusted 

Coefficient of Determination, see Equation 6:  
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where, N is the number of sample points and p is the number of regression co-efficient. The quality of an 

approximation was evaluated in terms of the prognosis quality by using an additional test data set. The agreement 

between this real test data and the meta-model estimates is measured by the coefficient of prognosis, CoP (Most and 

Will 2008) as defined in Equation 7:  
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An optimal metamodel can be searched with a defined CoP. Each meta-model is investigated for all possible 

significance by varying the significance quantile from 99% to a given minimal value. A polynomial regression is 

developed thereafter and the coefficients of importance (CoI) are calculated for each variable following Equation 8.  

[8] 
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Where, 2

,YR X
is the CoD of the full model including all terms of the variables in X and 2

,YR X i:
is the CoD of the 

reduced model, where all linear, quadratic and interactions terms belonging to Xi are removed from the polynomial 

basis. The threshold CoImin is varied from 1% to a given value. Based on the CoI of each variable the meta-model is 

built up and the coefficient of prognosis is computed. The optimal meta-model is chosen from the maximum CoP 

configuration. The training data set is used for the construction of meta-model, while the test data set is used for the 

calculation of the CoP. On the contrary, a merge data set from training and test data is used for the correlations for 

the significance filter and the regression for the importance filters. However, if no additional test data set is 

available, the initial data set is split into training and test data in a way that each data set the response ranges are 

represented with maximum conformity to the entire data set. The sensitivity analysis in optiSLang involves 

following steps: 

1) A solver chain was created in optiSLang for the sensitivity analysis.  

2) The range of the input parameters and their types (i.e., deterministic and/or stochastic) were defined.   

3) ALHS sampling technique was used for DOE and total 1,000 samples were created randomly with the 

defined input parameters range.  

4) An input file created for the proposed equation which link to the ALHS for sampling. 

5) Python script was used as a solver and calculates the output.  

6) The solver chain was run for n times (1000 times) to generate all output.  

7) The MOP was created to quantify the contribution of each parameter on the proposed model.  

The algorithm for the sensitivity analysis is presented in Figure 7. The parameters for the sensitivity analysis are 

given in Table 1.  

 

 

Table 1: Parameters for Sensitivity analysis in optiSLang 

Sampling method ALHS 

Number of samples 1,000 

Meta-models Polynomial, Clasic MLS, Interpolating MLS 

Solver Python script 

Sample splitting ratio 50% 

Number of steps 10 

CoI limit 0-5% 

Rank criteria CoDadj 

Parameters (range):  

Ao/Aw(x1) 0.05-1.2 

ro/w(x2) 0.1-0.8 

ro(x3) 0.3-2.0 
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Figure 7: Algorithm for sensitivity Analysis in optiSLang 

3.2 Results of Sensitivity Analyses 

The impact of each input parameter on the output along with the models three dimensional space is illustrated in 

Figure 7 showing the MLS approximation of the unreinforced and reinforced I-joist’s capacity with respect to the 

two model input parameters Ao/Aw(x1) and ro/w(x2). The MLS approximation exhibited the variation of the output in 

the predicted model space. A smooth surface of the output (see Figure 8) indicated a good approximation of the 

proposed model. Using 1,000 samples, a CoP of 100% was achieved for the proposed models which indicated a 

perfect approximation using MOP. By comparing the CoP value of each parameter, it was found that both 

parameters Ao/Aw(x1) and ro/w(x2) showed the highest influenced on I-joists capacity as compared to ro(x3).  

  

Figure 8: MLS approximation of the unreinforced capacity, Pu with respect to the two input parameters, Ao/Aw(x1) 

and ro/w(x2) (left) and CoP values of each parameter (right). 
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4. CONCLUSION 

FE models were developed that accurately predicted the in-plane behaviour of CLT panels with openings. The effect 

of opening size and shape on the stiffness of CLT walls was investigated. The experimental, numerical, and 

analytical investigation on the CLT panels allows the following conclusions to be drawn:  

 

1. The FE model accurately predicted the load-deformation of CLT beams and walls.  

2. With the removal of half of the wall area, stiffness was reduced by more 60%.  

3. The proposed equation better predicted the reduced stiffness of the CLT walls compared to previous equations.  

4. The sensitivity analysis using MOP and ALHS sampling technique showed a smooth variation of the proposed 

model with respect to input parameters. 
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