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Abstract 
 

Radiation therapy for lung cancer and cancers of the upper thorax is limited by 

side effects to normal tissue of the lung.  An understanding of mechanisms leading to 

radiation induced lung damage is essential to developing protective agents.  In this thesis 

an anti-oxidant and anti-inflammatory agent Genistein was investigated for its potential 

to affect DNA damage, tissue inflammation, functional deficits and survival.  We 

hypothesized that chronic oxidative stress and the subsequent inflammatory response play 

a key role in the development of major lung complications, radiation pneumonitis and 

fibrosis.  If side effects of radiation could be reduced, then larger doses could be 

delivered to the tumor with a better chance of eradicating the disease.  
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1 Chapter 1: Introduction 
 

 1



1.1 Normal lung response to radiation 

 
There were an estimated 159,900 new cases of cancer in Canada in 2007 [1] and 

at least half of all patients will undergo radiation therapy as part of their cancer treatment 

[2].  Lung cancer is the most common cancer, with 23,300 new cases in Canada in 2007 

and has one of the lowest five year survival ratios of 16% resulting in 19,900 deaths in 

2007 [1].  The lung is a relatively radiosensitive organ [3] and normal tissue toxicity is a 

dose limiting factor for radiotherapy of tumors in the upper thorax such as lung cancer, 

breast cancer, thymoma and lymphoma [4]. The main side effects of radiotherapy in the 

lung are pneumonitis and fibrosis, characterized by symptoms of congestion, cough, 

shortness of breath, chest pain, and reduced diffusion capacity/volume.  Five to twenty 

percent of patients will develop severe pulmonary side effects from radiation treatment 

[4].  These effects reduce the functional capacity of the lung and may even lead to death.  

The severity of radiation pneumonitis and fibrosis depends upon the dose, fractionation 

schedule, volume and region irradiated [5].  Currently there is little that can be done in 

terms of prevention and thus there is a need for effective measures to mitigate and treat 

damage associated with exposure to ionizing radiation.  The ability to prevent radiation-

induced toxicity without affecting antitumour efficacy has the potential to enhance the 

therapeutic benefit for cancer patients while decreasing their risk of serious adverse 

effects.  Reducing or preventing the development of radiation-induced functional deficits 

would allow for dose escalation which in turn would lead to better chances of tumor 

eradication and for potentially better patient quality of life following radiotherapy.  The 

exact mechanisms of radiation-induced damage are complex; however, an agent capable 

of mitigating these effects would be highly beneficial to treatment strategy.   
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1.2 Direct and Indirect Effects of Radiation 

DNA is considered the critical target in the irradiation of biological tissue.  

Radiation may interact directly with the critical target where an atom of the DNA is 

ionized or excited that initiates a chain of events leading to biological effects. Radiation 

may also interact indirectly by interacting with other molecules or atoms in the cell to 

produce free radicals that may then diffuse within the cell to reach and damage critical 

targets [5].  Water is a likely target of the indirect action since the cell is composed of 

about 80% water.  In this case a photon interacts with the water molecule to produce an 

ion radical and a secondary electron.  The ion radical is highly reactive but has an 

extremely short half life and decays to form a free radical. The ion radical reacts with 

another water molecule to form a hydronium ion and a hydroxyl free radical.  The 

hydroxyl radical can then diffuse within the cell to react with the critical target DNA.  It 

is this indirect action of ionizing radiation that may be modified by means of radical 

scavengers to reduce the biological effect of radiation.  This is an important area of 

research to reduce the side effects of radiation therapy. 

 

1.3 Pulmonary Response to Radiation Therapy 
 

The lung response to radiation is a complex and dynamic response with many 

interactions at the cellular and molecular levels.  The response to radiation involves many 

cell types including macrophages, epithelial pneumocytes, endothelial cells, and 

fibroblasts [6].  Damage to these cells and corresponding normal tissue from radiation 

involves cell death, production of reactive oxygen species, alterations in gene expression, 
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and the production of cytokines [7].   This multicellular reaction is modulated by the 

production of specific cytokines and growth factors [8, 9].  A simplified schematic of the 

cellular interactions due to growth and inhibitory factors is shown in Figure 1-1.   

The alveolar epithelium consists of type I and II epithelial cells.  Type I cells are flat 

epithelial cells that cover 90% of the alveolar surface.  Type II cells replicate and mature 

to produce type I cells, and also produce surfactant [10].  Following radiation, type I cells 

are damaged and lost from the alveolar surface and type II cells rapidly proliferate to re-

epithelialize the alveolar surface.  Type II cells may also be injured by radiation and this 

triggers a release of surfactant [11, 12].  A large number of cytokines, growth factors and 

cytokines regulate this response [13].  Alveolar macrophages are a major source of 

cytokine signalling driving the inflammatory process following irradiation.  Cellular 

injury of the macrophage causes altered gene expression and a subsequent release of 

cytokines such as tumor necrosis factor α (TNF-α) and transforming growth factor β 

(TGF-β).  In the target cell, the fibroblast, cytokine receptors are activated and signal 

transduction occurs stimulating collagen genes [8, 14]. The cytokine cascade is persistent 

during the months following radiation and results in a chronic inflammatory state during 

the time leading up to and during the expression of functional damage [14, 15].  In 

addition to being a source of inflammatory cytokines, macrophages are also a large 

source of reactive oxygen species (ROS) generated in response to the inflammatory 

signals following radiation [16].  Radiation causes an initial burst of ROS production due 

to the ionization of water molecules, but the activation of inflammatory cells and 

induction of inflammatory cytokines causes persistent changes in cell signalling and 

continued production of ROS at late times (Figure 1-2).  The normal tissue response  
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Figure 1-1: Possible cellular communication following irradiation. The lung response is a complex and 
dynamic interaction between many different lung cell types.  Cytokines play a key role in signalling 
between cells. From [9] 
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including the propagation of ROS and oxidative stress is an active process that leads to 

the development of clinically evident early and late lung damage [13, 14]. 

 

1.4 Acute and Late effects in Lung 

Radiation-induced lung injury has classically been separated into two phases: 

radiation pneumonitis and radiation fibrosis.  Following radiation there is a latent period 

before clinical symptoms arise.  However, during this time there are changes at the cell 

and molecular level leading to the development of pneumonitis and fibrosis.  Changes in 

cytokine expression have been detected as early as one hour following radiation [15].  

Acute radiation pneumonitis usually occurs between 1-6 months following irradiation 

with symptoms of cough, dyspnea, chest pain and occasional fever.  Radiographic 

changes are variable and may reveal local infiltrate within the radiation field or diffuse 

infiltrate outside the radiation field [16].  Histopathology following irradiation shows a 

loss of type I pneumocytes and endothelial cells, release of surfactant and fibrin in 

alveoli, a decrease in macrophages, and interstitial oedema.  During radiation 

pneumonitis there is tissue inflammation with an increase in type II pneumocytes, 

leukocytes, fibroblasts, alveolar macrophages and oedema [17].   

Radiation pneumonitis may resolve after a few weeks and can also be followed by 

chronic inflammation and fibrosis that usually develops by 6 months but can continue to 

progress for 1-2 years following irradiation.  Radiation fibrosis is characterized by 

vascular damage and collagen deposition [18].  Fibrotic changes in the lung are a result of 

interactions between many cell types involving the production of inflammatory and 

fibrotic cytokines by cells such as macrophages and fibroblasts [6].   
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Figure 1-2:  Possible cycle of inflammatory mediators post irradiation.  Radiation causes an increase in 

cellular adhesion molecules, allowing for increased extravasation and arrest of inflammatory cells in lung 
tissue.  Inflammatory cells secrete pro- and anti-inflammatory cytokines, and the balance is regulated by 

NF-κB.  Inflammatory cells such as monocytes and activated macrophages produce high levels of ROS that 
can lead to DNA damage. 
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Radiographic evidence of scarring associated with fibrosis can be seen within the 

irradiated field.  Symptoms related to radiographic changes and fibrosis depend upon the 

extent of lung parenchyma involved and the pre-existing pulmonary reserves [18].  If the 

lung volume irradiated is small, the patient may not exhibit symptoms.  For larger 

irradiated volumes there may be symptoms of cough, progressive chronic dyspnea, and 

chest pain due to reduced diffusion capacity similar to those observed during pneumonitis 

[19].  Histopathology during fibrosis shows loss of capillaries, thickening of alveolar 

septa, and narrowing of alveoli [17].  The defining feature of fibrosis is the increasing 

rigidity of tissue due to increased collagen deposition stimulated by pro-fibrotic cytokines 

such as TGF-β [10, 20].  Increased expression of pro-inflammatory and pro-fibrotic 

cytokines play a key role in the development of fibrosis.  Inflammation is initiated as a 

mechanism to protect and repair damage to normal tissue from radiation.  When the 

balance between pro- and anti-inflammatory processes becomes disturbed, a state of 

chronic inflammation can result in further damage to tissue.  Both pneumonitis and 

fibrosis can severely impact upon the quality of life for patients.  There is a need to better 

understand the mechanisms contributing to the development of normal tissue damage and 

clinical symptoms as well as effective measures to prevent and mitigate radiation 

induced-lung injury.  

 

1.5 Lung Architecture 

The lung has a large diffusion area for gas exchange created by a series of 

branching airways.  The trachea branches into two main bronchi that enter each lung, 

which branch into lobar and segmental bronchi down to terminal bronchioles.  Terminal 

bronchioles divide into respiratory bronchioles with occasional alveoli and then into 
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alveolar ducts fully lined with alveoli [18]. The portion distal to the terminal bronchiole 

is the region where gas exchange occurs and forms a functional subunit (FSU) called the 

pulmonary lobule or acinis. The FSUs in the lung are arranged in parallel and many 

bronchi and acinis work together [5]. Normal tissue tolerance is the dose required to 

produce a functional deficit, and depends upon the number and radiosensitivity of the 

target cells in the FSU, the functional reserve of the organ and structural organisation of 

the FSU [21].   If small volumes of lung are irradiated, the remaining FSU can still 

perform their function.  The parallel arrangements of the FSU in the lung give rise to a 

graded dose response [22]. However, the lung becomes dose limiting when large volumes 

of lung are irradiated and there is not sufficient reserve capacity in the remaining FSU [5, 

23].  Furthermore, low doses to large lung volumes are more damaging than the same 

mean lung dose to small lung volumes(eg. 9-12 Gy to 100% of lung volume produces 

more functional lung damage than 27-36 Gy to 25% of lung volume) [24, 25].  Clinically 

it is recommended that no more that 30-35% of the lung receive a dose larger than 20 Gy 

(V20 parameter), and that the mean lung dose is less than 20-23 Gy [26]. 

 

1.6 Volume and Regional Effects 

In addition to dose and volume the lung response is dependent upon the location 

of the irradiated sub volume within the organ [7, 23, 27-30].  Several studies have shown 

the base of the lung to be more sensitive than the apex. Using either breathing rate or 

lethality for the endpoint, studies in mouse lung by Travis, Liao and Tucker [23, 29, 30] 

investigated the relationship between dose, volume and region of irradiated lung on the 

probability of radiation induced complications.  Irradiation of a smaller volume in the 
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base of the lung than in the apex was required to achieve a given effect ED50 for 

breathing rate or LD50 for lethality (Figure 1-3).  The ED50 is the effective dose required 

to produce a functional effect in 50% of subjects.  The LD50, is the dose lethal to 50% of 

subjects.  Clinically it has also been reported that patients who undergo irradiation of 

tumours in the lower lung are at increased risk of developing pneumonitis than those with 

tumours in the upper lobe [31-33].  The difference in regional sensitivity is not fully 

understood but is presumed to be due to differences in the number and location of FSUs 

as there are more FSUs in the base of the lung than the apex [30].   

Inclusion of the heart within the irradiation field has also been reported to increase lung 

damage[34, 35] but this effect was not confirmed in other studies [25, 33]. 

Previous studies in our lab have used a rat model to demonstrate the regional 

sensitivity of the lung to radiation [27, 28]. Radiation-induced lung damage was assessed 

in fibroblasts using a cytokinesis block micronucleus assay to evaluate DNA damage.  

Following whole lung irradiation there was a large increase in micronuclei formation 

compared to unirradiated controls.  Following lower lung irradiation, there were 

comparable levels of DNA damage within the irradiation field to that observed during a 

whole lung irradiation and also a high amount of damage in the shielded upper lung.  

When the apex of the lung was irradiated, the in-field damage was approximately half 

that seen during whole lung irradiation and in the out-of-field lower lung there was only a 

slight increase in damage seen above background levels (Figure 1-4).   

 The level of damage in the upper irradiated lung was similar to the out-of-field 

damage in the upper lung when the lower lung was irradiated.  These findings suggest 

that irradiation of the base of the lung produces larger amounts of damage in-field and  
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Figure 1-3: Breathing rate and lethality as a function of partial volume irradiated.  The base of the lung is 
more sensitive than the apex.  From [30] 
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out-of-field than irradiation of the apex.  The administration of radical scavengers Mn 

superoxide dismutase (MnSOD) or CuZnSOD or nitro-L-arginine methyl ester (L -

NAME) 30 minutes prior to irradiation was effective in reducing the damage in field by 

10-30% and 50-60% out of field.  This suggests that damage created in field may 

generate signals to produce superoxide radicals, and inflammatory cytokines that are 

transported by diffusion or blood circulation to cause damage in the whole organ 

including out-of-field regions.  Following irradiation there is an induction of an 

inflammatory response meant to protect and aid in repair of damage.  However, this in 

turn causes the production of additional reactive oxygen species (ROS) that can also 

cause DNA damage. Increases in inflammatory cytokines interleukin 1β (IL-1β) and 

transforming growth factor-β1 (TGF-β1) were measured in the plasma following 

irradiation. The anti-oxidant agents were more effective in protecting against indirect 

damage caused by tissue reactions (inflammation) than the direct action of the radiation 

itself.   The more radiosensitive lower lung was able to generate a greater inflammatory 

response than the upper lung.  An analysis of these data in combination with mouse 

functional data from Travis et al. [23, 29, 30] proposed a model that incorporated in-field 

and out-of-field effects to better predict lung response [36].  The model predicted that for 

a given proportion of target cells, greater damage would be expected when the base of the 

lung was irradiated.   Thus, when predicting the likelihood of complications arising from 

standard dose and volume data, one must also consider the additional impact of where the 

irradiated sub-volume is located within the lungs and out-of-field effects.  
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Figure 1-4: Micronuclei Formation in lung fibroblasts following whole and partial lung irradiation.  
Irradiation of the whole lung shows high levels of damage in and out-of-field.  When only the lung base 
was irradiated, there were similar levels of damage in-field compared to the whole lung irradiation, and a 
large amount of damage also seen in the upper unirradiated lung out-of-field.  When the apex of the lung 
was irradiated, there was lower damage seen in-field than when the whole lung was irradiated, and there 
was very little additional damage seen out-of-field in the lower lung.  Data from [28] 
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1.7 Fractionation 

Radiation is sometimes delivered as a single dose, but it is more often administered in 

a series of fractions.  Dividing a radiation dose into fractions spares normal tissues 

because it allows for repair of sublethal damage and repopulation between treatments.  

Fractionation increases tumor damage over multiple doses due to reoxygenation of the 

tumor as hypoxic cells are more radioresistant than well oxygenated cells.  It also allows 

reassortment of cells through out the cell cycle (cells are most resistant during S phase, 

and most sensitive during M and G2) making them more sensitive to subsequent radiation 

doses [5, 37].  A balance is achieved to minimize damage to normal tissues while 

maximizing damage to tumor tissue.  Each fraction progressively adds to the tumor cell 

kill. 

Cell survival (S) following radiation is often described by the linear quadratic (LQ) 

model  

       (Equation 1) S D
` a

= +@ αD + βD2b c

n

where D is the dose, and α is the constant describing the initial linear slope of the survival 

curve, β is the constant describing the quadratic component of cell kill, and n is the 

number of fractions[38].  This assumes that there is complete repair of sublethal damage, 

and that each fraction has equal effect.  With respect to damage to normal lung tissue, this 

model was extended to the linear quadratic with time (LQT) to take proliferation of lung 

cells between fractions into account  

S D
` a

= +@ αD + βD2b c

n + γT
  (Equation 2) 
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where γ is the overall time dependence and T is the overall treatment time[38].  The 

effect of a treatment fraction does not depend upon the time (its position) within the 

treatment in which it is given[39].  To compare two fractionation regimes an isoeffective 

dose formula of functional damage is used 

 E   (Equation 3) = α 1 + εT + ηT 2
b c

D + βD2
D E

n

where ε and η modify the effect of α/β over time, parameters derived from modeling of 

clinical data are α/β = 4.1Gy, ε = -0.025/day, and η = 28x10-5 /day-2 [40]. 

 Clinically, fractionated treatment delivers smaller therapeutic doses of radiation 

daily, usually less that 2Gy.  Palliative treatments may deliver fewer doses in larger 

fractions (ie 5 fractions of 4Gy, or a single 10Gy dose).  Many studies have examined the 

effect of treatment schedules on the development of radiation pneumonitis and fibrosis 

[41-43].  The studies focused on single versus fractionated and hyperfractionated 

radiation treatments.  It was shown that a single dose of 15Gy of 60Co gamma rays 

produced greater histological damage than 10 daily fractions of 3Gy, or 30 fractions of 

1Gy three times per day to the same volume.  Fractionation reduced the percent of lung 

parenchyma involved in pneumonitis from 70-80%, to 40-50% and 30-50% respectively.  

There was no difference in fibrosis at later times depending upon treatment [42].  

Radiation pneumonitis and fibrosis may be independent damage events but recent data 

suggest that a cyclic inflammatory response and chronic inflammation is responsible for 

the development for the spectrum of radiation induced lung damage from pneumonitis to 

fibrosis [44, 45]. 

However, new advancements in treatment planning using stereotactic body radiation 

therapy (SBRT) allows for increased precision in tumor targeting and this has revived the 
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use of hypofractionation [46].  The large dose per fraction assumes that tumor and 

surrounding healthy tissue would be eradicated (i.e. ablated as during surgery), volumes 

of normal tissue obliterated are small, volumes beyond the tumor that receive a lower 

dose are below the threshold dose and will recover, and that there is sufficient reserve 

capacity in the organ to maintain organ function.  For example, at Princess Margaret 

Hospital in Toronto they are investigating the use of 3 fractions of 15-20Gy to small 

lesions to examine if it results in better local control while maintaining reasonable levels 

of side effects.   The use of agents capable of protecting against side effects would be 

highly beneficial to this treatment strategy as well. 

 

1.8 Universal Reaction - Acute Respiratory Distress Syndrome (ARDS) 

The lung response to radiation is similar to that of its response to other types of 

injury such as lipopolysaccharide(LPS), bleomycin, endotoxins, many chemotherapeutics 

and hyperoxia [7, 8, 47].  The similar lung inflammatory response to various damaging 

agents suggests that the aspects of normal tissue response are universal and independent 

of the damaging agent [7].   

Mechanisms associated with radiation-induced lung damage may be better 

understood by examining the universal lung response to various damaging agents.  

Bleomycin is a chemotherapeutic agent that causes an inflammatory lung response 

similar to that of radiation.   Superoxide dismutase (SOD) is part of normal cellular 

defence against oxidative damage that leads to pulmonary fibrosis.  When mice knocked 

out for extracellular SOD were treated with bleomycin there was a marked increase in 
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inflammation, hydroxyproline content and interstitial fibrosis at 14 days post treatment 

[48].   

Direct lung injury (pulmonary infection, aspiration, or toxic inhalation) or indirect 

lung injury (sepsis, shock, or trauma) results in an inflammatory response called acute 

respiratory distress syndrome (ARDS).  ARDS is a condition of inflammation and 

increased vascular permeability in response to pulmonary parenchymal injury and ends 

with tissue repair and fibrosis [49]. Symptoms in ARDS patients are similar to those with 

radiation induced lung damage such as dyspnea, decreased lung compliance, and diffuse 

alveolar infiltrates on chest radiographs [50].  These clinical symptoms are evident within 

days of lung injury [49, 50] whereas radiation induced lung damage is not apparent until 

months following radiation.  It is understood that cellular and molecular changes are 

occurring during this apparent latent period.  

ARDS is characterized by three phases of cellular changes in the lung: acute 

exudative phase, proliferative phase, and a fibrotic phase [49-51].  The first exudative 

phase is characterized by the activation and infiltration of inflammatory cells and occurs 

24-48 hours following lung injury [50].  There is widespread necrosis of type I alveolar 

cells and infiltration of neutrophils from the capillaries into the pulmonary interstitium 

and air space [49].  Plasma proteins and fibrin accumulate on the denuded basement 

membranes forming hyaline membranes [51].  The proliferative phase is initiated within 

3-10 days characterized by infiltration of the interstitium with fibroblasts and continued 

exuberant infiltration with inflammatory cells [52].  Type II pneumocytes proliferate and 

replace type I pneumocytes on the basement membrane.  Fibroblasts begin to deposit 

collagen thickening the alveolar walls at the site of inflammation.  Macrophages 
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phagocytose the hyaline membranes and other cellular debris [51].  The fibrotic phase 

results in consolidation and fibrosis of the pulmonary parenchyma 7-14 days following 

lung injury [49, 51, 52].   

Activation of NF-κB is a signature event of ARDS.  NF-κB is a transcription 

factor for a variety of factors that are directly or indirectly involved in the development of 

ARDS including pro-inflammatory cytokines (IL-1, IL-6, IL-8, TNF-α), chemokines, 

colony-stimulating factors, and interferons [52].  A positive feedback loop exists as NF-

κB can be activated by IL-1 and TNF-α to further amplify the signal [53].  Negative 

feedback of NF-κB occurs at the extracellular level where IL-1 and TNF-α also cause 

production of the regulatory anti-inflammatory cytokine IL-10 to attenuate the signal 

[54].    High binding activity of NF-κB and concentration of inflammatory mediators has 

been shown in bronchoalveolar lavage fluid (BALF) of ARDS patients.  The level of NF-

κB binding activity correlates with the degree of respiratory dysfunction [55]. 

Inflammatory mediators play a key role in the pathogenesis of ARDS.  Pro-

inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) 

are derived from activated macrophages and are found in BALF during the exudative 

phase [50, 55-57].  The ratios of cytokine concentrations in BALF fluid compared to 

serum levels suggest a pulmonary origin [56, 58, 59].  Both TNF-α and IL-1β act via 

specific cell membrane-bound receptors and activate neutrophils and induce an up-

regulation of adhesion molecules [50].  A similar response occurs in animal models 

following LPS exposure.  TNF-α and IL-1β are released and in turn activate a second 

level of inflammatory cytokines, lipid mediators, reactive oxygen species, and upregulate 

cellular adhesion molecules resulting in inflammatory cell recruitment [50].  The plasma 
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levels of TNF-α and IL-1β peak within hours of the insult leaving a narrow window for 

therapeutic intervention [49].  Additional inflammatory cytokines IL-6 and IL-8 have 

been shown to be elevated in ARDS patients [49-51, 55, 60].  IL-6 plays a role in the 

acute exudative phase of ARDS and is also raised in other acute conditions such as burn, 

surgery and sepsis.  IL-8 is a main chemotactic factor for neutrophils [61].  The 

concentrations of these cytokines correlate with the severity of ARDS disease, and high 

levels are indicative of a poor prognosis [52].   

A state of chronic inflammation can result from the self-propagating ability of 

many cytokines which can lead to the development of tissue damage in ARDS.  The 

balance between pro and anti-inflammatory cytokines is a critical mechanism to limit the 

biological response.  IL-10 is an anti-inflammatory cytokine that inhibits the release of 

pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) from macrophages and monocytes thus 

regulating the balance between pro-inflammatory versus anti-inflammatory response 

[62].  Lower levels of IL-10 in plasma and BALF of patients correlated with ARDS 

development [63].  Administration of anti-inflammatory IL-10 showed protective effects 

in animal models of ARDS and higher levels of IL-10 correlate with better clinical 

outcome in patients [50].  A study of the balance of pro and anti-inflammatory cytokines 

showed specific temporal patterns of expression with anti-inflammatory cytokines 

peaking at early times (1-3 days) and pro-inflammatory cytokines rising during the course 

of study up to 3 weeks [56].  This supports the idea that the biological changes in ARDS 

are dependent upon the net cytokine balance and these patterns are critical to disease 

progression.   
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1.9 Lung Inflammation Post Irradiation (PI) – Cell Adhesion Molecules 

Cell adhesion molecules (CAMs) are expressed on the surface of endothelial cells 

and play an important role in inflammation in the lung following irradiation by aiding in 

leukocyte migration from the microvasculature into the surrounding lung tissue [64].  

Radiation also directly induces expression of intercellular adhesion molecule-1 (ICAM-1) 

and E-selectin on endothelial cells within a few hours following irradiation [65, 66].   

Following adhesion of leukocytes, such as neutrophils, to the vascular endothelium, 

inflammatory cells extravasate and migrate into the injured lung tissue.  Inflammatory 

cells cause an upregulation of proinflammatory cytokines, such as TNF-α and IL-1, that 

can also stimulate induction of a wider variety of CAMs including E-selectin, P-selectin, 

ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1).  ICAM expression has been 

found to be elevated in BAL of patients who develop pneumonitis compared to those who 

do not [67].  Similar results were also seen in a rat model [68].  Mice knocked out for 

ICAM-1 gene expression show a reduced inflammatory response, and less infiltration of 

inflammatory cells into the lung tissue [47, 69].  Together these results emphasize the 

importance of CAMs immediately following irradiation in recruiting inflammatory cells 

into lung tissue causing inflammation.   

 

1.10 Lung Inflammation Post Irradiation (PI) – Inflammatory Cytokines 

The progression of inflammation in the lung following irradiation is similar to the 

inflammatory process observed in ARDS.  Several studies have investigated the changes 

in inflammatory cells and mediators in lung tissue following irradiation such as 

transcription factors, cytokines, and cell adhesion molecules [10, 11, 44, 70-76].  Several 
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of these studies have shown that there is a cyclic pattern of cytokine upregulation 

following irradiation and that the temporal patterns of expression are critical in the 

development of radiation pneumonitis and fibrosis [8-11, 15, 44, 71-73, 77].   

Several studies have also investigated the genetic component of susceptibility to 

radiation-induced lung damage to elucidate further the association between inflammation 

and tissue response [78-86].  Travis [87] compared quantitative measurements of lung 

fibrosis to the survival at 2Gy of skin and lung fibroblasts from C3H fibrosis resistant 

mice and C57BL/6 fibrosis prone mice.  Data showed differences in the severity of 

radiation-induced lung fibrosis; however, the radiosensitivity of the fibroblasts did not 

correlate with the differences seen in radiation response between the fibrosis prone and 

resistant mice.  This provides support for the idea that factors other than intrinsic 

radiosensitivity must exist to account for the differences in fibrosis response.  It is 

currently thought that a cyclic expression of pro-inflammatory cytokines is a major 

contributing factor to the development of radiation-induced lung damage.   

Initially it was thought that there was a latent period between the time of 

irradiation and when symptoms manifested clinically [10, 88].  However, more recently it 

has been shown that cytokine signalling and changes in gene expression can be seen 

within hours of irradiation [15].  Rubin et al. [10] demonstrated early changes in cytokine 

production underlie the pulmonary radiation response.  Radiation fibrosis prone C57/BL6 

mice were irradiated with 12.5Gy and their lungs examined at various times post 

irradiation (PI).  RNA expression of inflammatory cytokines IL-1α, IL-1β, and for pro-

fibrotic cytokines TGF-β and platelet derived growth factor (PDGF) was assessed.  

Interleukins (IL’s) are strong stimulators of inflammatory cells, particularly lymphocytes 
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and macrophages.  IL-1α in particular showed significant increases from 2 to 8 weeks 

post irradiation (PI) and remained elevated with a second peak at 26 weeks PI.  These 

data suggested that a pro-inflammatory stimulus plays a role in the onset and 

maintenance of the pneumonitis phase from 8 to 16 weeks PI, and then persists into the 

later fibrotic phase.  TGF-β and PDGF are cytokines that stimulate extracellular matrix 

remodelling leading to the development of fibrosis.  TGF-β and PDGF showed marginal 

increases in expression above background levels, increasing at later times where they 

play a larger role in fibrosis.  The results of this study provide evidence for the hypothesis 

that cellular communication between pulmonary and inflammatory cells occurs very early 

following irradiation and that it continues to contribute to the development of 

pneumonitis and fibrosis.   

Rube et al. [72] demonstrated a significant radiation-induced increase in TNF-α in 

lung tissue during pneumonitis.  TNF-α is a pro-inflammatory cytokine that plays a role 

in radiation pneumonitis by inducing expression of adhesion molecules that recruit 

leukocytes to the sites of tissue damage, and in fibrosis by stimulating growth of 

fibroblasts and collagen deposition.  C57/BL6 mice were irradiated with 12Gy and their 

lungs were analysed during the latent and pneumonic phases.  Within 1 hour of 

irradiation mRNA levels and protein levels of TNF-α were elevated and correlated with 

increases in inflammatory cells, particularly macrophages, into the lung parenchyma.  

TNF-α was also elevated at later times from 2 to 24 weeks PI reaching a peak at 8 weeks 

PI at the onset of pneumonitis.  These data suggest that TNF-α plays a critical role in the 

time immediately following irradiation and leading up to the development of symptoms.  

An additional study [44] further investigated the time course of the pro-inflammatory 
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cytokine upregulation following irradiation.  Early increases in TNF-α were seen at 1 

hour PI, and in IL-1α and IL-6 at 6 hours PI and then returned to basal levels for up to 2 

weeks PI.  During the pneumonitis phase TNF-α, IL-1α, and IL-6 were again all elevated 

and reached a peak at 8 weeks PI.  This further confirmed the temporal pattern of pro-

inflammatory cytokine expression leading up to the development of histological 

discernable pneumonitis.  A further study showed the bronchiolar epithelium as a 

prominent source of these inflammatory cytokines [74]. 

Hong et al. [11] found similar time dependent increases in TNF-α gene expression 

following radiation of C57/BL6 (fibrosis prone) and C3H/HeJ (fibrosis resistant) mice.  

Following a 20Gy irradiation there was upregulation of TNF-α, and IL-1α and IL-1β at 1 

hour PI that persisted for 16 hours and subsided by 24 hours PI in the C57/BL6 mice.  

The C3H/HeJ mice showed a similar response, and IL-1β showed the greatest increases 

in expression within the first hour, peaked at 8 hours and subsided by 16 hours PI.  These 

data again support a rapid induction of cytokine response following irradiation.  It also 

shows differences in cytokine response between strains that may account for differences 

seen in the development of pneumonitis and fibrosis.   

TGF-β is another important cytokine that plays a role in the radiation response in 

lung [73, 89-92].   TGF-β is widely expressed in normal and tumor tissue [92].  

Following irradiation TGF-β is produced locally in addition to circulating TGF-β which 

may be activated by ROS.  TGF-β acts as a chemoattractant for fibroblasts, macrophages 

and monocytes.  It can also increase production of IL-1, IL-6, TNF-α, and growth factors 

[73, 92, 93].   TGF-β can inhibit epithelial cell proliferation, stimulate excess production 
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of collagen from fibroblasts, and decrease collagen degradation thus contributing to 

fibrosis. 

Rube et al. [73] investigated the expression of TGF-β in C57/BL6 mice following 6 and 

12Gy irradiation.  After 12Gy mRNA expression of TGF-β was increased within one 

hour and increased significantly above controls by 12hrs, and then subsequently declined.  

It later peaked again at 2 and 4 weeks PI.  Levels of TGF-β correlated with 

immunohistochemical staining of macrophages.  Finkelstein et al. [20] also has shown 

increases in TGF-β in C57/BL6 mice 14 days following 5 and 12.5Gy irradiation.  

Anscher et al. [90, 92] investigated the prospects of using TGF-β as a marker for 

development of pneumonitis in lung cancer patients treated with radiation therapy.  

Plasma samples were obtained before, during and after each radiotherapy treatment.  The 

findings suggest that patients with lower levels of plasma TGF-β were less likely to 

develop radiation pneumonitis.  More recently, it was also shown that a small molecule 

inhibitor of the type I TGF-β receptor was effective in reducing the extent of radiation 

induced lung injury as assessed by breathing rate and histology [94].  These studies of 

cytokine expression levels demonstrate that the radiation induced inflammatory response 

follows a temporal pattern of expression that may be responsible for the development of 

clinically apparent symptoms.  The balance between pro and anti-inflammatory cytokines 

may help to better understand the timing of the waves of inflammation.   

 

1.11 Lung Inflammation Post Irradiation (PI) – NF-κB 

Transcription factors also play an important role in the progression of the 

inflammatory lung response following irradiation [71, 95, 96].  Nuclear factor kappa B 
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(NF-κB) has been shown to be continuously activated following irradiation and is 

involved in initiating and sustaining the inflammatory response [97, 98].  NF-κB can be 

activated by a wide variety of stimuli, such as oxidative stress, radiation, LPS exposure, 

cytokines, bacterial and viral antigens, many of which are involved in the inflammatory 

response.  It also modulates a variety of cell functions including immune responses, stress 

responses, cell cycle and survival, apoptosis and regulating inflammation.  NF-κB is 

involved in inflammation by regulating transcription of genes for pro and anti-

inflammatory cytokines [99-101].  NF-κB exists in a latent form in the cytoplasm as a 

heterodimer bound to an inhibitory protein IκB.  There are five proteins in the NF-κB 

family; p50 and p65 are the most commonly found heterodimer. When NF-κB is 

activated, extracellular stimulus leads to IκB kinase (IKK) phosphorylating IκB and thus 

targeting it for ubiquitination and degradation by the proteasome (Figure 1-5).  Free NF-

κB can then translocate to the nucleus and activate target genes by binding with high 

affinity to κB elements in their promoters [102].  NF-κB is activated by radiation, 

oxidative stess, and many products of the inflammatory lung response (cytokines, 

macrophages, ROS) and further promotes the inflammatory response itself, thus playing a 

key role in the regulation of the radiation response in lung.  NF-κB activation is 

controlled by a negative feedback loop by upregulating production of inhibitory IκB.  

NF-κB activation is also suppressed by anti-oxidants and anti-inflammatory cytokines 

resulting in decreased pro-inflammatory mediator expression [103, 104].   

 

1.12 Oxidative Stress 

Normal tissue damage involves complex interactions between many cell types as  
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Figure 1-5: NF-κB transcription pathway.  There are five proteins in the NF-κB family, it is commonly 
found as heterodimer composed of subunits p50 and p65 bound to inhibitory protein κB (IκB).  Radiation 
and other factors can initiate the NF-κB pathway by activating inhibitory κB kinase (IKK).  IKK is a multi-
subunit enzyme composed of a heterdomer of IKKα and IKKβ, and regulatory subunit NEMO.  The IKK 
complex phosphorylates IκB and targets it for ubiquitination and degradation by the proteosome.  The NF-
κB heterodimer is only then free to translocate to the nucleus to be transcribed.  Figure modified from [105] 
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described previously, however many of the mechanisms of interaction are still unknown.  

One mechanism of cellular interaction following radiation is the bystander effect, which  

has similarities to the out-of-field effect described by observations in our lab [27, 28].  

The out-of-field effect is observed when tissue damage was located beyond the 

boundaries of the irradiation field, and even within a different unirradiated lobe of the 

lung.  This is also similar to abscopal effects that are significant responses seen in tissues 

definitively separate from the irradiated area [106].  The bystander effect is observed 

when unirradiated cells exhibit responses associated with radiation exposure as a result of 

cell-to-cell contact or through soluble signals [93].  Several experimental approaches 

have been used to study this phenomenon.  In vitro experiments used confluent cell 

cultures to demonstrate direct intercellular communication through cell-to-cell contact.  

Precise irradiation of target cells produced DNA mutations and micronuclei (MN) 

formation in neighbouring unirradiated cells.  MN formation occurs when portions of the 

chromosome are lost due to double strand DNA breaks.  A second approach transferred 

culture medium from irradiated cells to a separate unirradiated flask and still observed the 

radiation response [107].  This supports the notion that a soluble factor is capable of 

initiating the radiation response in cells beyond the irradiation field.  Both approaches 

implicated enhanced oxidative metabolism with reactive oxygen species (ROS) and stress 

response proteins as key factors [106]. 

One effect of the soluble signals of bystander effects and inflammation is 

oxidative stress.  Bystander effects have been partially attributed to the production of 

ROS following irradiation that also stimulate cytokine production [108].   ROS are 

reduced metabolites of molecular oxygen such as the hydroxyl radical (OH·), hydrogen 
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peroxide (H2O2), and superoxide anions (O2
-) that are continuously generated through 

normal oxidative metabolism (Figure 1-6) and during radiation exposure [13, 107].  ROS 

are oxidizing agents capable of causing DNA damage.  Superoxide is a free radical that is 

not highly reactive and can not cross lipid membranes and is restricted to the intracellular 

compartment in which it is generated.  Superoxide is primarily generated in the 

mitochondria due to leakage from the electron transport chain or by direct reduction of 

molecular oxygen.  Superoxide is rapidly dismutated to hydrogen peroxide by the 

antioxidant enzyme superoxide dismutase (SOD).  Hydrogen peroxide is not a free 

radical and is a weaker oxidizing agent than superoxide; however, it can cross biological 

membranes.  At low concentrations hydrogen peroxide is converted to water by 

glutathione peroxidases, and at high concentrations it is converted to water and molecular 

oxygen by catalase localized in peroxisomes.  In the presence of transition metals 

hydrogen peroxide can give rise to the most reactive ROS, the hydroxyl radical, via the 

Fenton reaction [13].  Reactive nitrogen oxide species (RNOS) are also produced from 

the reaction of nitric oxide (NO·) with molecular oxygen or superoxide. 

Irradiation of biological material leads to a burst of ROS production mainly due to 

the ionization of water molecules.  The hydroxyl radical is highly reactive and reacts 

within 10-9s of generation.  Superoxide anions and hydrogen peroxide are relatively 

stable and can persist for 101-102s in water, however the amounts of these radicals 

produced by radiation (depending on dose) is much lower than those produced by normal 

cellular metabolism [109].  In addition to the rapid burst of ROS following radiation there 

is a prolonged increase in ROS up to several days post irradiation [14].  The presence of 

ROS can cause activation of transcription factors such as NF-κB, induce apoptosis or  

 28

https://www.researchgate.net/publication/8502752_Chronic_oxidative_stress_and_radiation-induced_late_normal_tissue_injury_A_review?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=
https://www.researchgate.net/publication/8502752_Chronic_oxidative_stress_and_radiation-induced_late_normal_tissue_injury_A_review?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=
https://www.researchgate.net/publication/10665043_Radiation-induced_versus_endogenous_DNA_damage_Possible_effect_of_inducible_protective_responses_in_mitigating_endogenous_damage?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=


 

 

 

 

 

 

 

 
Superoxide formation: 

O2 + e- → O2
-

 
Hydrogen peroxide formation: 

2 O2
- + 2H+ → H2O2 + O2 

 
Hydroxyl formation (Fenton reaction): 

H20 → OH· + H· 
Fe2+ + H2O2 → Fe3+ + OH-+ OH· 

 

 

 

 

 

Figure 1-6: Reactive Oxygen Species (ROS) formation reactions 
 

 29



necrosis, and alter signals regulating cell growth and signalling cascades.  ROS can cause 

damage to DNA, lipids, proteins and endothelial cells, and increase microvascular 

permeability through their ability to induce biochemical alterations [110, 111].  This 

supports the hypothesis that chronic oxidative stress plays a key role in inflammation and 

tissue damage following irradiation.  Irradiation induces production of ROS that cause 

increased expression of CAMs on inflammatory cells, thus further recruiting 

inflammatory cells to the site of injury.  Macrophages and monocytes themselves are 

major sources of cytokines and ROS and perpetuate the inflammatory process [110].  In 

the context of radiation response, inflammation is initiated to try and repair initial 

damage, but if the response is not regulated it can lead to chronic inflammation and 

oxidative stress causing further tissue damage.   

 

1.13 Protection Against Oxidative Damage – SOD and SOD mimetics 

Cells and tissues protect themselves from the damaging effects of radicals and 

ROS by intracellular defence mechanisms that form a redox buffer network with 

molecules such as SOD, catalase, glutathione and related enzymes [112].  Many studies 

have also focused on protecting against oxidative damage and reducing ROS levels using 

agents similar to SOD.  SODs are metalloproteins that can dismutate superoxide anions to 

less reactive hydrogen peroxide and oxygen without extra input of cellular energy [111].  

SOD enzymes exist endogenously in two forms: MnSOD found in the mitochondria, and 

CuZnSOD found in the cytosol and extracellular space (EC-SOD) [113].  High levels of 

EC-SOD are produced by type II pneumocytes in the lungs and other pathways [114].  

Several studies have investigated the use of SOD to protect against the high levels of 
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ROS formed after radiation. In our lab, it was demonstrated that administration of 

MnSOD or CuZnSOD lowered the MN damage seen out of field, suggesting that MN are 

produced by ROS and that the oxidative damage detected as MN can be modified by 

these agents [27].  Transgenic mice over expressing EC-SOD were observed to show 

greater protection against radiation induced lung damage as assessed by changes in 

breathing rate frequency, macrophage accumulation, collagen deposition, TGF-β1 

activity, and lipid oxidation.  The mice had an increased anti-oxidant capacity and 

showed a decreased inflammatory response due to a decreased macrophage and TGF- β1 

response [115, 116].  In addition, mice over expressing a transgene for human MnSOD 

were also protected against radiation induced lung damage and showed decreased levels 

of mRNA for IL-1, TNF-α, and TGF-β.  Histological samples also showed that the mice 

developed less severe alveolitis and fibrosis, as well as increased survival.  Over 

expression of CuZnSOD did not confer any additional protection from radiation damage, 

perhaps as it is not upregulated following irradiation and it is located in the cytosol away 

from critical targets such as the mitochondria [117, 118].  The main limitation of 

endogenous SOD is its large size (~30kDa) and its inability to cross cell membranes.  In a 

therapeutic approach, administration of endogenous SOD would only offer antioxidant 

activity in the extracellular space and not within the cell itself.  As a result, several 

smaller molecular mass SOD mimetics that imitate the endogenous SOD functions have 

been developed [111].  Since radiation creates ROS directly within the cell due to the 

ionization of water molecules and mitochondria within the cell produce ROS, and 

inflammation creates ROS outside the cell, it is important that protective agents be 

effective in both locations (Figure 1-7).  SOD mimetics therefore are likely to offer 
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greater protection than endogenously administered MnSOD or CuZnSOD that acts 

against extracellular ROS alone.   

Studies in our lab with a manganese-salen SOD-catalase mimetic Eukarion-

189(EUK-189) showed that administration at early times following radiation lowered the 

chronic production of ROS and reduced DNA damage seen during this period [119].  

Other SOD-catalase mimetics, AEOL 10113 and 10150,  have also been reported to 

alleviate increases in breathing rate, TGB-β1 activity, hydroxyproline levels, and 

collagen content following hemithoracic radiation in rats [120-122].  Two Mn porphyrin-

based SOD mimetics also showed protective effects by scavenging ROS [123].  These 

results suggest that at least some of the DNA damage is caused by oxidative stress 

induced by the radiation-induced inflammatory response and that DNA damage caused 

by this mechanism can be scavenged by protective agents. 

 

1.14 Protection Against Lung Inflammation 

One of the best radioprotectors if given before irradiation is amifostine 

(WR2721), a thiophosphate compound.  Amifostine has been shown to protect against 

increases in breathing rate, increased plasma TGF-β, and fibrosis but is also known to 

interfere with chemotherapeutics [124-127].  Studies of angiotensin converting enzyme 

(ACE) inhibitors and angiotensin II receptor blockers, such as captopril, have shown 

significant protection against radiation pneumonitis and fibrosis [128-133].  Captopril is 

believed to reduce the effects of radiation on endothelial cells, fibroblasts and 

macrophages, and regulate the blood pressure of the pulmonary artery thus lowering 

edema in the lung.  However, it has a very short half life of 2-3 hours.  Pentoxifylline is a 
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Figure 1-7: In and out-of-field effects of radiation.  Radiation may act directly causing DNA damage 
within the irradiation field (1) by directly ionizing DNA and water molecules.  It may also act indirectly by 
inducing an inflammatory response, that subsequently produces ROS that may cause damage in and out-of-
field.  
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xanthine derivative that has shown potential to reduce radiation toxicity and has been 

reported to reduce pneumonitis when given during radiotherapy in patients [134].  It  has 

also been shown to maintain perfusion in rats at late times following irradiation but had 

little effect on pneumonitis or fibrosis [135, 136].  Given continuously before and after 

radiation, pentoxifylline was shown to reduce levels of pro-inflammatory TNF-α in 

mouse lung, and reduce the inflammatory cell infiltrate but it did not have an effect on 

overall lung damage [72].  These results using amifostine and ACE inhibitors suggest that 

modulating the inflammatory response could protect against tissue damage but further 

investigation of other agents may prove to be more effective. 

Using gene therapy, a study of soluble TGF-β receptor to decrease availability of 

TGF-β1 by competitive inhibition examined if this approach could protect the lung from 

radiation injury by modulation of the inflammatory response [89].  The study showed a 

reduction in breathing rates, lower damage visible in histology samples, decreases in 

macrophage accumulation and plasma TGF-β1 in treated animals.  Blocking the pro-

inflammatory cytokine’s ability to bind to its receptor prevented further signal 

transduction and generation of late tissue damage.  In addition, plasma TGF-β1 of 

patients has been shown to be significantly predictive of radiation-induced lung toxicity, 

thus further implicating TGF-β1 as an important factor in lung radiation response [137]. 

 

1.15 Protection Against Radiation-Induced Lung Damage by Genistein 

Genistein (4’5,7-trihydroxyisoflavone) (Figure 1-8) has anti-oxidant and anti-

inflammatory properties, has low toxicity and is commonly used as a dietary supplement 

[138-140].  Genistein acts as an anti-oxidant by directly scavenging ROS [140].  
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Genistein inhibits protein kinase activity and blocks activation of the transcription factor 

NF-κB, a critical mediator of immune and inflammatory responses [141-144]. Genistein 

has been reported to reduce acute lung injury from inflammation after lipopolysaccharide 

treatment [142, 144].  Genistein has also been used as a radioprotector and has been 

shown to increase survival following whole body irradiation [145].  In addition to 

radioprotection studies, genistein has been investigated as an anti-cancer 

therapeutic[146].  Diets high in soy isoflavones have been noted for their role in reducing 

the incidence of breast and prostate cancers [147, 148].  Genistein inhibits carcinogenesis 

in many tumour models through the modulation of genes for cell cycle, survival and 

apoptosis [139, 146] and has been reported to reduce development of metastasis in breast 

cancer and prostate models [149-151]. 

Previous work in our lab examined the protective effects of genistein in rats when 

given following 18Gy whole lung irradiation. (Calveley et al, in preparation).  In this 

study the rats put on a genistein diet of ~10mg/kg/day demonstrated increased survival 

during the early phase of pneumonitis and were partially protected against an increase in 

breathing rate during this time.  Genistein did not increase survival during the later 

fibrosis phase and rats showed an increase in breathing rate during this time. However, 

when examined at 28 weeks the surviving rats on the genistein diet did show reduced 

levels of collagen in their lungs relative to animals given the control (low soy) diet. 

 

1.16 Goals of Current Study 
 

The goal of this study was to investigate the mitigation and treatment potential of 

genistein combined with fractionated radiation therapy.  Chapter 2 describes these 
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Figure 1-8: Structure of Genistein (4’5,7-trihydroxyisoflavone) 
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experiments conducted with genistein.  Chapter 3 discusses the relevance and 

implications of this work and presents future directions.  The present study was designed 

to follow up on the previous findings by investigating the effects of prolonged 

administration of a genistein diet in mice following a more clinically relevant fractionated 

irradiation treatment to the lungs.  Previous studies had investigated effects following a 

single dose of radiation, and fractionated doses had not been examined.  While the 

fractionation schedule was expected to be equivalent in terms of functional deficit, based 

on isoeffect formulas [39, 40], the contribution of each fraction to the lung response and 

the effect of genistein in this case were unknown.   

Whenever an agent capable of protecting normal tissue is given, the potential to 

also protect tumor tissue must also be examined, thus the potential of genistein to protect 

tumor was also investigated.  An ideal agent would protect the normal tissue and not 

protect, or sensitize tumor to radiation.  Previous studies in the lab had always used a rat 

model, and the impact of genistein on tumor and radiation response had not been 

examined.  We switched to a mouse model for these studies both to allow examination of 

whether tumour might be protected by the genistein treatment (by an established mouse 

lung colony assay) and to provide information about the effects of genistein in a different 

animal model.   
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2 Chapter 2: Mitigation of radiation-induced lung damage by Genistein 
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2.1 Abstract 

Background and Purpose: This study investigated protection of lung injury by genistein 

following fractionated doses of radiation and its effect on tumor response.  

Material and Methods: C3H/HeJ mice were irradiated (100 kVp X-rays) with 9 fractions 

of 3.1Gy over 30 days (~10Gy single dose) and maintained on a genistein diet (~10 

mg/kg.  Damage was assessed over 28 weeks in lung cells by a cytokinesis block 

micronucleus (MN) assay and by changes in breathing rate and histology.  Tumor 

protection was assessed using a colony assay to determine cell survival following in situ 

irradiation of small lung nodules (KHT fibrosarcoma). 

Results: Genistein causes about a 50% reduction in the MN damage observed during the 

fractionated treatment and continues to decrease at late times to background levels by 16 

weeks.  Genistein reduced macrophage accumulation by 22% and reduced collagen 

deposition by 28%.  There was minimal protection against increases in breathing rate or 

severe morbidity during pneumonitis.  No tumor protection by genistein treatment was 

observed.   

Conclusions: Genistein may partially reduce the extent of fibrosis developing in mouse 

lung caused by irradiation but gives minimal protection against pneumonitis at this dose. 

There is no evidence that genistein causes protection of small tumors growing in the lung. 

 

2.2 Introduction 

The thorax is commonly irradiated for treatment of lung cancer, breast cancer, and 

various lymphomas.  The lung is a relatively radiosensitive organ [3] and normal tissue 

tolerance is a dose limiting factor in radiotherapy of the thoracic region [4].  It is 
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desirable to give the highest possible dose to the tumor while sparing the surrounding 

healthy normal tissue and managing normal tissue complications.  Approaches to 

protecting or mitigating the effects of radiation on lung tissue might improve the 

therapeutic ratio and have been investigated in a number of centres [45, 119, 121, 123, 

133].  Radiation-induced lung injury has classically been separated into two phases: 

pneumonitis and fibrosis.  Pneumonitis is an acute inflammatory reaction that occurs two 

to four months following irradiation where there is an increase in oedema and 

inflammatory cells causing cough and dyspnea. Fibrosis begins four to six months post 

irradiation characterized by progressive scarring of the lung, with vascular cell damage 

and collagen deposition causing chronic dyspnea [4].  Fibrosis increases over time and 

reduces the functional capacity of the lung. In thoracic radiotherapy, dose escalation is 

limited by the normal tissue complication probability (NTCP).  Using current treatment 

protocols, the risk of radiation pneumonitis is of most concern as it has considerable 

impact on patient morbidity and mortality [16, 137, 152-155].   

Before symptoms are clinically evident there are molecular changes in response to 

radiation that are believed to underlie the development of pneumonitis and fibrosis.  

Direct radiation damage to individual lung cells is compounded by a complex cycle of 

inflammation and altered expression of cytokines, that causes production of reactive 

oxygen species (ROS) resulting in oxidative damage [7, 27, 44, 70].  Alveolar 

macrophages, lung fibroblasts, type II pneumocytes and endothelial cells interact via 

cytokine and growth factor signalling [8, 9].  There is an increase in levels of intercellular 

adhesion molecule-1 (ICAM-1) and E-selectin in lung endothelial cells allowing for 

increased arrest of inflammatory cells in lung capillaries [156].  Many studies have 
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documented changes in cytokine expression following irradiation, in particular temporal 

upregulation of the inflammatory cytokines interleukin-1alpha (IL-1α), interleukin-1beta 

(IL-1β), transforming growth factor-beta (TGF-β), and tumour necrosis factor-alpha 

(TNF-α) have been documented [6, 10, 77, 84, 157].  Temporal changes in expression 

depend upon the experimental system, but can be seen as early as one hour following 

irradiation and continue over the course of development of pneumonitis and fibrosis [11, 

15, 44, 71-74].  

The severity of side effects following irradiation depends upon volume and region 

irradiated, dose and fractionation regimen, and concurrent chemotherapy agents.  The 

base of the lung has been shown to be more sensitive than the apex [23, 27-30, 33, 36] 

and the left lung is more sensitive than the right [27, 28, 158].  In addition to the loco-

regional response and volume effects, the inclusion of the heart in the radiation field may 

increase damage seen in the lung [34, 35, 159]; however, this effect was not observed in 

some other studies [25, 33].   Previous studies in our lab using partial lung irradiation 

have shown there is DNA damage in and out of the radiation field [27, 28].  This supports 

the idea that some DNA damage may be caused by the action of inflammatory cytokines 

and the resultant production of ROS.  Administration of superoxide dismutase (MnSOD, 

CuZnSOD) lowered the damage seen out of field, demonstrating that oxidative damage 

can be modified by these agents.  Furthermore studies with the manganese-salen SOD-

catalase mimetic Eukarion-189 (EUK-189) showed that administration at early times 

following radiation lowered the chronic production of ROS and reduced DNA damage 

seen during this period [119].  In addition, transgenic mice over expressing extracellular 

(EC)-SOD in alveolar and airway epithelial cells showed protection from radiation injury 
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due to an increased anti-oxidant capacity and decreased inflammatory response [116].  

Mice over-expressing a transgene for human MnSOD were also protected against 

radiation-induced lung injury [117, 118]. 

Our current study investigates the mitigation and treatment potential of the soy 

isoflavone genistein as a therapeutic agent when combined with radiation.  Genistein 

(4’5,7-trihydroxyisoflavone) has anti-oxidant and anti-inflammatory properties, has low 

toxicity and is commonly used as a dietary supplement [138-140].  Genistein inhibits 

protein kinase activity and blocks activation of the transcription factor NF-κB, a critical 

mediator of immune and inflammatory responses [141]. Genistein has been reported to 

reduce acute lung injury from inflammation after lipopolysaccharide treatment [142] and 

administration of genistein doses up to 400mg/kg provided a significant increase in 

survival following whole body irradiation without any toxicity [145].  In addition to 

radioprotection studies, genistein has been investigated as an anti-cancer therapeutic.  

Diets high in soy isoflavones have been noted for their role in reducing the incidence of 

breast and prostate cancers [147, 148].  Genistein inhibits carcinogenesis in many tumour 

models through the modulation of genes for cell cycle, survival and apoptosis [139, 146] 

and has been reported to reduce development of metastasis in a breast cancer model 

[149]. 

Previous work in our lab examined the protective effects of genistein in rats given 

following 18Gy whole lung irradiation. (Calveley et al, in preparation).  In that study the 

rats were fed a genistein diet of ~10mg/kg/day, and demonstrated increased survival 

during the early phase of pneumonitis and were partially protected against an increase in 

breathing rate during this time.  Genistein did not increase survival during the later 
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fibrosis phase and rats showed an increase in breathing rate during this time. However, 

when examined at 28 weeks the surviving rats on the genistein diet did show reduced 

levels of collagen in their lungs relative to animals given the control (low soy) diet. The 

present study was designed to follow up on these findings by investigating the effects of 

prolonged administration of a genistein diet in mice following a more clinically relevant 

fractionated irradiation treatment to the lungs and to provide information about the effects 

of genistein in a different animal model.  This study also examined whether tumour might 

be protected by the genistein treatment. 

 

2.3 Materials and Methods 

Mice 

For the initial short-term experiments examining MN formation following 

irradiation both female C57Bl/6J and female C3H/HeJ mice (JAX Laboratory) aged 7 

weeks were used.  For the long term studies, only female C3H/HeJ mice ages 7 weeks 

(JAX Laboratory) were used because of their known sensitivity to the development of 

pneumonitis and later fibrosis whereas C57Bl/6J are fibrosis prone but lack the 

pneumonitis response [81, 86, 160].  The animals were housed at the Ontario Cancer 

Institute/Princess Margaret Hospital small animal facility, which is accredited by the 

Canadian Council on Animal Care and were treated in accordance with approved 

protocols. Mice were randomly assigned to one of four treatment groups: radiation and 

genistein, radiation and control diet, sham radiation and genistein, sham radiation and 

control diet.  At each experimental time point (4, 8, 12, 16, 20, 24 and 28 weeks) a group 
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of four randomly selected mice in each group was sacrificed for analysis unless otherwise 

indicated.   

 

Irradiation 

Mice were irradiated with a dual headed 100 kVp X-ray unit [161], operating at 

10mA with a dose-rate of approximately 10.2Gy/min. Nine fractions of 3.1Gy were given 

over 30 days (3-4 days apart).  This dose had been previously shown to produce a 

functional deficit equivalent to a 10Gy single dose and to be equivalent to more extended 

fraction schedules in terms of lung damage in rats [39, 40].  The RBE of X-rays 

compared to Cesium was found to be approximately 1.2 assessed by tumor cell killing in 

vivo (unpublished data).  Day 1 was set as the first day of radiation treatment.  Prior to 

irradiation the mice were anaesthetized by halothane inhalation and placed in custom-

designed lucite holding containers.  A digital x-ray unit was used to position lead 

shielding around the lungs to provide a circular field of 2.5cm diameter for irradiation.   

 

Genistein Treatment 

During the course of the experiment, mice were provided with sterilized food and 

water ad libitum.  The AIN-76A diet (Harlan Teklad, Madison, WI, ref [162]), a semi 

purified casein-based diet containing no detectable phytoestrogens (limit of detection, 

5pmol/mL) was selected as the control diet.  The genistein diet was formulated from the 

control diet, supplemented with 750mg/kg of genistein and has been used by others 

[149].  This concentration has been shown to yield serum Genistein levels in mice (~1-

2μmol/L) similar to those observed in humans consuming a diet containing modest 

 44

https://www.researchgate.net/publication/14761397_Evaluation_of_isoeffect_formula_for_predicting_radiation_induced_lung_damage?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=
https://www.researchgate.net/publication/7903080_Dietary_genistein_reduces_metastasis_in_a_postsurgical_orthotopic_breast_cancer_model?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=
https://www.researchgate.net/publication/20856701_Comparison_between_in_vitro_radiosensitivity_and_in_vivo_radioresponse_of_murine_tumor_cell_lines_I_Parameters_of_in_vitro_radiosensitivity_and_endogenous_cellular_glutathione_levels?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=
https://www.researchgate.net/publication/235331089_American_Institute_of_Nutrition_Ad_Hoc_Committee_on_Standards_for_Nutritional_Studies_1977_J_Nutr_107_1340-1348?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=


amounts of soy products(1-2 servings) [163].  Genistein was chemically synthesized 

(Toronto Research Chemicals Inc, Toronto, Ontario) and incorporated into the AIN-76A 

diet at Harlan Teklad.  Dietary consumption was monitored to calculate the dose 

delivered.  Mice were monitored for radiation toxicity and were sacrificed when 

moribund.  Mice were weighed weekly following radiation and mice losing >20% body 

weight, or exhibiting signs of distress such as ruffled fur, very rapid breathing, and 

hunched posture were sacrificed.   

 

Micronucleus Assay 

A well established cytokinesis block micronucleus(MN) assay [27, 28] was used 

to assess genomic damage following irradiation.  Briefly, Alpha MEM medium 

supplemented with antibiotics (Sigma-Aldrich Canada Ltd, Oakville, Ontario, Canada) 

was injected into the right ventricle of deeply anaesthetized mice to perfuse the lungs and 

remove as much blood as possible.  The right lungs were then aseptically removed and 

minced and digested with 0.25% trypsin and 0.25% collagenase I (Gibco, Invitrogen 

Corporation, Burlington, Ont., Canada), at 37ºC for 2 hours.  The digested tissue was 

filtered, centrifuged and resuspended in Alpha MEM with 10% fetal calf serum (FCS).  

The cells were plated in chamber slides and incubated at 37ºC.  After 24 hours, culture 

medium was replaced with complete medium containing cytochalasin B (Sigma-Aldrich 

Canada Ltd, Oakville, Ontario, Canada) to inhibit cytoplasmic division without 

interfering with nuclear division.  After another 72 hours of incubation, the cells were 

fixed with KCl and then methanol.  Slides were stained with acridine orange (Sigma-

Aldrich Canada Ltd, Oakville, Ontario, Canada) and scored as the number of MN per 
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thousand binucleated (BN) cells.  MN were scored if they were distinguishable from the 

main two nuclei, less than one third the size of the main nuclei and had similar staining 

intensity [164].  Background levels of MN were consistently 15-50 MN/1000BN cells.   

 

Lung extraction 

Mice were deeply anaesthetized and using the “Inflation procedure for open lung 

biopsies”[165] the left lung was injected with 5ml 10% formal saline via the left main 

bronchus in order to expand the alveoli.  The lung was then removed and placed in 10% 

formaline saline for 48 hours for fixation. The lungs were embedded in paraffin and 

sections 5μm thick were cut and placed on slides in preparation for staining.  

 

Immunohistochemistry  

Sections were stained with Haematoxylin and Eosin (H and E), Masson’s 

Trichrome for collagen content and the MAC3 antibody for activated macrophages in the 

Pathology core facility of the Ontario Cancer Institute.  Sections were analyzed with the 

positive pixel algorithm in Aperio ImageScope (Aperio Technologies Inc.) The mean 

percent positive pixels stained are presented.  

 

Breathing rate 

The breathing rate of mice was measured at 0, 4, 8, 10, 11, 12, 13, 14, 16, 18, 20, 

22, 24, 28 weeks following irradiation using a whole body plethysmograph (Columbus 

Instruments, Columbus, Ohio).  Increases in breathing rate have been previously shown 

during pneumonitis and fibrosis [23, 30, 166-168]. Mice were acclimatized to the 
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measurement process three times before the commencement of the experiment.  Mice 

were allowed to acclimatize before each measurement for one minute.  Data for each 

mouse were collected for one minute and at least 3 readings from 4 second periods were 

selected by hand from regions free of noise due to movement of the mouse in the 

measurement chamber.  Data are represented as the mean +/- SE. 

 

Impact of Genistein on Tumor Response to Radiation 

C3H/HeJ female mice were injected intravenously with 2*104 KHT murine 

fibrosarcoma cells into the tail vein (IV). The tumor cells then arrest in the lungs and 

tumors were allowed to grow for either 2 or 10 days (approximate nodule size at 2 days 

<1mm, at 10 days ~3mm).  Mice were then treated with a single dose of 5Gy while lung 

radiation combined with a single dose of genistein at 12.5mg/kg intraperitoneally (IP).  A 

separate group of mice were put on the genistein diet and irradiated with 9 daily fractions 

of 3.1Gy whole lung irradiation commencing 8 days following KHT injection.  Twenty-

four hours following the last fraction, the lungs of the mice were removed aseptically, 

minced and digested in 0.5ml trypsin, 4.8ml PBS and 45 Kunitz units DNase I (Sigma-

Aldrich Canada Ltd, Oakville, Ontario, Canada) for 30 minutes at 37ºC.  The tissue was 

strained and rinsed with PBS and re-digested in 0.5ml 0.25% collagenase I, 45 Kunits 

DNase I, and 4.4ml Alpha MEM + 10%FCS at 37ºC for 2 hours.  The suspension was 

strained, centrifuged, and resuspended in alpha MEM +10% FCS, cells were counted and 

plated.  Colonies were allowed to grow for 10 days and then fixed with methanol.  Tumor 

cell colonies greater than 50 cells were scored and the number of colonies recovered per 

lung was calculated.    
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Data Analysis 

When comparisons were made between the means of two groups, a two tailed 

Student’s t-test was used, p<0.05. For multiple comparisons an ANOVA was used 

followed by testing of individual groups via Tukey’s test, p<0.05. 

 

2.4 Results 

 
Normal Tissue Response 
 
Food consumption and toxicity 

The mice were weighed to monitor their health and toxicity of treatment (Figure 

2.1).  The food consumption was also monitored.  The average consumption of food per 

mouse was 2.71 (±0.08)g food per mouse per day  similar to that reported previously 

[149].  From the diet formulation the mice were consuming approximately 2.03mg of 

genistein per day.  The control mice steadily gained weight as they grew during the 

course of the experiment.  The irradiated animals maintained or lost weight during the 

fractionated treatment but began to gain weight at a similar rate to the controls after 

radiation treatment was finished.  The control animals on the genistein diet were slightly 

heavier than those on the control diet.   

 

Micronucleus formation 

C57/Bl6 (F) and C3H/HeJ (F) mice were irradiated with 9 fractions of 3.1Gy over 

30 days to the thoracic cavity and given either the control diet or the diet containing 

genistein starting 2 days before the first fraction.  Mice were sacrificed 18 hours post 

 48

https://www.researchgate.net/publication/7903080_Dietary_genistein_reduces_metastasis_in_a_postsurgical_orthotopic_breast_cancer_model?el=1_x_8&enrichId=rgreq-f6732d15f79bc0c1137f726572a18bd6-XXX&enrichSource=Y292ZXJQYWdlOzI0NDE4ODc2O0FTOjk3NjIxMjMwMjI3NDY3QDE0MDAyODYxMjM3MTg=


 

 

 

 

16

18

20

22

24

0 4 8 12 16 20 24 28

Weeks Post Irradiation

M
ou

se
 W

ei
gh

t (
g 

+/
- S

E
)

Rad + Genistein
Rad + Control
Sham + Genistein
Sham + Control

 

Figure 2-1: Weight of mice following irradiation.  The irradiated groups did not gain weight during the 
irradiation treatments.  After irradiation all mice gained weight at roughly the same rate.  Weights were 
used to monitor the health of the mice.  This shows no toxicity associated with genistein in the diet. 
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irradiation after the 1st, 3rd, 6th and 9th fractions.  Comparisons were also made between 

unirradiated controls and mice treated with a 10 Gy single dose. Genistein was effective 

in reducing the MN damage observed in normal lung fibroblasts of each irradiated group 

by an average 47% in C57/Bl6 mice and by 46% in C3H/HEJ mice (Figure 2.2).  The 

level of damage observed in the fractionated groups was less than that of a single dose, 

and increased according to total dose delivered.  There was no significant increase in MN 

formation between the 6th and 9th fractions. The background level of MN is less than 50 

MN/1000BN cells.   

C57/Bl6: Mice were analyzed with no treatment (n=4 per group), post 10 Gy single dose 

(n=4 control, n=3 genistein),  post fraction 1 (n=4 control, n=3 genistein),  post fraction 3 

(n=3 control, n=4 genistein),  post fraction 6 (n=7 control, n=4 genistein),  post fraction 9 

(n=7 control, n=4 genistein).  Comparison between control and treated groups: no 

radiation p=ns, 10Gy single dose p=0.001, fraction 1 p=0.009, fraction 3 p=0.001, 

fraction 6 p=0.001, fraction 9 p=0.045.  Average reduction in MN formation by genistein 

=47%. 

 C3H/HEJ: N=4 mice for all groups.  Comparison between control and treated groups: no 

radiation p=ns, 10Gy single dose p<0.001, fraction 1 p=0.003, fraction 3 p<0.001, 

fraction 6 p=0.002, fraction 9 p=0.048.  Average reduction in MN formation by genistein 

=46%. 

C3H/HEJ (F) mice irradiated with 9 fractions of 3.1 Gy were also followed for 28 

weeks to examine the long term effects of the genistein diet on radiation damage (Figure 

2.3).  Following radiation genistein reduced MN formation to background levels by 16 

weeks post irradiation. The irradiated mice on the control diet had sustained levels of MN 
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formation between 300-400MN/1000BN for weeks 12-28, well above the background 

levels.  N=4 mice for all groups.  Comparison between irradiated treated groups: 4 weeks 

p=0.048, 8 weeks p=0.021, 12 weeks p=0.035, 16 weeks p=0.018, 20 weeks p=0.009, 24 

weeks p<0.001, week 28 p=0.001.  There was no significant difference between the sham 

treatment groups. From weeks 16-28 there was no significant difference between the 

irradiated genistein and the sham groups. 

 

Immunohistochemistry 

The left lungs were fixed in formalin and stained for histology and 

immunohistochemistry.  At early times up to 4 weeks there were no visible changes in 

intra-alveolar thickness, alveolar spaces or inflammatory infiltrate, collagen or activated 

macrophages (data not shown).  For later times from 4-28 weeks post irradiation, 

representative images of MAC3 staining for activated macrophages are shown in Figure 

2.4.  Additional images from moribund mice that were sacrificed in weeks 12, 14, and 16 

and stained with MAC3 are also shown in Figure 2.5.   

MAC3 staining increased gradually over time in the sham groups while the 

irradiated groups showed a 1.8x increase over the unirradiated controls (Figure 2.6).  

Genistein caused a significant reduction in macrophage content between the radiation and 

control diet vs radiation and genistein diet at 28 weeks, and between the sham and control 

diet vs. sham and genistein diet at 16 weeks.  There was an average reduction of 22% in 

macrophage content by genistein in the irradiated groups, and 45% in the sham groups.  

Macrophage content was also quantified in moribund mice that were sacrificed early  
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Figure 2-2: Micronucleus yield from whole lung irradiations in C57/Bl6 and C3H/HEJ mice at 
various times during fractionated irradiation with genistein treatment.  Each bar represents the 
mean ± SE.  N=3-7 mice per group.  Genistein reduced MN formation in all groups. 
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Figure 2-3: Micronucleus formation at various times following fractionated irradiation (9 fractions of 3.1 
Gy) with genistein treatment.  Each bar represents the mean ± SE.  N=4 mice per group.  Genistein reduced 
MN formation at late times to background levels by 16 weeks PI. 
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Figure 2-4: Representative images of MAC3 stain at 4 week intervals post irradiation.  Black bar 
represents 100μm.  Activated macrophages stain brown.  Irradiated animals show patchy inflammatory 
infiltrate into the lung tissue and alveolar air spaces. 
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Figure 2-5: Representative images of MAC3 stain at 12, 14, and 16 weeks post irradiation from moribund 
mice that were sacrificed. Black bar represents 100μm. Inflammatory infiltrates completely obliterated 
much of the normal lung tissue architecture.   
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Figure 2-6: Quantification of MAC3 antibody staining (Figure 2-4) for activated macrophages content at 4 
week intervals following fractionated irradiation (n=4 per group).  Each bar represents the mean positivity 
± SE.  There is an average increase by 1.8x in macrophage content in the irradiated vs sham groups.  
Genistein caused a significant reduction (*) in macrophage content between the Radiation and Control diet 
vs Radiation and Genistein diet at 28 weeks, and between the Sham and Control diet vs. Sham and 
Genistein diet at 16 weeks.  There was an average reduction of 22% in macrophage content by Genistein in 
the irradiated groups, and 45% in the sham groups. 
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Figure 2-7: Quantification of MAC3 staining for activated macrophages (Figure 2-5) for sacrificed 
moribund mice from weeks 12, 14 and 16.  Mice that were sacrificed early showed much higher levels of 
macrophages than mice that were healthy at that time(ie mice that were randomly chosen for timepoint 
analysis as shown in Figure 2-6). Each bar is one mouse. 
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during weeks 12, 14, and 16 (Figure 2.7).  These mice showed higher macrophage 

content than mice that were healthy during the same time period.   

 

Collagen content was assessed by Masson’s Trichrome staining as shown in 

Figure 2.8. The levels in the unirradiated mice were fairly constant over the course of the 

experiment while the irradiated groups showed an average 2.9x increase over the 

unirradiated controls (Figure 2.9).  The collagen content of the genistein groups was 

reduced by approximately 28% from the control diets.   

 

Functional Deficit  

Breathing rate was measured as an indicator of functional deficit caused by 

radiation damage (Figure 2.10). The irradiated groups both show an increase in breathing 

rate during weeks 10-16 weeks post irradiation during the pneumonitis phase.  Following 

this time there was a sustained increase in breathing rate during the development of 

fibrosis in weeks 18-28 in both irradiated groups with no obvious difference between 

them. 

 

Morbidity 

Severe morbidity leading to animal sacrifice following the radiation treatment of 

the mice was also assessed (Figure 2.11).  There was no difference between the genistein 

vs control diet groups with both showing a sharp decrease in survival during the 

pneumonitis phase.  The protection seen against MN formation in fibroblasts did not 

extend to increased overall survival. 
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Figure 2-8: Representative images of Masson’s Trichrome stain at 4 week intervals post irradiation.  Black 
bar represents 100μm. 
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Figure 2-9: Quantification of Masson’s Trichrome stain (Figure 4) for collagen content at 4 week intervals 
following fractionated irradiation (n=4 per group).  Each bar represents the mean positivity ± SE.   There 
was a trend for reduced collagen content in the irradiated Genistein group compared to the irradiated 
control group, and in the sham Genistein compared to the sham control group.  This trend was not 
statistically significant; however, there was an average reduction in collagen content by 28% between the 
irradiated groups and by 32% between the sham groups.  
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Figure 2-10:  Mean Breaths per Minute (BPM) +/- SE of irradiated vs control mice on Genistein and 
Control diets (n=15-20 per group).  The irradiated groups both show an increase in breathing rate during 
weeks 10-14 weeks post irradiation during the pneumonitis phase, there is a light decrease from weeks 14-
16 then a sustained increase over the fibrotic phase in weeks 18-28.  Both unirradiated groups have BPM 
below 300.   
 

 

 

 

 

 

 61



 

 

 

 

 

 

0 4 8 12 16 20 24 28
0

25

50

75

100

9 x 3.1Gy
40%
45%

Genistein Diet
Control Diet

Survival Time (Weeks Post Irradiation)

P
er

ce
nt

 s
ur

vi
va

l

 
Figure 2-11: Survival of irradiated animals on Genistein vs Control diets (n=60 for both groups).  Both 
groups had a sharp decrease in survival between 8-16 weeks (2-4 months) during the pneumonitis phase.  
There was no significant difference between the survival curves (Kaplan-Meier).   
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Impact of Genistein on Tumor Response to Radiation 
 

Mice were injected with KHT tumor cells IV and tumors were allowed to grow in 

the lungs for 2 or 10 days.  The mice were then treated with a single dose of 12.5 mg/kg 

genistein and/or 5Gy radiation to the thoracic cavity.  Lungs were removed and assessed 

for clonogenic survival.  At 2 days or 10 days there was no difference in tumor cell 

survival between the groups given a single dose of radiation (data not shown).  For 

fractionated radiation treatment the mice were put on the genistein diet at day 8 after cell 

injection and maintained on this diet for the remainder of the experiment. The mice were 

irradiated with 9 daily fractions of 3.1Gy starting on Day 8.  There was a significant 

reduction in colony formation in genistein treated mice in the un-irradiated and irradiated 

groups (Figure 2.12) suggesting that prolonged treatment with genistein may reduce the 

growth rate of the lung nodules.  Genistein caused a reduction in the number of tumor 

cells recovered following radiation, but its effect as a radiosensitizer was not statistically 

significant.   

 

2.5 Discussion 

Fibrosis and particularly pneumonitis are serious side effects that are dose 

limiting in radiotherapy involving significant volumes of the lung.  This study examined 

the potential protective effects of genistein on early and late effects post irradiation 

through comprehensive assessment of DNA damage, immunohistochemical analysis of 

collagen content and macrophage activation and functional deficit in the whole organism 

using a mouse model known to be prone to radiation-induced pneumonitis.  
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Figure 2-12: Clonogenic assessment of tumor response following in situ irradiation of KHT tumors with 
9x3.1Gy (n=6 per group).  Genistein significantly reduced tumour formation in both irradiated (p=0.021) 
and unirradiated groups (p=0.040).   Effect of radiation vs. effect of Genistein:  Genistein did not 
significantly increase tumor sensitivity to radiation.  
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Genistein protected against DNA damage as assessed by MN formation in normal 

lung fibroblasts by greater than 50%.  As the experiment progressed to later times, the 

MN levels detected were reduced to background levels by 16 weeks post irradiation.  

Genistein also reduced the macrophage content in lung tissue assessed by MAC3 staining 

by ~22% and the deposition of collagen by ~28% as assessed by Masson’s Trichrome 

staining.  However, protection against DNA damage and MN formation did not extend to 

significant protection against increases in breathing rate or decreased severe morbidity.  

Both the genistein-treated and control animals treated with radiation showed a large 

increase in breathing rates and approximately 45% of the animals manifested severe 

morbidity during weeks 10-16. Histological samples showed that these mice were 

suffering from severe pneumonitis. 

The data demonstrating that DNA damage can be alleviated by genistein 

treatment is consistent with our previous work that has shown similar effects in rats with 

a SOD-Catalase mimetic EUK-189 following lower half lung irradiation [119]. The 

previous work also showed that there appeared to be some regeneration of damage after 

EUK-189 treatment and ongoing studies in rats indicate that genistein can partially 

protect against pneumonitis in a rat model (Calveley et al., in preparation 2008).  

Similarly, another SOD- catalase mimetic has also been reported to alleviate increases in 

breathing rate and collagen content following hemithoracic radiation in rats [120-122]. 

These results suggest that at least some of the DNA damage is caused by oxidative stress 

induced by the radiation-induced inflammatory response and that DNA damage caused 

by this mechanism can be scavenged by EUK-189 or genistein when given after 

irradiation.  
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Oxidative stress, inflammatory cell recruitment and cytokine production 

following radiation to the lung has been examined in many studies and postulated to play 

a major role in the development of functional lung damage [169].  It was thought that 

genistein would be an ideal agent to treat radiation-induced lung damage as it has both 

anti-oxidant and anti-inflammatory properties (blocks activation of NFκB). Furthermore 

it has been reported to reduce the inflammatory response induced by LPS [141]. Despite 

this we found that although genistein was effective in reducing DNA damage in lung 

fibroblasts, this did not relate to the functional outcome in our murine model.   

One possible explanation for these results may be the source of ROS causing 

DNA damage that is detected by the MN assay.  There are at least three potential sources 

of ROS within the irradiated lung, first that which is produced as a direct result of 

radiation, second that is generated by inflammatory cells [12, 170], and third from the 

mitochondria because of leakage from the electron transport chain [14].  Using whole 

lung irradiation it is difficult to distinguish between these sources; however, previous 

studies in our lab using half lung irradiation of rats [27, 28, 119] showed significant DNA 

damage both in and out of the radiation field. We also found that MnSOD or CuZnSOD 

and nitro-L- arginine methyl ester (L-NAME) were effective in protecting against out of 

field damage. We hypothesized that these results could be explained if out-of-field 

damage could arise from ROS (or RNOS) created by the induced inflammatory response 

and in-field DNA damage could be induced by this mechanism as well as by ROS 

generated primarily from the ionization of water and direct ionization of target molecules 

[171]. Alternatively or additionally, since we have observed that DNA damage following 

whole lung irradiation can be regenerated following scavenging by SOD-catalase 
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mimetics or genistein [7]  (and unpublished observations) the in-field DNA damage 

observed may also be generated by ROS from the mitochondria.  Mitochondrial ROS 

have not been directly linked to induction of inflammatory responses and might be less 

important for fibrosis development than extracellular ROS produced by inflammatory 

cells.  

It may also be important that inflammatory cells can produce several orders of 

magnitude more ROS than would be produced directly by radiation doses of the size we 

are using [170, 172]. Thus the levels of genistein used in the current studies may be 

sufficient to reduce intracellular ROS (RNOS) to low levels but may be insufficient to do 

this for extracellular ROS produced by the induced inflammatory response. Furthermore, 

there are other mechanisms that may contribute to the chronic inflammatory response.  

Mast cells, macrophages and neutrophils, that have been reported to be increased in C3H 

mice with alveolitis [82, 173, 174] have been shown to secrete chemokines such as IL-6, 

enzyme-rich granules and active amines which promote recruitment and infiltration of 

other inflammatory cells along with increases in IL-1α/β and TNF-α.  These cell types are 

presumably attracted to the irradiated lung by expression of surface adhesion molecules 

such as ICAM-1 or E-selectin [47, 156].  It has also been suggested that tissue hypoxia 

may result from increased oxygen consumption by activated macrophages and decreased 

perfusion due to vascular injury.  Hypoxia may then further enhance oxidative stress by 

inducing hypoxia inducible factor (HIF)-1α and downstream genes VEGF and 

angiotensin II furthering inflammatory cell recruitment [170].   All of these possibilities 

suggest that the use of higher doses of genistein may be required to achieve significant 

effects on functional deficits following lung irradiation.   
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    A further possibility is that DNA damage to the lung fibroblasts is not critical for 

functional outcome. It has been shown that radiation causes premature terminal 

differentiation of fibroblasts causing increased synthesis and extracellular deposition of 

collagen [175]. Since such cells become post mitotic they may harbour DNA damage 

undetected by the MN assay while still contributing to the progression of tissue 

remodeling and altering recruitment of inflammatory cells. However, many fibroblasts 

still retain their ability to divide as we are still able to detect dose dependent DNA 

damage by the MN assay.  Furthermore, studies in rat lungs exposed to internal 

irradiation showed that deep lung epithelial cells also demonstrated significant levels of 

MN as well as fibroblasts, indicating that the presence of DNA damage that can be 

expressed as micronuclei in irradiated lung is not limited to fibroblasts [176].

An important question is why we observed little or no protection against 

pneumonitis in the C3H mice when we had previously seen protection against this 

endpoint in rats using an identical genistein containing diet. One possibility is the 

pharmacokinetics of the compound. The amount of food consumed by the mice was 

monitored and the approximate dose of genistein consumed was in the range of 80 mg/kg 

per day (each mouse consumed 2.03 mg/day per 25 g) which has been reported to give a 

plasma level in the range of 1-2 μmol/L [149]. Studies in rats of plasma values of 

genistein given a dose of 50 mg/kg/day gave values of about 11 μmol/L [177], which are 

significantly higher than the values reported for mice on the diet that we used. However, 

the technique of genistein measurement and the administration methods are different so it 

is difficult make a direct comparison. Nevertheless, a recent study of the effect of 

genistein in bone marrow protection following 9.5Gy whole body irradiation showed a 
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range of responses according to dose [145].  At least 25mg/kg was needed to produce an 

effect on survival, and 91% survival was observed at 200mg/kg compared to 8% with 

saline treated controls.   A following study also showed protection against MN formation 

and collagen deposition [178].  These considerations again suggest the need to test higher 

doses of genistein. Particularly this may be true because the dose of genistein used in our 

studies was chosen based on 1) studies in rats to determine the minimum dose which 

would effectively scavenge all the DNA damage (micronuclei) when given after 

irradiation. (Calveley et al in preparation) and 2) reports that the median intake of 

isoflavones is 30-40mg/day in Asian populations, and that genistein levels in plasma 

from Asian populations are in the range of 500nmol/L [179, 180]. 

Finally, whenever any protective agent is given in combination with radiation 

therapy there is a concern that it may protect tumour as well.  Consequently this study 

also investigated the effect of genistein on in situ irradiated KHT tumours. We found that 

there was no evidence of tumour protection.  In fact there was a trend towards tumor 

sensitization by the reduction in clonogenic cells recovered from unirradiated and 

irradiated mice with prolonged treatment with genistein.  This is consistent with other 

reports that genistein has shown potential as an anti-cancer agent in several different 

cancer cell types such as glioma [181], prostate cancer [150], lung cancer [182], cervical 

cancer [183] and breast cancer [149].  Our results contribute to evidence that even as an 

anti-oxidant genistein may be used safely as a protective agent for normal tissue in 

combination with radiation therapy.  These findings are encouraging but in the particular 

case of the use of genistein (at higher doses) as a potential agent to protect lung tissue this 
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experiment should be repeated using a human lung carcinoma cell lines to ensure that the 

result is not cell type specific.  
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3 Chapter 3: Discussion and future directions 
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3.1 Discussion 
 

Pneumonitis and fibrosis are severe side effects of radiation therapy that can occur 

following irradiation of the lung.  The probability of normal tissue complications is a 

dose limiting factor for radiation that can be delivered.  Reducing or preventing of side 

effects would allow for dose escalation and better local control of the tumor.  An agent, 

such as genistein, may be beneficial to the treatment strategy by protecting against the 

development of radiation pneumonitis and fibrosis in lung.  New treatment regimes using 

hypofractionation use 1-5 very large fraction sizes of up to 20Gy versus traditional ~30 

fractions of 2 Gy daily.  These potentially produce greater side effects, and minimizing 

them would be highly beneficial. 

The exact mechanisms of radiation induced lung damage are unclear.  It is 

hypothesized that oxidative stress, inflammatory cell recruitment and cytokine production 

following radiation to the lung play a major role in the development of functional lung 

damage.  Genistein is an ideal agent that acts as an anti-oxidant by scavenging ROS, and 

as an anti-inflammatory by blocking activation of NF-κB.  This study examined the 

protective effects of genistein on early and late effects post irradiation through 

assessment of DNA damage by MN assay, immunohistochemical analysis of collagen 

content and macrophage activation and functional deficit using a mouse model known to 

be prone to radiation-induced pneumonitis.   

This study extended previous work in rat lung to a mouse model which had not 

been used for long term studies before.  This study also moved to a fractionated 

irradiation schedule to investigate protection against a more clinically relevant treatment.  

Previous work in rats used a 18Gy (at a dose rate of 0.4-05Gy/min) whole lung 
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irradiation which was the approximate LD50.  This current study based the fractionated 

treatment schedule on equivalent dose experiments [39, 40] and aimed to deliver a dose 

equivalent to 10Gy, the LD50 for C3H mice.   The current study used 100kVp x-rays at a 

dose rate of ~10.2 Gy/min. The dose equivalence studies were performed in rats but the 

overall survival in this experiment with the C3H mice was indeed close to 50% showing 

that this fractionated treatment was closely equivalent in dose as expected.   

The effectiveness of genistein in blocking DNA damage was assessed by levels of 

MN formation.  It was shown that genistein reduced MN formation by 50% in lung 

fibroblasts over the course of fractionated treatment.  Fractionation should allow for 

repair of damage between doses, but measurements following the first, third, sixth and 

ninth fractions all showed damage roughly half that of the untreated animals, and damage 

increased with dose.  The damage produced by each fraction was additive, and there were 

high levels of MN formation following the 9 treatments comparable to damage seen 

following a 10Gy single dose.  The % reduction of MN formation was lowest after the 9th 

fraction. 

Lung fibroblasts from mice sacrificed at 4 week intervals post irradiation (PI) 

showed decrease in MN formation over time to background levels by 16 weeks PI.  

Previous studies with genistein in our lab showed that doses as low as 12.5mg/kg 

genistein given intraperitoneally (IP) either 1 hour pre or 5 minutes post irradiation was 

sufficient to reduce MN formation in rat lung to background levels in animals sacrificed 

18hrs PI (Calveley, unpublished data).  The genistein diet was formulated based upon the 

results of these studies and aimed to deliver a dose of 12.5mg/kg absorbed.  It was also 

thought that providing genistein in the diet would provide better protection as it would be 
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consumed at many times during the day and would give a more steady concentration 

versus a single injection that has a half life of approximately 8 hours.  The genistein diet 

formulation was not as effective in fully blocking MN formation (only a 50% reduction 

was observed following each fraction) as the IP injections, suggesting that for maximal 

protection the dose of genistein being consumed in the diet should be increased.  The 

time course study of MN formation at 4 week intervals also provided insight into levels 

of damage occurring over time.  Another previous study of 10Gy lower half lung 

irradiation in rats saw fluctuating levels of MN over time[15] but that effect was not seen 

in this experiment.  Calveley (in preparation) also saw a reduction of MN to background 

levels at the 28 weeks time point, but time course data was not collected.  The ability of 

genistein to reduce MN formation at late times was similar in the rat single dose and 

mouse fractionated dose models.   

The impact of genistein on the inflammatory response was also investigated.  

Genistein also reduced the macrophage content in lung tissue assessed by MAC3 staining 

by ~22% and the deposition of collagen by ~28% as assessed by Masson’s Trichrome 

staining.  However, protection against DNA damage and MN formation did not extend to 

significant protection against increases in breathing rate or decreased severe morbidity.  

Histology confirmed that animals that were sick in the 12-16 week time window had 

developed severe pneumonitis, and portions of the lung were completely obliterated by 

inflammatory infiltrate.  Previous studies with genistein in our lab in rats monitored 

breathing rate (Figure 3.1, Calveley, in preparation) and survival (Figure 3.2 Calveley, in 

preparation) but did not examine histology except at 28 weeks PI.  In rats following a 

single dose of radiation genistein reduced breathing rates during pneumonitis, but this 
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effect was lost during fibrosis as breathing rates increased again.  Genistein also 

increased the median survival time, most of the treated rats survived during pneumonitis, 

but later died during the fibrotic phase.  Together these results show that Genistein is 

having an effect on the inflammatory response, but this effect was not significant enough 

to affect mortality.  These results of previous work in rats are quite similar to those 

observed in this study.  Further studies using higher doses of genistein may show larger 

protective effects.  Studies of various doses of genistein following whole body irradiation 

showed a range of responses, with protection increasing according to doses up to 

400mg/kg without toxicity [145].  This supports the idea for future studies that an 

increase in dose may be required to have complete protection against severe pneumonitis 

and fibrosis causing lethality. 

The timing of genistein doses is also important.  Langan et al. [119] investigated 

the effects of delivering doses for shorter time periods following irradiation, and for 

longer sustained treatments.  Langan et al. showed protective effects when given 1 or 2 

weeks PI.  Perhaps larger doses given for a shorter period of time following irradiation or 

at critical time periods, during pneumonitis, would provide more protection to the lung.  

However, other studies have shown that long term administration of protective agents 

provided protection but short term administration did not [94, 122].  The best timing for 

administration is still unclear.  Other studies in our lab are investigating the effects of 

~50mg/kg genistein delivered by implanted subcutaneous osmotic pumps for 12 weeks, 

and may provide more insight into this matter.  A combination of agents, such as 

genistein plus EUK-189 may also produce synergistic effects.  Higher doses of genistein  
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Figure 3-1: Survival data from previous experiments in rats, 18Gy Whole lung irradiation (Calveley, in 
preparation).  Rats fed the genistein diet survived better than rats fed the control diet during pneumonitis 
but later succumbed to fibrosis.   
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Figure 3-2: Breathing rate data from previous experiments in rats, 18Gy Whole lung irradiation (Calveley, 
in preparation).  Genistein provided protection against early increases in breathing rate during pneumonitis, 
but this effect was lost later during fibrosis. 
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may protect against pneumonitis while another agent may be given to protect against 

fibrosis.   

Whenever any protective agent is given in combination with radiation therapy 

there is a concern that it may protect tumour as well.  There is considerable debate as to 

whether to give antioxidants during radiotherapy [184-190].  There is concern that 

increasing the antioxidant capacity of cells, particularly tumor cells would lessen the 

effect of radiation that kills tumor cells via oxidative damage.  However, this study 

showed that genistein did not impact upon tumor radiosensitivity in KHT tumors in vivo.  

This effect should be examined in other tumor models to ensure that this effect was not 

cell specific, and at higher doses of genistein.  Several studies have also shown anti-

metastatic potential of anti-oxidants and genistein that would support their use during or 

after radiation therapy.  The importance of timing doses would be important if they were 

as effective given after therapy as during then there would not be interaction directly with 

tumor cell kill during radiation.   

 
 
 
3.2 Future Directions 
 

The current study provided great insight into the effects of genistein following 

fractionated lung irradiation in mice.  Genistein showed some protective effects against 

MN formation and inflammation, but future studies should investigate higher doses to try 

to provide complete protection and prevent lethality.  The dose may be increased in the 

diet or supplemented with osmotic pumps, or injections.  The increased dose may only 

need to be delivered during critical time periods, but the exact timing merits further 

investigation.  If genistein proves to be more effective in blocking pneumonitis and not 
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fibrosis then perhaps a combination with agents such as EUK-189 may have synergistic 

protective effects. 

In this study tissue samples were taken at 4 week intervals that could be analyzed 

for RNA expression of various inflammatory cytokines.  However, in rats Calveley (in 

preparation) did not see an effect of genistein using the same diet on cytokine expression 

in tissue samples except for TNF-α.  If genistein did not impact upon cytokine 

expression, high pro-inflammatory cytokine levels would still allow for perpetuation of 

the inflammatory response.  Likely a larger dose of genistein may be required to impact 

upon cytokine levels as well as DNA damage.   

Blood samples were also taken from the mice and are available to measure plasma 

concentration of genistein to confirm the expected calculated dose, and possibly compare 

with levels in rat plasma too.  There may be differences in bioavailability of genistein 

between rats and mice, and between different strains of mice. 

There is a disconnect between the levels of MN damage observed and the 

functional deficit and survival observed.  The MN assay has been used previously to 

assess regional damage in lung quadrants, and provided great insight into out-of-field 

effects.  In the current experiment there did not appear to be a correlation with the 

reduced MN formation and DNA damage in genistein-treated animals and increased 

survival.  The MN assay may be reflective of ROS levels within the cell as opposed to 

levels of ROS produced by inflammation outside the cell which may play a larger role in 

the development of severe symptoms.  Perhaps investigation of other assays of DNA or 

cell damage such as 8-oxoguanine or lipid peroxidation assays may provide 
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measurements of oxidative damage that are more relevant to survival outcome than MN 

formation.   

This study focused on inflammatory macrophages present in the lung tissue.  

Examining levels of macrophages and inflammatory mediators present in bronchiolar 

lavage fluid (BALF) may also provide insight into inflammatory processes and timing of 

expression following lung irradiation.   

Genistein did not impact upon tumor response in KHT fibrosarcoma cells 

irradiated in situ.  This effect should be examined at higher doses as well, and in other 

cell lines such as human lung carcinoma H460 to ensure that this effect is not cell type 

specific before applying this agent to clinical use.  It is important that any therapeutic 

agent not interfere with the effectiveness of radiation killing of tumor cells.  

 
 
3.3 Conclusion 
 

Studies examining DNA damage, lung inflammation and protective agents are 

necessary to better understand the mechanisms of radiation-induced lung damage.  

Radiation pneumonitis and fibrosis are damaging side effects that limit the amount of 

radiation that can be delivered to treat cancer of the lung and surrounding tissues.  This 

study examined the anti-oxidant and anti-inflammatory agent genistein to determine if 

blocking oxidative damage and the inflammatory response can impact upon the 

development of radiation pneumonitis and fibrosis.  A greater understanding of the 

mechanisms leading to development of side effects is needed to successfully mitigate and 

treat them.  Further work investigating the role of chronic oxidative stress and 

inflammation following lung irradiation will contribute to the development of therapies in 
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this field to allow larger doses of radiation to be delivered to improve treatment 

outcomes. 
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