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Abstract 

One of the unique aspects of the negative corona discharges in the air is the regular train 

of pulses that form the discharge current, called Trichel pulses. These pulses are the result 

of the combination of several phenomena such as the avalanche ionization of the neutral 

molecules by the impact of the energized electrons, formation of the cloud of positive ions 

close to the cathode, and formation of the cloud of negative ions at a farther distance from 

the corona electrode compared to their positive counterparts. In this thesis, the results of a 

detailed numerical investigation of the formation of Trichel pulses in a needle-plane 

negative corona discharge, as well as a simulation of the transition of the discharge from 

Trichel pulse regime to the glow discharge regime, is presented. All presented numerical 

models in this thesis were three-species models including the motion, generation, and 

dissipation of three charged species: electrons, positive ions, and negative ions. Also, all 

models were built using COMSOL multiphysics. 

Photoionization as the main mechanism for sustaining the positive corona discharge was 

included in the numerical analysis for both the positive and negative corona discharges 

using the three exponential approximation.  

A parametric study of the impact of different model coefficients on the characteristic of the 

Trichel pulses including the repetition frequency, average DC current and pulse rise time 

was investigated. The studied parameters include coefficients of the two ionization, and 

attachment reactions, the mobilities of the three charged species considered, electrons, 

positive ions, and negative ions, and the coefficient of the secondary electrons emitted from 

the needle.  It was shown that two reactions, the recombination of positive and negative 

ions, and the recombination of electrons and positive ions play a minor role in the 

calculated characteristics of the Trichel pulses. 

Finally, an experimental study of the characteristics of the Trichel pulses in air at  room 

temperature, pressure, and relative humidity has been conducted. The impact of different 

parameters: the needle voltage, needle-plane distance and the radius of curvature of the 

needle’s tip on the frequency, DC current, and the temporal characteristics of the pulses 
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(rise time, fall time, and the pulse width) was studied. Four different needles with radii of 

curvature ranging from 19 to 55 microns were used. Applied voltage on the needle was 

varied from the onset voltage (-4 kV to -6 kV) to -10 kV. It was observed that the temporal 

characteristics of the pulses such as rise time, was not a function of needle tip radius of 

curvature, voltage level, or needle-plane distance. The experimental data were compared 

with the results of a numerical simulation. The experimental findings were in a good 

agreement with the results of the numerical model. 

 

Keywords 

Corona discharge, Trichel pulse, Photoionization, Non-thermal plasma, Drift-diffusion 

equation, Poisson’s equation 
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Chapter 1  

1 « Introduction » 

A comprehensive introduction to the nature and the mechanism of the Corona Discharge 

(CD), its different types, and its applications are presented in this Chapter. 

1.1 What is corona discharge?  

Corona discharge is a stable electrical discharge between two (or more) electrodes with 

substantially different radii of curvatures: one electrode should have a very small radius of 

curvature and the other one should have a much larger radius of curvature. The electrode 

with the sharper tip (usually a needle or a wire) is connected to a positive or negative high 

voltage source and the other electrode (usually a plane or cylinder) is connected to the 

ground potential. Based on the electrode geometries, different configurations of corona 

discharge exist. Needle-plane (or point to plane) [1], wire-cylinder [2], blade-plate [3], and 

cylinder-wire-plane [4, 5] are the most common ones. Generally, the configurations which 

consist of wire and cylinder are mostly used in the applications involving treatment of a 

gas. Schematic of these configurations are shown in Figure 1-1. Multi-electrode 

configurations are also used in the industry, e.g., a periodic set of needles or wires could 

be placed near the ground plane in the applications which involve passing of air flow 

through the corona discharge volume. It should be noted that the range of the applied 

voltage in the corona discharge must be higher than the corona onset level (which depends 

on the sharpness of the tip of the corona electrode and air gap length) and lower than the 

breakdown voltage. The range of the voltage and different regimes of positive and negative 

corona discharge will be discussed in more detail in the next parts of the Chapter. 

The corona discharge phenomenon is a result of the collision of accelerated electrons with 

neutral gas molecules and hence triggering the avalanche ionization in the area with the 

strong electric field (near the corona electrode). The electrons which are in a lower field 

region farther from the corona electrode don’t have enough energy to ionize molecules, 

will attach to the neutral molecules. In other words, the gap between the electrodes can be 

divided into two regions: ionization region, which the electrons trigger the ionization of 



Chapter 1, Introduction 

2 

 

 

 

 

R

V
(d)

 

Figure 1-1: Different geometries of corona discharge, (a) needle-plane, (b) blade-

plate [3], (c) cylinder-wire-plate [4, 5], and (d) wire-cylinder. 
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neutral molecules and new electron-positive ion pairs are created; and drift region in which 

the electrons have lower energy and may attach to the neutral molecules and form negative 

ions. 

1.2 Positive corona discharge 

If the corona electrode (the electrode with the sharper tip) is connected to a positive DC 

voltage, the discharge is called positive corona discharge. The different regimes of the 

positive discharge in the needle-plane geometry as the voltage level is increased are shown 

in Figure 1-2. The regimes, as shown from left to right, are burst pulse corona, glow corona, 

streamer corona, and spark. The glow corona regime, which is a pulseless regime, is usually 

what referred to as “positive corona discharge”. 

 

Figure 1-2: Different regimes of positive discharge in needle-plane geometry as the 

voltage on the needle is increased. From left to right: burst pulse corona, glow 

corona, streamer corona, and spark [6]. 

1.2.1 The mechanism 

As mentioned earlier, the gap between the electrodes in the corona discharge can be divided 

into two regions: the ionization region and the drift region. Ionization region is a narrow 

region (typically less than 100 µm) close to the tip of the needle with the strongest electric 

field and the drift region is the region which is farther away from the tip of the needle and 

has a much lower electric field. 

In the case of the positive corona discharge, the electrons and the negative ions in the air 

gap are quickly absorbed by the needle. At the same time, the positive ions drift away from 

the needle and ultimately get deposited on the ground plane. In addition to the electrons 
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and charged ions, there are some excited molecules and atoms present in the air gap, too. 

In the process of the return of some of the excited species to their ground state, photons are 

emitted which trigger the photoionization process. In simple words, ionization of the 

neutral molecules as a result of the impact of photons is called photoionization. It is 

generally accepted in the literature that the photoionization in the air is the result of the 

absorption by oxygen molecules of photons emitted from the return of the excited nitrogen 

molecules to their ground states. This is the key mechanism for sustaining the positive 

corona discharge. As the energized electrons collide with different molecules and generate 

positive ions as well as excited molecules, the photons are emitted from the return of 

excited species to their ground states. These photons are able to travel some distance and 

trigger the photoionization process at a farther location. The photoionization process, 

unlike its impact ionization counterpart (the impact of neutral molecules with the energized 

electrons), is a non-local phenomenon. Electrons produced by the photoionization, on their 

way towards the needle, trigger the impact ionization and excitation of different molecules 

and, hence, the discharge is sustained. The details of this topic are discussed in chapter 4. 

1.3 Negative corona discharge 

If the corona electrode is connected to a negative DC voltage, the discharge is called 

negative corona discharge. The different regimes of the negative discharge in the needle-

plane geometry, as the voltage level is increased, are shown in Figure 1-3. The regimes, as 

shown from left to right, are: Trichel pulse corona, pulseless corona (negative glow 

corona), and spark. The discharge current in the Trichel pulse regime appears in the form 

a train of regular pulses called Trichel pulses named after G. W. Trichel [7]. 
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Figure 1-3: Different regimes of negative discharge in needle-plane geometry as the 

voltage on the needle is increased. From left to right: Trichel pulse corona, pulseless 

corona (negative glow corona), and spark [6]. 

Due to the fast transition from the Trichel pulse regime to the spark regime at atmospheric 

pressure, in practice, it is difficult to realize a steady state negative glow corona. In fact, 

the stable negative glow corona is classically known to exist only in low pressure sealed 

gas tubes. However, this regime is achievable at atmospheric pressure by introducing a gas 

flow in the gap which quenches the thermal instabilities by the convective removal of 

energy dissipated in the discharge. Changing the shape of the ground plane to that of a 

crater right below the needle tip could be used to stabilize the glow regime as well [8]. The 

details of this topic are discussed in Chapter 3. 

1.3.1 The mechanism of the Trichel pulse 

Trichel pulses, which are the regular train of current pulses observed in the negative corona 

discharge, is the result of a series of repetitive processes in the air gap between the corona 

and the ground electrode.  

As mentioned earlier, there are two distinct regions in the corona discharge: the region 

close to the tip, the ionization region, and the region farther from the tip, the drift region. 

In the ionization region, due to the collision of highly accelerated electrons with neutral 

molecules, the avalanche ionization occurs. In most cases, this region is less than a fraction 

of millimeter around the corona electrode. On the other hand, the drift region is the region 

mostly filled with the negative ions. In the ionization region, the ionization reaction 

predominates over the attachment reaction. The boundary between the ionization region 
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and the drift region is generally defined where the reduced electric field E/N=120 Td (E is 

the magnitude of the electric field and the N is the density of the neutral molecules, 1 Td= 

10-21 Vm2). Beyond the ionization region, the electric field decreases and electrons do not 

have sufficient energy to ionize the neutral molecules. Therefore, the attachment reaction 

becomes predominant provided of the gas contains sufficient electronegative molecules 

and the number of electrons decreases in the drift region. Since in the drift region, there 

might be some electrons left with sufficient energy for the ionization of gas molecules, 

some authors assume another layer, called the plasma layer, which starts from the 

ionization boundary and extends a few millimeters into the drift region. Davidson [9] has 

defined this region as the corona plasma region, in which some corona-enhanced chemical 

reactions are possible and its boundary is given by the radius at which the reduced electric 

field E/N=80 Td. At this value, the mean kinetic energy of electrons is 1.85 eV and some 

electrons are energetic enough to cause electron-impact ionization. Figure 1-4 shows the 

schematic of the ionization and drift regions in a point to plane negative corona discharge.  

 

Figure 1-4: Schematic of the ionization and drift regions in negative corona 

discharge [10]. 

As a result of the avalanche ionization, a cloud of positive ions is created close to the corona 

electrode in the ionization region. On the other hand, the attachment reactions create a 

cloud of negative ions just outside the ionization layer. When these clouds become dense 

enough to perturb the Laplacian field between the two electrodes, the electric field in the 
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area between the two clouds is decreased. Moreover, the electric field between the positive 

ions and the corona electrode is increased (Figure 1-5). 

 

Figure 1-5: Schematic of the perturbation of Laplacian field when the clouds of 

positive and negative ions become dense enough [10]. 

The increased electric field in the ionization layer increases the avalanche ionization in this 

area which causes a very fast build-up of the corona current. As soon as the cloud of 

negative ions becomes dense enough, the ionization layer and, hence, the avalanche 

ionization is limited to the region (I), as shown in Figure 1-5. Since the corona electrode 

has negative polarity, the positive ions, on the other hand, move towards the corona 

electrode. When the peak concentration point of the positive ions reaches the corona 

electrode, the injection of the secondary electrons from the needle will be at its maximum. 

Hence, the corona current will be at its maximum. At this moment, the avalanche ionization 

has not yet stopped. For a short time after the maximum of the pulse, avalanche ionization 

still occurs. Therefore, the total number of electrons in the space still increases after the 

pulse peak. However, since the positive ions are being deposited on the corona electrode 

and the deposition rate is larger than the generation rate, the number of positive ions 

decreases during this time. 

Finally, negative ions, which are being accumulated throughout the process at the edge of 

the ionization region, become dense enough to diminish the electric field in the whole 

ionization region. Hence, the ionization process ceases and the current pulse decays. After 
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this step, the attachment reaction is the only process present which increases the total 

number of negative ions in the air gap. 

It is generally accepted that the secondary emission of the electrons from the corona 

electrode is the main mechanism for sustaining the negative corona discharge. These 

electrons are ejected from the surface of the corona electrode due to the bombardment of 

the electrode surface by the positive ions. As the negative ions move towards the ground 

plane, the electric field in the ionization regions starts increasing again. On the other hand, 

the secondary emission of electrons from the needle provides seed electrons for the next 

pulse. Hence, the discharge is sustained. 

1.4 Applications of the corona discharge  

The corona discharge has many applications in the industry, medicine, and the everyday 

life. Some of these applications were discovered and commercialized more than a century 

ago. In 1907, the first major successful commercial application of electrostatic precipitator 

was accomplished [11]. Since then, numerous researchers devoted their attention to the 

particle charging and electrostatic precipitators using different geometries [12, 13].  

Ozone generation is also an important application of the corona discharge. The oxidative 

properties of this gas have been used for water treatment and odor control [14, 15]. Ozone 

is generally produced by passing a stream of dry air or oxygen through a corona discharge 

volume, where oxygen molecules (O2) in the stream are converted to ozone (O3). Putting a 

dielectric film on the ground electrode converts corona discharge to Dielectric Barrier 

Discharge (DBD) and increases the efficiency of the process.  

Electrophotography and electrographic printing make use of small corona devices as 

surface chargers. The photoconductive drum of a copier/printer must be given a uniform 

charge prior to exposure to the light image. Exposure to light discharges the surface, 

leaving patterns of charge on the drum which can attract oppositely charged toner particles. 

The toner is then transferred to the paper with the influence of a charger on the back side 

of the paper; the charger produces an electric field that enhances transfer. Corona chargers 
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also remove the residual charges on the photoconductive drum, so that it may be cleaned 

prior to subsequent exposures [6].  

Flue gas treatment and air pollution control are other known applications of corona 

discharges. Numerical and experimental studies of the removal of NOx and SOx from the 

flue gas have been conducted [16, 17]. 

The idea of smoke triggered corona discharge for an ionic smoke sensor working without 

a radioactive ionization source was published by Mokhtari et al. [18]. It is based on the 

decreasing of the corona discharge onset voltage by a factor of 5 in the presence of smoke 

particles. A novel method for designing a respiratory monitoring sensor based on the 

Trichel pulses has been suggested by Deng et al. [19]. This method is based on using a 

simple field ionization sensor, which consists of a needle electrode and a grounded plane. 

It is shown that different respiratory patterns such as normal breathing, fast breathing, and 

apnea could be monitored in real-time by detecting the changes in the frequency of the 

Trichel pulses.  

Medical applications such as dental cavity treatment with the help of plasma produced in 

corona discharge [20] and biofilm decontamination on the teeth surface by exposing the 

teeth to a positive streamer or negative Trichel pulses [21] have been investigated by the 

researchers. 

Electrospraying [22, 23], semiconductor technology [24], air flow control [25], 

decoloration of chemical compounds [26], food and water decontamination [27] are other 

applications of the corona discharge technology. 

The importance of the corona discharge is not only due to the useful applications it has; it 

may have unwanted effects as well. It is generally undesirable in electric power 

transmission lines, where it causes power loss, audible noise, and electromagnetic 

interference. Corona discharge is also harmful if it happens inside the electrical 

components, such as transformers, capacitors, electric motors and generators where it 

progressively damages the insulating materials [10].  
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1.5 Thesis objectives 

The objective of this thesis to conduct a comprehensive numerical and experimental study 

of the formation of Trichel pulses in the negative DC corona discharge in atmospheric air. 

Throughout the thesis, the studied geometry consists of a needle (corona electrode) which 

is placed perpendicularly above a ground plane.  

In the numerical analysis, three charged species: electrons, positive ions, and negative ions 

have been included. Therefore, the inception voltage of the corona discharge will not be 

calculated using Peek’s law and will be left to the coefficients of involved reactions.  

The effect of several parameters: the needle voltage, needle-plane distance, radius of the 

tip of the needle, existence of some reactions and the existence of the photoionization 

phenomenon on the characteristics of the pulses have been studied. The frequency of the 

pulses, DC current and in some cases the temporal characteristics of the pulses (rise time, 

fall time, and pulse width) are the main parameters of interest. 

1.6 Thesis outline 

The thesis is divided into 7 chapters. The outline of each chapter is summarized below: 

Chapter 2: A review of the relevant publications in the area of positive and negative 

corona discharge, and Trichel pulses is presented. In addition, published papers in the area 

of the photoionization phenomenon, to the extent of the conducted studies regarding its 

impact on the corona discharges, have been reviewed as well. 

Chapter 3: A numerical investigation of the formation of the Trichel pulses is presented. 

A needle with the tip radius of 35 µm and a needle-plane spacing of 6 mm over the voltage 

range of -3.5 kV to -12 kV is studied. This Chapter also focuses on the transition of the 

Trichel pulse regime to the glow discharge.  

Chapter 4: This Chapter describes the incorporation of the photoionization phenomenon 

in the model, which was presented in Chapter 3. For this purpose, a three-term exponential 

approximation was used for adding three more equations to the system of equations 

established in Chapter 3. 
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Chapter 5: During the studies conducted in Chapter 3, it was found that the numerical 

model was more sensitive to some coefficients than others. The goal of this chapter is to 

describe the effect of variation of different model coefficients on the characteristics of the 

pulses.  

Chapter 6: The results of an experimental study of the characteristics of Trichel pulses are 

presented. In this study, four different needles with radii of curvatures ranging from 18 to 

57 microns were used and applied voltage on the needle was varied from the onset voltage 

(-4 kV to -6 kV) to -10 kV. 

Chapter 7: A brief introduction to the electron energy equation and a summary of the 

unsuccessful attempts for including this equation in the corona discharge model is given. 

Chapter 8: A general summary of the thesis and some recommendations for future studies 

are given in this Chapter. 
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Chapter 2  

2 « Literature review » 

This chapter presents a comprehensive review of the papers published in the literature in 

the area of the theoretical and the experimental investigations of corona discharges and 

Trichel pulses, especially the ones focused on the needle-plane geometry. Due to the vital 

role the photoionization phenomenon plays in sustaining the positive corona discharge, 

papers in the area of the photoionization are also reviewed. 

2.1 Early discovery and research 

Trichel pulses in a needle-plane (also known as point-plane) configuration were first 

reported by G. W. Trichel in 1938 [7]. The pulses (Figure 2-1) were first discovered as a 

train of regular current pulses in a needle-plane circuit with the needle connected to a 

negative DC voltage. Trichel conducted the experiments by placing the needle 3 cm away 

from the ground plane. He repeated the experiments with 4 different needles and 

hypothesized that the magnitude and the frequency of pulses have a definite relationship to 

the corona current, point size and gas pressure. He also predicted that the frequency is 

independent of spacing between the point and the plane.  

 

Figure 2-1: Train of regular pulses observed by G. W. Trichel [7]. 
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This work was later complemented by Loeb et al. [28], where more details were given 

about the role of the cloud of negative ions. The fact that the accumulation of this cloud 

leads to the suppression of the electric field and quenching of avalanche ionization was 

also discovered. Some researchers were suspicious in supporting this theory. Cernak and 

Hosokawa [29] observed a similarity between the development and the initial decaying 

stage of the Trichel pulses and the breakdown pulse in a short negative point to plane 

discharge in nitrogen (an electropositive gas). Based on these similarities, they 

hypothesized that the quenching of Trichel pulses cannot be caused solely by the 

accumulation of negative ions. Later, they extended their studies by adding a small 

admixture of SF6 which increases the attachment coefficient, keeping the ionization 

coefficient and the secondary emission of the electrons constant [30].  

Loeb and his co-workers believed that the Trichel pulses can only exist in electronegative 

gasses, such as oxygen and air, which was later supported by the findings of Weissler [31], 

who studied the existence of Trichel pulses in different gasses. He reported that the Trichel 

pulses are not observed in pure hydrogen and nitrogen (these are electropositive gasses), 

but noticed that adding a trace of oxygen to these gasses will result in the generation of 

Trichel pulses. This idea was challenged later by Akishev et al. [32, 33], who proved that 

under specific circumstances the pulses can be observed in nitrogen, too. Loeb [34] also 

believed that the frequency of the Trichel pulses near corona onset voltage was equivalent 

with the time of the transit of the negative ions across the gap. Gardiner and Craggs [35] 

conducted some experiments studying the negative ions formed in the process of formation 

of Trichel pulses in lowered pressure air (10-30 Torr) and were able to confirm Loeb’s 

theory. 

In 1951, Bandel [36] conducted a survey study on the point to plane corona in air for a 

range of pressures and point sizes for both the positive and negative polarities. He noticed 

in the case of negative polarity, as the voltage level is increased, under some conditions, a 

transition from Trichel pulse regime to “pulseless Townsend-type discharge” happens. 

Although the transition wasn’t investigated deeper, he realized it was accompanied by a 

jump in the discharge current. More recently, Akishev et al. [8] published a report 

discussing the pulseless glow regime and the methods to stabilize it. They suggested 
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changing the shape of the anode (ground plane) to that of a crater right below the needle 

tip could be used to stabilize the negative glow regime at atmospheric pressure. 

In 1974, Lama and Gallo reported [37] the results of a series of systematically designed 

experiments with the aim of finding the relation between the electrical properties of pulses 

(DC current, frequency and injected charge per pulse) and macroscopic properties of the 

discharge circuit (radius of tip, needle to plane spacing and applied voltage). Combining 

the experimental findings and theoretical analysis, they also formulated a theory of the 

existence of several clouds of negative ions in the air gap rather than having only one such 

cloud at a time. Despite all the success they had, they weren't able to record the real current 

pulses because the minimum observable pulse period in their experimental equipment was 

0.25µs. Akishev et al. [8] published the idea of controlling the frequency and amplitude of 

Trichel pulses with the radius of the tip and DC current kept constant. The method they 

used involved introducing air flow and geometrical effects on the discharge elements (e.g., 

putting dielectric screens around the pin and restrictions in cross sections of the drift 

region). 

In 1981, van Brunt et al. [38] studied the corona discharges for both positive and negative 

polarities in SF6 which had been discovered as a great insulator. They observed Trichel-

like irregular pulses in this gas for the negative discharge. 

In 1985, Cross et al. [39] observed a step on the leading edge of the Trichel pulses. They 

reported that this step exists in the larger point radii and disappear in the smaller ones. They 

also noticed that the first pulse in the discharge current was significantly different from 

succeeding ones and in particular the leading-edge step was present for all studied points. 

In the same year, Morrow laid some theoretical grounds for justifying these leading-edge 

steps [40]. 

The characteristics of Trichel pulses in low-pressure gasses were also studied by other 

authors [35, 41-43]. It was shown in [41, 42] that the rise time of pulses in the air with 

pressure reduced to several Torr could increase up to 10µs. 
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Some researchers were interested in the effect of the air flow on the characteristics of 

Trichel pulses. In 1966, Nygaard et al. [44] studied the variation of the frequency of the 

pulses due to the blowing of a wind. Recently, Deng et al. [45] reported that by increasing 

the transverse airflow (perpendicular to the needle-plane symmetry line), the frequency 

becomes lower and the peak of the pulse gradually rises to higher values. They have also 

studied the effect of humidity on the Trichel pulses and found that the magnitude of Trichel 

pulses grows gradually with increasing humidity and the frequency of pulses increases with 

humidity [46]. 

2.2 Numerical models 

Although the attempts to develop a mathematical model of corona discharges started from 

the mid-1960s [47], the work presented by Morrow [40, 48] is believed to be the first well-

documented report on this topic. He used a combination of Finite Difference (FD) and Flux 

Corrected Transport (FCT) methods for solving three continuity equations for three 

charged species and Poisson's equation, assuming a one-dimensional model of the problem. 

Despite the detailed explanation of the different stages of the pulse formation, he was only 

able to reproduce the first pulse by following the discharge to 213ns. Chen and Davidson 

[9] have proposed a 1D stationary model for modeling the plasma region of both positive 

and negative corona discharges in a wire-cylinder geometry. They used FD for their 3 

species (electrons, positive and negative ions) model and assumed a constant electric field 

(Peek's formula) on the wire boundary. Later in 1997, Morrow applied the same technique 

for investigating the positive glow corona [49] and explained why onset streamers always 

precede the formation of the glow in the positive corona discharge.  Napartovich et al. [50] 

suggested a quasi-one-dimensional model assuming a constant distribution for all 

quantities (densities of charged species and electric field) in every cross section of the 

discharge channel perpendicular to the axis of symmetry. 

Akishev et al. [51] have conducted a thorough study of the formation of Trichel pulses in 

the needle-plane configuration by solving three transport equations and one Poisson’s 

equation in a 2D axisymmetric geometry. They predicted the distributions of three charged 
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species in the air gap and also the distribution of current density on the cathode surface at 

different instants of formation of a Trichel pulse.  

Although the Finite Element Method (FEM) has proved to be a very effective tool for 

modeling the corona discharge phenomenon, it requires some stabilizing strategies for 

achieving a convergent solution. Various authors have tried different methods by 

combining FEM with other techniques. Zhang et al. [52] developed a model with a 

combination of the Boundary Element Method (BEM) and FEM for solving the electric 

field and Method of Characteristics (MOC) for solving the distribution of charged species. 

Khaddour et al. [3] used a combination of MOC and FEM to analyze the corona discharge 

in a blade-plate geometry. Sattari et al. [53, 54] used a combination of the FEM and FCT 

to solve a 2D axisymmetric single-species model for a negative corona discharge with pulse 

and step voltage on the corona electrode. They were able to remove the artificial 

oscillations in the calculated results, which occur in classical FEM approach for treating 

the charge transport equations, using a three-step procedure. Later, they applied the same 

method for simulating negative DC corona discharge for a three-species model and 

explained the impact of different parameters of the model on the characteristics of Trichel 

pulses (frequency and DC current) [55]. The parameters of interest were the external 

resistance of the circuit, secondary electron emission and the mobilities of positive and 

negative ions.  

Sattari et al. reported in [55] that the secondary emission coefficient of electrons doesn't 

significantly affect the Trichel pulse characteristics, which contradicts the findings of Tran 

et al. [56] who reported that the frequency of Trichel pulses increases if the secondary 

emission coefficient is increased.  

Single-species models are not able to reproduce Trichel pulses and were mostly used for 

positive corona [53, 57]. On the other hand, multi-species models are more complicated 

and used widely for predicting the dynamic behavior of positive and negative corona 

discharge [43, 45, 56]. 

Although most of the numerical models for predicting the behavior of Trichel pulses are 

one- or quasi-one-dimensional [9, 48, 50, 58, 59], some authors used a two-dimensional 
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axisymmetric geometry for studying these pulses in needle-plane geometry [45, 55, 56]. 

This has the benefit of giving a quasi-three-dimensional picture of the occurring 

phenomena while using a reasonable amount of computational resource.  

Characteristics of Trichel pulses in oxygen with the reduced pressure of 50 Torr including 

24 reactions and 10 ionic and excited species in a 2D axisymmetric model have been 

studied by Duran-Olivencia et al. [43]. They found out that the production of the neutral 

and excited oxygen atoms is only limited to the duration of each pulse and they are not 

produced during the inter-pulse interval. In contrast, ozone is generated continuously and 

its temporal growth does not reflect the formation of pulses. 

Tran et al. [56] have studied the differences and the similarities between negative DC 

corona discharge and negative Dielectric Barrier Discharge (DBD) in a 2D axisymmetric 

geometry. They explained different stages of Trichel pulse formation for a 3.3mm air gap 

in a needle-plane geometry. They showed that during the negative half-cycle of DBD, only 

one discharge current pulse is produced instead of a pulse sequence as for the corona 

discharge case. They also conducted a similar numerical study for a very short gap of 1 

mm [60] and concluded that the frequency of the pulses increases with the secondary 

emission coefficient. 

2.3 Photoionization 

Penney et al. [61] conducted a series of experiments for measuring the photoionization 

produced by the point-plane corona discharges in the air over a pressure range of 0.1 to 18 

Torr. They expressed their results in terms of the pressure multiplied by the distance from 

the discharge point (Rp), in the range of 1<Rp<550 cmTorr. For many later authors, this 

work became the reference for the comparison of the suggested numerical methods with 

the experiments [62-65]. Based on the results published in [61], a decade later, Zheleznyak 

et al. [66] proposed a nonlinear numerical model consisting of a non-local integral for 

photoionization in air. Despite the fact that this model was very time-consuming to run, it 

has been later recognized in the literature as the classical integral model for photoionization 

in air. 
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Naidis [62] has studied the photoionization phenomenon in the dry and moist air. Based on 

the data published by Zheleznyak et al. [66], he showed that the absorption of radiating 

states by water molecules is necessary for modeling the photoionization in moist air. Since 

the model was based on solving the classical integral suggested in [66], it was very time-

consuming. 

Following the efforts for finding a more efficient numerical model for the photoionization 

phenomenon, Ségur et al. [67] have suggested using the improved Eddington 

approximation, originally developed by Larsen et al. [68], to model this phenomenon for 

obtaining a more accurate prediction of the behavior of the streamers. Later, Bourdon et al. 

[64] presented a comparison of the Eddington approximation, the improved Eddington 

approximation, and the Helmholtz equation approximation, suggested by Luque et al. [63], 

for the modeling of photoionization source term in non-thermal gas discharges. They 

discussed the importance of the accurate definition of the boundary conditions in the 

compared numerical models. Luque et al. [63] and  Papageorgiou et al. [69] had suggested 

a zero Dirichlet boundary condition for the boundaries of the computational domain for the 

Helmholtz equation model. 

Recently, Pancheshnyi [65] developed a model for a quantitative analysis of the 

photoionization mechanism and its rate in nitrogen-oxygen mixtures. He suggested a 

correction factor for generalization of the model to any arbitrary N2-O2 mixture over a 

wide range of reduced electric fields. 

2.4 Summary 

Despite all the numerical works published in the area of Trichel pulse, there is a lack of 

detailed model explaining the distributions of the charged species in the air gap in different 

stages of the formation of the Trichel pulse. Moreover, numerical investigation of the 

transition of the Trichel pulse regime to the glow discharge regime in atmospheric air is a 

topic which definitely needs more attention. 
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The photoionization phenomenon is mostly ignored in the modeling of the corona 

discharge. We believe it would be beneficial to have a three-species self-sustained model 

for positive corona discharge including the photoionization phenomenon.  

Sensitivity analysis of the frequency, DC current and the temporal characteristics of the 

pulses to the model coefficients is another issue which definitely has room for more 

investigation. 
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Chapter 3  

3 « Numerical investigation of the formation of Trichel 
pulses in a needle-plane geometry » 

This Chapter presents a numerical investigation of the formation of the Trichel pulses in 

negative DC corona discharge for a needle-plane configuration in atmospheric air. The 

needle voltage should be higher than the corona onset voltage. A 2D axisymmetric model 

of the problem considering three charged species (electrons, positive ions, and negative 

ions) and consisting of a hyperboloid needle with a tip radius of 35 µm and needle-plane 

spacing of 6 mm over the voltage range of -3.5 kV to -12 kV has been studied. The needle 

was defined using the parametric equations of a parabola: 

𝒓 = 𝟐 ∙ 𝑹 ∙ 𝒕                  ( 3-1 ) 

𝒛 = 𝑹 ∙ 𝒕𝟐 + 𝒉             ( 3-2 ) 

where 𝑟, 𝑧, 𝑅, ℎ, and 𝑡 are the r-coordinate, z-coordinate, radius of the tip of the needle, 

needle-plane gap, and the parameter, respectively. In this Chapter, ℎ=6 mm, 𝑅=35 µm, and 

the parameter 𝑡 varies in the range of zero and 29.277 which results in a 3 cm long needle. 

The needle, ground plane, and the computation domain is shown in Figure 3-1. 

 

Figure 3-1: Representation of the computation domain, needle, and the ground 

plane: (a) overall view and (b) zoomed view of the needle tip.  
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The radius of the needle tip and the needle-plane distance was chosen in a way so that the 

results of the numerical simulations could be compared with the experimental results 

published before by Lama and Gallo [37]. As mentioned in the previous chapter, Lama and 

Gallo reported [37] the results of a series of systematically designed experiments with the 

aim of finding the relation between the electrical properties of pulses (DC current, 

frequency and injected charge per pulse) and macroscopic properties of the discharge 

circuit (radius of tip, needle to plane spacing and applied voltage). 

The aim of this Chapter is to present a thorough investigation of the charged species' 

distribution in the air gap during the different stages of Trichel pulse formation as well as 

the time variation of peak densities and total number of the three charged species. The 

distribution of the current density on the ground plane is compared with the empirical 

Warburg formula. The transition of the discharge from the Trichel pulse regime to glow 

discharge will also be investigated.  

In the following, first, the description of the developed numerical model is explained. In 

this part, the physics of the governing equations and geometry of the proposed model is 

presented. Then, the simulation results along with the detailed description of the formation 

of Trichel pulses with the aid of both temporal and spatial graphs are reported. A 

comparison of these results with the experiments of Lama et al. [37] is then presented and, 

finally, the prediction of transition of discharge from the Trichel pulse regime to glow 

discharge regime is discussed. 

3.1 Description of the model 

The model investigated in this chapter is a 2D axisymmetric needle-plane geometry for 

negative DC corona discharge in which the gas is air at atmospheric pressure. The needle, 

which is 3 cm long, has a hyperbolic tip and is placed 6 mm away and perpendicularly to 

the ground plane. The simulations are carried out for the radius of curvature of the needle 

tip equal to 35 µm. The tip radius, type of the needle and needle-plane spacing were chosen 

in a way so that the results could be compared with the experimental results published by 

Lama and Gallo [37]. Simulations were carried out for DC voltages in the range of -3.5 kV 

to -12 kV. It was found that the -3.5 kV was the corona onset voltage for this specific 
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configuration. The computational domain is a 3 cm × 3.6 cm rectangle in which the ground 

plane forms the bottom boundary. Figure 3-2 and Table 3-1 illustrate the boundaries and 

the boundary conditions for all simulated distributions. For fully understanding the 

descriptions given in Table 1, one needs to consider that the proposed model consists of 4 

partial differential equation (Eqs. 3-1 to 3-4), with each one of them requiring specific 

boundary conditions. 

 

Figure 3-2: The description of the boundaries and the discretization of the 

investigated model. Horizontal and vertical axes are in (m). 

The geometry reported in [56] has a smaller computational domain, so one might consider 

here using a smaller computational domain for the sake of economizing on the computation 

resources. In this case, it is important to note that in reality the conditions imposed on 

boundaries #3 ("zero charge") are artificial and for that reason, these boundaries should be 

as far as possible from the needle tip to minimize the impact of those boundaries on the 

electric field. It was numerically confirmed that the variation of the Laplacian electric field 

at the needle tip was less than 1% for the domains larger than 3 cm × 3.6 cm in the current 

model. 
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Table 3-1: Conditions imposed on boundaries for Eqs. 3-1 to 3-4 

 Boundary #1 Boundary #2 Boundary #3 

Electron's drift-
diffusion, Eq. 3-3 

Flux of secondary 
electrons (Eq. 3-14) 

Outflow 
−�⃗� ∙ 𝐷𝑒𝛻𝑛𝑒 = 0 

Open boundary 

{
−�⃗� ∙ 𝐷𝑒𝛻𝑛𝑒 = 0;   �⃗� ∙ (−𝜇𝑒�⃗� ) ≥ 0

𝑛𝑒 = 0;   ; �⃗� ∙ (−𝜇𝑒�⃗� ) < 0
 

Positive ion's drift-
diffusion, Eq. 3-4 

Outflow 
−�⃗� ∙ 𝐷𝑝𝛻𝑛𝑝 = 0 

Zero density 
𝑛𝑝 = 0 

Open boundary 

{
−�⃗� ∙ 𝐷𝑝𝛻𝑛𝑝 = 0;   �⃗� ∙ (𝜇𝑝�⃗� ) ≥ 0

𝑛𝑝 = 0;               ;    �⃗� ∙ (𝜇𝑝�⃗� ) < 0
 

Negative ion's drift-
diffusion, Eq. 3-5 

Zero density 
𝑛𝑛 = 0 

Outflow 
−�⃗� ∙ 𝐷𝑛𝛻𝑛𝑛 = 0 

Open boundary 

{
−�⃗� ∙ 𝐷𝑛𝛻𝑛𝑛 = 0;   �⃗� ∙ (−𝜇𝑛�⃗� ) ≥ 0

𝑛𝑛 = 0;               ;    �⃗� ∙ (−𝜇𝑛�⃗� ) < 0
 

Poisson's, Eq.3-6 Negative DC voltage Ground potential 
Zero charge 

�⃗� ∙ (𝜀�⃗� ) = 0 

3.1.1 Governing equations 

With the aim of having a completer picture of the Trichel pulse phenomenon, the proposed 

model considers the presence of three species: electrons, positive ions, and negative ions. 

This is computationally more expensive compared to the simpler models, which only 

consider the presence of electrons and negative ions [52]. The movement, generation, and 

dissipation of these charged species are taken into account by three drift-diffusion 

equations as well as a Poisson's equation that is needed for calculating the distribution of 

the electric field in the air gap. Thus, the following four equations need to be solved 

simultaneously [56]:  

𝜕𝑛𝑒
𝜕𝑡

+ 𝛻 ∙ (−𝜇𝑒�⃗� 𝑛𝑒 − 𝐷𝑒𝛻𝑛𝑒) = 𝑆𝑒               ( 3-3 ) 

𝜕𝑛𝑝

𝜕𝑡
+ 𝛻 ∙ (𝜇𝑝�⃗� 𝑛𝑝 − 𝐷𝑝𝛻𝑛𝑝) = 𝑆𝑝                 ( 3-4 ) 

𝜕𝑛𝑛
𝜕𝑡

+ 𝛻 ∙ (−𝜇𝑛�⃗� 𝑛𝑛 − 𝐷𝑛𝛻𝑛𝑛) = 𝑆𝑛             ( 3-5 ) 

𝛻2𝑉 =
−𝑒(𝑛𝑝 − 𝑛𝑒 − 𝑛𝑛)

𝜀0
                               ( 3-6 ) 

where 𝑛𝑒, 𝑛𝑝, 𝑛𝑛, 𝜇𝑒, 𝜇𝑝, 𝜇𝑛, 𝐷𝑒, 𝐷𝑝, 𝐷𝑛, 𝑆𝑒, 𝑆𝑝, 𝑆𝑛 are the number densities(1 𝑚3⁄ ), 

mobilities (𝑚2 𝑉𝑠⁄ ), diffusion coefficients (𝑚2 𝑠⁄ ) and source terms (1 𝑚3𝑠⁄ ) of 

electrons, positive ions, and negative ions, respectively. Moreover, 𝑉, 𝜀0, and 𝑒 represent 

the voltage, vacuum permittivity, and the electron charge (SI units), respectively. Finally, 

�⃗� (𝑉 𝑚⁄ ) is the electric field vector. For describing the source terms of the charged species, 
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reactions occurring in the air gap need to be taken into account. Four main reactions: 

ionization, attachment of electrons to neutral molecules, recombination of electrons with 

positive ions and recombination of positive and negative ions, are considered: 

𝑒 + 𝑁2 (𝑂2) →  2𝑒 + 𝑁2
+(𝑂2

+)    ( 3-7 ) ionization 

𝑒 + 𝑂2  →  𝑂2
−      ( 3-8 ) attachment 

𝑒 + 𝑁2
+ (𝑂2

+) →  𝑁2 (𝑂2)      ( 3-9 ) recombination of electrons 

with positive ions 

𝑂2
−  +  𝑁2

+ +𝑁2 (𝑂2) →  𝑁2  + 𝑂2 + 𝑁2 (𝑂2)  ( 3-10 ) recombination of positive 

and negative ions 

Because of the higher electronegativity of the oxygen molecule compared to the nitrogen 

molecule, the majority of the produced negative ions in the air are negative oxygen ions. 

In fact, it is accepted in the literature that the regular current pulses are not present in the 

discharges which occur in pure nitrogen. This is due to the vital role of the negative ions 

in the periodic process of diminishing the electric field in the negative discharge. 

Although a full chemical kinetic model for plasma in dry air contains some hundreds of 

reactions and species including neutral molecules, electronically excited species and ions 

[50], it is proven that the included three charged species and four main reactions well 

describe the behavior of the discharge and the Trichel pulses [56]. Given 𝛼(1 𝑚⁄ ), 

𝜂(1 𝑚⁄ ), 𝑘𝑒𝑝(𝑚
3 𝑠⁄ ) and 𝑘𝑛𝑝(𝑚

3 𝑠⁄ ) as the coefficients for the above mentioned reactions 

respectively, the source terms in the Eqs. 3-1 to 3-3 will be as follows:  

𝑆𝑒 = 𝛼𝑛𝑒|𝜇𝑒�⃗� | − 𝜂𝑛𝑒|𝜇𝑒�⃗� | − 𝑘𝑒𝑝𝑛𝑒𝑛𝑝                        ( 3-11 ) 

𝑆𝑝 = 𝛼𝑛𝑒|𝜇𝑒�⃗� | − 𝑘𝑒𝑝𝑛𝑒𝑛𝑝                                               ( 3-12 ) 

𝑆𝑛 = 𝜂𝑛𝑒|𝜇𝑒�⃗� | − 𝑘𝑛𝑝𝑛𝑛𝑛𝑝                                               ( 3-13 ) 

Swarm parameters (mobilities and diffusion coefficients) of electrons and other charged 

species, as well as the coefficients for the reactions involved, are summarized in Table 3-2. 

The ionization and attachment coefficients and the electron mobility used here are the ones 
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which were reported in [45, 56, 58]. Different functions for these coefficients were reported 

in [70], which result in more intense ionization. The mobilities of positive and negative 

ions reported in [70] are used in the current model. It should be mentioned that the model 

is very sensitive to these parameters, especially to the ionization and attachment reaction 

coefficients. This sensitivity reflects both in the numerical stability of the model and 

accuracy of the results. Sensitivity analysis of the model to these parameters is discussed 

in Chapter 5. 

Table 3-2: Swarm parameters used in the simulation [56, 70]; �⃗�  in(𝐕 𝐦⁄ ). 

Parameter Value Unit 

Ionization coefficient 𝜶 3.5 × 105 exp(−1.65 × 107 |�⃗� |⁄ ) [1/𝑚] 

Attachment coefficient 𝜼 1.5 × 103 exp(−2.5 × 106 |�⃗� |⁄ ) [1/𝑚] 

Coefficient of recombination of positive 
and negative ions 𝒌𝒆𝒑 

2 × 10−13 [𝑚3 𝑠⁄ ] 

Coefficient of recombination of positive 
ions and electrons 𝒌𝒏𝒑 

2 × 10−13 [𝑚3 𝑠⁄ ] 

Mobility of electrons 𝝁𝒆 1.9163 × |�⃗� |
−0.25

 [𝑚2 (𝑉𝑠)⁄ ] 

Mobility of positive ions 𝝁𝒑 2.43 × 10−4 [𝑚2 (𝑉𝑠)⁄ ] 
Mobility of negative ions 𝝁𝒏 2.7 × 10−4 [𝑚2 (𝑉𝑠)⁄ ] 
Diffusion coefficient of electrons 𝑫𝒆 0.18 [𝑚2 𝑠⁄ ] 
Diffusion coefficient of positive ions 𝑫𝒑 0.028 × 10−4 [𝑚2 𝑠⁄ ] 
Diffusion coefficient of negative ions 𝑫𝒏 0.043 × 10−4 [𝑚2 𝑠⁄ ] 

The Negative corona is a self-sustained discharge, which requires a source of secondary 

electrons in order to produce consecutive pulses. Collision of positive ions to the corona 

needle surface causes the secondary emission flux of electrons into the domain:  

𝛤𝑒 = 𝛾𝑛𝑝𝜇𝑝|�⃗�  |                     ( 3-14 ) 

where 𝛤𝑒(1 𝑚2𝑠⁄ ) represents the flux of secondary electrons on the needle surface and 𝛾 

indicates the secondary emission coefficient. The value of 𝛾 is assumed 0.01 in the current 

model [70]. It should be noted here that other than the secondary electrons resulting from 

collision of positive ions to the needle surface, natural ambient electrons can exist in the 

air gap as well. Once the discharge is initiated, these electrons are negligible in the negative 

discharge compared to the ones resulting from Eq. 3-14, however they are needed for 

initiating the discharge.  
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3.1.2 Numerical method 

Although FEM has proved to be a very effective tool for modeling the corona discharge 

phenomenon [45, 56], it requires some stabilizing strategies for achieving a convergent 

solution. Various authors have tried different methods by combining FEM with other 

techniques. Sattari et al. [53, 55, 70] used a combination of FCT for solving the charge 

transport equations and FEM for solving the Poisson's equation. Zhang et al. [52] 

developed a model with a combination of the Boundary Element Method (BEM) and FEM 

for solving the electric field and Method of Characteristics (MOC) for solving the 

distribution of charged species. 

One of the common methods for stabilizing the FEM, when it is used for solving transport 

equations, is to use artificial isotropic diffusion (ID). The way this type of stabilization 

works is that instead of solving the convection-diffusion problem with the physical 

diffusion coefficient D, the stabilized diffusion coefficient Dstab=D+Dart is used, in which 

Dart=δh|v|, where 0<δ<0.5 is the tuning parameter, h is the longest side length of the mesh 

element and |v| is the drift velocity of the charged species. This method is considered as 

being an inconsistent one, as it obviously alters the original problem by adding artificial 

diffusion in all directions. The stabilization method used in this paper is based on 

streamline diffusion (SD), which is different from the above-explained method. It is well-

established in the literature that SD is considered as a consistent stabilization method which 

doesn’t perturb the original problem and adds diffusion only in the direction of the electric 

field [71, 72]. The fundamental reason for this method being consistent is that the added 

stabilizing term approaches to zero if the approximate solution approaches the exact 

solution of the convection-diffusion problem. As a result, as the solution error is decreasing 

by consecutive iterations, the stabilizing term is vanishing [71]. It is proved in the literature 

that the SD is less stable than the ID, but is more accurate. The accuracy of ID is at best 

O(h), but the accuracy of SD is at least O (hp+1/2), where p ≥ 1 is the order of the basis 

function [73]. 

Another consistent method, which is more time consuming as compared to SD, is called 

crosswind diffusion (CWD); it adds some diffusion in the direction perpendicular to the 
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electric field [72]. Generally, CWD is suitable for models with higher electric field [74]. 

Both the SD and CWD are categorized as anisotropic diffusion methods. 

Due to the nature of the problem, which exhibits a very non-uniform and strong electric 

field near the needle tip, a non-uniform triangular mesh was used (Figure 3-2). The size of 

the elements varies from 0.75µm at the needle tip to 400 µm in the area far from the needle 

tip. The total number of elements in the computational domain exceeds 240,000 which 

results in approximately 900,000 degrees of freedom by having linear and quadratic 

discretization for continuity equations and Poisson's equation, respectively. Each 

simulation, which was carried out using a desktop PC with Intel Core i7-4960 CPU, takes 

between 12 to 72 hours to complete. 

A Gaussian distribution of neutral plasma (electrons and positive ions) is assumed as initial 

conditions [56]: 

𝑛𝑒,𝑝 = 𝑛𝑚𝑎𝑥 × exp(−
(𝑟 − 𝑟0)

2

2𝑠0
2 −

(𝑧 − 𝑧0)
2

2𝑠0
2 )                      ( 3-15 )  

where 𝑛𝑚𝑎𝑥 = 1012 1/m3 is the maximum density, (𝑟0, 𝑧0) are the coordinates of needle 

tip, and 𝑠0 = 25𝜇𝑚 is the radius of initial distribution. Zero initial density is assumed for 

negative ions. 

3.2 Simulation results 

The discharge current is calculated using the method proposed by Sato [75]. This method 

is based on the energy balance in the discharge gap, which involves the movement of 

charged species under the effect of electric field: 

𝐼 =
1

|𝑉|
∬ 2𝜋𝑟(𝜇𝑒𝑛𝑒 + 𝜇𝑝𝑛𝑝 + 𝜇𝑛𝑛𝑛)�⃗� . �⃗� 𝐿𝑑𝑟𝑑𝑧
𝑆

              ( 3-16 ) 

where 𝑟 and 𝑧 are cylindrical coordinates, �⃗� 𝐿 is the Laplacian electric field, 𝑉 is the applied 

voltage on the needle and 𝑆 is the 2D axisymmetric domain.  
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Figure 3-3: Current pulses for the model with -4 kV corona voltage; needle-plane 

spacing and tip radius are 6 mm and 35 µm, respectively. 

Figure 3-3 illustrates the predicted current pulses for -4 kV supply voltage along with the 

magnified view of an individual pulse. The rise time (10% to 90%) of the pulse is 64 ns 

and the decay time (90% to 10%) is 240 ns. The rise time of the obtained pulse doesn’t 

agree with the findings of the other authors [51, 56] and is longer than reported by them. 

However, we have found that the temporal characteristics of the pulse strongly depends on 

different model coefficients, most importantly the ionization reaction coefficient; e.g. 5% 

and 10% increment in the ionization reaction coefficient will reduce the rise time to 51 ns 

and 45 ns respectively. The ionization reaction coefficients reported in the literature vary 

by a factor of up to 3 [45, 70] and the one we used is the smallest one. We preferred to 

choose all parameters (including the reaction rate coefficients) from a single database 

rather than picking parameters from different sources. 

Four different stages of formation of the Trichel pulse, which are labeled in the magnified 

view of Figure 3-3, are identified below. 

3.2.1 Stage A, pulse initiation 

In this stage, clouds of electrons, and positive and negative ions are created in the vicinity 

of the needle tip from the seed electrons due to ionization and attachment reactions; the 

positive ions are closer, while the negative ions and electrons are farther from the corona 

electrode. Two different regions can be distinguished in the air gap: the ionization region, 
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in which the ionization reaction is dominant due to the intense electric field, and the drift 

region, in which the attachment reaction is dominant due to the weaker electric field. The 

border between both regions is somewhere between the clouds of positive and negative 

charges.  

 

Figure 3-4: Distributions of charged species during stage A as indicated in Figure 

3-3. All densities are in (𝟏 𝒎𝟑⁄ ) and the electric field is in (𝑽 𝒎⁄ ). The approximate 

border between ionization and drift regions is marked with the horizontal solid line. 

Horizontal and vertical axes are in (m). 

Figure 3-4 illustrates the distributions of charged species at this stage. Chen and Davidson 

[9] have defined a third region called the plasma region in which the corona-enhanced 

chemical reactions are possible and besides covering the ionization region, it extends a few 

millimeters into the drift region [10]. For the purpose of the current study though, we divide 

the gap into two regions only. 

The presence of positive charges near the needle tip increases the electric field in the 

ionization region leading to a very fast build-up of new electrons and positive ions by the 

ionization reaction. As the electrons (already existing ones and new ones) are repelled away 

from the ionization region, negative ions are accumulating due to the attachment reaction 

right at the edge of the drift region. As positive ions are moving towards the needle, the 

ionization region is getting narrower and narrower during this stage. Positive ions are also 

deposited on the needle, but the rate of production of new positive ions by the ionization 
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reaction is much greater than that of absorption by the needle. The process of narrowing 

the ionization region continues until the next stage. 

 

Figure 3-5: Distributions of charged species and electric field at the instant of the 

electric field being suppressed (stage B as indicated in Figure 3-3). All densities are 

in (𝟏 𝒎𝟑⁄ ) and the electric field is in (𝑽 𝒎⁄ ). The width of the ionization region is 

considerably narrower compared to Figure 3-4. Horizontal and vertical axes are in 

(m). 

3.2.2 Stage B, electric field suppression 

At this stage, the ionization region has its narrowest width (approximately 30 µm) which 

results in limiting the production of new electrons (Figure 3-5). Thus, despite the increasing 

peak value of the electric field at the needle tip, the peak-value of electron concentration 

starts reducing at this stage followed by an immediate reduction of the peak value of the 

positive ion concentration (Figure 3-6). On the other hand, the cloud of negative ions is 

dense enough to suppress the electric field in the area between the ion cloud and the tip of 

the needle. This leads to the reduction of the peak value of the electric field. About 10 

nanoseconds later, the current magnitude will also start to decrease. Finally, after a 

relatively long delay, the peak-value for the negative ion concentration also starts 

decreasing. So, the time sequence of reduction in the peak values at this stage which is 

shown in Figure 3-6 is electrons, positive ions, electric field, current and negative ions. It 

is also interesting to note that the location of the peak densities of electrons and positive 

ions are not on the axis of symmetry but situated approximately 20 µm away from the axis. 
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It is not clear whether the off-axis peak point of electron density at this stage is due to 

a numerical artifact or due to a real physical reason such as the diffusion of electrons. 

This phenomenon has been observed by other authors in the past [56] as well and the reason 

is not quite clear. While Tran et al. [56] don’t rule out the possibility of a real physical 

reason, they also suspect that the inaccurate representation of 3D phenomenon in 2D 

axisymmetric geometry could be a possible reason. 

 

Figure 3-6: Normalized peak values of charged species' concentration, electric field, 

and current as a function of time during stage B as indicated in Figure 3-3. 

3.2.3 Stage C, drift of negative ions 

 

Figure 3-7: Distributions of charged species and electric field during stage C as 

indicated in Figure 3-3. All densities are in (𝟏 𝒎𝟑⁄ ) and the electric field is in 

(𝑽 𝒎⁄ ). Horizontal and vertical axes are in (m). 
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Figure 3-8: Electric field along the axis of symmetry at different stages of formation 

of Trichel pulse as indicated in Figure 3-3. Electric field during stage B has the 

greatest value near the tip. It is also noticeable that the electric field in the whole air 

gap in stage D is below the Laplacian electric field. 

After the electric field falls below the ionization level in the majority of the air gap near 

the needle tip, the dissipation rate of positive ions and electrons will be larger than their 

production rate. In this stage, before the positive ions peak concentration reaches the 

cathode, the points of the peak concentration of the positive and negative ions are still close 

enough to be able to weaken the Laplacian electric field in the area in between. Thus, some 

positive ions are left behind the main positive cloud and form an island of trapped positive 

charges just at the top of the point of the negative ions' peak concentration (Figure 3-7). 

This weakened electric field behind the main cloud of positive ions is noticeable as a small 

dip on the curve of stage C in Figure 3-8 in the area between 5 and 10 µm away from the 

tip. At some later time, the positive ions left behind will be absorbed by the needle as well. 

3.2.4 Preparation for next pulse 

As the process of absorbing positive ions continues, secondary electrons are ejected from 

the needle surface into the gap according to Eq. 3-14. As shown in Figure 3-8, during this 

stage, the electric field has its lowest magnitude in the area near the tip of all the stages. 

Actually, this field is below the Laplacian electric field in the whole air gap. After negative 

ions have moved far enough from the tip, the electric field near the cathode recovers and 
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electrons from secondary emission get the chance to trigger the avalanche ionization for 

the next pulse. 

 

Figure 3-9: Distribution of negative ions during stage D as indicated in Figure 3-3. 

Each separate cloud represents the formation of one pulse. Due to the diffusion of 

negative ions, after some distance, the clouds are not distinguishable. Horizontal 

and vertical axes are in (m). 

The preparation time (inter-pulse time) is much shorter than the time needed for a cloud of 

negative ions to travel from the point near the cathode to the ground plane. The frequency 

of the pulses is related to the drift of the cloud of negative ions from the needle tip, but it 

doesn’t necessarily mean that the formation of the next pulse will start only after the cloud 

of negative ions has reached the ground plane. This confirms the concept of the existence 

of several clouds of negative ions in the air gap at any time rather than just one negative 

ion cloud [37]. The next pulse in the train of pulses will come as soon as the latest cloud 

of negative ions has moved far enough from the tip and the electric field increases above 

the onset level. The existence of several clouds of negative ions can be seen in Figure 3-9. 

This figure could also be used as the basis for explaining the fact that the consecutive pulses 

in Figure 3-5 have a smaller magnitude than the first pulse. In fact, the magnitudes of pulses 

are gradually becoming smaller and smaller as the time passes in the model. The decrement 

of pulses’ amplitude is not noticeable for the consecutive pulses in the scale of Figure 3-5 

though. The first pulse forms in the gap which is free of negative ions and the electric field  



Chapter 3, « Numerical investigation of the formation of Trichel pulses in a needle-plane geometry » 

34 

 

 

 

 

Figure 3-10: Total number of (a) electrons, (b) positive ions and (c) negative ions in 

the air gap versus time. 

gets the chance to increase further. However, this is not the case for consecutive pulses. As 

the gap is filling with negative ions, the electric field gets suppressed faster for consecutive 
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pulses which causes the amplitudes to become smaller and smaller. Steady state amplitude 

will be reached once the forefront of negative ions bridges the whole gap. 

Figure 3-10 depicts the total number of charged species in the air gap versus time. It can 

be observed in this Figure that the total number of electrons and positive ions follow the 

same trend as current, but the total number of negative ions in the air gap is increasing after 

each pulse. These findings are consistent with those reported in [55]. Each incremental step 

in Figure 3-10(c) is an indicator of one Trichel pulse. These step increments should reach 

steady-state at some point if the model is let run long enough to allow the negative ion 

clouds to fill the air gap. Comparing the maximum points on Figure 3-10(a) and (b), it can 

be observed that despite the fact that the peak density of electrons starts decreasing before 

the positive ions (as shown in Figure 3-6), the total number of electrons holds longer than 

the total number of positive ions during the stages which the current pulse starts decreasing 

(stage B). This could be justified by the fact that the positive ions are being absorbed very 

fast by the needle during this stage which reduces its total number in the air gap, whereas 

the local production of positive ions due to ionization still continues for a short time. 

Moreover, by comparing Figure 3-6 and Figure 3-10 (a and b), it is revealed that the peak 

value of electric field starts decreasing before the total number of electrons and positive 

ions in the air gap start to reduce. 

Figure 3-11 depicts the distribution of current density on the cathode surface at different 

instants of formation of a Trichel pulse. Starting from the tip of the needle, it is observed 

that the current density propagates like a wave on the needle surface. This phenomenon 

was reported before in [51]. The change of sign of current density along the cathode surface 

on curve 2 is explained as being due to the displacement current variation produced by a 

change in the electric field [51].  
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Figure 3-11: Distribution of the current density on the cathode surface at different 

instants of formation of a Trichel pulse. 

 

Figure 3-12: Comparison of the Warburg profile with the calculated current density 

on the ground plane at the instant of current peak. 

Moreover, comparison of the Warburg profile [76] with the current density on the ground 

plane at the peak of the current (stage B as shown in Figure 3-3 or the instant 5 as shown 

in Figure 3-11) shows a great agreement. This comparison is presented in Figure 3-12. It 

should be mentioned here that the surface integral of any of the curves given in Figure 

3-11and Figure 3-12 agrees with the value of the total current. 
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Figure 3-13: Comparison of simulated and experimental (a) frequencies, and (b) DC 

currents for different voltages. The needle-plane spacing and radius of curvature of 

the tip are 6 mm and 35 µm, respectively. 

3.3 Comparison with experimental data 

For the purpose of assessing the validity of the proposed model, results of pulse frequency 

and average DC current for different negative voltages on the needle are compared with 

the experimental data published by Lama and Gallo [37]. They reported results for a needle 

of 35 µm radius of curvature for voltages ranging from -3 kV to -5 kV. In the simulations, 

however, the corona pulses were not observable for voltages smaller than -3.5 kV. 

Therefore, the range of compared results with the experiments is from -3.5 kV to -5 kV. 

The comparison, which is presented in Figure 3-13, gives an acceptable agreement for the 

DC currents. The results for the frequency, however, are less satisfactory and suggest that 

some of the parameters in the model need to be adjusted. The coefficient of secondary 
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emission of electrons (𝛾) and also the ionization coefficient (𝛼) play major roles here. Other 

simplifications in the assumed model, such as neglected photoionization, photoemission, 

many ionic and excited species and reactions, may be responsible for lack of a better 

agreement as well. 

3.4 Transition to glow discharge regime 

As the negative voltage on the needle is increased, the frequency of the Trichel pulses 

increases and the negative ion clouds get closer and closer to each other until finally they 

merge and form a relatively flat curve, which is called the glow discharge. The typical 

range of the current in this regime is normally one order of magnitude greater than that of 

the Trichel pulse regime. Due to the fast transition of Trichel pulse regime to spark regime 

in atmospheric pressure, in reality, it is difficult to realize steady-state glow discharge at 

atmospheric pressure. In fact, the stable glow discharge is classically known to exist only 

in low pressure sealed gas tubes [8], however, this regime is achievable at atmospheric 

pressure by introducing a gas flow in the gap which quenches the thermal instabilities by 

the convective removal of energy dissipated in the discharge [77]. Changing the shape of 

the anode to that of a crater right below the needle tip could be used to stabilize the glow 

regime as well [8].  

The current model doesn’t include the thermal instabilities of the formed plasma channel 

in the air gap and it’s assumed that the discharge is stabilized using at least one of the 

abovementioned methods. With this assumption, the main features of glow discharge in 

the presented geometry (Figure 3-1) are predicted here. These features are: formation of a 

plasma channel all the way from the needle to the ground plane, which is deduced by the 

uniform distribution of negative and positive charges in the air gap, the enhancement of 

electric field in the drift region, and formation of the anode layer (the glow region near the 

anode, which is observed as visible blue film on the ground plane). The transition from 

Trichel pulse regime to glow discharge starts as the ratio of pulse peak to the minimum 

current starts decreasing. The pulse peak in the Trichel pulse regime is typically 20 times 

greater than the minimum current. In the current model, this ratio decreases from 7 to 3 for 
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the voltage range from -7 kV to -10 kV. Finally, the glow regime is reached at -12 kV. The 

currents for -9 kV and -12 kV discharges are shown in Figure 3-14. 

 

 

Figure 3-14: Current waveforms for (a) -9 kV, and (b) -12 kV. According to the 

simulations, the transition to the glow discharge regime starts from -6 kV and at -12 

kV Trichel pulses completely disappear. 

Comparison of the Poissonian and Laplacian fields in the area far from the needle for the -

12 kV shows an enhancement of electric field in the area near the ground plane (Figure 

3-15, blue line). As it can be observed in this Figure, the electric field enhancement to a 

level at which the ionization reaction overcomes the attachment reaction arises at first at 

the anode. In fact, putting the ionization and attachment coefficients in Table 3-2 equal 

with each other will lead to E=2.57 × 106 (V/m). This phenomenon, which is associated 

with the formation of a clearly visible blue layer on the ground plane in the experiment has 

been explained before by Akishev et al. [8]. This layer is called the “anode layer”. 
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Figure 3-15: Comparison of Poisson's field and Laplacian field along the axis of 

symmetry for -4 kV and -12 kV. The magnified view is for the area near the ground 

plane. 

Actually, we believe the key factor controlling the transition from the Trichel pulse regime 

to glow discharge regime is the electric field which should be strong enough throughout 

the whole gap. This was not the case in the Trichel pulse regime, in which the strong 

electric field was limited to the ionization region. On the other hand, the negative ions have 

smooth distribution in the air gap in the glow discharge regime rather being in the form of 

separate packs which was the case in the Trichel pulse regime (Figure 3-9). The smoothness 

of the distribution of the negative ions is observable in Figure 3-16. This Figure illustrates 

the distributions of different charged species and the electric field in the -12 kV discharge. 

It should be stressed here again, that the realization of these circumstances in reality is not 

possible without applying air flow (for removing heat) and crater-shaped ground plane for 

avoiding the initiation of breakdown right under the tip, on the ground plane [8]. 
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Figure 3-16: Distributions of charged species and electric field during glow 

discharge regime (-12 kV). All densities are in (𝟏 𝒎𝟑⁄ ) and the electric field is in 

(𝑽 𝒎⁄ ). Horizontal and vertical axes are in (m). 

Figure 3-17 represents the comparison of the densities of ions and also the ionization source 

terms along the axis of symmetry from needle tip to the ground plane for glow discharge 

(-12 kV) and Trichel pulse discharge (-4 kV). It can be observed that the whole air gap is 

filled with positive and negative ions during the glow discharge, which is the result of 

enhanced electric field and formation of plasma channel in the gap. Complete filling of the 

gap by plasma means that the transition to glow discharge is completed [8]. It should be 

noted here that the curve of the positive ions in the -12 kV discharge is not extended to the 

end in this Figure. The reason for that is the fact that the positive ions have zero boundary 

condition on the ground plane and the vertical axis has a logarithmic scale. Moreover, due 

to the coarse mesh in the area near the ground plane, approximately 400 µm, the density 

jumps from around 1e15 (1/m3) to zero. 
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Figure 3-17: Comparisons of (a) the densities of ions and (b) the ionization source 

term, along the axis of symmetry for glow discharge (-12 kV) and corona discharge 

(-4 kV). 

3.5 Conclusions 

The formation of Trichel pulses in the negative corona discharge in the air has been 

numerically investigated in this chapter. The computational model is based on solving the 

drift-diffusion equations for three basic ionic species and the Poisson equation for the 

electric field. The results show the temporal evolution of the major distributed parameters 

(density of ionic species, electric field) as well as the global measured parameter, the 

electric current. 

Different stages in the pulse formation have been identified. In the first stage (pulse 

initiation), the presence of a dense cloud of positive ions near the tip enhances the electric 

field in the area near the needle tip. This process continues until the clouds of negative and 
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positive ions are dense enough to diminish the electric field in the ionization region. Off-

symmetry axis peaks were noticed for electrons and positive ions in the stage of 

diminishing electric field. It was shown that the peak values of different ionic densities 

occur at different instants of time. After the cloud of negative ions drifts sufficiently far 

away from the needle, the electric field gets the chance to recover in the area near the tip 

and with the help of the secondary emission of the electrons, the gap will be ready for the 

next pulse. It was shown that in the Trichel pulse regime, several clouds of negative ions 

simultaneously exist in the air gap and the inter-pulse time is shorter than the time takes 

for a cloud of negative ions to cross the gap. The fact that the first pulse in the train of 

Trichel pulses had greater amplitude than the consecutive ones was explained by the 

absence of negative ions in the air gap while the first pulse is being formed. 

Comparison of the simulation and experimental results shows a good agreement for DC 

currents and an acceptable one for frequencies. Moreover, the numerical model predicted 

the inception voltage of corona discharge -3.5 kV, which is higher than the one reported in 

the experiments (-3 kV). 

The numerical model predicts that the transition from the Trichel pulse to glow discharge 

regime for a needle-plane configuration with 6 mm spacing and 35 µm tip with atmospheric 

pressure air concludes at -12 kV, as the current waveform becomes flat and a plasma 

channel is formed from the cathode to the anode. The simulations showed that the 

augmentation of the electric field in the area far from the needle tip in the glow discharge 

regime starts from the ground plane which is associated with a clearly visible blue film on 

the ground plane in the experiments. 
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Chapter 4  

4 « Study of the impact of photoionization on negative 
and positive needle-plane corona discharge in atmospheric 
air » 

In this Chapter, a 2D axisymmetric model of the atmospheric pressure needle-plane corona 

discharge incorporating the photoionization phenomenon is presented. In simple words, 

the Eqs. 3-1 to 3-4 presented in Chapter 3, are solved along three more equations to 

incorporate the photoionization phenomenon. The model presented in this Chapter is 

solved for both polarities of the corona discharge, positive and negative. 

In general, most of the studies published in the literature regarding photoionization are 

limited to the streamers in positive discharges [69, 78] and it is generally accepted that it 

is photoionization that is the major source for the production of seed electrons ahead of the 

cathode-directed streamers [79], while negative streamers have attracted much less 

attention [63]. To the author’s best knowledge, no quantitative studies of photoionization 

in the corona discharges (both positive and negative) and its comparison with other sources 

of production of electrons in those discharges could be found in the literature. Moreover, 

although there are many three-species, self-sustained negative corona models studied in 

the literature, in the case of the positive corona models, they are mostly limited to single 

and two-species ones. The main focus of this Chapter is to present three-species, self-

sustained, positive and negative corona discharge models including the photoionization 

phenomenon. These models will enable us to conduct a quantitative study of the impact of 

photoionization on the characteristics of Trichel pulses (frequency and DC current of the 

pulses) and its vital role in sustaining the positive corona. Also, a comparison of the relative 

importance of the different sources of production of electrons in positive and negative 

corona discharge will be presented. Fulfilling these purposes requires a fast computation 

method for including the photoionization in the corona discharge model. The method 

suggested by Bourdon et al. [64], which is based on the model developed by Luque et al. 

[63] and also used in [69], is implemented here. In this method, the photoionization 

phenomenon is modeled with the help of three Helmholtz equations which consist of some 
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tuning coefficients. There was significant uncertainty over the values of some key 

coefficients in the suggested model. To be able to accurately incorporate the 

photoionization phenomenon in the negative corona discharge, as a first step, these 

coefficients needed to be accurately determined. Since photoionization is the main source 

of producing electrons for sustaining a positive corona discharge, the coefficients were 

determined by comparing the results of the positive corona numerical model and the 

experimental results presented in [57]. 

In the first two sections of this Chapter, the physics behind this phenomenon and the 

challenges in numerical calculations are described. The next two sections are devoted to 

implementing the equations describing the photoionization in the positive and negative 

corona discharge models. The results are compared with the existing experimental data in 

the literature and some new insights have been presented at the end regarding the relative 

importance of the different sources of production of new electrons in both positive and 

negative discharges. 

4.1 Photoionization model in atmospheric air 

It is generally accepted in the literature that the photoionization in the air is the result of 

the absorption by oxygen molecules of photons emitted from excited nitrogen molecules 

[62, 65]. Zheleznyak et al. [66] suggest the radiation emitted by the singlet states N2(b
1 Π, 

bʹ1 Σu
+, c1 Πu and cʹ1 Σu

+) in the wavelength range of 98-102.5 nm is the source of this 

phenomenon. The excitation of the nitrogen molecules is the result of the impact of the 

energized electrons accelerated in the electric field [66]: 

𝑒 + 𝑁2 →𝑁2
∗ + 𝑒 ⇒𝑁2

∗→𝑁2 + ℎ𝜈(98 − 102.5𝑛𝑚)⇒𝑂2 + ℎ𝜈→𝑂2
+ + 𝑒            ( 4-1 ) 

The photoionization process plays a vital role in the propagation of positive streamers in 

gasses and has been studied most often in this framework [69, 78]. It is generally assumed 

to be the only mechanism for the production of seed electrons causing the propagation of 

the cathode-directed streamers [79]. This phenomenon was also studied by a few authors 

for the propagation of negative streamers [63]. 
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The classical numerical model of photoionization in air was suggested by Zheleznyak et 

al. [64, 66]: 

𝑆𝑝ℎ(𝑟 ) =∭
𝐼(𝑟′⃗⃗  ⃗)𝑔(𝑅)

4𝜋𝑅2
𝑑𝑉′

𝑉′
                    ( 4-2 ) 

where 𝑆𝑝ℎ(𝑟 ) is the rate of photoionization at the point of observation 𝑟 , 𝐼(𝑟′⃗⃗  ⃗) is the 

emission of ionizing UV photons from source point 𝑟′⃗⃗  ⃗ due to the impact ionization 

reactions, 𝑅 = |𝑟 − 𝑟′⃗⃗  ⃗| is the distance between source and observation points and, finally, 

𝑔(𝑅) is the absorption function. This Equation should be integrated over the whole domain 

(or at least over the effective range of the photoionization emitting source) for finding the 

rate of photoionization at each point of observation. As suggested by this Equation, 

photoionization is a nonlinear function of the electric field. In addition, the photoionization 

at a given point occurs due to the radiation source at another point. This introduces non-

locality to the problem. Handling the non-locality of this phenomenon is computationally 

very demanding. The function 𝑔(𝑅) is defined by: 

𝑔(𝑅)

𝑝𝑂2
=
exp(−𝜒𝑚𝑖𝑛𝑝𝑂2𝑅) − exp(−𝜒𝑚𝑎𝑥𝑝𝑂2𝑅)

𝑝𝑂2𝑅 ln (𝜒𝑚𝑎𝑥/𝜒𝑚𝑖𝑛)
                  ( 4-3 ) 

where 𝜒𝑚𝑎𝑥 and 𝜒𝑚𝑖𝑛 are the maximum and minimum values of the absorption coefficients 

of ionization radiation by oxygen in the wavelength domain 98-102.5 nm and their values 

are 2 Torr-1cm-1 and 0.035 Torr-1cm-1, respectively [78]. Also, 𝑝𝑂2 is the partial pressure of 

molecular oxygen in atmospheric pressure air which is usually 150 Torr. The reason the 

left side of the Eq. 4-3 is divided with 𝑝𝑂2 is that the right side of the equation is preferred 

to be merely a function of 𝑝𝑂2𝑅 which is an important parameter for photoionization in 

oxygen-nitrogen mixtures [64, 66]. 

The function 𝐼(𝑟′⃗⃗  ⃗) in Eq. 4-2 represents the emission of photons in the discharge volume, 

which is proportional to the number of ionizing collisions of accelerated electrons with the 

nitrogen molecules: 



Chapter 4, Study of the impact of photoionization on negative and positive needle-plane corona … 

47 

 

𝐼(𝑟′⃗⃗  ⃗) = 𝜉
𝑝𝑞

𝑝 + 𝑝𝑞
𝑆𝑖(𝑟′⃗⃗  ⃗) = 𝜉

𝑝𝑞

𝑝 + 𝑝𝑞
𝛼𝜇𝑒|�⃗� |𝑛𝑒                             ( 4-4 ) 

where 𝜉 and 𝑝𝑞 are the proportionality factor and the quenching pressure (in Torr), 

respectively, over which there is uncertainty in the literature [63, 65, 78]. The factor 

𝑝𝑞/(𝑝 + 𝑝𝑞) accounts for the probability of non-radiative de-excitation of nitrogen 

molecules due to the collision with other molecules [63]. 𝑆𝑖(𝑟′⃗⃗  ⃗) is the rate of production 

of new electrons due to the impact ionization, which is equal to the product of the ionization 

coefficient (1/m), drift velocity of electrons (m/s) and number density of electrons (1/m3). 

𝛼, 𝜇𝑒, |�⃗� | and 𝑛𝑒 are the coefficient of ionization reaction, mobility of electrons, intensity 

of electric field (V/m) and concentration of electrons, respectively. 

It seems that there is not a solid agreement over the values of 𝑝𝑞 and 𝜉 in the literature. 

Although everyone agrees that the factor 𝜉 weakly depends on the electric field and the 

data in [66] shows that in the range of 150 ≤ E/N ≤ 600 Td, 𝜉 diminishes from 0.12 to 0.06 

[78], in the works of Luque et al. [63] and Kulikovsky [78] it was assumed that 𝜉 = 0.02 

and 𝜉 = 0.1, and 𝑝𝑞 was assumed to be 60 and 30 Torr, respectively. 

Instead of integrating Eq. 4-2, which is very time-consuming, the approach proposed by 

Bourdon et al. [64] is used here. This approach, which is based on the method suggested 

by Bourdon et al. [64]  and used by Papageorgiou et al. [69] as well, interpolates the 

absorption function 𝑔(𝑅) by the sum of three exponential terms: 

𝑔(𝑅)

𝑝𝑂2
= 𝑝𝑂2𝑅∑𝐴𝑗exp (−𝜆𝑗𝑝𝑂2𝑅)

3

𝑗=1

                        ( 4-5 ) 

Substituting this approximation in the Eq. 4-2 gives: 

𝑆𝑝ℎ(𝑟 ) =∑

{
 
 

 
 

∭
𝐼(𝑟′⃗⃗  ⃗)(𝑝𝑂2)

2
𝐴𝑗exp (−𝜆𝑗𝑝𝑂2𝑅)

4𝜋𝑅
𝑑𝑉′

𝑉′⏟                        

𝑆𝑝ℎ
𝑗(𝑟 ) }

 
 

 
 3

𝑗=1

=∑𝑆𝑝ℎ
𝑗(𝑟 )

3

𝑗=1

            ( 4-6 ) 
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The advantage of this method is that the term 𝑆𝑝ℎ
𝑗(𝑟 ) in above equation is the solution of 

the Helmholtz equation: 

(∇2 − (𝜆𝑗𝑝𝑂2)
2
) 𝑆𝑝ℎ

𝑗(𝑟 ) = −𝐴𝑗(𝑝𝑂2)
2
𝐼(𝑟 )                            ( 4-7 ) 

where 𝐼(𝑟 ) and 𝑝𝑂2 are the same as defined in Eqs. 4-3 and 4-4, respectively, and the 

coefficients 𝐴𝑗 and 𝜆𝑗 are the constant numbers given in Table 4-1 [69]. As the result of 

this approximation, the problem of solving Eq. 4-2, which is a very expensive from the 

numerical point of view, is replaced with the problem of solving three equations (Eq. 4-7) 

assuming  𝑗=1,2 and 3. It is noteworthy to mention that the reason the three-term 

exponential approximation is preferred over the two-term exponential approximation as 

compared in [64], is that the two-term approximation doesn’t represent acceptable 

agreement with the absorption function suggested by Zheleznyak et al. [66] for the values 

of 𝑝𝑂2𝑅 greater than 50 Torr cm [64]. 

Table 4-1: Constant coefficients for Eq. 4-7 

 𝑨𝒋(𝒄𝒎
−𝟐𝑻𝒐𝒓𝒓−𝟐) 𝝀𝒋(𝒄𝒎

−𝟏𝑻𝒐𝒓𝒓−𝟏) 

𝒋 = 𝟏 1.986×10-4 0.0553 

𝒋 = 𝟐 0.0051 0.1460 

𝒋 = 𝟑 0.4886 0.89 

4.2 Governing equations of the model 

The corona discharge model incorporating the photoionization phenomenon consists of 

three continuity equations (responsible for the movement of three charged species: 

electrons, positive ions, and negative ions), Poisson’s equation and three Helmholtz 

equations (responsible for the photoionization): 

𝜕𝑛𝑒
𝜕𝑡

+ 𝛻 ∙ (−𝜇𝑒�⃗� 𝑛𝑒 − 𝐷𝑒𝛻𝑛𝑒) = 𝑆𝑝ℎ + 𝛼𝑛𝑒|𝜇𝑒�⃗� | − 𝜂𝑛𝑒|𝜇𝑒�⃗� | − 𝑘𝑒𝑝𝑛𝑒𝑛𝑝         ( 4-8 ) 

𝜕𝑛𝑝

𝜕𝑡
+ 𝛻 ∙ (𝜇𝑝�⃗� 𝑛𝑝 − 𝐷𝑝𝛻𝑛𝑝) = 𝑆𝑝ℎ + 𝛼𝑛𝑒|𝜇𝑒�⃗� | − 𝑘𝑒𝑝𝑛𝑒𝑛𝑝               ( 4-9 ) 

𝜕𝑛𝑛
𝜕𝑡

+ 𝛻 ∙ (−𝜇𝑛�⃗� 𝑛𝑛 − 𝐷𝑛𝛻𝑛𝑛) = 𝜂𝑛𝑒|𝜇𝑒�⃗� | − 𝑘𝑛𝑝𝑛𝑛𝑛𝑝                ( 4-10 ) 
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𝛻2𝑉 =
−𝑒(𝑛𝑝 − 𝑛𝑒 − 𝑛𝑛)

𝜀0
                  ( 4-11 ) 

(∇2 − (𝜆𝑗𝑝𝑂2)
2
) 𝑆𝑝ℎ

𝑗(𝑟 ) = −𝐴𝑗(𝑝𝑂2)
2
𝐼(𝑟 ) ;  𝑗 = 1,2,3                  ( 4-12 ) 

𝑆𝑝ℎ =∑𝑆𝑝ℎ
𝑗

3

𝑗=1

                 ( 4-13 ) 

where 𝑛𝑒, 𝑛𝑝, 𝑛𝑛, 𝜇𝑒, 𝜇𝑝, 𝜇𝑛, 𝐷𝑒, 𝐷𝑝, 𝐷𝑛 and 𝑆𝑝ℎ are the number densities (1/m3), mobilities 

(m2/(Vs)), and diffusion coefficients (m2/s) of electrons, positive ions and negative ions, 

and the photoionization source term, respectively. Moreover, 𝑉, 𝜀0, and 𝑒 represent the 

potential, vacuum permittivity, and the electron charge, all in SI units, respectively. Four 

main reactions: ionization, attachment of electrons to neutral molecules, recombination of 

electrons with positive ions and recombination of positive and negative ions, with the 

reaction coefficients 𝛼(1 𝑚⁄ ), 𝜂(1 𝑚⁄ ), 𝑘𝑒𝑝(𝑚
3 𝑠⁄ ) and 𝑘𝑛𝑝(𝑚

3 𝑠⁄ ), respectively, as 

explained in Chapter 3, are considered in the investigated model [45, 80]. 

4.3 Simulation results for positive corona discharge  

The model consisting of Eqs. 4-8 to 4-13 is solved using a commercial finite element 

package COMSOL. The modules: “Transport of diluted species”, “Helmholtz equation” 

and “Electrostatics” are used for the drift-diffusion equations, photoionization equations, 

and Poisson’s equation, respectively. The studied models, which have either 6 mm or 2 cm 

air gap, consist of approximately 190,000 and 250,000 non-uniform triangular mesh 

elements, respectively leading to more than 1 million degrees of freedom. Drift-diffusion 

equations are numerically stabilized by streamline diffusion (SD). This is proven to be a 

very efficient method in this specific application [80]. The implicit method “backward 

differentiation formula” (BDF) is used for determining the time steps. BDF methods have 

been used for a long time and are known for their stability [81]. The boundary conditions 

for Eqs. 4-8 to 4-11 are the same as the conditions explained in [80]. 
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Proper boundary conditions for the Helmholtz equations (Eqs. 4-11 and 4-12) are also 

necessary. Zheleznyak’s equation (Eq. 4-2) is valid in an infinite space and in the 

investigated problem here a different Green function would be needed. The exact boundary 

conditions for the Helmholtz equation would need to consider the photon reflection from 

the needle surface and could vary between a complete reflection to a complete absorption. 

In order to simplify the problem, the  zero Dirichlet boundary conditions at the boundaries 

of the computational domain were assumed [63, 69]. This boundary condition on the needle 

requires a very fine mesh in the adjacent area so a convergent model could be obtained. In 

all the models studied here, the maximum size of the mesh element in the immediate area 

of the needle tip is 1 micron and a mesh growth rate of 1.01 in the critical neighboring areas 

was imposed. It has been checked that the assumption of the zero boundary condition on 

the needle yields a solution very close to the solution of a model in which the results of 

Zheleznyak’s equation were imposed on the needle.  

In an attempt to reduce the uncertainties revolving around the values of 𝑝𝑞 and 𝜉, we 

decided to assume 𝑝𝑞 = 60 Torr and sweep the values of 𝜉 in a range of 0.02≤ 𝜉 ≤0.08. 

The geometry of the model was chosen so the results of the positive corona discharge could 

be compared with the experimental results published in [57]. The needle-plane model 

consisted of a 2 cm air gap, a needle of 95 µm tip radius and an infinite ground plane. Best 

agreement was obtained for 𝜉=0.06. The obtained I/V vs. V characteristics is illustrated in 

Figure 4-1. It can be noticed in this Figure that the onset voltage of the numerical model is 

higher than that of the experimental one. This issue, which has been noticed in other 

numerical models as well [80], could be explained by the existence of microscopic surface 

irregularities leading to microscopic field hot spots on the needle surface. These hot spots 

on the needle are ignored in numerical models. 

After this stage, the established photoionization model was ready to be incorporated in the 

negative corona discharge developed previously in [80]. 
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Figure 4-1: Validation of the simulation results of positive corona discharge for 𝝃 =

𝟎. 𝟎𝟔 with the experimental results published in [57]. The discharge model consists 

of a 2 cm air gap and a 95 µm tip radius. 

4.4 Simulation results for negative corona discharge  

For the purpose of quantifying the impact of photoionization phenomenon on the 

characteristics of the Trichel pulses produced in a negative corona discharge, the results of 

the Trichel pulse simulations reported in [80] were reproduced after including the 

photoionization process with the parameters established in the previous section. The 

geometry of the model consists of a 6 mm air gap between a needle with a 35 µm tip radius 

and a ground plane. All the simulations carried out in this report are for 2D axisymmetric 

models and the surrounding discharge gas is assumed to be air at 1 atm pressure. The 

comparison is made in the voltage range of -3.5 kV to -5 kV for the frequency of the pulses 

and the DC current. The comparison results shown in Figure 4-2 reveals an average of 5% 

increase in both the frequency and the DC current of the pulses. It should be noted here 

that the results presented in Figs. 1 and 2 have different geometries and the significant 

difference of the DC currents shouldn’t be surprising (the DC currents in Figure 4-1 fall in 

the range of approximately 1 to 10 µA). The negative discharge model presented in Figure 

4-2 has a much smaller air gap compared to the positive discharge model of Figure 4-1. 

Although the radius of curvature of the negative model is smaller than that of the positive 
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discharge, it is a generally proven fact that the smaller air gap leads to a larger current in 

the electrical discharges [37]. It should also be noted that the chosen voltage ranges for the 

Figure 4-1 and Figure 4-2 are in accordance with their respective compared experimental 

results (references [57, 80], respectively). 

 

 

Figure 4-2: Comparison of (a) DC currents and (b) frequencies of Trichel pulses 

with and without photoionization source included. The negative discharge model 

presented here is the one which was investigated in [80] and consists of a 6 mm air 

gap and a 35 µm tip radius. 

4.5 Discussions 

Before conducting a quantitative comparison of the sources of production of electrons in 

corona discharge, photoionization, impact ionization, and secondary emission of electrons 

(only in the negative discharge), the correlation between photoionization and impact 

ionization should be clarified. Although, as stated in Eqs. 4-4 and 4-12, from a numerical 

point of view it appears that the photoionization source term is strongly dependent on the 

impact ionization source term, in reality, the photoionization is triggered by photons 
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produced from excited nitrogen molecules, not the electrons produced from impact 

ionization (Eq. 4-1). Nevertheless, in the literature, it is accepted that the number of the 

photons produced in the discharge volume is proportional to the number of ionizing 

collisions of accelerated electrons [66]. This approximation is reflected in the linearity and 

non-locality of the Helmholtz equations representing this phenomenon (Eq. 4-12). It should 

be noted that this assumption is not always valid; e.g., in the regimes of higher voltage 

discharges with rapidly moving ionization wave, excited nitrogen molecules could 

continue radiating photons for much longer time compared to the lower voltage regimes. 

In this part, the results of two models with exactly the same geometry (6 mm air gap and 

35 µm needle tip) and same voltage level, one with +4500 V and the other with -4500 V 

on the needle, are discussed and compared. The negative discharge model is actually the 

same as the one presented in Figure 4-2. 

4.5.1 Positive corona discharge 

Figure 4-3 depicts the distributions of the impact ionization and the photoionization source 

terms (m-3s-1) in the positive corona discharge in the area near the needle tip and along the 

axis of symmetry (the line starting from the needle tip and going straight downward to the 

ground plane). As it is shown in Figure 4-3 (a), the impact ionization electrons, which are 

mostly produced close to the tip (area of the strongest electric field), trigger the 

photoionization at a farther distance while getting quickly absorbed by the needle. On the 

other hand, electrons produced by photoionization trigger the impact ionization on their 

way towards the tip. Hence, the discharge is sustained. The non-locality of the 

photoionization is the key characteristic in sustaining the discharge which gives enough 

time for the photoionization electrons to gain enough energy as they accelerate through the 

increasing field thus triggering impact ionization. It is also noticed in Figure 4-3 (b) that 

the photoionization electrons are distributed in a much larger area compared to the impact 

ionization electrons which are concentrated only near the needle tip. Moreover, the 

difference of the peak concentrations shows that in the positive discharge, a small number 

of electrons produced from photoionization is enough for triggering the avalanche impact 

ionization and sustaining the discharge. 
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Figure 4-3: Distributions of photoionization and impact ionization source terms (m-

3s-1) for the +4500 V corona discharge in the (a) area near the needle tip (horizontal 

and vertical axes are 𝒓 and 𝒛 cylindrical coordinates (m), respectively), and (b) 

along the axis of symmetry. The model consists of a 6 mm air gap and 35 µm tip 

radius. 

One might wonder about the role of the background ambient electrons in the self-sustaining 

process of the positive corona discharge, generated, for example, by cosmic radiation, 

which is a valid argument in some cases. Pancheshnyi [79] discussed the importance of the 

presence of the background natural electrons in the propagation of the cathode-directed 

streamers. He suggested that the cosmic rays are the major source of the natural ionization 

and other sources, such as radioactive radiation, are negligible. Although the direct 

measurement of electron-ion pair production due to cosmic rays is very difficult, 

Pancheshnyi [79] suggests the value 106 m-3s-1 could be used as the most probable number. 
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However, our simulations show that in the case of the corona discharges (both positive and 

negative polarities) the background ambient electrons don’t play any role in the process of 

self-sustaining the discharge. The ambient electrons are required only for initiating the 

discharge and during the discharge, photoionization and impact ionization keep the positive 

corona discharge self-sustained. 

In order to better quantify the effect of photoionization, the number of produced electrons 

due to photoionization and the impact ionization are compared with each other. The 

integrals IIS and IPS are defined as: 

𝐼𝐼𝑆 = ∬ 2𝜋𝑟𝛼𝑛𝑒|𝜇𝑒�⃗� |𝑑𝑟𝑑𝑧                                 ( 4-14 )
𝑆

 

𝐼𝑃𝑆 =∬ 2𝜋𝑟𝑆𝑝ℎ𝑑𝑟𝑑𝑧
𝑆

                                          ( 4-15 ) 

where 𝑆, 𝑟 and 𝑧 represent the 2D axisymmetric integration surface and cylindrical 

coordinates, respectively. Both source terms (impact ionization 𝛼𝑛𝑒|𝜇𝑒�⃗� |, and 

photoionization 𝑆𝑝ℎ) are expressed in m-3s-1, so their integrals will be in 1/s. The positive 

discharge current, ratio of these two integrals (IIS/IPS), and the value of the IIS at the 

steady state current is shown in Figure 4-4. The first number on the arrow and the number 

in the brackets are the values of IIS and the ratio IIS/IPS, respectively. Comparison of the 

ratio IIS/IPS=566 with the orders of magnitude difference noticed in their peak values 

(Figure 4-3) is actually consistent with the discussions presented regarding the much larger 

area the photoionization electrons occupy in the air gap compared to the impact ionization 

electrons. It was also observed that varying the voltage level in the whole range of the 

carried out simulations (4 kV to 6 kV) doesn’t cause a noticeable variation in the ratio 

IIS/IPS at the steady state current level. This could be justified by the linearity of the 

Helmholtz equation (Eq. 4-12). In fact, the ratio IIS/IPS is determined by the shape of the 

ionization region and since the positive discharge in stationary in terms of both spatial 

distribution and time variation, the ratio remains constant. 
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Figure 4-4: Calculated IIS and the ratio IIS/IPS at steady state in the +4500 V 

discharge. The first number on each arrow and the number inside the brackets are 

the values of IIS in (1/s) and the ratio IIS/IPS, respectively. The model consists of a 6 

mm air gap and 35 µm tip radius. 

4.5.2 Negative corona discharge 

Studying the spatial distribution of the photoionization and impact ionization source terms 

for the negative corona discharge, as illustrated in Figure 4-5, shows that the peak location 

of the impact ionization electrons is a bit farther from the tip as compared to the positive 

corona discharge (Figure 4-3). In fact, the peak locations of the two sources are closer to 

each compared to the positive corona discharge and electrons from both sources travel 

approximately the same distance (have similar drift velocities) while being repelled in to a 

progressively smaller field. This point coupled with the fact that the peak values of two 

sources have orders of magnitude difference with each other justifies the minor role the 

existence of the photoionization in the negative corona discharge plays. Similarly, to the 

case of the positive discharge, it is observed in Figure 4-5 (b) that the photoionization 

electrons are distributed over a much larger area in the discharge volume than the impact 

ionization electrons.  
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Figure 4-5: Distributions of photoionization and impact ionization source terms (m-

3s-1) for the -4500 V corona discharge in the (a) area near the needle tip (horizontal 

and vertical axes are 𝒓 and 𝒛 cylindrical coordinates (m), respectively), and (b) 

along the axis of symmetry. The model consists of a 6 mm air gap and 35 µm tip 

radius. Both plots are created at the inter-pulse instant of the discharge current. 

Comparison of the total number of electrons produced from the two sources (impact 

ionization and photoionization) with the help of the ratio IIS/IPS at different stages of 

formation of the Trichel pulse is presented in Figure 4-6. It is observed that the number of 

electrons produced by the impact ionization is on average 100 times larger than those of 

photoionization (numbers inside the brackets in Figure 4-6 vary in the range of 70 to 123). 

This again confirms the minor role the existence of photoionization electrons plays in the 

discharge current. 
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Further inspecting the numbers given in Figure 4-6 reveals that at the peak point of a 

Trichel pulse, the domination of the impact ionization over the photoionization is the 

strongest. On the other hand, the effect of the photoionization is most pronounced on the 

rising edge of the current pulse. Conducting the same investigation for other voltage levels 

(from -3500 V to -5000 V) shows a very small variation in the numbers given in Figure 

4-6, however, the general trend doesn’t change. Comparing the IIS at different instants of 

the pulse shows that its value is constantly increasing on the rising edge of the pulse (from 

2.81E14 (1/s) to 1.1E15 (1/s) at the peak point) and constantly decreasing to 1.19E13 (1/s) 

at the inter-pulse instant, during the falling side of the pulse. Since the impact ionization 

plays the major role in the formation of the pulse, the fact that the IIS has its largest value 

at the peak point of the pulse and smallest value at the inter-pulse instant is logical. 

However, the greater value of the ratio IIS/IPS at the falling side of the pulse compared to 

the rising side depicts that the photoionization process is more affected by the decrease of 

the electric field compared to the impact ionization. 

 

Figure 4-6: Calculated IIS and the ratio IIS/IPS for different instants of time in the -

4500 V discharge. The first number on each arrow and the numbers inside the 

brackets are the values of IIS in (1/s) and the ratio IIS/IPS, respectively. All 

numbers for the first pulse are identical to those of the second one. The model 

consists of a 6 mm air gap and 35 µm tip radius. 
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Figure 4-7: Comparison of the ionization reaction coefficient, attachment reaction 

coefficient, and the ratio impact ionization source term / photoionization source term 

along the axis of symmetry at the time instants (a) right at the pulse peak, (b) the 

middle of the falling side of the pulse, and (c) the inter-pulse. 
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Figure 4-7 presents the comparison of the ionization reaction coefficient, attachment 

reaction coefficient, and the ratio of impact ionization source term / photoionization source 

term. Figure 4-7 (a) to 1-7 (c) depict these values along the axis of symmetry at the time 

instants right at the pulse peak, at the middle of the falling side of the pulse, and at the 

inter-pulse time instant, respectively. The point where the ionization and attachment 

coefficients become equal could be compared to the ionization front in the negative 

streamers. The area behind this point is the ionization region, and the area ahead of this 

point is the drift region. Getting closer to the needle from this point (ionization region) will 

make the ionization coefficient greater than the attachment and going in the other direction 

(drift region) will make attachment coefficient predominant. It is well-known that in the 

negative streamers the mentioned ratio ahead of the ionization front should be much 

smaller than the area behind the ionization front. Similar observations can be noticed in 

Figure 4-7. 

Comparison of the ratios IIS/IPS obtained for the positive and the negative discharges 

might seem misleading. Since the ratio for positive discharge was larger than the one for 

negative discharge, one might deduce that the photoionization in positive discharge plays 

a smaller role which is not correct. It should be noted that the ratio in each discharge is 

merely dependent on the shape of the ionization region and its distance from the needle 

which are stationary in the positive discharge and time-varying in the negative discharge. 

Hence, the ratios of the two discharges cannot be compared with each other. 

It is well-known that the secondary emission of the electrons from the cathode surface due 

to the positive ion bombardment is the main mechanism for having a self-sustained 

negative corona Trichel pulses [55, 80]. Comparison of the number of the secondary 

electrons injected from the cathode surface with the number of electrons produced due to 

photoionization at different instants of formation of a Trichel pulse in the -4500V discharge 

is illustrated in Figure 4-8. The first number on each arrow is the frequency of the 

secondary emitted electrons (SEE) from the cathode surface in (1/s), and the second 

number in the bracket is the ratio SEE/IPS. Note the secondary emission coefficient (γ) 

used in [80], which was equal to 0.01, has been used here as well. The numbers in the 

Figure 4-8 depict that the SEE is less than the IPS on the rising edge of the pulse. This 
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could be justified by the fact that the secondary emitted electrons injected from the needle 

surface are the result of the bombardment of the needle by positive ions which move much 

slower than the photons which initiate the photoionization immediately. In other words, 

while the emitted photons from the excited nitrogen molecules immediately initiate the 

photoionization in the air gap, the positive ions which are the result of either impact 

ionization or photoionization are moving slowly towards the needle on the rising side of 

the pulse. After the positive ions have reached to the needle and the pulse began falling, 

the IPS becomes smaller than the SEE. Despite the fact that the SEE and the IPS have 

approximately the same values during the different stages of the Trichel pulse (Figure 4-8), 

 

Figure 4-8: Comparison of the number of secondary emitted electrons (SEE) from 

the cathode with the number of electrons produced due to the photoionization. The 

first number on each arrow is the frequency of SEE in (1/s) and the second number 

in the brackets is the ratio SEE/IPS. All numbers for the second pulse are identical 

to those of the first one. The model here consists of a 6 mm air gap and 35 µm radius 

of the needle tip with -4500V applied on the needle. 

since the secondary emitted electrons from the needle are produced in the area with very 

strong electric field, they have greater contribution (compared to the photoionization 

electrons) in the discharge current. It is important to notice that the discharge current is 

calculated by multiplying the density of the charged species with their drift velocities [80]. 

Comparing the numbers calculated in the Figs. 6 and 8, it is also concluded that the total 

number of electrons produced by impact ionization in the discharge volume is on average 

100 times greater than those of secondary emitted electrons. In other words, a small number 
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of secondary emitted electrons is enough for sustaining the negative discharge, just like 

photoionization for sustaining the positive discharge. 

4.6 Conclusions 

A 2D-axisymmetric model for a quantitative study of the role of photoionization in the 

needle-plane positive corona discharge and also its impact on the characteristics of Trichel 

pulses in the negative corona discharge was presented in this Chapter. The three-term 

exponential approximation using three Helmholtz equations was applied for modeling the 

photoionization. The coefficients of the involved equations were validated by reproducing 

the experimental results of a positive corona discharge using a three-species, self-sustained 

model. The crucial role of the photoionization in sustaining the positive corona discharge 

is explained by studying the spatial distribution of the photoionization and impact 

ionization sources.  

The presence of photoionization in the negative discharge model caused only slight 

variation (5% increase) in both the frequency and the DC current of the Trichel pulses. The 

insignificance of this impact was justified by calculating the ratio IIS/IPS at different stages 

of the formation of Trichel pulse along with studying the spatial distribution of the 

photoionization and impact ionization source terms. It was concluded, since the number of 

electrons produced by the impact ionization is on average 100 times larger than those of 

photoionization and the electrons produced by both sources travel approximately the same 

distance (undergo the same conditions of drift velocity) in the air gap, the incorporation of 

photoionization in the negative discharge model doesn’t affect the discharge current 

significantly.  

The number of secondary emitted electrons (SEE) from the cathode surface was also 

compared with the number of the electrons produced by photoionization (IPS) in the 

negative discharge. It was shown that the SEE had on average the same value as IPS. 

Moreover, it was concluded that the secondary emitted electrons in the negative discharge 

play a similar role as photoionization electrons in the positive discharge. 



Chapter 5, Parametric study of the characteristics of the Trichel pulses 

63 

 

Chapter 5  

5 « Parametric study of the characteristics of the Trichel 
pulses » 

Since there are several sets of coefficients suggested in the literature for modeling the 

positive and negative corona discharge [82], it seems beneficial to understand the 

importance of these coefficients individually in terms of their impact on the characteristics 

of the pulses: the frequency, the DC current, and the rise time. The main goal of this 

Chapter is to conduct an investigation of the impact of the ionization reaction rate 

coefficient, attachment reaction rate coefficient, mobilities of charged species (electrons, 

positive ions, and negative ions), and the coefficient of the secondary emitted electrons 

from the needle, on the frequency, DC current, and the rise time of the Trichel pulses in 

the needle-plane negative corona discharge in atmospheric air. For this purpose, a base 

model was developed using the swarm parameters and the method previously discussed in 

Chapter 3 and the impact of variation of each of the abovementioned parameters 

individually on the characteristics of the pulses was investigated. The characteristics of the 

pulses were also studied using another set of model coefficients which includes an extended 

number of reactions such as detachment of the electrons from negative ions. 

5.1 The numerical model 

Similar to the model explained in Chapter 3, the base model presented in this chapter 

consists of three drift-diffusion equations governing the motion, generation, and 

recombination of the three charged species: electrons, positive ions, and negative ions. The 

distribution of the electric field is also calculated using Poisson’s equation. There are four 

reaction coefficients contained in the base model: ionization 𝛼(1 𝑚⁄ ), attachment of the 

electrons to neutral molecules 𝜂(1 𝑚⁄ ), recombination of positive and negative ions  

𝑘𝑛𝑝(𝑚
3 𝑠⁄ ), and recombination of electrons and positive ions 𝑘𝑒𝑝(𝑚

3 𝑠⁄ ). Equations 

included in the model are the ones explained in Chapter 3 (Eqs. 3-3 to 3-6). 

Swarm parameters used in the base model are the ones listed in Table 3-2.  Eqs. 3-3 to 3-6 

were solved by the COMSOL Multiphysics package using the “transport of diluted 
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species” module for the drift-diffusion equations and the “electrostatics” module for 

Poisson’s equation. A non-uniform triangular mesh consisting of 240,000 elements with 

the maximum element size of 1 µm near the needle tip was used. Linear and quadratic 

discretizations were used for the drift-diffusion and Poisson’s equations, respectively.  

The base model studied in this Chapter consists of a 3 cm long needle, which is placed 

perpendicularly 6 mm away from the ground plane. The needle is connected to -4500 [V] 

and the coefficient of the secondary emission of electrons from the needle is equal to 0.01, 

as suggested in Chapter 3. The boundary conditions for the included equations are also the 

same as the ones described in Chapter 3.  

5.2 Parametric study 

This section presents the results of the parametric study of the impact of variation of the 

ionization reaction coefficient 𝛼, attachment reaction coefficient 𝜂, electron mobility 𝜇𝑒, 

positive ion mobility 𝜇𝑝, negative ion mobility 𝜇𝑛 and the coefficient of the secondary 

electrons emitted from the needle 𝛾 on the frequency, DC current and the rise time of the 

pulses. Moreover, the impact of the existence of the recombination of positive and negative 

ions 𝑘𝑛𝑝 and the recombination of electrons and positive ions 𝑘𝑒𝑝 was studied by excluding 

these reactions from the base model. 

5.2.1 Coefficients of the ionization reaction 𝛼 and the attachment 
reaction 𝜂 

The impact of varying the ionization and the attachment reactions’ coefficients in the range 

of ±10% on the frequency, DC current and the rise time of the pulses are shown in Figure 

5-1. It is observed that the frequency of the pulses increases as a result of increasing any 

of the coefficients of these reactions and it is more sensitive to the variation of the 

ionization coefficient, compared to the attachment coefficient. According to the simulation 

results, it is also evident that the ionization reaction coefficient not only plays an important 

role in the characteristics of the obtained pulses, but it also affects the convergence of the 

model, even when increased by as little as 5%. The solver is forced to take smaller time 

steps when the ionization coefficient is increased. On the other hand, the DC current was 
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Figure 5-1: The sensitivity of (a) the frequency, (b) the DC current, and (c) the rise 

time of the pulses to the variations of the coefficients of the ionization and 

attachment reactions. 

found to be proportional and inversely proportional to the ionization coefficient and 

attachment coefficient, respectively. Like the frequency, the variation range of the DC 

current is greater when the ionization coefficient is varied compared to the case where the 

attachment coefficient is varied. It is also observed that increasing the ionization coefficient 
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results in a shorter rise time for the pulses. The attachment coefficient has opposite effect 

on the rise time. The rise time seems to be equally sensitive to the variations in the 

coefficients 𝛼 and 𝜂. 

To understand the relation between the frequency and the DC current of the pulses, and the 

ionization coefficient, one should recall the basic concept of the formation of the Trichel 

pulse. The accumulation of positive ions near the tip due to the ionization enhances the 

electric field between the cloud of positive ions and the tip. On the other hand, the 

accumulation of the negative ions in the farther region reduces the electric field in the 

whole region between the cloud of negative ions and the tip. The higher the ionization 

coefficient, the harder it is for the negative ions to diminish the electric field and the higher 

the amplitude of the pulses will be. On the other hand, since the formation of the next pulse 

depends on the re-accumulation of positive ions near the tip after the negative ions have 

moved far enough, the higher ionization coefficient will lead to the faster formation of the 

next pulse, and, hence, higher frequency. It is obvious that the shorter time between the 

pulses along with the higher pulse amplitude results in higher DC current. 

Needle

Needle

Attachment coefficient 
from the base model

Increased attachment 
coefficient

 

Figure 5-2: Schematic representation of the impact of the attachment coefficient on 

the formation of the cloud of the negative ions near the tip. Smaller ovals in the 

bottom figure correspond to a smaller net charge. 

A schematic representation of the impact of the attachment coefficient on the formation of 

the cloud of the negative ions is shown in Figure 5-2. As the attachment coefficient 

increases, the volume in which the attachment reaction predominates over the ionization 

reaction becomes closer to the needle tip. Therefore, the cloud of negative ions will form 

in the area closer to the tip. This means that the diminishing of the electric field near the 
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tip will be completed faster with a smaller number of negative ions. Hence, the amplitude 

of the pulses will become smaller. On the other hand, since the negative ions in the model 

with an increased attachment coefficient are in the area with the stronger electric field, they 

will move faster away from the tip, hence the electric field near the tip will recover faster 

and the process of the formation of the next pulse will begin sooner. It should be noted that 

the DC current is a function not only of the frequency but also the shape of the pulses 

(amplitude, rise time, fall time, and pulse width) and the resulting DC current is the 

combined effect of the variations in all these parameters. Although in this case, the 

increased frequency and the decreased amplitude contradict each other for determining 

whether the DC current should increase or decrease, it seems that the decreasing factors 

have a stronger impact. 

The impact of the ionization and attachment coefficients on the rise time of the pulses could 

be studied in the light of the role the avalanche ionization plays in forming the rising side 

of the pulse. The higher rate of the avalanche ionization process, the sharper the rising side 

of the pulse. Since increasing the attachment coefficient enhances the rate of dissipation of 

electrons, it will decrease the rate of the avalanche ionization and, hence, lengthen the rise 

time of the pulse. 

5.2.2 Electron mobility 𝜇𝑒 

Two modified models using different constant values for the electron mobilities have been 

studied. Comparison of these two constant electron mobilities with the mobility of the 

electrons assumed in the base model, which is a function of the electric field, is presented 

in Figure 5-3. 

The results for the Trichel pulse characteristics for three different electron mobilities are 

given in Table 5-1. It is observed that increasing the constant 𝜇𝑒 decreases the frequency 

of the pulses although it is interesting to note that each is significantly larger than that found 

in the base model. The reason of this variation is not completely clear but one might refer 

to the Thomson formula and suspect that the electron energy in this variation range is in 

the range where the cross section of the ionization reaction is inversely proportional to the 
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electron energy [83]. Since the electron energy is proportional to the electron velocity, the 

increased mobility could cause the same effect as decreasing the ionization coefficient. 

 

Figure 5-3: Comparison of the two constant electron mobilities with the mobility 

considered in the base model 

Table 5-1: Simulation results for the base model and two modified models assuming 

constant electron mobilities 

Electron mobility (𝒎𝟐 (𝑽𝒔)⁄ ), 

�⃗⃗�  in (𝑽/𝒎) 

Frequency of 
the pulses (kHz) 

DC current of 
the pulses (µA) 

Pulse rise 
time (ns) 

𝟏. 𝟗𝟏𝟔𝟑 × |�⃗⃗� |
−𝟎.𝟐𝟓

 [1]  1065 20.9 80 

𝟎. 𝟎𝟐𝟒 1244 21.1 N.A.1 

𝟎. 𝟎𝟓 1210 20.7 160 

5.2.3 Mobilities of positive ions 𝜇𝑝 and negative ions 𝜇𝑛 

Variations of the frequency, DC current, and the rise time with the variations of the 

mobilities of positive and negative ions by ± 10% are shown in Figure 5-4. It is observed 

that the frequency is proportional to the mobilities of both the positive and the negative 

ions. However, it is more sensitive to the variations of the mobility of the negative ions 

than to the mobility of the positive ions. While the DC current is increasing with the 

increased µn, it does not change with the variations of µp. On the other hand, the rise time 

seems to be fairly independent of the mobility of positive ions and inversely proportional 

to the mobility of the positive ions. In other words, the faster the positive ions, the faster 

                                                 

1
 The rise time of the pulse is defined as the time between 10% of the peak to the 90% of the peak. In this case the 

current does not drop to the 10% level. 
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Figure 5-4: Variations of (a) the frequency, (b) DC current, and (c) the rise time 

with the mobilities of positive and negative ions. 

the rise time of the pulse will be. Sattari et al. [55] had found earlier in their numerical 

model that increasing the mobilities of positive and negative ions together will lead to a 
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higher  frequency and DC current. It should be noted though, that in the present study, these 

mobilities are varied individually, while all other parameters are kept constant. 

Variation of the frequency with the mobility of positive ions could be explained by the fact 

that with the higher mobilities, during the process of preparing the air gap for the next 

pulse, positive ions will deposit faster on the needle leading to faster injection of the 

secondary electrons to the air gap, and, hence, consecutive pulses will come at a higher 

frequency. This explanation is schematically shown in Figure 5-5. 

The effect of the mobility of the positive ions on the rise time of the pulses could also be 

explained using Figure 5-5. The higher the rate of the deposition of positive ions on the 

needle, the higher the rate of injection of the secondary electrons from the needle. This will 

lead to the enhancement of the avalanche ionization on the rising side of the pulse which 

makes the pulse sharper. It is evident that the negative ions play no role in the process of 

building the rising side of the pulse. So, it is not surprising to find out that the rise time of 

the pulse does not change with varying the mobility of negative ions. 
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Figure 5-5: The impact of the increased mobility of positive ions. Faster deposition 

of positive ions on the needle will lead to the faster injection of secondary electrons 

from the needle surface. 

The increasing frequency, as the mobility of negative ions is increased, could be justified 

by the role the negative ions play in the process of diminishing the electric field at the pulse 

peak and the fact that the electric field near the tip won’t reach the threshold for avalanche 

ionization unless the negative ions are repelled far enough from the needle. The faster the 

negative ions move away from the needle after the electric field is diminished, the sooner  
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Figure 5-6: Variations of (a) the frequency, (b) DC current, and (c) the rise time 

with the coefficient of the secondary emission of the electrons 

the electric field will reach the threshold for triggering the next avalanche ionization. 

Hence, the frequency will increase. 
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5.2.4 Coefficient of the secondary electrons emitted from the 
needle 𝛾 

Variations of the frequency, DC current and the rise time with the coefficient of the 

secondary emission of the electrons are shown in Figure 5-6. As this parameter is the 

subject of considerable variation in the literature, here it is varied over a range of an order 

of magnitude. It is observed that the higher coefficient γ results in higher frequency, 

higher DC current, and faster-rising pulse. These findings are not surprising in the sense 

that the higher the rate of the injection of the secondary electrons from the needle, the 

faster the avalanche ionization will be triggered. Moreover, DC current will also increase 

as the result of increasing the number of electrons in the area of the strong electric field, 

which will lead to a higher concentration of positive ions on the tip. It should be noted 

here that these findings contradict the findings reported earlier by Sattari et al. [55], who 

found that the frequency and the DC current don’t change drastically by varying the 

coefficient of the secondary emission of electrons. 

5.2.5 Existence of 𝑘𝑛𝑝 and 𝑘𝑒𝑝 

The simulations showed that removing the recombination of positive and negative ions, 

and recombination of electrons and positive ions from the numerical model doesn’t change 

the characteristics of the Trichel pulses as compared to the base model including all four 

reactions. The obtained frequency and the DC current for the modified base model 

excluding knp and kep are 1048 kHz and 21 µA, respectively. 

5.3 New model with an extended number of reactions 

There are numerous sets of coefficients suggested in the literature for modeling 

atmospheric pressure discharges [82, 84]. The coefficients used in [84] are used here for 

finding the characteristics of Trichel pulses in the same geometry as the one used in the 

previous part (the air gap of 6 mm and a needle length of 3 cm). Soloviev et al. [84] have 

suggested a model with an extended number of reactions for modeling a surface dielectric 
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barrier discharge (SDBD) in atmospheric air. The reactions and coefficients included in 

this model are summarized in Table 5-2. 

Table 5-2: Summary of the reactions and the coefficients included in the new model 

with an extended number of reactions [84]. The parameter (E/N) is the reduced 

electric field in units of 1020 Vm2, kB is the Boltzmann constant, and e is the unit 

charge. 

Reaction / Parameter Reaction rate coefficient / Parameter’s value Unit 

Ionization 
e + N2(O2) → 2e + N2

+(O2
+) 

ki = 10-6 × (0.7668 + 0.018 (E/N)) 10-7.95-38.22/(E/N) m3s-1 

Dissociative electron-ion recombination 
e + O2

+ → O + O 
kdr1 = 2 × 10-13 (

300

𝑇𝑒
)
0.7

 
m3s-1 

Dissociative electron-ion recombination 
e + O4

+ → O2 + O2 
kdr2 = 1.4 × 10-12 (

300

𝑇𝑒
)
0.5

 
m3s-1 

Electron attachment 
e + O2 → O-- + O 

katt = 10-6 × 10-10.21-5.7/(E/N) m3s-1 

Electron detachment 
O-- + N2 → e +N2O 

kdt = 9.2 × 10-19 m3s-1 

Ion-ion recombination 
A+ + B-- + (M) → A + B + M (M= N2, O2) 

kr = 2 × 10-12 (
300

𝑇𝑖
)
1.5

 
m3s-1 

Electron temperature Te 
{
𝑇𝑎 + 8645(𝐸/𝑁)

0.54069     (𝐸 𝑁⁄ ) < 1

𝑇𝑎 + 8645(𝐸/𝑁)
0.4            (𝐸 𝑁⁄ ) > 1

 
K 

Electron mobility µe 

{
 
 

 
 0.0866                              (𝐸 𝑁⁄ ) < 1

0.0383 × (1 +
1.262

(𝐸 𝑁⁄ )
)        1 < (𝐸 𝑁⁄ ) < 20

0.0275 × (1 + 9.6/(𝐸 𝑁⁄ ))     (𝐸 𝑁⁄ ) > 201

 

m2V-1s-1 

Electron diffusion De 𝑘𝐵𝑇𝑒µ𝑒
𝑒

 
m2s-1 

Mobility of negative ions µn 3.2 × 10-4 m2V-1s-1 
Effective mobility of positive ions µp 2.1 × 10-4 m2V-1s-1 

 

Figure 5-7: Discharge current with the 6 mm air gap needle-plane geometry and the 

coefficients suggested in [84]. The coefficient of the secondary emission of the 

electrons is assumed γ=0.01. 
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Applying the reactions and the coefficients summarized in Table 5-2 to the above-

mentioned geometry, it was observed that the discharge reaches a steady-state condition in 

which the pulses disappear (Figure 5-7). It was found that excluding the detachment 

reaction (kdt) brings back the pulsation mode of the current. It seems that in the presence 

of the detachment reaction, negative ions couldn’t stay in the air gap to play their vital role 

in the formation of the pulses. Excluding the detachment reaction and assuming the 

coefficient of the secondary emission of electrons 𝛾 = 0.001 leads to a frequency and DC 

current of 2280 kHz, and 21.7 µA, respectively. The obtained frequency here is much 

higher than the one obtained in the model based on the coefficients suggested in [1]. If the 

coefficient of the ionization reaction is reduced 30% (the ki is multiplied by a factor of 0.7) 

and 𝛾 = 0.001, the numbers will drop to 1587 kHz, and 16.3 µA. One of the possible 

reasons that the frequencies obtained from the discharges based on Table 5-2 is much 

higher than the ones obtained from the discharges based on Table 3-2 could be the mobility 

of negative ions which is higher in Table 5-2. 

5.4 Conclusions 

A 2D axisymmetric model for studying the impact of the numerical coefficients on the 

characteristics of the Trichel pulses in a negative needle-plane corona discharge was 

presented in this Chapter. The studied parameters were: ionization and attachment reaction 

coefficients, mobilities of electrons, positive and negative ions, and the coefficient of the 

secondary emission of the electrons. Following conclusions can be made from the results 

of the numerical models: 

 Increasing the ionization coefficient or the coefficient of the secondary emission of 

the electrons increases the frequency and the DC current and also decreases the rise 

time. 

 Increasing the attachment coefficient increases the frequency and rise time, and also 

decreases the DC current. It was observed that the frequency was more sensitive to 

the variation of the ionization coefficient compared to the variation of the 

attachment coefficient. 

 Increasing the constant electron mobility decreases the frequency of the pulses. 
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 The frequency and the DC current increase, if the negative ion mobility is increased. 

The rise time of the pulse seems to be independent of µn. On the other hand, DC 

current does not change with the positive ion mobility. 

 The existence of the reactions kep and knp does not impact the characteristics of the 

Trichel pulses. 

The detachment reaction, present in the set of the coefficients used by Soloviev et al. [84], 

causes the pulsation mode of the discharge to disappear. It was also found that the 

frequencies obtained using these coefficients were much higher than the expected values. 
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Chapter 6  

6 « Experimental study of the characteristics of Trichel 
pulses » 

The results of an experimental study of the negative corona discharge in a needle-plane 

geometry are reported in this Chapter. The experiments were conducted in air at room 

temperature, relative humidity, and atmospheric pressure. The impact of different 

parameters: the needle voltage, needle-plane distance, and the radius of curvature of the 

needle’s tip on the frequency, DC current, and the temporal characteristics of the pulses 

(rise time, fall time and the pulse width) was studied. Four different needles with radii of 

curvatures ranging from 19 µm to 55 µm were used. The needle-plane distance was varied 

from 6 mm to 3 cm. The applied voltage on the needle was varied from the onset voltage 

(-4 kV to -6 kV) to -10 kV. It was observed that the temporal characteristics of the pulses, 

such as rise time, were not a function of the radius of the curvature of the needle’s tip, 

voltage level, or the needle-plane distance. The experimental data were compared with the 

results of a series of numerical simulations as well as the experimental data published by 

Lama and Gallo. The experimental findings were found to be in a good agreement with 

Lama’s and Gallo’s work. Several discrepancies were found between the numerical and 

experimental results and possible reasons for those are discussed. 

Li et al. [85] have conducted a series of experiments studying the variation of the frequency 

and the DC current of Trichel pulses in a needle-plane gap of 4 cm to 5.5 cm. For 

calculating the frequency of the pulses, they suggested an empirical formula based on the 

average electric field intensity and the corona onset field intensity instead of the applied 

voltage and the corona onset voltage. It is true that the impact of needle-plane distance and 

the radius of the tip were taken into account by using this method, however, due to the fact 

that the average electric field is calculated with the numerical solution rather than 

experimental measurement, it would be practically difficult to use the formula. Although 

in this work the authors found that the temporal characteristics of the pulses are 

independent of the varied parameters, they weren’t able to measure the rise time, fall time, 
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or the pulse width. Later, they conducted a similar study for much longer gaps ranging 

from 10 cm to 50 cm [86]. 

Recently, Zhang et al. [87] conducted experimental studies of the Trichel pulses in a 

needle-plane discharge with a 5 mm air gap. They reported a linear variation for the rise 

time of the pulses as a function of the radius of the tip of the needle. 

The main goal of this Chapter is to present the results of an experimental study of the effect 

of corona voltage, gap distance and tip radius on the characteristics of the Trichel pulses 

formed in a negative DC corona discharge in a needle-plane geometry. The measured 

characteristics were: the frequency of the pulses, DC current, rise time, fall time and the 

pulse width. In addition, the experimental results were compared with the numerical 

predictions which were obtained from the model reported previously [1]. The experiments 

consisted of four needles with the radii of curvature ranging from 19 µm to 55 µm. The 

distance between the needle and the plane was varied from 1 cm to 3 cm. The experiments 

were also conducted for a 6 mm air gap to compare the obtained frequency and the DC 

current with the findings reported in the work of Lama and Gallo [37]. 

6.1 Experiments 

The following describes the equipment, procedure and the results of the conducted 

experiments for studying the characteristics of the Trichel pulses generated in the negative 

DC corona discharge in a needle-plane geometry. 

6.1.1 Equipment 

The various elements used in the experiments were as follows.  The corona electrodes 

comprised of four nickel coated steel needles with different radii of curvatures ranging 

from 19 µm to 55 µm, each having a length of 4 cm. The radii of curvatures were measured 

using a Leica 6S D microscope. The tips were found to be not perfectly spherical so the 

radii were estimated using a best fit hemispherical template superimposed over the image 

of the tip.  Individual needles were mounted above a square shaped metallic ground plane 

with 30 cm sides, using an insulated copper cylindrical mount which was connected to the 

HV cable on one side and held the needle on the other side (Figure 6-1). The system was 
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energized using a HV negative 0-15 kV DC supply and the needle voltage was measured 

using a Fluke 80k-40 HV probe connected to a Tektronix CDM 250 digital multimeter. 

The corona current was detected by measuring the voltage drop across a 1 kΩ high 

precision foil resistor in series with the ground plate using a Tektronix TDS 2024 

oscilloscope (200 MHz and 2GS/s). In order to minimize ambient noise, the experimental 

apparatus was enclosed in a metallic cage with grounded walls. The oscilloscope probe 

was also shielded with a grounded aluminum foil. A schematic of the experiment setup is 

shown in Figure 6-2.  

 

Figure 6-1: A view of the needle-plane setup 

-+
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Figure 6-2: Schematic of the experiment setup 
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6.1.2 Procedure 

The onset voltage for each needle was determined by starting from a very low voltage (-2 

kV) and noting the voltage at which the pulses first appeared on the oscilloscope screen. 

On the other hand, it was found that -10 kV was a safe upper limit for all experiments to 

avoid sparking. So, the experiments were conducted between the onset voltage (which 

varies between -4 kV and -6 kV) and -10 kV. Although the measured corona onset voltages 

were generally slightly higher than the results of Peek’s formula, they were in an acceptable 

agreement. 

In order to measure the frequency of the pulses for a specific configuration, during each 

experiment, the average of the frequencies of 8 to 12 sets of pulses, each containing 6-10 

pulses (depending on the frequency and the number of pulses which could fit on the 

oscilloscope’s screen) were recorded. Typically, 4 to 6 experiments were conducted for 

each configuration thus giving an average total sample of approximately 400 pulses for 

each configuration. The average and the range of variation of these results were recorded 

on the graphs. It was found that during each experiment, after a short time (as short as 30 

seconds in the higher voltage range), the frequency of the pulses started increasing. It was 

believed that this was due to the formation of local hot spots on the tip of the needle. This 

was confirmed by repeating a series of tests and showing that the initial pulse trains were 

reproducible. In order to avoid measuring unrealistic high frequencies, the recording of the 

train of pulses was carried out as quickly as possible. This increasing trend was also 

noticeable for the DC current, but with much slower rate.  

The measurements of the frequencies in all the experiments were done by analyzing the 

recorded waveforms using MATLAB software after transferring them from the 

oscilloscope. However, for measuring the DC currents, an analog electrodynamic 

microammeter was used in the circuit after removing the 1 kΩ current-measuring resistor. 

In most of the cases the DC current reading of the oscilloscope using the resistor was in 

good agreement with the reading of the analog ammeter for the same experiment, but since 

the oscilloscope was more sensitive to ambient noise, the analog ammeter was more 

convenient than the oscilloscope. Since putting the analog microammeter and the 1 kΩ 
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resistor in the circuit together led to unrealistic large rise times for the pulses and also 

increased the level of noise, the measurements of frequency and the DC current had to be 

done separately. For the temporal characteristics of the pulses: rise time, fall time and the 

pulse width, we trusted the numbers given by the oscilloscope. 

6.1.3 Results 

A snapshot of a typical train of current pulses and closer view on a single pulse observed 

on the oscilloscope’s screen during the experiments is shown in Figure 6-3. 

 

 

Figure 6-3: Snapshot of a typical set of Trichel pulses observed on the oscilloscope’s 

screen (a) view of several pulses, (b) view of a single pulse. Applied voltage, the 

needle-plane distance, and the radius of the curvature were -10 kV, 3 cm, and 19 

µm, respectively. 

Variations of the frequency and the DC current with the applied negative voltage on the 

needle with a constant needle-plane distance of 2 cm are shown in Figure 6-4. It is observed 

that the variation of the frequency is larger than the variation of the DC current at the same 
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voltage level. This difference is more noticeable in the higher voltage range. This finding 

is consistent with the similar plots reported by Lama and Gallo [37]. 

 

 

Figure 6-4: Variations of the (a) frequency of the pulses and (b) DC current with the 

applied negative voltage on the needle with a constant needle-plane distance of 2 cm. 

The range of the applied voltage for each needle starts from the onset voltage. 

Variations of the frequency and the DC current with the needle-plane distance assuming a 

constant applied voltage of -10 kV are shown in Figure 6-5. Since the discharge gets closer 

to the spark regime as the air gap gets smaller, it is observed that the rate of increase of the 

DC current and frequency gets larger as the air gap decreases. On the other hand, increasing 

the needle-plane distance to the gaps larger than 2 cm doesn’t change the frequency and 

the DC current significantly, assuming that the voltage is kept constant. 



Chapter 6, Experimental study of the characteristics of Trichel pulses 

82 

 

 

 

Figure 6-5: Variations of the (a) frequency of the pulses and (b) DC current with the 

needle-plane distance at a constant voltage applied to the needle of -10 kV. 

Comparisons of the measurements of the frequency and the DC current with the findings 

of Lama and Gallo [37] for the closest needle tip are shown in Figure 6-6. It is observed 

that the agreement for the DC current is much better compared to the frequency of the 

pulses. Some uncertainties in the measurements of the radii of the curvatures might be the 

reason for the discrepancies. However, it is not surprising to notice that a larger radius of 

curvature leads to a smaller frequency for the pulses. 

The results from all the experiments led to the average of 49 ns, 445 ns, and 220 ns for the 

rise time (10% to 90% of the peak), fall time (90% to 10% of the peak), and the pulse width 

(50% to 50% of the peak), respectively, with a standard deviation of less than 5%. 

Investigating these temporal characteristics led to the conclusion that these numbers don’t 

change significantly by varying the voltage applied on the needle up to -10 kV, needle-

plane distance from 6 mm to 3 cm or the radius of the tip of the needle from 19 µm to 55 

µm. Although Li et al. [85] have not reported the rise time, fall time, or the pulse width of 
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the pulses, their findings led them to the conclusion that the rise time of Trichel pulse was 

not a function of the voltage, air gap, or the tip radius. In contrast, Zhang et al. [87] claimed 

that their findings show a linear proportionality between the rise time of the pulse and the 

radius of the tip of the needle. They reported that the rise time increases linearly from 15 

ns to 95 ns while the radius of the tip of the needle varies from 50 µm to 350 µm. This 

observation not supported by the results presented here albeit it should be noted that the 

radii of needle tips used here are all less than 55 µm. 

 

 

Figure 6-6: Comparison of the experimental results with the findings of Lama and 

Gallo [37]. 

We believe that the fact the temporal characteristics of Trichel pulses don’t change with 

varying the macroscopic parameters (needle voltage, air gap, and tip radius) shouldn’t be 

surprising. In fact, the rise time which is the time period between the point that the electric 

field exceeds the onset value and the point which the electric field gets quenched by the 

cloud of negative ions is primarily dependent on natural properties of the molecules with 

which the electrons are interacting (for air, oxygen is the main electronegative gas).  
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6.2 Comparison of the numerical model’s results with 
the results of the experiments 

In this Section, the results of the numerical simulations based on the model previously 

suggested by the authors [1] for the negative DC corona discharge in a needle-plane 

geometry are compared with the results of the conducted experiments. 

6.2.1 Description of the numerical model 

In a short summary, the numerical model described previously in Chapter 3 which consists 

of three drift-diffusion equations modeling the motion, generation and recombination of 

the three charged species: electrons, positive ions, and negative ions is used here. The 

configurations of the time-dependent solver and the mesh are the same as the ones used in 

Chapter 3 and the base model of Chapter 5. 

It is well established in the literature that the negative corona discharge is a self-sustained 

discharge and mechanism behind this self-sustaining is the injection of the secondary 

electrons from the needle surface as a result of the bombardment of the needle surface with 

positive ions. There is no solid agreement among the authors over the value of the 

coefficient of the secondary emitted electrons from the needle, γ. The simulations show 

that the frequency of the pulses, DC current and the temporal characteristics of the pulses 

are strongly dependent on in the value of this coefficient. Although suggested values for γ 

in the literature vary in the range of 0.001 to 0.05 [1, 55, 88], we compared the results of 

the numerical models with γ ranging from 0.0005 to 0.01. 

6.2.2 Comparison of the results 

Trichel pulses obtained from the numerical model with -7 kV applied voltage on the needle, 

36 µm radius of the tip of the needle, γ=0.001 and 2 cm needle-plane distance are shown 

in Figure 6-7.  



Chapter 6, Experimental study of the characteristics of Trichel pulses 

85 

 

 

 

Figure 6-7: Representation of (a) the series of pulses and (b) single pulse obtained 

from the numerical model with the coefficients given in Table 3-2, γ=0.001, applied 

needle voltage of -7 kV, radius of the tip of the needle of 35µm and the needle-plane 

distance of 2 cm. 

Comparison of the results of the numerical models with different values for γ and the 

experimental measurements is summarized in Table 6-1. As this coefficient is the subject 

of considerable variation in the literature, here it is varied over a range of more than an 

order of magnitude. It is observed that the variation of γ has a huge impact on the 

parameters of the obtained current waveform. The larger the value of γ, the higher the 

frequency and the DC current of the pulses and sharper the rising side of the pulse. These 

numerical findings are not surprising in the sense that the higher the rate of the injection of 

the secondary electrons from the needle will lead to more intense avalanche ionization near 

the tip. Making γ smaller with the goal of getting closer to the experimental frequency and 

the DC current perturbs the form of the pulse drastically. It should be noted that the rise 

times of the pulses in the studied numerical models were not a function of the voltage level, 
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needle-plane distance, or the radius of the tip of the needle, and were only a function of the 

coefficient of the secondary emission of the electrons. The discrepancies between the 

results of the numerical models and the experiments could be caused by the idealizing 

assumptions of the numerical model. There are a number of reasons for this. Firstly, the 

model only considers three species in the reactions whereas many more exist in coronas in 

ambient air. Also, it can be seen how sensitive the results are to variations in the values 

selected for the coefficients and there are considerable discrepancies between these values 

as found in the literature. Also in comparing these results with the experiments, although 

the experimental error may be reasonable it must be remembered that the instrumentation 

and the experimental set up introduce various stray capacitances, sources of noise and other 

parameters that are not included in the numerical model. 

Table 6-1: Comparison of the results of the numerical simulations based on the 

model suggested in [1], assuming γ=0.0005, γ=0.001, and γ=0.01, with the 

experimental data (applied needle voltage of -7 kV, needle-plane distance of 2 cm, 

and radius of the tip of 36 µm)  

 Frequency (kHz) DC current (µA) Rise time (ns) Fall time (ns) Pulse width (ns) 

Numerical model, 
γ=0.0005 

288 6.6 207 1020 120 

Numerical model, 
γ=0.001 

460 9.6 139 690 105 

Numerical model, 
γ=0.01 

1266 36 61 520 101 

Experiment 101 7.9 49.2 444.8 219.8 

6.3 Summary 

The results of an experimental study of the characteristics of Trichel pulses: the frequency 

of the pulses, DC current, rise time, fall time, and the pulse width have been reported in 

this Chapter. The needle-plane distance was varied in the range of 6 mm to 3 cm. It was 

observed that the rate of growth of frequency and the DC current in shorter air gaps was 

greater compared to larger air gaps. The variations of the frequency and the DC current 

were studied with the voltage ranging from the corona onset (which was -4 kV to -6 kV) 

to -10 kV for four needles with the radii of curvatures ranging from 19 µm to 55 µm. It 

was observed, both experimentally and numerically, that the temporal characteristics of 

Trichel pulses are not a function of needle voltage, needle-plane distance, or radius of the 
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tip of the needle at least within the range of needle radii tested. The fall time, rise time, and 

pulse width were measured to be 49 ns, 445 ns, and 220 ns, respectively. Comparison of 

the experimental results with the numerical models showed that although the model with 

γ=0.0005 gives the closest results for the frequency and the DC current compared to the 

models with greater values of γ, but the temporal characteristics of the pulses were 

drastically perturbed as a result of reducing γ from 0.01 to 0.0005. While the model with 

γ=0.01 gives acceptable agreement for the rise time and the fall time of the pulse, it leads 

to much greater numbers for the frequency and the DC current compared to the 

experimental results. 
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Chapter 7  

7 « Incorporating the electron energy equation in the 
corona discharge model » 

In this chapter, a report of the unsuccessful attempts for including the electron energy 

equation in the corona discharge numerical model is presented. First, an introduction about 

the electron energy equation will be given and then the conducted attempts for including 

this equation in the numerical model will be presented. 

7.1 Electron energy equation 

In plasma kinetic theory, the position of a particle (in this case, electron) is described in a 

6-dimensional phase space: three position dimensions 𝑟 = (𝑥, 𝑦, 𝑧) and three velocity 

dimensions 𝑣 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧); an electron’s phase space position is described by (𝑟 , 𝑣 ) =

(𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) and the volume of a small element of phase space is 𝑑3𝑟 𝑑3𝑣 . 

In general, according to the plasma kinetic theory, electron transport is described by the 

Boltzmann equation, 

𝝏𝒇

𝝏𝒕
+ �⃗⃗� ∙ 𝜵𝒇 −

𝒆

𝒎𝒆
�⃗⃗� ∙ 𝜵𝒗𝒇 = 𝑪[𝒇]                              ( 7-1 ) 

In this equation, 𝑓(𝑟 , 𝑣 , 𝑡) is the distribution of the electrons at the velocity space 𝑣  and the 

position space 𝑟  at the time 𝑡. Also, 𝑒, 𝑚𝑒, and �⃗�  represent the electron charge, electron 

mass, and electric field, respectively. Moreover, ∇𝑓 and ∇𝑣𝑓 are the gradients of the 

electron distribution in the position space and the velocity space: 

∇𝑓 =
𝜕𝑓

𝜕𝑥
�̂� +

𝜕𝑓

𝜕𝑦
�̂� +

𝜕𝑓

𝜕𝑧
�̂�           ( 7-2 )      

∇𝑣𝑓 =
𝜕𝑓

𝜕𝑣𝑥
𝑣𝑥 +

𝜕𝑓

𝜕𝑣𝑦
𝑣𝑦 +

𝜕𝑓

𝜕𝑣𝑧
𝑣𝑧            ( 7-3 ) 

where �̂�, �̂�, �̂�, 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧 represent the coordinate unit vectors. Right hand side of the 

Eq. 7-1 is the collision term which includes rate of change in 𝑓 du to the elastic and inelastic 

collisions. 
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To be able to solve the Boltzmann equation, drastic simplifications need to be made. The 

problem is limited to the cases where the electric field and the collision probabilities are 

all spatially uniform, at least on the scale of the collisional mean free path. The electron 

distribution 𝑓 is then symmetric in velocity space around the electric field direction. In the 

position space, 𝑓 may vary only along the direction of the electric field. Using spherical 

coordinates in velocity space, the Boltzmann equation is re-written as [89, 90]:  

𝜕𝑓

𝜕𝑡
+ 𝑣 cos 𝜃

𝜕𝑓

𝜕𝑧
−
𝑒

𝑚𝑒
|�⃗� | (cos 𝜃

𝜕𝑓

𝜕𝑣
+
sin2 𝜃

𝑣

𝜕𝑓

𝜕 cos 𝜃
) = 𝐶[𝑓]         ( 7-4 )  

where, 𝑣 is the magnitude of the velocity, 𝜃 is the angle between the velocity and the field 

direction, and 𝑧 is the position along this direction. A common approach to solve this 

equation is to expand 𝑓 in terms of the Legendre polynomials of cos 𝜃 (spherical harmonics 

expansion) and then construct a set of equations for the expansion coefficients. For the 

purpose of the current model, expanding the polynomial up to two terms gives the required 

accuracy. This method is also called two-term approximation of the Boltzmann equation. 

The 𝑓 is expanded as:  

𝑓(𝑣, cos 𝜃 , 𝑧, 𝑡) = 𝑓0(𝑣, 𝑧, 𝑡) + 𝑓1(𝑣, 𝑧, 𝑡) cos 𝜃                         ( 7-5 )  . 

Substituting Eq. (7-5) in Eq. (7-4), multiplying by respective Legendre polynomials (1 and 

cos 𝜃), and integrating over cos 𝜃, gives the equations required for finding 𝑓0 and 𝑓1: 

𝜕𝑓0
𝜕𝑡
+
𝛾

3
𝜀1 2⁄

𝜕𝑓0
𝜕𝑧

−
𝛾

3
𝜀−1 2⁄

𝜕

𝜕𝜀
(𝜀|�⃗� |𝑓1) = 𝐶0        ( 7-6 ) 

𝜕𝑓1
𝜕𝑡
+ 𝛾𝜀1 2⁄

𝜕𝑓0
𝜕𝑧

− 𝐸𝛾𝜀1 2⁄
𝜕𝑓0
𝜕𝜀

= 𝐶1                        ( 7-7 ) 

where, 𝛾 = (2𝑒/𝑚)1/2 is a constant and 𝜀 = (𝑣/𝛾)2 is the electron energy in eV. Another 

approximation which is used in the literature is to separate the energy-dependence of 𝑓 

from its dependence on the time and the space. This assumptions, after generalizing the 𝑧 

to the three space dimensions is written as: 
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𝑓0,1(𝜀, 𝑧, 𝑡) =
1

2𝜋𝛾3
𝐹0,1(𝜀)𝑛𝑒(𝑧, 𝑡)                     ( 7-8 ) 

Multiplying the Eqs. 7-6 and 7-7 by 𝜀1 2⁄ , integrating over all energies, and generalizing 

the 𝑧 to the three space dimensions leads to the electron continuity equation: 

𝜕𝑛𝑒
𝜕𝑡

+ ∇ ∙ Γ𝑒 = 𝑆𝑒                     ( 7-9 ) 

where, 𝑆𝑒 is the net electron source term and Γ𝑒 is the electron flux defined as: 

Γ𝑒 = −𝜇𝑒𝐸𝑛𝑒 − ∇(𝐷𝑒𝑛𝑒)                          ( 7-10 ) 

where, the electron mobility and the electron diffusion coefficients are given by : 

𝜇𝑒𝑁 = −
𝛾

3
∫

𝜀

�̃�𝑚

𝜕𝐹0
𝜕𝜀
𝑑𝜀

∞

0

                           ( 7-11 ) 

𝐷𝑒𝑁 = −
𝛾

3
∫

𝜀

�̃�𝑚
𝐹0𝑑𝜀

∞

0

                                ( 7-12 ) 

Similarly, multiplying the Eqs. 7-6 and 7-7 by 𝜀3 2⁄ , integrating over all energies, and 

generalizing the 𝑧 to the three space dimensions leads to the electron energy equation: 

𝜕𝑛𝜀
𝜕𝑡

+ ∇ ∙ Γ𝜀 + �⃗� ∙ Γ𝑒 = 𝑆𝜀                    ( 7-13 ) 

where, 𝑆𝜀 is the total energy transfer (usually loss) due to the collisions, 𝑛𝜀 is the electron 

energy density and Γ𝜀 is the electron energy flux defined as: 

𝑛𝜀 ≡ 𝑛𝑒𝜀̅ = 𝑛𝑒∫ 𝜀3 2⁄ 𝐹0𝑑𝜀
∞

0

              ( 7-14 ) 

Γ𝜀 = −𝜇𝜀𝐸𝑛𝜀 − ∇(𝐷𝜀𝑛𝜀)                         ( 7-15 ) 

where, 𝜀 ̅ is the mean electron energy. Also, the energy mobility coefficient 𝜇𝜀 and the 

energy diffusion coefficient 𝐷𝜀 are defined as: 
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𝜇𝜀𝑁 = −
𝛾

3𝜀̅
∫

𝜀2

�̃�𝑚

𝜕𝐹0
𝜕𝜀
𝑑𝜀

∞

0

                           ( 7-16 ) 

𝐷𝜀𝑁 = −
𝛾

3𝜀̅
∫

𝜀2

�̃�𝑚
𝐹0𝑑𝜀

∞

0

                             ( 7-17 ) 

The parameter �̃�𝑚 in the Eqs. 7-11, 7-12, 7-16, and 7-17 is a parameter which is 

proportional to the total momentum-transfer cross section of all the elastic reactions 

involving electrons. This parameter could be calculated from the table of the cross sections 

of the reactions involved in the discharge. 

Rate coefficients of the reactions could also be calculated from the solution of the 

Boltzmann equation [91]: 

𝑘𝑘 = 𝛾∫ 𝜀𝜎𝑘(𝜀)𝑓(𝜀)𝑑𝜀
∞

0

                            ( 7-18 ) 

where, 𝜎𝑘(𝜀) and 𝑘𝑘 are the cross section and the rate coefficient of the 𝑘th reaction. It 

should be noted here that the cross section table of any chemical reaction is the fundamental 

reaction information which could be obtained by experiments. In fact, the cross section 

data for most of the chemical reactions present in the atmospheric pressure discharge of 

common gases such as oxygen is published in the literature. 

In summary, for including the electron energy equation in the corona discharge model, 

following steps should be followed:  

 The set of the reactions involved in the model should be determined. The cross 

section data of those reactions as a function of electron energy should be prepared. 

 The cross section data should be entered as the input for the “Boltzmann equation, 

two-term approximation” module in the COMSOL Multiphysics software. Then 

the electron transport coefficients: electron mobility, electron diffusion, electron 

energy mobility, and electron energy diffusion using the Eqs. 7-11, 7-12, 7-16, and 

7-17 are calculated. Moreover, the rate coefficients of the reactions using the Eq. 

7-18 will be calculated, too. 
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 The electron transport coefficients and the reaction rate coefficients obtained in the 

previous step will be used to solve the pair of continuity equations (Eqs. 7-9 and 7-

13) for the electron density 𝑛𝑒 and the electron energy density 𝑛𝜀.  

7.2 Different modules in COMSOL Multiphysics and 
their restrictions 

The numerical model which was attempted solve consists of 5 equations: 

𝜕𝑛𝑒
𝜕𝑡

+ 𝛻 ∙ (−𝜇𝑒�⃗� 𝑛𝑒 − 𝐷𝑒𝛻𝑛𝑒) = 𝑆𝑒               ( 7-19 ) 

𝜕𝑛𝜀
𝜕𝑡

+ ∇ ∙ (−𝜇𝜀𝐸𝑛𝜀 − ∇(𝐷𝜀𝑛𝜀)) + �⃗� ∙ (−𝜇𝑒�⃗� 𝑛𝑒 − 𝐷𝑒𝛻𝑛𝑒) = 𝑆𝜀              ( 7-20 ) 

𝜕𝑛𝑝

𝜕𝑡
+ 𝛻 ∙ (𝜇𝑝�⃗� 𝑛𝑝 − 𝐷𝑝𝛻𝑛𝑝) = 𝑆𝑝                 ( 7-21 ) 

𝜕𝑛𝑛
𝜕𝑡

+ 𝛻 ∙ (−𝜇𝑛�⃗� 𝑛𝑛 − 𝐷𝑛𝛻𝑛𝑛) = 𝑆𝑛             ( 7-22 ) 

𝛻2𝑉 =
−𝑒(𝑛𝑝 − 𝑛𝑒 − 𝑛𝑛)

𝜀0
                               ( 7-23 ) 

Compared to the set of the equations presented in Chapter 3, the Eq. 7-20 for finding the 

distribution of the electron energy density is added here. It was mentioned in Chapter 3 that 

the “Transport of the diluted species” module was used for solving the three continuity 

equations of the three charged species (electrons, positive ions, and negative ions). The 

main advantage of this module in COMSOL is the various stabilization techniques 

available for the user: streamline diffusion, crosswind diffusion, and isotropic diffusion. It 

was explained in Chapter 3 that solving the continuity equations of the charged species in 

the corona discharge regime using the Finite Element Method definitely requires one of the 

above-mentioned stabilization techniques. It was also explained that the streamline 

diffusion was the best method which does not perturb the original problem.  

The “Plasma module” in COMSOL includes the electron energy equation along with the 

electron continuity equation. Unfortunately, the only stabilization technique available in 

this module is the “source stabilization” which adds an extra term to the right-hand side of 

the Eq. 7-19:  
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𝑆𝑒,𝑎𝑑𝑑 = 𝑁𝐴 exp(−𝜁 ln 𝑛𝑒)               ( 7-24 )   

where, 𝑁𝐴= 6×1023 (m-3s-1) is a constant number and 𝜁 is the user-defined tuning parameter. 

The suggested default value for 𝜁 is 1. When the electron density is very low, this acts as a 

source term which prevents the electron density from approaching zero. As the electron 

density increases this term becomes exponentially smaller, eventually becoming negligible 

for high electron densities. Similar term is added to the right hand side of the Eq. 7-20 for 

avoiding the electron energy density approaching zero: 

𝑆𝜀,𝑎𝑑𝑑 = 𝑁𝐴 exp(−𝜁 ln 𝑛𝜀)               ( 7-25 ) 

Unfortunately, we weren’t able to solve Eqs. 7-19 to 7-23 using the “plasma module”. It 

seems that the stabilization technique suggested by COMSOL is not capable of solving 

drift-diffusion equations under the corona discharge regime. As mentioned in Chapter 3, it 

is an accepted fact in the literature that the Finite Element Method requires artificial 

diffusion for solving the continuity equation. It should be noted here that the model library 

of COMSOL has some examples of using plasma module for numerous electric discharges, 

but all of them are in the regimes with much weaker electric fields.  

We also built several models attempting to solve the Eqs. 7-19 to 7-23 using the transport 

of diluted species modules. Unfortunately, these models didn’t lead to a convergent 

solution either. For some reasons which are not completely clear, it seems that the 

streamline diffusion stabilization method is not capable of handling the Eq. 7-20.  

It should be also noted here that in all the models with different modules, numerous 

possible solutions by manipulating the parameters of the time-dependent solver and the 

mesh configuration were tested, too. Unfortunately, none of them led to a convergent 

solution. 
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Chapter 8  

8 « Summary of the thesis and recommendations for the 
future studies » 

The first part of this Chapter is devoted to the summary of the results of the numerical 

models and the conducted experiments reported in this thesis. In the second part of the 

chapter, some recommendations for the future studies in this field are suggested. 

8.1 Summary of the thesis 

Numerical and experimental analysis of the negative corona discharge in the needle-plane 

geometry and atmospheric air was presented in this thesis. Positive corona discharge was 

also studied in Chapter 4 as part of the investigation of the impact of the photoionization 

phenomenon on the positive and the negative corona discharge.  

The following statements could be given as summary of the important findings of this 

thesis: 

 During the stage of the electric field suppression, which was the second stage of 

the formation of the Trichel pulse, the time sequence of the reduction of the peak 

values of the important quantities were: electron density, positive ion density, 

electric field magnitude, current, and negative ion density. It was also noticed that 

in this stage the width of the ionization region reduces up to 30 µm. It was also 

found that the location of the peak densities of the electrons and the positive ions 

are not on the axis of symmetry but situated approximately 20 µm away from the 

axis. 

 It was shown that in the Trichel pulse regime, several clouds of negative ions 

simultaneously exist in the air gap and the inter-pulse time is shorter than the time 

it takes for a cloud of negative ions to cross the gap. This means that the preparation 

of the gap for the next pulse begins as soon as the cloud of negative ions move far 

enough from the tip which is much sooner than it reaches the ground plane. 
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 The numerical model predicted that the transition from the Trichel pulse regime to 

the glow discharge regime for the needle-plane configuration of a 6 mm spacing 

and 35µm tip with atmospheric pressure air concludes at -12kV, as the current 

waveform becomes flat and a plasma channel is formed from the cathode to the 

anode. The simulations showed that the augmentation of the electric field in the 

area far from the needle tip in the glow discharge regime starts from the ground 

plane which is associated with a clearly visible blue film on the ground plane in the 

experiments. 

 A numerical model for the positive corona discharge including three charged 

species (electrons, positive ions, and negative ions) and the photoionization 

phenomenon was suggested in this thesis. Photoionization phenomenon was 

incorporated using the three-term exponential approximation. 

 The study of the impact of the photoionization phenomenon on negative corona 

discharge revealed a 5% increase in both the frequency and the DC current of the 

discharge. The insignificance of this impact was justified by calculating the ratio 

IIS/IPS (Integral of the Impact Ionization Source term divided by the Integral of 

the Photoionization Source term) at different stages of the formation of Trichel 

pulse along with studying the spatial distribution of the photoionization and impact 

ionization source terms. It was concluded, since the number of electrons produced 

by the impact ionization is on average 100 times larger than those of 

photoionization and the electrons produced by both sources travel approximately 

the same distance (undergo the same conditions of drift velocity) in the air gap, the 

incorporation of photoionization in the negative discharge model doesn’t affect the 

discharge current significantly. 

 The sensitivity study of the model coefficients of negative corona discharge in 

needle-plane configuration revealed the fact that the ionization coefficient has a 

larger impact on both the frequency and the DC current of the discharge compared 

to the impact of the attachment coefficient. It was also found that the existence of 

the reactions: recombination of the electrons and the positive ions and 
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recombination of the positive and the negative ions do not impact the characteristics 

of the Trichel pulses. 

 The detachment reaction, present in the set of the coefficients used by Soloviev et 

al. [84], causes the pulsation mode of the discharge to disappear. It was found that 

the frequencies obtained using these coefficients were much higher than the 

expected values. 

 Comparison of the results of the experiments with the findings of Lama and Gallo 

[37] led to a better agreement for the DC current as compared with the frequency 

of the pulses. Moreover, the numerical model predicted higher frequencies and DC 

currents compared to the experiments. The comparison showed that although the 

numerical model with γ=0.0005 gives the closest results for the frequency and the 

DC current compared to the models with greater values of γ, but the temporal 

characteristics of the pulses were drastically perturbed as a result of reducing γ from 

0.01 to 0.0005. 

 The results from all the experiments led to the average of 49 ns, 445 ns, and 220 ns 

for the rise time (10% to 90% of the peak), fall time (90% to 10% of the peak), and 

the pulse width (50% to 50% of the peak), respectively, with a standard deviation 

of less than 5%. Investigating these temporal characteristics led to the conclusion 

that these numbers don’t change significantly by varying the voltage applied on the 

needle up to -10 kV, needle-plane distance from 6 mm to 3 cm or the radius of the 

tip of the needle from 19 µm to 55 µm. 

8.2 Recommendations for the future studies 

The following recommendations are suggested for the future studies: 

 The studied numerical models in this thesis mostly have included 4 main reactions 

and three charged species in the atmospheric air. It would be interesting to include 

the excited species and the reactions including them in the model. 

 The numerical model of the transition of the negative corona discharge from the 

Trichel pulse regime to the glow discharge regime presented in Chapter 3 did not 

include some features of the plasma channel formed between the cathode and the 
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anode. The excessive heat produced in the channel is the main reason for the 

instabilities noticed in the experiments. Including this instability in the model and 

applying the suggested methods for stabilizing the glow discharge such as air flow 

or crater-shaped ground plane right under the needle, might give researchers some 

new insights about the nature of the negative glow discharge. 

 The studies reported in this thesis could be conducted for other gasses such as 

oxygen.  

As explained in Chapter 7, including the electron energy equation in the corona discharge 

model comes with many challenges. One might consider combining the tools provided in 

COMSOL with other algorithms for overcoming the drawbacks of this software. It was 

evident that the stabilization techniques provided in COMSOL were able to solve the 

continuity equations for the charged species. If one could come up with an algorithm for 

solving the electron energy equation in conjunction with the solutions provided by 

COMSOL for the rest of the equations, studying the distributions of the electron energy 

and electron density in the corona gap would be possible. “COMSOL with MATLAB” 

which is part of the COMSOL Multiphysics package provides flexible programming tools 

for implementing user-defined algorithms. 
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