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Abstract
Market structure concerns the mechanisms for negotiating trades and the composition of

trading participants, and can affect liquidity and price efficiency. More gains from trade can
be realized from an asset that is more liquid, and a better allocation of risk and capital can
be achieved when an asset’s price is more efficient so it is important to understand market
structure. This thesis uses theory and empirical methods to examine the effects of a few specific
aspects of market structure.

In Chapter 1, we study a novel market structure on the New York Stock Exchange (NYSE),
the Retail Liqudity Program (RLP), that allows liquidity providers to trade specifically with
retail traders. We test whether it affected the quality of trading opportunities for retail and
non-retail traders by measuring transaction costs before and after the RLP was launched. We
find transaction costs are slightly lower for both retail and non-retail traders. We also find evi-
dence of an improved price-discovery process from allowing market participants to distinguish
between retail trades, which contribute little to price discovery, and non-retail trades, which
contribute more so.

In Chapter 2, we extend a classic model of market microstructure to formalize the hypothe-
ses and findings from Chapter 1 and to form new predictions. Under the models assumptions,
prices are more efficient, and the effect on liquidity is ambiguous. We develop predictions on
how informed traders adjust their trading strategies in the presence of the RLP.

In Chapter 3, we consider a market where a significant amount of trading is motivated by
hedging. We use a classic microstructure model to examine how a market makers willingness
to provide liquidity is affected by the need to learn about the underlying value of an asset as well
as the inventory of a hedging trader. Under our models assumptions, a market maker provides
more liquidity in the presence of hedging. We test our prediction empirically by studying the
effect of predictable increases in trading volume that occur near the expiry of stock options.
We find the evidence that hedging trades result in improved liquidity.

Keywords: Finance, market microstructure, liquidity, price efficiency, segmentation
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Chapter 1

Retail Order Flow Segmentation:
Empirics

1.1 Introduction
A major driver of market-structure innovation is the value of knowing whether a potential coun-
terparty is a desirable trading partner. Counterparties such as hedge funds can be advantaged
and tend to buy right before prices rise or sell right before prices fall. To limit the risk of losses,
securities traders have incentives to do business on markets that restrict access to safer kinds
of traders. In this paper, we study such a market that provides securities traders with access
to a relatively safe class of counterparty, retail equity traders.1 Markets that control who may
participate are of interest because they are engaging in segmentation, and segmentation cre-
ates a tension. Although protected counterparties do receive improved trading opportunities,
traders in the wider market may be left with poorer trading opportunities. Accordingly, regu-
lators have expressed concerns that segmentation may be detrimental to overall market quality
(International Organization of Securities Commissions (IOSCO) 2010 and Ontario Securities
Commission (OSC) 2010).

We address questions about the market-quality effects of segmentation by studying the
launch of a new trading facility that enables segmentation of retail trades. In August 2012, the
New York Stock Exchange (NYSE) launched the Retail Liquidity Program (RLP). The RLP
enables members to quote dark (non-displayed) limit orders that can be filled only by market
orders that originate from retail traders. We study the RLP using Trade and Quote (TAQ) data
from the NYSE and a difference-in-differences methodology. Our results show the RLP led
to a mild but positive impact on overall market-quality measures. After launch, measures of
the bid-ask spread, price impact and price efficiency improved in samples of four calendar
quarters after its launch. We explain the market-quality results by showing the RLP improved
the price-discovery process. A Hasbrouck (1991) vector autoregression (VAR) on the order
flow shows the RLP improved market participants ability to forecast prices by distinguishing
nonretail trades, which have greater predictive power.

The results are important because they provide a test case for recent theory on segmen-
tation and market quality. We choose to test hypotheses drawn explicitly from the model in

1Retail traders are individuals who trade for their personal account.
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Zhu (2014). Our results confirm the model prediction that segmentation can improve price
discovery, but they do not confirm the prediction that segmentation can hurt liquidity. One lim-
itation of the model is that it is static and cannot study the potential for better price discovery
to improve long-term liquidity. Our evidence is more consistent with papers that do allow an
increase in information-based trade to have a dynamic effect on liquidity, such as new work in
Rosu (2015).

The results are also important because they inform a current regulatory discussion. Data
from Bloomberg shows that in 2016 so far 35% of US equity volumes have been executed out-
side of traditional exchanges. Concerns about the high share of trades executed in “dark pools”
operated by dealers or networks of brokers have motivated securities regulators in the US,
Canada and Australia to consider rules limiting the ability of traders to transact off-exchange.
Our results are useful in regulatory discussions as they are part of a literature speaking to the
positive aspects of off-exchange trade.

We test the effects of retail segmentation using data from the NYSE. The dataset is the
Trade and Quote (TAQ) data from the NYSE in a span around the RLP launch date. The
data contain information on all trades and the best bid and ask quotes and sizes on all stocks
traded on the NYSE and NYSE Arca, an exchange owned and operated by the NYSE, with
millisecond timestamps. RLP trades are identified by having subpenny prices, that is, prices
that take values off the usual tick grid of one cent. At the time, subpenny trades were not
otherwise possible on NYSE and NYSE Arca.

The data provide a good test of segmentation due to the fee level at the RLP. The fee is
important because brokers search venues in a “pecking order” partly determined by trading
fees (Menkveld, Yueshen, & Zhu, 2015). Table 1.1 gives a price schedule for US equity trad-
ing venues in 2013-2014. The source “Mechanical Markets” is an R script written by Kipp
Rogers that searches US Securities and Exchange Commission (SEC) 606 reports and infers
the volume-weighted average rebate paid by dark pools.2 2014 is the earliest date at which
these reports exist with sufficient venue granularity.

The NYSE RLP is situated in the middle of the schedule, below dark pools in the “pecking
order” but above traditional exchanges such as the NYSE. The RLP is competitive for order
flow that would have been routed to traditional exchanges but not with off-exchange dark pools.
As a consequence, retail liquidity programs have not captured a substantial share of the volumes
executed in dark pools. The main reason is a trading fee of zero is not competitive with rebates.
Another reason is that exchange-based trade carries legal risks. Regulation prevents exchanges
from indemnifying brokers against operational errors such as those that occurred during the
Facebook IPO, whereas dark pool operators are liable for trading errors.

We use the data to test four hypotheses drawn from Zhu (2014). The first and second hy-
potheses are that RLP trades contribute less to price discovery than non-RLP (hereafter referred
to as “lit”) and that distinguishing between RLP trades and lit trades aids the price-discovery
process. The first two hypotheses are tested to ensure trades on the NYSE are relatively more
informed than trades on the RLP and that distinguishing the two improves price discovery.
These are outcomes necessary to the market-quality prediction in Zhu (2014). Having verified
the necessary conditions for the market-quality predictions, we then test the predictions. The
third and fourth hypotheses are that price efficiency should improve while liquidity for lit trades

2Mechanical Markets is available online here: www.mechanicalmarkets.wordpress.com.

www.mechanicalmarkets.wordpress.com
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Table 1.1: Execution fees for selected US trading venues, 2013-2014. This table shows the
“maker” and “taker” prices charged to brokers and other financial intermediaries who trade at
the venues given in column one. Fees are expressed as cents per 100 shares transacted, and
a negative fee means a rebate. Venues are sorted by taker fee. Venue gives the name of the
venue. Transparency is the nature of pre-trade price transparency on the venue, i.e., whether
participants can observe the certain presence of a counterparty and the price at which it is
willing to trade before a trade occurs. If this is unobservable, the transparency column reports
dark. Taker fee is the fee (rebate) for trading immediately at the venue. Maker fee is the fee
(rebate) for offering to trade on the venue with another counterparty. There is no maker fee
at most dark venues because trades are executed immediately at the venue or not at all. Time
period is the time period during which the price is representative of the venues pricing. Source
is the data source used to obtain the price.

Venue Transparency Taker fee Maker fee Time period Source
Two Sigma Dark -18 - 2014 Mechanical Markets
UBS Dark -15 - 2014 Mechanical Markets
KCG Dark -11 - 2014 Mechanical Markets
Goldman Sachs Dark -10 - 2014 Mechanical Markets
Citadel Dark -9 - 2014 Mechanical Markets
BATS Y Lit -5 7 2013 Mechanical Markets
Direct Edge A Lit -4 6 2013 Mechanical Markets
NYSE RLP Dark 0 3 2013 -
NYSE Lit 25 -15 2013 O’Donoghue (2015)
BATS Z Lit 29 -25 2013 O’Donoghue (2015)
NYSE Arca Lit 30 -21 2013 O’Donoghue (2015)
Nasdaq Lit 30 -20 2013 O’Donoghue (2015)
Direct Edge X Lit 30 -21 2013 O’Donoghue (2015)
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should deteriorate. We find price efficiency improves but liquidity for lit trades also slightly
improves. The result is theoretically unexpected, so we discuss potential extensions to theory
in the conclusions.

The methodology used to test the first and second hypotheses, which concern the informa-
tional characteristics of order flow, is structural VAR. We fit structural VAR models on returns
and order flows and analyze how the RLP and lit components of the order flow contribute to
price discovery. In the data, an impulse of lit trades causes a visibly larger response in the log
return than does an impulse of RLP trades. We also compute the Hasbrouck (1991) information
share of the RLP and lit order flows and show the sum is greater than that of the undifferenti-
ated flows. Put differently, the segmented order flow is a better predictor of the price than the
undifferentiated order flow. For both RLP and lit flow, the impact on return decays quickly on
average after 10 minutes. Our interpretation is that the RLP is aiding price discovery at the
10-minute horizon.

The methodology used to test the third and fourth hypotheses, which concern market qual-
ity, is the difference-in-differences event study. During the sample period of our dataset, the
RLP was launched on the NYSEs main exchange (simply referred to as the NYSE) but not
NYSE Arca (simply referred to as Arca). We use stocks that traded only on Arca (and not on
the NYSE) as a control group. Stocks that traded on Arca were eventually eligible for an RLP
that launched in 2014. Overall, we find the RLP leads to a slight improvement in four standard
market-quality measures: relative bid-ask spreads improve by around one basis point from an
unconditional average of 12 basis points; effective spreads improve by around half a basis point
from an unconditional average of 10 basis points; price impact decreases by half a basis point
from an unconditional average of 3.5 basis points; and the return autocorrelation decreases by
around 0.01 from an unconditional average of 0.06.

The results are economically small in size, likely because treatment stocks have an aver-
age of only 3.5% of trading volume in the RLP. To demonstrate the results are nevertheless
robust, we use several event-study specifications. We examine the results using both the sim-
ple, single-difference event study and also the difference-in-differences event study. We esti-
mate each difference-in-differences regression using six specifications that successively include
more control variates. We fit the difference-in-differences model once over the entire sample
and again over four within-period subsamples. Last, to ensure our selection of control stocks is
robust, we construct a weighted panel of control stocks for each treatment stock in our sample
and fit the event studies again. For each of the model specifications above, the general result of
the paper persists: the RLP results in a slight improvement in market quality. The robustness
exercises show that, in order to believe the impact is not present, one would have to believe an-
other factor affected four market-quality measures on sets of stocks on the NYSE but not Arca
around the launch of the RLP, a factor that is not explained by fixed effects, lags or common
liquidity determinants, and a factor that persisted both throughout the sample and equally in
each of the within-period subsamples.

In the market microstructure literature, order-flow segmentation is no longer novel and is
studied in classic work by Easley, Kiefer, and O’Hara (1996), Battalio and Holden (2001) and
Parlour and Rajan (2003). Recently, a substantial literature has arisen concerning dark pools
that addresses segmentation directly and indirectly. Papers on the topic include Boni, Brown,
and Leach (2013), Fleming and Nguyen (2013), Ready (2014), Buti, Rindi, and Werner (2010),
Nimalendran and Ray (2014), and Degryse, Tombeur, Van Achter, and Wuyts (2013). Rela-
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tive to the literature, our paper makes an incremental contribution by studying order-flow seg-
mentation in a new market structure. Segmentation may have different costs and benefits on
exchanges than it does among private broker networks or single-dealer platforms; these dark
pools are market structures that are opaque and order-driven, whereas the RLP segments or-
der flow within the competitive and quote-driven environment of the stock exchange. Battalio
(1997) finds that bid-ask spreads tighten when a broker purchases order flow for execution off-
exchange. Our findings are similar for exchange-based segmentation. A second incremental
contribution relative to the literature is the study of a dataset in which it is possible to identify
the trades of the segmented parties. Using a VAR model we can verify that segmentation in-
creases the predictive power of the order flow, as is often supposed. Last, our third contribution
to the literature is a result that is theoretically unexpected. Theory and intuition often predict
that the outcome of segmentation should be to worsen market liquidity for a particular segment
of the market, and we find the opposite effect.

Our paper is one of a number of papers that identify benefits to segmentation. Most papers
focus on the context of darkness (lack of pre-trade transparency) rather than segmentation,
but the two often go together. Foley and Putniņš (2016) is a related study that investigates
restrictions on all dark price improvement in Canada. They find that dark trading benefits
market quality by reducing quoted, effective and realized spreads and increasing informational
efficiency. Using a regulatory dataset, Comerton-Forde, Malinova, and Park (2016) find the
same restriction on dark trading drove liquidity from the dark market into the lit, resulting
in higher fees for retail brokers and higher rebates for high-frequency market makers. Boni
et al. (2013) study dark pools with participation constraints and find that stronger constraints
lead to less serial correlation in returns, volume and volatility tend to lead other markets to
a smaller degree, and more trade clustering occurs across days. Our study is distinguished
from the above by studying the launch of a single trading facility rather than a rule change
that indiscriminately affected multiple types of trading venue in different ways. We are also
distinguished by studying a facility in the larger and more liquid US market.

The remainder of the paper is organized as follows: Section 1.2 describes our hypotheses
in detail; Section 1.3 describes the data; Section 1.4 gives details on the methodology; Section
1.5 discusses the results; and Section 1.5.1 offers some conclusions.

1.2 Hypotheses
There are four hypotheses tested in the paper. The first two hypotheses are about how the RLP
alters the informational character of the order flow. The second two hypotheses are about how
the RLP impacts market quality.

The motivation for the hypotheses derives from Zhu (2014), which models traders choices
to use either a dark midquote crossing facility or a traditional exchange.3 As is common
in microstructure, there are three types of agent: informed traders, uninformed traders and
exchange-based market makers. The dark crossing facility matches buy and sell market or-
ders at the exchanges midquote. Traders strategically choose venues in equilibrium. In the
crossing facility, execution is not certain, since there can be more buy orders than sell orders

3A midquote crossing facility matches non-displayed buy and sell orders at the midpoint of the best displayed
bid and offer prices posted on other exchanges.
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or vice versa. The uncertainty of execution in the crossing facility discourages the participa-
tion of informed agents more than it does the uninformed, because the information possessed
by informed agents is short-lived. Thus the dark crossing facility endogenously segments the
market, concentrating informed activity in the public exchange. Due to the concentration of
informed activity, price efficiency is better, and liquidity on the exchange is worse.

We motivate hypotheses using Zhu (2014) because the NYSE RLP is much like the dark
crossing network in the model. It guarantees price improvement versus the main exchange,
and it presents execution risk since limit orders are not displayed. Unlike the model crossing
network, the NYSE RLP segments the market exogenously; liquidity is only accessible by
brokers executing retail market orders. Nevertheless, we believe the theory is a good match
because the active mechanism in Zhu (2014) is segmentation. The role of darkness in the
model is to create the execution risk that incentivizes the segmentation. In a sense, the data are
ideal, since it is already true by assumption that segmentation occurs, so it is possible to test the
predicted impact of the segmentation directly. This leads us to the following two hypotheses:

Hypothesis 1.2.1 The RLP order flow is less informed than the non-RLP order flow.

Hypothesis 1.2.2 Segmentation improves the informativeness of the total order flow.

To ensure the RLP segmentation is between the more- and less-informed components of the
order flow, we first test the hypothesis that RLP flow is indeed less informative than lit. Then
we test whether the facility increases the informativeness of the order flow overall. If so, the
segmentation does offer a superior way to discover prices from the order flow, as in the model.
We follow with the hypotheses on the impact:

Hypothesis 1.2.3 Participation in the RLP affects a stocks liquidity.

Hypothesis 1.2.4 Participation in the RLP affects a stocks price efficiency.

The removal of the retail order flow to the RLP concentrates the more informed order flow
on the main exchange, which should improve price efficiency. However, more informed order
flow is more costly to fill. Market makers could compensate by widening bid-ask spreads on
the main exchange. The third and fourth hypotheses ask whether these two impacts result from
the first and second hypotheses.

It is not clear that the outcome will be as in Zhu (2014). One limitation of the model is that
it is static. The model shows the option to trade in the dark concentrates informed agents on
the exchange, which otherwise resembles the classic limit-order market modelled in Glosten
and Milgrom (1985). The impact of concentrating informed agents on an exchange is given in
Glosten and Milgrom (1985) Proposition 5, which also points to dynamic effects. Although an
increase in informed activity has the immediate impact of increasing the bid-ask spread, future
spreads are tighter as informational differences between the informed agents and the market
maker decrease more quickly. This intuition is formalized in Rosu (2015), who predicts that
an increase in informed traders information results in an immediate increase in bid-ask spreads
followed by a decrease in bid-ask spreads, which occurs at a speed proportional to the degree
of informed trading, as in Glosten and Milgrom (1985). It is possible the same economic
mechanism could be active on the RLP, resulting in superior price efficiency as well as superior
liquidity.
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1.3 Data
Our dataset contains information on trades and best bid and ask quotes on all stocks traded on
the NYSE and Arca for 333 trading days from 1 April 2012 to 1 August 2013. The data consist
of time-stamped reports of all trade prices and quantities and time-stamped reports of all best
bid and best ask prices and quantities, for each stock and exchange. The trades are not marked
by the sign of trade (buyer- or seller-initiated), so we impute the sign of trade using the Lee
and Ready (1991) algorithm.4

We mark trades on the NYSE that have subpenny prices after 1 August 2012 as RLP and
all other trades are marked lit. The NYSE reports that no trades can take a subpenny price on
the NYSEs main venue except via the RLP. Indeed, there were no trades on the NYSE before 1
August 2012 in our sample that had subpenny prices. This approach may slightly underestimate
the total activity in the RLP. For example, for stocks with bid-ask spreads greater than one cent,
RLP trades could occur at prices on the regular tick grid of one cent.

1.3.1 Treatment stocks

Treatment stocks are defined as stocks that had at least 1% RLP volume share. We choose 35
treatment stocks using the following criteria. Before choosing treatment stocks, we sample the
data. We drop all small-cap stocks (stocks with a market capitalization under US$2 billion), all
exchange-traded funds and all share classes other than common equity. Stocks that were cross-
listed in Canada were removed from the sample, since they were eligible for a similar program
to the RLP, Alpha IntraSpread. We drop stocks that had a minimum price below $2.00 at any
time during the sample period, since they may have been eligible for subpenny pricing on the
NYSE due to their low price. We drop stocks that are eligible for a separate RLP on another
NYSE-operated exchange, NYSE MKT. Before sampling, the data included trades and quotes
for 3,993 stocks that trade on the NYSE. After removing small-cap stocks, exchange-traded
funds, cross-listed stocks, non-common equity share classes and stocks with a low price, 2,265
stocks remained.

Of the 2,265 sample stocks, 49 had an average of over 1% of total volume on the NYSE that
traded in the RLP. Of these 49 stocks with relatively heavy usage of the RLP, 14 had sparsely
populated data, that is, fewer than 10 days of complete data before and after the launch of the
RLP. We designate the remaining 35 stocks the sample of treatment stocks.

1.3.2 Control stocks

We create a pool of control stocks from the set of all stocks that were traded on Arca and not on
the NYSE and therefore were ineligible for the RLP. From the set of stocks that traded on Arca
and not on the NYSE, we sample using the same criteria used to define treatment stocks (except
for the threshold for RLP activity). There are 184 candidate control stocks that fit the criteria.
We create a matched sample by pairing treatment stocks one-to-one with control stocks. For
each treatment stock, we select the nearest neighbour by average sample market capitalization

4The Lee and Ready (1991) algorithm assigns buyer- and seller-initiated designations to trade and quote data
using trading prices, prevailing quotes, and the sequence of previous trade initiations.
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Table 1.2: Market Quality Measures.

Relative bid-ask spread ask−bid
midquote

Effective spread 2sign of trade price−midquote
midquote

Five-second price impact sign of trademidquotet+5seconds−midquotet
midquotet

Five-second return autocorrelation corr(returnt+5seconds, returnt)

without replacement. Measures of liquidity for certain control stocks on 26 December 2012
were extreme, so we drop the day from the sample.

1.3.3 Data for computing information shares: returns and order flow

For the purposes of computing information shares, we compute a return variable and three
order-flow variables: five-minute log midquote returns, five-minute net RLP order flow, five-
minute net lit order flow, and the five-minute net undifferentiated order flow (RLP and lit to-
gether), for days after the launch of the RLP on 1 August 2012. Five-minute log midquote
returns are computed for every five-minute time increment by taking the log of the ratio of the
midquote to the five-minute-lagged midquote. Order flow variables are computed for each five-
minute time increment by summing trading volumes within the period, where buyer-initiated
trades and seller-initiated trades are signed positive and negative, respectively. All order flow
variables are signed positive for net buying and negative for net selling. The choice of five min-
utes results in a granular set of observations while ensuring the RLP net order flow is non-zero
for most time intervals.

1.3.4 Data for conducting difference-in-differences: market quality mea-
sures

For the purposes of running the event studies, we compute daily averages of four standard
market-quality measures: the relative bid-ask spread, the effective spread, the five-second price
impact and the five-second return autocorrelation. The first three measure liquidity, while the
return autocorrelation is used to measure price efficiency. The choice of five seconds is standard
for price impacts and autocorrelations. For these measures we use the standard formulae given
in Table 1.2. The subscripts t and t + 5 seconds denote observations at a particular time t and
five seconds later; bid, ask and midquote denote the best bid and ask prices, and their mean, the
midquote; sign of trade denotes whether a trade was buy- or sell-initiated as computed using
the Lee and Ready (1991) algorithm; return denotes the five-second log midquote return; and
corr denotes the correlation operator.

We eliminate trades from the sample that are flagged as occurring during the opening or
closing auctions. We take daily averages of the above measures over standard trading hours,
from 9:30 a.m. to 4:00 p.m.
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1.3.5 Summary statistics

Table 1.3 provides summary statistics on market quality and market capitalization for the 35
stocks identified as treatment stocks and the 35 matched control stocks. Panel A shows sum-
mary statistics for treatment stocks before the launch of the RLP, from April 2012 until July
2012, and Panel B shows summary statistics for treatment stocks after the launch of the RLP,
from August 2012 until August 2013. Panel C shows summary statistics for control stocks
before the launch of the RLP, and Panel D shows summary statistics for control stocks after the
launch of the RLP. The columns of the table give the average, standard deviation, minimum,
25th percentile, 50th percentile, 75th percentile and maximum for each market-quality measure
and for market capitalization.

Volume is the average number of shares traded per day in thousands of shares. RLP Volume
is the average number of shares traded in the RLP per day in thousands of shares. Relative
Spread is the average daily relative spread. Effective Spread is the average daily effective
spread. Price Impact is the average daily five-second price impact. Autocorrelation is the
average daily absolute five-second autocorrelation of the midquote.

For treatment stocks, average volume decreased from 2,541K shares per day to 2,492K
after the launch of the RLP. RLP volume after launch was 89K shares per day or roughly 3.5%
of total volume. Since overall volume decreased, it is unlikely that the RLP attracted new order
flow that was previously traded off the NYSE. Each of the liquidity measures improved for
treatment stocks after the launch of the RLP. The average relative bid-ask spread decreased
from 12.1 to 10.5 basis points. Similarly, the average effective spread decreased from 9.9 basis
points to 8.7 basis points, while the average price impact decreased from 3.6 basis points to 3.2
basis points. Average absolute autocorrelation remained at 0.06. Average market capitalization
increased after the launch of the RLP from $188.24 to $237.71 billion.

For control stocks, average volume decreased from 311K to 243K shares per day after the
launch of the RLP. Control stocks had less volume than treatment stocks across the sample
period. This is a weakness of the control group and one reason we also perform the regression
using a weighted panel of control stocks (Table 1.9). The weighted panel ensures the result is
not spuriously driven by a particular selection of the 35 control stocks from the 184 candidates.

Liquidity measures for control stocks were relatively unchanged when compared to the
liquidity measures of the treatment stocks. The relative average bid-ask spread increased from
12.8 to 12.9 basis points. The average effective spread decreased from 7.2 to 6.8 basis points.
Average price impact increased from 2.5 to 2.8 basis points. Average absolute autocorrelation
increased from 0.09 to 0.10. Market capitalization for control stocks increased after the launch
of the RLP from $182.44 to $215.06 billion.

Panel E shows the difference in the means of market-quality measures and market-quality
factors before and after the launch of the RLP for treatment and control stocks. Volume de-
creased for both treatment and control stocks over the sample, while market capitalization
increased. Each of the liquidity measures for treatment stocks decreased after the launch of
the RLP: the relative spread by 1.5 basis points, effective spread by 1.2 basis points and price
impact by 0.5 basis points. For control stocks, these liquidity measures had no consistent pat-
tern: the effective spread decreased slightly, by 0.37 basis points, while the relative spread and
price impact increased slightly, by 0.11 and 0.24 basis points, respectively. There was no aver-
age change in autocorrelation for treatment stocks, while the autocorrelation for control stocks
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Table 1.3: Summary statistics for treatment and control stocks. This table gives summary
statistics on market quality and market cap for the 35 stocks identified as treatment stocks and
the 35 matched control stocks. The columns of the table give the average, standard deviation,
minimum, 25th percentile, 50th percentile, 75th percentile, and maximum for each measure.
Panel A shows summary statistics for treatment stocks before the launch of the RLP, from
April 2012 until July 2012, and Panel B shows summary statistics for treatment stocks after
the launch of the RLP, August 2012 until August 2013. Panel C shows summary statistics
for control stocks before the launch of the RLP, and Panel D shows summary statistics for
control stocks after the launch of the RLP. Panel E shows the difference in means for each
variable for both treatment and control stocks. Volume is the average number of shares traded
per day in thousands of shares. RLP Volume is the average number of shares traded in the
RLP per day in thousands of shares. Relative Spread is the average relative spread. Effective
Spread is the average five-second effective spread. Price Impact is the average five-second
price impact. Autocorrelation is the average daily absolute five-second autocorrelation of the
midquote. Market Cap is average market capitalization over the period in billions

Panel A: Summary statistics for treatment stocks before the launch of the RLP.

Mean Std. Dev. Min P25 P50 P75 Max
Volume 2540.88 4039.83 29.75 507.82 1320.61 2537.54 38129.25
Relative Spread 12.05 7.20 2.59 8.35 10.40 13.47 48.63
Effective Spread 9.91 6.59 2.18 6.61 8.49 11.41 53.90
Price Impact 3.64 1.65 -0.21 2.43 3.48 4.54 26.57
Autocorrelation 0.06 0.04 0.00 0.03 0.05 0.08 0.30
Market Cap 188.24 376.56 16.33 28.46 64.45 157.35 2216.54

Panel B: Summary statistics for treatment stocks after the launch of the RLP.

Mean
Std.
Dev. Min P25 P50 P75 Max

Volume 2491.85 4896.33 22.69 398.95 1156.48 2351.92 207285.34
RLP volume 89.38 402.89 0.00 1.80 11.15 38.35 9202.98
Relative spread 10.54 5.97 2.05 7.13 9.14 12.15 48.36
Effective spread 8.73 5.48 1.84 5.68 7.46 10.31 41.91
Price impact 3.19 1.43 -3.14 2.20 3.02 3.90 26.08
Autocorrelation 0.06 0.05 0.00 0.03 0.05 0.09 0.50
Market cap 237.71 459.43 12.11 36.30 81.11 167.06 2570.55

Panel C: Summary statistics for control stocks before the launch of the RLP.

Mean
Std.
Dev. Min P25 P50 P75 Max

Volume 310.83 446.25 10.73 88.03 169.45 349.81 5431.86
Relative spread 12.83 8.55 2.31 6.80 10.54 16.49 60.56
Effective spread 7.15 4.52 1.81 3.88 5.88 9.07 41.25
Price impact 2.52 1.65 -0.08 1.37 2.07 3.16 13.92
Autocorrelation 0.09 0.06 0.00 0.04 0.08 0.12 0.59
Market cap 182.44 326.78 10.92 28.99 63.32 152.18 1663.42
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Panel D: Summary statistics for control stocks after the launch of the RLP.

Mean
Std.
Dev. Min P25 P50 P75 Max

Volume 243.09 383.16 6.00 68.91 127.13 262.45 7072.84
Relative spread 12.94 11.99 1.69 6.22 10.09 16.47 457.72
Effective spread 6.78 5.33 1.08 3.52 5.32 8.42 108.73
Price impact 2.76 2.09 -0.70 1.48 2.25 3.40 42.24
Autocorrelation 0.10 0.09 0.00 0.04 0.09 0.14 0.79
Market cap 215.06 408.38 13.94 32.99 72.52 159.60 2533.08

Panel E: Difference in means before and after the launch of the RLP for treatment and control
stocks.

Treatment
stocks

Control
stocks

Volume -49.03 -67.74
Relative spread -1.51 0.11
Effective spread -1.18 -0.37
Price impact -0.45 0.24
Autocorrelation 0 0.01
Market cap 49.47 32.62

increased by 0.01 after the launch of the RLP.
Figures 1.1 and 1.2 show the liquidity history for treatment stocks over the sample period.

1.1 shows the relative bid-ask spread, while 1.2 shows the total and RLP volume in thousands
of shares per day.

The relative bid-ask spread is roughly 11 basis points on average in the beginning of the
sample and falls to roughly 10 basis points from September 2012 until January 2013. Total
volume is roughly constant over the sample period. Volume in the RLP increased steadily from
after the RLPs launch in August 2012 until September 2012. RLP volume remains roughly
constant at 3.5% of total volume thereafter.

1.4 Methodology

We use two statistical methodologies: structural VAR for our first two hypotheses on the infor-
mational characteristics of the order flow, and the difference-in-differences event study to test
our second two hypotheses on the effects of the RLP on market quality.

1.4.1 VAR and information shares

We fit the structural VAR model using the five-minute order-flow and return data described
above for each month and stock in our sample, starting with August 2012 (the first treatment
month) and every subsequent month. We fit two specifications. First, we fit a structural VAR
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Figure 1.1: Relative bid-ask spread for treatment and control stocks over the sample pe-
riod. This figure shows the relative bid-ask spread for treatment and control stocks over the
sample period. The blue line represents relative bid-ask spread for control stock; the red line
represents relative bid-ask spread for treatment stocks. The vertical line indicates the launch of
the RLP on 1 August 2012.

on return and the total order flow:

rt = α1 +

6∑
τ=1

βτr,rrt−τ(5 min) +

6∑
τ=0

βτr,flowflowt−τ(5 min) + ε1,t

flowt = α2 +

6∑
τ=1

βτflow,rrt−τ(5 min) +

6∑
τ=1

βτflow,flowflowt−τ(5 min) + ε2,t

(1.1)

where rt is the five-minute log-return; f lowt is the signed total five-minute net order flow;
β are coefficients indexed by variables with subscripts and by time with superscripts; α are
constants; and ε are error terms. The variable τ indexes the lag terms, for example, and tτ(5min)
means a lag of τ times 5 minutes for τ = 0, 1, 2 etc. We fit the model using six lag terms, hence
the upper limit on the summands is 6. Following Hasbrouck (1991), the limit of summation
for f lowt in the return process starts from 0 to allow order flow to have a contemporaneous
effect on return. The assumption is that prices are driven by order flow and not the reverse. The
model imposes that there are no contemporaneous effects between return and itself, flow and
itself, and no contemporaneous effect of return on flow.

We also fit a second structural VAR, now on return and the segregated lit flow and RLP
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Figure 1.2: Volume for treatment stocks over the sample period. This figure shows total
volume and RLP volume.

flow:

rt = α1 +

6∑
τ=1

βτr,rrt−τ(5 min) +

6∑
τ=0

βτr,RLPRLPt−τ(5 min) +

6∑
τ=0

βτr,litlitt−τ(5 min) + ε1,t

RLPt = α2 +

6∑
τ=1

βτRLP,rrt−τ(5 min) +

6∑
τ=1

βτRLP,RLPRLPt−τ(5 min) +

6∑
τ=1

βτRLP,litlitt−τ(5 min) + ε2,t

litt = α3 +

6∑
τ=1

βτlit,rrt−τ(5 min) +

6∑
τ=1

βτlit,RLPRLPt−τ(5 min) +

6∑
τ=1

βτlit,litlitt−τ(5 min) + ε3,t

(1.2)

where rt is the five-minute log-return; RLPt is the net five-minute order flow specifically in the
RLP, and litt is the net five-minute order flow not in the RLP; and β, α and ε are as above. As in
the VAR described above, the limits of summation for RLPt and litt in the return process start
from 0 to allow the flows to have a contemporaneous effect on return.

From the VAR models we compute two sets of results: the orthogonalized impulse response
functions and the corresponding information shares. The information shares are those used by
Hasbrouck (1991) and have been used to assess the contribution of the order flow to price in
a variety of settings. Both the impulse response functions and the information shares derive
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from the moving-average representations of the VAR models:(
rt

f lowt

)
=

∞∑
τ=0

(
aτ bτ
cτ dτ

) (
εr,t−τ

ε f low,t−τ

)
(1.3) rt

RLPt

litt

 =

∞∑
τ=0

 eτ fτ gτ
hτ iτ jτ
kτ lτ mτ


 εr,t−τ

εRLP,t−τ

εlit,t−τ

 (1.4)

where the terms aT through mT are the coefficients of the orthogonalized impulse-response
functions for step τ, and the ε are serially uncorrelated innovations. The information con-
tent of a time series as an explainer of the return process is the cumulation of its associated
impulse-response coefficients in the moving-average representation (Hasbrouck, 1991). For
each component of the order flow we compute information shares, the proportion of variance
of return attributable to the component. For the above models the information shares of the
total undifferentiated order flow, RLP order flow, lit order flow and the aggregate segmented
(the sum of shares of RLP and lit) order flows are:

shareflow =

σ̂2
flow(

∞∑
τ=0

bτ)2

σ̂2
r (
∞∑
τ=0

aτ)2 + σ̂2
flow(

∞∑
τ=0

bτ)2
(1.5)

shareRLP =

σ̂2
RLP(

∞∑
τ=0

fτ)2

σ̂2
r (
∞∑
τ=0

eτ)2 + σ̂2
RLP(

∞∑
τ=0

fτ)2 + σ̂2
lit(
∞∑
τ=0

gτ)2
(1.6)

sharelit =

σ̂2
lit(
∞∑
τ=0

gτ)2

σ̂2
r (
∞∑
τ=0

eτ)2 + σ̂2
RLP(

∞∑
τ=0

fτ)2 + σ̂2
lit(
∞∑
τ=0

gτ)2
(1.7)

sharesegmented =

σ̂2
RLP(

∞∑
τ=0

fτ)2 + σ̂2
lit(
∞∑
τ=0

gτ)2

σ̂2
r (
∞∑
τ=0

eτ)2 + σ̂2
RLP(

∞∑
τ=0

fτ)2 + σ̂2
lit(
∞∑
τ=0

gτ)2
(1.8)

where σ̂2
f low, σ̂2

RLP and σ̂2
lit are the estimated variances of the VAR innovations for the re-

spective error terms (using root mean-squared error) for the respective model.

1.4.2 Difference-in-differences
We use the differences-in differences event study to assess the impact of the RLP launch on
market quality. The methodology compares the change in market quality for treatment stocks
to the change in market quality for control stocks. We used daily averages of the four market-
quality measures described above. Specifically, we regress each market-quality measure on a
treatment dummy equalling one during the period in which a stock was eligible for the RLP,
on an after-period dummy equalling one during the period following the launch of the RLP
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for all stocks, on stock and control fixed effects, and on control variates. For all measures, the
difference-in-differences model specification is:

measurei,t = β treatmenti,t + γ aftert + δXi + FEi + εi,t (1.9)

where i is the index for the stock (including both treatments and controls), t is the day index,
measure is the metric of interest (e.g. relative bid-ask spread), treatment is a treatment dummy
equalling one if stock i is a treatment stock and the date is after 1 August 2012, a f ter is an
after-period dummy equalling one if the date is after 1 August 2012, FE is a fixed effect for
each treatment stock and control stock, X is a vector of control variates for the stock, and ε is
the error term. The fixed effects span the sample, so there is no constant of regression. The
difference-in-differences impact coefficient is β.

The model is fit over six specifications. Specification 1 excludes the control-stock ob-
servations and all control variates. The regression coefficient β is then the treatment effect
from a simple or “single-difference” event study that compares market quality only for treat-
ment stocks before and after the launch of the RLP. Specification 2 includes the control-stock
observations and continues to exclude control variates. Specifications 3 through 6 introduce a
steadily greater number of control variates. Specification 3 includes the common equity-market
liquidity determinants, the stocks log market capitalization and log daily volume. Specifica-
tion 4 includes a market-wide liquidity factor, the stock-specific factor score from principal
component analysis. The factor score equals the first principal component of the daily obser-
vations of the treatment and control market-quality measure multiplied by the stock-specific
eigenvalue. Specification 5 includes the rolling 10-day volatility for each stock. Last, Specifi-
cation 6 includes the previous day’s value of the market-quality metric for the stock. For each
specification, standard errors are clustered by stock and date.

The model is fit both over the entire post-period of data and also over four subsamples of
data spanning four different time periods. All model fits use observations from the three-month
pre-period sample, April to July 2012. They differ by the post-period data. The post-period
in the first fit, reported in each table’s Panel A, is the entire sample after 1 August 2012. The
second through fifth fits compare the pre-period to four three-month post-periods: Q4 2012,
Q1 2013, Q2 2013, and Q3 2013. The second through fifth fits are reported in each tables
Panels B to E.

1.5 Results
Figure 1.3 shows the impulse-response function for the monthly VARs fit on the log return and
the two order flows (RLP and lit) averaged over all months and all 35 treatment stocks.

The contemporaneous impact on the return of a one standard-deviation shock to the lit
order flow is around 5 basis points. The lit flow still impacts the return after five minutes by
around 2 basis points. For the RLP flow, the contemporaneous and first-lag return impacts of a
one standard-deviation shock are both less than one basis point. Both flows appear to have no
appreciable impact on the return after 10 minutes (two lags).

Table 1.4 Panel A shows summary statistics for the information shares of segments of the
order flow. The share for Total order flow is the information share of the order flow for the
VAR model fit by stock by month on the log return and total order flow. The share for Lit is the
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Table 1.4: Information shares. This table gives summary statistics and results for a T-test
on difference in means for information shares computed using a vector autoregression model.
Information shares are computed monthly for each of the 35 treatment stocks. Panel A re-
ports summary statistics. The columns of the table give the average, standard deviation, 25th
percentile, 50th percentile and 75th percentile for each segment of the order flow. Lit is the
information share of lit orders; RLP is the information share of RLP orders; Total order flow
is the information share of all undifferentiated orders; RLP and lit is the sum of information
shares for RLP and lit orders. Panel B reports the average difference between information
shares for various segments of the order flow. Difference of lit, RLP is the difference between
lit and RLP information shares; Difference of total and lit plus RLP is the difference between
the sum of RLP and lit minus the aggregate information shares. N is the number of observa-
tions. The t-statistic is in parentheses. *, **, *** represent statistical significance at the 10%,
5%, and 1% level.

Panel A: Summary statistics for information shares

Mean
Std.
Dev. P25 P50 P75

Total
order flow 26.27 19.56 12.12 21.98 36.52

Lit 25.40 19.42 10.85 20.56 37.05
RLP 2.37 8.25 0.17 0.66 1.94

Panel B: T-test for difference in means

Difference of lit share and RLP share
23.03***
(16.25)

Difference of total and lit plus RLP shares
1.49***
(4.21)

N 419
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Figure 1.3: Impulse-response functions for RLP and lit order flow. This figure plots or-
thogonalized impulse-response coefficients for each component of the order flow against their
corresponding lags. The blue line represents the response of return to a one-standard devi-
ation shock to the lit order flow; the red dashed line represents the response of return to a
one-standard deviation shock to the RLP order flow.

information share of the lit order flow for the VAR model fit by stock by month on log return,
lit order flow and RLP order flow. The share for RLP is the information share of the RLP order
flow for the VAR model fit by stock by month on log return, lit order flow and RLP order flow.

The total order flow had an information share of 26.3% on average. For lit order flow, the
information share was 25.4% on average. For RLP order flow the information share was 10
times lower, 2.4% on average.

Hypotheses 1.2.1 and 1.2.2 in this paper ask whether the RLP order flow is demonstrably
less informed and whether segmentation adds information to the order flow. Table 1.4 Panel B
reports the differences of means between order flows and t-statistics on the differences. Differ-
ence of lit and RLP is the difference between the lit and RLP information shares. Difference
of total and lit plus RLP is the difference between the information share of the total order flow
with the information shares of the sum of the segmented lit and RLP order flows. The differ-
ence between lit and RLP was on average 23.0% with statistical significance. This result is to
be expected and demonstrates the desirability of RLP order flow for intermediaries. The sum
of lit and RLP information shares was on average 1.5% more than the information share of the
total order flow with statistical significance. The increase in the information earned by differen-
tiating RLP and lit order flow shows that using the RLP marker to distinguish RLP trades from
lit trades can increase the explanatory power of the order flow. Segmentation does appear to
remove noise from the signal, as hypothesized. We next measure the impact on market quality.



18 Chapter 1. Retail Order Flow Segmentation: Empirics

Hypotheses 1.2.3 and 1.2.4 in this paper concern whether participation in the RLP affects
stocks liquidity and price efficiency. Figure 1.1, Panel A shows the relative bid-ask spread of
treatment stocks and control stocks over the sample period. Before the launch of the RLP, the
average bid-ask spreads for treatment and control stocks were close on average and co-moved.
In September 2012 the level of the control series shifts upward and the level of the treatment
series shifts downward. The spike in the relative bid-ask spread of treatment stocks on 26
December 2012 is an outlier and was dropped from the sample. The results were stronger with
the outlier.

Tables 1.5 to 1.9 give the results of difference-in-differences event studies on four market-
quality measures. The rows of the tables give the regression coefficients and their associated
t-statistics for specific variables across six different specifications of the event study on relative
bid-ask spreads, effective spreads, price impacts and absolute return autocorrelations. A blank
entry indicates a variate is not included in the regression.

The columns of Tables 1.5 to 1.9 correspond to the different specifications of the event
study. Specification 1 excludes the control-stock observations and gives the treatment effect
of a classic, single-difference event study. Specifications 2 to 6 estimate the differenced differ-
ences. Specifications 3 to 6 include a progressively larger set of control variates, starting with
log market capitalization and log daily volume, then adding the market-wide liquidity factor,
then the 10-day moving average of the closing price, and last the lagged value of the dependent
variable. Treatment is a dummy variable that indicates the period after the launch of the RLP
for treatment stocks. After is a dummy variable that indicates the period after the launch of
the RLP for all stocks. Market cap is the daily market capitalization in billions. Volume is
the number of shares traded per day. Market-wide liquidity is the stock-specific factor score
from principal component analysis. 10-day volatility is the 10-day rolling volatility of the close
price. The variable Lagged market quality is the market-quality measure for the stock lagged
by one day. *, **, *** represent statistical significance at the 10%, 5%, and 1% level.

Each Panel A for Tables 1.5 to 1.8 shows results for the entire sample period, from April
2012 to August 2013. We then test subsamples to ensure our result holds throughout the sample
period. Panels B through E show results for a sample period limited to three months prior to
the launch of the RLP and three months after. Panel B shows results when the sample period
is limited to Q3 2012 and Q4 2012; Panel C shows results when the sample period is limited
to Q3 2012 and Q1 2013; Panel D shows results when the sample period is limited to Q3 2012
and Q2 2013; and Panel E shows results when the sample period is limited to Q3 2012 and Q3
2013. Each regression specification 1 to 6 in Panels B through E corresponds to those in Panel
A. For Panels B through E we exclude reporting of variables other than Treatment and After
for brevity.

Table 1.5 Panel A shows that the relative spread decreased for treatment over the sample
period. The result is consistently statistically significant for each of the regression specifica-
tions. For treatment stocks (specification 1), the average relative spread decreased by 1.4 basis
points over the sample period. When control stocks are included in the regression (specifica-
tion 2), the difference is more pronounced; relative spreads decrease by 2.0 basis points. This
is because control stocks experience a widening of relative spreads over the sample period,
resulting in a negative estimate of the treatment variable that was larger in magnitude. The
R2 drops from 0.839 to 0.608 because control stocks are added to the regression as dependent
variables going from specification 1 to specification 2. In the remaining specifications, 3 to 6,
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Table 1.5: Difference-in-differences event study of the impact of the launch of the RLP on
relative bid-ask spreads. The rows of the table give the regression coefficients and their asso-
ciated t-statistics for specific variables across six different specifications of the event study on
relative bid-ask spreads. A blank entry indicates exclusion from the regression. The columns
of the table correspond to different specifications of the event study. In specification (1), only
treatment stocks are included in the regression; in specification (2), treatment stocks and con-
trol stocks are included; in specification (3), Market cap and Volume are included; and so on.
Treatment is a dummy variable that equals one during the period after the launch of the RLP
for treatment stocks. A f ter is a dummy variable that equals one during the period after the
launch of the RLP for all stocks. Market cap is the daily market capitalization in billions.
Volume is the number of shares traded per day in thousands of shares. Market-wide liquidity
is the stock-specific factor score from principal component analysis. 10 − dayvolatility is the
10-day rolling volatility of the midquote. Lagged relative spread is the relative bid-ask spread
lagged by one day. Constant is the constant of regression. N is the number of observations. R2

is the coefficient of determination. *, **, *** represent statistical significance at the 10%, 5%,
and 1% level. Panel A shows results for the entire sample period, from April 2012 to August
2013. Panels B through E show results for a sample period limited to three months prior to the
launch of the RLP and three months after. Panel B shows results when the sample period is
limited to Q3 2012 and Q4 2012; Panel C shows to Q3 2012 and Q1 2013; Panel D shows Q3
2012 and Q2 2013; and Panel E shows Q3 2012 and Q3 2013. Each regression specification
(1) to (6) in Panels B through E corresponds to those in Panel A, but we exclude reporting of
variables other than Treatment and After for brevity.

Panel A: Impact on relative spread, entire sample.

(1) (2) (3) (4) (5) (6)
Treatment -1.389** -1.987*** -1.262** -0.931** -0.932** -0.653*

(-2.43) (-3.11) (-2.20) (-2.03) (-2.08) (-1.87)
After 0.661 0.832* 0.991** 1.066*** 0.785**

(1.62) (1.93) (2.54) (2.74) (2.38)
Market cap -5.302*** -3.189** -3.126** -2.488**

(-3.79) (-2.42) (-2.38) (-2.22)
Volume -1.797*** -1.690*** -1.808*** -1.512***

(-5.18) (-5.39) (-5.73) (-5.11)
Market-wide liquidity 0.904*** 0.891*** 0.716***

(15.03) (15.08) (7.16)
10-day volatility 4.602*** 3.820***

(2.98) (3.12)
Lagged relative spread 0.225**

(2.13)
Constant 11.81*** 12.09*** 119.7*** 84.20*** 84.24*** 67.73***

(29.21) (42.83) (5.12) (3.66) (3.67) (3.28)
N 11640 23090 23090 20650 20650 20580
R2 0.839 0.608 0.626 0.827 0.828 0.854
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Panel B: Impact on relative spread, Q2 2012 and Q1 2013.

(1) (2) (3) (4) (5) (6)
Treatment -0.857 -2.779*** -2.301*** -1.980** -1.990** -1.263**

(-1.58) (-2.87) (-2.63) (-2.35) (-2.36) (-2.25)
After 1.953** 2.089** 1.936** 1.977** 1.277**

(2.32) (2.54) (2.43) (2.46) (2.35)
N 4366 8639 8639 8190 8190 8120
R2 0.880 0.749 0.763 0.856 0.856 0.887

Panel C: Impact on relative spread, Q2 2012 and Q2 2013.

(1) (2) (3) (4) (5) (6)
Treatment -2.222*** -1.787** -0.724 -0.947** -0.949** -0.315

(-3.92) (-2.42) (-1.13) (-2.07) (-2.07) (-1.40)
After -0.437 -0.201 0.899* 0.917* 0.368

(-0.85) (-0.34) (1.89) (1.88) (1.52)
N 4339 8639 8639 8190 8190 8190
R2 0.879 0.815 0.832 0.850 0.850 0.900

Panel D: Impact on relative spread, Q2 2012 and Q3 2013.

(1) (2) (3) (4) (5) (6)
Treatment -1.927** -2.033** -1.058 -1.350*** -1.342*** -0.489**

(-2.54) (-2.01) (-1.18) (-2.64) (-2.64) (-1.97)
After 0.108 0.535 1.737*** 1.752*** 0.703***

(0.15) (0.76) (3.65) (3.69) (3.13)
N 4474 8918 8918 8330 8330 8330
R2 0.826 0.807 0.830 0.880 0.881 0.921

Panel E: Impact on relative spread, Q2 2012 and Q4 2012.

(1) (2) (3) (4) (5) (6)
Treatment -2.171*** -3.365** -2.515* -1.270** -1.300** -1.137*

(-2.94) (-2.15) (-1.69) (-2.06) (-2.13) (-1.95)
After 1.203 2.167 1.771*** 1.808*** 1.629***

(0.84) (1.41) (3.07) (3.11) (2.93)
N 3008 5921 5921 5460 5460 5460
R2 0.867 0.456 0.467 0.900 0.900 0.904
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the magnitude of the regression coefficient for relative spread on the treatment dummy atten-
uates as more and more covariates are added to the regression. The sign remains negative and
statistically significant, dropping to 0.7 basis points for specification 6.

In Table 1.5, Panels B through E show that participation in the RLP leads to lower relative
spreads in four subsample time periods. The treatment effect in specification 2 is negative
and statistically significant in all panels. For specification 6, it misses significance in Panel C,
which studies the post-period Q1 2013.

Table 1.6 shows a milder result for effective spreads. Panel A shows the results for the re-
gression over the entire sample. The regression coefficient for the treatment dummy is negative
but is statistically significant only for specifications 1 and 2. In specification 2, the treatment
effect is 0.9 basis points, but in specification 6 the effect is 0.2 basis points and has a t-statistic
of only 1.38.

In Table 1.6, Panels B through E show how the results for effective spread vary over time.
The results are hit and miss. The weakest period is Panel B, comparing Q2 2012 to Q4 2012.
While each coefficient of the treatment dummy is negative, the only one with statistical sig-
nificance is the simple difference-in-differences, specification 2. Panels C through E do show
evidence of a decrease in effective spreads when comparing Q2 2012 to the remaining periods.
The regression coefficients in specification 6 for panels C through E range from 0.3 basis points
to 0.6 basis points and are nearly significant, with t-statistics all greater than 1.63.

Table 1.7 gives the effect of the RLP on price impact. Panel A shows that price impact
decreased for treatment stocks over the sample period. The decrease resulting from the RLP
ranges between 0.4 and 0.6 basis points depending on the specification. In specification 6, the
RLP leads to a decrease in price impact of 0.5 basis points with a t-statistic of 4.38.

In Table 1.7, Panels B through E show how the effect of the RLP on price impact varies
over time. All regression specifications except for Panel A specification 1 show negative and
statistically significant coefficients for the treatment effect. In specification 6 for Panels B
through E, the treatment effect ranges from 0.6 basis points to 0.9 basis points.

Table 1.8 gives the effect of the RLP on price efficiency as measured by the absolute au-
tocorrelation of the return of the midquote. Panel A shows the RLP increased price efficiency
over the sample period. The simple treatment effect (specification 1) is positive, small (0.003)
and statistically insignificant, indicating that absolute autocorrelation was generally unchanged
for treatment stocks over the sample period. When control stocks are added to the regression
(specification 2), the regression coefficient for the treatment dummy becomes negative and
statistically significant, -0.01. Control stocks experienced an increase in absolute autocorrela-
tion over the sample, while treatment stocks did not. Specifications 3 through 6 continue to
show the RLP decreased the absolute autocorrelation of the midquote. The impact in these
specifications ranges from -0.008 to -0.009 indicating an improvement in price efficiency.

Table 1.8 Panels B through E show how the result on autocorrelation varies by the time
period. The impact misses significance in Panel B for specifications 3 to 6, meaning we fail to
find good evidence the RLP had an impact on price efficiency in Q4 2012. In fact, the simple
treatment effect (Panel B specification 1) is positive and significant, and the treatment effect be-
comes negative and significant when control stocks are included in the regression (specification
2). For Panels C through E, the treatment effect ranges from -0.01 to -0.04 and is significant
in specifications 3 through 6. For these panels, the simple treatment effect (specification 1)
is small and insignificant, and the addition of control stocks and control variates makes the
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Table 1.6: Difference-in-differences event study of the impact of the launch of the RLP on
effective spreads. The rows of the table give the regression coefficients and their associated t-
statistics for specific variables across six different specifications of the event study on effective
spreads. A blank entry indicates exclusion from the regression. The columns of the table
correspond to different specifications of the event study. In specification (1), only treatment
stocks are included in the regression; in specification (2), treatment stocks and control stocks
are included; in specification (3), Market cap and Volume are included; and so on. Treatment
is a dummy variable that equals one during the period after the launch of the RLP for treatment
stocks. A f ter is a dummy variable that equals one during the period after the launch of the
RLP for all stocks. Market cap is the daily market capitalization in billions. Volume is the
number of shares traded per day in thousands of shares. Market-wide liquidity is the stock-
specific factor score from principal component analysis. 10-day volatility is the 10-day rolling
volatility of the midquote. Lagged effective spread is the five-second effective spread lagged
by one day. Constant is the constant of regression. N is the number of observations. R2 is the
coefficient of determination. *, **, *** represent statistical significance at the 10%, 5%, and
1% level. Panel A shows results for the entire sample period, from April 2012 to August 2013.
Panels B through E show results for a sample period limited to three months prior to the launch
of the RLP and three months after. Panel B shows results when the sample period is limited
to Q3 2012 and Q4 2012; Panel C shows Q3 2012 and Q1 2013; Panel D shows Q3 2012 and
Q2 2013; and Panel E shows Q3 2012 and Q3 2013. Each regression specification (1) to (6)
in Panels B through E corresponds to those in Panel A, but we exclude reporting of variables
other than Treatment and After for brevity.

Panel A: Impact on effective spread, entire sample.

(1) (2) (3) (4) (5) (6)
Treatment -1.114** -0.938** -0.430 -0.440 -0.441 -0.244

(-2.41) (-2.01) (-1.08) (-1.42) (-1.46) (-1.38)
After -0.194 0.264 0.518** 0.577** 0.327**

(-0.86) (0.99) (2.29) (2.57) (2.29)
Market cap -4.909*** -3.344*** -3.295*** -1.878***

(-4.30) (-3.37) (-3.32) (-3.98)
Volume -0.493** -0.405** -0.497*** -0.294**

(-2.43) (-2.50) (-3.04) (-2.50)
Market-wide liquidity 0.563*** 0.553*** 0.340***

(8.73) (8.79) (4.65)
10-day volatility 3.607*** 1.989***

(3.88) (2.95)
Lagged eff. spread 0.420***

(5.45)
Constant 9.751*** 8.392*** 92.73*** 66.39*** 66.42*** 38.06***

(29.78) (41.02) (4.87) (3.97) (3.98) (4.74)
N 11640 23090 23090 20650 20650 20580
R2 0.867 0.761 0.783 0.804 0.804 0.841
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Panel B: Impact on effective spread, Q2 2012 and Q4 2012.

(1) (2) (3) (4) (5) (6)
Treatment -0.515 -0.959* -0.648 -0.661 -0.672 -0.354

(-1.18) (-1.69) (-1.39) (-1.41) (-1.44) (-1.47)
After 0.452 0.808* 0.827** 0.872** 0.477**

(1.14) (1.92) (2.00) (2.10) (2.11)
N 4401 8709 8709 8260 8260 8260
R2 0.906 0.750 0.762 0.757 0.757 0.780

Panel C: Impact on effective spread, Q2 2012 and Q1 2013.

(1) (2) (3) (4) (5) (6)
Treatment -1.686*** -1.109** -0.456 -0.608* -0.611* -0.311*

(-3.61) (-2.13) (-1.08) (-1.89) (-1.91) (-1.95)
After -0.580** -0.0778 0.606* 0.639** 0.338**

(-2.16) (-0.21) (1.92) (2.01) (2.13)
N 4339 8639 8639 8190 8190 8190
R2 0.896 0.819 0.831 0.843 0.843 0.882

Panel D: Impact on effective spread, Q2 2012 and Q2 2013.

(1) (2) (3) (4) (5) (6)
Treatment -1.759*** -1.216 -0.633 -0.838** -0.829** -0.579

(-2.87) (-1.61) (-0.96) (-2.03) (-2.02) (-1.63)
After -0.550 0.121 0.992** 1.010** 0.711*

(-1.16) (0.23) (2.28) (2.34) (1.83)
N 4474 8918 8918 8330 8330 8330
R2 0.857 0.756 0.771 0.811 0.812 0.828

Panel E: Impact on effective spread, Q2 2012 and Q4 2012.

(1) (2) (3) (4) (5) (6)
Treatment -1.831*** -1.055 -0.523 -0.689* -0.727* -0.481

(-3.02) (-1.49) (-0.83) (-1.76) (-1.87) (-1.63)
After -0.782* 0.452 1.259*** 1.305*** 0.885***

(-1.88) (0.84) (3.19) (3.33) (2.96)
N 3008 5921 5921 5460 5460 5460
R2 0.892 0.837 0.855 0.881 0.882 0.894
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Table 1.7: Difference-in-differences event study of the impact of the launch of the RLP on
relative five-second price impacts. The rows of the table give the regression coefficients and
their associated t-statistics for specific variables across six different specifications of the event
study on five-second price impacts. A blank entry indicates exclusion from the regression. The
columns of the table correspond to different specifications of the event study. In specification
(1), only treatment stocks are included in the regression; in specification (2), treatment stocks
and control stocks are included; in specification (3), Market cap and Volume are included; and
so on. Treatment is a dummy variable that equals one during the period after the launch of
the RLP for treatment stocks. A f ter is a dummy variable that equals one during the period
after the launch of the RLP for all stocks. Market cap is the daily market capitalization in
billions. Volume is the number of shares traded per day in thousands of shares. Market-wide
liquidity is the stock-specific factor score from principal component analysis. 10-day volatility
is the 10-day rolling volatility of the midquote. Lagged price impact is the five-second relative
price impact lagged by one day. Constant is the constant of regression. N is the number of
observations. R2 is the coefficient of determination. *, **, *** represent statistical significance
at the 10%, 5%, and 1% level. Panel A shows results for the entire sample period, from April
2012 to August 2013. Panels B through E show results for a sample period limited to three
months prior to the launch of the RLP and three months after. Panel B shows results when the
sample period is limited to Q3 2012 and Q4 2012; Panel C shows Q3 2012 and Q1 2013; Panel
D shows Q3 2012 and Q2 2013; and Panel E shows Q3 2012 and Q3 2013. Each regression
specification (1) to (6) in Panels B through E corresponds to those in Panel A, but we exclude
reporting of variables other than Treatment and After for brevity.

Panel A: Impact on five-second price impact, entire sample.

(1) (2) (3) (4) (5) (6)
Treatment -0.356*** -0.627*** -0.486*** -0.510*** -0.510*** -0.456***

(-2.62) (-4.25) (-3.51) (-4.14) (-4.27) (-4.38)
After 0.299*** 0.469*** 0.540*** 0.574*** 0.503***

(3.53) (4.81) (5.82) (6.29) (6.77)
Market cap -1.516*** -0.976*** -0.946*** -0.553***

(-4.97) (-3.46) (-3.41) (-3.27)
Volume -0.0414 -0.0183 -0.0730 -0.0145

(-0.43) (-0.21) (-0.84) (-0.20)
Market-wide liquidity 0.190*** 0.184*** 0.125***

(9.36) (9.38) (5.08)
10-day volatility 2.129*** 1.700***

(3.96) (3.62)
Lagged price impact 0.116***

(4.32)
Constant 3.529*** 3.001*** 27.61*** 18.62*** 18.64*** 10.74***

(36.30) (46.58) (5.21) (3.76) (3.80) (3.58)
N 11640 23090 23090 20650 20650 20580
R2 0.411 0.494 0.513 0.537 0.540 0.567
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Panel B: Impact on five-second price impact, Q2 2012 and Q4 2012.

(1) (2) (3) (4) (5) (6)
Treatment -0.144 -0.832*** -0.745*** -0.769*** -0.776*** -0.671***

(-1.11) (-3.97) (-3.86) (-3.93) (-4.03) (-4.77)
After 0.699*** 0.823*** 0.831*** 0.861*** 0.733***

(4.01) (4.70) (4.85) (5.03) (6.35)
N 4366 8639 8639 8190 8190 8120
R2 0.434 0.585 0.596 0.597 0.599 0.633

Panel C: Impact on five-second price impact, Q2 2012 and Q1 2013.

(1) (2) (3) (4) (5) (6)
Treatment -0.738*** -1.066*** -0.909*** -0.954*** -0.957*** -0.892***

(-5.10) (-6.28) (-5.70) (-6.97) (-7.11) (-7.15)
After 0.330*** 0.516*** 0.699*** 0.723*** 0.658***

(3.22) (3.99) (6.44) (6.74) (6.98)
N 4339 8639 8639 8190 8190 8190
R2 0.482 0.559 0.570 0.579 0.582 0.600

Panel D: Impact on five-second price impact, Q2 2012 and Q2 2013.

(1) (2) (3) (4) (5) (6)
Treatment -0.501*** -0.725*** -0.583*** -0.654*** -0.649*** -0.602***

(-2.79) (-3.13) (-2.64) (-3.85) (-3.91) (-3.60)
After 0.227 0.458*** 0.687*** 0.697*** 0.641***

(1.43) (2.68) (5.06) (5.21) (4.64)
N 4474 8918 8918 8330 8330 8330
R2 0.408 0.509 0.520 0.556 0.559 0.564

Panel E: Impact on five-second price impact, Q2 2012 and Q3 2013.

(1) (2) (3) (4) (5) (6)
Treatment -0.722*** -0.814*** -0.684*** -0.737*** -0.767*** -0.720***

(-3.77) (-3.40) (-2.85) (-4.05) (-4.41) (-4.21)
After 0.0929 0.496*** 0.749*** 0.785*** 0.706***

(0.58) (2.92) (5.74) (6.18) (5.39)
N 3008 5921 5921 5460 5460 5460
R2 0.452 0.573 0.590 0.625 0.629 0.634
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Table 1.8: Difference-in-differences event study of the impact of the launch of the RLP on
the absolute value of five-second return autocorrelations. The rows of the table give the
regression coefficients and their associated t-statistics for specific variables across six different
specifications of the event study on five-second return autocorrelations. A blank entry indicates
exclusion from the regression. The columns of the table correspond to different specifications
of the event study. In specification (1), only treatment stocks are included in the regression; in
specification (2), treatment stocks and control stocks are included; in specification (3), Market
cap and Volume are included; and so on. Treatment is a dummy variable that equals one
during the period after the launch of the RLP for treatment stocks. A f ter is a dummy variable
that equals one during the period after the launch of the RLP for all stocks. Market cap is
the daily market capitalization in billions. Volume is the number of shares traded per day in
thousands of shares. Market-wide liquidity is the stock-specific factor score from principal
component analysis. 10-day volatility is the 10-day rolling volatility of the midquote. Lagged
autocorrelation is the absolute five-second autocorrelation lagged by one day. Constant is the
constant of regression. N is the number of observations. R2 is the coefficient of determination.
*, **, *** represent statistical significance at the 10%, 5%, and 1% level. Panel A shows results
for the entire sample period, from April 2012 to August 2013. Panels B through E show results
for a sample period limited to three months prior to the launch of the RLP and three months
after. Panel B shows results when the sample period is limited to Q3 2012 and Q4 2012; Panel
C shows Q3 2012 and Q1 2013; Panel D shows Q3 2012 and Q2 2013; and Panel E shows Q3
2012 and Q3 2013. Each regression specification (1) to (6) in Panels B through E corresponds
to those in Panel A, but we exclude reporting of variables other than Treatment and After for
brevity.

Panel A: Impact on return autocorrelation, entire sample.

(1) (2) (3) (4) (5) (6)
Treatment 0.00338 -0.0115** -0.00975** -0.00938** -0.00937** -0.00805**

(1.20) (-2.53) (-2.15) (-2.13) (-2.13) (-2.04)
After 0.0164*** 0.0144*** 0.0144*** 0.0143*** 0.0124***

(4.49) (4.07) (4.20) (4.11) (3.95)
Market cap -0.00434 0.00277 0.00269 0.00255

(-0.77) (0.44) (0.42) (0.45)
Volume -0.00978*** -0.00973*** -0.00958*** -0.00872***

(-6.86) (-6.54) (-6.35) (-6.10)
Mkwd.
liquidity 0.00165*** 0.00167*** 0.00147***

(2.76) (2.78) (2.75)
10-day volatility -0.00584 -0.00473

(-0.46) (-0.42)
Lagged acorr. 0.123***

(9.08)
Constant 0.0583*** 0.0724*** 0.269*** 0.154 0.154 0.136

(29.32) (39.31) (2.80) (1.44) (1.44) (1.44)
N 11640 23090 23090 20650 20650 20580
R2 0.163 0.210 0.215 0.218 0.218 0.229
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Panel B: Impact on return autocorrelation, Q2 2012 and Q4 2012.

(1) (2) (3) (4) (5) (6)
Treatment 0.00629** -0.00921* -0.00763 -0.00705 -0.00702 -0.00582

(2.21) (-1.83) (-1.61) (-1.51) (-1.51) (-1.41)
After 0.0158*** 0.0143*** 0.0132*** 0.0131*** 0.0111***

(3.65) (3.20) (2.99) (2.95) (2.84)
N 4366 8639 8639 8190 8190 8120
R2 0.163 0.254 0.262 0.268 0.268 0.279

Panel C: Impact on return autocorrelation, Q2 2012 and Q1 2013.

(1) (2) (3) (4) (5) (6)
Treatment 0.00283 -0.0148** -0.0113* -0.0115** -0.0115** -0.00995**

(1.06) (-2.49) (-1.92) (-2.10) (-2.10) (-2.06)
After 0.0177*** 0.0166*** 0.0206*** 0.0205*** 0.0178***

(3.30) (3.02) (3.90) (3.86) (3.78)
N 4339 8639 8639 8190 8190 8190
R2 0.178 0.242 0.247 0.250 0.250 0.261

Panel D: Impact on return autocorrelation, Q2 2012 and Q2 2013.

(1) (2) (3) (4) (5) (6)
Treatment 0.00379 -0.0177*** -0.0145** -0.0161*** -0.0162*** -0.0145**

(0.93) (-2.63) (-2.23) (-2.59) (-2.61) (-2.52)
After 0.0217*** 0.0206*** 0.0250*** 0.0250*** 0.0225***

(3.98) (3.92) (5.12) (5.06) (4.98)
N 4474 8918 8918 8330 8330 8330
R2 0.194 0.238 0.244 0.248 0.248 0.255

Panel E: Impact on return autocorrelation, Q2 2012 and Q3 2013.

(1) (2) (3) (4) (5) (6)
Treatment -0.00443 -0.0416*** -0.0390*** -0.0425*** -0.0424*** -0.0376***

(-1.03) (-5.19) (-5.04) (-5.38) (-5.32) (-5.10)
After 0.0375*** 0.0368*** 0.0403*** 0.0401*** 0.0353***

(5.62) (5.54) (5.54) (5.42) (5.09)
N 3008 5921 5921 5460 5460 5460
R2 0.172 0.270 0.275 0.281 0.281 0.292
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treatment coefficients negative and significant.
The general takeaway from the difference-in-differences regression results in Tables 1.5

through 1.8 is that the RLP led to slightly higher liquidity as well as slightly greater price
efficiency. Except for the effective spread, the result is robust across regression specifications
and over time in our sample period. For the effective spread and price impact, the result was
weak in Q4 2012. This may be due to a gradual adoption of the RLP by liquidity providers and
retail brokers.

To demonstrate that our results are robust to the selection of control stocks, we repeat the
regressions with an alternative methodology for the choice of control observations. Rather than
matching treatments and controls one-to-one, we use a weighted average of all stocks in our
pools of candidate control stocks. Once for each of the 35 treatment stocks, for each of the
184 candidate control stocks, weights were generated equal to the squared difference between
a treatment stock and the candidate control stocks market capitalization divided by the sum of
such differences over the candidate control stocks. Hence for each treatment stock, the weights
on the candidate control stocks add to one. The weights were then used to generate a weighted
set of 184 control stock observations for each daily observation of a treatment stock.

Table 1.9 Panel A shows the results for relative bid-ask spread using the weighted panel
of controls. Each regression coefficient for the treatment dummy is negative with statistical
significance except for specification 3. The treatment effect in specification 6 is 0.7 basis
points.

Table 1.9 Panel B shows the results for effective spread using the weighted panel of con-
trols. The results are not statistically significant, and we fail to conclude from the difference-
in-differences event study that the RLP had an effect on the effective spread. The treatment
effect ranges from 1.1 to 0.3 basis points.

Table 1.9 Panel C shows the results for price impact using the weighted panel of controls.
Each regression coefficient for the treatment dummy is negative with significance. The treat-
ment effect ranges from 0.4 to 0.6 basis points.

Table 1.9 Panel D shows the results for absolute autocorrelation of returns using the weighted
panel of controls. The simple treatment effect (specification 1) is small, positive and insignifi-
cant, and the addition of control stocks and control variates to the regression produces negative
and significant regression coefficients for the treatment dummy in specifications 4 through 6.

In general, the results of the difference-in-differences regressions using a weighted panel
of control stocks are similar to those produced by the one-to-one matched sample presented in
Tables 1.5 through 1.8 . All market-quality measures tend to improve slightly following the
launch of the RLP. However, results for effective spread were statistically insignificant when a
weighted panel of controls was used.

1.5.1 Conclusions

We find the launch of the NYSEs Retail Liquidity Program resulted in a small positive impact
on market quality. While it is not surprising that retail traders might benefit from RLP due to
its mandated price improvement, the overall effects of segmentation are more challenging to
predict. Our results indicate that other classes of traders are not worse off when retail traders
are segmented.



1.5. Results 29

Table 1.9: Difference-in-differences event study of the RLPs impact on market quality
with a weighted panel of controls. The rows of the table give the regression coefficients
and their associated t-statistics for specific variables across six different specifications of the
event study for four market-quality measures. A blank entry indicates exclusion from the
regression. The columns of the table correspond to different specifications of the event study.
In specification (1), only treatment stocks are included in the regression; in specification (2),
treatment stocks and control stocks are included; in specification (3), Market cap and Volume
are included; and so on. Rather than using control stocks matched on-to-one with treatments
(reported in Tables 3 through 6) a weighted panel of controls is used for each treatment stock.
Treatment is a dummy variable that equals one during the period after the launch of the RLP
for treatment stocks. A f ter is a dummy variable that equals one during the period after the
launch of the RLP for all stocks. Market cap is the daily market capitalization in billions.
Volume is the number of shares traded per day in thousands of shares. Market-wide liquidity
is the stock-specific factor score from principal component analysis. 10-day volatility is the
10-day rolling volatility of the midquote. Lagged autocorrelation is the absolute five-second
autocorrelation lagged by one day. Constant is the constant of regression. N is the number of
observations. R2 is the coefficient of determination. *, **, *** represent statistical significance
at the 10%, 5%, and 1% level. Panels A through D show results for relative spread, effective
spread, price impact and autocorrelation over the entire sample period, from April 2012 to
August 2013.

Panel A: Impact on relative spread, entire sample, weighted panel of controls.

(1) (2) (3) (4) (5) (6)
Treatment -1.389** -1.201* -0.932 -0.978** -1.040** -0.738**

(-2.43) (-1.86) (-1.47) (-2.22) (-2.51) (-2.24)
After -0.208 -0.348 0.337 0.497** 0.355*

(-0.54) (-0.98) (1.14) (2.09) (1.72)
Market cap -1.859* 0.288 0.303 0.126

(-1.91) (0.48) (0.51) (0.27)
Volume -2.437*** -2.068*** -2.130*** -1.774***

(-8.68) (-10.18) (-11.65) (-9.20)
Market-wide liquidity 1.000*** 1.004*** 0.779***

(31.63) (38.57) (7.12)
10-day volatility 3.871*** 3.165***

(2.59) (2.59)
Lagged relative spread 0.244**

(2.17)
Constant 11.81*** 12.63*** 70.98*** 32.24*** 32.26*** 27.92***

(29.21) (45.24) (4.41) (3.12) (3.17) (3.16)
N 11640 1718905 1718905 1548750 1548400 1543150
R2 0.839 0.568 0.592 0.786 0.801 0.831
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Panel B: Impact on effective spread, entire sample, weighted panel of controls.

(1) (2) (3) (4) (5) (6)
Treatment -1.114** -0.520 -0.346 -0.512 -0.547 -0.334

(-2.41) (-1.08) (-0.76) (-1.44) (-1.60) (-1.59)
After -0.656*** -0.498*** -0.0769 0.0206 0.0158

(-3.32) (-2.62) (-0.46) (0.16) (0.18)
Market cap -1.822*** -0.502 -0.494 -0.281

(-3.58) (-1.45) (-1.45) (-1.39)
Volume -0.462*** -0.328*** -0.381*** -0.238***

(-3.24) (-2.89) (-3.74) (-3.36)
Market-wide liquidity 0.524*** 0.525*** 0.337***

(20.92) (23.83) (11.25)
10-day volatility 2.604*** 1.515**

(2.74) (2.53)
Lagged relative spread 0.388***

(10.54)
Constant 9.751*** 7.146*** 41.21*** 18.55*** 18.74*** 11.19***

(29.78) (48.33) (4.65) (3.13) (3.20) (3.27)
N 11640 1718905 1718905 1548750 1548400 1543150
R2 0.867 0.618 0.627 0.676 0.690 0.738

Panel C: Impact on five-second price impact, entire sample, weighted panel of controls.

(1) (2) (3) (4) (5) (6)
Treatment -0.356*** -0.577*** -0.513*** -0.588*** -0.597*** -0.523***

(-2.62) (-3.96) (-3.70) (-4.89) (-5.19) (-5.28)
After 0.244*** 0.319*** 0.445*** 0.483*** 0.479***

(3.44) (4.48) (6.62) (7.94) (9.39)
Market cap -0.718*** -0.271* -0.267* -0.189*

(-3.63) (-1.79) (-1.80) (-1.68)
Volume -0.0983* -0.0541 -0.0914** -0.0407

(-1.84) (-1.18) (-2.14) (-1.25)
Market-wide liquidity 0.173*** 0.171*** 0.106***

(18.68) (19.94) (9.16)
10-day volatility 1.412*** 1.042***

(2.82) (2.70)
Lagged price impact 1336.4***

(8.96)
Constant 3.529*** 2.532*** 14.95*** 7.293*** 7.512*** 4.823***

(36.30) (50.01) (4.42) (2.88) (3.01) (2.62)
N 11640 1718905 1718905 1548750 1548400 1543150
R2 0.411 0.476 0.481 0.510 0.517 0.553
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Panel D: Impact on five-second return autocorrelation, entire sample, weighted panel of controls.

(1) (2) (3) (4) (5) (6)
Treatment 0.00338 -0.00562 -0.00587 -0.00678* -0.00679* -0.00611*

(1.20) (-1.57) (-1.57) (-1.89) (-1.89) (-1.87)
After 0.00993*** 0.00688*** 0.00924*** 0.00940*** 0.00848***

(4.16) (2.93) (3.95) (4.01) (3.91)
Market cap 0.00969* 0.0164*** 0.0165*** 0.0150***

(1.79) (2.90) (2.90) (2.91)
Volume -0.0119*** -0.0112*** -0.0114*** -0.0106***

(-11.82) (-11.23) (-11.23) (-11.25)
Mktwd.
liquidity 0.00245*** 0.00243*** 0.00222***

(3.62) (3.62) (3.63)
10-day volatility 0.00821 0.00762

(1.16) (1.21)
Lagged acorr. 0.0979***

(10.85)
Constant 0.0583*** 0.0942*** 0.0859 -0.0314 -0.0297 -0.0246

(29.32) (51.85) (0.99) (-0.35) (-0.33) (-0.30)
N 11640 1718905 1718905 1548750 1548400 1543150
R2 0.163 0.104 0.111 0.116 0.116 0.124

We analyze the mechanism by which segmentation affects market quality by computing
the information share of each component of the order flow using the techniques of Hasbrouck
(1991). The analysis shows that RLP order flow impounds significantly less information into
prices than does lit order flow. The result demonstrates the economics of the program: interme-
diaries are exposed to lower adverse selection risk when offering liquidity to retail traders. We
find the sum of the information shares of RLP trades and lit trades is larger than the information
share of the total order flow, indicating there is more information available from the order flow
when it is segmented.

We measure the effect of the RLP by testing measures of market quality before and after
the launch of the NYSEs RLP using a difference-in-differences regression. Bid-ask spread,
effective spread, price impact and autocorrelation decrease for stocks that saw relatively heavy
use of the RLP. Our result is robust to the time period and the choice of control stocks. First,
we match controls to treatments one-to-one from a pool of control stocks that were ineligible
for the RLP. Second, we run the regression using a weighted panel of all candidate control
stocks. Our weakest results are those for effective spreads. The weighted panel of control
stocks eliminated statistical significance for effective spreads. Both model specifications return
the same overall conclusion: market quality mildly increased for stocks that had relatively high
volumes in the RLP for the sample as a whole and throughout four subperiods.

Our analysis is consistent with other empirical evidence that segmentation of retail traders,
either through broker internalization, payment for order flow, or other programs similar to the
NYSE‘s RLP, have beneficial or innocuous effects on market quality. Although many retail
segmentation programs operate as dark pools, we demonstrate a mechanism that is consistent
with explicit segmentation and unrelated to pre-trade transparency. We argue the effect on
market quality is due more to segmentation than to pre-trade opacity. In the NYSE‘s case, pre-
trade opacity was introduced mostly to enable market makers to offer better pricing to retail
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traders than is allowed by regulation for stocks constrained by the regulatory minimum tick
size.

We frame our results as tests of hypotheses generated by the static theory model of Zhu
(2014). Segmentation may worsen liquidity for lit trades, all else equal, but since the order
flow contributes more to price discovery, all else is not equal. Illiquidity due to informational
differences between market order submitters and limit order submitters may diminish more
quickly, resulting in greater average liquidity. Our results show the worsening in liquidity is
either economically insignificant or dominated by the effects of greater price efficiency. A
possible extension of Zhu (2014) or of other papers on dark markets and segmentation might
explore the dynamics to show whether concentrating informed agents on the exchange may
improve liquidity in a multi-period setting. The dynamic effect of concentrating informed
agents is noted briefly in Glosten and Milgrom (1985) and more thoroughly studied in Rosu
(2015). An extension to these models could include the interaction of segmentation with dark
liquidity, and investigate how the effect varies if information is long-lived or short-lived.



Chapter 2

Retail Order Flow Segmentation: Theory

2.1 Introduction

Segmentation of retail orders is a feature of certain trading venues that allows liquidity providers
to offer trades specifically to retail traders, individuals who trade using their own accounts and
on behalf of themselves. As shown in Chapter 1, retail traders are desirable counterparties
because they are “uninformed”, that is, they are unlikely to have private information about
the fundamental value of an asset or about future trading patterns. Many stock exchanges of-
fer retail segmentation facilities that allow market participants to submit limit orders that are
only made available for execution against market orders submitted by retail brokers. These
are called retail price improvement programs (RPIs) or retail liquidity programs (RLPs). Ex-
amples include Alpha Exchange in 2011, NYSE in 2012, NASDAQ and BATS in 2013, and
Aequitas in 2015. These market structures have implications for liquidity and price efficiency,
and may also have effects on trading costs that vary across market participants. In Chapter 1,
we motivated hypotheses about market quality using the theoretical framework of Zhu (2014).
In this chapter, we develop two models that focus on specifics of RLPs that can offer a richer
set of predictions about RLPs.

RLPs only allow limit orders to be submitted at prices that are strictly better than the best
bid and offer prices available to non-retail traders. Retail clients enjoy the slightly improved
prices while retail brokers typically pay a lower fee to the exchange when submitting their
clients’ orders to the RLP. Limit orders in RLPs tend to lack pre-trade transparency (they are
“dark” orders), that is, their prices or quantities are not displayed publically before a trade
occurs. One could imagine an RLP with pre-trade transparency, but one reason they tend to
be is dark is because of complications that arise from regulations around publically displayed
orders. Specifically, prices for publically displayed orders are confined to a grid defined by the
tick size, that is, the minimum price increment for displayed quotes. The tick size is most often
one cent. Dark orders are allowed to take prices off the tick grid and thereby offer a mechanism
to offer slightly better prices to retail traders when bid-ask spreads are one cent wide.

We model an exchange as a limit order book for non-retail traders, and an RLP with all
retail traders submitting market orders to the RLP. After a trade occurs in the RLP, market par-
ticipants will know the trade was executed in the RLP. In equity markets, trades are announced
publically in real-time and one can infer trades that are executed in an RLP either because

33
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trades are explicitly identified or by virtue of their prices being within the best bid and offer
prices for non-retail traders. Since retail trades are identified after they occur, non-retail trades
(we will use “institutional ” and “non-retail” interchangeably) are also identified by exclusion.
Institutional traders include classes of “informed traders” such as arbitrageurs, high-frequency
traders, hedge funds, etc. We focus on the effect of RLPs segmenting and identifying unin-
formed and informed trades.

We develop two extensions of Glosten and Milgrom (1985) that include segmentation of
retail orders. The model has a market maker who maintains a bid and an ask price at which
a risky asset is traded anonymously with informed and uninformed traders. Anonymity drives
the central tension of the model; the market maker does not know if he is trading with an
informed or uninformed trader. Since the asset’s payout is uncertain, there is adverse selection;
the market maker risks posting prices that are too low or too high. The bid and ask price
therefore must balance losses incurred when trading with informed traders and profits made
from trading with uninformed traders. The market maker is a Bayesian agent, that is, after
each trade he revises his belief about the asset’s true value. As trades occur, more information
about the asset’s true value is reflected in prices. The bid-ask spread and the rate at which the
market maker learns about the true value of the asset are endogenous.

In our first model, we deviate from the classic model by changing the anonymity of trading.
While the classic model features purely anonymous trading, we assume that certain trades
can be associated with a particular class of counterparty, namely, retail traders. We assume a
fraction of uninformed traders are retail and, following trades, their identity is revealed through
the mechanism described above. In the first extension, we study how liquidity, as measured by
the bid-ask spread, and how price efficiency are affected by the segmentation of retail trades.
We find that all else equal, bid-ask spreads for non-retail traders increase, while price efficiency
increases. However, if there are sufficiently many trades, then over time the increased certainty
that arises from the gain in price efficiency results in improved average liquidity.

In the second model, we study how a long-lived informed trader reacts to segmentation
strategically and the equilibrium effects on price efficiency. We generalize the first model to
allow traders to submit either limit orders or market orders. Order choice is an important feature
of markets as central limit order books are a predominant system of trade in equities, foreign
exchange, options, and some highly liquid fixed-income markets. All else equal, identification
of retail market orders amplifies the information conveyed by non-retail market orders. To
counteract the effect, the informed trader uses fewer market orders and more limit orders to
complete trades. Although the informed trader strategically mitigates the increase in price
efficiency to preserve future profits, price efficiency is still greater in equilibrium.

Electronic trading venues have proliferated in the past two decades, as has competition to
provide liquidity from market participants who act as intermediaries. For liquidity providers,
retail order flow is the most desirable component of total order flow due to its balance between
buy and sell orders, the tendency for retail orders to be small, and lack of correlation of retail
trades with future price movements. Retail trades are ideal for liquidity providers to earn profits
from the bid-ask spread. One of the original mechanisms to segment retail is called payment
for order flow. Large securities dealers are willing to pay retail brokers for execution of their
clients’ trades. Doing so guarantees them a desirable component of the order flow, and they
profit through bid-ask spreads. A similar practice is called internalization. A broker-dealer may
fill a retail client order against its own inventory rather than sending the order to an exchange
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and paying a fee. This practice is not allowed in Canada for small orders but is common in the
US.

Stock exchanges and other trading venues profit from trading fees charged to traders or
their brokers. As broker internalization and payment for order flow schemes became popular
and institutionalized, fewer trades were executed on exchanges. Exchanges sought ways to
recover lost order flow by offering services that are economically similar. Easley et al. (1996)
note that the New York Stock Exchange (NYSE) has estimated that 35% of small orders are
executed off-exchange. In Canada, regulation of trading and exchanges has historically been
stricter than in the US. However, the first RLP opened in Canada, on Alpha Exchange in 2011.
In Canada, RLPs are an alternative to payment for order flow and broker internalization that
comply with the Ontario Securities Commission’s Order Exposure Rule. It dictates that small
orders be routed through a fully accessible exchange unless they offer price improvement.

2.2 Related Literature
Our paper adds to the body of microstructure papers that study game-theoretic equilibria with
adverse selection. Different characteristics of retail and institutional trading have been shown
empirically in a stream of literature on internalization and payment for order flow, including in
Chapter 1 which is based on Garriott and Walton (2016).

Boehmer and Kelley (2009) study the role of institutional ownership of stocks over two
decades. They find that stocks with greater institutional ownership tend to be more informa-
tionally efficient. We read this as evidence for the important role institutional trading plays in
price discovery. Easley et al. (1996) empirically study stocks known to be used in payment for
order flow schemes on the NYSE. They find significantly more information content in trades
executed on the NYSE versus those executed on the Cincinnati Stock Exchange, which they
argue is from retail-like order flow being internalized rather than being directed to the NYSE.
Battalio (1997) empirically studies a payment for order flow scheme on NYSE-listed securi-
ties. The study finds that bid-ask spreads tighten after the entry of a large firm that purchased
retail order flow and argues that any harm to liquidity is therefore economically insignificant.
Our predictions on liquidity are ambiguous.

Our second model examines the choice between limit and market orders. Our result that
informed traders submit more limit orders than market with the degree of segmentation is con-
sistent with the empirical literature that shows limit orders are an important source of price
discovery. Jovanovic and Menkveld (2011) model limit order submitters with private informa-
tion and find that they may increase welfare by benefiting other traders. Uninformed traders
react in equilibrium by using a greater number of market orders. The result is complementary
to ours; their paper suggests the presence of sophisticated traders results in unsophisticated
traders using a greater share of market orders, while our model predicts that in response to
retail segmentation, sophisticated traders use a greater share of limit orders. Brogaard, Hen-
dershott, and Riordan (2015) show that limit orders play a larger role than market orders in
price discovery. Using Canadian equity data, they find that limit orders in general, but espe-
cially those that come from high-frequency traders command a significant information share
using the techniques of Hasbrouck (1995). Goettler, Parlour, and Rajan (2005) simulate a dy-
namic limit order market with rational traders and find a Markov-perfect equilibrium. They
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find that the midpoint of the best limit buy and limit sell orders is not a good proxy for the
true value of an asset because of the information content of limit orders. Lo and Sapp (2003)
empirically study submission of limit and market orders in a foreign exchange market. They
find evidence that the balance of limit and market orders is affected by observable variables
suggesting that traders choose order types strategically.

This paper is related to work on choice of trading venue and the interaction of a main
exchange and a dark pool or crossing network. While we do not model traders’ choice of venue,
the connection is relevant because venue-choice results in endogenous segmentation across
venues. Degryse, Van Achter, and Wuyts (2009) model the interaction of a dealer market and a
crossing network. They find that a crossing network alongside a dealer market produces greater
welfare for traders. Fleming and Nguyen (2013) study dark liquidity in the US treasuries
market. They find greater use of dark liquidity at volatile times and that its informational role
becomes relatively less important during those volatile times. Higher usage of dark liquidity is
associated with higher market depth, lower bid-ask spreads and higher trading intensity.

Much of the literature on venue choice focuses on dark pools. Our study is related since
RLPs are a specific type of dark pool. In general, the themes are similar: dark pools endoge-
nously segment order flow, changing the relative concentration of information across trading
venues. Boulatov and George (2013) model a market with informed traders who trade using
limit orders and find that if limit orders are hidden (dark), prices become more efficient be-
cause competition between traders intensifies. Buti, Rindi, and Werner (2015) model a dark
pool alongside a limit order book and show that a dark pool can have adverse effects on mar-
ket quality. Boni et al. (2013) empirically study dark pools with participation constraints and
find that those with constraints that are amenable to buy-side traders provide better execution
quality to traders. Comerton-Forde and Putniņš (2014) study the impact of dark trading using
Australian equity data and find that large dark trades are not associated with lower levels of
liquidity, but that dark smaller trades are. They argue that uninformed traders are more likely
to execute in the dark pool increasing adverse selection in the main exchange.

Two studies use data on a Canadian RLP. Comerton-Forde et al. (2016) study a 2012 rule
change in Canada that resulted in a reduction in levels of trading in Canadian dark pools. They
find the rule change resulted in greater quoted depth in the lit market, indicating that dark
segmented trading had a negative effect on the lit market. Foley and Putniņš (2016) study the
same restrictions on dark trading in Canada in 2012. They find that dark limit order markets
are beneficial to market quality, reducing quoted, effective and realized spreads and increasing
informational efficiency. Our model predicts that retail segmentation has an ambiguous effect
on liquidity which may explain why conclusive effects are difficult to detect.

Our models are also related to work on optimal execution strategies. We derive an optimal
execution strategy for a simplified case in order to incorporate game-theoretic elements into
our model. A line of literature exists that focuses on more realistic models of execution that
might be implemented in practice. This paper informs how the overall quality of those strate-
gies might change when changes in market structure occur that involve segmentation. Cartea
and Jaimungal (2015) develop an optimal execution strategy that balances the use of limit and
market orders, as do traders in our model. Almgren (2003) derives optimal liquidation strate-
gies for an asset while taking into account volatility risk and price impact. The more rapidly the
trade execution must take place, the more uncertainty about the price of execution. Alfonsi and
Schied (2010) model execution strategies in a limit order book and find that placing determin-
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istic quantities at homogeneous time intervals is optimal, as opposed to randomizing traders.
They find under general assumptions about a limit order book, price manipulation strategies are
not effective. Obizhaeva and Wang (2013) model the effects of dynamic supply and demand on
trading strategies within a limit order book setting. They show that the resilience of the order
book is the key determinant of a strategy. Traders mix their strategies between large and small
trades. Forsyth, Kennedy, Tse, and Windcliff (2012) derive optimal trading strategies under
a mean-quadratic-variation criteria when the asset follows a geometric Brownian motion with
price impact.

There are two main contributions of our paper: first, we give results on segmentation of
retail traders through retail price improvement that give rise to testable empirical predictions;
second, our second model contributes to microstructure theory as a novel version of the Glosten
and Milgrom (1985) with dynamic order choice.

2.3 Model with Market Orders

Time is discrete with N periods denoted by t1, t2, ..., tN over which trading for a single risky
asset takes place. After the final trading period at tN the asset pays a random dividend ν that we
normalize to be 1 and 0 with ex-ante probabilities 1

2 . Denote by ν̃ the realization of the random
variable ν. We normalize the risk-free rate to be 0.

There are four classes of trader: a market maker who intermediates all trades, a measure α
of informed institutional traders, a measure (1 − α)(1 − β) of uninformed institutional traders
and a measure (1 − α)β of retail traders. The total measure is 1.

The market maker sets bid and ask prices bi and ai, each for a single unit of the asset, before
trading at each time ti when a single trader arrives at the market anonymously. The arriving
trader is chosen uniformly at random from the total trading population independently of time ti

or the history of previous arrivals. The trader observes the market maker’s quotes and chooses
either to buy or sell. An institutional trader arriving at time ti may buy or sell a single unit of
the asset at prices ai or bi; a retail trader arriving at time ti may buy or sell a single unit of
the asset at improved prices ai − c(ai − bi) or bi + c(ai − bi) for fixed c ∈ [0, 1

2 ]. The prices
available to the retail trader are within the bid-ask spread by some fraction c to capture the
effect of an RLP’s price improvement.1 Each individual trader who arrives at the market trades
only once. The market maker may revise his quotes at the beginning of each trading period.
Our equilibrium concept is Perfect Bayesian. The classes of trader and the market maker are
discussed in greater detail below, as well as further details on the game’s equilibrium.

2.3.1 Informed Trader

An informed trader who arrives at the market observes a perfect signal of the asset’s value ν̃.
He is risk-neutral and maximizes profit, that is, if he arrives at ti and observes ν̃ = 1 (ν̃ = 0)
then he buys (sells) if ai < 1 (bi > 0).

1Prices in RLPs are typically set this way, allowing prices at specific fractions of the institutional best bid and
offer.
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2.3.2 Institutional Uninformed Trader

An institutional uninformed trader who arrives at the market realizes a random exogenous
liquidity demand to either buy or sell one unit of the asset, each with equal probability. His
demand is perfectly inelastic so he either buys or sells with probabilities 1

2 .

2.3.3 Retail Trader

A retail trader is identical to an institutional uninformed trader with the exception that he may
trade with the market maker at the improved buy and sell prices ai− c(ai−bi) and bi + c(ai−bi)
for fixed c ∈ [0, 1

2 ].2 The parameter β represents the proportion of uninformed traders that
are identified as retail and able to use the RLP. We will also refer to β as the degree of retail
segmentation and investigate its role in the models throughout the paper. The parameter β
has two interpretations which are indistinguishable in this model: the measure of retail traders
present in the market, all of whom use the RLP; or the measure of uninformed traders who are
retail and use the RLP.

2.3.4 Market Maker

The market maker is risk-neutral and acts perfectly competitively, making zero profit from
each trade in expectation. Since trade is anonymous, the market maker cannot infer whether an
institutional trade was informed or uninformed. However, the market maker can observe the
prices of each trade and infer when a trade was retail as well as if a trade was a buy or a sell.
The market maker does not observe ν̃ but gradually learns the value of ν̃ from the pattern of
trades.

The market maker maintains a belief about the true value of the asset, that is, a probability
distribution that is revised as more information is learned from trading. Since the asset’s payoff

is Bernoulli, the market maker’s belief is characterized by a single number, the probability of
the asset paying 1 after all trading takes place. Let pi denote the market maker’s Bayesian prior
about ν̃ before trading occurs at time ti and denote the set of actions that the market maker can
observe by A = {Ibuy, Isell,Rbuy,Rsell} where the letters I and R refer to institutional and retail.
Let Ai ∈ A be the action observed at ti.

2.3.5 Perfect Bayesian Nash Equilibrium

A Perfect Bayesian Nash equilibrium (Fudenberg & Tirole, 1991) in this context is a pair of
sequences of bid and ask prices {ai} and {bi} for i = 1, ...,N that satisfy the zero expected
profit conditions in Equations 2.1 and 2.2 for all i. Each period there are multiple pairs ai

and bi that lead to zero profit in expectation, so we refine the equilibrium to one where both
the bid and ask prices independently result in zero expected profit, given the history of trade
Ai−1, Ai−2... Equation 2.1 represents expected profit from posting an ask ai and Equation 2.2
represents expected profits from posting a bid bi. The equations are linked through the term
that represents price improvement for retail trades c(ai − bi) which depends on the bid-ask

2For a detailed study on the level of price improvement in dark markets, see Brolley (2016).



2.3. Model withMarket Orders 39

spread. Let the Ei
m be the expectation operator for the market maker’s information set at time i.

(1 − β(1 − α))Ei
m[ai − ν | Ai = Ibuy; Ai−1, Ai−2...]

+β(1 − α)Ei
m[ai − c(ai − bi) − ν | Ai = Rbuy; Ai−1, Ai−2...] = 0 (2.1)

(1 − β(1 − α))Ei
m[ν − bi | Ai = Isell; Ai−1, Ai−2...]

+β(1 − α)Ei
m[ν − bi − c(ai − bi) | Ai = Rsell; Ai−1, Ai−2...] = 0. (2.2)

The terms β(1 − α) and (1 − β(1 − α)) are the probabilities of trading with a retail trader and
with a non-retail trader respectively. Solving Equations 2.1 and 2.2 simultaneously yields

ai =
4αpi(pi − 1) + pi(1 − α)(α + 2βc − 2αpi − 1)

4α2 pi(pi − 1) + (α2βc − α − 1)(1 − α)
(2.3)

bi =
pi(1 − α)(α + 2βc − 2αpi − 1)

4α2 pi(pi − 1) + (α2βc − α − 1)(1 − α)
. (2.4)

Details of the calculation are shown in Appendix A.1.
Figure 2.1 shows the bid and ask prices versus the market maker’s Bayesian prior on the

true value of the asset. The bid and ask prices both increase with the market maker’s Bayesian
prior. The bid price is always less than the ask price to ensure the market maker profits when
trading with uninformed traders. Both prices are also always between the two possible values
of the asset, 1 and 0. Although this means the market maker will lose when trading with an
informed trader, he can recover these losses through the bid-ask spread.

The bid-ask spread si is given by

si := ai − bi =
4αpi(pi − 1)

4α2 pi(pi − 1) + (α2βc − α − 1)(1 − α)
. (2.5)

Notice the bid-ask spread is increasing in the variance of the market maker’s belief pi(1−pi); the
bid-ask spread reflects the market maker’s uncertainty about the asset because it corresponds
to adverse selection risk from informed traders.

Figure 2.2 shows the bid-ask spread versus the market maker’s prior variance for various
parameter values. The bid-ask spread increases with the variance of the market maker’s belief
about the true value of the asset pi(1− pi). The market maker begins the game with a prior of 1

2
which corresponds to when his uncertainty about the true value of the asset is highest. As the
market maker learns about the true value and the variance decreases, he is willing to quote a
tighter bid-ask spread.

Proposition 2.3.1 All else equal, the bid-ask spread for institutional investors widens as a
larger proportion of retail traders are segregated from the total trading population. That is,
si(β) is increasing in β. A proof is found in Appendix A.2.

The greater the measure of retail traders β, the more profits the market maker forgoes
because of the better prices offered to retail traders. To compensate, the market maker offers a
wider spread to institutional traders.

After each trade, the market maker updates his belief about the asset’s payoff. The market
maker’s Bayesian update for pi is

pi+1

1 − pi+1
=

pi

1 − pi
ξi (2.6)
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Figure 2.1: Bid and ask prices. The figure shows the bid and ask prices as a function of the
market maker’s prior about the true value of the asset. The figure was created with parameters
α = 1

2 , β = 1
2 and c = 3

10 .
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ξi =


2α+(1−α)(1−β)

(1−α)(1−β) if Ai = Ibuy
(1−α)(1−β)

2α+(1−α)(1−β) if Ai = Isell

1 if Ai = Rbuy or Rsell.

(2.7)

which comes from Bayes Rule for Bernoulli random variables. The factors ξi are ratios of the
probability of an observed action given the asset’s true value is high, over the probability of
the action given the asset’s true value is low. A table of the conditional probabilities is given in
Table A.1.

After finitely many trades, the market maker will never be certain of the asset’s true value.
Certainty corresponds to the case of the ratio pi

1−pi
being either zero or infinity, neither of which

are attainable by sequential multiplication by a finite number of factors ξi. However, it is
interesting to consider the case when a given amount of information has been impounded into
the market maker’s belief. Consider a joint hypothesis test to accept the hypothesis that ν = 1
and simultaneously reject the hypothesis that ν = 0. This can be done by defining an upper
boundary H for the likelihood ratio λi := pi

1−pi
. If λi crosses the boundary, the market maker is

able to accept that ν = 1 with some level of confidence. It is shown in the proof of Proposition
2.3.2 that the corresponding lower boundary to simultaneously reject ν = 0 is 1

H . Note that
H must be chosen from one of the possible values taken by λi. λi takes values on the lattice
( 2α+(1−α)(1−β)

(1−α)(1−β) )k for k ∈ Q since each time the market maker observes a trade and updates his
belief about the asset’s value, he either divides or multiples by either 1 or the factor 2α+(1−α)(1−β)

(1−α)(1−β) .
If H is not chosen on this lattice, the process λi may overshoot H leading to any analysis being
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Figure 2.2: Bid-ask spread. The figure shows the bid-ask spread versus the variance of the
market maket’s belief about the true value of the asset. The parameter β is the degree of retail
segmentation. The figure was created with parameters α = 1

2 , β ∈ {0, β = 1
3 , β = 2

3 , β = 1}, and
c = 3
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imprecise. This problem of the process overshooting the boundary will be relevant in Section
2.4.

Let the game end when the likelihood ratio λi := pi
1−pi

reaches the upper boundary H or the
lower boundary 1

H , λi = H or λi = 1
H for H ∈ [1,∞). This means the number of periods in the

game N is a random variable. A priori, it is not clear if segmentation will result in the market
maker learning more efficiently. Price impact for institutional traders increases, while price
impact for retail traders becomes zero. While more is learned on average from an institutional
trade, the market maker’s belief is static after retail trades since they convey no information.
We show below that segmentation always results in faster learning in the sense of a decrease in
the expected number of trades E[N] before either the upper or lower boundary is hit.

Proposition 2.3.2 As the measure of retail traders increases, on average, the market maker is
able to learn about the asset’s value faster. That is, the expected number of trades E[N] needed
for the likelihood ratio λi to reach the upper boundary H or lower boundary 1

H is

E[N] =

H−1
H+1 log(H)

α log(1 + 2α
(1−α)(1−β) )

, (2.8)

and E[N] is decreasing with the measure of retail traders β. A proof is found in Appendix A.3.

Figure 2.3 shows the results of a numerical simulation of a path of the game. The market
maker learns about the asset’s true value faster when retail trades are segmented. Both pro-
cesses were generated using the same random draws, but the process represented by the blue
line was created by identifying certain random trades as retail and taking into account changes
to the market maker’s Bayesian update. The green line serves as a benchmark where no re-
tail segmentation occurs. The correlation between the processes is clear. This comes from
the pattern of institutional buys and sells being common to both processes. However, the blue
line occasionally moves horizontally; these movements correspond to retail trades where the
market maker’s prior remains constant. Each move taken the blue line is greater in magnitude
than moves for the green. This is because the market maker is relatively more certain that in-
stitutional trades come from informed traders when retail trades are segmented. It is apparent
in the figure that the process with retail segmentation has a stronger tendency toward the true
value of the asset, that is, prices are more efficient.

The proposition above shows that information is impounded into prices faster when retail
orders are segmented from the total order flow. The components of the formula have a natural
interpretation analogous to “time equals distance over speed”. The numerator is the expected
value of the log-likelihood ratio when it hits either boundary, that is, the expected distance the
log-likelihood ratio moves, while the denominator is the expected move at each step, that is,
the average speed of the log-likelihood ratio per trade where there is one trade per unit of time.

Proposition 2.3.2 implies the likelihood ratio evolves more quickly, but does not say any-
thing about the possibility of an increase in errors in the hypothesis test. It is possible to
calculate the probability that the hypothesis test defined by H results in an error.

Proposition 2.3.3 The probability of the market maker making a error in inference, Type 1 or
Type 2, either accepting the hypothesis that the asset’s value is high when it is low or vice versa
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Figure 2.3: Numerical example. This figure shows the results of a numerical simulation of
one possible path of the game for two values of β. The blue and green lines correspond to two
simulations of the market maker’s prior as it evolves with one trade per unit time. The true
value of the asset is shown with the red line. The figure was created with parameters α = 1

10 ,
β = 1

2 and c = 3
10 .
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is given by
1

1 + H
.

The probability of the test resulting in error in inference is independent of the degree of retail
segmentation β. A proof is found in Appendix A.4 and A.5.

The probability of error in the hypothesis test is important to combine with Proposition
2.3.2 because, a priori, it is possible that while the average number of trades required to gain a
given level of confidence about the asset’s true value may decrease, the probability of error may
increase. If this were true, it would be difficult to come to a conclusion about price efficiency.
However, Proposition 2.3.3 shows that this is not the case; the probability of the test resulting
in error is independent of the measure of retail traders β while the expected duration of the test
is decreasing in β.

Figure 2.4: Average liquidity. Each line on the graph shows the average bid-ask spread (on the
y-axis) over periods 1 to N for several simulations of the game, where N is the total number of
trades (on the x-axis). The solid blue line shows the result for measure zero of retail segmen-
tation (β = 0) and the dashed green and red lines show the result for nonzero measure of retail
segmentation (β = 1

3 and β = 2
3 ). The plot was created with parameters α = 1

5 , β = {0, 1
3 ,

2
3 } and

c = 3
10 with 100 trials for each point on the x-axis.
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While Proposition 2.3.1 predicts that, all else equal, liquidity should worsen with segmen-
tation, Proposition 2.3.2 predicts that the market maker will learn faster about the asset’s true
value leading to less uncertainty about the asset and therefore tighter bid-ask spreads. It is not
clear which one of these opposing forces dominates on average. While liquidity may initially
be worse with segmentation, it will improve faster due to the increase in price efficiency.



2.4. Model with Order Choice 45

To understand the effect of segmentation on liquidity over time, we consider the bid-ask
spread averaged over all trading periods 1 through N. It is not clear how to prove a result about
average liquidity in general. The formula for the bid-ask spread becomes intractable under
expectation over multiple periods, so we proceed with numerical simulation. Figure 2.4 shows
that average liquidity improves if sufficiently many trades occur. The result suggests that seg-
mentation may have benefits for uninformed institutional traders as well as retail traders. The
green dashed line and red dash-dot line are initially higher than the solid blue line, indicating
lower liquidity because, as in Proposition 2.3.1, all else equal, the bid-ask spread is larger when
retail trades are segmented. However, the dashed lines decrease at a faster rate than the solid
blue line. This is because price efficiency is greater when retail trades are segmented. Depend-
ing on how many trades occur in the game N, the dashed lines may or may not cross the solid
line, indicating that the effect of retail segmentation on average liquidity is ambiguous.

2.4 Model with Order Choice
In the section above, we developed a model where informed traders and uninformed traders use
market orders. In practice, central limit order books allow traders to use both limit orders and
market orders. A market order has the advantage of certainty of execution, while a limit order
allows a trader to capture the bid-ask spread but with no guarantee of execution. Traders may
minimize price impact by using a combination of order-types since it may be more difficult for
a market maker to learn from the pattern of trade and quotes than if trades were conducted using
only a single order type. As discussed in Section 2.2, the choice between market orders and
limit orders has been shown to be an important aspect of trading behaviour. We are interested
in how informed traders mitigate the informational impact of their trades when retail orders are
segmented, and if the improvement in price efficiency predicted in Section 2.3 is still present
when traders use market orders and limit orders strategically.

In this section we develop a model in the spirit of the Glosten and Milgrom (1985) model
above that is simplified in certain dimensions in order to accommodate the possibility for
traders to choose which types of orders they use. We examine the effect of segmentation of
retail traders on price-efficiency and the optimal strategy of the informed trader. Our model is
related to Liu and Kaniel (2004) which also extends Glosten and Milgrom (1985) to include the
choice between market and limit orders. Our paper is distinguished by having a different dy-
namic setup: Liu and Kaniel (2004) is a three-period model while ours has potentially infinitely
many trading periods. Another difference in our model is that we impose a tick constraint on
prices. While we focus on segmentation of retail market orders, Liu and Kaniel (2004) focuses
on the total number of uninformed traders. The results are generally compatible with ours; that
informed traders strategically submit limit orders to avoid moving the market maker’s prior,
and that the informed trader’s strategy will affect the informativeness of limit orders.

Our aim is to design a model with the following features: traders can submit either limit
orders or market orders; the market maker can observe the state of the limit order book and
therefore learn from that information; and retail market orders are identifiable as such, as is
the case with RLPs. In the previous section, the informed trader’s strategy was trivial while
in this section, the informed trader will be long-lived and balance per-period profits with the
informational impact of his trades. We will focus on a case where the market maker begins
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the game willing to quote a bid-ask spread that is constrained by a minimum price increment.
After learning sufficiently about the asset’s value, the market maker revises his quotes either
upward or downward. The informed trader will attempt to delay this revision since the market
maker’s quote revision will tend to diminish his potential to earn future trading profits.

Figure 2.5 shows that empirically, at high frequencies, prices and quotes move discretely
on the grid defined by the minimum price increment which is commonly one cent. The figure
shows trades and quotes for roughly one minute of trading that occurred on 16 June 2011 for
an S&P 500 exchange-traded fund, SPY. Our model has certain features in common with the
figure; that most trades occur at either the best bid or ask price, and that these prices often
remain constant for several trades.

Figure 2.5: Empirical trade and quote data. The figure shows empirical trading data aggre-
gated across several trading venues in the US for roughly one minute of trading that occurred on
16 June 2011 for an S&P 500 exchange-traded fund. Grey bands indicate the bid-ask spread,
coloured dots indicate trades, and volume is indicated by vertical bars at the bottom of the
figure. This graph was reproduced with the permission of Nanex, LLC.

2.4.1 Model Setup

Time is discrete and infinite denoted by t0, ..., ti, ... over which trading for the risky asset takes
place. There is one trade in each period for an asset that pays a random dividend ν of value 1
or 0 at i = ∞3 with ex-ante probabilities 1

2 . Let the realized draw of the asset’s value be ν̃. The
risk-free rate is normalized to zero.

3The interpretation of the asset’s value being realized when time runs to infinity is that there are many op-
portunities to trade the asset before the public revelation of information. This applies well to electronic markets
where high-frequency trading algorithms operate at the millisecond frequency.
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There are four classes of trader: a market maker, a single informed trader, passive noise
traders, and active noise traders which we describe in more detail below. Trading takes place
on an exchange as described below.

2.4.2 Exchange Trading Mechanics

Trading takes place sequentially with one trade every period. The exchange makes four pos-
sible prices available, a “tick grid”: 0 < xL < xl < xh < xH < 1. The prices are symmetric
around one-half; xh = 1 − xl and xL = 1 − xH. Each period is divided into two sub-periods. In
the first, traders submit limit orders and in the second, market orders. The exchange operates
as a limit order book that holds three orders: it allows the market maker to quote a bid and ask
price simultaneously as well as a single bid or ask order from one other trader. Each order is
for a single unit of the risky asset.4

Limit orders are firm commitments to trade that last until the end of a period and are can-
celled thereafter regardless of whether they were executed. If there are two limit orders at a
given price, the order submitted first is accepted into the limit order book while the other fails
to be accepted into the limit order book.5

We leave aside price improvement for retail traders (the parameter c in the previous model)
as a simplification. The model setup captures the effects the change to the anonymity brought
about by segmentation, which is the focus of this section.

In the second sub-period, traders may each submit a market order for one unit of the asset.
The first market order submitted is executed against the corresponding limit order and the
period ends. Each period, one trader’s limit order will be accepted. After that, the market
maker submits his bid and ask limit orders. The state of the limit order book is publically
observed after each period. Figure 2.6 shows the model timing described above graphically.
We describe each class of trader below.

2.4.3 Market Maker

The market maker quotes a bid and ask price at which he is willing to buy and sell, respectively.
The market maker is perfectly competitive and therefore chooses prices such that his expected
profits are minimal but nonnegative. Depending on traders’ strategies and the Bayesian prior on
the asset’s true value, the market maker may be willing to quote bid and ask prices at adjacent
ticks {xL, xl}, {xl, xh}, or {xh, xH}. We will focus on the case when the market maker is willing
to quote a bid and an ask price at the inner price pair {xl, xh}. This is illustrated in Figure 2.7.
When the market maker quotes prices at an adjacent price pair, the bid-ask spread cannot be
decreased given the tick constraint. Therefore, a trader never submits a limit buy or sell order

4In practice, at any given price, traders may submit any number of orders for any quantity. However, the num-
ber of possible strategies that arise with more possibilities for the limit order book makes analysis of equilibrium
difficult. The simplified limit order book has the relevant qualities needed for an analysis of equilibrium with
order choice: traders can compete with the market maker using limit orders, and an imbalance in limit orders may
have some signal value.

5Most exchanges operate according to this priority structure; limit orders with earlier time stamps gain execu-
tion priority over others a the same price.
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Figure 2.6: Model timing. A single period is represented by the actions shown from left to right
between solid blue lines. In the first sub-period, limit orders are submitted, and in the second,
market orders. The informed trader randomized between submitting a limit order or a market
order, with probability (w.p.) ρ of submitting a market order. If the informed trader submits a
limit order, he does so before the passive noise trader with probability α. If the informed trader
submits a market order, he does so before the active noise trader with probability α.

ti ti+1 

Limit orders Market orders 

Informed 
Trader 

w.p. 1-ρ  

w.p. ρ  

Passive 
Noise Trader 

Active Noise 
Trader 

Market 
Maker 

at a price that is not equal to the market maker’s buy and sell prices. Indeed, a lower-priced
buy order has no chance of execution, as is the case for higher-priced sell orders.

2.4.4 Active Noise Trader

Each period, a new active noise trader arrives at the exchange with a random immediate liquid-
ity need for the risky asset. An active noise trader submits a market buy or market sell order,
each with probability 1

2 . A measure β of active noise traders are retail. If trade involves a retail
trader, it is identified as such at the end of the trading period. This information will be used by
the market maker when updating his prior. The parameter β is the proportion of retail traders
within the set of active noise traders. We will also call β the degree of retail segmentation. 6

2.4.5 Passive Noise Trader

Each period, a new passive noise trader arrives at the exchange with a random liquidity need
for the asset. A passive noise trader submits a limit buy or limit sell order, each with probability
1
2 . The passive noise trader chooses the same limit prices as the market maker since a lower bid
or higher ask have no chance of being executed, and a higher bid or lower ask are not possible
due to the tick constraint.

6This is in accordance with how RLPs work in practice where retail market orders are segmented as opposed
to limit orders.
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2.4.6 Informed Trader

The informed trader is long lived and may trade multiple times over the course of the game. He
is endowed with knowledge of the asset’s value ν̃. He is risk neutral and therefore maximizes
total expected profit. Each period, he chooses either to submit a market order or a limit order. A
given order choice may result in higher per-period profit but may have a greater impact on the
market maker’s prior (we will call this price impact or informational impact, interchangeably),
diminishing the potential for future profits. He balances per-period profit with price impact;
the rate at which the market maker learns about the value of the risky asset through the pattern
of trade.

The informed trader may use a mixed strategy, randomly choosing to either submit a limit
order or a market order each period with a strategically chosen probability. Let ρ̄i and ρ

i
be the

probabilities that the informed trader submits a market order at time ti, given that the asset’s
true value is 1 and 0 respectively. When the informed trader submits an order, limit or market,
the order is submitted ahead of a noise trader with probability α. We assume α applies to
both limit and market orders for simplicity. The informed trader’s limit order must be matched
with an active noise trader’s market order to be executed. Therefore, when the informed trader
submits a market order, it will be executed with probability α since there is always a limit
order present to execute against; if the informed trader submits a limit order, it is executed with
probability α/2 where division by two comes from the active noise trader randomly submitting
a market buy or sell with probabilities 1

2 . When the informed trader’s limit or market order is
submitted before a noise trader’s, we will call it a “fast” order, and “slow” otherwise.7

2.4.7 Market Maker’s Strategy

We will show that for certain model parameters, the market maker will be willing to quote the
inner price pair {xl, xh} until a particular level of information is attained about the asset. Denote
the market maker’s prior on the asset’s true value being high ν = 1 at period i by pi. Assume the
informed trader submits a market order at period i with probability ρi given the the asset’s value
is zero, and ρ̄i given the asset’s value is one. Consider the market maker’s zero-expected-profit
condition if he quotes at the inner price pair {xl, xh}.

pi(α(ρ̄i(
xh − 1

2
) + (1 − ρ̄i)(

xh − 1
2

)) + (1 − α)(
xh − 1

4
+

1 − xl

4
)) (2.9)

+(1 − pi)(α(ρi(
−xl

2
) + (1 − ρi)(

−xl

2
)) + (1 − α)(

−xl

4
+

xh

4
))

=
1
4
−

1
2

xl −
1
4
α ≥ 0

where we use the symmetry in prices xh = 1 − xl to simplify the formula. Equation 2.9 is an
expectation over several random variables: the asset’s true value being high pi; an informed

7In practice, orders are submitted at any time, and limit order submitters compete to have their orders at the
“top of the book”. That is, when the best bid or ask price changes, high-frequency trading firms race to submit
limit orders ahead of others and invest heavily in technology to gain a speed advantage. This could the thought of
as an investment in the parameter α, but we treat α is as exogenous.
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Table 2.1: Trading outcomes, probabilities and market maker profits. This table shows
combinations of the informed trader’s (Inf.) order type, whether the order is fast or slow, and
the noise traders’ (Pass. N. and Act. N) actions, which limit orders are at the “top” of the order
book (labelled Best bid and Best ask), each combination’s probability, and the market maker’s
(MM) profit given an outcome. Bold entries in the Best bid and Best ask columns indicate the
executed limit order. We have left out certain entries when they are irrelevant for computing
expected profits. For example, when the informed trader submits a fast limit order, the passive
noise trader’s order will never be executed, so the row combines the probabilities of the passive
noise trader submitting a buy or a sell. The table is for outcomes given the true value of the
asset is high and hence the high probability of a market order ρ̄ is used.

Inf. Inf. Act. Pass. Prob. Best Best MM
order speed N. order N. order bid ask profit
limit fast buy (1 − ρ̄) · α · 1

2 Inf. MM xh − 1
limit fast sell (1 − ρ̄) · α · 1

2 Inf. MM 0
limit slow buy buy (1 − ρ̄) · (1 − α) · 1

2 ·
1
2 N. MM 0

limit slow buy sell (1 − ρ̄) · (1 − α) · 1
2 ·

1
2 N. MM 0

limit slow sell buy (1 − ρ̄) · (1 − α) · 1
2 ·

1
2 MM N. 0

limit slow sell sell (1 − ρ̄) · (1 − α) · 1
2 ·

1
2 MM N. 0

market fast buy ρ̄ · α · 1
2 N. MM xh − 1

market fast sell ρ̄ · α · 1
2 MM N. 0

market slow buy buy ρ̄ · (1 − α) · 1
2 ·

1
2 N. MM xh − 1

market slow sell buy ρ̄ · (1 − α) · 1
2 ·

1
2 N. MM 0

market slow buy sell ρ̄ · (1 − α) · 1
2 ·

1
2 MM N. 0

market slow sell sell ρ̄ · (1 − α) · 1
2 ·

1
2 MM N. 1 − xl

trader being present α; the informed trader submitting a market order ρ̄i and ρi; and probabil-
ities of uninformed traders submitting market buy or sell or limit buy or sell orders which are
accounted by in the division by 2 and 4. The details of the computation of Equation 2.9 are
shown in Table 2.1 which gives the probabilities for outcomes given the asset’s value is high.
Summing the last column of Table 2.1, multiplied by the probabilities in the table gives the first
line of Equation 2.9, the market maker’s expected profit when true value is high.

Equation 2.9 shows that the market maker is willing to quote at xl and xh if α ≤ 1 − 2xl.
We will assume that 0 < α ≤ 1 − 2xl. Note that the market maker’s profits at the inner price
pair are independent of his prior pi about the asset’s value. This is because the market maker
will lose the same amount in expectation regardless of whether the informed trader submits a
market or limit order due to the symmetry of the prices, xp = 1− xh. Even though the expected
profit when quoting the inner price pair is independent of the prior, the market maker will learn
about the value of the asset by observing the pattern of market orders and limit orders.

It is interesting to note that whenever the informed trader’s order, either limit or market,
is accepted the market maker realizes a loss. For market orders, the reasoning is the same as
for the model in Section 2.3; the informed trader buys (sells) the asset when the market maker
underprices (overprices) the asset. For limit orders, the informed trader submits a limit buy
(sell) order when the asset is worth one (zero) for a chance to trade with an active noise trader;
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in this case, the only possible trade for the market maker is with an active noise trader who
submits a buy (sell) market order resulting in the market maker selling (buying) at a loss.

As described above, the market maker’s prior will evolve as he observes trades. Since the
market maker is competitive, he quotes the spread that yields the lowest nonnegative profits.
The market maker’s profits will depend on the prices made available on the tick grid. We
would like our model to have the reasonable property that as the market maker’s prior moves
up (down) sufficiently, he revises his prices upward (downward). The following lemma shows
that for certain reasonable values of the prices xL, xl, xH and xH, this is the case. Figure 2.7
illustrates the market maker’s profits at the three price pairs for sample model parameters.

Lemma 2.4.1 There are fixed prices for which the market maker will quote the inner price pair
{xl, xh}. The market maker will prefer to quote upper price pair {xh, xH} when his prior moves
above the threshold θ̄; the market maker will prefer to quote lower price pair {xL, xl} when his
prior moves below the lower threshold θ. A proof is found in Appendix A.6.

Figure 2.7 shows profits for different possible quote pairs as a function of his Bayesian prior
on the asset’s true value. Since the red solid line is always greater than zero, the market maker
is always willing to quote the inner pair. As the market maker becomes more certain the asset’s
payoff is high, expected profits at the higher pair {xh, xH} become greater until they eventually
become positive. Profits for the higher pair {xh, xH} are increasing in the market maker’s prior
because they are closer to the high asset value of 1 than the low asset value of 0. A similar logic
applies to the lower price pair. Since the market maker acts competitively, he will adjust quotes
in the natural way: he will switch to quoting the higher prices pair when his prior increases
sufficiently, or switch to the lower price pair after his prior decreases sufficiently.

The market maker’s Bayesian update will include information about the state of the limit
order book observed after a period. Each period there is one observable limit order in addition
to the market maker’s bid and ask, and one observable market order. If the market order is
identified as retail, whether it was a buy or sell conveys no information about the asset’s value
so we denote distinct cases of retail buy and sell orders with the same variable. Therefore, there
are six possible outcomes Ai for trades and quotes each period and six corresponding Bayesian
updates:

ξi =



α(1+(2ρ̄−1)β)−(β−1)
(1−β)(1−α) if Ai = LBMB

1−α(2ρ̄−1)
1+α(2ρ−1) if Ai = LBMS
1+α(2ρ̄−1)
1−α(2ρ−1) if Ai = LSMB

(1−β)(1−α)
α(1+(2ρ−1)β)−(β−1) if Ai = LSMS
1−α(2ρ̄−1)

1−α if Ai = LBR
1−α

1−α(2ρ̄−1) if Ai = LSR

(2.10)

where LBMB is an observation of a limit buy order (LB) followed by a market buy order (MB),
LBMS is an observation of a limit buy order followed by a market sell order (MS), LBR is an
observation of a limit buy order followed by a retail market (R), etc. The market maker updates
his belief by multiplying his likelihood ratio λi := pi

1−pi
(as in Section 2.3) by the corresponding

factor ξi.
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Figure 2.7: Market maker’s expected profit. The figure shows the market maker’s expected
profit from quoting different bid-ask spreads: the red solid line represents expected profits from
the inner pair {xl, xh}, the cyan dashed line the higher pair {xh, xH}, and the purple dash-dot line
the lower pair {xL, xl}. The grey regions indicate where the market maker quotes either the
upper or lower price pairs. The market maker prefers to quote the upper or lower price pair
when they yield positive expected profit because the market maker acts competitively. The
figure was created with model parameters: xh = 4

5 , xl = 1
5 , xl = 1

3 , xh = 2
3 and α = 1
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The updating factors in Equation 2.10 are ratios of the probability of the outcome given
the asset’s value is high over the probability of the outcome given the asset’s value is low. For
example, the probability of LBMB given the asset’s value is high is:

α(ρ̄
1
2

+ (1 − ρ̄)((1 − β)
1
2

))

+(1 − α)((1 − β)
1
4

)

=
1
4

(α(1 + (2ρ̄ − 1)β) − (β − 1)). (2.11)

The first line above corresponds to the informed trader’s order being accepted with probability
α. The coefficient of α is broken down into the informed trader submitting a maker order or
limit order with probabilities ρ̄ and 1− ρ̄. Each of these multiplies the probabilities of the noise
traders taking the action that corresponds to LBMB: 1

2 for a passive noise trader to submit a
buy limit order, and 1−β

2 for a nonretail active noise trader to submit a buy market order. The
reasoning behind the second summand is similar. The last line above is equal the numerator of
ξi when Ai = LBMB in Equation 2.10 up to the factor 1

4 which cancels with the denominator of
ξi when computed the same way.

Figure 2.8 shows the results of a simulation of one possible path of the game. The bid
and ask prices posted by the market maker remain constant until the market maker learns
sufficiently about the true value of the asset and revises his quotes toward the true value of the
asset. By trading strategically with market and limit orders, the informed trader would like to
maximize profits by preventing the market maker from learning and updating his quotes.

2.4.8 Perfect Bayesian Nash Equilibrium
We look for a Perfect Bayesian Nash Equilibrium (Fudenberg & Tirole, 1991) that corresponds
to a strategy used by the informed trader which is restricted to mixing market and limit orders
that maximizes expected profits, and a strategy used by the market maker that is restricted to
a stopping time when he revises his quotes from the inner price pair {xl, xh}. Let f (ρi) be the
expected profit for the informed trader in period i as a function of the strategy ρi. Formally, an
equilibrium is a set of strategies ρ̄(pi) and ρ(pi) used by the informed trader corresponding to
the asset’s value being high or low respectively, that satisfy:

ρ̄i = arg max
{0≤ρi≤1}

E[
N(θ,θ̄)∑

j=i

f (ρ j)|ν = 1, pi] (2.12)

ρ
i
= arg max
{0≤ρi≤1}

E[
N(θ,θ̄)∑

j=i

f (ρ j)|ν = 0, pi]

for values of the market maker’s prior pi ∈ (θ, θ̄), for all trading times i. The market maker
defines a stopping time N(θ, θ̄) corresponding to pi exiting the region (θ, θ̄) after updating his
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Figure 2.8: Numerical example of game dynamics. The figure shows the results of a simu-
lation of one possible path of the game. The blue dashed line represents the market maker’s
belief about the asset’s value which moves randomly according to the pattern of trades and
quotes. The purple and cyan dashed lines represent the bid and ask prices quoted by the market
maker. The solid red line represents the asset’s true value. The grey area marks the end of the
game when the market maker revises his quotes.
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prior using the formulas in Equation 2.10 defined in Lemma 2.4.1. Details on θ̄ and θ are given
in Appendix A.6.

2.4.9 Informed Trader’s Problem
Without loss of generality, we will assume the asset’s true value is high, ν = 1, from here
forward. The informed trader maximizes profit over all time by choosing an order type each
period. He uses a mixed strategy where ρ̄i is the probability of submitting a market order and
1 − ρ̄i is the probability of submitting a limit order. In general, ρ̄i will depend on all model
parameters, α, β, xh, xh, θ̄, θ, and the state variable pi. These parameters are known to the
informed trader, as is the state variable since he observes the same information as the market
maker and can use it to infer the market maker’s prior. In Appendix A.6, we will show that
the thresholds θ̄ and θ are independent of ρ̄i and ρ

i
. Let the informed trader’s value function be

V(pi) with the market maker’s prior pi as the state variable. The Bellman equation at time i is
given by:

V(pi) = max
0≤ρ̄i≤1

E[ f (ρ̄i) + V(pi+1)|ρ̄i] (2.13)

V(θ̄) = V̄ (2.14)
V(θ) = V (2.15)

where f (ρ̄i) is the per-period profit from trading; θ̄ and θ are the states at which the market
maker switches prices; and V̄ and V are the boundary values corresponding to these states.
The “continuation values” V̄ and V correspond to when prices are revised either upward or
downward. These values are arbitrary since we do not model trading after prices are revised.
We will assume that V̄ < V . The interpretation of the inequality is that when the prices change,
the informed trader is able to make fewer trading profits when prices are revised upward than
when they are revised downward.8

Explicitly, the expected per-period profits when the asset’s true value is high as a function
of the strategy ρ̄i are

f (ρ̄i) = α(ρ̄i(1 − xh) + (1 − ρ̄i)
(1 − xl)

2
). (2.16)

The Bellman equation describes how the informed trader balances current trading profits
while managing the speed at which the market maker is able to learn about the asset’s true
value. Indeed, a pure strategy may be more informative than a mixed strategy. For example, if
the informed trader submits only market orders, the market maker will only update his belief
based on observed market orders and will dismiss any imbalances in the order book as coming
from passive noise traders. Information will be concentrated in the set of executed market
orders and the market maker will learn more efficiently than if information were distributed
across the set of limit and market orders. Similar reasoning would apply to the case of a
strategy of pure limit orders.

8For details on how V̄ and V affect the informed trader’s strategy, see Appendix A.8, Equation A.33.
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To demonstrate the basic intuition behind the effect of segmentation on the informed trader’s
strategy, consider the extreme case when all uninformed market orders are retail. For example,
if the market maker observes a nonretail market order to buy and a limit order to buy, he will
know with certainty the informed trader is buying. In this case, the action of the informed
trader is perfectly revealing of the asset’s true value: the factor ξi when Ai = LBMB is infinite
when β = 1. So if the informed trader submits a market order, there is a chance he will forgo
all future profits at current prices. If potential future profits in all states other than the perfectly
revealing case are sufficiently high, the informed trader will refrain from submitting market
orders altogether. We will show that this intuition holds in more general cases.

In general, it is not clear how to solve Equation 2.13, or that it has a tractable solution. We
pursue simplifications that allow us to hypothesize that the optimal strategy is a constant, ρi =

ρ̄i = ρ∗ and independent of the state pi. We draw on the technique used to prove Proposition
2.3.2 using Wald’s lemma to show that the constant solution ρ∗ is optimal.

2.4.10 Approximation: Large Switching Threshold

A special case that leads to a useful approximation of the model is when the market maker’s
thresholds for which he revises his quotes become large in magnitude. We defined the upper
and lower thresholds for the market maker’s prior as θ̄ and θ. Recall that in Section 2.3 the
boundaries around the market maker’s likelihood ratio were H and 1

H . Let H and 1
H correspond

to the values of the likelihood ratio pi
1−pi

when pi = θ̄ and pi = θ respectively. Note that since
θ̄ and θ take values in (0, 1), H and 1

H take values in (0,∞). In the limit as H goes to infinity,
the informed trader makes infinite profits because there are infinitely many trades before the
market maker prefers to revise his quotes. However, it is interesting to derive the informed
trader’s optimal strategy in the limit as H goes to infinity as an approximation to the case of
finite H. The advantage of considering H large is that we are able to show the optimal strategy
is a constant ρ∗ which is independent of the state variable, the market maker’s prior pi. We
will show ρ∗ is given by the solution to Dρ[

E[ f (ρ)]
E[log(ξ1)|ρ] ] = 0 where E[ f (ρ)] represents expected

per-period profits, E[log(ξ1)|ρ] is the expected “first step” taken by the market maker’s log-
likelihood ratio and Dρ is the differential operator with respect to ρ.

It is intuitive that the optimal strategy is independent of pi when H is large. In general, the
informed trader balances immediate trading profits with price impact in order to preserve the
potential for future profits. When the log-likelihood ratio is close to the market maker’s thresh-
old and the potential for future profits is not high relative to immediate profits, the informed
trader puts relatively less weight on minimizing price impact. Because the relative contribu-
tions of immediate and future profits change with the distance to the boundary, the informed
trader will adjust his strategy accordingly. However, when H is large, the log-likelihood ratio
is always “far” from the boundary. The balance between immediate and future profits is stable;
each trade results in a move toward a boundary that is negligible and therefore no adjustment
to the strategy is needed after a trade. We state the result in the following Proposition.

Proposition 2.4.2 The informed trader’s optimal trading strategy, in the sense that it satisfies
the first-order condition of the Bellman equation, is given by the solution to Dρ[

E[ f (ρ)]
E[log(ξ1)|ρ] ] = 0

in the limit as H goes to infinity. A proof is found in Appendix A.7.
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The denominator of the formula in Proposition 2.4.2 will be nonzero, intuitively, because every
trading round will be informative. The informed trader will always submit either a fast limit
or market order with positive probability α so the market maker’s Bayesian update will be
nontrivial.

Figure 2.9: Optimal strategy. The figure shows the optimal probability of the informed trader
submitting a market on the y-axis and the degree of segmentation on the x-axis. The prices
used to generate the figure were xl = 1

3 and xh = 2
3 . The blue line was created using a value of

1
10 for α.
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We can use software to differentiate symbolically and then numerically find the root of the
condition in Proposition 2.4.2 that the optimal strategy satisfies. Results for certain parameter
values are shown in Figure 2.9. The figure shows that the informed trader submits a higher
proportion of limit orders than market orders as the degree of retail segmentation increases.
When certain market orders are identified as retail, the relative informativeness of a non-retail
market order increases, all else equal. The informed trader mitigates this effect by decreasing
the probability he submits a market order as the proportion of retail traders β increases.

Observation 2.4.3 The informed trader submits a greater proportion limit orders as the mea-
sure of retail traders increases; ρ∗ is decreasing in β in the limit as H goes to infinity.

We will prove the result stated in Observation 2.4.3 for a limiting case in next subsection with
Proposition 2.4.5.

We are also interested in the effect of segmentation on price efficiency. Recall that in
Section 2.3 we defined price efficiency using the expected number of trades before the market
maker’s prior hit arbitrary upper or lower boundaries. The resulting formula in Proposition
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2.3.2 had the interpretation of expected number of trades (time) being equal to expected total
change in the market maker’s prior before it hits a boundary (distance) over expected “first
step” (speed). We will need to change our notion of price efficiency here since the expected
total change in the market maker’s prior goes to infinity as H goes to infinity. We will focus on
the “speed” at which the market maker’s prior moves, that is, the expected size of the revision
to the market maker’s prior after a trade, E[log(ξ1)|ρ]. In Section 2.4.11, we will show that this
definition of price efficiency is a good proxy the expected number of trades before the maker’s
prior hits a boundary.

Figure 2.10 shows how price inefficiency, defined as the reciprocal of the expected change
in the market maker’s prior evolves following a trade, changes with the degree of segmentation.
The graph shows that the importance of strategic order submission is low for low degrees of
segmentation and high for high degrees of segmentation.

Observation 2.4.4 Price efficiency, as measured by the rate at which the market maker’s prior
approaches the asset’s true value, 1 or 0, increases with the measure of retail traders β when
H is large.

Observation 2.4.4 shows that despite the ability of the informed trader to mitigate the effect of
identifying retail traders there is still an improvement in price efficiency in equilibrium.

The equation solved by the optimal strategy, Dρ[
E[ f (ρ)]
E[log(ξ1)|ρ] ] = 0, has a natural interpretation.

Total profits earned by the informed trader can be loosely described as the expected number
of trades he executes n, times the expected profit earned per trade E[ f (ρ)]. Wald’s lemma
tells us that under certain conditions, the expected number of trades before a hitting time is
the expected distance travelled by the process divided by the expected move at each step. The
expected move at each step is E[log(ξ1)|ρ]. Let the expected distance travelled by the market
maker’s prior be a constant c. The derivative of total profits with respect to the probability of a
market order are:

Dρ[nE[ f (ρ)]]

=Dρ[
cE[ f (ρ)]
E[log(ξ1)|ρ]

]

=cDρ[
E[ f (ρ)]
E[log(ξ1)|ρ]

]

=⇒ Dρ[
E[ f (ρ)]
E[log(ξ1)|ρ]

] = 0,

when c is finite. The condition Dρ[
E[ f (ρ)]
E[log(ξ1)|ρ] ] = 0 can be seen as a optimizing a factor that is

proportional to total profits. The proof of Proposition 2.4.2 is mostly devoted to showing that
c is indeed independent of ρ for large H. Although c will be infinite when H goes to infinity,
we will show the first order condition is still meaningful.

Approximation: Large Switching Threshold and Small Probability of Informed Trading

Since the condition in Proposition 2.4.2 is not directly solvable, we pursue a further simplifi-
cation of the formula; the limit as α goes to zero. When α goes to zero, the result is an analytic
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Figure 2.10: Price efficiency. The y-axis is price inefficiency, defined as the reciprocal of the
expected change in the market maker’s prior evolves following a trade. On the x-axis is the
degree of segmentation. The solid blue line represents price inefficiency when the informed
trader acts strategically, while the dashed green line serves as a benchmark and represents the
case when the informed trader submits limit orders and market orders with probabilities 1

2 .
The figure shows that despite the informed trader’s strategic order choice, price inefficiency
decreases increases with the degree of segmentation. The figure was created using values of
α = 1

10 , xl = 1
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formula for a constant optimal strategy with the same qualitative properties pointed out in Ob-
servation 2.4.3. Taking the limit of Dρ[

E[ f (ρ)]
E[log(ξ1)|ρ] ], the first order condition when H is large, as

α goes to zero and solving for ρ∗ gives:

ρ∗ =
(xl − 1)β − 2x2

l + 2 − (2(xl − x2
l )β2 − (7x2

l + 1)β + 10x2
l − 4xl + 2)

1
2

(3xl − 1)(β − 2)
(2.17)

We use symbolic computing software (Matlab) to take the limit since the condition in Proposi-
tion 2.4.2 is difficult to work with by hand when expanded. The resulting strategy in Equation
2.17 is shown in Figure 2.9. It is qualitatively similar to the plot of the more general strategy.
We can now state the analogue of Observation 2.4.3 as a provable proposition.

Proposition 2.4.5 In the limit as both H goes to infinity and α goes to 0, the probability the
informed trader submits a limit order strictly decreases as the degree of retail segmentation β
increases. A proof is found in Appendix A.8.

In the next section we will use numerical techniques to show that the limiting results derived
above are qualitatively similar to a more general set of model parameters.

2.4.11 Numerical Evidence
We compare the approximations of Subsection 2.4.10 to numerically generated results to show
that the results hold more generally; price efficiency increases in the degree of retail segmen-
tation, and informed traders use relatively more limit orders as segmentation increases. To
compute numerical results, we use policy function iteration, also called Howard’s Improve-
ment Algorithm, combined with Monte Carlo simulation. The algorithm iterates from an ini-
tial guess of the informed trader’s strategy by simulating the future profits, given the strategy.
At each step, a Monte Carlo method is used to estimate future profits, then the strategy is
re-optimized given the simulated future profits.

The standard version Howard’s Improvement Algorithm (Judd, 1998) is given by the pseu-
docode in Algorithm 1.

Algorithm 1 Standard Howard’s Improvement Algorithm
1: Guess a strategy function
2: While the strategy function has not converged:
3: Compute future profits given the strategy function
4: Replace the strategy function with the optimal strategy given future profits

There are two features of our model that prevent us from using the standard Howard Im-
provement Algorithm. First, computing the future profits for a given strategy function is in-
tractable because following a trade, the market maker’s prior may overshoot the boundaries
leading to discontinuities in the optimal strategy. Second, the expected impact of a trade on the
market maker’s prior involves a Bayesian update (Equation 2.10) which is a function of both
the optimal strategy given that the asset’s value is high, and the optimal strategy given that the
asset’s value is low. We will call these the high strategy and the low strategy. Since we cannot
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optimize these strategies simultaneously, we use a separate iterative procedure to perform this
optimization.

Altogether, our numerical procedure consists of an outer loop over a Monte Carlo simu-
lation and an inner loop over the high strategy and the low strategy. In the outer loop, the
informed trader’s strategy, represented by a vector over a discretized state space, is taken as
given. Monte Carlo simulation is used to estimate expected future profits that accrue to the in-
formed trader for a given strategy. The Monte Carlo simulation is done by simulating random
sequential trading outcomes from the model parameters until the market maker’s prior hits one
of the boundaries. We note that the simulations are path-dependant because the probability of
a market order varies with the market maker’s prior.

In the inner loop, we must find a revised strategy given the expected future profits computed
in the outer loop. This requires an iterative procedure because the market maker’s Bayesian
update involves the ratio of the probabilities of market orders given the true value of the asset
is high, and given the true value of the asset is low. To know these two probabilities for any
given value of the market maker’s prior, one must know the informed trader’s optimal strategy
when given the true value being high, and given the true value being low. As mentioned above,
we call these the high strategy and the low strategy. Since each of the two strategies depend
on the market maker’s Bayesian update, they depend on each other. We cannot optimize them
simultaneously so we iterate by optimizing the high strategy for each value of the market
maker’s prior, given the low strategy. We then update low strategy exploiting the model’s
symmetry around the market maker’s prior equal to 1

2 . We iterate on optimizing high strategy
given the previous low strategy then updating low strategy using symmetry until the strategies
converge.

Pseudocode of the above is given in Algorithm 2. As in Section 2.3, without loss of gener-
ality, we assume that the true value of the asset is high and focus on the high strategy function.
For Step 1, we choose initial values of the high and low strategy functions, ρ̄0(pk) and ρ

0
(pk)

respectively, on a grid pk that take the form of a vector of probabilities of submitting a market
order corresponding to grid points over the state space. For pk, we choose a grid of evenly dis-
tributed points between the market maker’s switching thresholds 0.1 and 0.9 with length 0.01
between each grid point.

For Step 2, we choose a convergence criteria for our strategy function to test whether two
consecutive iterations of the outer loop result in sufficiently close strategies. We use the Eu-
clidean norm on the previous two iterations of the strategy function and terminate iteration
when |ρ̄ j(pk) − ρ̄ j−1(pk)| is less than a constant at iteration j.

For Step 3, we must estimate how the candidate strategy function performs. To do this, we
chose a grid on the state space ql, possibly different from pk, and for each grid point, perform
Monte Carlo simulation to estimate future profits when the state begins at the grid point. For ql,
we choose the grid [0.1, 0.4, 0.9] because Monte Carlo simulation is computationally expen-
sive. Each Monte Carlo simulation involves generating random trades given the probabilities
specified by the model which are partly determined by the iteration of the strategy function
used. It may be that when Bayesian updates are applied, the prior p moves off the chosen
grid ql. When this occurs, we interpolate values of the strategy function using piecewise cubic
Hermite interpolating polynomials (Matlab’s pchip function). A constant number of trials are
performed for each Monte Carlo simulation; we use 1000 for the figures below. For each grid
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point ql, profits for the informed trader are recorded in a vector of future profits V j(ql).
For Steps 4, 5, and 6, we perform an iterative procedure that allows us to find the optimal

strategy taking the future profits computed in Step 3 as given. We pursue an equilibrium when
the strategy is symmetric around p = 1

2 ; the optimal strategy when the asset’s value is high as
a function of the prior is equal to the optimal strategy when the asset’s value is low, mirrored.
Since we cannot optimize both the high strategy and the low strategy simultaneously, we op-
timize the high strategy, taking the low strategy as given, then replace the low strategy with
the mirrored high strategy, and repeat until a convergence criteria is met. Again, we use the
Euclidean norm and terminate iteration (Steps 5 and 6) when |ρ̄ j(pk) − ρ j

(pk)| is sufficiently
small.

The numerical optimization performed in Step 5 is analogous to the Bellman equation; the
optimal strategy balances immediate profits f (ρ̄) and future profits V j(pk, ρ̄, ρ

(−)), where we
use ρ(−) to denote the previous iteration of the low strategy. For each point on the grid pk we
numerically solve:

max
ρ̄
E[ f (ρ̄) + V j(pk, ρ̄, ρ

(−))|ρ̄] (2.18)

V(θ̄) = V̄
V(θ) = V

Numerical optimization is done with software (Matlab) that uses golden section search and
parabolic interpolation. In order to compute the expected future profits from the vector V j(pk),
the informed trader must consider how the Bayesian updates move the prior from a particular
state pq. If the expectation of the prior is off the grid pk, we again use piecewise cubic Hermite
interpolating polynomials to interpolate.

Algorithm 2 Modified Howard’s Improvement Algorithm with iteration over high and low
strategies and Monte Carlo simulation

1: Guess a high strategy function
2: While the high strategy function has not converged:
3: Use Monte Carlo Simulation to estimate future profits given the high strategy function
4: While the high and low strategy functions have not converged:
5: Optimize high strategy function given future profits and low strategy function
6: Replace the low strategy function with the mirrored high strategy function

Numerical results are shown in Figures 2.11, 2.12 and 2.13. Figure 2.11 shows that the
informed trader’s strategy behaves similarly to the approximations derived in subsection 2.4.10.

Figure 2.12 shows the informed trader’s strategy as a function of the market maker’s prior
for various values of β. We have constrained the x-axis to the arbitrary interval [0.4, 0, 6]
because outside the interval, the prior is “too close” to the boundaries. When the prior may
reach one of the boundaries in only one trade, strategies may be discontinuous and often do
not converge in our computations. However, in the interval [0.4, 0, 6], the prior is sufficiently
far from the boundaries and the strategies are well-behaved and converge numerically. The
probability of a market order is strictly decreasing with β for all values of the market maker’s
prior, as expected. Strategies are increasing in the market maker’s prior for two reasons. First,
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Figure 2.11: Simulated optimal strategy. The figure shows the numerical optimal strategy
(solid blue) and the theoretical optimal strategy when H is large (dashed green) as a function
of the degree of retail segmentation. Simulation parameters were α = 1

10 , xl = 1
3 , θ̄ = 9

10 and
β = 1

2 . The probability of a market order is strictly decreasing and convex in the degree of
segmentation for both the numerical and theoretical strategies.
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price impact is lower in certain cases when the high strategy and low strategy are opposite.
For example, in Equation 2.10, ξi =

1−α(2ρ̄−1)
1+α(2ρ−1) is equal to 1 when ρ̄ = 1 − ρ which means

the market maker’s prior is unchanged when the outcome LBMS is realized. Second, the
high strategy is more likely to result in the prior moving up, meaning the informed trader will
be most concerned with mitigating price impact (submitting more limit orders) for values of p
that are less than 1

2 . For larger values of p, the informed trader has fewer trades remaining and
mitigating price impact has less weight in his decision. The interaction of these two features of
the informed trader’s problem give the high strategy its upward slope.

Figure 2.12: Simulated optimal strategy. The figure shows the numerical optimal strategy as
a function of the market maker’s prior, for various degrees of retail segmentation. Simulation
parameters were α = 1

10 , xl = 1
3 and θ̄ = 9

10 . The probability of a market order is strictly
decreasing in each of the values for segmentation.
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Figure 2.13 shows that price efficiency, defined using the expected number of trades until a
boundary is hit, increases with segmentation despite the informed trader’s strategic play. Also
shown in the figure is the same line shown in Figure 2.10, scaled for comparison. The figure
shows that the expected hitting time decreases roughly at the same rate as the inverse of the
size of the market maker’s update, derived for large H.

2.5 Conclusions
We model an exchange-based mechanism of retail order flow segmentation in a model with
asymmetric information about the true value of a traded asset and derive results on its potential
effects on liquidity, price efficiency, and on trading behaviour. Our work is motivated by the
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Figure 2.13: Simulated hitting time. The figure compares simulated expected hitting time
(solid blue) to the theoretical approximation (dashed green) as the degree of retail segmentation
increases. Simulation parameters were α = 1

10 , xl = 1
3 and θ̄ = 9

10 . The theoretical line
was generated by plotting the reciprocal of the expected update given the parameters. In our
approximation when H is large, hitting time is inversely proportional to the magnitude of the
expected update. The dashed green line was scaled by a constant to be visually comparable
with the solid blue line. Both decrease with the degree of retail segmentation at a comparable
rate.
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prevalence of facilities on large stock exchanges that allow participants to make offers to trade
at prices inside the market wide best bid and offer that are only executable by retail market
orders. In Section 2.3, we show that all else equal, when retail traders are given access to
better prices, the bid-ask spread for non-retail traders increases. This is because market makers
compensate for revenue lost from providing better prices to retail traders by widening the bid-
ask spread for non-retail traders. We also study the dynamic effect of segmentation and show
that market makers are able to learn more efficiently about the true value of the traded asset
when retail traders are segmented. Segmentation allows market makers to distinguish between
retail trades, which convey no information about the true value of the asset, and non-retail
trades which are informative about the true value of the asset. Segmentation strengthens the
signal value of the order flow for market makers who learn about fundamentals from the history
of trade. This result is shown empirically in Chapter 1.

In Section 2.4, we study a model with constraints on quotable prices, but where traders
can choose to submit either limit orders or market orders. The model environment resembles
a situation that is common for highly liquid stocks. For these stocks, bid-ask spreads can be
competed down to one cent, which is minimal due to regulatory tick constraints. We study the
situation where a market maker is willing to quote a particular, minimal bid-ask spread until
sufficiently many trades take place for the market maker to prefer to quote different prices. As
in Section 2.3, segmentation allows the market maker to learn more efficiently about the true
value of the asset. The informed trader partially mitigates this effect by strategically submitting
fewer market orders. Retail market orders, as opposed to retail limit orders, are explicitly
segmented, so informed traders avoid market orders and rely more on limit orders to minimize
the informational impact of their trades.

The two models presented in Sections 2.3 and 2.4 make empirical predictions that could
be analyzed with a sufficiently detailed dataset. All else being equal, a higher degree of retail
segmentation in a should result in greater price efficiency and greater use of limit orders by
sophisticated traders. However, it could be the case in practice that informed traders scale back
their trading activity or their acquisition of new information when segmentation is present since
they earn fewer profits from trading. We leave these effects unmodeled but empirical tests could
shed light on whether or not our model assumptions are correct. Our model’s predictions about
liquidity are ambiguous. Bid-ask spreads may widen in a single-period version of our model,
but narrow over time and improve on average. The prevailing effect likely depends on the
balance of trading activity and the rate of nonpublic changes to fundamentals. In Chapter 1,
we find empirical evidence that retail segmentation can cause mild improvements in liquidity.



Chapter 3

The Effect of Hedging on Liquidity

3.1 Introduction

We study the effect of hedging a derivative on liquidity in its underlying security. Existing work
on how derivatives affect underlying assets offers different conclusions that depend on model
assumptions, market strucure, and on the asset class studied. We contribute to this discussion
by developing and testing hypotheses about how liquidity is affected by derivatives hedging
under certain assumptions that may be informative to market participants and securities reg-
ulators. In a market where a component of trading volume is generated by hedging from a
derivatives market, a market maker must learn about both the inventories of hedgers and about
asset fundamentals through the pattern of trade. We extend the classic model of sequential
trade in Kyle (1985) to include a hedger whose trades are determined by a random inventory
of derivatives. Assuming the hedger does not have private information about the security, our
model predicts that trading volume from hedging results in improved liquidity.

The central tension in the model is between the benefits to a market maker from trading
with hedgers, and the need to learn about two quantities simultaneously by executing trades in
the underlying security: the true value of the underlying security, and the hedger’s inventory.
Learning about hedging activity confounds the market maker’s ability to learn about the true
value of the underlying asset from the history of trades. Despite the additional source of un-
certainty, the market maker is willing to provide greater liquidity since a greater proportion of
trade is uninformed, providing the market maker with profits that offset losses incurred from
trading with informed traders.

The situation we model applies to a market where liquidity provision is highly competitive,
when there is information asymmetry between traders about the underlying asset, and when
derivatives hedging is largely of an uninformed nature. Equity markets fit this description: there
are many highly liquid stocks with multiple liquidity providers who compete on centralized
exchanges; information asymmetry has been demonstrated empirically to be a determinant of
liquidity (Glosten, 1987); and previous studies have shown that equity options markets tend to
lag, rather than lead, equity markets informationally (Muravyev, Pearson, & Broussard, 2013).

We demonstrate our model’s predictions empirically. Using a sample of highly liquid US
stocks during the 2014 calendar year, we are able to detect large increases in trading volume in
the underlying stocks near the monthly expiry of their options. We show that the component of

67
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volume associated with option expiry causes an improvement in standard liquidity measures.
The result is consistent with empirical papers which come to similar conclusions about liquidity
near option expiries.

Our model includes a market maker, informed traders who have private knowledge about
the underlying asset, and a noise trader as in Kyle (1985). We add a fourth trader who acts
as a dealer in a derivatives market and hedges by trading in the underlying asset. The dealer’s
trades can be seen as motivated by a few similar scenarios: option hedging, as in Black and
Scholes (1973), exchange-traded fund (ETF) rebalancing trades as in Tuzun (2014), or portfolio
insurers as in Gennotte and Leland (1990). The common idea is that each of these strategies
may result in large, somewhat predictable trading volumes that contain little or no information
about asset fundamentals.

We model sequential trading where traders have discrete opportunities to trade. In each
round, traders submit market orders to a market maker who prices and executes the aggregated
market orders (which we will call the “order flow” in this chapter). The market maker chooses
a price that balances profits made from trading with uninformed traders against losses from
trading with informed traders. The price is the market maker’s belief about the true value of
the asset, given the unexpected volume of the order received. The price depends on volume
since it contains information about the value of the asset. It is partly determined the price-
impact coefficient (called “Kyle’s lambda”) which is a proxy for liquidity.1 The market maker
can partially predict hedging trades; the market maker knows the strategy that the hedger uses,
but must learn about the size of the hedger’s inventory. It is impossible for the market maker to
fully distinguish between order flow driven by changes in the underlying asset and changes in
the hedger’s inventory since the only source of information is the order flow. However, despite
uncertainty about the true value of the asset and the hedger’s inventory, price impact is less
than it would be if the hedging trader was not present.

Our model cannot describe reality over a long time horizon since the variance of beliefs
about the asset’s true value and the hedging inventories increase with every trade. However,
it may apply to periods when hedging or program trading is an important source of trading
volume in the underlying asset such as trading days near options or futures expiry, or ETF
rebalancing.

The model predicts that price impact, a dimension of liquidity, improves when hedging
trades contribute significantly to trading volume in the underlying asset. Our empirical study
uses an instrumental variables regression to demonstrate that liquidity improves for a sample of
US stocks around option expiry dates. Time-to-expiry is exogenous to liquidity in the underly-
ing asset so we use it as an instrument in a two-stage least squares (2SLS) methodology. In the
first stage, we fit a reduced form regression model that relates trading volume to time-to-expiry.
In the second stage, we use the component of volume associated with time-to-expiry from the
first stage to show that this volume causes an improvement in liquidity, as measured by two
price impact measures, an intraday volatility measure, and a measure of the bid-ask spread. We
include the bid-ask spread measure and volatility measure for robustness.

The instrumental variables regression methodology is necessary because liquidity, volume
in the underlying security and the options market may be codetermined. An improvement in

1More precisely, the liquidity parameter which is endogenous in the model is the price change per share
transacted with the market maker.



3.1. Introduction 69

liquidity in the underlying asset may result in an improvement in liquidity in the options market,
driving up open interest or option trading volumes and increasing volume in the underlying,
further improving market quality. The two markets may also be subject to common, unobserved
liquidity factors.

3.1.1 Hedging and Program Trading
There is a rich literature on the empirical effects of hedging and program trading on the under-
lying asset. Studies have found mixed results across markets, and across time periods. Some
of the variation in results may come from natural evolution of markets and increasing sophis-
tication of trading venues and participants. Overall, our results are consistent with papers that
focus on measures of liquidity such as the bid-ask spread; liquidity is not harmed and may
improve when option markets are present.

Stoll and Whaley (1987) and (1991) study the triple witching hour when single stock op-
tions, stock index options, and stock index futures simultaneously expire. They find a large
increase in volume and that volatility is significantly higher on these days. Hancock (1993)
also empirically studies the triple witching hour and finds no evidence of price distortion. The
study does find evidence of increased volatility on these days.

Wang (2012) shows empirical evidence that option hedging trades can create price pressure
and return reversals. Kumar, Sarin, and Shastri (1998) empirically study the effect of option
listing on market quality. They find evidence that option listing improve market quality. Chow,
Yung, and Zhang (2003) study the effect of options written on the Hang Seng Index. They find
some evidence of negative price pressure and excess return volatility in the underlying stock
market. Chamberlain, Cheung, and Kwan (1989) study expiration day effects on the Toronto
Stock Exchange. They find evidence of abnormal price behaviour, namely that returns and
volatility tend to be higher in the last half-hour of trading on expiry Fridays. Abnormal returns
usually reversed the following Mondays.

Chiang (2014) finds evidence that stocks with a large number of deep in-the-money put
options may experience price drops on expiration dates. Selling pressure is attributed to op-
tion buyers who exercise and immediately sell their shares in the underlying market. Stucki and
Wasserfallen (1994) document the effects of the introduction of options to the Swiss stock mar-
ket. They find evidence of a decrease in volatility and absolute prices. They find no evidence
that stock returns are affected by expiration. Jouaber-Snoussi and Tekaya (2012) investigate the
effect of option listing on price efficiency. They find no evidence that option listing deteriorates
liquidity. Danielsen, Van Ness, and Warr (2007) find evidence that the introduction of options
to a stock market improves market quality.

Papers that study other markets include Tuzun (2014) who shows that price moves in ma-
jor stock indices result in large rebalancing flows in stock markets from leveraged and inverse
exchange-traded funds (ETFs). The paper show that rebalancing flows cause price reactions
and increase volatility. The paper argues that the destabilizing effect of ETF portfolio rebal-
ancing is similar to portfolio insurers of the 1980s which are believed to have played a major
role in the market crash of 1987.

De Jong, Koedijk, and Schnitzlein (2006) run an experiment in a lab setting that examines
trading in a market with asymmetric information in the presence of a call option. They find
evidence that the introduction of an option improves market quality.
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Most of the above papers focus on asset returns and price distortion, while we focus on
liquidity. We contribute to this stream of literature methodologically. To the best of our knowl-
edge, the above do not use time to expiry as an instrument for liquidity. Further, we model a
previously unstudied mechanism that is consistent with the result of improved liquidity.

Theoretical papers have also shed light on the effect of hedging and program trading on
the underlying asset. Papers that study the strategic interaction of traders, as this paper does,
include Gennotte and Leland (1990). They develop a rational expectations model in which
crashes may arise from small amounts of selling which lowers prices. Their model is consistent
with other papers which argue that the crash of 1987 was ignited by selling from portfolio
insurers.

In constrast to our approach, in the tradition of Kyle (1985), which treats price impact en-
dogenously, another stream of literature treats price impact as exogenous, and instead focuses
on the underlying price process, derivative pricing, and hedging strategies. This literature in-
cludes Nayak and Papanicolaou (2008) who study a theoretical model of the effect of portfolio
optimizers on underlying asset prices. They find that portfolio optimizers may have a stabiliz-
ing effect, decreasing volatility. Wilmott and Schönbucher (2000) develop a theoretical model
of dynamic trading strategies with price impact. Their model predicts an increase in liquid-
ity and predicts price jumps that arise as the price of the stock crosses the strike price of an
option. Sircar and Papanicolaou (1998) develop a model of dynamic hedging with price feed-
back. They derive partial differential equations for valuing and pricing options and introduce
numerical methods. The model predicts an increase in volatility caused by hedging activity.

Lyukov (2004) develops a pricing model with feedback effects on volatility. The model is
able to describe the empirical phenomenon of volatility smiles. Almgren and Li (2016) develop
a theoretical model of a hedger who faces price impact. Platen and Schweizer (1998) model
feedback effects and numerically show that they can give rise to volatility smiles and skewness
effects. Frey and Stremme (1997) analyze feedback effects using a model of hedging demand
with feedback and derive closed-form expressions for volatility under feedback. Bank and
Baum (2004) develop a continuous-time model of portfolio optimization with price impact and
develop trading strategies. We discuss the relationship between our model and this stream of
literature in Section 3.2.4.

3.1.2 Transparency and Trading Platforms

Our work is related to transparency in derivatives markets. We model a situation in which there
is uncertainty about the number of securities being hedged. This situation might arise if there
is a delay in the dissemination of information about trading in derivatives markets that give
market participants a way to estimate the number of contracts being hedged. Many derivatives
trade over-the-counter (OTC), where trades are bilaterally negotiated and are traded away from
organized trading platforms. In this case, many market participants may have no information
about the size of markets, the trading prices of derivatives contracts, the nature of the end users
since there is no public record of post-trade information.

In 2009, the G20 mandated a set of derivatives market reforms, including that trading in-
formation be reported to trade repositories, and standardized contracts be traded on organized
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trading platforms which will publically report information about trading.2 Trade repository
data will contain a record of all derivatives trades, including price, volume, counterparty, ju-
risdiction, etc. It will only be available to regulators, but it will nonetheless give regulators
information with which to judge the potential impact of derivatives markets on other markets.

The other related G20 commitment is that derivatives trades should occur on trading plat-
forms. In the US, swap execution facilities (SEFs) have been launched and carry a mandate that
certain large and standardized classes of derivative contracts only be traded on SEFs. These
include certain types of interest rate swaps and credit default swaps, each of which may result
in hedging in another market.3 Interest rate swaps may generate hedging in the fixed-income
market, as may credit default swaps in the corporate bond market. In Canada, the Canadian
Securities Administrators (CSA) has released a paper on the Derivatives Trading Facilities
(DTFs) for consultation which will also mandate trading of certain classes of derivatives on
trading platforms (Canadian Securities Administrators, 2015).

Regulators have not settled on which information should be released publically by deriva-
tives trading platforms. For example, in the US, the Commodities Futures Trading Commission
(CFTC) have decided that real-time reporting is appropriate, while in Canada and in other juris-
dictions there may be longer delays to protect certain market participants.4 This work may help
inform this process by showing that when market making is relatively competitive in the under-
lying security and if derivatives markets are mainly composed of uninformed natural investors,
granular and expedient reporting of derivatives trading information may be desirable.

3.1.3 Sunshine Trading vs. Front-Running
Our work is also related to the literature on sunshine trading versus front-running. Harris
(2002) defines front-running and sunshine trading and provides empirical examples. The two
are opposite sides of the situation in which one or more market participants have knowledge of
future trading intentions of a “block trader” who wishes to build a large position in a security.
Front-running describes the case where this information is exploited to the detriment of the
block trader. If the block trader’s intentions are known to other traders, they may be able to
buy before the block trader does, taking advantage of the block trader’s price impact and then
selling at the higher price. The frontrunner’s trades may also have price impact and result in
worse prices for the block trader.

Sunshine trading describes the case in which a block trader finds it advantageous for its
future trading intentions to be known, and possibly because it signals this to other market par-
ticipants. If the block trader is seen as a desirable counterparty, and can credibly commit to a
pattern of trade, then other traders may compete to provide liquidity, resulting in better prices
for the block trader than if its trading intentions were unknown. Hedgers may be similar to
block traders in this regard in that they may trade in large quantities and without private in-
formation about asset values. Option hedgers’ trading intentions may be detectable by other
market participants if they have information about their option inventory and their hedging

2The statement is available at www.g20.utoronto.ca/2009/2009communique0925.html.
3Details on SEFs can be found at www.cftc.gov/LawRegulation/DoddFrankAct/Rulemakings/DF 13

SEFRules/index.htm.
4Details on reporting of trades on SEFs are available at http://www.cftc.gov/idc/groups/public/

@lrfederalregister/documents/file/2011-33173a.pdf.

www.g20.utoronto.ca/2009/2009communique0925.html
www.cftc.gov/LawRegulation/DoddFrankAct/Rulemakings/DF_13_SEFRules/index.htm
www.cftc.gov/LawRegulation/DoddFrankAct/Rulemakings/DF_13_SEFRules/index.htm
http://www.cftc.gov/idc/groups/public/@lrfederalregister/documents/file/2011-33173a.pdf
http://www.cftc.gov/idc/groups/public/@lrfederalregister/documents/file/2011-33173a.pdf
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strategy. In the case of equity options, open interest is publically available, and hedging strate-
gies are well-known. We do not model front running and sunshine trading directly, but model
a situation where other market participants learning about option inventories is unavoidable for
the hedger. Under our assumptions, competitive market making and uninformed hedging, the
economics resemble sunshine trading as liquidity improves when the hedger is present in the
market.

In some cases hedgers may be concerned about front running when there is knowledge of
their trading intentions. For example, in 2014, Southwest Airlines was given permission by the
CFTC to delay reporting of commodity derivatives trades that it used to hedge oil prices at long
horizons. Many swap contracts are reported to swap data repositories (SDRs) for public dis-
semination. However, Southwest argued that this data could inform other market participants
about its trading intentions which it considered to be unwanted information leakage.5 Despite
the general possibility for information leakage leading to front running for hedgers, we find our
empirical study corroborates our model’s prediction that hedging improves liquidity in equity
markets around options expiry.

Empirical studies have found evidence of sunshine trading in other markets. Bessembinder,
Carrion, Tuttle, and Venkataraman (2016) empirically study predictable ETF roll trades in
crude oil futures markets, when the front futures contract expires and the ETF must shift its
position to futures of a different expiry. They find evidence that these trades receive improved
prices. The result is consistent with sunshine trading, as opposed to front-running.

There are theoretical papers on sunshine trading. Degryse, de Jong, and van Kervel (2014)
develop a theoretical Kyle (1985) style model with a block trader who trades over many peri-
ods. The block trader can benefit from sunshine trading by signalling his intentions by trading
more aggressively early in the game. We take a cue from their model by using short-lived in-
formed traders and steady-state dynamics. Danthine and Moresi (1998) develop a Kyle (1985)
style model with predatory trading in which an informed trader has prior knowledge of noise
trades. The outcome for noise traders is ambiguous.

3.1.4 Equity Options and Information

For the sunshine trading hypothesis to be valid, hedging traders must be desirable counter-
parties and attract liquidity providers. Several empirical studies find that in equity markets,
option trades contain less information about future prices than trades in the underlying equi-
ties. Therefore, option hedging trades are likely to contain little information about future prices
and hedgers can be considered desirable counterparties by market makers in underlying equi-
ties. Muravyev et al. (2013) use tick-by-tick data on an options market and their corresponding
underlying stocks. They find that when the options market and the underlying market disagree
about the price of the stock, prices in the options market move to correct the disagreement.
They argue that option quotes therefore do not provide economically significant information
about the price of the underlying stocks. Cho and Engle (1999) model liquidity in the options
market and suggests that market quality in the underlying asset is an important determinant
of market quality in options markets. Stucki and Wasserfallen (1994), also mentioned above,

5The CFTC’s letter allowing delayed reporting is availble at www.cftc.gov/idc/groups/public/
@lrlettergeneral/documents/letter/14-134.pdf.

www.cftc.gov/idc/groups/public/@lrlettergeneral/documents/letter/14-134.pdf
www.cftc.gov/idc/groups/public/@lrlettergeneral/documents/letter/14-134.pdf
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find that price discovery in the Swiss equity market leads the options market by roughly ten
minutes.

However, other papers have found evidence of informed trading in options markets. Kaul,
Nimalendran, and Zhang (2004) empirically test the relationship between bid-ask spreads in
the options market with strategic, informed trading. They find evidence of informed trading
in options markets by statistically testing the component of the option bid-ask spread that is
driven by information asymmetry. Easley, O’Hara, and Srinivas (1998) provide theoretical and
empirical evidence that there is informed trade in options markets. These papers highlight that
our model’s assumption that hedging trades are uninformed may not be realistic, but do not
invalidate our model’s predictions. Our theoretical result should still hold if hedging trades
carry relatively less information and therefore impose lower adverse selection costs on market
makers than trades from non-hedgers.

There are other reasons to believe a high degree of options volume comes from natural
investors, as opposed to informed speculators who pose risks to market makers. Judd and
Leisen (2010) analyze the drivers of demand for options and argue that investors use options
to achieve a desired level of skewness. Other sources of natural demand for options may come
from covered call writing, and portfolio hedging with put options.

We read the literature on equity options as generally indicating that there is relatively more
information about future prices in the underlying stocks than in their options. We note that
other papers suggest this may not be true for other asset classes. Charlebois and Sapp (2007)
find strategies that use information from foreign exchange options outperform commonly used
strategies that use only foreign exchange spot prices. This indicates a high degree of informed
trading may occur in the foreign exchange options market.

3.2 Model
We begin with a single period case to illustrate the interaction between the market maker, the
hedger, and informed and noise traders. It also eases the exposition of the multiperiod setting
in 3.2.2. Our model follows the classic model of Kyle (1985) and is closely related to the model
of Degryse et al. (2014).

3.2.1 Single-Period Setting

Trading for a single risky asset takes place once at time t0 before the asset’s payoff is realized
at time t1. The asset’s payoff ν is distributed N(µν, v2

ν). The risk-free rate is normalized to
zero. There are four risk-neutral agents: a noise trader, an informed trader, a hedger trader
and a market maker.6 As in Kyle (1985), agents anonymously submit quantities7, positive or

6The types of agents in the model have natural analogues: a noise trader needs to increase or decrease exposure
to the risky asset but has no private information and resembles a retail trader or a fund manager with random cash
inflows and outflows; the informed trader is an arbitrageur such as a hedge fund that searches for mispricings; the
hedger resembles a derivatives dealers who hedges by trading directly in the underlying; and the market maker
resembled a specialist, or a professional liquidity provider whose business is to profit from transaction costs.

7We can interpret these as market orders in the sense that they are orders to trade a given quantity at the best
price offered.
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negative for buy and sell respectively, to the market maker who receives an aggregate quantity
(the residual after summing over all orders). We will also refer to the aggregate quantity as the
“order flow”. The market maker clears the market at the competitive price p, conditional on
the information gained from observing the order flow.

An equilibrium in our model is a competitive, Bayesian pricing rule used by the market
maker and a quantity that maximizes profit for the informed trader. Only the market maker and
the informed trader act strategically since the other agents are concerned with liquidity needs
or risk management and not the prices at which they will trade. We will formalize the definition
of equilibrium below in 3.2.1.

Noise Trader

At time t0, the noise trader realizes a random exogenous liquidity need for u shares with u ∼
N(0, v2

u) which is independent of ν. The noise trader has a perfectly inelastic demand and
therefore performs no optimization.8 The noise trader submits a market order of size u.

Hedger

The hedger acts as a dealer in a market for a derivative asset and hedges in the market for
the underlying asset. We will assume there is no information contained in the demand for
the derivative asset.9 The hedger manages risk from a random inventory of derivatives of size
H ∼ N(µH, v2

H) which is independent of ν and u. He submits a market order for h shares
(a constant) of the risky asset for each derivative. His inventory is privately known H.10 He
is only concerned with risk management and not the price at which the hedging position is
obtained. The hedging strategy per derivative h is independent of the aggregate inventory of
derivatives H. It is assumed that other market participants know the hedging strategy being
used and therefore know h but not H. In total, the hedger submits a market order of size hH
which to the other agents is distributed N(hµH, h2v2

H).

Informed Trader

At time t0, the informed trader receives a perfect signal about the realization of the asset’s future
payoff ν. He is risk-neutral and submits a market order for x̂ shares to maximize expected
profits:

x̂ = arg max
x
E[x(ν − p(x)) | Ii]. (3.1)

8In equilibrium, the noise trader’s expected price is equal to the expected value of the asset given only public
information µν. The competitive nature of the market maker ensures that the noise trader does not provide other
traders with infinite profits.

9This is a reasonable assumption for equities and equity options, as discussed in Subection 3.1.4. Equity ETFs
are another example of where our model is reasonable. Many investors simply want exposure to the market and
do not trade for speculative reasons. Since ETFs are passively managed, the underlying assets will be bought and
sold periodically for reasons unrelated speculation about fundamentals.

10We assume there is no credible way to reveal the inventory H. Indeed, the hedger could profit from falsely
announcing inventory, or an informed trader could profit from falsely claiming to be hedging.
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where p(x) is the price which depends on x through the market maker’s pricing rule, Ii denotes
the informed trader’s information set Ii = ν.

Market Maker

The market maker receives market orders from each of the other agents simultaneously and
observes the aggregate order flow y = u + x + hH but not the individual order sizes. The
market maker learns from the order flow; although orders are submitted anonymously, the
market maker can revise his prior about the distribution of the risky asset by using Bayes rule.
The market maker acts perfectly competitively11, as if there were other market makers able to
undercut prices and therefore clears the market at the price p(y) which results in zero expected
profits:

p(y) = E[ν | Im]. (3.2)

Im denotes the market maker’s information set. The market maker’s information set includes
all public information about the risky asset, specifically its mean and variance µν and v2

ν, and
aggregate order flow y. We will use the term “belief” to describe the probability distribution of
the risky asset’s realized value.

Note that in this description of the model, agents submit market orders which are then
priced by the market maker conditional on the aggregate order flow. The market maker has no
private information before observing the order flow y so other market participants will be able
to predict the market maker’s pricing rule. This is equivalent to the market maker announcing
his price as a function of order flow y before trade occurs, as is the case with a limit order book.

Definition of Equilibrium

We restrict the model to the case of linear strategies.12 Formally, an equilibrium is a pair of
functions

x̂(ν) = x̂(ν, p̂(y)) (3.3)
p̂(y) = p̂(y, x̂(ν)) (3.4)

for any (ν, y) in R2, such that x̂(ν) and p̂(y) satisfy:

x̂(ν) = arg max
x
E[x(ν − p̂(x)) | Ii] (3.5)

p̂(y) = E[ν | Im]. (3.6)

We now derive the informed trader’s strategy and the pricing rule explicitly. We will see
that if the informed trader’s strategy is linear in the true value of the asset ν, then the pricing

11Assuming perfect competition for the market maker is a standard assumption that greatly increases tractabil-
ity. It can be seen as a lower bound in the sense that if price impact were less than it is in the model, the market
maker would lose money in expectation. Further, market making has become increasingly competitive as barriers
to entry have decreased as trading has become more electronic of trading in many asset classes.

12Boulatov and Livdan (2005) prove that linear strategies are optimal in the general single-period Kyle (1985)
model.
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rule is linear in the informed trader’s strategy x. Assume a linear pricing rule with the formula:

p̂(x) = µν + λ
(
y(x) − E[y(x) | Im]

)
(3.7)

= µν + λ
(
y(x) − ỹ

)
. (3.8)

as a guess about the form of the market marker’s pricing function where we have let ỹ be
the market maker’s expected aggregate order. We will refer to the parameter λ as the “price
impact” coefficient. The formula is intuitive; the market maker’s belief about the mean of the
asset’s true value after trade is the previous belief µν, plus a correction term proportional to the
unexpected order flow y(x) − E[y(x) | Im].

Informed Trader’s Strategy

Substituting the linear pricing rule above into the informed trader’s objective:

x̂(ν) = arg max
x
E[x(ν − p̂(y)) | Ii] (3.9)

= arg max
x
E[x(ν − (µν + λ(y(x) − ỹ))) | Ii] (3.10)

= arg max
x
E[xν − xµν − xλ(x + hH + u − ỹ) | ν] (3.11)

= arg max
x

xν + xµν − x2λ (3.12)

= β(ν − µν) (3.13)

where β := 1
2λ . The second equality is from the definition of y. The third equality uses the facts

that the informed trader’s information is the true value of the asset Ii = ν, the expectation of
u and hH are zero by their independence from ν, and that E[x + hH + u − ỹ | ν] = x + E[hH |
ν] − E[hH | Im] = x because the informed trader’s information about the hedging order hH is
no better and no worse than the market maker’s information.

Now that we have derived the informed trader’s strategy for a pricing rule for a given
parameter λ, we can derive the formula for λ explicitly using Bayes’ Rule.

Market Maker’s Strategy

Note that the aggregate order flow is linear in the fundamental value ν: y = x + u + hH =

β(ν−µν)+u+hH. This means the market maker’s pricing rule is also linear in the fundamental
value:

p̂(y) = µν + λ(y − E[y | Im]) (3.14)
= µν + λ(y − hµH) (3.15)
= µν + λ(β(ν − µν) + u + hH − hµH) (3.16)

(3.17)

where we have used the fact that the only expected component of the order flow comes from
the hedging trade E[y | Im] = hµH. This allows us to derive λ using conditional expectation for
multivariate normal random variables which in this case is equivalent to the Bayesian update of



3.2. Model 77

the market maker’s belief given an observation of a Normal random variable with additive, nor-
mally distributed noise. The Bayesian updating coefficient takes the form of a signal-to-noise
ratio where the numerator is the variance of the variable being updated and the denominator
is the total variance of the observed quantity. The stochastic part of informed trader’s order is
βvν so variance of the “fundamental component” of the order flow is β2v2

ν. The variance of the
order flow is β2v2

ν + v2
u + h2v2

H, the sum of the variance of fundamental component, the noise
trader’s order, and the hedger’s order. The signal-to-noise ratio for updating βvν is therefore

β2v2
ν

β2v2
ν+v2

u+h2v2
H

. Dividing by β gives the Bayesian updating coefficient for the quantity vν:

λ =
βv2

ν

β2v2
ν + v2

u + h2v2
H

(3.18)

Using β = 1
2λ from the informed trader’s strategy derived above, the Nash equilibrium price

impact coefficient is
λ =

vν

2
√

v2
u + h2v2

H

. (3.19)

We have derived the same price impact coefficient as in Kyle (1985) but with another term
h2v2

H in the denominator showing that the hedger in this setting is essentially additional noise
trading. When the variance of the hedging trade h2v2

H increases, liquidity improves in the form
of a smaller price impact per share. In the single-period setting above, the market maker only
needs to update one quantity after observing the aggregate order flow, the mean of the asset’s
payoff µν. In a multi-period setting, the market maker will need to update four quantities after
each trade as he learns about both the fundamental value and the size of the hedger’s inventory,
the prior means and variances of each quantity.

3.2.2 Multiperiod Setting
Trading takes place at times n = 1, ...,N. The asset’s fundamental value follows a random
walk with standard deviation vν per period; ∆νn = vν∆Wn where ∆Wn ∼ N(0, 1). The market
clearing mechanism is the same as in the single period case but occurs each period. Agents are
otherwise the same as in the single period case, with the differences noted below.

Noise Trader

At the beginning of each period the noise trader realizes a random exogenous liquidity need
vuUn where Un ∼ N(0, 1) is a standard normal random walk independent from Wn.

Hedger

The number of contracts in the hedger’s portfolio follows a random walk with standard devi-
ation vH per period; Hn = vHVn where Vn is a standard normal random variable. The changes
in inventory are due to client-trades in the market for the derivative asset. The hedger trades h
per derivative each period. The net inventory Hn is unobservable by other market participants.
In total, the hedger submits a market order of size hHn at period n.
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We assume the “hedging strategy” h does not change from period to period, that is, the
hedger must trade some constant fraction of their inventory each period. This is not realistic in
the sense that most hedging strategies are functions of the underlying price and are quite pos-
sibly nonlinear. However, the linear hedging trades hHn adequately introduce the key friction
into the linear Kyle (1985) model setting: that market participants have some knowledge of the
level of hedging, but it is imperfect and more information must must be inferred from the order
flow. It is not clear how to introduce hedging traders that are functions of the underlying price
in a tractable way, so we proceed with the assumption that h is constant.

Market Maker

Each period a market maker receives market orders from each of the other agents, observes the
aggregate order flow yn = un + xn + hHn, and clears orders at the price pn which satisfies the
zero expected profit condition

pn = E[νn | yn]. (3.20)

Let the market maker’s information set be denoted by Im
n .

Informed Trader

A new informed trader arrives at the beginning of each trading period with knowledge of the
asset’s value νn.13 Each new informed trader is has no private information about the hedger’s
inventory and therefore uses the public information set, or equivalently the market marker’s
information set Im

n . Let the informed trader’s information set be denoted by Ii
n. They trade xn

in order to maximize profit according to the following objective function:

xn = arg max
x̂n

E[x̂n(νn − pn−1) | Ii
n,I

m
n ] (3.21)

= arg max
x̂n

E[x̂n(νn − pn−1) | Ii
n] (3.22)

since Im
n ⊂ I

i
n.

As in Subsection 3.2.1, we will assume the game has a linear structure, that is, the market
marker’s pricing rule p̂t(yt) is linear in the order flow each period, and the informed trader’s
strategy x̂(νt) is linear in the asset’s value.

Definition of Equilibrium

An equilibrium is a sequence of pairs of functions

x̂n(νn) = x̂n(νn, p̂n(yn)) (3.23)
p̂n(yn) = p̂n(yn, x̂n(νn)) (3.24)

13The assumption that a new informed trader arrives each period is for tractability. It is difficult to solve for the
optimal dynamic trading strategy when price impact varies over time, or taking into account how informed traders
might learn about the hedger’s inventory. However, in Appendix B.2 it is shown that for a constant price impact
the informed trader’s optimal dynamic strategy is similar, the main difference being trades are smaller so as not to
move the price too quickly in order to preserve future trading profits. The assumption that a new informed trader
arrives each period is unlikely to substantially change nature of the results.
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for all n > 0 for any (νn, yn) in R2, such that x̂(ν) and p̂(y) satisfy:

x̂n(νn) = arg max
xn

E[xn(νn − p̂n(xn)) | Ii
n] (3.25)

p̂n(yn) = E[νn | I
m
n ]. (3.26)

Informed Trader’s Strategy

Let the price impact coefficient at period n denoted by λp
n . The informed trader’s problem each

period is similar to single-period case:

xn = arg max
x̂n

E[x̂n(νn − (pn−1 + λn(yn − hnµHn))) | Ii
n,I

m
n ] (3.27)

= βn(νn − pn−1) (3.28)

where βn = 1
2λn

, and we have used the fact that the market maker’s prior mean about the asset’s
value νn is pn by the equilibrium concept above.

Market Maker’s Strategy

As shown above, the amount traded by the informed trader at period n is βn(νn− pn−1), of which
βnνn is unexpected by the market maker. The market maker must maintain beliefs about the
distributions of the unexpected components of the order flow that come from the hedger and
the informed trader: βnνn := An from the informed trader, and hHn := Bn from the hedger.
Denote their “noisy sum” by Cn := An + Bn + un, where un is the noise trader’s trade at period
n. We use Cn for convenience; it is equal to total order flow yn less a deterministic constant
known by the market maker. Let the covariance matrix for An, Bn and Cn be

Σn =

 (σA
n )2 σAB

n σAC
n

σAB
n (σB

n )2 σBC
n

σAC
n σBC

n (σC
n )2


and their means be

Υn =

 µ
A
n
µB

n
µC

n

 . (3.29)

Together, Σn and Υn make up the market maker’s prior at period n about the components of the
order flow.

Define the partitions of Σ and Υ as follows:

Σn =

Σ1,1
n Σ1,2

n

Σ2,1
n Σ2,2

n

 :=


(σA

n )2 σAB
n σAC

n

σAB
n (σB

n )2 σBC
n

σCA
n σCB

n (σC
n )2


and

Υn =

Υ1
n

Υ2
n

 :=


µA

n

µB
n

µC
n

 .
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After an observation of Cn the means are updated by the rule

Υ1
n+1 = Υ1

n + Σ1,2
n (Σ2,2

n )−1(Cn − Υ2
n) (3.30)

which is the multivariate Normal Bayesian update; the means conditional on an observation of
Cn.

The factor Σ1,2
n (Σ2,2

n )−1 in the Bayesian update above in Equation 3.30 gives a matrix of two
“impact coefficients”: the impact coefficient for the quantity βnνn = An which is very closely
related to the price impact coefficient; and the impact coefficient for the quantity hHn = Bn

which is related to the market maker’s learning about the hedging inventory Hn. Let the impact

coefficients for An and Bn be Σ1,2
n (Σ2,2

n )−1 :=
[
λA

n
λB

n

]
.

We are interested in the price impact coefficient λp
n =

λA
n
βn

. In general, λA
n evolves over

time along a path that is dependent on initial conditions such as the market maker’s initial
belief about the asset’s value ν0. However, we will show below that a steady state exists for
λA

n . The steady state corresponds to when the information gained by the market maker each
period is exactly offset by the information lost through the evolution of the random processes.
We proceed with this approach below, and derive results on how the price impact coefficient
depends on the level of program trading.

3.2.3 Steady State Beliefs
One can find explicit formulae for the posterior variances and therefore the price impact coef-
ficient if one considers the steady-state distributions as discussed in Appendix B.1. A steady
state is a covariance matrix corresponding to a belief of the market maker that results in a price
impact coefficient λp

n that is constant from one period to the next. This belief is when the reduc-
tions in the market maker’s posterior variance resulting from observations are perfectly offset
by increases in the market maker’s posterior variance resulting from random innovations in the
hedger’s inventory and the fundamental asset value.

As shown in Appendix B.1, the formula for λX
n is given by

λA =
v2

A(v2
B + v2

A +

√
(v2

B + v2
A)(v2

A + v2
B + 4v2

u))

(v2
A + v2

B)(
√

(v2
B + v2

A)(v2
A + v2

B + 4v2
u) + (v2

A + v2
B) + 2v2

u)

Substituting the model parameters and using βn = 1
2λn

, one can find the game’s equilibrium
as

λp
n = λp =

vν√
v2

u + 2h2v2
H +

√
v4

u + 12v2
uh2v2

H + 4h4v4
H

. (3.31)

λp is decreasing in both variables related to the size of the hedger’s trades h and vH, mean-
ing that the marginal price impact per share traded is decreasing with the amount of program
trading.

Figure 3.1 graphically shows the effect of hedging trades compared to a generic increase in
noise trade. Price impact is strictly lower when the market marker does not need to learn about
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hedging inventories. When there is uncertainty about hedging activity and the market maker
must learn about hedging inventory, price impact is still less than the case without any hedging.
This is our main theoretical result, which we emphasize in the following proposition.

Proposition 3.2.1 Price impact, as given in Equation 3.31, is strictly decreasing in the vari-
ance of the hedger’s inventory.

Figure 3.1: Price impact coefficient. This figure shows how the price impact coefficient varies
with variance the hedging volume. The parameters chosen were vu = 0.2, vv = 0.5 and h = 0.1.
The solid blue line shows price impact coefficient for the single period model from Equation
3.19 as a function of the variance of hedging trades. The green dashed line shows the price
impact coefficient for the multiperiod case from Equation 3.31.
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3.2.4 Comparison to Other Models
Models such as those found in Wilmott and Schönbucher (2000), Frey and Stremme (1997),
and Sircar and Papanicolaou (1998) consist of a Walrasian market clearing mechanism that
determines a price pt where supply S (pt) = S is a fixed constant and demand D(pt) is linear in
price:

S = D(pt) = −θt pt + ct (3.32)

=⇒ pt =
1
θt

(ct − S ) (3.33)
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where θt is the slope of the demand function and ct is an exogenous stochastic process. Typ-
ically ct is taken to be a geometric Brownian motion, supply is normalized to 0 and θt to 1
giving

pt = ct (3.34)
=⇒ dpt = dct = µptdt + σptdWt. (3.35)

Adding the demand of program trading strategy ht(pt) for and inventory of H contracts to the
total demand gives

pt = ct + Hht(pt) (3.36)
=⇒ dpt = dct + Hdht = µptdt + σptdWt + Hdht (3.37)

=⇒ dpt =
1

1 − H ∂ht(pt)
∂pt

(Fdt + GdWt) (3.38)

where the last equation comes from the application of Itô’s lemma; F = µpt+H(∂ht
∂t +

∂2h
∂p2 p2

t σ
2

2((H ∂ht
∂p −1)2)

)

and G = −ptσ . Supply and demand have multiple intersections when the denominator be-
comes zero or equivalently H ∂ht

∂pt
= 1.

Our model endogenizes price impact by modeling how traders act strategically in a similar
market clearing mechanism. In contrast to the papers mentioned above where supply is con-
stant and demand functions vary exogenously with time, we study the case where supply and
demand functions are endogenous. In the simplest model presented in this paper in Section
3.2.1, a market maker posts a pricing function pt = mt +λtyt which is linear in the total quantity
of market orders yt submitted by trading agents and has intercept mt and slope λt. This pricing
mechanism is similar to the models mentioned above in the sense that price is a linear function
of the stochastic process that drives demand.

Frey and Stremme (1997) avoid the case where supply and demand have multiple intersec-
tions by imposing that H ∂ht

∂pt
> 1, while Wilmott and Schönbucher (2000) study the discontinu-

ity in prices that arises when H ∂ht
∂pt

= 1 with the interpretation that a price jump will occur from
one stable Walrasian equilibrium to another when the slope of the demand curve in Equation
3.36 is zero. The authors calculate the prices at which jumps will occur and derive a region in
the price-time plane that is unattainable by the process pt. The intuition behind the unattainable
region is that when prices move to a certain level they trigger a feedback loop of hedging trades
which pushes prices to the other side of the unattainable region. Our model shows that hedging
trades result in lower price impact meaning that prices are less sensitive to changes in demand.
This is a reason to believe that predictions of models that do not account for strategic nature of
trading may overstate the magnitude of price jumps or unattainable regions.

3.2.5 Empirical Study
In the Sections 3.2.1 and 3.2.2, we showed that liquidity increases with the amount of un-
informed hedging activity. To test the effect empirically, we study option hedging in equity
markets. In our model, the hedger submitted orders of hH where h is the hedging strategy
per derivative and H is the inventory to be hedged. In this section we focus on factors that
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change hedging per derivative h rather than the inventory H. The reason for doing so is that
there may be unobserved variables that affect both the demand for derivatives and liquidity
affecting inventory H and price impact λ simultaneously. Although we do not model demand
for derivatives, one could imagine a change in volatility affecting demand for options and af-
fecting liquidity. Indeed, the price impact coefficient in Equations 3.19 and 3.31 depend on the
fundamental variance of the asset vν.

Option time-to-expiry serves as a variable affects hedging strategies; as option expiry dates
approach, option hedgers must trade in the underlying equities more frequently or in greater
volume to maintain their hedge. We know of no economic reason that time to expiry should
directly affect liquidity in the underlying stocks. We show that the increase in trading volume
in the underlying stocks associated with option expiry results in improved liquidity measures,
including two proxies for price impact, as predicted by our model.

Institutional Details

Options on US stocks mainly trade on the Chicago Board Options Exchange (CBOE). There
are both European- and American-style index options while most single stock options are
American-style.14 Index options are cash-settled during the last trading day before the third
Saturdays of each month, while single stock options are physically-settled on the same days.

We will need to account for the significant trading volume generated from hedging stock
index futures. These contracts trade on the Chicago Mercantile Exchange (CME) and ex-
pire quarterly on the last trading day before the third Saturday of the months of March, June,
September, and December. These contracts are cash-settled.15

There are intermediaries in each of these markets. Electronic market makers provide liq-
uidity on options exchanges by continually maintaining bid and offer prices. When an options
market maker’s order is filled, a new option enters their inventory. A common strategy is to
immediately hedge the new option by buying the appropriate delta hedge in the underlying
stock or index. The CBOE’s floor traders play a similar role to market makers.

Each of these derivative markets generates increased trading volume in the underlying eq-
uities as they approach expiry. For cash-settled options, hedgers will deliver the cash to their
counterparty if the option expires in the money. However, if they are delta-hedged at the time
of expiry, they will need to liquidate this position which generates trading volume in the under-
lying stock. For physically-settled options, the counterparty in receipt of the stock may hold
the shares or immediately sell them. If the shares are sold, this generates an increase in trading
volume in the underlying stock.

Hedging index options or futures may be done by either trading directly in the underlying
stocks that make up the index, trading an ETF, or trading futures. Futures floor traders may also
hedge their exposures using the underlying stocks or an ETF. When a futures contract expires,
the trader must unwind their hedging position, generating trading volume in the underlying
stocks.

14Details on CBOE options can be found at www.cboe.com.
15Details on futures can be found at www.cmegroup.com.

www.cboe.com
www.cmegroup.com
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Data

We use a dataset from Bloomberg that spans the calendar year of 2014. The sample contains
trading data that is aggregated across trading venues and includes: daily opening, closing,
high, and low prices; total daily trading volume; total daily put option open interest; total
daily call option open interest; total daily put option trading volume; total daily call option
trading volume; for all stocks that were in the S&P 100 Index during the sample, as well as
the aggregated data for the S&P 100 Index.16 We choose US stocks because they are highly
liquid and are therefore less likely to be subject to unobservable factors that might affect their
liquidity. One stock was dropped from the sample since it had a stock split during the sample
period which resulted in incorrect data for its corresponding options. We obtain data on options
and futures expiries from the CBOE website. There are twelve option expiry events in our
sample.

Liquidity Measures

We compute standard liquidity measures: the Amihud liquidity measure (Amihud, 2002) which
is a proxy for price impact, and the Roll liquidity measure (Roll, 1984) which is a measure of
the bid-ask spread. We also compute “Relative High-Low” makes use of the daily high and low
price in the dataset as a proxy for daily volatility by taking the difference of the two relative
to the daily opening price. We also define “High-Low Amihud” which is similar to the high-
low volatility measure defined above but is normalized by the number of shares traded. It can
be interpreted as another price impact measure which we include for robustness. For each
measure, a lower value indicates greater liquidity. We use the following formulae:

Amihudt = |Returnt |

Volumet
(3.39)

AmihudHighLowt =
HighPricet−LowPricet

Volumet
(3.40)

HighLowt =
HighPricet−LowPricet

OpeningPricet
(3.41)

RollMeasuret = 2
√
−AutoCov(Returnt,Returnt−1,Returnt−2), (3.42)

where Returnt is the return computed using the closing price of days t and t − 1. The Au-
toCov operator define above is the autocovariance of the vector of three consecutive returns.
The Amihud and High-Low Amihud measures are displayed in units of percent per million
shares traded; Relative High-Low is displayed as percent; and the Roll measure is displayed as
percent.

Summary Statistics

Table 3.3 shows summary statistics for all stocks in the sample, the stocks that were S&P 100,
during the sample period, the calendar year of 2014. Mean Put Volume was roughly 11030
contracts per day while mean Call Volume was roughly double, roughly 18954 contracts per
day. Open interest shows a less significant difference between put and call options. Mean Put
Open Interest was roughly 273589 while mean Call Open Interest was roughly 342579. Mean

16A historical list of the S&P 100 constituents can be found at siblisresearch.com/data/historical
-components-sp-100.

siblisresearch.com/data/historical-components-sp-100
siblisresearch.com/data/historical-components-sp-100


3.2. Model 85

Volume was 4850768. The mean Relative High-Low price change was roughly 1.5%. Mean
volatility was roughly 19%. On average the Amihud liquidity measure was roughly 0.7 percent
per million shares, while the Amihud High-Low liquidity measure was roughly 1.3 percent per
million shares. The Roll spread measure was roughly 0.6%.

Table 3.2 shows summary statistics as in Table 3.3, but only for trading days which were
the last Friday before an option expiry. Table 3 shows complementary summary statistics for
the sample excluding the last Friday before an option expiry. We do not report volatility since
we only compute it using the entire sample period. Tables 2 and 3 show that expiry days are
different than non-expiry days. On expiry days, mean put and call volume are greater than
for non-expiry days: roughly 13923 to 10883 contracts per day for puts and 24728 to 18660
contracts per day for calls. Little difference between expiry and non-expiry days is observed
for put and call open interest: roughly 272770 to 289683 contracts per day for puts and 342327
to 347530 contracts per day for calls. Volume is significantly higher on expiry days: roughly
9206417 compared to 4629294. Some of this increased volume is due to futures expiries that
occur contemporaneously. We control for futures expiry in the analysis below.

The only market quality measure that was higher on expiry days was the Relative High-Low
measure: it was roughly 0.1 percentage point points higher on expiry days, 1.6% per millions
shares compared to 1.5% per millions shares on non-expiry days. However, we will show
that after controlling for other factors in our regressions hedging volume is associated with a
lower Relative High-Low measure. All other market quality measures were lower on expiry
days. The Amihud price impact measure was significantly lower on expiry days: roughly 0.4%
compared to 0.7% per millions shares. The Amihud High-Low liquidity measure was also
significantly lower on expiry days: roughly 0.8% compared to 1.3% per millions shares. The
Roll measure was lower on expiration days: 0.5% compared to 0.6%.

Figure 3.2 shows average trading volume for stocks in the S&P 100 Index over the sample
period. Red vertical lines mark options expiry dates. Volume is higher than average near the 12
option expiries in the sample and significantly higher around the four futures expiries in March,
June, September, and December. Figure 3.3 shows average open interest for both calls and puts
for stocks in the S&P 100 Index over the sample period. Open interest for calls and puts is also
greater around expiry dates. However, we cannot say that all changes in open interest are an
exegenous determinant of trading volume so we control for open interest and change in open
interest in our regressions.

Table 3.1: Summary Statistics. The rows of this table display summary statistics for the stocks
in the sample period, stocks that were part if the S&P 100 for the 2014 calendar year.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
Put Volume 24549 11030.24 21156.76 4 435505 1728 4662 11498
Call Volume 24552 18953.89 44494.57 22 1336920 2650 6798.5 17499
Put Open Interest 24551 273588.5 407371.8 199 4094143 74069 140430 305116
Call Open Interest 24551 342578.8 565508.1 236 5572699 81693 160192 378141
Volume 24552 4850768 2.59e+07 104478 7.85e+08 803098.5 1376536 2738804
Volatility 24552 19.293 5.214 11.168 35.923 15.222 18.263 21.409
Relative High-Low 24552 1.532 .869 .243 14.189 .965 1.323 1.848
Amihud 24552 .714 .904 0 12.874 .152 .41 .93
Amihud High-Low 24552 1.291 1.198 0 11.967 .496 .966 1.681
Roll Spread Measure 24552 .56 .598 0 7.574 0 .432 .823
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Table 3.2: Summary Statistics Expiration Days. The rows of the table shows summary
statistics as in Table 1, only for trading days that were the last before an option expiry date.
Volatility has been excluded since it is computed only using all observations in the sample
period.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
Put Volume 1188 13922.98 23596.63 41 263480 2273.5 6354.5 14598
Call Volume 1188 24727.8 46490.39 316 569825 4786.5 10742.5 25122.5
Put Open Interest 1188 289682.5 424967 13848 4081913 79337 149361 326581.5
Call Open Interest 1188 347530.2 571795.8 9309 5501615 82379 162936.5 380733
Volume 1188 9206417 5.04e+07 291295 7.85e+08 1453632 2658246 5310385
Relative High-Low 1188 1.583 .889 .254 13.154 1.069 1.392 1.853
Amihud 1188 .419 .578 0 5.306 .074 .203 .526
Amihud High-Low 1188 .757 .757 0 6.527 .263 .534 .992
Roll Spread Measure 1188 .527 .575 0 5.948 0 .425 .794

Table 3.3: Summary Statistics Non-Expiration Days. This rows of this table shows summary
statistics as in Table 1, excluding trading days that were the last before an option expiry date.
Volatility has been excluded since it is computed only using all observations in the sample
period.

Variable Obs Mean Std. Dev. Min Max P25 P50 P75
Put Volume 23361 10883.13 21015.04 4 435505 1700 4595 11317
Call Volume 23364 18660.3 44371.65 22 1336920 2564.5 6610.5 17129
Put Open Interest 23363 272770.1 406449.1 199 4094143 73893 140068 303856
Call Open Interest 23363 342327 565197.7 236 5572699 81675 160094 378015
Volume 23364 4629294 2.39e+07 104478 4.62e+08 787406 1337523 2633981
Relative High-Low 23364 1.53 .867 .243 14.189 .961 1.317 1.848
Amihud 23364 .729 .915 0 12.874 .16 .422 .948
Amihud High-Low 23364 1.318 1.21 .001 11.967 .517 .991 1.718
Roll Spread Measure 23364 .561 .599 0 7.574 0 .433 .824
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Figure 3.2: Average trading volume. This figure shows average daily trading volume for
stocks the S&P 100 Index over the sample period. Red vertical lines mark options expiry
dates.
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3.2.6 Methodology
To measure the effect of option hedging trades on liquidity, we use time to expiry as an instru-
ment for volume. Market quality may be co-determined with option hedging volume. Indeed,
an improvement in market quality in the underlying security may trigger more trading in the
options market, which in turn generates hedging volume in the underlying. Further, there may
be unobserved factors that effect both the options market and the underlying market. Figure
3.4 shows a causation diagram.

The component of trading volume in underlying equities attributable to its options’ time-
to-expiry is exogenous, that is, trading activity in the underlying stock is only affected by the
approach of an option expiry date indirectly through option hedgers. As expiry approaches,
gamma for both put and call options near the money tends to increase resulting in larger or
more frequent delta hedging trades in the underlying stocks. We capture the hedging trades
that arise from an increase in gamma by finding the excess trading volume in the underlying
stocks during the last five trading days before an option expiry after accounting for volume
associated with a number of control variates including option open interest. This does not use
all the variation from our volume variable, but only the component attributable to a change
associated with time to expiry.

We use a two-stage least squares (2SLS) approach (Cameron & Trivedi, 2005). The method
will generally attenuate any corresponding result where liquidity is regressed directly on vol-
ume. In the first stage, volume is regressed on dummy variables for each day of options expiry
weeks and a set of control variates to control for endogenous variation in volume:

Volumei,t = β1ExpiryMondayt + ... + β5ExpiryFridayt + Γ′Xi,t + FEi,t + εi,t (3.43)
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Figure 3.3: Open interest. This figure shows average put open interest (the solid blue line) and
average call open interest (the dashed red line) for stocks the S&P 100 Index over the sample
period. Red vertical lines mark options expiry dates.
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The β j are the regression coefficients of interest for the first stage. All variables are aggregated
to the stock-date level. Γ′ is a set of regression coefficients for the matrix of covariates Xi,t

which are: dummy variables for each day of the week; a dummy variable for futures expiry
Fridays; daily open interest for put options; daily open interest for call options; daily open
interest for S&P 100 Index put options; daily open interest for S&P 100 Index call options; put
daily option trading volume; daily call option trading volume; daily trading volume for S&P
100 Index put options; daily trading volume for S&P 100 Index call options; daily absolute
change in open interest for S&P 100 Index put options; daily absolute change in open interest
for S&P 100 Index put options; daily absolute change in open interest for put options; daily
absolute change in open interest for call options; and a linear time trend. We use open interest
and option trading volumes to explain hedging volume that may be generated by activity in the
options market because these may be driven by unobserved factors that also drive liquidity in
the underlying equities. We also control for changes in open interest since a change in open
inventory necessitates a hedging adjustment and may cause trading volume in the underlying
stocks. We compute the absolute change in open interest as below:

|ChangeOpenInterestt| = |OpenInterestt − OpenInterestt−1| (3.44)

We include fixed effects by stock and option period, and cluster our standard errors at the stock
level.

We use the results of the first stage to compute the exogenous component of volumêVolumet by using the β j regression coefficients and their corresponding dummy variables.

̂Volumet = β1ExpiryMondayt + ... + β5ExpiryFridayt (3.45)
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Figure 3.4: Causation diagram. This causation diagram shows the channels through which
liquidity in the underlying stock and hedging volume are affected. Liquidity in the underlying
stock and hedging volume may directly affect each other; if liquidity improves options hedging
become less costly. This may lower the cost of options and lead to greater open interest which
results in further hedging volume in the stock. This volume may again improve liquidity.
Unobserved variables may affect both the activity in the options market and the liquidity of the
underlying stock. Time to expiry qualifies as an instrument because it does not directly affect
liquidity in the underlying stock, but only indirectly through the hedging channel.

Time to expiry 

Hedging 

volume 

Liquidity in 

stock 

Unobserved 

Figure 3.5 shows a plot of ̂Volumet versus days to expiry. There is a large increase beginning
two days from expiry while the values are small elsewhere. The nonlinear shape is expected
since options’ gammas tend to increase nonlinearly leading up to expiry. The peak of the graph
is 600000 shares at one day to expiry meaning we estimate option hedging generates around
600000 shares of trading volume on option expiry Fridays.

In the second stage, the four liquidity measures are regressed on fitted values for volume,̂Volumet.
Liquidityi,t = β ̂Volumet + Γ′Xi,t + FEi,t + εi,t (3.46)

β is the coefficient of interest and the control variables and fixed effects are identical to the first
stage. β is may be interpreted as the average marginal effect of hedging volume on liquidity.

3.2.7 Results
Table 3.4 shows the results of the first stage of the 2SLS regressions. The R2 for the first
stage regression was 0.75 and the F-statistic was 14.73, greater than the critical value of 10,
indicating that we do not have a weak instrument (Stock & Yogo, 2002).

Table 3.5 shows the results of the second stage of the 2SLS regressions. Each column
shows the regression coefficients for the four market quality measures on the variable of in-
terest, fitted values for volume, and the set of covariates. Each market quality measure had a
negative coefficient with statistical significance for the fitted values for volume: coefficients
were roughly -0.00000032, -0.00000053, -0.00000074, and -0.00000012 respectively for Rel-
ative High-Low, Amihud, and Amihud High-Low and thr Roll spread measure. This allows
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Table 3.4: Instrumental Variables Regression - First Stage. The columns of this table show
the regression coefficients for the first stage of a two-stage instrumental variables methodology
where volume is regressed on a set of covariates.

(1)
Volume

Monday Expiry Week -10642.8
(-0.22)

Tuesday Expiry Week 43814.4
(1.33)

Wednesday Expiry Week -5428.9
(-0.13)

Thursday Expiry Week 94544.2∗

(2.10)

Friday Expiry Week 611947.0∗∗∗

(8.11)

| Change Open Put Interest| 0.929
(0.27)

| Change Open Call Interest| 1.846
(0.60)

| Change Index Open Put Interest| -6.155
(-1.04)

| Change Index Open Call Interest| 14.56
(1.53)

Futures Expiry 3949165.2∗∗∗

(8.09)

Call Open Interest -0.163
(-0.14)

Put Open Interest -0.0179
(-0.02)

Put Volume 50.98∗∗∗

(8.76)

Call Volume 9.671∗∗

(2.64)

Index Put Volume 60.05∗∗∗

(5.67)

Index Call Volume 18.26∗∗

(2.74)

Index Put Open Interest -2.736
(-0.62)

Index Call Open Interest 28.03∗∗∗

(3.77)
Observations 24201

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 3.5: The exogenous component of volume.The figure shows the exogenous component
of volume ̂Volumet versus time to expiry.
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us to make the inference that an increase in hedging volume caused by time to expiry results
in an improvement in liquidity. This result is consistent with our hypothesis that price impact
decreases near option expiry as market markets compete for uninformed order flow. In the first
stage of the 2SLS regressions we estimated that hedging volume was an average of around
600000 shares on option expiry Fridays. Multiplying this average volume increase by our es-
timates for the changes in our four liquidity measures we estimate the average marginal effect
of option hedging on liquidity to be roughly 0.2 percentage points for the Relative High-Low
measure (unconditional average of 1.5), 0.3 and 0.4 percentage points per million shares for the
Amihud and Amihud High-Low measure (unconditional averages of 0.7 and 1.3 respectively),
and 0.1 percentage points for the Roll measure (unconditional average of 0.6).

3.3 Conclusions

We study the effect of hedging derivatives on liquidity in the underlying assets. We develop
a theoretical model where traders’ interactions are strategic and liquidity is endogenous, built
on the classic model of market microstructure of Kyle (1985). We assume that hedging trades
are not driven by private information, and that a market maker must learn about the hedging
activity through trading. Price impact is due to the presence of informed trades who pose ad-
verse selection risks to the market maker. Our model predicts that despite the need to learn
about the asset’s true value and hedging inventories through one anonymous order flow, liq-
uidity improves when there is more hedging. The improvement in liquidity arises from the
uninformed component of the order flow becoming larger, lessening the need for the market
maker to update prices following a trade.
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Table 3.5: Instrumental Variables Regression. The columns of this table show the regression
coefficients for the final stage of a two-stage instrumental variables methodology where four
market quality measures are regressed on fitted values of trading volume and a set of covariates.̂Volume is the exogenous component of volume constucted from the first stage regression.

(1) (2) (3) (4)
Relative High-Low Amihud Amihud High-Low Roll Spread MeasurêVolume -0.000000322∗∗∗ -0.000000525∗∗∗ -0.000000736∗∗∗ -0.000000123∗

(-4.86) (-5.24) (-5.28) (-2.34)

| Change Open Put Interest| 0.000000262 -2.38e-09 0.000000692 -0.000000297
(0.29) (-0.00) (0.28) (-0.76)

| Change Open Call Interest| 0.00000146 0.00000115 0.00000162 0.000000991
(1.54) (0.73) (0.70) (1.55)

| Change Index Open Put Interest| -0.0000323∗∗∗ -0.00000775 -0.0000258∗∗∗ -0.00000274
(-8.71) (-1.93) (-4.42) (-1.11)

| Change Index Open Call Interest| 0.0000378∗∗∗ 0.0000142∗ 0.0000273∗∗∗ 0.0000114∗∗

(8.43) (2.46) (3.44) (3.26)

Futures Expiry 1.611∗∗∗ 1.758∗∗∗ 2.540∗∗∗ 0.550∗

(6.26) (5.89) (6.15) (2.42)

Call Open Interest 0.000000452 -7.27e-08 -0.000000190 0.000000260
(1.14) (-0.13) (-0.23) (1.59)

Put Open Interest -0.000000700 -0.000000221 -0.000000171 -0.000000306
(-1.81) (-0.36) (-0.20) (-1.60)

Put Volume 0.0000303∗∗∗ 0.0000283∗∗∗ 0.0000374∗∗∗ 0.0000101∗∗∗

(6.21) (5.13) (4.96) (3.36)

Call Volume 0.00000464∗∗ 0.00000540∗ 0.00000706∗ 0.00000142
(2.62) (2.38) (2.26) (1.83)

Index Put Volume 0.000101∗∗∗ 0.0000377∗∗∗ 0.0000614∗∗∗ 0.00000819∗

(15.10) (5.13) (5.73) (2.00)

Index Call Volume 0.0000309∗∗∗ 0.0000643∗∗∗ 0.0000232∗∗∗ 0.0000319∗∗∗

(5.12) (8.34) (3.61) (8.80)

Index Put Open Interest -0.00000864∗ 0.00000272 -0.0000147∗∗∗ 0.0000115∗∗∗

(-2.53) (0.70) (-3.51) (3.79)

Index Call Open Interest 0.0000426∗∗∗ 0.00000614 0.0000323∗∗∗ 0.0000167∗∗∗

(8.83) (1.37) (4.84) (5.49)
Observations 24201 24201 24201 24201

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



3.3. Conclusions 93

We test the model’s predictions empirically and verify the effect for a set of stocks which are
used to hedge options. Using a 2SLS regression, we find the component of trading volume that
is driven by options’ time to expiry. We assume that as option expiries approach, an increase in
options’ gamma results in an increase in hedging volumes, and that this time-to-expiry effect is
exogenous to liquidity in the underlying stocks. We find increased trading volumes in the last
two days before option expiries, and that the increased volume results in improved measures
of liquidity, including a measure of price impact.

Our model of liquidity and option hedging is at the intersection of two streams of literature:
market microstructure, which tends to derive liquidity parameters endogenously while simpli-
fying other assumptions, and the options pricing literature, which tends to assume liquidity
is exogenous. Our model provides evidence that in certain situations, hedgers should expect
improved market quality through lower price impact and lower bid-ask spreads. Some studies
with exogenous liquidity derive that option hedging may result in an increase in volatility and
price jumps when asset prices and option strike prices approach certain critical values. Our
model provides evidence of a natural mechanism that should partially correct for these pre-
dicted effects. When hedgers are present, prices may be less sensitive to trading volume if it is
known by market makers to be generated by hedging rather than informed speculation.

There are potentially ways to generalize our model framework that would be interesting
in future work. We assume that informed traders are short-lived, but one could relax the as-
sumption and try to include dynamic strategies for informed traders. One challenge that arises
is that the informed traders will have better information about hedging inventories than the
market maker. Since informed traders know the size of their own trades, they will be able to
infer hedging traders by observing aggregate trading volumes using a less noisy signal than the
market maker. This may result in a further improvement in liquidity if informed traders adjust
their strategies to offset rather than amplify hedging trades. Another generalization could be
for hedgers to trade strategically. If improved liquidity causes hedgers to trade more, liquidity
may improve further. Last, it would be interesting to derive results with a risk-averse market
maker. Since the variance of the market maker’s belief about fundamentals increases with each
trade, it may be that a risk-averse market maker offers worse liqudity, or that results on liquidity
are ambiguous.
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Appendix A

Chapter 2 Proofs

A.1 Bid and Ask Prices
We can substitute Ei

m[ν] = pi since ν takes the value of either 1 or 0, where Ei
m is the expectation

with respect to the market maker’s information set. After distributing the expectation operator,
Equations 2.1 and 2.2 may be written as((

β

2
−

1
2

)
(ai − pi) +

β (pi − ai + c (ai − bi))
2

)
(α − 1) + α pi (ai − 1) (A.1)

α bi (pi − 1) −
((
β

2
−

1
2

)
(bi − pi) −

β (bi − pi + c (ai − bi))
2

)
(α − 1) (A.2)

and solving yields the formulas in 2.3.

A.2 Proof of Proposition 2.3.1
Differentiating si(β) gives

8α c pi (1 − α)(1 − pi)(
4α2 p2

i − 4α2 pi + α2 − 2 β cα + 2 β c − 1
)2 (A.3)

which is greater than zero; the denominator is greater than zero as it squared and the numerator
because all variables are between zero and one.

A.3 Proof of Proposition 2.3.2
This proof uses the technique of Glosten and Milgrom (1985) and Diamond and Verrecchia
(1987). Let κAi

ν̃ be the conditional probability of the action Ai given ν̃ = ν̄ or ν̃ = ν and let
φi := log( κν̄(Ai)

κν(Ai)
) = log(ξi). The values of κAi

ν̃ are given in Table A.1. Given the relation

log(λi) =
∑
i=n

φi, (A.4)
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Table A.1: Conditional Probabilities. This table shows the probabilities of each of the prob-
abilities κν̃, which are conditional on the asset’s true value.

Action Ai κν̄(Ai) κν(Ai)

Institutional buy Ibuy
2α+(1−α)(1−β)

2
(1−α)(1−β)

2

Institutional sell Isell
(1−α)(1−β)

2
2α+(1−α)(1−β)

2

Retail buy Rbuy
β(1−α)

2
β(1−α)

2

Retail sell Rsell
β(1−α)

2
β(1−α)

2

the strategy is to apply Wald’s lemma to the two cases of ν̃ = ν and ν̃ = ν̄ separately.
Without loss of generality consider the hypothesis ν̃ = ν̄. In this case the market maker

is able to confirm this hypothesis with some certainty if λi reaches the upper boundary H
and reject the hypothesis with some certainty if λi reaches the lower boundary L. Let N be
the stopping time corresponding to λi reaching either H or L and applying Wald’s lemma to
Equation A.41,

Eν̄[log(λi)] = Eν̄[N]Eν̄[φ1] (A.5)

where Eν̄ denotes the expectation conditional on ν̃ = ν̄.
The expected hitting time is finite because the probability a path that stays within the two

boundaries is zero. The probability of a path that stays in state k forever is the probability of
failing to ever leave the state

∏∞
n=1(1 − c) = 0 for c > 0. An inductive argument can be used to

show that this is true for any set of neighbouring states defined by two boundaries.
Consider Eν̄[log(λi)]. Given N = Ñ, log(λÑ) = log(H) or log(λÑ) = log(L). The probability

of either value can be calculated path-wise over the process λi. Let the set of paths of λi that
reach H first given N = Ñ be {U j} and the set of paths that reach L first given N = Ñ be {L j}.
Using the above notation,

Eν̄[log(λi) | N = Ñ] =
∑

j

Pr(U j | ν̃ = ν̄) log(H) +
∑

j

Pr(L j | ν̃ = ν̄) log(L). (A.6)

The probability of any particular path U j given ν̃ = ν̄ is the product of probabilities of the
elements in the sequence of corresponding actions {A j

i } given ν̃ = ν̄;

Pr
ν̄

(U j | ν̃ = ν̄) =
∏

i

Pr(A j
i | ν̃ = ν̄) =

∏
i

κν̄(A
j
i ) =

∏
i

κν̄(A
j
i )

κν(A
j
i )
κν(A

j
i ) (A.7)

=
∏

i

λiκν(A
j
i ) = H

∏
i

κν(A
j
i ) = H Pr(U j | ν̃ = ν) (A.8)

Summing over all paths U j,

Pr(λÑ = H | ν̃ = ν̄) = H
∑

j

∏
i

κν(A
j
i ) = H Pr(λÑ = H | ν̃ = ν). (A.9)

1A statement of Wald’s lemma can be found here: https://en.wikipedia.org/wiki/Wald%27s
equation.

https://en.wikipedia.org/wiki/Wald%27s_equation
https://en.wikipedia.org/wiki/Wald%27s_equation
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A similar argument gives the relation Pr(λÑ = L | ν̃ = ν̄) = L Pr(λÑ = L | ν̃ = ν) which can be
used to find Pr(λÑ = H | ν̃ = ν̄);

Pr(λÑ = H | ν̃ = ν̄) = H Pr(λÑ = H | ν̃ = ν) (A.10)
= H(1 − Pr(λÑ = L | ν̃ = ν))

= H(1 −
1
L

Pr(λÑ = L | ν̃ = ν̄)) (A.11)

= H(1 −
1
L

(1 − Pr(λÑ = H | ν̃ = ν̄)))

⇒ Pr(λÑ = H | ν̃ = ν̄) =
H(1 − L)

H − L
.

The remaining probabilities can be computed in a similar way as

Pr(λÑ = L | ν̃ = ν̄) =
L(H − 1)

H − L
, (A.12)

Pr(λÑ = H | ν̃ = ν) =
1 − L
H − L

,

Pr(λÑ = L | ν̃ = ν) =
H − 1
H − L

.

The above relations allow Eν̄[log(λi)] to be explicitly written as

H(1 − L)
H − L

log(H) +
L(H − 1)

H − L
log(L). (A.13)

Next, consider Eν̄[φ1]. This can be calculated using Table A.1 and Equation 2.6;

Eν̄[φ1] =
∑
A∈A

Pr(A | ν̃ = ν̄) log(
κν̄(A)
κν(A)

) =
∑
A∈A

κν̄(A) log(
κν̄(A)
κν(A)

) (A.14)

= α log(
2α + (1 − α)(1 − β)

(1 − α)(1 − β)
).

Substituting Equations A.13 and A.14 into Equation A.5 and rearranging yields

Eν̄[N] =

H(1−L)
H−L log(H) +

L(H−1)
H−L log(L)

α log(2α+(1−α)(1−β)
(1−α)(1−β) )

. (A.15)

Similarly,

Eν[N] =

(1−L)
H−L log(H) +

(H−1)
H−L log(L)

α log(2α+(1−α)(1−β)
(1−α)(1−β) )

. (A.16)

Combining the above into one ratio test to accept ν = ν̄ and reject ν = ν simultaneously or
accept ν = ν and reject ν = ν̄ simultaneously by equating Eν[N] and Eν̄[N] yields L = 1

H and
the desired result.
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A.4 Alternate Proof of Proposition 2.3.2
We can also prove the Proposition 2.3.1 using a difference equation. Let Ek be the expected
number of rounds of trading until the log-likelihood log(λi) hits either the upper boundary
log(H) or the lower boundary log(1/H) beginning from state k. Here, k belongs to the nat-
ural numbers corresponding to an enumeration of the set of possible states with log(λi) = 0
corresponding to k = 0.

We have the difference equation

Ek = 1 + uEk+1 + dEk−1 + (1 − u − d)Ek

⇒ Ek =
1 + uEk+1 + dEk−1

u + d
(A.17)

where k is the initial state, u is the probability of and upward move on the lattice, u is the
probability of a downward move on the lattice, and 1 − u − d is therefore the probability of
remaining in a given state which happens in the event of a retail trade. The general solution of
the homogeneous equation is of the form wk + b. Substituting into the homogeneous difference
equation and solving for b yields 1 and d

u and therefore the general solution A + B(d
u )k. To

obtain a particular solution, we try the ansatz Ck. Substituting into the equation above gives
C = 1

d−u . So the solution of the difference equation has the form A + B(d
u )k + k

d−u .
Let the upper barrier in units of k be h and the lower barrier in units of k be l. We can use

the boundary conditions Eh = El = 0 to find A and B. Solving for A and B yields

A =
l(d

u )h − h(d
u )l

(d − u)(( d
u )h − ( d

u )l)

B =
h − l

(u − d)(( d
u )h − ( d

u )l)
.

We are interested in E0, for which the solution is

E0 =
h( d

u )l − l(d
u )h + l − h

(d − u)(( d
u )h + ( d

u )l)
.

Choosing the lower boundary to be −h, as explained above, simplifies the expectation to be

E0 =
h(d

u )−h + h(d
u )h − 2h

(d − u)(( d
u )h + (d

u )−h)

=
h((d

u )h − 1)

(d − u)(( d
u )h + 1)

. (A.18)

To make this comparable to the formula in Proof of Proposition 2.3.2, we must translate the
probabilities u and d into probabilities of informed, uninformed and institutional trades, and
translate the boundary h to the step sizes of the log-likelihood ratio rather than unit steps that
were used to set up the difference equation. We can consider the market maker’s Bayesian
updates for institutional and retail trades given in Equation 2.6. Taking logs, we see that
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the log-likelihood ratio is either unchanged in the event of a retail trade, or increases by
± log(2α+(1−α)(1−β)

(1−α)(1−β) ). Therefore, we have the relation h log(2α+(1−α)(1−β)
(1−α)(1−β) ) = log(H) to convert

the number of steps h into units of the lattice of the log-likelihood ratio.
The difference equation in Equation A.17 gives the probability of the log-likelihood ratio

remaining constant as 1 − u − d. This corresponds to a retail trade so we have the relation β =

1 − u − d. Institutional buy and sell orders correspond to u and d respectively. The probability
of an institutional buy order given ν = ν̄ is given by u =

2α+(1−α)(1−β)
2 , and an institutional sell

order given ν = ν̄ by d =
(1−α)(1−β)

2 . Therefore, the ratio u
d that appears in Equation A.18 is equal

to 2α+(1−α)(1−β)
(1−α)(1−β) . The expression ( u

d )h in Equation A.18 becomes (2α+(1−α)(1−β)
(1−α)(1−β) )

log(H)

log( 2α+(1−α)(1−β)
(1−α)(1−β) ) . Using

the change of base formula for logarithms, the expression becomes simply 1
H .

Using the above simplifications, Equation A.18 becomes

log(H)( 1−H
1+H )

α log(1 + 2α
(1−α)(1−β) )

.

which matches Equation 2.8.

A.5 Proof of Proposition 2.3.3
Let Gk be the probability of log(λi) hitting the upper boundary log(H) before the lower bound-
ary log( 1

H ) given the initial state is k. The difference equation below for Gk described how these
probabilities evolve as the log-likelihood ratio moves from state to state:

Gk = uGk+1 + dGk−1 + (1 − u − d)Gk (A.19)

=
uGk+1 + dGk−1

u + d
, (A.20)

The equation is homogeneous with general solution A + B( u
d )k. The boundary conditions

Gh = 1 and Gl = 0 can be used to find A and B.

A = −
1

( d
u )2h − 1

(A.21)

B =
( d

u )h

(d
u )2h − 1

. (A.22)

We can use A and B above to find G0

G0 =
1

( d
u )h + 1

.

Using (d
u )h = 1

H we have

G0 =
H

H + 1
.

Therefore, the probability of an error in accepting the hypothesis is 1 − H
H+1 = 1

H+1 .
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A.6 Proof of Lemma 2.4.1
As was shown at in Equation 2.9 profits at inner price pair {xl, xh} are independent of the market
maker’s prior pi and are positive as long as α < 1 − 2xl. The market maker is competitive, so
if there is a bid-ask pair that yields positive expected profits that are lower than they are for the
pair {xl, xh}, he will adjust prices. Since expected profits at the pair {xl, xh} are constant in the
prior pi, then if expected profits at another pair are increasing or decreasing in pi there will be
a point at which the market maker will prefer to quote the other pair. Consider {xh, xH}; the
market maker’s expected profit is:

(xH + xh − 1)αpi − (xH + xh)α2 + xH−xh
2

2

which is linear in pi. The expected profits from the higher price pair are computed using the
same logic as for Equation 2.9 where the expectation is over the probability of an informed
order being fast α, the probabilities of the informed trader submitting a market order ρ̄ and ρ,
the asset’s value being high pi, and the probabilities of the noise trader’s actions. Note that
the expected profit is independent of ρ̄ and ρ. To see why, consider the expected profit from
quoting {xh, xH} given that the asset’s value is high:

α(ρ̄
(xH − 1)

2
+ (1 − ρ̄)

(xH − 1)
2

) + (1 − α)(
xH − 1

4
+

1 − xh

4
)

=

xH−xh
2 + α( xH+xh

2 − 1)
2

.

The strategy ρ̄ cancels because the market maker’s losses are the same regardless of whether
the informed trader submits a market order or a limit order; he is selling an asset worth a for
the price hH < 1. The same is true for the expected value given the asset’s true value is low;
the market maker’s expected profits are independent of ρ. Similar logic holds for the lower
price pair. The fact that the market maker’s expect profits are independent of the informed
trader’s strategy is important because it means the thresholds θ̄ and θ do not depend on ρ̄ and
ρ. Otherwise, we would have a free boundary problem that would likely lead to intractability.

A numerical example is shown in Figure 2.7; the market maker will prefer to quote the
higher prices when his prior rises above a certain threshold θ̄ because expected profits for the
higher price pair are increasing in his prior. The figure shows a region where expected profits
from the higher price pair are greater than zero and less than for the inner price pair.

A.7 Proof of Proposition 2.4.2
The general approach of the proof is as follows: we begin by using a result in Stokey, Lucas,
and Prescott (1989) to show that a Bellman equation can be applied to solve the informed
trader’s problem of maximizing the sequence of per-period profits. We then conjecture that
the optimal strategy is independent of the state variable in the limit as H goes to infinity.
We will conjecture a constant strategy function ρ∗i (pi) = ρ∗ as the solution to a particular
maximization problem based on Wald’s lemma, and derive the first-order condition that ρ∗
must satisfy. We will then show that the solution to the Bellman equation must satisfy the same
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first-order condition in the limit as H becomes infinitely large. We will conclude that when H
is large, we can approximate the optimal strategy with our conjecture ρ∗i . The more general
optimization when H is finite is intractable because the state may move with different step
sizes which complicates outcomes near the boundaries, and makes techniques like backward
induction difficult. In taking the limit as H becomes large, we are able avoid the intractable
nature of the boundaries because the state is always sufficiently far from them.

We must define the elements of the optimization problem more formally so we can follow
Stokey et al. (1989) Chapter 4 to prove the equivalence of optimizing the sequence of per
period profits and solving the corresponding Bellman equation. Let f (ρ) be per period profits
as defined in Equation 2.16 when market maker’s log-likelihood ratio log( pi

1−pi
) is strictly within

the boundaries log(H) and − log(H), and zero otherwise. Let the state variable be the market
maker’s prior pi for pi ∈ [ H

H+1 ,
1

H+1 ] (the interval corresponds to the boundaries at which the
market maker moves the prices) with absorbing boundaries corresponding to the log-likelihood
ratio log( pi

1−pi
) at log(H) and − log(H); p = H

H+1 when log( pi
1−pi

) hits or passes log(H) and
p = 1

H+1 when log( pi
1−pi

) hits or passes − log(H).
Let the continuation values for the informed trader corresponding to state variable hitting

either the upper or lower a boundary respectively be V̄ and V . Let the time of hitting be N, so
that V(pN) = V or V(pN) = V̄ and V(pi) = 0 for all i > N. The assumption is that the informed
trader receives a one-time payment of the continuation value at the hitting time and nothing
thereafter. The continuation values can be thought of as the value the beginning a new game at
revised prices, either higher or lower than current prices.

The informed trader’s problem is to maximize the expected sequence of per-period profits:

sup
{0≤ρi≤1}

E[
∑

i

f (ρi)] (A.23)

subject to the market maker updating the prior pi according to the Bayesian updating rules
defined in Equation 2.10, given some initial prior p0, and where i indexes the times for which
the log-likelihood ratio is within the boundary. The associated Bellman equation is

V(pi) = sup
0≤ρi≤1

E[ f (ρi) + V(pi+1)|ρi] (A.24)

again, subject to the market maker updating the prior pi according to the Bayesian updating
rules defined in Equation 2.10.

From Stokey et al. (1989) Chapter 4, to show the equivalence of the above equations, the
following must hold: for any value of the state variable, the following state as determined by
the “law of motion” (in this case the Bayesian updates in Equation 2.10) is in the state space;

and limn→∞ E[
n∑

i=1
f (ρi)] exists for all possible strategies and all initial values p0. The former is

true in our case since we have absorbing boundaries at H
H+1 and 1

H+1 which are part of the state
space; the latter is less obvious but still straightforward. The limit exists because all per-period
profits are finite and positive and, by similar logic to Proposition 2.3.2, the expected number
of trades before either an upper or lower boundary is hit is finite. From Stokey et al. (1989)
Chapter 4, we also need the following boundedness condition on V(pi): limn→∞ V(ρn) = 0 for
all possible sequences {pi}. The assumption holds because the expectation of the hitting time
N is finite and by definition V(pi) for i > N is 0. Given the above, we can say that a solution to
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the Bellman equation, that is, a function ρi(pi), is unique and maximizes the expected sequence
of per-period profits. The reverse also holds, that a function that maximizes the expected per-
period profits also satisfies the Bellman equation.

We conjecture that the optimal strategy is the constant ρ̄ = ρ = ρ∗. If this is true, the

informed trader’s profits are given by E[
N∑

n=1
f (ρ∗) + V(pN)|ρ∗], the expected sum of per-period

profits plus the continuation value, where N is the stopping time corresponding to the upper
or lower thresholds at which the market maker prefers to adjust his quotes, and V(pN) is the
continuation value at N, either at the high or low boundary. We can use Wald’s lemma to find
a guess for the form of the sum of the informed trader’s per-period trading profits

E[
N∑

n=1

f (ρ∗)] = E[ f (ρ∗)]E[N|ρ∗]

= E[ f (ρ∗)]
E[h(pi)|ρ∗]
E[g(ρ∗)|ρ∗]

:= f ∗(ρ∗)
h∗(pi)
g∗(ρ∗)

(A.25)

where h(pi) = log( pN
1−pN

), the distance the log-likelihood ratio moves from a given state pi to the
upper or lower boundaries; g(ρ∗) is the additive update to the market maker’s log-likelihood
ratio following a trade; and f (ρ∗) is per-period profit. Let starred functions f ∗, g∗, and h∗

denote the corresponding functions under expectation given ρ∗. The first equality in Equation
A.25 is possible because the assumption of a constant solution ρ∗ results in independence of
per-period profit the expected value of N. The second equality is due to the application of
Wald’s lemma, as used in the proof of Proposition 2.3.2. Putting the above together with the
expected boundary condition we guess the form of the value function which we denote V∗(pi):

V∗(pi) := f ∗(ρ∗)
h∗(pi)
g∗(ρ∗)

+ k∗(pi) (A.26)

where k∗(pi) denotes the expected value to the informed trader when the market maker moves
his quote, the expected continuation value. We will assume ρ∗ maximizes the function in
Equation A.26 and use the functional form to prove that ρ∗ is an optimal strategy under certain
conditions.

Note that only h∗ and k∗ are functions of the state pi. This is because expected per-period
profits f ∗ and the expected first step g∗ are independent of the market maker’s prior, while
the expected value of the log-likelihood ratio h∗ depends on the distance of the prior pi to the
boundary H, as does the expected continuation value k∗. Also note that h∗ and k∗ are indepen-
dent of ρ∗. The reasoning has been shown for an analogous case in the proof of Proposition
2.3.2 where the numerator is only a function of H. We will give details on the functional forms
further below.

To prove the optimal strategy is the constant ρ∗, it is sufficient to show that if ρ∗ maximizes
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the value function V∗ conjectured above, it simultaneously solves the Bellman equation,

ρ̂ = arg max
0≤ρ≤1

E[ f (ρ) + V∗(pi+1)|ρ] (A.27)

= arg max
0≤ρ≤1

E[ f (ρ) + f ∗(ρ∗)
h∗(pi+1(ρ))

g∗(ρ∗)
+ k∗(pi+1(ρ))|ρ]

We have written h∗ and k∗ as functions of ρ to show the dependence which is due to the fact
that the state pi+1 is not taken as given, but depends on the choice of ρ. Towards showing the
equivalence of Equation A.26 and Equation A.27, it is useful to write the first-order condition
satisfied by ρ∗ in Equation A.26. Differentiating with respect to ρ∗ and using the product rule,

Dρ∗[ f ∗(ρ∗)
h∗(pi)
g∗(ρ∗)

+ k∗(pi)]

= Dρ∗[ f ∗(ρ∗)]
h∗(pi)
g∗(ρ∗)

− f ∗(ρ∗)
h∗(pi)
g∗2(ρ∗)

Dρ∗[g∗(ρ∗)] = 0

⇒ Dρ∗[ f ∗(ρ∗)] −
f ∗(ρ∗)
g∗(ρ∗)

Dρ∗[g∗(ρ∗)] = 0. (A.28)

where D is the differential operator. We have used the fact that k∗ and h∗ are independent of
ρ∗. We will show that the first-order condition necessary to solve Equation A.27 is the same
as the first-order condition above in Equation A.28 when H is large. Consider the first-order
condition for Equation A.27. After distributing the expectation operator we have

E[V(pi)] = E[ f (ρ)] + E[ f ∗(ρ∗)
h∗

(
pi+1(ρ)

)
g∗(ρ∗)

+ k∗
(
pi+1(ρ)

)
|ρ]

= f ∗(ρ) +
f ∗(ρ∗)
g∗(ρ∗)

E[h∗
(
pi+1(ρ)

)
+ g∗(ρ∗)k∗

(
pi+1(ρ)

)
|ρ]. (A.29)

In the equalities above we have used the definition of f ∗ and the fact that f ∗(ρ∗) and g∗(ρ∗) are
independent of pi+1 and therefore ρ. Differentiating with respect to ρ yields

Dρ[ f ∗(ρ)] +
f ∗(ρ∗)
g∗(ρ∗)

Dρ

[
E[h∗

(
pi+1(ρ)

)
+ g∗(ρ∗)k∗

(
pi+1(ρ)

)
|ρ]

]
. (A.30)

Comparing Equation A.30 with Equation A.28, we see that the terms in the first terms are
equivalent, as are the coefficients for second. We will show Dρ

[
E[h∗

(
pi+1(ρ)

)
+k∗

(
pi+1(ρ)

)
g∗(ρ∗)|ρ]

]
and −Dρ∗[g∗(ρ∗)] are equal when H is large to complete the proof.

First, consider −Dρ∗[g∗(ρ∗)] = −Dρ∗
[
E[g(ρ∗)|ρ∗]

]
. g∗ is the expected “first step” taken by

the log-likelihood ratio. Since each random variable is discrete, the expectation takes the form
of a sum of probabilities times corresponding update factors to the log-likelihood ratio ξ j(ρ∗)
over possible outcomes LBMB etc. Let the probabilities be η j(ρ∗). Expanding,

−Dρ∗[g∗(ρ∗)] = −Dρ∗
[
E[g(ρ∗)]

]
= −Dρ∗

[∑
j

η j(ρ∗) log(ξ j(ρ∗))
]

= −
∑

j

Dρ∗[η j(ρ∗) log(ξ j(ρ∗))]

= −
∑

j

(
Dρ∗[η j(ρ∗)] log(ξ j(ρ∗)) +

η j(ρ∗)
ξ j(ρ∗)

Dρ∗[ξ j(ρ∗)]
)
. (A.31)
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Second, consider Dρ

[
E[h∗

(
pi+1(ρ)

)
+ g∗(ρ∗)k∗

(
pi+1(ρ)

)
|ρ]

]
. We will need details on the form

of h∗
(
pi+1(ρ)

)
and k∗

(
pi+1(ρ)

)
. h∗ is the expected value of the log-likelihood ratio and k∗ is

the expected continuation value when the market maker revises his prices, either up or down.
We can rewrite these expectations using the probability that the log-likelihood ratio crosses
the upper boundary before the lower. Since our guess of the value function was based on
the constant strategy ρ∗, the probability of revising prices up rather than down is analogous
to the formula proved in Proposition 2.3.3 and is a function of the state variable alone (the
market maker’s prior) and not the strategy ρ∗. Recall from the proof of Proposition 2.3.2,
the probability of the market maker’s likelihood ratio λi hitting the upper boundary H first,
beginning from the state of λi = 1, is H(1−L)

H−L (using the notation of that proof). Therefore, after
the market maker revises his likelihood ratio λi by multiplying by a factor ξi(ρ), the probability

becomes
H
ξi(ρ) (1−ξi(ρ)L)

H
ξi(ρ)−ξi(ρ)L

which simplifies to H
H+ξi(ρ) using H = 1

L . Note that each ξi depend on ρ.

We will use the probabilities of quoted prices being revised up, H
H+ξi(ρ) , and down, ξi(ρ)

H+ξi(ρ) ,
to rewrite h∗

(
pi+1(ρ)

)
+ g∗(ρ∗)k∗

(
pi+1(ρ)

)
as a binary outcome. The expected values of the log-

likelihood ratio E[log( pN
1−pN

)| pN
1−pN

≥ H] when a boundary is crossed are not straightforward to
calculate. In the proof of Proposition 2.3.2 we were able to use that fact that E[log( pN

1−pN
)| pN

1−pN
≥

H] = log(H) because in the model developed in Section 2.3, the log-likelihood ratio moved
on a lattice; since log(H) was chosen on the lattice, the value of the log-likelihood ratio was
exactly the boundary at its hitting time. However, in model in Section 2.4 the log-likelihood
ratio is not confined to a simple lattice. The log-likelihood ratio can take any value of

w0 log(LBMB) + w1 log(QBMS ) + w2 log(QS MB)
+w3 log(QS MS ) + w4 log(QS R) + w5 log(QBR) (A.32)

for any value of w0, ...,w5 ∈ Q. Since each of the Bayesian update factors LBMB etc. are real
functions of ρ, it is not necessarily possible to constrain log(H) to be both the boundary and
the value of the log-likelihood ratio. The process will almost surely overshoot the boundary.

However, when H is large the problem of overshooting becomes negligible. The expected
value of the log-likelihood ratio at its hitting time is at most greater than a boundary by the
maximum of the summands written in A.32. Let E[log( pN

1−pN
)| pN

1−pN
≥ H] = log(H) + d0 and

E[log( pN
1−pN

)| pN
1−pN

≤ 1
H ] = − log(H)−d1 where d0 and d1 are finite adjustments in the expectation

needed to account for the variety of values taken on by the log-likelihood ratio at its hitting
time. We will see that d0 and d1 are negligible when H is large.

The numerator derived from Wald’s lemma h∗(p j) represents the expected distance the log-
likelihood ratio moves from some initial state p j which we had previously taken to be 1

2 in
the proof of Proposition 2.3.2. We will need adjust the formula to incorporate the possible
future states p j+1 after a trade to use the formula appropriately. After an update to the log-
likelihood ratio by adding a factor log(ξ j), the distance from the upper boundary has decreased
by that amount and so the relevant term that should enter into the value function at pi+1 is
log(H)− log(ξ j(ρ)). The values V̄ and V in the expression k∗ are the high and low continuation
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values. We can now write h∗(pi+1(ρ)
)

+ g∗(ρ∗)k∗
(
pi+1(ρ)

)
in terms of H and ξ j(ρ):

h∗(pi+1(ρ)
)

+ g∗(ρ∗)k∗
(
pi+1(ρ)

)
=

H
H + ξ j(ρ)

(
log(H) − log(ξ j(ρ)) + d0 + g∗(ρ∗)V̄

)
+

ξ j(ρ)
H + ξ j(ρ)

(
− log(H) + log(ξ j(ρ)) − d1 + g∗(ρ∗)V

)
=

Hd0 − d1ξ j(ρ) + g∗(ρ∗)(HV̄ + ξ j(ρ)V) + (H − ξ j(ρ)) log( H
ξ j(ρ) )

H + ξ j(ρ)
. (A.33)

Note that the continuation values V̄ and V appear grouped together in Equation A.33 as
HV̄+ξ j(ρ)V

H+ξ j(ρ) , which is proportional to the value function. The variables V̄ and V have an intuitive
impact on the value function: when V is large relative to V̄ , the value function is more sensitive
to the informational impact a given trade because of the Bayesian update factor ξ j(ρ); future
profits diminish quickly when the state variable moves closer to the smaller continuation value
V̄ . Therefore, the informed trader puts more weight on the informational impact of trades rather
than current profit the larger V − V̄ is. Indeed, the term V − V̄ appears in the derivative of the
value function in Equation A.34.

Rewriting Dρ

[
E[h∗

(
pi+1(ρ)

)
+ g∗(ρ∗)k∗

(
pi+1(ρ)

)
|ρ]

]
using Equation A.33 we have:

Dρ[
[
E[h∗

(
pi+1(ρ)

)
+ g∗(ρ∗)k∗

(
pi+1(ρ)

)
|ρ]

]
= Dρ

[∑
j

η j(ρ)
(Hd0 − d1ξ j(ρ) + g∗(ρ∗)(HV̄ + ξ j(ρ)V) + (H − ξ j(ρ)) log( H

ξ j(ρ) )

H + ξ j(ρ)

)]

=
∑

j

Dρ[η j(ρ)]
(Hd0 − d1ξ j(ρ) + g∗(ρ∗)(HV̄ + ξ j(ρ)V) + (H − ξ j(ρ)) log( H

ξ j(ρ) )

H + ξ j(ρ)

)

+ η j(ρ)
(−Hξ j(ρ)(d0 + d1 − g∗(ρ∗)(V − V̄)) − H2 + 2Hξ j(ρ) log( H

ξ j(ρ) ) + ξ j(ρ)2

ξ j(ρ)(H + ξ j(ρ))2

)
Dρ[ξ j(ρ)]

(A.34)

where we have used the product rule over η j(ρ) and the expression in large parentheses, then
the chain rule on the expression in large parentheses.

We will now take the limit as H goes to infinity. Consider the derivative of each of the
η j(ρ). The expectation over the η j(ρ) has the form

α(ρ(
A
2

+
B
2

) + (1 − ρ)((1 − β)(
C
2

+
D
2

) + β(E))) (A.35)

which comes from the probability of the informed trader’s order being accepted α; the proba-
bility of the informed trader submitting a market order ρ; the probability of a retail market order
β; and the probabilities of uninformed buy and sell limit and market orders, each of which are
1
2 . The variables A through E represent possible outcomes in the expectation corresponding to
LBMB, QBMS etc. The derivative with respect to ρ is α( A

2 + B
2 − (1− β)(C

2 + D
2 )− β(E)). Notice

that is if A = B = C = D = E then the derivative is zero. Therefore any common additive
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component over j of
Hd0−d1ξ j(ρ)+g∗(ρ∗)(HV̄+ξ j(ρ)V)+(H−ξ j(ρ)) log( H

ξ j(ρ) )

H+ξ j(ρ) over j will cancel. Reorganizing
the expression:

Hd0 − d1ξ j(ρ) + g∗(ρ∗)(HV̄ + ξ j(ρ)V) + (H − ξ j(ρ)) log( H
ξ j(ρ) )

H + ξ j(ρ)

=
Hd0 + g∗(ρ∗)HV̄

H + ξ j(ρ)
+
−d1ξ j(ρ) + g∗(ρ∗)ξ j(ρ)V − ξ j(ρ) log( H

ξ j(ρ) )

H + ξ j(ρ)

−
H log(ξ j(ρ))

H + ξ j(ρ)
+

H log(H)
H + ξ j(ρ)

. (A.36)

Consider each summand above separately: Hd0+g∗(ρ∗)HV̄
H+ξi(ρ) becomes d0 + g∗(ρ∗)V̄ as H goes to

infinity which is independent of j and therefore cancels as a common additive component

over j;
−d1ξ j(ρ)+g∗(ρ∗)ξ j(ρ)V−ξ j(ρ) log( H

ξ j(ρ) )

H+ξ j(ρ) goes to zero as H goes to infinity; and H log(ξ j(ρ))
H+ξ j(ρ) goes to

log(ξ j(ρ)) as H goes to infinity. Finally, we will show that H log(H)
H+ξ j(ρ) cancels as a common additive

component over j as H goes to infinity. As an illustration, consider H log(H)
H+ξ1(ρ) −

H log(H)
H+ξ2(ρ) :

H log(H)
H + ξ1(ρ)

−
H log(H)
H + ξ2(ρ)

=
log(H)(1 +

ξ2(ρ)
H ) − log(H)(1 +

ξ1(ρ)
H )

(1 +
ξ1(ρ)

H )(1 +
ξ2(ρ)

H )

=
log(H) ξ2(ρ)

H − log(H) ξ1(ρ)
H

(1 +
ξ1(ρ)

H )(1 +
ξ2(ρ)

H )
, (A.37)

which goes to zero as H goes to infinity. The mechanics of Equation A.37 are the similar in
the sum α( A

2 + B
2 − (1− β)(C

2 + D
2 )− β(E)) if A through E are replaced by H log(H)

H+ξ j(ρ) for j equal to 1
through 5; the log(H) terms cancel. Putting the above together, we have in the limit as H goes
to infinity,

lim
H→+∞

∑
j

Dρ[η j(ρ)]
(Hd0 − d1ξ j(ρ) + g∗(ρ∗)(HV̄ + ξ j(ρ)V) + (H − ξ j(ρ)) log( H

ξ j(ρ) )

H + ξ j(ρ)

)
= −

∑
j

Dρ[η j(ρ)] log(ξ j(ρ)). (A.38)

Taking the limit of
−Hξ j(ρ)(d0+d1+g∗(ρ∗)(V̄−V))−H2+2Hξ j(ρ) log( H

ξ j(ρ) )+ξ j(ρ)2

ξ j(ρ)(H+ξ j(ρ))2 as H goes to infinity gives
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1
ξ j(ρ) . Substituting into and Equation A.38 and into Equation A.34, we have

lim
H→+∞

∑
j

Dρ[η j(ρ)]
(Hd0 − d1ξ j(ρ) + g∗(ρ∗)(HV̄ + ξ j(ρ)V) + (H − ξ j(ρ)) log( H

ξ j(ρ) )

H + ξ j(ρ)

)

+ η j(ρ)
(−Hξ j(ρ)(d0 + d1 + g∗(ρ∗)(V̄ − V)) − H2 + 2Hξ j(ρ) log( H

ξ j(ρ) ) + ξ j(ρ)2

ξ j(ρ)(H + ξ j(ρ))2

)
Dρ[ξ j(ρ)]

= −
∑

j

(
Dρ[η j(ρ)] log(ξ j(ρ)) +

η j(ρ)
ξ j(ρ)

Dρ[ξ j(ρ)]
)

(A.39)

which is equivalent to Equation A.31.
Summarizing the proof to this point, we conjectured the value function is V∗(pi) := f ∗(ρ∗) h∗(pi)

g∗(ρ∗)+

k∗(pi) in Equation A.26 and showed that the first-order condition for optimality is

Dρ∗[ f ∗(ρ∗)] +
f ∗(ρ∗)
g∗(ρ∗)

∑
j

(
Dρ∗[η j(ρ∗)] log(ξ j(ρ∗)) +

η j(ρ∗)
ξ j(ρ∗)

Dρ∗[ξ j(ρ∗)]
)

= 0 (A.40)

using Equations A.28 and A.31. Substituting V∗(pi) into the Bellman equation in Equation
A.27, we showed that as H goes to infinity, the first-order condition for optimality is

Dρ[ f ∗(ρ)] +
f ∗(ρ∗)
g∗(ρ∗)

∑
j

(
Dρ[η j(ρ)] log(ξ j(ρ)) +

η j(ρ)
ξ j(ρ)

Dρ[ξ j(ρ)]
)

= 0 (A.41)

using Equations A.30 and the limits derived above. By definition, ρ∗ is a root of Equation A.40
and therefore is also a root of Equation A.41. We have shown that when H goes to infinity,
the conjectured strategy ρ∗ satisfies the first-order condition for the Bellman equation. We can
conclude that when H is large, the behaviour of the value function is approximated by V∗(pi)
and the optimal strategy is approximated by ρ∗.

A.8 Proof of Proposition 2.4.5
The derivative of the informed trader’s strategy, shown Equation 2.17, with respect to β is:

β + 2xl − 5βxl − 2
2(β − 2)2(−2β2x2

l + 2β2xl − 7βx2
l − β + 10x2

l − 4xl + 2)1/2
.

Since the denominator is strictly positive, it suffices to show the numerator is negative:

β + 2xl − 5βxl − 2 (A.42)
<β + 2xl − βxl − 2
=(β − 2)(1 − xl)
<0

where the final inequality is due to the fact that β < 2 and xl < 1.



Appendix B

Chapter 3 Proofs

B.1 Steady States
Let An and Bn be unobserved random walks; An = An−1 + ηn and Bn = Bn−1 + ζn where ηn

and ζn are independent N(0, v2
A) and N(0, v2

B) respectively. Observations of the noisy sum
Cn = An + Bn + Un are made for each n where Un is a N(0, v2

U) independent normal white
noise. Let Σn be the covariance matrix of the joint Bayesian prior probability distribution (we
sometimes refer to this distribution as a belief) of An, Bn, and Cn:1

Σn =

 (σA
n )2 σAB

n σAC
n

σAB
n (σB

n )2 σBC
n

σCA
n σCB

n (σC
n )2

 .
Let Υn be the means of the beliefs about An, Bn, and Cn;

Υn =

 µ
A
n
µB

n
µC

n

 (B.1)

We now specify the timing of the iterative process defined by the model for which we write
the corresponding step in parentheses. For each n > 0 the following occurs:

1. Cn is observed (the market maker observes the aggregate order flow);

2. The means and variances of the beliefs are conditioned on the observation of Cn (the
maket maker updates belief). Call the intermediate mean and variance Σ+

n and Υ+
n .

3. An, Bn and Cn evolve according to the random-walk innovations ηn, ζn and white noise Un

(random innovations in the price and inventory processes and noise trading are realized
before the next order flow);

4. and as a result the variances of the beliefs increase by v2
A, v2

B, and v2
U respectively (the

market maker accounts for innovations in the price and inventory processes and noise
trading before observing the next order flow).

1Note that even though the two random walks are independent, beliefs of An and Bn about them are not
necessarily independent.
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Since only the noisy sum of An and Bn is observed each period, the variances of the beliefs
about An and Bn increase each period as the random walks evolve. Indeed, fewer variables are
observed than evolve randomly each period causing a steady decay in the information about
An and Bn. The variances of the beliefs about An and Bn will increase linearly in n and their
covariance will decrease linearly with n. However, the variance of the belief about the sum of
An and Bn will approach a constant which will be referred to as the steady state. We proceed
below by showing a steady state exists by demonstrating one.

In step 2) means and variances are updated by conditioning the multivariate normal distri-
bution on an observation of Cn. Define the partitions of Σ and Υ as follows:

Σn =

Σ1,1
n Σ1,2

n

Σ2,1
n Σ2,2

n

 :=


(σA

n )2 σAB
n σAC

n

σAB
n (σB

n )2 σBC
n

σCA
n σCB

n (σC
n )2


and

Υn =

Υ1
n

Υ2
n

 :=


µA

n

µB
n

µC
n

 .
Upon observing Cn, the bivariate normal distribution of An and Bn conditional on Cn is dis-
tributed N(Υ+1

n ,Σ
+1,1
n ):

Σ+1,1
n = Σ1,1

n − Σ1,2
n (Σ2,2

n )−1Σ2,1
n (B.2)

Υ+1
n = Υ1

n + Σ1,2
n (Σ2,2

n )−1(Cn − Υ2
n) (B.3)

The two elements of Σ1,2
n (Σ2,2

n )−1 define two linear “impact coefficients” λA and λB. The
mean of the beliefs about A and B are updated by adding the unexpected component of the ob-
servation of C times λA and λB. We will show that λA and λB, will also approach a steady state.
These are closely related to the object of interest in the model, the price impact coefficient.

In order to update the covariance matrix Σ+
n to Σn+1 the covariances of the beliefs about An+1

and Bn+1 with Cn+1 must be calculated. Without loss of generality consider the covariance of
An+1 with Cn+1. Cn+1 is the sum of three components so the covariances may be broken down
component-wise: the covariance of An+1 and An+1 is the variance of An+1, (σA

n )2; the covariance
of An+1 and Bn+1 is σAB

n ; and the covariance of An+1 and Un+1 is 0 since they are independent.
The covariance of An+1 and Cn+1 is therefore (σA

n )2 + σAB
n with a similar rule holding for the

covariance of Bn+1 and Cn+1.
Let the function that updates Σn to Σn+1 be denoted by Φ, defined by

Φ(Σn) =


Σ1,1

n − Σ1,2
n (Σ2,2

n )−1Σ2,1
n +

[
v2

A 0
0 v2

B

] [
(σA

n+1)2 + σAB
n+1

σAB
n+1 + (σB

n+1)2

]
[

(σA
n+1)2 + σAB

n+1 σ
AB
n+1 + (σB

n+1)2
]

(σA
n+1)2 + 2σAB

n+1 + (σB
n+1)2 + v2

U

 (B.4)

Definition: A steady state is a fixed point of the function Φ in the sense that each entry of
Σn excluding Σ1,1

n are invariant under Φ; Φ(Σ1,2
n ) = Σ1,2

n , Φ(Σ2,1
n ) = Σ2,1

n , and Φ(Σ2,2
n ) = Σ2,2

n .
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We will now find a steady-state solution explicitly. Conjecture that the solution has the
form:

Σn =

 nα + cA −nα cA

−nα nα + cB cB

cA cB cA + cB + v2
U

 .
The result of applying the function Φ on Σ1,1

n is then

Σ1,1
n+1 =


cAα+cBα+αv2

U+cAcB+cAv2
U+v2

AcA+v2
AcB+v2

Av2
U

cA+cB+v2
U

−
cAα+cBα+αv2

U+cAcB

cA+cB+v2
U

−
cAα+cBα+αv2

U+cAcB

cA+cB+v2
U

cAα+cBα+αv2
U+cAcB+cBv2

U+v2
BcA+v2

BcB+v2
Bv2

U
cA+cB+v2

U

 .
Since

Σ1,1
n+1

[
1
1

]
=

[
cA

cB

]
by conjecture, one can solve for cA and cB

cA =
v2

A

2

v2
B + v2

A +

√
(v2

B + v2
A)(v2

A + v2
B + 4v2

U)

v2
B + v2

A

(B.5)

cB =
v2

B

2

v2
B + v2

A +

√
(v2

B + v2
A)(v2

A + v2
B + 4v2

U)

v2
B + v2

A

. (B.6)

Using the above to solve for α gives

α =
v2

Bv2
A

v2
B + v2

A

.

An important consequence in that when in the steady state, one updates the means of A and B
using the linear impact coefficient λA and λB:

λA =
v2

A(v2
B + v2

A +

√
(v2

B + v2
A)(v2

A + v2
B + 4v2

U))

(v2
A + v2

B)(
√

(v2
B + v2

A)(v2
A + v2

B + 4v2
U) + v2

A + v2
B + 2v2

U)
(B.7)

λB =
v2

B(v2
B + v2

A +

√
(v2

B + v2
A)(v2

A + v2
B + 4v2

U))

(v2
A + v2

B)(
√

(v2
B + v2

A)(v2
A + v2

B + 4v2
U) + v2

A + v2
B + 2v2

U)
. (B.8)

It is instructive to write the formulas for in terms of the signal to noise ratio. Without loss
of generality consider let rA := v2

A
v2

B+v2
A
.

λA = rA

(v2
B + v2

A +

√
(v2

B + v2
A)(v2

A + v2
B + 4v2

U))

(
√

(v2
B + v2

A)(v2
A + v2

B + 4v2
U) + v2

A + v2
B + 2v2

U)
(B.9)



B.2. Example of Dynamic Optimization 115

Assume vU is zero and therefore λA = rA. This formula is intuitive; when updating the mean
of A one must account for the variation in the noise that interferes with direct observation of A.
Here, the noise is B. Notice that if vB were zero, then updating the mean is trivial because the
impact coefficient λA = rA = 1 which is equivalent to directly observing A. When adding the
noise of B to the observation of A, one must account for the fact that there is more variation
present and scale down the impact coefficient by rA, the ratio of the variance of A to the total
variance of A + B.

When the third source of variation vU is nonzero, the impact coefficient must be scaled
down further due to the addition to total variation. One can see this from the equation above;
since the rA is multiplied by a factor less than one, we have taken the impact coefficient from
the standard learning problem and scaled it down according to the noise from v.

We simulate the Bayesian updating process with different initial conditions to provide evi-
dence that the steady state is unique. An initial condition is defined by prior variances for A and
B and their covariance which populate the covariance matrix Σ1,1

0 defined above. We take 1000
random draws of each of entries in Σ1,1

0 , each drawn from a normal distribution with a mean of
0 and variance of 25. We ensure variances of A and B are positive by taking the absolute value
of the random draws. We then iterate the Bayesian updating process 50 steps corresponding to
50 trades in the model setting. Table B.1 shows the mean and standard deviation of the price
impact coefficient λA initially and after 50 Bayesian updates.

Table B.1: Numerical simulation of convergence to the steady state. This table shows the
mean and standard deviation of the impact coefficient for random initial conditions and after
50 Bayesian updates, as well as the model’s predicted value for the steady state.

Initial After 50 Updates Model
Mean 0.0866 0.2030 0.2030
Standard Deviation 2.0884 7.9692e-07 0

B.2 Example of Dynamic Optimization

We will show that the informed trader’s strategy takes on a similar form under dynamic opti-
mization compared to the one-period optimization in the model. Consider a simplified version
of the model with an asset that follows a normal random walk with innovations distributed
N(0, σ2

νh), time increment h, and noise traders with σ2
uh. We leave out program trading for

tractability. If the informed trader was long-lived in the presence of program trading, he would
learn about the program trader’s inventory using an information set superior to the market
maker’s as he would know the size of his own trader and could infer the remainder. This situa-
tion is complicated to model and is simplified in the main body of the paper by allowing a new
informed trader to arrive each period and trade only once.

The informed trader chooses xt in order to optimize the sum of current expected profits and
future profits discounted with factor e−γh. Let the value of all maximized expected future and
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current profits be V(νt). The Bellman equation is then,

V(νt) = max
x̂t
E[x̂t(νt − pt) + e−γhV(νt+h)|νt]. (B.10)

The trader must balance profit taken now with forgone profit later due to price impact. Towards
applying the method of undermined coefficients, guess that the value function is V(νt) = A(νt −

pt−h)2 + B as in Chau and Vayanos (2008). Crucial to this value function is the assumption of a
steady-state belief meaning the variance of the market maker’s belief about νt is constant over
time. This gives constant price impact λt = λ.

Substituting the pricing rule in for pt and the conjectured value function gives

V(νt) = max
x̂t
E[x̂t(νt − E[pt|It]) + e−γh(A(νt+1 − pt)2 + B))|νt] (B.11)

= max
x̂t
E[x̂t(νt − (pt−h + λ(x̂t + ut))) + e−γh(A(νt+1 − (pt−h + λ(x̂t + ut)))2 + B))|νt]

Evaluating the expectation and differentiating gives

xt =
1
2

(2Aλt − eγh)(νt − pt−h)
λ(Aλ − eγh)

. (B.12)

Substituting back into the value function and matching coefficients results in the optimal trad-
ing strategy,

xt =
1
λ

νt − pt−h
1

√
1−e−γh

+ 1
. (B.13)

Note that in the case of an infinite discount factor, γ → ∞, the strategy is identical to the
single-period strategy. The dynamic strategy and the single-period strategy are similar in that
they both involve trades that are proportional to the difference between the market maker’s
prior and the true value of the asset times a constant. The constant is inversely proportional to
the price impact coefficient in both cases.
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