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ABSTRACT  

Modular bridge systems consisting of precast concrete deck panels connected to steel girders are becoming 

increasingly popular due to their rapid construction and optimal material utilization. The shear connection is a critical 

element of the system, having significant impacts on construction time, economic and environmental cost, structural 

integrity, and durability. Today welded shear studs are by far the most common type of shear connection. In steel-

precast composite bridges, the studs are commonly grouped together so that the precast deck panels can be affixed to 

the girders by providing full depth “shear pockets” filled with grout. A laboratory beam testing program is underway 

at the University of Waterloo to investigate the effect of cyclic loading on stud shear connectors in cast-in-place and 

precast bridge girders. The program consists of twelve beam specimens, uniquely tested using a variable amplitude 

load history simulating Canadian highway truck traffic. In addition to yielding valuable S-N (stress plotted vs. the 

number of cycles until fatigue failure) data, initial test results provide evidence of the benefits of redundancy in the 

structural system and the value of beam tests over push-out tests. Calculating connector stresses in a composite beam 

is made complicated by interfacial slip and neutral axis migration. The end goal of this research is to provide Canadian 

bridge designers and erectors with improved design and construction recommendations in order to improve the 

efficiency and economy of this structural system for rapid bridge replacement projects. 

1. INTRODUCTION 

The use of precast concrete bridge decks began in the 1960s in North America with regulatory authorities recognizing 

the benefits of reduced construction time in minimizing traffic disruption and avoiding lost productivity (Fowler, 

2008). Although costs to the bridge owner are higher, the overall costs of modular accelerated bridge construction to 

society is significantly lower when compared with traditional cast-in-place (CIP) construction for many structures, 

particular those that accommodate high volumes of traffic. In addition to its use in accelerated construction 

applications, precast concrete construction is sometimes the only option for bridges in remote locations. The original 

use of precast decks was in non-composite systems, where the deck was used as a road surface and a means to transmit 

loads transversely to the primary structural elements. However, it was soon realized that a very efficient means of 

resisting longitudinal moments was through the use of the composite, shear connected system, where the deck works 

together with the longitudinal beams to carry load.  

 

Besides initial cost, two other inhibitors of using precast decks include lack of knowledge or tools for designers, and 

questions of durability related to long-term performance. These two issues are the focus of an investigation currently 

underway at the University of Waterloo. A composite beam fatigue testing program is being carried out in order to 

study the longitudinal shear connection between precast panels and steel bridge girders. This connection is a critical 
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element to the speed and durability of the modular bridge system (Burak & Seraderian, 2010). Specifically, the study 

aims to quantify the fatigue performance of stud shear connectors in precast decks compared to CIP decks. A 

conceptual image of precast deck panels with shear connector “block-outs” is shown in Figure 1. 

 

 
 

Figure 1: Precast Deck Panels Shear Connected to Steel Girders 

2. LITERATURE REVIEW 

2.1 Push-Out Tests by Slutter and Fisher 

Code provisions regarding the fatigue of welded shear studs all have their roots in the seminal work of Slutter and 

Fisher, performed at Lehigh University in Pennsylvania around 1965. Prior to that time, fatigue provisions were based 

on over-conservative approximations from static test results. With the goal of overhauling the shear connector design 

procedure, over 40 fatigue tests were performed on push-out specimens with stud and channel connectors (Slutter & 

Fisher, 1966). A push-out specimen is a relatively inexpensive test used to study shear across an interface, often meant 

to replicate the longitudinal shear in a beam. A typical push-out test specimen is shown in Figure 2. 

 

         
 

Figure 2: Push-out Test Specimen 

 

Slutter and Fisher found that the stress range during cycling is the most important variable in the fatigue life of a stud, 

which is in agreement with general fatigue principles. In addition, they found that they could relate stress range to the 

number of fatigue cycles until failure for a stud using Equation 1. 
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[1]    logN = A - B(Δτ) 
 

In Equation 1, N is the number of cycles experienced by a shear connector until failure, Δτ is the range of shear stress, 

and A and B are constants (obtained by regression analysis). The relationship they used to relate stress range and 

fatigue life was semi-log in nature. The justification of using push-out tests instead of beam tests was based on cost, 

convenience, and their assertion that push-out test results represent a lower bound for shear connector failure. In 

reality, this assertion has not been confirmed, although it is generally accepted that push-out tests are more 

conservative. Other notable researchers since Slutter and Fisher in the field of shear connector fatigue include Oehlers 

(Oehlers and Foley, 1985), Johnson (2000), and Issa (Issa et al., 2003), to name a few. 

2.1 Code Provisions 

For many years, the Canadian Highway Bridge Design Code (CHBDC) and the American Association of State 

Highway Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Specification directly used 

Slutter and Fisher’s results to form the requirement for fatigue resistance of stud shear connectors. The semi-log 

fatigue curve used for design was not in agreement with other fatigue details, which all used the same log-log curve, 

shifted up or down depending on the severity of the detail. Treating the fatigue of stud connectors differently than 

other details has logical reasons, since embedded studs have characteristics of a “black box”; the damaged element is 

not able to be inspected or monitored, and it is difficult to determine the stress state at the critical fatigue crack location 

because of the welding process as well as interfacial slip between the steel and concrete.  

 

In 2010, a supplement to the 2006 publication of the CHBDC (CSA S6S1-10) reworked the fatigue requirement for 

studs to be consistent with that of other fatigue details according to an investigation by Zhang (2007). In this 

investigation, a regression analysis was performed on a large collection of push-out tests from many researchers. A 

log-log relationship was found closely approximating an existing fatigue category (Detail Category D). It should be 

noted that the endurance limit for the detail did not change, since Category D had the same constant amplitude fatigue 

limit as the value previously used for studs. Zhang also performed regression analysis on beam tests, but too few had 

been performed and published in the literature to draw any conclusions. The current code equation form is given 

below, and can be compared with Equation 1 (its prior form). 

 

[2]    logN = logC + mlog(Δτ) 
 

In Equation 2, N is the number of cycles, Δτ is the range of shear stress, C is a constant (given by the code as 721·109 

for Detail Category D), and m is the slope of the design curve (given as 3). 

2.2 Push-Out Tests vs Beam Tests 

Another key difference in the treatment of stud connectors compared to other fatigue details involves the 

approximation of using push-out tests rather than beam tests to drive design. Due to the apparent conservatism in this, 

the standard procedure of shifting the design curve two standard deviations from the mean for safety was abandoned. 

Instead, the design curve simply cuts through the mean of the push-out test data. This assumption is not based upon 

any critical analysis, but has not concerned anyone. The lack of concern probably has to do with the fact that there 

have not been any reported fatigue failures of stud shear connectors in the field. 

 

The value of a beam test lies primarily in the boundary conditions, which add several key elements when compared 

to push-out tests. In a push-out test loading on connectors remains constant relative to one another throughout the test. 

A beam test features force redistribution; when one stud begins to crack and fail, others pick up the load, and the crack 

grows slower because the cracked stud attracts less force. Not only is there redistribution in a beam, but there is friction 

at the interface which lessens the force transferred through the studs. The actual stress state near the potential crack 

location is made complicated by stud axial forces and the state of stress in the top flange of the beam, something that 

changes as fatigue progresses and the neutral axis of the section moves down into the steel. These are only some of 

the complications a beam test introduces relative to a push-out test, and it is easy to see just how different they are.  
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2.3 Precast Panel Considerations 

Three differences of possible relevance arise when considering precast panels in lieu of CIP construction from a stud 

fatigue perspective. These issues include the absence of stresses in connectors due to concrete shrinkage, the possible 

absence of friction due to panel placement and levelling, and maximum spacing considerations to avoid deck lift-off. 

Neither shrinkage nor friction are accounted for anywhere in design, and these issues receive relatively little attention 

by researchers and code makers. Maximum spacing considerations, on the other hand, are an important consideration 

because they affect the economy of the precast system. Shear pockets are expensive and time consuming to create and 

fill with grout, and it is in the contractor’s best interest to minimize them. Until recently, Canadian and American 

bridge codes limited the spacing of stud connectors in precast applications to the same standard as CIP construction 

at 610 mm or 24 inches. Recognizing the work of researchers including Badie et al. (2010), who showed that 

significant slab liftoff does not occur at larger spacings, this limit has been almost doubled in Canada. 

3. BEAM TESTING PROGRAM 

3.1 Beam Specimen Geometry & Instrumentation 

The beam testing program currently underway investigates the fatigue behaviour of headed shear stud connectors 

embedded in steel-concrete composite sections. A total of 12 beams are being tested, 6 of which utilize traditional CIP 

methods, and 6 that have been constructed using precast slabs. Both the CIP and precast specimens span a length of 

three meters and use a W250x49 steel section connected to the underside of a 600 mm wide, 125 mm deep, 45 MPa 

concrete slab as seen in Figure 3. The specified compressive strength of the grout is approximately 60 MPa. The beams 

are simply-supported and the loading is applied with a spreader beam which provides two point loads at an offset 

distance of 500 mm and 1000 mm from the west support. These details can be seen in Figure 3. A total of 24 stud 

connectors were welded to the top flange of the steel section for each specimen. The CIP beams have uniformly spaced 

stud pairs at 250 mm along the length, while the precast beams utilize a cluster of 4 studs at 6 discrete locations along 

the beam, spaced at 500 mm. These full depth pockets were filled with grout once the slab was positioned on the steel 

to complete the connection. 

 

 
Figure 3: Specimen Geometry and Instrumentation 

 

One challenge that the research team was presented with was developing an instrumentation approach that would both 

quantitatively and qualitatively track the progression of stud failures during cyclic loading. The goal was to capture 

this progression of stud failure and to collect data points that could be overlaid on top of existing S-N data (stress 
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plotted with the number of cycles until fatigue failure) and compared to previous tests gathered from the literature. 

Complications arose from the fact that studs cannot be instrumented directly without being damaged during loading 

or impeding the shear connection properties themselves. The fact that the stud is also encased in concrete or grout 

discards any means of visual inspection during the test. Visual inspection can only take place afterwards during a 

specimen autopsy, during which time the specimen is destroyed. This challenge was overcome several ways: by 

applying strain gauges to the underside of the top flange directly under a welded stud, capturing a strain profile at 

locations between stud groups, and measuring interfacial slip between the slab and the steel flange. Figure 3 shows 

the location and type of instrumentation used. 

 

Capturing the change in local strain under the stud provides a means of determining fatigue crack initiation and its 

subsequent propagation. The strain measured is induced by the local distortion of the top flange due to the horizontal 

force resisted by the stud. Since the magnitude of the strain readings is largely affected by the placement of the gauges, 

the general trend of the data was used as a qualitative descriptor in formulating the failure criteria and was utilized in 

determining the number of cycles to failure for each of the studs.  

 

Strain profiles are measured between shear pockets locations at sections M, F, Y, and Z as shown in Figure 3. By 

measuring the strain on the underside of the top and bottom flanges respectively, it is possible to calculate the 

horizontal axial force in the slab being transferred into the studs. It is expected that as the studs are increasingly 

damaged, the slab axial force should decrease and approach zero when the studs have completely sheared off. This 

data provides information on the actual stress experienced by the studs over time and offers insight to the redistribution 

of stresses over the specimen’s fatigue life. To capture the interfacial slip behaviour of the beams during fatigue 

testing, a set of five linear voltage displacement transducers (LVDTs) were positioned at each of the beam’s ends (W 

and E) and at profiles M, F, and Y. An additional LVDT was positioned 1300 mm from the west support on the 

underside of the bottom flange to measure the change in maximum deflection during the cyclic loading. 

3.2 Experimental Loading & Program 

Most fatigue testing on shear connectors conducted to date have been under constant amplitude loading conditions. 

The effects on fatigue performance of connector slip during infrequent overload cycles (due to very heavy trucks or 

convoys for example) may be significant. For this reason, a variable amplitude loading history was used for the fatigue 

testing, simulating typical in-service loading for a bridge subjected to Ontario highway truck traffic. The foundation 

of the variable amplitude loading history utilized in this experiment was data collected from a study completed by the 

Ministry of Transportation Ontario (MTO) in 1995. This study contained the weights of 10,198 trucks that were 

randomly selected while traveling on the road network. The results from this survey are presented in the form of a 

histogram in Figure 4 (left). This data was randomized and formulated into a variable amplitude load-history. A 

segment of the first 25 cycles within this history is presented in Figure 4 (right). 

 

The test setup employs two-point loading, offset to create a varying interface shear profile along the beam span, which 

allows the effects of connector failures on the subsequent shear loading of neighbouring connector groups along the 

span to be studied. Since the experiment utilizes a variable amplitude loading history, an equivalent stud stress was 

determined using the Palmgren-Miner’s linear damage accumulation rule. This equivalent stress and variable 

amplitude loading history was then scaled down appropriately to hit the target equivalent stress levels for each test 

specimen. The test program matrix is presented in Table 1. Due to the unique off-centred loading arrangement of the 

spreader, the stud pairs 1 and 2 (west to east) experience the target stress, while stud pairs 3-12 experience exactly 

one-third of the target stress. 
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Figure 4: 1995 MTO Truck Survey Data (left), and a Segment of Variable Amplitude Loading History (right) 

 

Table 1: Test Program Matrix 

Eq. Stud Shear Stress (MPa) No. of Specimens 

Studs 1-2 Studs 3-12 Precast Cast-in-Place 

80 27 1 1 

100 33 1 1 

120 40 1 1 

140 47 1 1 

200 67 1 1 

300 100 1 1 

 

 

Static loading was completed initially for each specimen (prior to the application of load cycles), and at 100% and 

1000% of the code predicted fatigue lives of the critical stud connectors. The initial static test is to break the chemical 

bond adhering the concrete to the top of the steel flange upon casting (for the CIP specimens), and to collect data 

before any damage is produced from the subsequent cyclic loading phase. The data collected in the static tests include 

max deflection, interfacial slip, and strain profiles located at M, F, Y, and Z. A load of 200 kN was selected as a 

standard load at which the data from all specimens would be compared.  

4. EXPERIMENTAL RESULTS 

4.1 Specimen Autopsy & Observations 

Testing is currently underway on the specimens shown in the test matrix (Table 1). Specimen autopsies and analysis 

of data harvested through instrumentation are ongoing, but several observations have been made at this stage. The 

best way to illustrate these observations is to describe them for a single specimen, and for our purposes this will be 

Specimen S3. This specimen is a precast specimen that was tested with a fatigue loading equivalent to constant 

amplitude loading at Δτ = 140 MPa on the critical stud group. It is important to note that 140 MPa is a longitudinal 

shear stress; it is the amount of force the critical stud group is transmitting between the steel beam and the concrete 

slab, divided by the cross-sectional area of the studs in the group. The concrete in the precast slab for S3 reached a 

28-day strength of 48.3 MPa, and the grout used to fill the shear pockets reached a similar 54.1 MPa.  

 

For a precast specimen, one shear pocket on the west side of the beam is loaded at the critical loading (140 MPa for 

S3), and the rest are loaded at one third of this value. The number of cycles until failure for this stud group, according 

to the CHBDC provision (Det. Cat. D), was 260,000 cycles. S3 was cycled more than ten times this value to 2.75 

million cycles before being taken out of the loading frame for autopsy. The reason for loading so far above the code 
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specified failure cycle count is to ensure failure at the critical group of studs, and to attempt observation of any 

progressive failure patterns thereafter. During the autopsy, the slab was cut transverse to the beam direction between 

stud groups, starting at the ends, and then direct lifting of an end slab portion was attempted. This lifting is only 

possible if the studs were fully severed from the steel top flange at the interface of slip. It was found that direct lifting 

was not possible for S3; lifting was rarely possible for any specimen as studs are almost always connected to the steel 

with some area. This is probably due to force redistribution, where neighbouring stud groups prevent the amount of 

slip necessary to fully severe cracked studs from the top flange. 

 

Since direct slab lifting could not take place for Specimen S3 for the critical stud group, the concrete was fully chipped 

away around the group. At this point the studs were bent over with a sledgehammer until they fell off of the beam. 

This is referred to as a “bend test”. A stud passes the bend test when it becomes fully bent over, with its head touching 

the top flange of the beam, and does not fracture and fall off. This is adapted from CSA W59 (Welded Structural 

Construction), where the bend test requires a bent angle of 30 degrees. The bend test is a sign of residual ductility and 

strength, and is a standard procedure for any stud welder to perform during the welding process. Performing the bend 

test after fatigue loading does not carry the same meaning as the initial welding bend test, as some studs that are 

cracked can still pass the bend test due to flexibility, but it was found to be a useful classification tool. 

 

Each stud in the critical group failed the bend test for Specimen S3, with little residual strength remaining (the 

sledgehammer blows did not need to be forceful to fail the studs). Figure 5 shows the group before and after the bend 

test, and shows the area that remained attached at the time of test termination. It can be seen that the fatigue cracks 

occurred in the base metal of the steel top flange in the heat affected zone (HAZ) of the weld. The fatigue cracks of 

these studs were typical, protruding deep into the top flange from the front and back edge of the stud, and meeting at 

the last attached region. The studs are believed to pivot from this attached area, with enough flexibility to avoid being 

severed from the base metal altogether. The remaining area of each stud was between 10% and 30% of the original 

un-cracked area. 

 

          

Figure 5: Critical Stud Group in Autopsy of Specimen S3 

4.2 Stud Failure 

An important discussion is warranted on the topic of stud failure definition and detection. The criterion for failure 

could be the onset of a decrease in stud capacity, the start of a fatigue crack, all the way to the complete severance of 

the stud with no capacity remaining. This criterion is important, but can also be hard to enforce, as not all these 

points can be identified in an instrumented test (it would be near impossible to detect failure in the field with no 

instrumentation). For our research purposes thus far, we have defined failure as the point when the stud begins to 

carry less load. It is believed from the observation of test results that this occurs after the initial fatigue crack begins 

to form. The crack may be in the stud shank, the weld, or in the base metal (beam flange). 

Figure 6 is instrumental to the explanation and interpretation of stud failure. For proper understanding of the data, 

one must understand where it is coming from. This data, termed “local distortion” data, is harvested from a strain 
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gauge placed on the underside of the top flange of the steel beam underneath the location of a welded shear stud. 

The strains it captures are due to local bending of the top flange, as shown in Figure 6 on the right hand side. This 

data has proven to be the most reliable means of capturing changes in the load carrying of individual studs over 

time. It can be seen from Figure 6 that as testing progresses (along the x-axis), the local distortion increases to some 

maximum value and then begins to decrease. In an idealized setting these local distortions would decrease to zero 

when the stud is severed from the top flange. In reality, these distortions would not go to zero, even if the stud was 

fully severed, because of the shape of the fatigue cracks; mechanical interaction results due to the interlocking 

shapes of the stud and the flange at the failure surface, resulting in residual capacity to transmit shear, even after 

fatigue failure. 

An important step in validating this definition of failure was to stop some of the tests as we noticed local distortions 

rising, but not yet peaking. The bend test was then performed on these studs to test the strength and area remaining. It 

was found that in all cases before local distortions peaked, the stud in question passed the bend test, exhibiting strength 

and ductility. This strength and ductility existed despite visible crack growth in most cases. It is tougher to see in 

Figure 6 because of the load level applied to Specimen S3, but the start of rising local distortion strains seems to 

correspond to the onset of cracking in the HAZ in other specimens. 

 

Figure 6: Local Strain Gauge Data for the Four Studs in Pocket 1 of Specimen S3 

 

4.3 S-N Plot 

The peak of each local distortion data set was used to indicate the cycle count corresponding to failure. The steady 

decrease in the stress range as the test continued indicated the connector’s ability to distort the top flange as the crack 

propagated. The result from the first test is displayed on the S-N plot provided in Figure 7.  

Local Strain 

Gauge 

Location 



 

STR-923-9 

 
Figure 7: Preliminary S-N Results from a Precast (red) and CIP (blue) Specimen 

 

Figure 7 also includes the results from a CIP specimen (S4), as well as previous fatigue results from push-out tests 

and beam tests found in the literature, and the design curve provided by the CHBDC (CSA S6) for stud shear 

connectors. For Specimen S4 with a connector stress of Δτ = 140 MPa, the studs failed at approximately 400,000 

cycles on average. This constitutes to a 54% increase compared to the code fatigue design life of 260,000 cycles. For 

Specimen S3 however, the average failure was closer to 1.4 million cycles or a more than 450% increase compared to 

the code predicted fatigue life. 

5. CONCLUSIONS 

The need for beam tests to determine shear connector fatigue failure has been highlighted by researchers and code 

makers alike, and until now the costs and time required have prevented a full data set. By studying the differences in 

shear connection fatigue behaviour between conventional CIP construction and state-of-the-art precast panel 

construction, this ongoing testing will both add to the knowledge base of conventional stud failure mechanisms, and 

provide insights into whether or not precast panels can be designed using the same rules, with no long term durability 

drawbacks. To this point, redistribution of forces has been observed in beam tests, delaying full fatigue failure and 

providing structural redundancy. Additionally, it has been observed that local strain gauges can be used to predict, 

with some level of accuracy, the behaviour and stress state of stud shear connectors while they are embedded in 

concrete in an “un-inspectable” state. Judgements comparing the current fatigue results with each other and with push-

out tests from the literature should be withheld until more data is available, knowing the tendency of fatigue data to 

be prone to large statistical scatter. Nevertheless, the path forward promises to provide insights for designers into the 

long term durability of steel-precast composite bridges. 
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