
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

10-17-2016 12:00 AM

Using a Real-Time Object Detection Application to Illustrate Using a Real-Time Object Detection Application to Illustrate

Effectiveness of Offloading and Prefetching in Cloudlet Effectiveness of Offloading and Prefetching in Cloudlet

Architecture Architecture

XuTong Zhu
The University of Western Ontario

Supervisor

Hanan Lutfiyya

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© XuTong Zhu 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Zhu, XuTong, "Using a Real-Time Object Detection Application to Illustrate Effectiveness of Offloading and
Prefetching in Cloudlet Architecture" (2016). Electronic Thesis and Dissertation Repository. 4176.
https://ir.lib.uwo.ca/etd/4176

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ir.lib.uwo.ca%2Fetd%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4176?utm_source=ir.lib.uwo.ca%2Fetd%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

In this thesis, we designed and implemented two versions of a real-time object de-

tection application: A stand alone version and a cloud version. Through applying the

application to a cloudlet environment, we are able to perform experiments and use the

results to illustrate the potential improvement that a cloudlet architecture can bring to

mobile applications that require access to large amounts of cloud data or intensive com-

putation. Potential improvements include data access speed, reduced CPU and memory

usages as well as reduced battery consumption on mobile devices.

Keywords: cloud and cloudlet computing, data pre-fetching, partition and o✏oading

ii

Contents

Certificate of Examination i

Abstract ii

List of Figures vi

List of Tables viii

List of Appendices ix

1 Introduction and Motivation 1

1.1 A solution to the increasing tra�c incurred by mobiles - Cloudlet 2

1.2 Problem statement . 2

1.3 Thesis Organization . 3

2 Literature Review 5

2.1 Mobile Application Partitioning & O✏oading 5

2.1.1 Identify remotely executable portions in application 5

2.1.2 Profiling and Monitoring . 6

2.1.3 Partitioning . 6

2.2 Use of Cloudlet . 7

2.3 Di↵erent Ways Of Cloudlet Prefetching Data 9

3 Cloud & Cloudlet & Mobile Data Pre-fetch Architecture 11

3.1 Example Application . 11

3.2 Architecture of a Stand Alone Application 11

3.3 Architecture of a Cloud Version . 12

3.3.1 Client . 13

3.3.2 Server . 14

3.3.3 Full Program Cycle . 14

iii

4 Experimental Environment 17

4.1 Application . 17

4.2 Object Recognition . 17

4.3 Video Streaming and Transcoding . 19

4.4 Application implementation . 19

4.4.1 Stand Alone Version implementation 20

Programming languages and OS 20

4.4.2 Cloud Version Implementation . 20

Programming languages and OS 20

4.5 Testbed . 20

4.6 Testing Goal and Metrics . 21

5 Experiments 22

5.1 Experimental Setup . 22

5.2 Data location vs Data Retrieval Experiments 23

5.2.1 Metric . 23

5.2.2 Test 1 . 24

5.2.3 Test 2 . 25

5.2.4 Test 3 . 26

5.2.5 Discussion . 26

5.2.6 Additional Comparisons . 28

5.3 Streaming cost incurred in Cloud Version Application 28

5.3.1 Discussion . 31

5.4 Stand Alone Version and Cloud Version Performance Comparison Exper-

iment . 32

5.4.1 Metrics . 32

5.5 Weaknesses . 37

6 Conclusion and Future Work 39

6.1 Conclusion . 39

6.2 Future Work . 39

Bibliography 40

A Application Preparations and Detailed Implementation 44

A.1 Preparations . 44

iv

A.1.1 Generate pre-defined building classifiers for Computer Vision func-

tions . 44

A.1.2 Record down each building’s geographic location 46

A.2 Application source code . 46

A.2.1 Stand Alone Version Components 46

Prototype version 2 components 50

Curriculum Vitae 55

v

List of Figures

1.1 Common Cloud . 3

1.2 Cloudlet . 3

3.1 process of stand alone version . 13

3.2 process of Client-Server version . 15

4.1 how does detection happen . 18

4.2 how does detection happen . 19

5.1 VERSION 1 - TEST 1 . 24

5.2 VERSION 1 - TEST 2 . 25

5.3 Accessing Circe from two di↵erent locations - Comparison 1 26

5.4 VERSION 1 - TEST 3 . 27

5.5 Accessing three servers - Comparison 1 29

5.6 Accessing three servers - Comparison 2 29

5.7 Accessing three servers - Comparison 3 29

5.8 Accessing three servers - Comparison 4 29

5.9 Mobile - Server Latency - MacbookPro 30

5.10 Mobile - Server Latency - Circe . 30

5.11 MacBookPro - Mobile StandAlone - Single Building 31

5.12 MacBookPro - Mobile StandAlone - Four Building 31

5.13 Circe - Mobile StandAlone - Single Building 31

5.14 Circe - Mobile StandAlone - Four Building 31

5.15 Stand Alone Version Performance - Battery 33

5.16 Stand Alone Version Performance - Battery - Sum 33

5.17 Stand Alone Version Performance - FrameRate 33

5.18 Stand Alone Version Performance - CPU 34

5.19 Stand Alone Version Performance - RAM 34

5.20 Stand Alone Version Performance - GPU 35

5.21 Cloud Version Performance - Battery . 35

vi

5.22 Cloud Version Performance - Battery - Sum 35

5.23 Cloud Version Performance - FrameRate 36

5.24 Cloud Version Performance - CPU . 36

5.25 Cloud Version Performance - RAM . 37

5.26 Cloud Version Performance - GPU . 37

vii

List of Tables

viii

List of Appendices

Appendix A Application Preparations and Detailed Implementation 44

ix

Chapter 1

Introduction and Motivation

Since the first release of the iPhone in 2007, the use of mobile devices (e.g., smartphones,

tablets, smart watches) has increased dramatically. The recent Cisco Global Mobile Data

Tra�c Forecast shows that, in 2014, global mobile devices and connections grew almost

half a billion (from 6.9 billion in 2013 to 7.4 billion in 2014) [1]. Cisco also noted that

these mobile devices represent 88 percent of the mobile data tra�c in 2014.

Despite the growth and the convenience they bring, mobile devices have limited com-

puting power, e.g., battery power, CPU and memory. This limits the applications that

can be run only on mobile devices. While mobile devices are evolving to become more

powerful and able to support more complex applications, there are still applications that

would have poor performance if the computing resources were limited to those found

on the device. For example, weather forecasting requires access to many data sources,

e.g. radiosonde observation and satellite data. Accessing this data requires that the

application has many open network connections to receive the data. As shown by Lynch

et al. [2], the application also requires the calculation of numerical prediction models.

The access and computation requires substantial computing resources that are often not

available on mobile devices. However, the leveraging of cloud computing resources al-

lows for this application to be realized. The weather service hosted on the cloud handles

communication with the data sources and numerical prediction modelling. The weather

service can be accessed through an API by software on mobile devices. The mobile device

software specifies a location and receives results from the cloud service (predicted weather

conditions for di↵erent locations). This saves battery power and requires little compute

power and storage of the mobile device. Another example is seen with social network

applications (e.g., Twitter, Reddit, Facebook and Linkedin), where a huge amount of

multimedia data (e.g., texts, images, audios and videos) are stored on cloud servers. Ap-

plications on mobile devices can retrieve this data through an API. In this case, cloud

1

Chapter 1. Introduction and Motivation 2

servers can also perform computational services (e.g., data mining) based on the data

generated through users’ behavior (e.g., referencing people the user may know based on

existing friends’ links, suggesting pages, posts that the user may be interested in).

The use of cloud computing resources to provide services used by mobile applications

has resulted in significantly increasing mobile tra�c and this is expected to continue in the

future. In the Ericsson Mobility Report 2015 [3], the expected smart phones subscriptions

by 2020 as compared to 2014 will increase from 2.6 billion to 6.1 billion worldwide, mobile

broadband from 2.9 billion to 7.7 billion and mobile PCs, tablets and routers will increase

from 250 million to 400 million. Monthly mobile data tra�c is expected to increase from

3.3 ExaBytes/month as of 2014 to 30.5 ExaBytes/month in 2020 [3]. We also note that

during popular global events the data flow is even more significant than usual. For

example, during the 2014 World Cup, there were 26.7 Terabytes of tra�c from texting,

talking and posting on social networks. During the championship final, generated mobile

tra�c was five times higher than the average peak hour tra�c.

1.1 A solution to the increasing tra�c incurred by

mobiles - Cloudlet

To deal with this growth, one concept that has been proposed is to use middleware

in cloud network structures e.g. a cloudlet. A cloudlet has richer computing resources

compared to mobile devices and can be located at places where a major population lives or

places that are visited at a high frequency e.g., major residential area, large restaurants,

co↵ee stores, malls, schools. As explained in Satyanarayanan et al. [4], the role of cloudlets

is to provide computing power in between cloud servers at the network core and mobile

devices at the network edge. Cloudlets access cloud servers at the network core while

being easily reachable by mobile devices through either a LAN or WAN connection at a

closer distance to the device than cloud servers. Figure 1.1 shows the current relationship

between mobile devices and a cloud while Figure 1.2 shows possible role of a cloudlet

that is assumed to be at the network edge.

1.2 Problem statement

A considerable amount of research explores the potential e↵ectiveness of cloudlets. This

research can be categorized into three areas: 1) Application partitioning and o✏oading

which determine how applications should o✏oad computationally complex functions to

Chapter 1. Introduction and Motivation 3

Figure 1.1: Common Cloud

Figure 1.2: Cloudlet

cloudlets [5] [6] [7]. Typically, the goal is to improve overall performance of the application

or minimize energy usage on the mobile devices through the o✏oading; 2) Cloudlet

Structures, which focus on facilitating coordination among mobile devices, cloudlets and

cloud servers [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [4]; 3) Data Pre-fetching,

which studies how a cloudlet can e↵ectively pre-fetch data from cloud servers to better

serve mobile devices’ needs, [19] [20] [21] [22] [23] [24] such as reduced network latency

and energy consumption.

Despite the considerable research on cloudlets, little research has focused on how to

improve the responsiveness of cloudlets to requests from mobile devices by pre-fetching

data based on context.

In this thesis, we designed a live building detection application which involves complex

computer vision computations on potentially a large base of location (context) based data

that is to be processed and stored. We coded the application into two prototypes: one

only uses the mobile device’s local resources, and the other o✏oads to cloudlets. We used

these prototypes to evaluate the e↵ectiveness of prefetching of data based on context.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces related work in these areas: 1)

mobile application partitioning and o✏oading; 2) the di↵erent ways of using cloudlet; and

Chapter 1. Introduction and Motivation 4

3) proposed approaches to be used by cloudlets to prefetch data from a cloud. Chapter 3

will introduce our application and cloudlet architecture design. Chapter 4 will introduce

our experimental setup. Chapter 5 will present our experimental results with analysis

and discussions. Finally Chapter 6 present conclusions and future work.

Chapter 2

Literature Review

This chapter reviews related research in mobile application partitioning/o✏oading, mobile-

cloud network architecture and cloudlet pre-fetching techniques.

2.1 Mobile Application Partitioning & O✏oading

In order to allow mobile applications to leverage cloud resources, decisions need to be

made on how to partition and o✏oad applications. This section describes the represen-

tative work in the area of partitioning and o✏oading.

2.1.1 Identify remotely executable portions in application

For applications that aim to leverage cloud/cloudlet resources, there needs to be a way

to identify the remotely executable portion of the applications.

CloneCloud [6] [7] proposes a full VM (virtual machine) migration approach for the

mobile device to o✏oad computational threads to cloud servers. It uses a static analyser

to identify partitions of the application automatically under a set of constraints. For

example, methods that access unique features of its local device, share native states or

libraries should stay local. The static analyser runs automatically instead of developers

manually identifying code that can be remotely executed. We will refer to this code as

remotable.

MAUI [5] uses .NET CLR, which is a cross platform run-time environment by Mi-

crosoft, that compiles and runs code from di↵erent coding sources. It enables cross

platform, cross language compilation by compiling source code into CIL (common inter-

mediate language) [25]. MAUI uses a CLR feature that allows application developers to

5

Chapter 2. Literature Review 6

manually tag methods in the application source code, which indicates that the method

can be remotely executed.

Cuckoo [26] proposes that developers use the Android Activity/Service Classes to sep-

arate an application’s interactive part and computational part. On an Android platform,

Activity and Service are two di↵erent interfaces for di↵erent functions to run. The Activ-

ity interface is the front desk interface which normally interacts with users whereas the

Service interface runs in the background and is responsible for handling computationally

heavy tasks. Cuckoo utilizes the two interfaces and considers methods in the Activity

interface as local and methods in the Service interface as remoteable. For the service

interfaces, it auto generates the remote version of the service interfaces which runs on

the cloud server VM. However, the automation only generates interfaces for remoteable

methods. The actual implementation of these methods on a cloud server varies and still

needs developers to manually code them.

2.1.2 Profiling and Monitoring

CloneCloud [6] [7] profiles the cost of running each remotable portion of an application

under di↵erent platforms based on energy consumption and CPU cycles using test runs.

The test runs generate a profile tree which stores these costs and later, these are used as

guidance to make partition decisions.

MAUI [5] takes a di↵erent approach. It continuously monitors program and network

characteristics during runtime including the amount of state that needs to be transferred

for each method o✏oad, runtime duration and number of CPU cycles required. The

monitored information is used to provide a more accurate estimate of the cost of each

method’s call to determine whether it should be o✏oaded. The profiler records each

method’s performance from the point it starts its execution until the end of the execution.

The performance record is then analysed and used as a suggestion for the method’s future

invocation. For example, if the method performs poorly after being o✏oaded, then next

time it may not be o✏oaded. Instead it would run locally.

2.1.3 Partitioning

In static partitioning[[6] [7] [26] [8] [9]], how the application should be partitioned is

decided before application runtime. For example, in CloneCloud [6] [7], cost models are

fed to an optimization solver which calculates an optimized partition plan by combining

di↵erent remotable portions and their costs to meet an overall objective function e.g.,

lowest energy consumption, fastest execution time.

Chapter 2. Literature Review 7

In dynamic partitioning on the otherhand, partitioning is performed during runtime.

In Cuervo et al. [5] when the execution hits an o✏oadable method, a decision making

formula will take input from the dynamic profiling (input such as energy consumption,

residual energy, runtime duration, state transferring cost and connectivity) and makes a

decision on whether the method should be run remotely. However, this way of profiling

and partitioning incurs additional overhead because of the need to constantly monitor

application behaviour.

2.2 Use of Cloudlet

There is a considerable body of research on cloud structures [8] [9] [10] [11] [12] [13] [14]

[15] [16] [17] [18] [4].

In Rossetto et al. [18], cloudlets are proposed to be used mainly as a workflow manager

to process and manage a mobile device’s request (submission, monitoring, and download

of application results) to execute in the cloud. There are three modules: Controller,

Engine and Collector uniquely created on a cloudlet for each submitted application from a

mobile device. The controller is responsible for receiving requests, sorting these requests,

commanding and controlling their order through the application identifier. The engine

sends a resource request of the application to the resource selector which is responsible

for gathering information related to the grid environment and for selecting resources

based on resource characteristics, authorization, usage policies and requirements that

application tasks require.

Satyanarayanan et al. [4] proposes that cloudlets be used in place of cloud servers to

handle requests from mobile devices. They propose a Transient Cloudlet Customization

which features pre-use customization and post-use cleanup. It uses VM encapsulation to

separate the application software environment from the cloudlet infrastructure’s perma-

nent host software environment. They propose two di↵erent approaches for delivering

the mobile state to the cloudlet: 1) Full VM migration, in which an already executing

VM is suspended, its processor, disk, and memory state are transferred, and finally VM

execution is resumed on the cloudlet from the exact point of suspension; 2) Dynamic VM

synthesis, where the mobile device delivers a small VM overlay to the cloudlet infrastruc-

ture that already possesses the base VM operating system on which this overlay is able

to execute.

Kovachev et al. [10], proposed a multimedia cloud architecture that specialized in pro-

cessing and sharing multimedia applications and data for mobile devices. It also uses VM

technology where virtual machines are grouped in realms which present di↵erent com-

Chapter 2. Literature Review 8

puting resources: processing realm for parallel processing over many machines, streaming

realm for handling streaming requests and general realm for running other servers such

as XMPP or Web server.

Guan et al. [8] [9] generalize cloudlet usage into two models: 1) A remote access service

model where mobile devices are used as a remote access point to interact with a cloudlet;

2) A substitution service model where services are o✏oaded to cloudlets for execution.

They also propose a system infrastructure between mobile devices and cloudlets. In the

infrastructure, the mobile devices maintain five modules: The Wireless Network Module

which is responsible for low-level communication with cloudlets and other mobiles; the

Device Proxy Module which is responsible for cloudlet discovery, initializing and ter-

minating communications; the Execution Module sends a small script to a cloudlet so

that it can download application code from the cloud; the Personal Information Module

which stores user information and authentication and the Cache Module which stores

interface codes and service status. The cloudlet’s role in the infrastructure is to first pro-

cess mobile device requests, and if necessary, suitable cloud services requests are invoked

through the cloudlet to forward mobile requests to actual cloud servers. The cloudlet

also applies VM technology and, in the infrastructure, promotes the idea of context-based

ontology which uses vocabularies or short terms to describe each mobile, cloudlet and

cloud server’s characteristics so that a context reasoner can be implemented on cloudlets,

which acquire context information from other entities and determine the optimal service

to be accessed by the authenticated user.

Bahl et al. [11] proposes a RESTful programming model which promotes stateless

o✏oad, that is, cloudlets and cloud server provide common function services through

http/https protocol to mobile devices which developers can take advantage of when pro-

gramming applications. Such services include: (1)A Platform service that provides com-

puting, storage, database, memcache services; (2)An Application service that provides

commonly used applications functions: video streaming, location services, push notifica-

tion, speech/image recognition and context-rich support service that gathers user infor-

mation and provides recommendations (e.g., suggested videos, purchases), and context

extraction for mobile devices.

Fesehaye et al. [12] provides a Cloudlet Routing design with two options: 1) Dis-

tributed routing approach where cloudlets are responsible for routing updates and stor-

ing routing tables that contain information on how to reach other cloudlets and mobile

devices; and 2) Centralized Routing approach where a central server is responsible for

computing routes by having each cloudlet submit its routing table to the central server.

Kemp et al. [13] argues that mobile devices should have more freedom in terms of

Chapter 2. Literature Review 9

choosing which cloudlet or cloud server it requests its service from. It proposes to bundle

client and service code together. The service code does not run on mobile devices, but

can be installed onto a cloud by mobile devices. It also proposes the development of

a toolkit called Interdroid which helps developers to develop applications with good

communication with the cloud. For example, it provides an application on a cloud that

helps with pulling information o↵ the web and pushing notifications to mobile devices.

Rajachandrasekar et al. [14] argues that mobile devices are not only limited to being

service recipients, but can also be computing resource providers. They argue that even

though mobile CPU power and storage is limited, the aggregate of resources from a large

number of mobile devices is significant. Mobile devices are used as resources in two

ways: 1) Mobile Grids on-site where mobile devices are controlled by a central server,

where each mobile device reports its capabilities and availability and the central server

schedules the tasks; 2) Mobile Ad-Hoc Grid where there is no central server but rather

devices form in an ad-hoc fashion, a virtual backbone consisting of more powerful mobile

nodes responsible for coordinating distributed tasks.

Taylor et al. [15] propose to build applications which uses mobile devices with sensors

as terminals to capture user interactions, and cloudlets as workspaces to hold temporary

computing sessions for mobile devices in order to support rendering, processing sensor

input, object tracking as well as caching information about its surrounding area.

Satyanarayanant et al. [16] propose multiple VM encapsulations on cloudlets where

each encapsulates a di↵erent cognitive engine e.g., di↵erent cognitive services, object

recognition, movement detection. A Control VM is responsible for all interactions with

mobile devices including combining and outputing results from di↵erent cognitive VM

engines to a single User Guidance VM to integrate together.

Ha et al. [27] also applies VM encapsulations on cloudlets. They propose the move-

ment of VM encapsulations of mobile devices between cloudlets to maintain low end-to-

end latency between mobile devices and cloudlets while mobile devices physically move

around in a covered area.

2.3 Di↵erent Ways Of Cloudlet Prefetching Data

Duro et al. [19] makes use of memcached (An in-memory key-value store for small chunks

of arbitrary data (strings, objects) from results of database calls, API calls, or page

rendering [28]) to build a multi-layered cloudlet-based architecture for storing pre-fetched

data. It is designed such that cloudlets in the front layers interact with mobile devices as

a first level cache and other cloudlets or cloud servers serve as back-end backup storages.

Chapter 2. Literature Review 10

Khawaga et al. [20] argues that mobile devices could form an ad-hoc network which

is a multi-hop heterogeneous self-configured temporary network with dynamic topologies

and without centralized administration. Within which, mobile devices can perform coop-

erative caching, that supports sharing and coordination of cached data among multiple

mobile nodes. Each mobile device in this network also uses admission control to deter-

mine whether received data items should be cached. The admission control is based on

factors such as the needs of neighbouring nodes: 1) General approach: All incoming data

are cached; 2) Functional: A cost function is used to decide whether caching the data or

not (distance, access frequency). Additionally, when local cached space is full on a mobile

node, there are two options for cache replacement: 1) Local replacement in which cached

data is evicted based only on local access behaviour; and 2) Coordinated behaviour in

which the collective access behaviour of all mobile nodes in the ad hoc network is used.

Pingoy et al. [21] uses cloudlets to boost mobile video streaming performance for

e�cient social video sharing between users through pre-fetching videos for users and

managing pre-fetched videos based on the frequencies that they have been accessed.

Sarwar et al. [22] applies Case Based Reasoning together with Artificial Neural Net-

work algorithm in order to increase the hit rate of pre-fetching data.

Koukoumidis et al.’s Pocket Cloudlets [23] suggest that a cloud service cache archi-

tecture could reside on the non-volatile memory of mobile devices by combining multiple

mobile devices together into a network. This is based on the assumption that the non-

volatile memory of mobile devices will grow rapidly in future decades. The pre-fetching

uses both individual user and community access models to maximize the hit rate of data

pre-fetching. It also proposes pre-caching static data using wifi while pre-caching only

dynamic data through radio channel when necessary in order to compromise the limited

battery resources of most mobile devices.

Chapter 3

Cloud & Cloudlet & Mobile Data

Pre-fetch Architecture

3.1 Example Application

This section describes an application that may benefit from the use of cloudlets prefetch-

ing data based on location.

A computer vision application collects images of objects. These samples and labels

(e.g., the building name) are provided to machine learning algorithms to generate classi-

fiers. The classifiers are used to detect objects from future images/video clips [29]. As the

detectable objects pool grows, more data is needed to be stored, which includes sample

images as well as object classifiers.

In a cloud computing environment, a mobile application typically relies on the cloud

to store all of the data (sample images, object classifiers) and then either allowing the

cloud to run the detection algorithms through streaming the visual view of the detection

subject (Google Goggle [30]) or downloading small portions of the classifier data pool to

detect specific objects locally.

3.2 Architecture of a Stand Alone Application

There are four major functional units as follows: File manager, location service, detection

unit and user interface (UI).

The file manager is responsible for finding and downloading files from a cloud server

which stores all application related data. This includes an index of all buildings that have

been sampled, classifier files of building candidates based on the location of the user, and

11

Chapter 3. Cloud & Cloudlet & Mobile Data Pre-fetch Architecture 12

additional feed files such as images, videos and description links about buildings that are

within the camera view.

The location service is responsible for periodically updating the location of the user.

This is used to filter out buildings that are out of the mobile camera’s maximum distance.

For each camera frame captured, the detection unit executes the detection algorithms

using the classifier of candidate buildings. These buildings are determined by location.

The User Interface (UI) is responsible for reading and rendering detection results. In

additional it manages the presentation of extra feeds (e.g., image galleries, video links,

floor maps) for identified buildings to the user.

Program execution is graphically depicted in Figure 3.1. Execution starts from the

file manager downloading the list of all buildings of a relatively large area (e.g., the list

of all buildings within Western University) from a cloud server and the location service

retrieving the user’s current GPS location. The GPS location is used together with a pre-

set radius of 100 meters (which is typical for a mobile camera view range) by the location

analysis function in the mobile application to filter the buildings list and generate a

small pool of nearby building candidates. The file manager then downloads all classifier

files that are related to these candidate buildings from the cloud server. Meanwhile,

the detection software starts looping through each camera frame. The downloading of

files is parallel to the detection. When there are no classifiers downloaded, the detection

software detects nothing and a normal camera frame is rendered to the user. As classifiers

are downloaded one after another, the detection software is able to detect more and more

buildings in the camera frames. When the building is detected, the detection results are

used by both the file manager and user interface. The file manager uses the result to

download additional feed information about the building and the UI uses the result to

display on the mobile screen.

3.3 Architecture of a Cloud Version

The cloud version refers to the partitioning of the application where only minimum

functionality of the application resides on the mobile device and a major part on a cloud

server or cloudlet. This includes managing building lists, feeds, classifiers, processing

camera stream and object detection.

Chapter 3. Cloud & Cloudlet & Mobile Data Pre-fetch Architecture 13

Figure 3.1: process of stand alone version

3.3.1 Client

The location unit is responsible for retrieving the user’s current location coordinates.

The location coordinates are sent to the server. The file manager downloads the extra

feeds of buildings when the detection results are returned from the server.

The client side needs three units that were not required for the stand alone applica-

tion. This includes the outbound streaming unit, the inbound streaming unit and the

messenger unit. The Messenger unit is responsible for the data exchange between the

client and the server. The types of messages sent by the messenger include messages

to establish a streaming connection between client and server, periodic GPS coordinate

update of current client location, and the detected building list which the server, upon

detection of buildings, sends to clients. The Outbound streaming unit is responsible

for transmitting the mobile device’s camera view to the remote server. The Inbound

streaming unit is responsible for receiving the video stream returned from the server.

Chapter 3. Cloud & Cloudlet & Mobile Data Pre-fetch Architecture 14

The stream sent is the original video stream with detected buildings marked out on each

video frame. The reason why the live video stream is used over transmitting only a series

of images between client and server is because the mobile camera captures on average 30

frames per second. Each frame can be considered as a single image which can be used

for detection. Although the client and server can manage the transmission of 30 images

per second, the 30 frames in a second can be highly compressed, and thus we use video

streaming to packetize the video into packets and then transmit the packets between the

client and server, which is a more e�cient way of transmitting the data.

3.3.2 Server

The server part of the application detects the buildings, filters buildings based on location

coordinates sent by the client, and a file manager for pre-fetching data based on the

location of the cloudlet from the cloud. In addition, there are Outbound streaming,

Inbound streaming and messenger units which are similar to those found in the clients.

The server part also includes a transcoding unit which converts the video stream into

formats that are used by each of the outbound stream, inbound stream and messenger.

3.3.3 Full Program Cycle

A full program cycle is graphically depicted in figure 3.2 which starts with the server

side initializations. The server initialization pre-fetches files needed for the application

through the file manager (including building list, each building’s classifier files for build-

ings that are in the building list) from the cloud. This speeds up the detection process

since servers have more computational resources and thus can process data faster. The

server also initializes the outbound streaming service, client reception service and waits

for a client connection. For each client connection, the server side creates a session for

communication with this client. When a client successfully connects to the server, it

sends session data information to the server. It will then stream its camera view towards

the server. Using the session information received, the transcoding unit on the server

side is able to decode the incoming packets into video frames. The video frames are fed

to the detection unit. The clients update the user’s latest location coordinates every 10

meters moved or after every 1 minute. This is a pre set threshold used to determine the

frequency that a client updates a server of its GPS location. Higher frequencies comsume

energy while a frequency that is too low may result in inaccurate user location informa-

tion. The coordinates are used on the server to generate a list of nearby buildings. Based

on the list of nearby buildings, the detection unit updates classifiers loaded for detection.

Chapter 3. Cloud & Cloudlet & Mobile Data Pre-fetch Architecture 15

After going through detection, each video frame is then converted back to H264 format

and streamed back by the server’s outbound streaming unit. Lastly, the client’s inbound

streaming unit receives the video stream back which is displayed on the screen.

Figure 3.2: process of Client-Server version

This example is not unique and can be generalized into many di↵erent stand alone/cloud

based application architectures. Applying cloudlet-based network architectures to appli-

cations has several benefits. First, all application related data (in the case of the example,

this includes: sample images and classifiers) can be pre-fetched onto cloudlets. This re-

leases storage of mobile devices from storing data locally while still providing a relatively

faster access of the data than having to access cloud servers directly. Secondly, since

cloudlets possess computing power, the mobile requests is resolved at cloudlets instead of

forwarding to cloud servers. This reduces workload on a cloud as well as reduces network

tra�c in the network core.

Additionally, application data often possess important context information which can

be used to improve pre-fetch e�ciency and accuracy. In the example scenario, the context

information could include the physical locations, average number of mobile devices around

the area etc. For a cloudlet, prioritizing pre-fetched data related to the same area that

the cloudlet is located may be more e�cient since mobile devices accessing the cloudlet

are more likely around the same area and therefore more interested in the data of the

Chapter 3. Cloud & Cloudlet & Mobile Data Pre-fetch Architecture 16

area than data related to other areas.

Chapter 4

Experimental Environment

This chapter describes the experimental environment.

4.1 Application

The application used in the experiments identifies buildings and landmarks. Once a

building is detected the application will use coloured rectangles to mark out the detected

buildings/landmarks on screen. In addition, it displays extra feeds (including images

gallery, video clips and short descriptions of identified buildings on to the side of the

screen).

There are two versions of the application. The stand-alone version runs on the mobile

devices and only downloads data from the cloud. In the cloud/cloudlet version, the

mobile device sends live video stream of its camera to the cloud/cloudlet server where

the software for identifying building/landmarks take place. The cloud/cloudlet server

also pre-fetches application related data to avoid time cost on downloading them during

actual application runtime.

4.2 Object Recognition

The application requires object recognition algorithms for identifying a specific object in

a digital image. In this work, we used object recognition algorithms based on supervised

machine learning which uses training data with labels to learn a model of the data. The

training data represents features that includes edges, gradients, histograms of oriented

gradients (HOG), Haar wavelets and linear binary patterns [31]. Object recognition

algorithms are implemented in OpenCV [32]. The preparation for the machine learning

17

Chapter 4. Experimental Environment 18

process includes:

1. Collection of Samples: An average of 250 sample images were gathered for each

target object representing a building/landmark. The reason why the number of sample

images may vary from building to building is becuse di↵erent buildings have di↵erent

features. Some have only one significant feature while others have multiple features.

Each feature needs to be trained separately and therefore some buildigns end up having

more sample images than others. These images are used as training data by the OpenCV

machine learning algorithm: opencv traincascade, which supports both Haar wavelets and

LBP (Local Binary Patterns) features [33].

2. Pre-Processing of the Samples: The sample images are pre-processed. For example,

writing down target object position coordinates relative to each sample image, removing

negative images, using image filters on images for contrast enhancement and image scaling

to get more useful features of the target object.

3. Generation of Object Classifiers: The training data is provided to the machine

learning algorithm: opencv traincascade. The classifiers generated this way represent the

object features and will be applied later on to identify the object from other images or

views.

Figure 4.1: how does detection happen

Chapter 4. Experimental Environment 19

Figure 4.2: how does detection happen

4.3 Video Streaming and Transcoding

Video Streaming and transcoding technologies are applied in the cloud/cloudlet version

prototype for the purpose of sending camera captured views from mobile devices to the

cloud. It is also applied in the reverse process which mobile devices receive the detected

& modified camera views from cloud. The H264 standard [34] is used when compressing

camera views into packets and sent to the designated server.

4.4 Application implementation

The application is centered around the building/landmark detection functionality. As

briefly introduced in Section 4.2, in order to identify buildings from a camera view, the

application needs each building’s generated classifier files. In reality, a mobile camera’s

view range is limited, therefore, the potential building candidates that the detection

function needs to go through given a physical location is limited. Thus, before running

the actual detection, we first apply a location filter to select the potential candidates

from the pool of all known buildings(a building is considered known if its classifiers have

Chapter 4. Experimental Environment 20

been generated). This concept is applied in both versions of the prototype.

4.4.1 Stand Alone Version implementation

Programming languages and OS

The stand alone version is programmed in an Android OS 5.1.1 Lollipop environment

using Android Studio 2.0. The external library OpenCV-android-sdk 3.0 [32] is used for

handling object detection.

4.4.2 Cloud Version Implementation

Programming languages and OS

The mobile side is programmed in an Android OS 5.1.1 Lollipop environment using

Android Studio 2.0. The external libraries used include libstreaming [35] for handling

outbound streaming from mobile devices and vlc-android-sdk [36] for handling inbound

streaming to mobile devices.

The server side is programmed in both Linux(CentOS and Ubuntu) and a Mac OSX

environment. The external libraries include OpenCV 3.0 for Macosx/Linux [32] for han-

dling object detection, FFMPEG libraries [37] for handling inbounding video streaming

as well as video transcodings, Live555 [38] for handling outbound streaming from the

server, and libcurl 7.41.0 [39] and rapidxml 1.13 [40] are used for handling file download-

ing and file content parsing.

Additionally, we uses Session Description Protocol (SDP) to pass along video stream-

ing port and type of video codex. between mobile devices and servers.

4.5 Testbed

The testing environment consists of two remote cloud servers and a local Macbook Pro

running OS X Yosemite (version 10.10). Both cloud servers use Linux. The reason for

having two remote servers is to demonstrate that distance between mobile devices and

remote servers a↵ects the speed of data transfer. Therefore, one server running CentOS

release 6.3 is close to the testing location (at Western University, London, Ontario), the

second remote server running Ubuntu 14.04 is provided by Amazon EC2 and is located

in Ashburn, Virginia, US. The prototype applications are mounted on Android system

5.1.1 lollipop on a LG Nexus 4 mobile device.

Chapter 4. Experimental Environment 21

4.6 Testing Goal and Metrics

Evaluation metrics include the following:

1. Latency

The latency measures the time needed for an application to download files or ac-

cess data from cloud servers as well as transmitting to and receiving packets from

cloud/cloudlet servers. The time is measured in milliseconds.

2. Battery usage

The battery usage measures energy consumption of an application’s run. In the

experiment, we let each version of the application run a certain time period and measured

the energy consumption in milliwatt-hour (mWh)/milliampere-hour (mAh).

3. Frame rate

The frame rate defines the smoothness of the visual display, measured by Frames Per

Second (FPS), which indicates how many video frames are updated every second.

4. CPU, RAM and GPU usage

CPU and GPU usage are measured by percentage of the total capacity while RAM

usage is measured in megabytes indicating how much RAM the application needs to have

reserved in order to function.

Chapter 5

Experiments

This chapter evaluates the two architectures presented in Chapter 2. The two di↵erent

versions of the application enable us to perform a series of tests and comparisons around

using cloud server/cloudlet.

5.1 Experimental Setup

The experimental setup is organized so that it is representative of an organization of

servers that includes cloud server, cloudlet server, local server and a mobile device.

The first cloud server is provided by Amazon EC2 and is located in Ashburn, Virginia,

USA. We use the name Amazon EC2 in the rest of this chapter. The specifications of

this server are the following:

OS: Linux - Ubuntu 14.04

CPU: Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz, 1Core

RAM: 1.02GB Memory

The second cloud server is located at Western University in London Ontario. We

use the name Circe in the rest of this chapter. The specifications of this server are the

following:

OS: Linux version 2.6.32-279.19.1.el6.x86 64, CentOS release 6.3

CPU: Intel(R) Xeon(R) CPU E7- 4820 @ 2.00GHz, 64 Cores

RAM: 793.97GB Memory

The local server is a laptop. We use the name Macbook pro in the rest of this

chapter. The specifications are the following:

OS: Mac OS X Yosemite 10.10.5

CPU: Intel(R) Core(TM) i5-5257U CPU @ 2.70GHz, 1 Cores

22

Chapter 5. Experiments 23

RAM: 8 GB Memory

The mobile device specifications are the following:

LGE Nexus 4

OS: Android Version: 5.1.1

GPU: Qualcomm Adreno (TM) 320

CPU Cores: 4 — Min-Max Frequencies: 384Mhz - 1.51Ghz

5.2 Data location vs Data Retrieval Experiments

This first series of experiments measures file downloads from cloud servers. The servers

are at di↵erent distances and the files vary in size. The time to download a file is measured

in milliseconds. The time to download a file is based on the di↵erence of the timestamp

taken before the request for a file download is made and the timestamp taken after the

file download.

The stand alone version of the application is used in this test and all three servers

are used. There are various types of files to be downloaded including: Utility file (the

buildings index file size is 12 kilobytes), buildings’ classifiers (file sizes are between 16

kilobytes to 41 kilobytes) and images about each building. This includes thumbnail

images (file sizes are between 5 to 6 kilobytes) and full size images (file sizes are between

220-250 kilobytes). In addition we tested the time it takes for a SQL query to complete

between the client to the server MySQL database. The time associated with an SQL

query is measured in a similar fashion to file downloads. A client uses the SQL query

to specify a building which is used to query the cloud server’s database to find any

video links, text informations, and the download paths for any files associated with the

building.

5.2.1 Metric

The metric used in this experiment is the time it takes to download a file or finish a

query. This is measured in milliseconds. The stand alone version takes a timestamp

before initiating a download or query and after each download or query is completed. It

then calculates the time gap between these two timestamps. This di↵erence is the time

it takes to download a file or complete a query.

Chapter 5. Experiments 24

5.2.2 Test 1

The mobile device is physically located in Middlesex College, at The University of West-

ern Ontario (UWO), in London, Ontario. The application is executed three times with

each execution retrieving data (e.g., files and additional information as described in Chap-

ter 5.2) from a di↵erent cloud server e.g., Amazon EC2, Circe and Macbook Pro. In each

run, the application made on average 12 SQL queries including one query for finding the

building list file’s download path and 4 to 7 queries for finding download paths for the

classifiers of buildings and 4 to 8 queries for finding the download paths of additional

images or text information about buildings, e.g., video links, website links or text de-

scriptions. The application made 1 utility file download and on average 6 to 12 building

classifier downloads, 25 to 36 thumbnail image downloads and 15 to 24 full size image

downloads. The results in Figure 5.1 present the average time to complete a query, to

download classifiers, utility files and images from three di↵erent servers. Data access is

the fastest from the Circe server. This could be because the mobile device is physically

located in Middlesex College and within the same subnet as Circe. We assumed that the

Macbook Pro would have the fastest access time since there is a LAN connection to the

mobile device. However, the results do not show this. This may be the result of subnet

security at Western where it wasn’t possible for the mobile to reach the Macbook Pro

through the same subnet used to reach Circe or Amazon EC2. As a result, we had to

switch to a di↵erent router (Cisco Linksys E1200) to perform the LAN connection test.

This might result in unusual performance when the mobile device accesses the Macbook

Pro.

Figure 5.1: VERSION 1 - TEST 1

Chapter 5. Experiments 25

5.2.3 Test 2

The second test is similar to Test 1 except the mobile device is physically at a di↵erent

place: 120 Cherryhill Place, London, Ontario. The distance from the mobile device to

Circe increases. The results are presented in Figure 5.2 as accessing all three servers

through the same home cable router. While the mobile device moves away from the sub-

net of Circe, the latency of accessing Circe increases significantly. The time to download

a file or to complete a query exceeded that of Amazon EC2 except for full images. This

result was not what we expected since the Circe server is located at a closer distance

compared to Amazon EC2 in the locations for Test 1 and Test 2. The time to access

data from Amazon EC2 increased slightly compared to Test 1. The Macbook Pro main-

tained the performance compared to Test 1, which is expected since there are no other

network hops between the LAN connection of the Macbook Pro and the mobile device

and therefore less variation in the time to make an SQL query or download files.

Figure 5.2: VERSION 1 - TEST 2

Figure 5.3 presents Circe’s download times from Test 1 and Test 2. It clearly shows

Circe’s performance varies significantly as the mobile device moves from within the same

subnet of Circe to outside of the subnet.

Location 1: 120 Cherryhill Place, London, Ontario (Three kilometres away from

where Circe located, which is outside the same subnet of Circe)

Location 2: Middlesex College, UWO, London, Ontario (Exactly where Circe

located, same subnet)

Chapter 5. Experiments 26

Figure 5.3: Accessing Circe from two di↵erent locations - Comparison 1

5.2.4 Test 3

Although we expected the time to retrieve data from Circe would vary between the two

locations, we were unsure why accessing data from Circe takes longer than Amazon EC2

except for full sized images. This third test performed uses the same setup as Test 1 and

Test 2, except that the mobile device is physically located at a di↵erent place: 50 Capulet

Lane, London, Ontario. The distance from the mobile device to Circe increases further

and this time we used Circe, Amazon EC2 located in Virginia, USA and an additional

Amazon EC2 server located in Tokyo, Japan. The results are presented in Figure 5.4.

Circe outperforms both Amazon servers for queries this time, while the Amazon server

in Virginia outperforms Circe again for both file downloads and image thumbnails which

is consistent to the results seen in Test 2. However, if we look at the performance of

the Amazon EC2 Tokyo, we can clearly see that longer physical distance between mobile

devices and cloud does impact application performance as it was observed the Circe was

faster for data access except for image thumbnail downloads.

5.2.5 Discussion

Combining Test 1, 2 and 3, we observe the following:

1. Amazon EC2 - Virginia outperforms Circe in Test 3 for most types of data accesses.

2. The SQL query time for the Circe server in Test 3 outperforms Amazon EC2 -

Virginia which is di↵erent than that that of Test 2. On the other hand, the full image

download time of Circe out performs Amazon EC2 - Virginia but is out performed by

Amazon EC2 - Virginia in Test 3.

Chapter 5. Experiments 27

Figure 5.4: VERSION 1 - TEST 3

3. The classifiers / utility file download time of Circe varies significantly between Test

2 and 3 although the two locations (120 Cherryhill Place and 50 Capulet Lane) are fairly

close to each other. Note, the WIFI connection uses the same router, same ISP and same

Internet. However the available bandwidth on the connection between the home router

and the ISP router may vary.

First of all, we can not eliminate network fluctuations during the experiments. There-

fore, there are factors that could a↵ect the results. First, there are outliers where one

or several queries or file downloads takes a significant amount of time compared to the

average. Second, because some of the data are relatively small in size and their down-

load times are measured in milliseconds, even a small network fluctuation could result

in significant changes in download times. Therefore, to better understand the data, we

should consider the following:

1. Amazon - Virginia out performs Circe and both outperform Amazon - Tokyo in

most types of data accesses.

2. Circe performance varies based on if it is located in the same subnet as the mobile

device.

3. Amazon - Virginia outperforms Circe in both Test 2 and Test 3 for most types of

data accesses. One possible theory is that Amazon EC2 - Virginia is relatively close and

the amount of data is not significantly large.

Chapter 5. Experiments 28

5.2.6 Additional Comparisons

Tests 1 and 2 show the average time to download data. We present four additional com-

parisons (Figure 5.5, 5.6, 5.7, and 5.8) which present download times when the mobile

device is physically located at two di↵erent places and downloads data from the three

di↵erent servers. Each dot in the graphs stands for the download time of a single image

file (thumbnail image sizes are between 5 to 6 kilobytes and full size image sizes are be-

tween 220-250 kilobytes), the y-axis stands for the exact download time in milliseconds

and the x-axis means nothing expect simply laying out the results in a evenly distributed

manner so that every file download result is shown without overlapping. The curved lines

are polynomial regression of the dots generated by Mac Software Numbers. This is used

to make it easier to make visual comparisons of download times from the three di↵erent

servers.

Comparison 1: Figure 5.5 shows the time to download thumbnail images from each

server while the mobile device is at 120 Cherryhill Place, London, Ontario.

Comparison 2: Figure 5.6 shows the time to download full images from each server

while the mobile device is at 120 Cherryhill Place, London, Ontario.

Comparison 3: Figure 5.7 shows the time to download thumbnail images from each

server while the mobile device is at Middlesex College, UWO, London, Ontario.

Comparison 4: Figure 5.8 shows the time to download full images from each server

while the mobile device is at Middlesex College, UWO, London, Ontario.

5.3 Streaming cost incurred in Cloud Version Appli-

cation

The above series of experiments presents the analysis of download times for the stand

alone version to retrieve data from di↵erent servers in various locations. In the cloud

version, since the detection process is executed on the server side, there is no need for

mobile devices to download the building list or any classifier files. Although the server

has more powerful computing resources compared to the mobile device and there is no

need to download classifier files or a building list, there is a need for the mobile device

to send its camera view as video streams to the server as well as the server to return

the resulting video stream back to the mobile device. This bi-directional video stream

transmission adds additional time to the application cycle comparing to the stand alone

version where there is no need to transmit video stream with server. This section presents

Chapter 5. Experiments 29

Figure 5.5: Accessing three servers -
Comparison 1

Figure 5.6: Accessing three servers -
Comparison 2

Figure 5.7: Accessing three servers -
Comparison 3

Figure 5.8: Accessing three servers -
Comparison 4

our experiments related to the cloud version of the application.

Two servers are used for comparisons: The Circe server and the Macbook Pro server.

The mobile device is at 50 Capulet Lane, London, Ontario. We measure the time be-

tween sending the camera view of the video stream to the server and the receiving of the

video stream from the server. Two timestamps are used. The first is before the stream-

ToServer() function which is used to send the camera view. The second timestamp is

placed before the setSurfaceSize() function which sets the video display size and starts

rendering the modified video stream from the server. The di↵erence is referred to as

latency. We use the Android function System.currentTimeMillis() for the timestamps.

Figure 5.9 shows the latency when the server is the Macbook Pro. The application is

executed 5 times and Figure 5.9 shows the average latency incurred. The average latency

Chapter 5. Experiments 30

is 5242 milliseconds with standard deviation of 230 milliseconds. Figure 5.10 assumes

the server Circe. The average latency is 6680 milliseconds with standard deviation of 823

milliseconds.

Figure 5.9: Mobile - Server Latency -
MacbookPro

Figure 5.10: Mobile - Server Latency -
Circe

To compare this result with stand lone version, we uses the same two servers and from

the same location to measure stand lone version’s time between downloading the initial

building list and rendering the first detected camera view. Two timestamps are used. The

first is before the fileManager.startFilePreparation(ACTION GET GENERAL FILE, ”build-

ings”) function which is used to download the building list file. The second timestamp is

placed after the PrepareFile() function which used to download all classifiers from server.

We also use the Android function System.currentTimeMillis() for the timestamps.

In stand lone version, the nearby building intensity and each building’s di↵erent

features decide how many building classifiers files need to be downloaded. The more

classifiers that needed to be downloaded is expected to incur a longer latency before

users are able to see detected results. To also experiment on this, we use the above

setup to perform two tests. First includes only single building as nearby buildings and

second includes four buildings as nearby buildings. The one building only requires 1 to 2

classifier files to be downloaded while the four buildings requires total of 6 classifier files

to be downloaded.

Both test is executed 5 times, Figure 5.11 shows the latency of single nearby build-

ing when the server is the Macbook Pro. Figure 5.12 shows the latency of four nearby

buildings when the server is the Macbook Pro. The average latency incurred with single

nearby building is 2453 milliseconds with standard deviation of 264 milliseconds. The

average latency incurred with four nearby buildings is 6123 milliseconds with standard

Chapter 5. Experiments 31

deviation of 304 milliseconds. Figure 5.13 and Figure 5.14 shows the latencies of single

and four nearby buildings when the server is Circe. The average latency incurred with

single nearby building is at 3135 milliseconds with standard deviation of 437 millisec-

onds. The average latency incurred with four nearby buildings is 8332 milliseconds with

standard deviation of 1503 milliseconds.

Figure 5.11: MacBookPro - Mobile
StandAlone - Single Building

Figure 5.12: MacBookPro - Mobile
StandAlone - Four Building

Figure 5.13: Circe - Mobile StandAlone
- Single Building

Figure 5.14: Circe - Mobile StandAlone
- Four Building

5.3.1 Discussion

The stand alone version needed average of 2000 to 3000 milliseconds to get the classifier

files for single building before the detection software on the mobile device can be executed

(with one additional building list file). When there are four buildings, the required time

averages 6000 to 8000 milliseconds.

Chapter 5. Experiments 32

In the cloud version, the user of the device will receive a marked up video after 5000

to 6000 milliseconds. However, it prefetches classifier files so there is no download time

during application execution.

Essentially the results suggest that the more buildings there are within camera view,

the more classifiers that need to be downloaded to the mobile device. This would result

in the stand alone version being slower whereas the cloud version would not be a↵ected

by this change.

5.4 Stand Alone Version and Cloud Version Perfor-

mance Comparison Experiment

In this section we examine the performance di↵erence between the stand alone version

and the cloud version. We look at the performance comparison from five di↵erent as-

pects: Battery consumption, Frame rate, CPU Usage, RAM Usage and GPU Usage. The

performance is measured by a third party software called GameBench [41].

5.4.1 Metrics

The total battery consumption is measured by milliwatt-hour (mWh)/ milliampere-hour

(mAh). Both versions of the application are executed for 16 minutes (which is the

minimum required duration for battery consumption observation by GameBench) and

measures battery consumption. The second metric is the frame rate which is measured

by frames per second (FPS) that indicates the number of frames rendered in a second.

A higher frequency indicates smoother video display. The third metric is CPU usage,

which is measured by the percentage of total CPU capacity needed for running the

application. The fourth metric is RAM usage, which is measured in megabyte indicating

how much RAM the application needs to reserve in order to run. The last metric is GPU

usage, which is measured as the percentage of total GPU capacity needed for graphically

rendering the application screen.

Stand Alone version performance:

1. Battery consumption:

Chapter 5. Experiments 33

Figure 5.15: Stand Alone Version Performance - Battery

The total battery consumption is 564.40 mWh

Figure 5.16: Stand Alone Version Performance - Battery - Sum

2. Frame rate: The stand alone version has an average frame rate of 21 fps and 99%

FPS Stability where the FPS Stability measures how stable the frame rate keeps at the

average frame rate through out the application run

Figure 5.17: Stand Alone Version Performance - FrameRate

Chapter 5. Experiments 34

3. CPU Usage: The stand alone version has an average CPU usage of 21%, a 66.09%

peak CPU ssage and 384Khz - 1.51Ghz minimum and maximum CPU frequencies

Figure 5.18: Stand Alone Version Performance - CPU

4. RAM Usage: The stand alone version has an average memory usage of 54MB and

60MB peak memory usage

Figure 5.19: Stand Alone Version Performance - RAM

5. GPU Usage: The stand alone version has an average GPU usage of 10.22% and

31.22% peak GPU usage

Chapter 5. Experiments 35

Figure 5.20: Stand Alone Version Performance - GPU

Cloud version performance:

1. Battery consumption:

Figure 5.21: Cloud Version Performance - Battery

The total battery consumption is 195.75mWh

Figure 5.22: Cloud Version Performance - Battery - Sum

Chapter 5. Experiments 36

2. Frame rate: The cloud version has an average frame rate of 30 fps and 97% FPS

Stability

Figure 5.23: Cloud Version Performance - FrameRate

3. CPU Usage: The cloud version has an average CPU usage of 5.29%, 27.16% peak

CPU usage and 384Khz - 1.51Ghz minimum and maximum CPU frequencies

Figure 5.24: Cloud Version Performance - CPU

4. RAM Usage: The cloud version has an average memory usage of 48MB and 50MB

peak memory usage

Chapter 5. Experiments 37

Figure 5.25: Cloud Version Performance - RAM

5. GPU Usage: The cloud version has an average GPU usage of 2.11% and 5.47%

peak GPU usage

Figure 5.26: Cloud Version Performance - GPU

There’s a clear improvement of performance from running everything locally to of-

floading major tasks onto cloud server/cloudlet. These improvements include reduced

CPU and memory usage for the mobile device and reduced battery consumption for the

mobile device to keep the application running.

5.5 Weaknesses

Throughout the series of tests, we were not able to obtain information on upload and

download speed limits and the available bandwidth for accessing the testing servers. This

could be a factor that contributes to the inconsistency of results and why some of the

Chapter 5. Experiments 38

results were not as we expected prior to the execution of experiments. The other weakness

of these test is that we only considered one mobile device as the testing device (Nexus

4). A more powerful device like iPhone 7 or others could result in better performance of

the stand alone version application, including latency.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we designed and implemented a live building detection mobile application in

a stand alone version and a cloud version. Using the two versions of an applications as test

programs, we set up a cloudlet architecture to experiment on the e↵ectiveness of cloudlets.

Our work suggests that cloudlets can improve performance of mobile applications in two

ways: First, o✏oading computationally expensive functions to cloudlets can significantly

reduce the resource requirements on mobile devices which includes reduced battery usage,

reduced CPU/GPU usage as well as reduced memory usage. Second, the cloudlet’s pre-

fetch ability provides mobile devices with a faster and more stabilized data access without

the need to store additional data on the local storage of mobile devices.

6.2 Future Work

Because of the nature of our prototype applications there potentially is a need for a

large amount of data storage where the data are content and context based (In our

application, we only had buildings data for Western campus only. This could certainly

grow to a much larger scale such as a city, a country or even globally). Also worth noting

is that the application is only in prototype stage. We can put more work into improving

its performance. Additionally, this brings us to the future work of exploring a more

generalized cloudlet architecture to adapt to a broad range of mobile applications and

sophisticated context and content based cloudlet data pre-fetching which we hope would

result in more data pre-fetching e�ciency and accuracy.

39

Bibliography

[1] M Ribicre and P Charlton. Cisco visual networking index: Global mobile data tra�c

forecast update.” cisco, inc., 2014-2019.

[2] Peter Lynch. The origins of computer weather prediction and climate modeling.

Journal of Computational Physics, 227(7):3431–3444, 2008.

[3] A Ericsson. Ericsson mobility report, on the pulse of the networked society. Ericsson,

Sweden, Tech. Rep. EAB-14, 61078, 2012.

[4] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The

case for vm-based cloudlets in mobile computing. IEEE pervasive Computing,

8(4):14–23, 2009.

[5] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with

code o✏oad. In Proceedings of the 8th international conference on Mobile systems,

applications, and services, pages 49–62. ACM, 2010.

[6] Byung-Gon Chun and Petros Maniatis. Augmented smartphone applications

through clone cloud execution. In HotOS, volume 9, pages 8–11, 2009.

[7] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.

Clonecloud: elastic execution between mobile device and cloud. In Proceedings of

the sixth conference on Computer systems, pages 301–314. ACM, 2011.

[8] Tao Guan, Ed Zaluska, and David De Roure. A grid service infrastructure for mobile

devices. In 2005 First International Conference on Semantics, Knowledge and Grid,

pages 42–42. IEEE, 2005.

[9] Tao Guan, Ed Zaluska, and David De Roure. Extending pervasive devices with

the semantic grid: A service infrastructure approach. In The Sixth IEEE Interna-

40

BIBLIOGRAPHY 41

tional Conference on Computer and Information Technology (CIT’06), pages 113–

113. IEEE, 2006.

[10] Dejan Koavchev, Yiwei Cao, and Ralf Klamma. Mobile multimedia cloud computing

and the web. In Multimedia on the Web (MMWeb), 2011 Workshop on, pages 21–26.

IEEE, 2011.

[11] Paramvir Bahl, Richard Y Han, Li Erran Li, and Mahadev Satyanarayanan. Advanc-

ing the state of mobile cloud computing. In Proceedings of the third ACM workshop

on Mobile cloud computing and services, pages 21–28. ACM, 2012.

[12] Debessay Fesehaye, Yunlong Gao, Klara Nahrstedt, and Guijun Wang. Impact of

cloudlets on interactive mobile cloud applications. In Enterprise Distributed Ob-

ject Computing Conference (EDOC), 2012 IEEE 16th International, pages 123–132.

IEEE, 2012.

[13] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. The smartphone

and the cloud: Power to the user. In International Conference on Mobile Computing,

Applications, and Services, pages 342–348. Springer, 2010.

[14] Raghunath Rajachandrasekar, Rupak Nagarajan, G Sridhar, and G Sumathi. Job

submission to grid using mobile device interface. In Nature & Biologically Inspired

Computing, 2009. NaBIC 2009. World Congress on, pages 170–174. IEEE, 2009.

[15] Cynthia Taylor and Joe Pasquale. Towards a proximal resource-based architecture

to support augmented reality applications. In 2010 Cloud-Mobile Convergence for

Virtual Reality Workshop (CMCVR 2010) Proceedings, pages 5–9. IEEE, 2010.

[16] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter,

and Padmanabhan Pillai. Cloudlets: at the leading edge of mobile-cloud conver-

gence. In Mobile Computing, Applications and Services (MobiCASE), 2014 6th

International Conference on, pages 1–9. IEEE, 2014.

[17] Paolo Bellavista, Marcello Cinque, Domenico Cotroneo, and Luca Foschini. Self-

adaptive hando↵ management for mobile streaming continuity. IEEE Transactions

on Network and Service Management, 6(2):80–94, 2009.

[18] Anubis GM Rossetto, Vinicius CM Borges, Alexandre PC Silva, and MAR Dantas.

Summit-a framework for coordinating applications execution in mobile grid envi-

ronments. In 2007 8th IEEE/ACM International Conference on Grid Computing,

pages 129–136. IEEE, 2007.

BIBLIOGRAPHY 42

[19] Francisco Rodrigo Duro, Javier Garcia Blas, Daniel Higuero, Oscar Perez, and Jesus

Carretero. Cosmic: A hierarchical cloudlet-based storage architecture for mobile

clouds. Simulation Modelling Practice and Theory, 50:3–19, 2015.

[20] Sally E El Khawaga, Ahmed I Saleh, and Hesham A Ali. An administrative cluster-

based cooperative caching (accc) strategy for mobile ad hoc networks. Journal of

Network and Computer Applications, 69:54–76, 2016.

[21] Edward E Pingoy and Osvaldo Gervasi. An e↵ective and innovative streaming model

for videos in mobile computing. 2013.

[22] Sohail Sarwar, Zia Ul-Qayyum, and Owais Ahmed Malik. A hybrid intelligent system

to improve predictive accuracy for cache prefetching. Expert Systems with Applica-

tions, 39(2):1626–1636, 2012.

[23] Emmanouil Koukoumidis, Dimitrios Lymberopoulos, Karin Strauss, Jie Liu, and

Doug Burger. Pocket cloudlets. In ACM SIGPLAN Notices, volume 46, pages

171–184. ACM, 2011.

[24] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. The akamai network: a plat-

form for high-performance internet applications. ACM SIGOPS Operating Systems

Review, 44(3):2–19, 2010.

[25] Je↵rey Richter. CLR via c#, volume 4. Microsoft Press Redmond, 2006.

[26] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: a compu-

tation o✏oading framework for smartphones. In International Conference on Mobile

Computing, Applications, and Services, pages 59–79. Springer, 2010.

[27] Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, Brandon Amos, Padmanabhan

Pillai, and Mahadev Satyanarayanan. Adaptive vm hando↵ across cloudlets. Tech-

nical report, Technical Report CMU-CS-15-113, CMU School of Computer Science,

2015.

[28] Memcached. https://memcached.org/. Accessed: 2016-10-19.

[29] Jim R Parker. Algorithms for image processing and computer vision. John Wiley &

Sons, 2010.

[30] Google goggles. https://support.google.com/websearch/answer/166331. Accessed:

2016-10-19.

BIBLIOGRAPHY 43

[31] Mathworks object recognition. http://www.mathworks.com/discovery/object-

recognition.html?requestedDomain=www.mathworks.com. Accessed: 2016-10-19.

[32] Opencv. http://opencv.org/. Accessed: 2016-10-19.

[33] Opencv. http://docs.opencv.org/2.4/doc/user guide/ug traincascade.html. Ac-

cessed: 2016-10-19.

[34] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview

of the h. 264/avc video coding standard. IEEE Transactions on circuits and systems

for video technology, 13(7):560–576, 2003.

[35] fyhertz@gmail.com. https://github.com/fyhertz/libstreaming. Accessed: 2016-10-

19.

[36] Videolan. https://code.videolan.org/videolan/vlc-android.git. Accessed: 2016-10-

19.

[37] Ffmpeg. https://↵mpeg.org/. Accessed: 2016-10-19.

[38] Live networks. http://www.live555.com/. Accessed: 2016-10-19.

[39] Curl. https://curl.haxx.se/. Accessed: 2016-10-19.

[40] Marcin Kalicinski. http://rapidxml.sourceforge.net/index.htm. Accessed: 2016-10-

19.

[41] Gamebench. https://www.gamebench.net/. Accessed: 2016-10-19.

Appendix A

Application Preparations and

Detailed Implementation

A.1 Preparations

A.1.1 Generate pre-defined building classifiers for Computer

Vision functions

1. Gather building source images: Taking one building as an example, it may have

several distinguishable features, such as pointy roof, glass wall, colourful paint. Each

pre-defined building classifier represents a single feature. Therefore, a building may have

several related classifiers. To generate each classifier, firstly a video clip is taken to

capture one building feature from di↵erent angles all around. Then, the video clip is

chopped into images using the ↵mpeg function:

FPS Video Filter: Output one image every second, named out1.png, out2.png, out3.png,

etc.

↵mpeg -i input.flv -vf fps=1 out%d.png

2. Mark-up source images: After obtaining an image group about a building feature,

these images are then to be marked-up by recording the top-left pixel coordinate and the

bottom right pixel coordinate that the building feature are bounded within a rectangle

box. Additionally, we prepared a group of negative images(background images). These

images do not contain the target building feature and is for the purpose of comparison in

later classifier training algorithms. Finally, all these images are fed through the OpenCV

cascade classifier training functions to generate classifier file named after the building’s

feature.

44

Chapter A. Application Preparations and Detailed Implementation 45

Firstly create samples:

opencv createsamples

-vec positive example/middlesex.vec

-info middlesex img/info.txt

-bg negative example/bg bg.txt

-num 162

-w 300

-h 300

-vec is the output samples’ destination folder after running opencv createsamples

command

-info is path to a file that contains a list of each positive image’s file name and the

corresponding coordinates of the feature position in the image

-bg is path to a file that contains a list of negative images

-num is the total number of positive images

-w & -h are the width and height of the output samples of the feature in pixels

After running opencv createsamples, it generates an output sample group bases on all

the images that were fed to the algorithm. Next, runs the training command:

opencv trancascade

-data middlesex classifiers/

-vec positive example/middlesex.vec

-bg negative example/bg bg.txt

-numPos 20

-numNeg 2

-numStages 8

-w 300

-h 300

-data is the output classifier destination folder

-vec is the sample folder previously generated by opencv createsamples command

-bg is path to a file that contains a list of negative images

-numPos & -numNeg are the number of positive and negative images that choose to

be used in each stage of the training

-w & -h are the width and height of the output samples of the feature in pixels

It takes hours for training algorithm to finish, and in the end the classifier is generated

and stored as an XML file. The file is named after the building name concatenates

with the description of the significant part of the building. Such as, MiddleSexCol-

Chapter A. Application Preparations and Detailed Implementation 46

lage MainTower.xml. The same process repeats for other features of the same building

as well as other buildings.

A.1.2 Record down each building’s geographic location

As previously stated in the application design, geographic locations of the application

user is vital. In order to use a user’s geographic location, a pool of buildings’ geographic

location is created and stored in a XML file format where each building’s name pairs with

its geographic location. This is the building list file used in both version of application.

A.2 Application source code

A.2.1 Stand Alone Version Components

Constants.java: It pre-defines file types that is used in application(image, utility, clas-

sifier, building info), types of messages that helps communication between separate func-

tion groups, and database & file server address that application connects to.

Camera Activity.java: The main activity of the application. This stand alone version

can be grouped into 7 functional groups: Messenger, File Manager, GPS Locator,

Camera, Building Info, OpenCV Detection and UI. Each will be stated separately

for clearer presentation.

Messenger and its handler:

Messenger and handler in this app is designed to let di↵erent functional group com-

municates with Main Activity(Main Thread), so that Main Activity can direct the next

process based on what the return message contains. Upon Main Activity’s onCreate

function, a main activity messenger is initialized. Together, it set-ups its handler to

main activity message handle where it states how to handle di↵erent type of messages.

There are a total of 6 di↵erent types of messages in the current version, and could easily

expand more following the same loop design(more of future works to perfect the appli-

cation):

MAIN ACTIVITY MESSAGE : The only purpose of this message is to let other func-

tional groups know where to pass back return messages. It carries no message but the

replyTo attribute being main activity messenger.

FILEMANAGER MESSAGE : This message’s purpose is to let File Manager func-

Chapter A. Application Preparations and Detailed Implementation 47

tional group to notify Main Thread that a previously initialized remote file download

task is complete. The application currently consists of 4 di↵erent types of files: UTIL-

ITY FILE, CLASSIFIER FILE, BUILDING INFO and IMAGE FILE. A helper class

FileCompletionMessage is also created so that File Manager can send Main Thread the

same file completion message but with di↵erent file type specified.

BULDING INFO ONCLICK : This message’s purpose is to notify Main Thread what

is user’s interaction with UI. As buildings to be recognized by background algorithms,

there will be extra information about these buildings showing to user. These informations

are shown in a form of UI elements(such as image thumbnails, web links. etc..), where

users can click or expand on them for details. This message is to tell Main Thread

exactly which element user clicked on. Additionally, since current app has 4 types of

di↵erent extra information about a building (referred as artifacts of building), a helper

class ArtifactOnClickMessage.java is created to allow BULDING INFO ONCLICK to

send the same message but with di↵erent artifacts as content.

UPDATE EXPANDABLELIST MESSAGE : This is the actual UI update message to

tell Main Thread a list of buildings informations to ready for shown on UI.

GPSLOCATOR MESSAGE : This GPSLOCATOR MESSAGE serves for the GPS

Locator service to communicate with Main Thread and let it know user’s latest GPS

location.

REFRESH UI MESSAGE : This is only for debug purpose telling Main Thread to

show which building classifier file is ready and loaded on use.

File Manager & functions

FileManager.java: Although this application is to run as stand alone, it is designed in

the way that needs to find files from server if they are not present locally. As previously

mentioned in FILEMANAGER MESSAGE, such files are categorized into mainly 3 types

plus 1 type of string data that describes building artifacts.

UTILITY FILE : utility files are what essential for the application to start up. Cur-

rently there’s only one file listed in this category, which is the building list file. It listed

all the buildings that the application is able to recognize.

CLASSIFIER FILE : as previously explained in preparation, each classifier file corre-

sponds to one feature of a building

IMAGE FILE : images about the building, which will be shown as extra informations

about a building after algorithm successfully detects the building on scene

BUILDING INFO : This is the string data which, application will firstly query server’s

database, and get the result of a list describing each artifacts about a building as of what

image links, video links, text description about the building.

Chapter A. Application Preparations and Detailed Implementation 48

ExecuteQuery.java: This is just a helper class where enables android to send SQL

queries and receive result with data server.

GPS Locator & Location Analysis function

This is the function group that periodically retrieves user’s GPS location. As has

been previously stated, this is for the purpose of reducing non necessary calculations for

the Classifiers & OpenCV Detection group. There are two ways to retrieve the user’s

GPS location, either by Wifi/Cell Tower or by satellites. Here implements both and the

more accurate will be chosen. Additionally, after the first retrieve, there are two factors

that will trigger location update: how many seconds in time that has passed since last

retrieve, and how far the mobile has moved from last retrieve location. Currently they are

set to 1 minute and 10 meters. Also, this function group covers the location comparison

function, which is the LocationAnalyser class.

GPSLocator.java: This is the major class in GPS Locator function group, which runs

as a background service of android on a separate thread. It specialized in finding the

mobile’s latest GPS locations through the use of Android’s LocationManager Class. Also,

by implementing its the onLocationChanged function, it sends every updated location to

Main Activity through Messenger functional group.

GPSCoordinateGenerator.java: This is a dummy class created for the purpose of

testing and debugging, instead of actually finding user’s GPS locations, it just randomly

generates some relevant locations from the building pool.

LocationAnalyser.java: This class’s job is to do the location comparison. Upon cre-

ation of this class, it loads the UTILITY FILE : building list, parses all the xmls into

a buildings pool, containing each building’s name and their corresponding GPS loca-

tions(Latitude and Longitude). On each location update, the Latitude and Longitude is

provided to this class’s findNearbyLandmarks function, it returns with an ArrayList of

all nearby buildings that listed in the pool. Currently, the radius of nearby buildings is

defined as 100 meters.

Camera & functions

This is the function group that connects to the mobile camera and generates view

of camera stream on mobile screen for user. The functions are implemented directly

in Main Activity: Camera Activity. The most important function in this group is the

onCameraFrame function, which acts as the bridge between mobile camera and the actual

view on mobile screen. Because of this bridge, it enables the Classifiers & OpenCV

Detection group to intercept mobile camera frames and modify the frame accordingly

base on detection result.

Classifiers & OpenCV Detection

Chapter A. Application Preparations and Detailed Implementation 49

This is the core function group of the application. Its job is to detect buildings from

what mobile camera stream captures and mark them out accordingly. As mentioned

just above, because of the bridge set up by the onCameraFrame function, this function

group is able to interpret each frame captured by camera before they are shown on phone

screen.

SingleBuildingClassifierSet.java: This is the class containing each building’s classifier

information. Such as: building’s name, number of features in the building and each of

this building’s classifier file name etc..The major purpose of this class though, are two of

the followings:

1. Prepare/Loading the actual classifier object from reading the specific building’s

classifier file.

2. Provides a detection function which, given a single camera frame, it can determine

specifically whether this building exists and save the result for later frame modification

use.

BuildingClassifierSetList.java: This class groups up each SingleBuildingClassifierSet

object and provides group functions to execute SingleBuildingClassifierSet ’s functional-

ity. The reason behind is, when a list of building detection candidates are generated by

Location Analysis function, it is often comes with few buildings. Therefore, with group

functionalities provided, it ease the coding logic as well as providing a cleaner structure.

DetectionBasedTracker.java: Here is the OpenCV native detection algorithm with

Java wrapper. This class’s functionality get included in SingleBuildingClassifierSet, ini-

tialized when loading classifiers and is executed when SingleBuildingClassifierSet’s de-

tection function runs.

Given the 3 major classes in Classifiers & OpenCV Detection functional group, in

order for the detection process to work, it also closely rely on 3 other functional group.

The GPS Location group, File Manager group as well as the Camera group. Recall

that on Location group’s update, the LocationManager can generate a list of buildings

that are within 100 meters range of user’s current location. The return of this list then

triggers a instance of BuildingClassifierSetList to be generated base on the list. Then

File Manager is to download each of these building’s classifier files. This design is based

on the assumption that the user shouldn’t ever need all the classifier files of each single

building in the building pool. Because when building pool grow larger, for example

containing all buildings and landmarks of total 10 cities. The user may ever visit couple

cities and only couple small areas of a single city. Therefore, download accordingly

whenever the files are needed saves much storage space on mobile application. As that

being said, after each classifier file successfully downloaded, BuildingClassifierSetList will

Chapter A. Application Preparations and Detailed Implementation 50

load each of them into the corresponding building’s SingleBuildingClassifierSet. In the

mean time, through the bridge that created by Camera group’s onCameraFrame function,

BuildingClassifierSetList will run group detect function, if any building is detected, they

will be mark out on that frame, and then the frame will be shown to user on screen.

Buildings & Building Artifacts informations

This is the function group which provides all the informations about each building.

BuildingLocation.java: Generated from building list pool, contains each building’s

name and GPS location.

Building.java, Artifact.java and BuildingList.java: Building contains information the

building that is to show to users. Such as images, links, videos..where Artifact is a

parent class of all these types of information and BuildingList is the container for group

of Buildings. These 3 classes are made in order to work together with UI, for easier

presentations on mobile screen when such a building is detected.

UI

ColorPool.java, ExpandableListAdapter.java, ImageAdapter.java: This is the UI func-

tion group that responsible for rendering building’s informations in cleaner way as well

as letting users to interact with information such as expanding images, click to watch

video links and visiting related websites.

Prototype version 2 components

Because is it a variant version comparing to stand alone version, some of the components

functions in the same or similar way, and some functions are just simply mirrored from

mobile onto server. So those components will not be restated again in detail, but rather

focus on how the new stu↵ works.

Server Entity:

SingleBuildingClassifierSet, BuildingClassifierSetList, BuildingLocation, GeoPoint, Lo-

cationAnalyser, CurlFileDownloader, MySqlCpp: These are mirrored functions from stand

alone version.

Server Main: This is the Main thread of the server entity. As stated in application

cycle, it generates the 2 major functional groups: Streamer and Client Reception.

In addition, the Client Reception springs o↵ another major functional group: Video

Modification. These 3 groups completes most of the application cycle on server entity.

Client Reception

Client Reception is the front tier functional group responsible for communicating

with each connecting client. For each connected client, it spawns a unique session for the

Chapter A. Application Preparations and Detailed Implementation 51

specific client to interact with. Session interactions includes:

1. Sending & receiving messages: inbound video session description protocol(sdp),

inbound client’s GPS location, outbound detected building’s information.

2. Spawning a unique Video Modification functional group which maintains a pri-

vate live stream port for receiving inbound client’s video stream, run OpenCV detection

functions on the stream, as well as re-encode the modified video ready for stream back.

3. Notice Streamer functional group to be ready for an additional live stream back

to client.

MsgReceiverServer.cpp: This is the class that responsible for listening on new client

connection request. When a new client initializes a connection, This class creates a new

ClientMsgConnection instance, hands o↵ the new client to this newly created session and

then keeps on listening to the next client connection request.

ClientMsgConnection.cpp: This is the class that provides unique session and func-

tions for each client connected. Its recieveMessage function constantly listens to what

message client sends next and hands them o↵ to parseMessage function which determines

what type of message it is and handles accordingly. As mentioned just above, there are

currently 3 types of messages:

1. Inbound video session description protocol(sdp): which contains informations

about how to read the inbound stream that this client is sending. When this mes-

sage is received, ClientMsgConnection spawns o↵ a Video Modification session as well as

notifies Streamer group to be ready for streaming back a new video stream.

2. Inbound client’s GPS location: When the new client location is received, it updates

this client session’s unique LocationAnalyser and generates a new list of nearby building

candidates. Major process on this one is mirrored from stand alone version.

3. Outbound detected building’s information: This is not a inbound message, instead,

when the session’s OpenCV detection functions that run by Video Modification group

detects some building within any video frames, it generates a list of these buildings

as a message. This list will be sent to client’s mobile through ClientMsgConnection’s

sendMessage function. Which helps mobile to render side informations about detected

buildings accordingly.

ClientMsgParameters.cpp: This is just a helper class to let ClientMsgConnection’s

parseMessage running on a separate thread from recieveMessage function. So that pars-

ing message does not block any inbound message receiving.

Video Modification

Video Modification is another key functional group which enables client to outsource

video stream building detection functions. It enables server to read inbound video packet

Chapter A. Application Preparations and Detailed Implementation 52

stream of a given client session, decoding the stream into actual frames, which in turn

makes it possible to run OpenCV detection functions and modifications on frames. Then

re-encode frames into packets and pass along to server’s Streamer functional group for

streaming back.

VideoState: This is the video information class which reads the SDP message that

is passed along and obtain this particular stream’s property. Such as: video’s format

context, stream index, frame rate..etc.. Additionally, base on these information, it also

prepares the video codec ready for both decoding and encoding this stream.

PacketQueue & FrameQueue: Before going into video decoding and encoding, we

needs to first look at two helper data structure, PacketQueue and FrameQueue. The

whole video stream handling process can be summarized as: reading video packets from

stream, decode packets into frames, detect and modify frames, finally re-encode frames

into packets. In this process, these two data structure are in place to make sure that each

step of the process can run in parallel without having to wait on previous step as much

as possible. The content of these two data structures are name implied. PacketQueue

stores stream packets and FrameQueue stores stream frames.

RTPReceiver : This is the hand o↵ destination from ClientMsgConnection after receiv-

ing SDP information. It implements ↵mpeg libraries of video processing. Including first

setup network functionalities through avformat network init so that client’s live stream

can be read. It also initializes VideoState, createsVideoDecoder and VideoEncoder, as

well as creating corresponding PacketQueue and FrameQueue to connect the Decoder

and Encoder process.

VideoDecoder : As its name implies, this class is to decode inbound stream packets

into actual frames. Current decoding codex is H264. After RTPReceiver ’s initializa-

tion on network component, VideoDecoder is able to read inbound video stream base on

a given specific SDP. It runs two separate threads, readPktLoop keeps reading packets

o↵ stream and save them to Decoder PacketQueue, while decFrameLoop keeps read-

ing from Decoder PacketQueue. After reading each packet from Decoder PacketQueue,

decFrameLoop function mainly does three steps: Firstly decode packets into actual video

frames, then it runs OpenCV detection on the decoded frame and finally save the modi-

fied frames onto a Video FrameQueue that ready for VideoEncoder to fetch. To note, that

in VideoDecoder there’s also 2 helper function avframe to cvmat and cvmat to avframe

which can convert the video frames between ↵mpeg compatible format and OpenCV

compatible format. Which is convenient during a complete decFrameLoop run.

VideoEncoder : Here is the final destination of the client’s video stream in the whole

Video Modification process. VideoEncoder reads from the Video FrameQueue that previ-

Chapter A. Application Preparations and Detailed Implementation 53

ously queued by VideoDecoder and compresses each video frame back into H264 packets

for later Streamer’s use. The encoder process’s name is encFrameLoop and it is the only

function in VideoEncoder.

Streamer

Streamer is a separate functional group on server. It initializes on server’s application

start and it is responsible for streaming modified video back to corresponding clients. It

is a separate group because it does not interact with other groups except that when each

client’s sdp is received, the ClientMsgConnection register a unique session on Streamer

base on SDP information together with the designated Video FrameQueue where modified

video will be queued. Streamer group then only listening to client’s rtp request for

streaming session’s video back. The Streamer function group is implemented base on an

open source video streaming library Live555.

VideoStreamer : This is the main hub of Streamer group. It creates a RTSPServer(Live555

native library class) instance on start, which provides the service of outbound streaming

multiple sessions of videos. For each video stream, it has a unique RTP URL. Clients

connects via the given URL then VideoStreamer will start to sending packets towards

client.

StreamerParameters : This is just a helper class for passing VideoStreamer necessary

parameters. Parameters including: each session’s stream name, the source PacketQueue,

video statistics.

VideoLiveServerMediaSubsession: Inside each SDP generated stream sessions, there

are also sub-session of stream. They are distinguished by source codec, source streaming

method as well as stream index. In this case, it is H264 codec, and live stream(oppose to

existing video clip), and its a video stream(oppose to audio stream). So VideoLiveServer-

MediaSubsession represents this exact sub-session of video stream. Since the purpose

of the application is outsourcing image detection component, audio sub-session is not

needed.

FramedLiveSource: FramedLiveSource is a component in the sub-session stream. it

specifies where the source video is, and provides function on how it should be read. In

our case here, it has a reference on the PacketQueue generated by VideoEncoder and

provides deliverFrame function to specify how to read each stream packet.

FramedLiveSourceParam: This is just helper class for FramedLiveSource to fetch each

packet from PacketQueue.

Mobile Entity:

Constants.java, GPSCoordinateGenerator.java, GPSLocator.java: These are mirrored

functions from stand alone version.

Chapter A. Application Preparations and Detailed Implementation 54

MainActivity.java: Because of the structural design that allows mobile entity to out-

source most of the processes onto server entity, the functional groups on mobile entity is

much simpler. The GPS Locator, which is a mirror as in stand alone version, the Out-

bound Streaming group and Inbound Streaming group. As the name implies, Outbound

Streaming enables mobile to stream camera views onto server in the form of live video

stream, and Inbound Streaming group queries server to get the modified video stream

back on screen view after server’s detection process.

Outbound Streaming

Outbound streaming is implemented by using libstreaming library. Libstreaming

is an open source API that allows outbound stream of an android OS device. The

streaming uses RTP with UDP on transport layer, with H264 video compression method

on packetizing video frames.

Inbound Streaming

Inbound streaming is implemented by using libvlc library. Libvlc is an open source

API that provides VLC Player’s functionality on android OS. Including the capabilities

of playing stream videos over network with RTP URL link provided.

VideoPlayer.java: This is the implementation class of libvlc. It starts up by initializ-

ing an vlc instance, and provides functionalities on sizing the video, pause, resume.. etc..

on video streaming.

Curriculum Vitae

Name: XuTong Zhu

Post-Secondary La La School
Education and La La Land
Degrees: 1996 - 2000 M.A.

University of Western Ontario
London, ON
2008 - 2012 Ph.D.

Honours and NSERC PGS M
Awards: 2006-2007

Related Work Teaching Assistant
Experience: The University of Western Ontario

2008 - 2012

Publications:

La La

55

	Using a Real-Time Object Detection Application to Illustrate Effectiveness of Offloading and Prefetching in Cloudlet Architecture
	Recommended Citation

	tmp.1477929543.pdf.4kcvw

