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ABSTRACT  

Continuous steel-reinforced concrete slabs are vulnerable to corrosion damage and cracking. Non-metallic basalt 

fiber-reinforced polymer (BFRP) bars have a great potential to overcome corrosion problems. In this paper, test 

results of six continuous concrete slabs internally-reinforced with BFRP bars are reported. The specimens were 

divided into two groups based on the BFRP reinforcement ratio in the sagging regions (2.5fb and 0.8fb), where fb 

is the balanced reinforcement ratio of BFRP reinforcement. In each group, the hogging-to-sagging BFRP 

reinforcement ratio was 0.5, 0.72, or 1. Increasing the hogging-to-sagging BFRP reinforcement ratio increased the 

ultimate load but had almost no effect on the cracking load. The flexural response of continuous slabs that failed by 

rupture of BFRP bars was more sensitive to the hogging-to-sagging BFRP reinforcement ratio than that of the slabs 

that failed by concrete crushing. The moment redistribution ratio in the sagging region at failure of the later 

specimens was in the range of +40% to +48% compared to +10% to +26% for the former specimens. 
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1. INTRODUCTION 

The most dominant form of deterioration of steel-reinforced concrete structures is corrosion of steel reinforcement 

(El Maaddawy et al. 2005a, b). Non-corrosive fiber-reinforced polymer (FRP) bars have emerged as a result of the 

new technology in materials manufacturing. Because of their high strength-to-weight ratio, light weight, and high 

corrosion resistance, the use of FRP bars as replacement of traditional steel reinforcing bars is considered an ideal 

solution to eliminate corrosion problems in reinforced concrete structures (Bakis et al. 2002; Bank 2006). However, 

the ductility and deformability of FRP-reinforced concrete elements are questionable because of the linear-elastic 

response of FRP. Several studies were conducted to examine the flexural response of simply supported concrete 

elements internally reinforced with FRP bars (Kassem et al. 2011; Ovitigala and Issa 2013). Specimens reinforced 

with FRP bars exhibited greater deflections than those of their counterparts reinforced with steel bars. This was 

attributed to the reduced modulus of elasticity of FRP bars compared to that of steel, which resulted in larger cracks, 

reduced effective moment of inertia, and hence greater deflections. In evaluating the flexural capacity of FRP-

reinforced concrete structures, concrete crushing at ultimate is generally preferable to the FRP rupture in order to 

prevent catastrophic failures and to ensure high degrees of deformability. Very little information is available in the 

literature on the performance of continuous concrete structures internally reinforced with FRP bars (El-Mogy et al. 

2010; Habeeb and Ashour 2008). Moreover, the ACI 440.1R-06 (2006) does not allow moment redistribution in 

statically indeterminate FRP-reinforced concrete structures because of the brittle nature of FRP and the absence of 

sufficient data in the literature. However, previous studies have reported moment redistribution in continuous beams 

reinforced with adequate FRP reinforcement at mid-span sections (El-Mogy et al. 2010). In this paper, test results of 

six continuous concrete slabs internally reinforced with basalt FRP (BFRP) bars are reported. 
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2. EXPERIMENTAL PROGRAM 

2.1 Test Matrix 

Six two-span continuous slab strips internally reinforced with BFRP bars were tested. Aiming to achieve two modes 

of failure (rupture of BFRP bars and crushing of concrete), the specimens were categorized into two groups [A] and 

[B] of three specimens each as demonstrated in Table 1. The sagging sections of specimens of group [A] were 

designed to be over-reinforced with f = 2.5fb whereas those of specimens of group [B] were under-reinforced with 

f = 0.8fb, where f is the BFRP reinforcement ratio and fb is the BFRP balanced reinforcement ratio. Hogging 

regions are typically congested because of the use of excessive amount of reinforcement which might cause 

honeycombs and/or other defects during construction. If the hogging region section is of a sufficient ductility to 

make moment redistribution, the amount of reinforcement in the hogging region could be reduced provided 

increasing the reinforcement in the sagging regions. In such cases, hogging regions may have less amount of 

reinforcement than that of the sagging regions. The effect of varying the hogging-to-sagging reinforcement ratio on 

the moment redistribution capacity in continuous concrete structures internally reinforced with BFRP bars needs to 

be investigated. Accordingly, three different hogging-to-sagging BFRP reinforcement ratios of 0.5, 0.72, and 1 were 

used in the specimens of each group. 

2.2 Specimens 

Figure 1 shows a schematic of the beam specimen and the test set-up. The specimens were 500 mm wide, 200 mm 

deep and 5000 mm long. Each specimen had two clear spans of 2400 mm each. The beams were subjected to two 

point loads at 0.4L from the middle support, where L is the span length. To ensure a flexural mode of failure, 

double-leg steel stirrups of 8 mm diameter were provided along the length of the specimen at a spacing of 50 mm. 

The total applied load and the middle support reactions were recorded using 500-kN capacity load cells. Two linear 

variable differential transducers (LVDTs) were used to record the deflections under the point loads. Tests were 

conducted under displacement control at a rate of 1.5 mm/min. The specimens were constructed using ready-mixed 

normal weight concrete with average compressive and splitting strengths of 43 and 4.0 MPa, respectively. The 

BFRP reinforcing bars used were sand-coated with a nominal tensile strength of 1100 MPa and modulus of elasticity 

of 50.5 GPa. A test in progress is shown in Figure 2. 

Table 1: Test matrix 

Specimen 

  

BFRP Reinforcing bars Reinforcement ratio 
Hogging-to-

sagging 

reinforcement ratio 
Hogging Sagging Hogging Sagging 

  
f /fb f /fb

A1 110 + 212 210 + 412 1.25 2.5 0.5 

A2 28 + 312 210 + 412 1.8 2.5 0.72 

A3 210 + 412 210 + 412 2.5 2.5 1 

B1 28 18 + 210 0.38 0.8 0.5 

B2 38 18 + 210 0.58 0.8 0.72 

B3 18 + 210 18 + 210 0.8 0.8 1 
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Figure 1: Test specimen and test set-up 

 

 
Figure 2: Test in Progress 

3. TEST RESULTS AND DISCUSSION 

3.1 Failure Mode 

Specimens of group [A] initially exhibited flexural cracks in both sagging and hogging regions. As the load 

progressed, more flexural cracks developed in both regions. Prior to failure, an inclined flexure-shear crack 

developed in the hogging region. The specimens eventually failed by crushing of concrete in the hogging region 

over the middle support. Shortly after concrete crushing in the hogging region, the inclined flexure-shear crack 

widened and penetrated into the compression zone over the middle support, which caused a sudden collapse of the 

specimen. Local concrete crushing was also observed in the sagging regions at the onset of failure of specimen A3.  

Specimens of group [B] failed by rupture of the BFRP reinforcement in the hogging region after formation of 

several flexure cracks in both sagging and hogging regions. Rupture of BFRP bars resulted in a rapid release of 

energy and a complete loss of the load capacity of the beam. Figure 3 shows the modes of failure for specimens A1 

and B3.  
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(a) 

 
(b) 

Figure 3: (a) Concrete crushing for specimen A1 and (b) BFRP rupture for specimen B3 

 

3.2 Load-Deflection Response 

The load-deflection response of the tested specimens is shown in Figure 4 whereas main test results are summarized 

in Table 2. Specimens of group [A] showed higher stiffness than that of specimens of group [B] in both the pre-

cracking and the post-cracking stages. After cracking, the deflection increased at a higher rate in all specimens. The 

post-cracking stiffness was affected by the hogging-to-sagging BFRP reinforcement ratio. Increasing the hogging-

to-sagging BFRP reinforcement ratio from 0.5 to 0.72 increased the post-cracking stiffness by 21% and 25% for 

specimens of groups [A] and [B], respectively. Further increase in the hogging-to-sagging BFRP reinforcement ratio 

from 0.72 to 1 had an almost no effect on the post-cracking stiffness.  

 

From Table 2, it can be seen that, flexural cracks initiated earlier in specimens of group [B] than in those of group 

[A]. This occurred because specimens of group [B] had lower BFRP reinforcement ratios compared to those of 

group [A]. Varying the hogging-to-sagging BFRP reinforcement ratio had an almost no effect on the cracking load. 

Specimens of group [A] exhibited higher ultimate loads than those of group [B]. The load capacity typically 

increased in both groups with an increase in the hogging-to-sagging BFRP reinforcement ratio. The effect of varying 

the hogging-to-sagging BFRP reinforcement ratio on the load capacity was more pronounced in specimens of group 

[B] with the BFRP rupture mode of failure. Doubling the hogging-to-sagging BFRP reinforcement ratio increased 

the load capacity by 30% for specimens of group [B]. In contrast, specimens of group [A] exhibited only 18% 

increase in the load capacity as a result of doubling the hogging-to-sagging BFRP reinforcement ratio. It can then be 

concluded that the flexural response of continuous slabs with BFRP rupture mode of failure was more sensitive to 

the hogging-to-sagging BFRP reinforcement ratio than that of slabs with the concrete crushing mode failure. 

Specimens of group [A] featured higher deflection at peak load than that of specimens of group [B]. The deflection 

at peak typically increased by increasing the hogging-to-sagging BFRP reinforcement ratio. Doubling the hogging-

to-sagging BFRP reinforcement ratio increased the deflection at peak by 10% for specimens of group [A] and 30% 

for those of group [B]. 
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Figure 4: Load-deflection response 

Table 2: Test results 

Specimen 

  

Cracking load, Pcr 

(kN) 

Ultimate 

load, Pu 

(kN) 

  

Deflection 

at peak, 

Peak (mm) 

  

Mode of failure and its location 

  

Sagging Hogging  
 

A1 67 67 317.6 43.12 CCa in hogging followed by SFb in hogging 

A2 80 84 393.6 53.32 CC in hogging followed by CC in sagging 

A3 80 82 374.6 47.16 CC in hogging with observed MCc in sagging 

B1 55 58 123.5 31.45 BFRP rupture in hogging 

B2 46 45 144 35.87 BFRP rupture in hogging 

B3 50 59 160 40.72 BFRP rupture in hogging 
a CC = Concrete crushing 
b SF = Shear failure 
c MC = Minor concrete crushing 

 

3.3 Moment Redistribution 

The load versus moment relationships for specimens of groups [A] and [B] are plotted in Figures 5 and 6, 

respectively. The moments were calculated based on satisfying the equilibrium conditions using values of the 

middle support reaction and total applied load. In the pre-cracking stage, the moments measured experimentally 

coincided with the predicted elastic moments. Following cracking, the moments started to deviate from the elastic 

response except for specimen B3 that featured an almost elastic response. This occurred because specimen B3 had 

same amount of BFRP reinforcement in both sagging and hogging regions. Specimen A1 from group [A] and B1 

from group [B] exhibited the greatest deviation from the elastic response because they had the smallest hogging-to-

sagging BFRP reinforcement ratio of 0.5. The deviation from the elastic response decreased with an increase in the 

hogging-to-sagging BFRP reinforcement ratio.   

 

The moment redistribution ratio,  , of the tested specimens at ultimate load was calculated using Eq. 1 based on the 

difference between the moment obtained from the tests, Mexp, and the corresponding elastic moment, Me. A positive 
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value of  indicates that the concerned region has gained a moment greater than the elastic moment whereas a 

negative value indicates the opposite. The moment redistribution ratio at ultimate in the sagging region was in the 

range of +40% to +48% for specimens of group [A] and +10% to +26% for specimens of group [B]. For specimens 

of group [A], the moment redistribution ratio at failure increased by increasing the hogging-to-sagging BFRP 

reinforcement ratio. This occurred because increasing the hogging-to-sagging BFRP reinforcement ratio increased 

the ultimate load, which allowed the slabs to develop more cracks, and hence, greater deviation from the elastic 

response occurred. In contrast, for specimens of group [B], the moment redistribution ratio at failure decreased by 

increasing the hogging-to-sagging BFRP reinforcement ratio. This occurred because increasing the hogging-to-

sagging BFRP reinforcement ratio in specimens of group [B] reduced the difference in flexural rigidity between the 

sagging and hogging regions, and hence, reduced the moment redistribution at failure.      

 

e

eexp

M

MM
%


  × 100%                                                           (1)                                                              

 

 

Figure 5: Load-moment response for specimens of group [A] 

 

 

 

Figure 6: Load-moment response for specimens of group [B] 
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4. CONCLUSION 

Increasing the hogging-to-sagging BFRP reinforcement ratio increased the ultimate load but had an almost no effect 

on the cracking load. The flexural response of continuous slabs with BFRP rupture mode of failure was more 

sensitive to the hogging-to-sagging BFRP reinforcement ratio than that of slabs with the concrete crushing mode of 

failure. Doubling the hogging-to-sagging BFRP reinforcement ratio increased the load capacity by 18% and 30% for 

specimens of groups [A] and [B] with concrete crushing and BFRP rupture modes of failure, respectively. 

Increasing the hogging-to-sagging BFRP reinforcement ratio from 0.5 to 0.72 increased the post-cracking stiffness. 

Further increase in the hogging-to-sagging BFRP reinforcement ratio from 0.72 to 1 had an almost no effect on the 

post-cracking stiffness. The moment redistribution ratio in the sagging region at failure was in the range of +40% to 

+48% for the specimens with a concrete crushing mode of failure and +10% to +26% for the specimens with a 

BFRP rupture mode of failure. The moment redistribution ratio at failure increased by increasing the hogging-to-

sagging BFRP reinforcement ratio for the specimens with the concrete crushing mode of failure. In contrast, for 

specimens with the BFRP rupture mode of failure, the moment redistribution ratio at failure decreased by increasing 

the hogging-to-sagging BFRP reinforcement ratio. 
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