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Abstract: The present work focuses on the tapping test, which is a method that is commonly used
in the literature to assess dexterity, speed, and motor coordination by repeatedly moving fingers,
performing a tapping action on a flat surface. During the test, the activation of specific brain regions
enhances fine motor abilities, improving motor control. The research also explores neuromuscular
and biomechanical factors related to finger dexterity, revealing neuroplastic adaptation to repetitive
movements. To give an objective evaluation of all cited physiological aspects, this work proposes a
measurement architecture consisting of the following: (i) a novel measurement protocol to assess the
coordinative and conditional capabilities of a population of participants; (ii) a suitable measurement
platform, consisting of synchronized and non-invasive inertial sensors to be worn at finger level;
(iii) a data analysis processing stage, able to provide the final user (medical doctor or training coach)
with a plethora of useful information about the carried-out tests, going far beyond state-of-the-art
results from classical tapping test examinations. Particularly, the proposed study underscores the
importance interdigital autonomy for complex finger motions, despite the challenges posed by
anatomical connections; this deepens our understanding of upper limb coordination and the impact
of neuroplasticity, holding significance for motor abilities assessment, improvement, and therapeutic
strategies to enhance finger precision. The proof-of-concept test is performed by considering a
population of college students. The obtained results allow us to consider the proposed architecture to
be valuable for many application scenarios, such as the ones related to neurodegenerative disease
evolution monitoring.

Keywords: neuroplasticity; hand dexterity; tapping test; IMU sensors; coordinative abilities;
measurement platform

1. Introduction

The evaluation of motor abilities to assess human aptitude is a challenging task from a
measurement point of view, as it involves complex interactions between neurophysiological
systems [1]. Specifically, coordinative abilities encompass a multifaceted array of skills
regulating our ability to manage, coordinate, and integrate movements to accomplish tasks
with accuracy and refinement [2]. The development of manual dexterity, which plays a
significant role in several areas of human activity, is an essential component of coordinative
abilities [3]. Manual dexterity assessment is crucial in various fields such as health care,
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rehabilitation [4], occupational therapy, sports, and some professions [5]. Understanding
and assessing hand function makes it possible to provide higher-quality care, support, and
interventions, ultimately leading to better outcomes and a higher quality of life for those
facing hand-related challenges [6]. Researchers and clinicians have turned to tapping tests
(TTs), tests in the Halstead–Reitan battery [7], as valuable assessment tools to understand
and improve this essential aspect of human motor performance. Gaining a comprehensive
understanding of the intricate aspects of manual dexterity and assessing its progression
and potential diversities can yield significant and invaluable knowledge regarding an
individual’s motor abilities and functional abilities [2,8]. There are different methods of
conducting TTs. The original way involves the subject tapping with their index finger as
many times as possible in 10 s [7]. However, there are more intricate versions that use both
the hands and the feet [9], or multiple fingers or hands alternately or simultaneously [10,11].
Several solutions converge towards wearable motion-capture technologies to obtain an
objective assessment of this motion and improve evaluation performance. These devices
are small, low-cost, non-invasive, and easy to use; these features leading to an increase
in their use in various fields, such as sports [12] and medicine [13]. In this scenario, the
authors propose an architecture for performing a novel measurement method based on
the tapping test by adopting multiple synchronized inertial sensors and providing a wide
data-analysis framework; this will provide the final user (medical doctor or training coach)
with a comprehensive information panel going beyond classical indexes that could be
extracted from traditional approaches. The core of the work is the measurement protocol,
as it deals with an enhanced use of the TT, employing multi-finger movements. Participants
must move two fingers simultaneously or alternately, considering the dominant hand only
(in this case, index and middle fingers) or a two-hands case (both index fingers). Such
choices are motivated by medical and physiological reasons, such as the possibility of
assessing coordinative and conditional abilities by exploiting both the cerebral hemisphere
and the efficiency of the corpus callosum structures, as well as the participant’s abilities.
The joint use of measurements and suitable processing algorithms, specifically designed
for TTs evaluation, has already been exploited by the authors in [14]: in addition to
recording tapping counts, the intertemps, amplitudes, speed, and finger–hand coordination
are all computable. Stemming from the TT evaluation according to the gender and age
parameters presented in [15,16], this work provides extensions in two main directions:
(i) provide an insight evaluation of bi-manual vs. uni-manual coordination performance;
(ii) assess dexterity capabilities adopting simultaneous and alternate double-finger TT
either on one single hand, or requiring movements from both hands. The impact of the
study goes beyond academia and finds practical applications in sports training, motor
rehabilitation, and cognitive assessment. The measurement protocol involves a population
of 30 voluntary students who have been suitably informed about the procedure and it deals
with an extensive experimental campaign, from which significant statistical analyses and
neurophysiological-related outcomes are derived. The paper is organized into five main
parts: Section 2 describes the motivation and the specific contribution of the authors to
the state of the art; Section 3 reports the system’s architecture, the adopted measurement
materials and methods, the participants’ description, and the proposed protocol.

2. Motivation and Contribution of the Work

The standard TT has proven to be a widely used method for assessing coordina-
tion and cognitive abilities in the scientific literature [17]. Several alternative devices for
obtaining objective measures of movement have emerged over the years. The most pop-
ular system is a lever equipped with a mechanical counter [18]. However, electronic and
software versions have also been developed, such as the Digital Tapping Test offered by
the Western Psychological Service, which uses a device with an electrical switch and a
digital counter [19,20]. In addition, even the zero on the keypad has been exploited as a
tapping device in a software-only variant of the WPS. Some recent innovations involve
using keyboards, smartphone and tablet applications, traditional cameras, and cameras
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built into mobile devices to perform TT efficiently and accurately [21]. These approaches
are generally limited by the low number of monitored parameters, such as number of taps
and velocity.

In our research, we have introduced an innovative automated measurement protocol
that combines IMU sensors with various versions of the TT found in the existing litera-
ture [22,23]. This specific measurement protocol (uni-manual and bi-manual tests) has the
potential to become an excellent method of assessing motor efficiency by analyzing the
movement of one or more fingers of the hand. These tests allow assessment of the ability
to perform alternating and simultaneous sequential movements, thus providing insight
into the synchronization between the central and peripheral nervous systems [24]. Using
these tests to assess performance and compare the two sides of the body can help monitor
the integrity of brain functions and motor learning abilities. The proposed system can
become a valuable tool for screening and monitoring diseases, such as Alzheimer’s and
Parkinson’s, which involve a progressive loss of motor and cognitive abilities with gradual
deterioration [25]. In addition, by analyzing finger movements, the system can provide
the physician with detailed information about the patient’s condition. As an example,
it can help determine whether medications produce the desired effects or whether drug
treatment needs adjustment. In addition, it could play a key role in disease prevention by
serving as an early warning for potential health problems. This approach could not only
offer true prevention, but could also help to significantly reduce the costs faced by national
healthcare systems by anticipating the early stage of diseases and enabling timely and
targeted interventions. Leveraging the capabilities of powerful data processing, real-time
analysis, and direct transmission of results to physicians, this automated system offers a
promising solution for continuous patient monitoring and rapid response to medical needs.
In detail, based on previous experience in this field [14,16], the authors extend the present
state-of-the-art approaches in the following directions:

• Proposal of an automated measurement protocol to assess coordinative abilities
through tapping test-based exercises;

• Computation of a large number of features to give a quantitative, objective, and
exhaustive movement assessment;

• Comparative analysis of the proposed tasks to obtain general outcomes about the
analyzed population samples.

3. The Proposed Measurement Architecture

To assess the performance of the proposed approach, a population of young students
was recruited on a voluntary basis and a specific measurement protocol was designed.

3.1. The Measurement Protocol

A protocol with four different TTs is proposed to obtain more information on hand
dexterity. Specifically, the tests are codified and described below:

• Alternate uni-manual (UniALT): tapping is performed by alternating the index and
middle fingers of the dominant hand.

• Simultaneous uni-manual (UniSIM): tapping is performed by simultaneously moving
the index and middle fingers of the dominant hand.

• Alternate bi-manual (BimALT): tapping is performed by alternately moving the index
fingers of the right and left hands.

• Simultaneous bi-manual (BimSIM): tapping is performed by simultaneously moving
the index fingers of both hands.

The management of fingers’ fine movements represents the manifestation of human
motor abilities, involving a complex network of highly specialized neural pathways. These
movements enable individuals to perform various everyday activities that require precision
and coordination, such as writing, playing musical instruments, or manipulating objects.
The hand’s fingers are extraordinarily dexterous tools, capable of performing a wide range
of precise and complex movements. However, behind this apparent simplicity lies an
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intricate neural network that coordinates and controls every finger action. This network is
responsible for fine hand movements and involves several key brain regions [26].

These regions include the primary motor cortex (M1), the supplementary motor cortex
(SMA), the parietal cortex, the cerebellum, the basal ganglia, the associative cerebral cortex,
and the limbic system [27]. Each area has a specific role in planning, executing, and
controlling finger movements. Good brain plasticity efficiency is critical, as the brain
constantly adapts neural pathways to optimize coordination [28]. The ability to perform
alternating and simultaneous movements in sequence could provide valuable insights into
the synchronization between the central and peripheral nervous systems. These motor tests
pose considerable challenges, requiring rapid attention shifts between different fingers and
timely motor accuracy. Several factors, including the nature of the task, the complexity of
movements, the level of motor control, and practice, can affect finger coordination [29].
Understanding how the brain manages fine finger movements is a fascinating field of
research. It has important implications for rehabilitation, occupational therapy, and the
development of new technologies to assist people with motor disabilities.

3.1.1. Uni-Manual

This test requires coordination of index and middle finger movements (UniSIM–
UniALT) and a great amount of neural complexity. The brain is activated through a series
of neural pathways orchestrating these intricate movements. To precisely execute the
movements of these fingers, the brain activates specific regions in M1 [30]. Each finger has
a dedicated area in M1 that controls the muscles involved in these movements, ensuring a
firm basis for action. The SMA is central in planning and sequencing movements [31]. When
we want the index and middle fingers to move, the SMA coordinates the order and timing
of these movements, ensuring that they occur smoothly. The brain sends specific signals to
each muscle involved in the movements. The index and middle finger muscles contract
synchronously or sequentially, depending on what we intend to do, reflecting detailed
communication between the brain and the muscular system [32]. The brain constantly
receives sensory feedback from finger movement. This feedback comes from receptors in
the fingers’ muscles, joints, and skin. This information helps the brain monitor movements’
position and progress, helping maintain control. The cerebellum plays a crucial role in
regulating the precision of finger movements [33]. It ensures that movements are smooth
and precise, intervening to correct any deviations. The basal ganglia comes into play to
regulate muscle activity, helping to inhibit unwanted or excessive movements and ensuring
that action is appropriate and controlled [34]. The brain is an amazing learning machine.
When we learn to coordinate the index and middle fingers in different activities, the brain
modifies neural connections to improve our abilities. This process of constant adaptation
allows us to refine our coordination more and more [35].

3.1.2. Bi-Manual

This test requires simultaneous or alternating movement of the index fingers of both
hands (BimSIM–BimALT), necessitating the intervention of specific motor regions in the
cerebral cortex to control the left and right hands [36]. The control of simultaneous or alter-
nating movements involves the coordination of different brain regions, muscle sequencing,
and sensory feedback. This requires greater intermanual coordination and synchronization.
The coordination between the two hands may involve the interhemispheric commissure,
the corpus callosum, which enables the communication between the cerebral hemispheres
cite [37]. The accuracy and fluidity of such movements are achieved through a complex
interaction of neural pathways and brain adaptation. The left motor area controls the right
hand, while the right motor area controls the left hand [38]. The SMA and premotor areas
are involved in planning and sequencing hand movements, helping to coordinate the order
and timing of movements. To perform simultaneous or alternating movements between
the index fingers, the brain sends specific signals to each hand; the muscles of the two index
fingers are activated synchronously or sequentially, depending on the movement’s goal [10].
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The cerebellum plays a crucial role in regulating the precision of these movements, ensuring
that they are smooth and accurate in both hands. The basal ganglia help regulate muscle
activity, ensuring both hands perform the desired movements. The brain can adapt and
learn new movement patterns when performing simultaneous or alternating movements.
Neural connections can be modified to improve coordination between the limbs [11].

3.1.3. Participants

Participants are required to sit near a table with their hands resting on a flat surface.
They are asked to perform each test 20 times over a period of 30 s at the highest possible
speed. A population of 30 students from the University of Cassino and Southern Lazio
were involved in the TT study. Specifically, 16 females and 14 males aged between 21 and 30
were considered. All participants were informed about how the protocol would have been
carried out and provided their consent before participating in the study. Ethical guidelines
were followed throughout the study. This work was approved by the Institutional Review
Board of the University of Cassino and Southern Lazio (no. 24777.2022.12.12). The informed
consent and approval on benefits and risks are derived from the 1964 Declaration of Helsinki
for research on humans. After the description of the test phase, all general data of the
participants were collected, in particular age and the lengths of the index and middle
fingers. The collected data are summarized and reported in Table 1. The resulting data
prove the very low variability in the collected information, thus allowing the removal of
possible additional influence factors when analyzing the test outcomes.

Table 1. Age and finger length of participants: mean and standard deviation.

Mean ± St.Dev

Age 25.67 ± 0.33

Index Finger Length [cm] 10.03 ± 0.12

Middle Finger Length [cm] 11.07 ± 0.12

3.2. The Adopted Measurement Platform

Four Xsens IMUs produced by the MOVELLA company, Henderson, NV, USA [39]
were adopted in the test phase. These are wearable devices with a weight of 11.2 g,
compact dimensions (36.30 × 30.35 × 10.80 mm) and a latency of 30 ms. Each IMU has
three triaxial sensors: an accelerometer with a maximum range of ±16 g (g = 9.81 m/s2,
gravity acceleration constant), a gyroscope with a maximum range of ±2000 deg/s, and
a magnetometer with a full scale of ±8 G. In recording mode, the maximum acquisition
frequency is 120 Hz; meanwhile, in the real-time mode, it is 60 Hz. This study considers
only accelerometric measurements: the chosen range is ±8 g , while the sampling frequency
is set at 120 Hz.

Before starting the test, the sensors are connected to a smartphone via Bluetooth
Low-Energy 5.0 Smart® module and are configured using a proprietary MOVELLA DOT
app. 2023.6.1 The operator sets the accelerometer range and the sampling frequency. A
synchronization operation is then carried out between the sensors so that they share the
same time reference. At the end of the test, the data are saved on the internal memory,
which has a capacity of 65 MB, and subsequently downloaded to a PC via the APP. A
diagram of the measurement setup used is summarized in Figure 1. The optimal sensor
position was defined after an experimental characterization, which will be described in
Section 4.1. Figure 2 shows how the adopted sensors were anchored on the participant’s
hand: the index and middle finger of the dominant hand (Figure 2a); the right and left
index fingers (Figure 2b).
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Figure 1. The measurement setup: data are acquired through a couple of IMU sensors, driven by a
proprietary MOVELLA DOT App, which communicates with a PC where data processing is carried
out in a MATLAB® environment R2023b.

(a) (b)

Figure 2. Two different configurations: (a) IMUs are placed on the index and middle of the dominant
hand; (b) IMUs are placed on the index fingers of the right and left hand.

3.3. The Data Analysis

An algorithm was developed and implemented in MATLAB® R2022a to analyze the
data acquired during the experimental tests. The block diagram in Figure 3 shows the
logical process used by the algorithm to acquire the data, analyze it, and extract metric
characteristics. The algorithm receives raw accelerometric data as input from the IMU
sensors placed on selected fingers. The z-axis is selected as the axis of highest sensitivity, by
evaluating the orientation of the sensor and the main direction of motion, i.e., the direction
in which the greatest acceleration excursion is observed. On each trace, the tap finding
is achieved by getting the peaks through MATLAB® findpeaks [40] routine, after a tuning
phase to avoid getting spurious noise spikes. The found peaks are then used in three
different metrics: calculation of the number of taps, evaluation of the inter-tap times for
each single finger, and estimation of the time intervals between adjacent peaks acquired by
the sensors placed on different fingers. In the last case, the first peak is taken on one trace
and the second on the other (for a more in-depth understanding, see step 4 in Figure 3).
Time intervals have different meanings according to test typology: in simultaneous cases
(UniSIM, BimSIM), they should approach zero, as they estimate the time mismatch between
taps of the considered fingers that should be perfectly time-aligned; in the alternate case
(UniALT, BimALT), time intervals should be as much regular as possible, as they represent
the rhythm each participant takes when alternate movement is required. To assess them
in a statistical way, the means and standard deviations for each participant are computed
(see step 5 in Figure 3). The Algorithm 1 pseudocode shows the metric characteristic
computation, the main logical steps for the calculation of the inter-times of the single-finger
analysis, and the alternate and simultaneous times in the case of the two-finger analysis.
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Algorithm 1 Data analysis: Computation of metrics features.

1: Choose the test: UniALT–UniSIM–BimALT–BimSIM
2: NID= Total number of participants
3: NTest= Total number of tests
4: for k = 1, . . . , NID do
5: for y = 1, . . . , NTest do
6: load Acc f inger1(k, y)
7: load Acc f inger2(k, y)
8: [A1, B1] = f indpeaks(Acc f inger1(k, y))
9: [A2, B2] = f indpeaks(Acc f inger2(k, y))

10: for i = 1, . . . , length(B1 − 1) do
11: InterTimeFinger1 = abs(B1(i)− B1(i − 1))
12: InterTimeFinger2 = abs(B2(i)− B2(i − 1))
13: SATime12(i) = abs(B2(i)− B1(i))
14: end for
15: ¯SATime12 = mean(SATime12)
16: σ(SATime12) = std(SATime12)
17: end for
18: end for

INPUT DATA DATA PROCESSING DATA ANALYSIS
1. ACQUISITION acceleration data from IMUs

2. SELECTION of the most sensitive axis
(z axis)

3. FIND TRACE PEAKS: each peak is counted
as a tap

4. PEAK DISTANCE: simultaneous and alternate
time estimation

5. METRICS FEATURES

Taps number calculation

Tapping times: inter-times (single fingers),
simultaneous and alternating times (both fingers). 

S_A
time

Inter_time

5.1 Primary Features

5.2 Secondary Features
Coefficient of Variation (Cv)
Sample Fatigue Percentage (SFP)
Tapping Acceleration Excursion

Inter_time(i) = |t(peaki)  − t(peaki −1)|

S_Atimej,k(i) = |t(peakj,i) − t(peakj,k) |

S_Atimej,k(i) = mean(S_Atimej,k(i))

σ(S_Atimej,k) = std(S_Atimej,k(i))

where:

L= min(No.Tapsj, No.Tapsk)
i=1,....,L

No.Taps = Σ peakii=1

N

Figure 3. Algorithm block diagram: description of the main steps for acquiring and selecting the most
sensitive axis (INPUT DATA), processing (DATA PROCESSING) and analyzing (DATA ANALYSIS)
IMU inertial data.

4. Results

This section reports the obtained results, particularly focusing on two main aspects:
(i) the investigation of the effect of the device positioning on the finger; (ii) a quantitative
analysis of the computed features in the single-finger and dual-finger modes.

4.1. Experimental Characterization

An experimental characterization has been necessary to define the sensor position
that would have the minimum possible influence on the measurement results. In our
previous work [16], the influence of the sensor’s weight was studied, which is shown to
have a negligible effect on performance; for this reason, this aspect is not investigated
in this subsection. The experimental characterization considers two different tasks, each
repeated five times in a row, which were performed by 10 students. Two configurations
were considered (Figure 4):
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• Position A: a fixed position from the metacarpal joint of the index finger (2 cm) is
chosen to place the IMU.

• Position B: IMU placed on the distal phalanx of an index finger, without considering
joint distance.

Figure 4. In configuration (A), the sensor is placed at a fixed distance from the metacarpal joint of
2 cm. In configuration (B), the sensor is placed on the distal phalanx with an unfixed distance.

Participants were asked to tap the index finger of the dominant hand as fast as possible
in both conditions. A variation coefficient (Cv) was computed to check the best position of
the sensor. Equation (1) shows the described mathematical procedure:

Cv =
std(NTap)

mean(NTap)
∗ 100 (1)

where NTap is the number of taps that have been performed. It is therefore important
to assess how much the standard deviation weighs against the mean value . The best
repeatability and configuration are obtained at a low (Cv).

Figure 5 and Table 2 show that the lowest variability of Cv is obtained in the case of
position B. Evaluating the average value of the CVs obtained in the two different config-
urations shows that the mean value of A is 5.57%, while position B obtains 4.23%. These
results emphasize how the sensor positioned on the distal phalanx affects the measurement
process less than it does in case A. Therefore, the protocol presented in this thesis envisages
positioning the sensor in configuration B.

Table 2. Coefficient of variation calculated in configurations A and B.

Cv [%]
Configuration A

Cv [%]
Configuration B

ID 1 10.60 7.40

ID 2 3.31 4.54

ID 3 6.16 5.05

ID 4 8.58 5.03

ID 5 3.27 1.71

ID 6 7.40 5.53

ID 7 4.54 4.91

ID 8 5.05 4.61

ID 9 5.03 2.76

ID 10 1.71 0.78

Mean value 5.57 4.23
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Figure 5. The top figure shows the average number of taps obtained in the two different configurations.
The second plot compares the coefficient of variation calculated under conditions A and B.

4.2. Measurement Protocol Results
4.2.1. Single-Finger Analysis

The first analysis focuses on the behavior of individual fingers in the various adminis-
tered tests. In particular, once the test and the finger of interest are fixed, the inter-times
obtained during the test are calculated, i.e., the time difference between two consecutive
peaks. A linear interpolation was performed to check fatigue once inter-times had been
calculated for each participant, and the angular coefficient of the straight line was derived
from this. Figure 6 shows, as an example, an interpolation of the inter-times obtained from
the index finger of ID 19 during the UniALT test. In this example, the angular coefficient is
0.026 and the obtained R2 is equal to 94%. The angular coefficients are computed for each
participant and then the mean and the standard deviation are derived. These metrics were
used to calculate Gaussian probability density functions (pdf) obtained from the central
limit theorem, to compare the fingers distribution during the same test.

0 100 200 300 400 500 600

Elapsed Time [s]

0

0.5

1

1.5

2

In
te

rt
im

e
 [

s
]

Figure 6. Example of linear inter-times fitting versus execution time—participant ID: 19; test: UniALT
(index finger). The blue points are the raw intertime evaluation data, the red line is the linear
fitting curve.
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Table 3 shows the mean and standard deviation values for the index finger and middle
finger in the case of the simultaneous and alternating uni-manual tests.

Table 3. The mean and standard deviation of the estimated line slopes of the inter-times (uni-
manual test).

Test
UniSIM

Mean Dev.Std

Index −0.006 0.010

Middle −0.005 0.010

Test
UniALT

Mean Dev.Std

Index 0.006 0.060

Middle 0.000 0.033

In Table 4, the same parameters are calculated; but, in this case, it is performed by
considering the bi-manual test.

Table 4. The mean and standard deviation of the estimated line slopes of the inter-times (bi-
manual test).

Test
BimSIM

Mean Dev.Std

Index R −0.0022 0.0075

Index L −0.0033 0.0062

Test
BimALT

Mean Dev.Std

Index R 0.000 0.013

Index L −0.001 0.017

This first analysis shows that, in the UniALT test, the participants showed higher
difficulty in achieving the same response and rhythm between the two fingers. This is
also confirmed by the results shown in Table 5: the complementary normal cumulative
distribution function is considered to check whether there was fatigue or training during
the exercise. In particular, the line slope can define a fatigue behavior if positive, since it
reports the inter-time versus the elapsed time. Indeed, if a positive slope is experienced,
this means that the inter-times are gradually increasing with respect to the test elapsed
time. On the other hand, if a negative slope is observed, then the inter-times are gradually
decreasing with respect to the elapsed test time; thus, the exercise produces a training effect
for the participant.

Considering all participants, the line slopes define a sample from which an estimation
of the probability density function of a Gaussian random variable can be carried out.
Therefore, adopting the above-cited definition for fatigue or training, the probability that
the random variable is greater than zero is an estimation of the portion of the sample
experiencing fatigue during the exercise. On the contrary, the probability that the same
variable is less than zero quantifies the participants’ portion that reports a training effect.

To express it in an equation, let X be the random variable expressing the behavior of
a specific test on a particular finger (e.g., UniSIM test, index finger). The sample fatigue
percentage (SFP) computation can be achieved as in Equation (2).

SFP =
∫ ∞

0
fX(x)dx = CCDFX(0) (2)

where fX() is the probability density function of the random variable X and CCDFX()
expresses the complementary cumulative distribution function of X.

In the case of the UniSIM, BimSIM, and BimALT tests, the SFP is less than 0.5. This
implies that most of the area of the Gaussian curves is concentrated in the negative semi-
axis, corresponding the idea that one is more likely to experience a training session than
they are to experience a fatigue-inducing exercise . In the case of UniALT, the difficulty of
the test is once again confirmed; the SFP is above 0.5. In this case, the exercise execution,
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performed for both the index and middle finger, leads the participant not only to lack good
coordination between the two fingers, but also to obtain a fatigue effect (as in the case
shown in Table 6).

Table 5. Finger fatigue assessment: complementary normal cumulative distribution function.

Test
UniSIM

Test
UniALT

Test
BimSIM

Test
BimALT

Index 0.29 0.54 Index R 0.38 0.48

Middle 0.31 0.50 Index L 0.30 0.47

In this case, it can be seen that this exercise, performed for both the index and middle
finger, leads the participant not only to lack good coordination between the two fingers,
but also to have fatigue defined by positive angular coefficients. The acceleration excursion
has been evaluated to provide more information on the finger movement. Specifically,
the signal was divided into 5 s windows and the average peak amplitude excursion was
calculated for each. Subsequently, the mean and standard deviation of these amplitudes
were derived for each participant. Figure 7 briefly shows the average of the acceleration
excursions obtained in the different tests.
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Figure 7. Mean excursion of tap movement acceleration calculated for each finger for the different
case studies.

In the different scenarios, the index finger exhibits different behaviors in terms of the
acceleration excursion. Table 6 shows the percentage differences between the excursions
gained in the UniALT, BimSIM, and BimALT tests compared to the UniSIM test. The worst
difference was obtained in the UniALT condition, with a 22% difference. In the bi-manual
condition, the loss amplitude was 18% for BimALT and 15% for BimSIM.

Table 6. Percentage differences in the acceleration of the excursion of the index finger between the
UniALT, BimSIM, and BimALT tests compared to the UniSIM reference test.

UniSIM
vs.

UniALT

UniSIM
vs.

BimSIM

UniSIM
vs.

BimALT

Right Index 22.33% 15.70% 18.06%

4.2.2. Dual-Finger Analysis—A Simultaneous Case

To assess coordination abilities, it is necessary to perform an analysis on both fingers.
Figures 8 and 9 show the error-bar of the obtained results for the uni-manual and the bi-
manual tests considering simultaneous case. For the simultaneity exercises, the inter-times,
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in the ideal case, should be 0 s. The results show that, in the UniSIM test (considered as
the reference test in this work for its easiness to accomplish), the worst case obtained an
average inter-time value of 0.1 s. Starting from this experimental result, a threshold is
defined to make comparisons with the other tests. In particular, for each test, the time
difference between the adjacent peaks was calculated; for the uni-manual test, Figure 8
highlights how all participants kept their tapping time (simultaneity error) under 0.1 s. As
the bi-manual case shows (Figure 9), the results are analogous to the single-hand situation .
Particularly, a slight increase in the average value is observed, but most participants (28 out
of 30) maintained their simultaneity error under 0.1 s.
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Figure 8. Bar chart of average trends of simultaneity times during UniSIM test. The horizontal dashed
blue line is the experimental threshold for the simultaneity check.
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Figure 9. Bar chart of average trends of alternation and simultaneity times during BimSIM test. The
horizontal dashed blue line is the experimental threshold for the simultaneity check.

A comparison of the mean and standard deviation of the UniSIM and BimSIM tests is
shown in Figure10: it can be seen that the mean behavior is given by a value of 0.0734 s
(UniSIM) and 0.0821 s (BimSIM), whereas the standard deviation is 0.0060 s in the UniSIM
case and 0.0058 s in BimSIM case.
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Figure 10. Comparison between the mean and standard deviation of UniSIM and BimSIM tests.

4.2.3. Dual-Finger Analysis—An Alternate Case

The alternating finger movement case is now considered. In Figure 11, it can be seen
that the alternate tapping time is bounded in [0.02, 0.3]; most participants (21 out of 30)
exceeded a tapping time higher than 0.1 s (the exercise could be considered as correctly
executed if a participant has an increased value of inter-tap time, which exceeds the upper
limit of the interval (mean ± standard deviation) obtained in the simultaneous case). In
the bi-manual exercise, participants are required to perform the same movements, but
using the index fingers belonging to both hands. The coordination could change as the
movement involves the left and right sides of the body; the cerebral stimulus needed
to achieve this may differ. It can be seen from Figure 12 that 28 out of 30 participants
achieved an alternating tap time of more than 0.1 s, with a reduction in standard deviation
compared to the uni-manual case. It can be seen that, in this case, the ability to achieve an
alternating tap movement is more evident. The described finding is a significant result, as
most participants clearly follow the required task and provide significantly higher tapping
times in cases of alternate movement.
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Figure 11. Bar chart of average trends of simultaneity times during UniALT test. The horizontal
dashed blue line is the experimental threshold for the simultaneity check.
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Figure 12. Bar chart of average trends of alternation and simultaneity times during BimALT test. The
horizontal dashed blue line is the experimental threshold for the simultaneity check.

Finally, Figure 13 report a comparison of the uni-manual and bi-manual alternate
cases. This gave a mean of 0.167s with a standard deviation of 0.012 s (UniALT) and a mean
of 0.1457 s with a standard deviation of 0.0053 s (BimALT).

As shown above, the UniALT exercise proves to be more complex, with 33% of the
participants failing to complete the task correctly, whereas in the BimAlt case, only 6%
failed to complete the task correctly.
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Figure 13. Comparison between the means and standard deviations of UniALT and BimALT tests.

5. Discussion

The performance of a simple test, such as the TT, has often been associated with
the relationship between manual dexterity and the brain’s ability to adapt and learn, as
indicated in the literature [41]. This measurement methodology can be helpful in assess-
ing movements involving oculo–manual abilities, as confirmed by studies highlighting
individuals’ ability to learn and adapt [42]. Information management software could be
a potential tool to provide predictive information or indications of the early stages of a
neurodegenerative disease [43]. This could be paramount, as knowing the predictors and
intervening in the early stages can reduce intervention costs by using a platform that pro-
vides such information. It highlights the essential role of brain plasticity in refining manual
dexterity through practice and learning, using the TT as an investigative tool [44]. The test
results provide valuable insights into participants’ fingers coordination abilities and motor
dexterity in different scenarios. From the results obtained from the single-hand test, we
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could see that the UniALT test presented more difficulty in terms of performance, causing
a more significant loss in performance acceleration (Figure 7). This may be related to the
demand for the performance of a more difficult task in the UniALT test. This difficulty
could be attributed to brain resource allocation, where the index finger tends to be domi-
nant due to its superior motor and sensory control [45] This dominance creates difficulty in
achieving accurate coordination. The index finger, therefore, served as a pacesetter in both
simultaneous and alternating movements. Table 5 shows a more in-depth analysis of the
measurements, focusing on fatigue dynamics between the index and middle fingers. In
the UniALT case, the index finger tends to experience a more significant fatiguing effect
than the middle finger. From the graph analysis, clear disparities emerge in the evolution
of fatigue between the index and middle finger within the considered task. The observed
differences might be influenced by various factors, including the movement of the fingers
or the specific nature of the actions carried out by each of the two fingers [46].

In a further analysis, in both the UniSIM and UniALT cases, the participants failed to
coordinate the finger movements; in fact, it is possible to observe a difference in the balance
in the results. In Figure 7, we can observe similar balance differences in the two uni-manual
tests. Despite the coordination between the index and middle finger shows similar values in
both the UniSIM and UniALT tests, a notable difference in the average outcomes is observed
between the two tests. As previously assumed, there is a greater demand for work in the
UniALT test as it involves a significant amount of engagement of the motor processes that
are required to perform the movements as required [47]. On the other hand, the results of the
BimSIM and BimALT tests could highlight the brain’s ability to differentiate and coordinate
index finger movements when tasks require simultaneous and alternating movements [48].
Indeed, although coordination of two hands is required in this test, the participants achieved
good synchronization of the index finger movements of both hands and in both TT variants,
as shown in Figure 7. A possible explanation behind these findings could lie in the adaptive
nature and plasticity of the human brain areas [49]. The brain learn and adapts new abilities
through experience and training, and this adaptability may be particularly pronounced
in regions involved in motor control, including the corpus callosum [50]. This structure
plays a crucial role in bi-manual coordination, enabling effective communication between
the hemispheres and facilitating the transfer of sensory information and motor commands
necessary for hand coordination [51]. In Figures 10 and 13, after analyzing the results of
both simultaneous and alternating tests, it is noticeable that, in simultaneous exercises, a
majority of participants were successful in performing the exercise correctly in both the
UniSIM and BimSIM modes. However, in the case of alternating exercises, there was more
variability among subjects in UniALT, with 10 out of 30 participants performing the exercise
as if it were simultaneous. On the other hand, in BimALT, most participants achieved an
average alternation time of 0.15 s.

One hypothesis could be related to the effect of regular practice of bi-manual tasks,
such as those presented in BimSIM and BimALT, justifying greater motor task efficiency [52].
In addition, the human brain can separate activities between the two hands so that each
hand can focus on its specific task, which may help improve the synchronization of move-
ments. This activity division could reflect the brain’s ability to process sensory information,
enabling better management of different tasks [53]. This phenomenon can be explained
through functional and neuroplastic brain characteristics, the communication between the
hemispheres, and the division of activities between the hands, which enable the good syn-
chronization of bi-manual movements [54]. Understanding these mechanisms can inform
the design of interventions to refine finger coordination, particularly in contexts where
flawless motor precision is needed, such as rehabilitation programs and sports training reg-
imens [55]. It also holds promise for developing technologies to improve manual accuracy,
benefiting individuals in certain professions, such as musicians and surgeons. Moreover,
this simple test, supplemented by the accurate analysis of measured vestments, could be a
helpful tool for predicting or monitoring the course of neurodegenerative diseases.
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6. Conclusions

An overall architecture exploiting the capabilities of an automatic measurement proto-
col, IMU-related quantities, and suitable data processing techniques has been presented in
the context of sports-related objective performance evaluation. The approach could be im-
plemented through more in-depth studies and testing as a valuable tool to provide objective
data on motor signals that characterize neurodegenerative diseases. Several tapping tests
have been performed (UniSIM, BimSIM, UniALT, and BimALT) to compare and analyze the
effects on fatigue and hand coordination. This study found that the simultaneous tapping
test produced better coordination and perceived fatigue results than other exercises. These
findings could serve as a foundation for future research into coordinative abilities. The next
step will be to adapt this measurement protocol to assess the motor abilities of individuals
with neurodegenerative diseases. This further campaign will require some customizations
of the software part to better characterize the pathological part, but the whole setup will
remain unchanged, demonstrating the generalization property of the developed system. In
addition, it could serve as an early intervention; it could ensure prevention and promise
substantial cost savings for national healthcare systems by identifying the early stages
of the disease [56]. On the other hand, the use of inertial sensors will provide objective
support for movement measurement to improve even classical clinical evaluations.
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