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Abstract 

The Nechalacho deposit is a world-class rare earth element deposit located in the Thor Lake 

region approximately 100 kilometers southwest of Yellowknife, NT, Canada.  Located within 

the Blatchford Lake Intrusion Complex, this deposit has the potential to be a large-scale 

economic asset due to its relatively shallow and sub-horizontal geometry.  In this study, 

geophysical inversion techniques are used to model subsurface magnetic susceptibility and 

density in order to delineate the deposit.  Isolated and joint inversion of both magnetic and 

gravity data provide similar models.  Each inversion procedure delineates a shallow, sub-

horizontal layer of high susceptibility and density in approximately the same location.  This 

layer is interpreted to be the Nechalacho deposit and it extends further north than previously 

determined.   Finally, magnetic susceptibilities were measured on selected samples using 

laboratory instruments to check the quality of previous field measurements as well as to 

validate and derive relationships between geophysical and mineralogical properties in the 

deposit. 
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Chapter 1  

1 Introduction 

1.1 Objectives 

Geophysical measurement techniques have become staples in the mineral exploration 

industry.  These techniques are relatively quick and cost-effective methods to quantify 

the physical properties of the surface and subsurface.  In addition, airborne surveying 

methods allow for the acquisition of large datasets in remote regions, often acquiring 

multiple fields of data simultaneously.  The raw data obtained can be used to analyze 

spatial trends without further significant processing.  Therefore, geophysical datasets are 

an excellent starting point to target anomalous signals that may be the result of economic 

bodies.  Furthermore, geophysical inversion techniques use these datasets, as well as a 

physical understanding of geophysical properties, to solve for one or more subsurface 

parameters which may be linked to such bodies. 

Two of the most common geophysical properties in the mineral exploration industry are 

magnetic susceptibility and density.  This is because many minerals and parent rocks 

associated with mineral deposits yield anomalously high gravitational or magnetic field 

signals.  Magnetic susceptibility is a value that describes the ability of a mineral to emit 

an induced field when under the influence of an inducing magnetic field such as that of 

Earth (Pratt, 2005).  Depending on the strength and orientation of magnetic moments 

within a mineral, the inducing field may be enhanced by the alignment of these moments 

with the direction of the external field.  Therefore, minerals that have high magnetic 

susceptibilities produce small anomalies in the natural magnetic field in that region.  
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Magnetic susceptibility is related to magnetic field through a series of equations and 

asumptions.  The magnetization, M, is broken into two components, the induced 

magnetization, Mi, and the remanent magnetization, Mr: 

 𝑀 =  𝑀𝑖 + 𝑀𝑟  

𝑀𝑖 = 𝑘𝐻 

(1) 

where k is the magnetic susceptibility and H is the inducing magnetic field intensity 

(Pratt, 2005).  Induced magnetization is magnetization that occurs due to an external 

inducing field, while remanent magnetization is magnetization that is imprinted in the 

rock from when it formed that does not need an external field to be magnetized.  Often 

small amounts of remanent magnetism are associated with iron, however, in order to 

simplify the problem, this magnetism is assumed to be small enough to be negligible.  

Therefore, the magnetization can be simplified to: 

    

 𝑀 =  𝑘𝐻 (2) 

 Therefore, magnetic susceptibility is related to the magnetic field, B via the equation: 

 𝐵 = 𝜇0(1 + 𝑘)𝐻 (3) 

where µ0 is the magnetic constant or the permeability of free space (Pratt, 2005). 

Similarly, the density of rocks and minerals in the region affect the gravitational field in 

the area due to changes in the mass per unit volume.  A positive gravitational anomaly 
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suggests that excess mass is contributing to the signal.  The density is related to the 

vertical component of the gravitational field, gz, via the equation: 

 
𝑔𝑧(𝑟0) =  𝐺 ∫ 𝜌(𝑟)

𝑧 −  𝑧0

|𝑟 −  𝑟0|3
𝑑𝑣

 

𝑉

 
(4) 

where r0 = (x0, y0, z0) is the position vector of the observation, r = (x, y, z) is the position 

vector of the source, G is the gravitational constant, and ρ is the density (UBC-GIF, 

2013b). 

The Nechalacho deposit is a world class rare earth element (REE) deposit located at Thor 

Lake, approximately 100 kilometers southeast of Yellowknife, NT, Canada.  The site is 

of particular interest because of its high proportions of heavy rare earth elements (HREE) 

and relatively shallow, sub-horizontal geometry (Ciuculescu et al., 2013).  Several key 

geological studies have been completed on the deposit including mineralogical work by 

Sheard et al. (2012) and mineralogical petrogenesis work by Möller and Williams-Jones 

(2016).  In addition to this geological research, geophysical data was collected by Natural 

Resources Canada (NRCan) for Avalon Rare Metals Inc. (Avalon), who owns the rights 

to the property.  This data consists of airborne gravitational and magnetic field data from 

the region as well as density and magnetic susceptibility measurements taken on core 

samples from over 400 drill holes (Avalon, 2013).  The magnetic susceptibility 

measurements were taken with a portable KT-9 kappameter on the cores at 1 metre 

intervals, while density measurements were taken on small samples from the core at 

approximately 5 metre intervals. 
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The goal of this work was to improve on preliminary geophysical inversions completed 

for the Nechalacho deposit by Tiampo and Nichols (2014) through the implementation of 

geological constraints and cooperative inversion techniques.  The core geophysical 

property measurements can be coupled with their respective field data to act as 

constraints for geophysical inversion.  A common problem with inverse theory is non-

uniqueness, as there theoretically are infinitely many solutions to a given inverse problem 

(Aster et al., 2013).  By implementing information from measured parameters and 

structures from the subsurface, this issue can be mitigated by reducing the total number 

of possible solutions and forcing the solution to converge to a subsurface model that 

agrees with known features.  Additionally, inverse models can be improved by the 

incorporation of multiple datasets.  A secondary aim of this study was to implement joint 

inversion techniques to incorporate gravity and magnetic results into a more robust 

model.  Such a model would display characteristics from density models as well as 

magnetic susceptibility models to obtain a clearer picture of subsurface lithology, and 

thus help further delineate the Nechalacho deposit.   

These goals were accomplished through innovative inversion techniques and codes that 

were written as a part of this thesis.  This required a thorough understanding of the 

physics and methods behind the previously written software in order to write and 

implement self-authored, supplementary code.  This new code is used in a variety of 

ways, including data filtering, interpolating reference models and implementing joint 

inversion methods.   In addition to the supplementary code, this thesis developed multiple 

innovative techniques.  The first of these techniques was a method for interpolating 

between drill hole data points to increase the influence of known geophysical properties 
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in the inversion process.  This technique could have further applications as a substitute 

for standard methods of interpolation in the mineral exploration industry.  The second 

technique developed was used to obtain preliminary modal percentages for samples using 

colour analysis on a pixel-by-pixel basis.  This method could play an important role in 

large-scale modal analysis for simplified systems given its automated potential.  

1.2 Outline 

The following section in this chapter covers a brief introduction to inverse theory as it 

applies to geophysical inverse modelling, as well as a description of the programs used in 

this study.  The primary inversion programs used were obtained from the Geophysical 

Inversion Facility of the University of British Columbia (UBC-GIF).  The section will 

also overview programs written to supplement the UBC-GIF software. 

Chapter 2 presents preliminary geophysical inversions completed using magnetic field 

data in the Thor Lake region.  This work focused on the shallow subsurface where the 

deposit lies.  A three-dimensional reference model was calculated using a self-written 

program that sorted and averaged the core magnetic susceptibility measurements into 

respective model cells.  This reference model then was used to constrain subsequent 

inversions by implementing upper and lower bounds on each cell while also acting as a 

starting model.  A deep-seated, long wavelength signal overprinted much of the shallow 

detail in the model, therefore coded wavenumber filtering techniques also were 

implemented.  Results showed significant improvement over preliminary models by 

Tiampo and Nichols (2014).  Models displayed a shallow sub-horizontal layer of high 

susceptibility that corresponded well with prior geological models despite a lack of lateral 

continuity within the layer.  
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Chapter 3 is an extension of the previous chapter and focuses on incorporating 

gravitational field data into the problem in order to better constrain the inversions.  A 

similar workflow was followed to solve for subsurface density models.  In this chapter, a 

new method of lateral interpolation between subsurface geophysical measurements is 

developed and proposed to increase the lateral continuity of the three-dimensional 

reference model.  This technique is compared with more traditional kriging methods and 

proves effective for this dataset.  As a result, additional magnetic susceptibility modelling 

is described in this section as well as preliminary joint inversion results.  The results of 

density and magnetic susceptibility modelling correlate well spatially and geometrically, 

while the joint inversions result in minor improvements to the model. 

Chapter 4 presents preliminary findings from a study on the magnetic susceptibilities of 

samples and the relation to the mineralogy within the deposit.  The objective in this 

chapter was to check the validity of measured magnetic susceptibilities using laboratory 

instruments and comparing these measurements to those taken using field instruments.  A 

further extension of this work involved a comparison of the findings to mineralogical 

work by Möller and Williams-Jones (2016) in order to investigate the relationship 

between the mineralogy and geophysics in detail.  As expected, magnetic susceptibility 

measurements corresponded to increased hydrothermal alteration that resulted in 

secondary magnetite mineralization.  Further study is needed to analyze the potential 

differences in geophysical signature between primary magmatic magnetite and secondary 

hydrothermal magnetite.  High-definition images were also analyzed computationally, 

using software written as a part of this thesis, as an experimental first-pass method of 

approximating mineral percentages and geophysical trends with respect to colour.  
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Results of the latter study showed promise, however future work is necessary to assess 

any further potential for such methods. 

1.3 Background 

1.3.1 General Inverse Theory 

The generalized inverse problem can be broken down to a trivial equation: 

 𝐺(𝑚) = 𝑑 (5) 

where d is the data, such as airborne magnetic field data, G is a model or system of 

equations that describe the physics of the problem, such as those governing the 

relationship between magnetic susceptibility and magnetic field, and m  is the set of 

model parameters that are being solved for (Aster et al., 2013).  While this generalized 

equation is trivial, inverse problems are normally very complex.  A major obstacle when 

inverse modelling arises when solving for a three-dimensional model using a two-

dimensional dataset.  In geophysical modelling, the subsurface is broken up into a finite 

number of three-dimensional cells.  The inversion process solves for a parameter value 

for each of these cells that collectively result in the reproduction of the data.  In rank-

deficient problems, each given solution is one of infinitely many solutions that can solve 

the system of equations.  Therefore, since there are many more cells than data points, 

there are infinitely many parameter models that fit the data.  As a result, cells in which 

the geophysical model parameter has been measured, and is therefore known within some 

error bounds, can be used to constrain the problem and reduce the number of possible 

solutions, forcing the solution toward a model that agrees with independently known 

subsurface measurements. 
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Joint inversion describes an inversion that uses two or more different types of datasets 

cooperatively to reach a solution that satisfies both.  Structural joint inversion describes a 

joint inversion method where the solution from the inversion of one dataset is used to 

influence the solution of the other dataset.  Therefore, the structure of one model, such as 

magnetic susceptibility influences the structure of another model, such as density.  The 

structure of the density model simultaneously influences the structure of the magnetic 

susceptibility model in an iterative manner.  The methods used for this structural joint 

inversion method are describe in section 1.3.3. 

1.3.2 Geophysical Inversion Facility Software 

The University of British Columbia Geophysical Inversion Facility (UBC-GIF) software 

package consists of several programs used for the inversion of geophysical data.  The 

magnetic (mag3d) and gravity (grav3d) packages were the main programs used in this 

study.  Both programs invert for their respective geophysical parameter in a similar 

manner.  A three-dimensional mesh is defined by the user that describes the cell 

dimensions as well as the total extent of the model in each of the three dimensions.  This 

mesh, along with the geophysical field data is used to calculate a sensitivity matrix.  That 

sensitivity matrix is used to provide forward mapping from the current model to the input 

data throughout the iterative inverse process (UBC-GIF, 2013a).  In other words, the 

sensitivity matrix is an i by j matrix where i is the dimension of the data, d, and j is the 

dimension of the model, m, that represents G in Equation 5.  Therefore, the sensitivity 

matrix can be multiplied by m to forward model for an estimate of the data, given the 

current model.  The inverse problem relies on the minimization of an objective function, 
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φ, which is comprised of two components:  the model objective function, φm, and the data 

misfit function, φd.  The function is then minimized according to the equation: 

 𝑚𝑖𝑛{𝜑} = 𝜑𝑑 + 𝛽𝜑𝑚 (6) 

where β is the trade-off parameter that influences the accepted misfit allowed by the 

expected φd value.  This parameter is determined using the L-curve criterion (UBC-GIF, 

2013a).  The L-curve is a log-log plot of the norm of the residuals versus the norm of the 

model or solution which was named due to the shape of the resulting plot (Hansen, 

2000).  The L-curve criterion is based on Tikhonov regularization techniques where the 

norm of the model is minimized such that the norm of the residuals is less than some 

threshold, δ (Aster et al., 2013): 

 𝑚𝑖𝑛(‖𝑚‖2)  𝑠. 𝑡.  ‖𝐺𝑚 − 𝑑‖2 ≤ 𝛿 (7) 

In this case, the trade-off parameter, β is the regularization parameter.  The problem can 

also be considered by minimizing the norm of the residuals such that the norm of the 

model is less than a separate threshold, ε (Aster et al., 2013):     

 𝑚𝑖𝑛(‖𝐺𝑚 − 𝑑‖2)  𝑠. 𝑡.  ‖𝑚‖2 ≤ 휀 (8) 

The L-curve criterion suggests that the most appropriate regularization parameter, β is the 

value that yields a solution closest to the corner of the L-curve (Hansen, 2000).  This 

coincides with the solution where δ and ε are equivalent (Aster et al., 2013). 

The first component of the inverse problem is the model objective function, defined by 

the equation: 
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𝜑𝑚(𝜅) = 𝛼𝑠 ∫ 𝜔𝑠{𝜔(𝑟)[𝜅(𝑟) − 𝜅0]}2𝑑𝑣

 

𝑉

+ 𝛼𝑥 ∫ 𝜔𝑥 {
𝜕𝜔(𝑟)[𝜅(𝑟) − 𝜅0]

𝜕𝑥
}

2

𝑑𝑣
 

𝑉

+ 𝛼𝑦 ∫ 𝜔𝑦 {
𝜕𝜔(𝑟)[𝜅(𝑟) − 𝜅0]

𝜕𝑦
}

2

𝑑𝑣
 

𝑉

+ 𝛼𝑧 ∫ 𝜔𝑧 {
𝜕𝜔(𝑟)[𝜅(𝑟) − 𝜅0]

𝜕𝑧
}

2

𝑑𝑧
 

𝑉

 

(9) 

where α are coefficients that affect the relative importance of each component, κ0 is the 

reference model, ω(r) is the depth weighting function, and ω are spatially dependent 

weighting coefficients (UBC-GIF, 2013a).  This objective function is then discretized 

over the mesh using the finite difference approximation given by: 

 𝜑𝑚(𝜅) = ‖𝑊𝑚(𝜅 − 𝜅0)‖2 (10) 

where the model sensitivity matrix, Wm, is calculated for the defined mesh, depth 

weighting function and weighting coefficients (UBC-GIF, 2013a).  The depth weighting 

function is included to counteract geometrical decay experienced by a deep, long-

wavelength signal that originates further from the point of measurement.  Essentially, this 

function assumes that potential fields decay at a rate proportional to the inverse of 

distance cubed and enhances the weight of deeper cells to account for loss of signal.   

The second component of the objective function is simply the L2-norm of the residuals 

that describes how well the observed data are reproduced: 
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 𝜑𝑑 = ‖𝑊𝑑(𝐺𝑚 − 𝑑)‖2 (11) 

Wd is a diagonal matrix where the ith element is the inverse of the standard deviation for 

that data point.  If the noise is assumed to be random and a Gaussian distribution with 

zero mean is assumed, then φd represents a chi-squared distribution with N degrees of 

freedom (UBC-GIF, 2013a).  Therefore the optimal data misfit can provide a target misfit 

for the inversion via: 

 𝐸[𝜒2] = 𝑁 (12) 

  Once both components (φm and φd) and the trade-off parameter (β) are defined, the 

optimization problem can be solved using the projected gradients method (UBC-GIF, 

2013a).  This method is a conjugate gradient method that projects the gradient into a 

subspace that forces the gradient to zero if the proposed step would cause the parameter 

to exceed the bound constraints (Calamai and Moré, 1987).  Essentially this is a way of 

constraining the conjugate gradient method of optimization by allowing the model to 

reach the bounds, but not exceed them (UBC-GIF, 2013a).  The result is an inverse 

modelling technique that can easily be influenced by geophysical measurements in order 

to constrain the models on a cell-by-cell basis. 

1.3.3 Previous Studies 

Several case studies have been completed by authors at UBC-GIF using a variety of 

similar geophysical inversion methods.  Li and Oldenburg (1998) investigated two 

approaches to geophysical inversion of gravity data using similar depth weighting and 

objective function optimization.  The first inversion method used Poisson’s relation in 
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order to invert via a three-dimensional magnetic inversion algorithm, while the second 

method inverted the gravity data directly.  This study was performed on both synthetic 

and field data and showed that reasonable results can be obtained without the use of 

Poisson’s relation with an appropriate objective function (Equation 9) (Li and 

Oldenburg, 1998). 

Li and Oldenburg (2003) implemented sparse matrix representation of the sensitivity 

matrix that allowed for efficient forward modelling.  In this study, a three-dimensional 

wavelet transform, along with thresholding are applied to the sensitivity matrix in order 

to decrease computation time.  A conjugate gradient method then was used in order to 

take advantage of efficient forward modelling and further improve computation rates to 

allow for larger problems to be solved (Li and Oldenburg, 2003).  These updates were 

tested on a synthetic magnetic dataset and produced results that agreed well with the true 

susceptibility model. 

An approach for incorporating knowledge of structural trends in subsurface geology as 

well as geophysical constraints based on drillhole measurements was proposed by 

Lelièvre et al. (2009).  This case study solved for a synthetic model using drillhole 

magnetic susceptibility and density measurements to set upper and lower bounds on 

individual cells to constrain the inversion.  Weighting coefficients were used in order to 

influence known structural trends in the geology and to better define boundaries of 

geologically realistic models (Lelièvre et al., 2009).  Lastly, a method of combining 

structural trends from both susceptibility and density models to jointly influence 

subsequent inversions was proposed as a method of cooperative inversion between two 

data fields. 



13 

 

1.3.4 Programs Written 

In addition to the programs from the UBC-GIF software package, several supplementary 

programs were written as a part of this thesis (see Appendix A).  These programs were 

used for a variety of tasks from statistical analysis to data manipulation and filtering.  

Coding was completed using the Matlab computing environment by MathWorks.  UBC-

GIF_Conversion.m was written as a conversion tool to sort, bin and average geophysical 

core measurements based on a user-defined mesh to be used in the UBC-GIF software.  

This program was used to format the core data correctly into the appropriate cells in order 

to create a three-dimensional reference model, which was then used to calculate a starting 

model, as well as the maximum and minimum boundary models used to constrain the 

inversions.  Upward_cont.m is a script written to perform wavenumber filtering 

techniques on airborne potential field data.  This program takes input potential field data 

and filters out long wavelength signal in the frequency domain via upward continuation.  

Upward continuation methods are used to obtain a dataset of long-wavelength signal, 

which is then subtracted from the original dataset in order to remove signal produced by 

deep anomalous bodies.  Grad_attenuate.m implements a method of solving for more 

geologically realistic models proposed by Lelièvre et al. (2009).  This script removes 

padding cells from the current best model and calculates the gradient in three dimensions.  

These gradients are then normalized and used to create an input file of weighting 

coefficients for subsequent inversions.  Weighting factors are increased between cells 

with lower gradients to promote smoothing while factors are decreased between cells 

where the gradients are high to penalize smoothness to promote more defined lithological 

boundaries. 
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Lat_interp.m is a program that calculates a three-dimensional reference model similar to 

that produced by UBC-GIF_Conversion.m, but with the implementation of the proposed 

lateral interpolation method.  This creates reference, starting and boundary models for 

both magnetic and gravity datasets where significantly more cells contain data than the 

previous three-dimensional reference model.  The implementation of the lateral 

interpolation method led to a comparison between these results and those obtained 

through the more traditional interpolation method of kriging.  Krig_test.m employs code 

written by Schwanghart (2010) to apply ordinary kriging to the core data on each x-y 

plane for a total of z iterations to obtain a three-dimensional reference model.  This model 

is used in a similar manner to the other three-dimensional models, however the variance 

is used to determine the ranges for the maximum and minimum boundary models.  The 

final script written for chapter 3 is joint.m.  This program removes padding cells and 

calculates the gradient between cells in three dimensions similar to grad.attenuate.m, but 

for both magnetic susceptibility and density models.  These gradients then are normalized 

and added together as proposed by Lelièvre et al. (2009) and used to adjust weighting 

factors as in the gradient attenuation and enhancement method.  This method is described 

in detail in Chapter 2, but essentially promotes more smoothing where the gradient of the 

current model is low and penalizes smoothing where the gradient is high.  The addition of 

a second normalized dataset results in subsequent inversions being influenced by the 

lithological boundaries of both geophysical parameter models. 

Work in Chapter 4 is completed using one robust program geo_analysis.m as well as a 

secondary program, pixel_test.m.  The main function of the first few sections of this code 

is to plot magnetic susceptibility, density and REE concentrations within their respective 
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lithological unit as defined by Möller and Williams-Jones (2016), given their depth.  This 

part of the script was used mainly to analyze any geological trends in relation to their 

geophysical characteristics.  Pixel_test.m is a program written that takes a high definition 

image of a sample and breaks it down to a sequence of numerical RGB values.  These 

values are used in preliminary proposed colour analysis of samples through assigning 

mineral types to each pixel based on a set of conditions that govern the RGB values of 

each mineral.  These conditions were assigned based on experimentation through the 

collection of several different mineral subsets of RGB values.   
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Chapter 2  

2 Current Status of Magnetic Inversion Project at Thor 
Lake, N.W.T. 

This section was written and submitted as an open-file report for the Northwest 

Territories Geological Survey.  In this study, magnetic field data, coupled with magnetic 

susceptibility measurements from core drilled through the Nechalacho deposit and in the 

Thor Lake area, are used to create three-dimensional susceptibility models through 

geophysical inversion techniques.  The deposit has been examined extensively in order to 

identify the extent of the rare earth element mineralization.  Beneath the Thor Lake 

syenite, hydrothermal alteration of a cumulate sequence within the Nechalacho syenite 

acts as a host for rare earth element-bearing minerals.  Preliminary results presented 

here agree with current geological models which suggest that an extensive, sub-

horizontal layer of increased alteration and mineralization lies at approximate depths of 

150-200 metres.  This layer extends for over 1500 metres laterally and potentially 

represents a layer of increased heavy rare earth element mineralization referred to as the 

basal zone.  Early findings suggest that the basal zone extends further north than 

predicted from previous understanding. 

2.1 Introduction 

Inverse theory as applied to geophysical datasets has applications to engineering 

problems as well as both petroleum and mineral exploration.  Making use of modern 

computational power, inversions represent a novel method for studying the subsurface in 

order to pinpoint a variety of target bodies.  Inversion is reasonably straightforward, 

following the equation: 



19 

 

 𝐺(𝑚) = 𝑑 (1) 

where d is the dataset, G is the geophysical source or set of equations to describe the 

system and m is the model or set of parameters that are to be modeled (Aster et al., 2004).  

In practice, the solutions can become very complex and the major barrier to overcome is 

the problem of non-uniqueness. 

Geological studies can produce very extensive data acquisitions from a given area.  

However, when it comes to mapping the boundaries of ore bodies that lie deep in the 

subsurface, there will always be unknowns.  The goal of an inversion is to resolve some 

of these unknowns using plausible constraints based on geological and geophysical data 

from the region.  These constraints aid in solving the non-uniqueness problem by limiting 

the number of possible results that will fit the system.  Information from surface geology 

maps and borehole data are ideal for use as model constraints.   

In the mineral exploration industry, surveying gravity and magnetic fields via airborne 

techniques is a fast and relatively cost efficient way of obtaining physical data on a large 

scale.  As a result, airborne techniques are preferable to boreholes as a first pass because 

they provide useful information about an entire area of interest.  Borehole data, however, 

offer the opportunity to thoroughly sample a target region in three dimensions on a more 

local scale.  Thus, the combination of these two techniques reduces the need for more 

drillholes while still obtaining an improved and more complete picture of the subsurface.   

Magnetic field data are widely used in the mineral exploration industry to utilize 

contrasting magnetic susceptibilities in host-rocks in relation to the surrounding rock.  
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This allows for the mapping of ore bodies by solving for the volumetric distribution of 

magnetic susceptibility given the magnetic field anomaly in the area.   

Inversions can be further constrained by using additional datasets that contain different 

physical signals such as gravitational field data.  Gravity anomaly data can be used to 

invert for changes in density beneath the surface allowing for lithological units to be 

separated from one another based on their densities. When these results are paired with 

lithological units that are separated based on magnetic susceptibility in a joint inversion, 

the result can provide an accurate image of the lithological distribution beneath the 

surface. 

2.2 Geological Background 

2.2.1 Regional Geology 

The region of interest at Thor Lake is located approximately 100 kilometres southeast of 

Yellowknife in the Northwest Territories, Canada (Figure 2.1).  The area is underlain by 

the Blatchford Lake Intrusive Complex (BLIC), a Proterozoic alkaline intrusion divided 

into two main zones (Figure 2.2).  The eastern lobe contains the Grace Lake granite and 

the Thor Lake syenite which contains the Nechalacho deposit.  With peralkaline 

characteristics,  the Thor Lake syenite is enclosed by the 2176.2 Ma Grace Lake granite, 

and has been dated at 2176 +/- 1.6 Ma (Mumford, 2013).  In comparison, the western lobe 

is less alkaline and contains the Caribou Lake gabbro (Davidson, 1978).  The BLIC is 

cross-cut by numerous diabase dykes, including several east-northeast trending dykes 

believed to be a part of the 1901 Ma Hearne swarm.  The Thor Lake syenite itself is 
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cross-cut by a northwest trending dyke with a strong magnetic signal that has recently 

been re-classified as a 2126-2108 Ma Indin diabase dyke (Mumford, 2013).  

 

Figure 2.1:  Location map showing the Thor Lake area in the Northwest Territories.  

Blue shaded area in the red inset map shows the inversion area in this study.  

Adapted from Google Earth, 2015. 
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Figure 2.2:  Regional geology of the Blatchford Lake Complex, NWT Canada 

(modified from Mumford, 2010 after Davidson, 1978).  The yellow dots signify 

sample locations from the study by Mumford (2010) and are not mentioned in this 

study. 

2.2.2 Local Geology 

The Nechalacho deposit, known for its high concentrations of rare earth elements (REE), 

is the primary focus of this study.  It is hosted by the Nechalacho nepheline syenite 

(NNS), a layered intrusion with peralkaline characteristics that increase with depth 

(Sheard et al., 2012).  Based on current drilling, it has been speculated that the intrusion 

dips beneath the Thor Lake syenite in all directions (Ciuculescu et al., 2013).  Located 

within the Thor Lake syenite, small isolated outcrops of the NNS are exposed at the 
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surface between Long Lake and Thor Lake which display strong hydrothermal alteration 

but appear to be relatively undeformed with textures generated by both magmatic and 

hydrothermal processes (Sheard et al., 2012).  This alteration zone is located in the apex 

of the syenite dome-like feature and divided into the upper zone and basal zone (Figure 

2.3).  The upper zone is defined as the volume between the top of the basal zone and the 

bottom of the overburden and lakes while the basal zone is constrained by the contact 

with the Grace Lake granite and roof-top sodalite (Ciuculescu et al., 2013).  Originally 

thought to extend just beneath Thor and Long Lakes, drilling to the north in 2010 found 

evidence that the deposit may extend beneath Cressy Lake as well (Pilkington et al., 

2012).  The greatest potential for further mineralization and increased value of the deposit 

apparently lies to the north, although the western boundary is not well defined 

(Ciuculescu et al., 2013).  Presently there are no known dykes from the Mackenzie 

swarm that cross cut the deposit.  However, east-northeast trending 1901 Ma Hearne 

swarm dykes do cross cut the deposit, but no significant displacement is seen along faults 

(Mumford and Cousens, 2014). 
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Figure 2.3:  Cross-section of the Nechalacho deposit from current geological 

methods (modified from Ciuculescu et al., 2013).  The Nechalacho nepheline syenite 

(NNS) is in green and includes the upper and basal zones, while the Thor Lake 

syenite (TLS) is represented in orange.  The blue lithology is the roof sodalite.  The 

vertical scale is in metres above sea level (ASL). 

2.2.3 Mineralization 

The mineralization of the Nechalacho deposit is generally sub-horizontal and has been 

traced for over 1500 metres (Sheard et al., 2012).  The primary elements of interest are: 

light rare earth elements (LREE) contained in allanite, monazite, bastnaesite and 

synchysite; heavy rare earth elements (HREE), niobium and tantalum contained in 

fergusonite; niobium contained in ferrocolumbite; and HREE, niobium, tantalum and 

zirconium contained in zircon (Pinckston and Smith, 1995; Ciuculescu et al., 2013).  The 

proportion of HREE to LREE increases from the top of the deposit to the bottom.  HREE 

account for 30% of the total REE in the high grade basin within the bottom of the basal 



25 

 

zone (Ciuculescu et al., 2013).  Sheard et al. (2012) described the progression from the 

hanging wall sodalite cumulates, down through the upper zone which contains coarse-

grained nepheline aegirine syenites locally enriched with zircon silicates, to the basal 

zone which is comprised of a foyaitic syenite within a zone of altered eudialyte 

cumulates.  This sequence of rocks was intensely altered by sodium and iron rich 

hydrothermal fluids which resulted in magnetite and hematite as a few of the major 

alteration minerals (Sheard et al., 2012).  The alteration zone extends from the surface 

down to approximately 80 metres depth, with some regions extending as far down as 200 

metres (Ciuculescu et al., 2013).  The original mineralogy of the deposit consisted of a 

rooftop sodalite, enclosing layers of aegirine nepheline syenite with cumulate zircon, 

followed by more syenite layering and finally cumulate inferred eudialyte.  Extensive 

alteration by what is thought to have been a fluorine bearing hydrothermal fluid resulted 

in the breakdown of eudialyte to secondary minerals that contain HREE, such as zircon 

and fergusonite, and leaving behind alteration minerals such as magnetite, which has a 

highly anomalous magnetic signature.  As the fluid altered the zircon cumulates, REE 

were leeched from the cores of the crystals and deposited along fractures and crystal 

boundaries.  LREE were remobilized further and form the high degree of LREE in the 

upper portion of the deposit (Sheard et al., 2012). 

The goal of this study is to use the knowledge collected in the exploration process, 

including  previous geological research and geophysical survey data, to further delineate 

the boundaries of the upper and lower zones of mineralization.  The initial steps in the 

process, reported here, involve inverting magnetic field data to produce a magnetic 

susceptibility model and constraining it with magnetic susceptibility measurements 
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collected from boreholes as boundary conditions.  Future steps will incorporate 

gravitational field data to further constrain the model and enhance important lithological 

boundaries.  The anticipated end result is a model that improves on existing interpretation 

of the lateral and vertical extents of the deposit. 

2.3 Data 

The data used in this study are airborne total magnetic field data obtained by Natural 

Resources Canada (NRCan, 2011).  The survey was flown by Fugro GeoServices Ltd. at 

an altitude of 100 metres above ground level with a traverse line spacing of 250 metres 

and covered a total area of approximately 250 square kilometres (Figure 2.4).  The 

survey collected total magnetic field data with a fixed-wing aircraft, using a single cell 

cesium vapour magnetic system.  When examining the survey result on a regional basis, 

the east-northeast trending signature of the Hearne dyke swarms is apparent, as well as a 

highly magnetic northwest trending anomaly presumed to be related to the Indin dyke 

swarm (Mumford and Cousens, 2014).  Full-tensor airborne gradiometry and gravity 

anomaly surveys were collected of the same area by NRCan and will play a larger role in 

future work.   

There has also been extensive subsurface exploration through the drilling of boreholes in 

the area.  Magnetic susceptibility measurements were collected from the cores of over 

400 holes on the Thor Lake property.  These measurements were taken directly on the 

core with a handheld KT-9 instrument at 1 metre intervals by Avalon Rare Metals 

(Avalon Rare Metals, 2014).  
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A region of interest was defined based on the drilling pattern.  The resulting Thor Lake 

inversion region is a 12.8 square kilometre area that is centered on the Thor Lake Syenite, 

chosen for its proximity to a prominent magnetic high and the large number of boreholes 

concentrated in this area (Figure 2.4). 

 

Figure 2.4:  Map of the residual magnetic field from the aeromagnetic survey 

completed by NRCan (2011) of the Blatchford Lake Complex.  The eastern large 

positive elliptical anomaly is the Thor Lake deposit while the western elongated 

anomaly is associated with the Caribou Lake gabbro that hosts Cu-Ni-PGE 

mineralization.  Units are in nanoTeslas.  The inset plot is an enlarged in view of the 

inversion area with drill-holes plotted in black.  Drillhole locations obtained from 

Avalon Rare Metals (2014). 

It is expected that the source of this large magnetic signal is the abundance of alteration 

minerals such as magnetite and hematite that are associated with REE mineralization 

within the Nechalacho deposit.  It is important to note that the anomalies, while indicative 

of REE deposits, are not caused by the REE but the mineralogy of the intrusions that are 
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associated with them (Verplanck and Van Gosen, 2011).  Therefore regions of high 

magnetic susceptibility will likely be associated with regions where primary minerals 

such a eudialyte and aegirine have been altered to magnetite.  In the case of the 

Nechalacho deposit, this occurs mainly within the basal zone, thus anomalous densities 

and magnetic susceptibilities are expected where the REE mineralization is present in 

larger concentrations (Sheard et al., 2012).  

2.4 Software and Inversion Setup 

The software used in this study is the University of British Columbia Geophysical 

Inversion Facility (UBC-GIF) software suite.  This suite is comprised of forward 

modelling and inversion software for electromagnetic, induced polarization, magnetic 

and gravity data in 3-dimensions (UBC- Geophysical Inversion Facility, 2013).  The 

main program used in this study is the magnetic (mag3d) code (details provided below).  

This program runs with important user inputs including mesh, topography, data, model, 

and weighting files (Figure 2.5). 
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Figure 2.5:  Program workflow for MAG3D. GRAV3D follows a similar workflow 

by substituting the gravity programs for their magnetic counterparts (UBC-GIF, 

2013). 

The mesh file defines the desired model resolution as a series of three-dimensional cells, 

with each dimension specified.  These dimensions need to be chosen in advance with a 

few guidelines in mind.  The first, as mentioned above, is the resolution that is desired for 

the inverted model.  Smaller cells will result in the model calculating susceptibilities or 

densities for more individual points, making it possible to detect changes in physical 

properties on a smaller scale.  The tradeoff is that the more cells the model has, the more 

computational power it uses and the more time-consuming the inversion.  Also, there is 

some tradeoff between the lateral dimensions of the cells and the vertical dimension.  The 

vertical z-dimension of the cell should be approximately half of the horizontal x-y-

dimensions (UBC- Geophysical Inversion Facility, 2013).  Another important 

consideration is the resolution of discrete geological information such as borehole 
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readings or core sample measurements.  In this case, magnetic susceptibility 

measurements were taken every 1 metre on the core.  However the horizontal positions of 

the drillholes are unequally distributed with a high density of holes in the centre of the 

region.   

With all of these guidelines in mind, cells were chosen to be 25 metres in the x and y-

dimensions and 10 metres in the z-dimension.  This results in two cells per magnetic field 

data point as the 250 metre line spacing has been grid interpolated to 50 metre intervals 

between data points.  This provides a vertical resolution sufficient such that the resolution 

of the borehole magnetic susceptibility data remains useful, without the inversion being 

too computationally expensive.  Different meshes used in magnetic inversions of the 

region ranged from 70 000 cells to more than one million cells with run times of 20 

minutes to 36 hours, respectively.  While grid resolution is important, an additional factor 

that affects the computation time is how tight the constraints are on parameters such as 

measured susceptibilities.  Meshes with larger numbers of cells can run faster if the 

starting model is closer to the converging point and the inversion is given room for error.   

The inversion itself works by calculating a model objective function φ, which is then 

minimized in order to find a geophysical model that best fits the data.  The objective 

function is defined by: 
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where ωx, ωy, ωz and ωs are weighting functions used make the model smoother or 

coarser in the specific directions, κo is the reference model and ω(r) is the depth 

weighting function (UBC-GIF, 2013). 

As mentioned previously, a major challenge in the inversion process is non-uniqueness.  

The minimization of the objective function is an optimization problem for which there 

are potentially an infinite number of minima.  Therefore, constraints from real physical 

measurements within the region can help the optimization converge to an optimal 

solution or model.  A variety of model input files can be included in the inversion 

including an elevation file, a starting model, upper bounds, and lower bounds files (UBC- 

Geophysical Inversion Facility, 2013).  The elevation file is important because it allows 

the program to omit cells that are above the topography of the region.  This keeps the 

model from including extra signals from cells that are actually located above the surface.  

The starting model is used to help the inversion start off on the right track, or to set a 

starting point from a previous inversion in iterative processes.  Upper and lower bounds 

files place constraints on each individual cell, allowing for some flexibility to account for 

error in cells where the susceptibility values are known. 

The final important type of input file is the weighting file.  This makes use of the 

weighting functions (ωx, ωy, ωz and ωs) and allows the enhancement or attenuation of 

gradients at each point to result in smoother or more abrupt changes in the model 

(Lelièvre et al., 2009).  This is an important tool that can be used to smooth homogeneous 

packages of rocks while allowing for abrupt changes in physical properties that coincide 

with changes in lithology.   
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2.5 Magnetic Inversions and Discussion 

Most inversions on this scale are iterative processes.  A basic inversion is completed 

without any constraints and with each consecutive inversion more information is added to 

the problem until a reasonable result is reached that obeys all of the requirements 

(Lelièvre et al., 2009).  In this case, the magnetic field data alone is used in the first 

inversion to solve for a subsurface magnetic susceptibility model.  The results are then  

analyzed to determine which additional datasets are needed to constrain the following 

iterations. 

2.5.1 Unconstrained Inversion 

The first inversion performed on the data was a basic unconstrained inversion.  This 

involved taking the magnetic anomaly data (Figure 2.6) and the selected mesh and fitting 

an answer to the problem in the form of a subsurface model.  This elementary inversion 

allows for the calculation of the simplest model that fits the data.  While not usually a 

good representation of the true subsurface, it is a useful starting point for subsequent 

inversions.  Even in areas with simple subsurface geology, one inversion or iteration is 

never enough and subsequent revisions are implemented to improve the solution.  
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Figure 2.6:  The original magnetic field anomaly dataset for the Thor Lake region 

selected for this study.  UTM coordinates shown in all figures and cross sections are 

NAD 83, Zone 11N.  There are 5265 datapoints with magnetic inclination (I) and 

declination (D) also specified. 

  

Figure 2.7 shows a cross-section of the unconstrained inversion.  This inversion included 

input files for the mesh, the magnetic field anomaly data, and the elevation.  The distance 
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between the point at which the measurement is taken and the ground is included in the 

magnetic data and accounted for in the inversion.  However, an elevation file is still 

preferable because it omits extra padded cells at the top of the mesh to account for 

topography or lack thereof. 

 

Figure 2.7:  A north-south (N-S) cross-section for the preliminary, unconstrained 

magnetic inversion of the Thor Lake study area along line 416550 Easting (UTM), 

looking west.  Units on the right side represent susceptibility in SI units.  Scale on 

the left is elevation above sea level (ASL) in metres. 

This inversion produces a simple, smooth result with a large anomaly along the base of 

the modeled region.  While this appears to have the sub-horizontal structure expected in 

the deposit, the anomaly is much deeper than the geologic structure would predict with 

much larger susceptibilities than those measured in the drillhole data.  This demonstrates 

the weakness of an unconstrained inversion.  The simplest model fits the long wavelength 

signal, resulting in the estimation of a large, deep anomaly at the lowest possible depth 

that, in amplitude, overwhelms the shallower, shorter-wavelength anomalies.  This is 
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evidenced in this model by the fact that the largest magnetic susceptibility values are 

those along the x-y plane at maximum depth.  A larger anomaly that lies deeper than the 

model allows could also produce this result but it is unlikely as several different 

maximum model depths were tested and each produced a similar model with a maximum 

anomaly at the lowest possible depth.  Since magnetic susceptibility data are available for 

boreholes in the region and current geological models lead to the expectation of a 

shallower deposit, the next logical step is to attempt to constrain the inversion with 

discrete magnetic susceptibility data. 

2.5.2 Adding Boundary Conditions 

The first step in constraining an inversion is to apply the information known from 

physical measurements to the problem.  In this case, the physical measurements are 

magnetic susceptibility readings from over 400 boreholes in the region (Figure 2.8).  

These measurements were collected at one metre depth intervals for a variety of vertical 

and angled boreholes.  In order to account for non-vertical and deviated boreholes, these 

measurements are taken as data points and binned into their respective cells based on 

their x, y and z locations.  Each cell that contained more than one measurement was then 

averaged over all measurements whose locations lied within the 25x25x10 metre cell.  

The averaged results produce a three-dimensional representation of the susceptibility 

values that includes every cell in the mesh, even if the cell value is zero (Figure 2.9).  It 

is important to note that the susceptibility model contains the measurements averaged 

over ten metre intervals of depth due to the resolution of the mesh.  Cells that did not 

contain any measurements were left null at this stage. 
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Figure 2.8:  Mesh grid in the x and y directions and the locations of the drillholes.  

Drillhole locations from Avalon Rare Metals (2014).  Northing and Easting are 

shown on the axes (UTM). 

 

Figure 2.9:  An N-S sample cross-section of the three-dimensional model created by 

binning magnetic susceptibility measurements.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres.   Drillholes numbers are labelled and their approximate orientation within 

the model are shown (Avalon Rare Metals, 2014).  Note the scaling with maximum 

values at approximately 0.217 SI. 
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The magnetic susceptibility reference model can be used in several different ways to 

constrain the data.  The model can be included as an input to the inversion as a reference 

model described in Equation 2 as κo, causing the inversion process to attempt to find a 

model as close to the given reference model as possible; this approach normally is used if 

the data are considered extremely reliable (UBC-GIF, 2013).  The reference model can be 

supplemented by an active cell matrix, which provides the program an estimate of the 

reliability of the values within each cell.  The active cell matrix is an input file in the 

same format as the model file and tells the program whether the cells are known or not 

and whether they should be included in the calculation of the objective function.  In this 

initial constrained inversion, the three-dimensional model was used as a reference model, 

along with an active cell matrix identifying all cells containing data; these accurate 

measurements were incorporated in the calculation.  However, the method produced an 

inversion that did not converge to a model that fit all of the given criteria within certain 

error bounds.  The lack of convergence likely is due to the combination of not allowing 

the data points any margin for error and the loss of resolution that occurred when binning 

the magnetic susceptibility measurements into the mesh cells.  Since reducing the cell 

size further would cost too much computational power, the best option is to allow the 

data cells a range to account for error and loss of resolution. 

In order to allow a range in measured data, maximum and minimum boundary input files 

are used.  These files contain data in each cell, similar to the model file but in this case 

with each cell containing a ceiling or floor for the possible solution for that cell (Lelièvre 

et al., 2009).  Adding 0.2 to each model cell where there is a value establishes a 

maximum boundary file and subtracting 0.2 from each model cell with data makes a 
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minimum boundary file.  Each valued cell therefore has +/-0.2 susceptibility, and all cells 

that did not contain data were given a large range with a standard minimum value of 0 

and a maximum of 0.6 to avoid the model predicting unrealistically high susceptibilities.  

Upon utilizing these boundary conditions for the inversion, as well as using the three-

dimensional model as a starting model, a result similar to that of the unconstrained 

inversion is obtained (Figure 2.10).   

 

Figure 2.10:  Magnetic inversion constrained using maximum and minimum 

boundaries derived from borehole susceptibility measurements (N-S line 416550 

Easting (UTM), looking west).  Units on the right side represent susceptibility in SI 

units.  Scale on the left is elevation above sea level (ASL) in metres. 

As in the case of the unconstrained inversion, a large anomaly with susceptibilities larger 

than those of the anomalous cells in the three-dimensional model appears at the 

maximum depth.  Since this large anomaly occurs even with boundary conditions 

implemented, it suggests that there must be large signal from deep within the subsurface 

interfering with the shallower signal that is the primary interest of this study.  Thus the 
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identification and removal of this deep-seated signal is necessary before a reliable 

resulting model can be obtained. 

2.5.3 Upward Continuation 

Deeper anomalies that influence the data are characterized by longer wavelength signals.  

Consequently, in order to remove the large excess long wavelength signal, some 

wavenumber filtering must be applied.  The wavenumber is defined by: 

 
𝑘 =

2𝜋

𝜆
 

(3) 

where k is the wavenumber and λ is the wavelength (Blakely, 1995).  A process called 

upward continuation can transform the field measured from one surface into a field as 

measured from another surface.  This is useful because smaller wavelength signals are 

attenuated over shorter distances than longer wavelength signals, so increasing the 

distance between the measurement and the surface will attenuate the larger wavenumbers 

(Blakely, 1995).  The data can be continued upward to identify smoother, deeper signals 

in the data.  While it may seem that this is contrary for the problem at hand, where 

shallow features are of interest, this methodology also can be used to filter out the smaller 

wavenumber, larger wavelength signals. 

The continuation itself is a complex process of adjusting the potential field to a new 

height and integrating it over the x and y-dimensions.  This process can be simplified by 

transforming the problem to the Fourier domain.  By converting the data to the frequency 

domain, the upward continuation can be carried out by multiplying it by a filter operator: 

 𝑇(𝑢, 𝑣) = 𝑒−Δ𝑧|𝑘|,        Δ𝑧 > 0   (4) 
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where Δz is the positive value by which the data will be upward continued in the z-

dimension and k is the wavenumber (Blakely, 1995).  Downward continuation is not 

easily implemented.   From this equation, a negative Δz would result in larger 

wavenumbers being amplified rather than attenuated.  However, while the smaller 

wavelength signal is of interest here, it is important to note that any noise will be 

contained in the smaller wavelengths as well and therefore also will be amplified.  

Depending on the noise, this can result in the process becoming unstable.  For this reason, 

it is a much simpler problem to first upward continue the data to obtain the larger 

wavelength signal, and then subtract this signal from the original data to filter it out.  The 

results of this transformation are shown in Figure 2.11. 
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Figure 2.11:  Plan view of the inversion area showing transformation of data from 

the subtraction of upward continued data.  Top left is the original anomaly data, top 

right is the upward continued data and the bottom right is the residual data.  Note 

the different scales; all in nanoTeslas. 

This downward continuation produces a dataset that contains the same features as the 

original, but with a large decrease in amplitude.  Maximum susceptibilities have gone 

from approximately 1200 to 750 SI units.  In the upward continued dataset (before 

subtraction) there is some evidence for cycle wrap-around associated with the Fourier 

transform.  This aliasing is likely due to undersampling of data which causes high 
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frequency signals to wrap around producing multiples of the signal (Pratt, 2015).  

However, the magnitude of this wrap-around was deemed to be small enough to have a 

negligible effect on the inversion.   

The resultant dataset was then used in place of the original dataset, along with the mesh, 

elevation, and boundary input files in an inversion.  This next iteration of the inversion 

process can be seen in Figure 2.12.  Successful implementation of the upward 

continuation process leads to removal of the large, smooth anomaly at the bottom of the 

model.  The resulting features resemble the structures expected from the local geology in 

the subsurface in this region.  Most of the large susceptibility cells lie on a sub-horizontal 

plane that ranges from approximately 100 metres below sea level to 50 metres above sea 

level.  While more reflective of the known geology than the result of the previous 

constrained inversion, this model still has room for improvement as the anomaly appears 

discontinuous and choppy, more than expected from the geological setting.  However the 

model is converging to a more geologically appropriate representation of the smaller 

scale features after filtering.  The weighting coefficients mentioned above could produce 

a smoother, more continuous model and provide a more accurate and detailed result. 
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Figure 2.12:  Magnetic inversion of the Thor Lake region with long wavelength 

signal subtracted and upper and lower bounds applied (N-S line 416550 Easting 

(UTM), looking west).  Units on the right side represent susceptibility in SI units.  

Scale on the left is elevation above sea level (ASL) in metres. 

2.5.4 Gradient Attenuation and Enhancement 

Adaptations to the model by adjusting the weighting function in each direction can 

enhance large changes in magnetic susceptibility and thus, potential lithology changes, 

while smoothing regions of homogenous lithology to allow for a more geologically 

plausible model.  This method, developed by Lelièvre et al. (2009), relies on a reasonably 

accurate starting model.  The gradient is calculated at each cell within the current best 

model in all three dimensions.  Weighting model files then are created for each 

dimension separately, assigning weighting values that are inversely proportional to the 

magnitude of the gradient at that cell.  Cell volumes exhibiting high gradients are given 

lower weighting values, to allow the model to be less smooth, resulting in abrupt changes 

in magnetic susceptibility in these regions during the inversion and simulating cleaner 

lithological contacts in the model.  Volumes with low gradient suggest a common 
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lithology, leading to these regions being smoothed by higher weighting values (Lelièvre 

et al., 2009).  This is an iterative process where the weighting file is calculated after each 

inversion and then used in the subsequent inversion. 

Input files for these inversions include the model from the previous iteration (used as a 

starting model), the weighting file calculated from said model, the traditional mesh used 

in all inversions as well as the standard data and elevation files.   A preliminary result 

after the third iteration can be seen in Figure 2.13. 

From the gradient smoothing technique, the model has become noticeably less 

discontinuous.  In regions where the anomaly once appeared choppy, it is now smoother 

and bears a closer resemblance to the continuous structure expected based on the 

geological setting.  Additional iterations in this manner could prove to be an excellent 

way to allow the model to better reproduce the actual geological conditions that occur in 

the subsurface. 
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Figure 2.13:  Magnetic model (N-S line 416550 Easting (UTM), looking west) with 

three iterations of gradient enhancement and attenuation.  Units on the right side 

represent susceptibility in SI units.  Scale on the left is elevation above sea level 

(ASL) in metres. 

2.6 Geological Interpretation and Implications 

In order to assess the validity of a model obtained from an inversion, forward modeling 

was used to calculate an estimated data field using the model.  This field then was 

compared to the original data in order to get a prediction of how well the new model truly 

fits the data.  Figure 2.14 shows the original data compared with predicted data from the 

best inversion to date as well as the residuals.  In analyzing the residuals, the data fits 

within approximately +/-5 nanoTeslas everywhere in the region of interest.  It is also 

important to note that the distribution of these differences is relatively random throughout 

the region and does not have a coherent spatial pattern.  The lack of a spatial pattern 

implies that the inversion is not systematically biasing susceptibilities in certain parts of 

the region, but represents random error.  
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Figure 2.14:  Plan view of the inversion area comparing the data (a) to the forward 

modeled data from the model (b).  The residuals at the bottom (c).  Units are in 

nanoTeslas. 

The model shows a sub-horizontal layer of high magnetic susceptibility that ranges in 

depth between approximately 200 metres above sea level to sea level (0 metres) (Figure 

2.15).  This anomaly is located near the centre of the inversion area in the vicinity of 

Thor Lake and appears to extend laterally for approximately 2500 metres along the north-

south line at 416550E.  While the anomalous body is not laterally continuous in its 

entirety, there is an overall flat-lying trend.  The lateral continuity could be improved by 

implementing smoothing in the horizontal directions.  The anomaly also forms a gently 

sloping dome-like structure which could represent the expected form of the NNS.  The 
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magnetic susceptibilities tend to increase with depth until they reach the sub-horizontal 

structure, after which they start to decrease gradually.  This reinforces geological studies 

that suggest increasing mineralization of iron-rich alteration minerals, such a magnetite, 

with depth to the bottom of the basal zone, followed by a gradual decrease.  This implies 

that the largest susceptibility layer is, in fact, the basal zone where higher proportions of 

HREE are associated with magnetite (Sheard et al., 2012). 

 

Figure 2.15:  Comparison of the current geological model (top, along line 416800 

Easting (UTM), looking west) with the best magnetic geophysical model (bottom, 

along line 416550 Easting (UTM), looking west).  The red line in the magnetic model 

is an early delineation of the deposit.  Yellow lines are to indicate depth intervals.  

Units on the right side represent susceptibility in SI units.  Scale on the left is 

elevation above sea level (ASL) in metres.  Geological model adapted from 

Ciuculescu et al., 2013. 
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Comparing these results with the current geological model, the depths and approximate 

structure of the anomaly coincide reasonably well with the basal zone top and bottom 

layers (Figure 2.15).  The approximate depths to the inferred basal zone of 30-220 metres 

coincide with the thicknesses of the alteration zone estimated from current exploration 

methods to be between 80 and 200 metres.  However, the lateral extent of the deposit 

towards the north direction appears to extend farther under the hanging wall of the Thor 

Lake Syenite than predicted by the current exploration methods (Figure 2.16).  While 

these results are preliminary, the potential for future constraint of this northern edge 

could provide better estimates of additional mineralization in this direction.  The model 

also shows additional magnetically susceptible regions which are deeper than the defined 

mineralized zone in the NNS.  Although these could be artifacts in the model that may be 

removed by further constraints, they could be signal produced by packages of abundant 

mineralization of iron oxides.  A third possibility is that they are produced by underlying 

aegirine nepheline syenite which is apparent in the drillhole logs.  Due to lack of 

constraining measurements beneath the basal zone, the deeper, long wavelength signal is 

difficult to model with sufficient confidence.  Another data source such as gravity 

measurements could help determine whether these anomalous cells are indeed artifacts or 

caused by subsurface geology. 
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Figure 2.16:  A projection looking north of a smoothed isosurface of the high 

susceptibility region displaying all cells that have susceptibilities greater than 0.1 SI 

to show the lateral extent.  Note that even with smoothing, the model is still 

somewhat discontinuous. UTM Eastings are labeled along the bottom while 

elevation in metres ASL are labeled on the left side.  Units on the right side 

represent susceptibility in SI units. 

While the current best model does not show clear indications of the dykes known to be in 

the area, complex structural features may become apparent with the implementation of 

another data source.  There are some shallower features that could be glimpses of the 

north-east trending Hearne dykes, however there is not enough evidence at this point to 

infer this with any reliability.  Strategic drilling has targeted dykes with some magnetic 

signature cross-cutting the deposit, however no signal within the model is clear enough to 

be designated a Hearne dyke.  This could be caused, in part, by the horizontal cell 

dimensions of 25 metres in either direction averaging out the signal from these relatively 

narrow structural features into broader cells.  On the magnetic dataset there is a northwest 

trending arm at the north end of the inversion field which is likely related to the Indin 
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dykes, known for their prominent magnetic signals (Mumford and Cousens, 2014).  This 

could account for some of the apparent extra lateral extension of the deposit signature to 

the north within the model.  There is a relatively strong signal further north and west of 

the cross-section shown that may be related to this dyke.  Further modeling is necessary 

in order to conclude whether or not these signals are, in fact, related to that dyke.  Cross 

sections of the best current geophysical model of the Thor Lake inversion study area are 

provided in the appendices.   

2.7 Future Work 

2.7.1 Gravity Implementation 

The conclusions from this study could be tested by the implementation of gravitational 

field data.  The association of iron-oxide alteration minerals with REE mineralization 

results in prominent magnetic signals produced within the deposit.  However, this is not 

the only signal produced within the deposit that has the potential to be better 

characterized.  The inversion region also contains a spike in the vertical component of the 

gravitational field.  This signifies that there is excess mass caused by a high density body 

in this region, likely associated with the higher density cumulate minerals which contain 

the REE.  Gravity inversions of the region could provide some insight into the subsurface 

geology, as changes in density would represent potential lithology differences that may 

not be accompanied by a change in magnetic susceptibility.  For this reason, the next step 

in this research is to investigate the anomalous gravity signal and invert for a density 

contrast model.  This can be carried out with UBC-GIF’s grav3d program which works 

very similarly to mag3d.  While no extensive modeling has been completed on this aspect 
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yet, a preliminary model without any constraints or boundary conditions has been 

obtained (Figure 2.17). 

 

Figure 2.17:  A preliminary gravity model of the Thor Lake region with no 

constraints at N-S line 416550 Easting (UTM), facing west.  Units are in g/cm3 

density contrast.  Scale on the left is elevation above sea level (ASL) in metres. 

Similar to the first magnetic inversion, the model shows a high density anomaly in the 

deepest cells in the centre of the model.  Again, this likely is caused by lack of 

constraining parameters, resulting in the simplest possible model that fits the long-

wavelength signal.  However, a new problem arises that was not encountered in the 

magnetic inversions; the lack of physical measurements to constrain the inversion.  The 

magnetic inversions could be constrained using borehole magnetic susceptibility 

measurements, so a similar workflow will be necessary for a gravity inversion.   

Future study on creating a density model will assess the validity of using a gradient 

enhancement and attenuation technique to use the current best magnetic model to 

constrain a gravity model.  The methodology behind this approach remains the same as 
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the smoothing technique used in magnetic modeling.  By enhancing the gradient in 

regions of potential lithological contacts, it will allow for sharp density contrasts.  

Attenuating the gradient in regions of constant lithology can encourage constant densities 

throughout those cells (Lelièvre et al., 2009).  If successful, the gravity model could 

prove to be extremely beneficial to the current magnetic model through cooperative 

inversion methods. 

2.7.2 Joint Inversion 

The idea behind joint or cooperative inversion is to sense the Earth in as many ways as 

possible and incorporate this into one accurate model.  Different types of geophysical 

surveys are able to sense different characteristics of the true subsurface to different 

degrees of accuracy (Lelièvre et al., 2009).  For example, magnetic field data can sense 

high concentrations of magnetic elements beneath the surface while gravitational field 

data can sense high or low density rock types.  In some cases, these anomalous densities 

can occur within the same rock type that contains magnetic elements.  However, a 

magnetic anomaly can be caused by a completely different rock type than those that 

result in a gravitational anomaly.  For this reason, a wider range of geophysical data 

results in a more integrated view of the subsurface.   

Implementation of a density model into the current susceptibility model is a direct 

extension of the gradient work completed in magnetic smoothing processes.  The method 

developed and implemented by Lelievre et al. (2009) to combine the lateral efficiency of 

gravity inversions with the depth efficiency of tomography inversions.  The end goal of 

this study is to implement such a technique by adding and normalizing gradients from 
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meaningful density and susceptibility models and using these to inversely determine the 

smoothing weights in subsequent inversions. 

2.7.3 Caribou Lake 

Thor Lake is one of two regions of interest due to the mineralization within the 

Nechalacho site.  The other is located at Caribou Lake, to the west of Thor Lake.  The 

Caribou Lake gabbro, located in the western lobe of the BLC, is a host for Cu-Ni-PGE 

mineralization (Mumford, 2013), and can be seen in the airborne magnetic field survey 

(Figure 2.3) as the prominent anomaly to the west.  Upon completing the inversions for 

the Thor Lake region, a similar workflow will be extended to Caribou Lake.  Gravity and 

magnetic anomalies are expected to assist in the identification of mineralization in this 

area.  However gravity is the preferred dataset due to the potential for remanent 

magnetization associated with these deposits (King, 2007). 

2.8 Conclusions 

Thus far, magnetic field inversion has proved to be a useful tool for subsurface mapping 

of the Nechalacho deposit at Thor Lake.  To date, the overall structure of the best three-

dimensional models appears to be a flat lying, highly magnetic deposit with the largest 

signals up to depths of approximately 200 metres beneath the surface.  This agrees well 

with the understood subsurface geology.  Laterally, the inversions show higher 

susceptibilities extending further to the north, suggesting that there may be possible 

extensions of the magnetite-bearing alteration zones associated with REE mineralization.  

The models also show potential evidence for the Hearne dykes that are known to cross-

cut the deposit, although the east-northeast trending anomalies currently cannot currently 
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be traced clearly enough to make any such conclusions at this time.  The magnetic field 

data also shows clear indication of a northwest trending dyke associated with the Indin 

swarm.  This dyke could be the cause of the increased magnetic susceptibilities to the 

north, although there is some indication that it also appears in the model further to the 

northwest.  Cooperative inversion with the gravity dataset is expected to help define those 

features that cannot be clearly delineated from the magnetic models. 
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Appendices 

The appendices contain cross sections of the best current geophysical model of the Thor 

Lake inversion study area.  The scale on the right indicates magnetic susceptibilities in SI 

units.  The left axis shows elevation in metres above sea level.  Coordinates for the 

sections are all UTM Datum NAD 83, Zone 11N.   
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Appendix A:  Step-by-Step Cross-Sections Facing North 

Appendix A contains cross sections at 200 metre intervals along UTM northing lines 

(east-west sections facing north), with each section spanning 3200 metres across.  See 

figures A1-A20. 

 

Figure 2.18:  Cross-section of the best current geophysical model along E-W line 

6885000 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.19:  Cross-section of the best current geophysical model along E-W line 

6885200 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.20:  Cross-section of the best current geophysical model along E-W line 

6885400 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.21:  Cross-section of the best current geophysical model along E-W line 

6885600 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.22: Cross-section of the best current geophysical model along E-W line 

6885800 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.23: Cross-section of the best current geophysical model along E-W line 

6886000 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.24: Cross-section of the best current geophysical model along E-W line 

6886200 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.25:  Cross-section of the best current geophysical model along E-W line 

6886400 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.26: Cross-section of the best current geophysical model along E-W line 

6886600 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.27:  Cross-section of the best current geophysical model along E-W line 

6886800 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.28: Cross-section of the best current geophysical model along E-W line 

6887000 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.29: Cross-section of the best current geophysical model along E-W line 

6887200 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.30: Cross-section of the best current geophysical model along E-W line 

6887400 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.31:  Cross-section of the best current geophysical model along E-W line 

6887600 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.32:  Cross-section of the best current geophysical model along E-W line 

6887800 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.33:  Cross-section of the best current geophysical model along E-W line 

6888000 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.34:  Cross-section of the best current geophysical model along E-W line 

6888200 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.35:  Cross-section of the best current geophysical model along E-W line 

6888400 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.36:  Cross-section of the best current geophysical model along E-W line 

6888600 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Figure 2.37:  Cross-section of the best current geophysical model along E-W line 

6888800 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

 

Figure 2.38:  Cross-section of the best current geophysical model along E-W line 

6889000 Northing (UTM), looking north.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 
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Appendix B:  Step-by-Step Cross-Sections Facing West 

Appendix B contains cross sections spaced every 200 metres along UTM easting lines 

(north-south sections facing west), with each section spanning 4000 metres across.  See 

figures A21-A37. 

 

Figure 2.39:  Cross-section of the best current geophysical model along N-S line 

414800 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.40:  Cross-section of the best current geophysical model along N-S line 

415000 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.41:  Cross-section of the best current geophysical model along N-S line 

415200 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.42:  Cross-section of the best current geophysical model along N-S line 

415400 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.43:  Cross-section of the best current geophysical model along N-S line 

415600 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.44:  Cross-section of the best current geophysical model along N-S line 

415800 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.45:  Cross-section of the best current geophysical model along N-S line 

416000 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.46:  Cross-section of the best current geophysical model along N-S line 

416200 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.47:  Cross-section of the best current geophysical model along N-S line 

416400 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.48:  Cross-section of the best current geophysical model along N-S line 

416600 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.49:  Cross-section of the best current geophysical model along N-S line 

416800 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.50:  Cross-section of the best current geophysical model along N-S line 

417000 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.51:  Cross-section of the best current geophysical model along N-S line 

417200 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.52:  Cross-section of the best current geophysical model along N-S line 

417400 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.53:  Cross-section of the best current geophysical model along N-S line 

417600 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Figure 2.54:  Cross-section of the best current geophysical model along N-S line 

417800 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 

 

Figure 2.55:  Cross-section of the best current geophysical model along N-S line 

418000 Easting (UTM), looking west.  Units on the right side represent susceptibility 

in SI units.  Scale on the left is elevation above sea level (ASL) in metres. 
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Chapter 3  

3 Implementation of Gravity Data for Isolated and Joint 
Inversion Methods at Thor Lake, N.W.T. 

This section was written and submitted as a follow up open-file report to Chapter 2 for 

the Northwest Territories Geological Survey.  This study implements airborne 

gravitational field data and new techniques for obtaining reference models via lateral 

interpolation to create an updated subsurface density model for the Thor Lake region.  

These techniques also have been implemented on the magnetic data in order to improve 

the previous model.  Both potential fields can be used to track the same anomalous layer 

that acts as a host to the Nechalacho rare earth element deposit.  Using structural 

cooperative inversion methods to influence the individual models, joint inversions were 

completed with the goal of further delineating the deposit.  Density models agree well 

with geological findings as well as the magnetic susceptibility models for both the 

geometry and location of the deposit.  It is shown that the method of lateral interpolation 

used here is an effective way to increase the amount of data in the reference model for a 

deposit of this geometry.  Joint inversion techniques help to resolve some logistic issues 

with the earlier magnetic modelling and produce models with anomalous layers similar 

to those of the isolated inversions, but with greater confidence due to the incorporation of  

multiple datasets.   

3.1 Introduction 

Geophysical inversion is an excellent technique to supplement geological findings in 

regions where subsurface geophysical measurements may vary systematically with 

changes in lithology or subsurface material.  This applies to a wide range of disciplines 
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from the petroleum and mineral exploration industries to infrastructure planning and 

construction.  Making use of potential field data that is relatively inexpensive and 

commonly acquired, as well as observations made by geologists such as core logs, a 

geophysical inversion can be extremely useful for mapping the subsurface.  In some 

scenarios, the lithological variations can be sensed by multiple different types of potential 

field.  This special circumstance bears with it the opportunity to look at the subsurface 

from multiple points of view.   

In this report, previous work with magnetic field data from Chaper 2 (Kouhi and Tiampo 

(2016)) will be used as a starting point and built upon with the addition of gravitational 

field data from the Thor Lake region in Northwest Territories, Canada.  Previous 

magnetic inversions revealed a deep-seated magnetic signal which was removed with the 

use of wavenumber filtering techniques in order to better characterize a shallow, sub-

horizontal region of high magnetic susceptibility that ranges from approximately 50 to 

200 metres depth (Kouhi and Tiampo, 2016) (Figure 3.1).  The model shows this high 

susceptibility region extends for over 1500 metres and likely represents a lithology with 

high concentrations of magnetite.   
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Figure 3.1:  A north-south (N-S) cross-section of the best magnetic susceptibility 

model from the earlier Thor Lake study area, Kouhi and Tiampo (2016).  The figure 

displays easting line 416550 (UTM), looking west.  Units on the right side represent 

susceptibility in SI units.  Scale on the left is elevation above sea level (ASL) in 

metres. 

3.1.1 Background Geology 

The Thor Lake property is located approximately 100 kilometres southeast of 

Yellowknife, NT within the Blatchford Lake Igneous Complex (BLIC) (Figure 3.2).  The 

BLIC is divided into the eastern lobe and the western lobe and then further subdivided 

into six units based on lithology (Davidson, 1978, 1982).  The eastern lobe is comprised 

of the 2176.2 ± 1.3 Ma Grace Lake granite (Sinclair et al., 1994)) and the 2176.8 ± 1.6 

Ma Thor Lake syenite (TLS)(Mumford, 2013) which have a gradational contact and are 

interpreted to have been part of the same intrusive event (Davidson, 1982).  Within the 

TLS lies the Nechalacho Layered Suite (NLS), formerly known as the Lake Zone 

(Pinckston and Smith, 1995), which is a sequence of silica-undersaturated intrusive layers 

which display increasing alkaline characteristics with depth (Sheard et al., 2012).  The 



80 

 

NLS is contained within the Thor Lake property and hosts the world class Nechalacho 

deposit, one of the world’s largest undeveloped heavy rare earth element deposits.    

 

Figure 3.2:  Location map showing the Thor Lake area, the Northwest Territories.  

Blue shaded area in the red inset map shows the inversion area in this study (Kouhi 

and Tiampo, 2016; adapted from Google Earth, 2015). 

The NLS is a hydrothermally altered intrusion that spans approximately 1.8 kilometres in 

the north-south direction and 2.1 kilometres in the east-west direction and reaches depths 

of at least 1000 metres based on current drilling (Möller and Williams-Jones, 2016).  The 

Nechalacho rare metal deposit is hosted within a highly altered region in the upper 300 

metres of the intrusion and is comprised of the upper zone and basal zone (Sheard et al., 

2012)(Figure 3.3).  Both zones are comprised of a sequence of layers hosted within an 

aegirine-rich foyaite and pinch out toward the edges of the intrusion (Möller and 
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Williams-Jones, 2016).  The upper zone is characterized by its abundance of interstitial 

eudialyte within the foyaite and the basal zone is characterized by densely packed 

eudialyte cumulate and eudialyte syenite (Möller and Williams-Jones, 2016).   The upper 

zone is approximately 15 to 30 metres thick and contains high concentrations of light rare 

earth elements (LREE) while the basal zone ranges from 15 to 60 metres in thickness and 

hosts large concentrations of heavy rare earth elements (HREE) (Sheard et al., 2012).  

Möller and Williams-Jones (2016) interpreted the NLS to have formed from the bottom-

up and top-down, meeting at the foyaite that hosts the upper and basal zones, resulting in 

a horizon sandwiched between the two different crystallization sequences.  Minerals such 

as sodalite and nepheline formed first, followed by potassium feldspar which led to 

increasing iron enrichment upward from the bottom and downward from the top, 

culminating in the densely packed eudialyte cumulate (Möller and Williams-Jones, 

2016).  The later hydrothermal alteration that overprinted the previous mineralogy 

resulted in the abundance of magnetite as the main alteration mineral in the deposit, with 

hematite prevailing as the alteration mineral below the basal zone (Sheard et al., 2012). 
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Figure 3.3:  A basic geological model of the Nechalacho deposit (modified from 

Ciuculescu et al., 2013).  The Nechalacho nepheline syenite (NNS, green) includes the 

upper and basal zones, while the Thor Lake syenite (TLS) is represented in orange.  

The blue lithology is the roof sodalite.  The vertical scale is in metres ASL. 

     

3.1.2  Background Geophysics 

As stated above, previous models for subsurface magnetic susceptibility were obtained 

through constrained geophysical inversion (Kouhi and Tiampo, 2016).  All inversions 

were completed using the mag3d component of the University of British Columbia 

Geophysical Inversion Facility (UBC-GIF) software which allows for the final model to 

be constrained based on subsurface geophysical measurement and regional geological 

trends (UBC-GIF).  The airborne total magnetic field data used was obtained for Natural 

Resources Canada (NRCan) by Fugro GeoServices Ltd. with a linespacing of 250 metres 

and flown at an altitude of 100 metres (NRCan, 2011)(Figure 3.4).  Kouhi and Tiampo 
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(2016) treated the data using wavenumber filtering techniques to remove long 

wavelength signal in order to concentrate the study on the shallow anomalies (Blakely, 

1995).  This study produced a preliminary magnetic susceptibility model based on 

geophysics that displayed many of the characteristics expected for the deposit based on 

previous geological work (Sheard et al., 2012; Möller and Williams-Jones, 2016).  While 

this model corresponds well with previous geological models both spatially and 

geometrically, it lacks the lateral continuity expected in the highly anomalous layer.  The 

purpose of this study is to improve and refine the magnetic susceptibility model using a 

second potential field dataset. 

 

Figure 3.4:  Map of the airborne magnetic field anomaly for the inversion area.  

UTM coordinates shown in all figures and cross sections are NAD 83, Zone 11N.  
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There are 5265 data points with magnetic inclination (I) and declination (D) 

specified as well. 

In addition to total magnetic field data, the survey also simultaneously collected 

gravitational field data (NRCan, 2011)(Figure 3.5).  This data, coupled with density 

measurements taken on core samples at approximately 5 metre intervals, allows for a 

constrained inversion of gravity data to create a subsurface density model.  This inversion 

is run using the grav3d program  that inverts for a subsurface density model within the 

UBC-GIF software in a similar fashion to mag3d.  The density model then can be used 

cooperatively with the previous magnetic susceptibility model in an attempt to further 

delineate the boundaries of the deposit and refine both models. 
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Figure 3.5:  Map of the airborne gravity anomaly for the inversion area.  There are 

5265 data points.  A gravitational high can be seen in the centre of the region, likely 

from a region of high density associated with the Nechalacho deposit. 

3.2 Methods 

3.2.1  Gravity 

The rock paragenesis for the Nechalacho deposit makes for an ideal scenario for 

inversion of gravity data.  The region of interest is located at a local high gravity 

anomaly, suggesting that there is excess mass beneath the surface.  Due to the nature of 

the formation of the intrusion, with minerals forming from the bottom up beneath the 

deposit and from the top down above the deposit, a large proportion of the high gravity 

signal likely stems from the sandwich layer that hosts the majority of the REE (Möller 
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and Williams-Jones, 2016).  Due to its high relative density, this densely packed layer of 

secondary minerals altered from eudialyte acts as an excellent target to model through the 

inversion of airborne gravity data.  As a result, the high density layers modelled at this 

depth can be used as a proxy for rare element mineralization, and thus the deposit.  

The general workflow for previous magnetic inversions consisted of solving for an 

unconstrained model, then constraining cells where subsurface data has been obtained, 

followed by wavenumber filtering of airborne data and finally, gradient smoothing 

(Kouhi and Tiampo. 2016).  While the overall process remains similar, a few major 

adaptations from this workflow have been implemented for this study.   

The first of these adaptations is the exclusion of wavenumber filtering in favour of a 

deeper mesh.  The mesh for the previous magnetic model consisted of cells of 25 metres 

in the north-south and east-west directions and 10 metres in thickness, ranging to depths 

of approximately 400 metres.  The approach in this study was to mitigate additional error 

introduced in the wavenumber filtering process by eliminating it altogether and allowing 

for the deep-seated signal to be modelled in the subsurface.  Therefore, the mesh for the 

gravity inversions was changed as suggested by UBC-GIF (2013), to include cells of size 

20 metres in both lateral directions and 10 metres in thickness, ranging down to depths of 

2000 metres (Figure 3.6).  Ideally, this removes the need to wavenumber filter the data.  

However, it adds a degree of uncertainty because only one drillhole (L09-194) reaches to 

depths of more than 400 metres as it extends down to approximately 1000 metres (Avalon 

Rare Metals, 2014).  Therefore, only the top 400 metres are reasonably well constrained 

and cells below suffer from lack of uniqueness.   
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Figure 3.6:  The mesh for the geophysical inversion, shown here, spans 4000 metres 

in the north-south direction and 3200 metres in the east-west direction.  Cell 

dimensions are 20x20x10 metres in the x,y and z directions.  The mesh contains 

6,044,577 cells in total (191x231x137). 

The other major adaptation from previous inversions is the implementation of a lateral 

interpolation method to the three-dimensional constraining model.   

3.2.2 Lateral Interpolation 

One of the major issues with any inversion is the problem of non-uniqueness.  This is 

generally overcome by implementing constraints or binding values on individual cells in 
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order to supplement the inverse problem with information that is already known.  In the 

inverse problem at hand, the airborne data is supplemented with geophysical 

measurements taken on core samples.  Kouhi and Tiampo (2016) use these measurements 

as upper and lower bounding constraints on cells that contain drillhole information by 

creating a three-dimensional model file (Figure 3.7).  This model file is obtained by 

binning and averaging values that are contained within the same cell.  While this method 

proved to be effective for modeling the approximate location and geometry of the 

deposit, the model obtained was discontinuous and lacked the relatively smooth lateral 

trend expected in the deposit.  Further examination of the three-dimensional model file 

shows that while data was taken from over 400 drillholes, only approximately 0.169% of 

the total number of cells actually contain values.  A large portion of these null cells can 

be attributed to the new mesh mentioned above.  Since drillhole L09-194 is the only data 

available that reaches depths greater than 400 metres, the majority of the cells below this 

point do not contain any data.  While this greatly affects the amount of uncertainty 

involved in modeling the deeper anomalies, the true region of interest for this study is 

contained within the top 400 metres (Ciuculescu et al., 2013).  A glance at the top 400 

metres of the three-dimensional model shows that approximately 0.552% of the cells 

contain data.  Although this is a significant improvement, a method of lateral 

interpolation between cells with data points was developed to enhance the amount of data 

in order to further smooth the inversion models. 



89 

 

 

Figure 3.7:  Sample cross-section from the three-dimensional reference model for 

core density data created from binning measured values into the cells without any 

interpolation (northing line 6885900 [UTM], facing north).  All density models 

display units on the right in +/- g/cm3 with respect to the average density (2.67g/cm3) 

and depths on the left in metres ASL. 

Different interpolation and lateral modeling techniques such as kriging were investigated 

in order to enhance the boundary models for inversion.  However, a more specialized 

approach to the problem was developed and used to create three-dimensional models to 

be used as reference and boundary constraining models in the inversion.  In this 

interpolation method, the north-south and east-west dimensions of the cells are used as a 

two-dimensional grid.  Any cell in the grid that contains a drillhole directly in it is 

assigned an arbitrary numerical value, referred to as the uncertainty value.  In this case 

the value assigned is four.  This point is then taken as the centre where the geophysical 

property value is relatively well-known.  From this centre, decreasing values are assigned 

as adjacent cells grow further from the centre (Figure 3.8).  For example, any cells 
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touching the centre cell (four) either diagonally or adjacently are assigned an uncertainty 

value of three.  Then any cells touching this first ring of adjacent cells (three) are 

assigned a value of two.  The final third ring of cells are assigned a value of one.  

 

Figure 3.8:  A simple diagram describing the assignment of uncertainty values for 

the lateral interpolation technique.  The star represents a cell with drillhole data 

and is assigned an uncertainty value of 4.  From here, uncertainty values decrease 

the further a given cell is away from the centre cell up to a maximum distance of 3 

cells away. 

These uncertainty values are used when evaluating the value of the geophysical 

measurement and when assigning a maximum and minimum value range for each cell.  

First, it is used when binning the geophysical measurement values.  The measurement 

value from the centre cell is binned into each cell surrounding it as described above, 
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however using the uncertainty value in each individual cell as a weighting factor for the 

measurement value.  Once all values are binned on all x-y planes, the averages in each 

cell are used as a three-dimensional reference model similar to Kouhi and Tiampo (2016).   

However, each cell now contains a weighted average based on its proximity to the centre 

cell.  Given a 7-by-7 grid where the centre cell, a cell where there is known drillhole data, 

is taken as the origin, mathematically the reference value for each cell can be described 

by: 

 
𝜑 =  

∑ 𝑈𝑖𝑗𝜑0

∑ 𝑈𝑖𝑗
,  

{𝑖 ∈ ℤ | − 3 ≤ 𝑖 ≤ 3} (1) 

 {𝑗 ∈ ℤ | − 3 ≤ 𝑗 ≤ 3} 

where φ is the geophysical reference value assigned to the cell, U is the set of uncertainty 

values for the cell, i and j are the distances in number of cells from a given geophysical 

measurement value (set as the origin) in the x and y directions respectively, and φo is the 

subset of geophysical measurement values that satisfy the conditions of i and j.  This is a 

weighted average based on uncertainty values described by the equation: 

 𝑈𝑖𝑗 = 4 − 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑖, 𝑗)),  {𝑖 ∈ ℤ | − 3 ≤ 𝑖 ≤ 3} (2) 

 {𝑗 ∈ ℤ | − 3 ≤ 𝑗 ≤ 3} 

Once the reference model is calculated, uncertainty values are also used to determine the 

range of the values allowed when creating maximum and minimum boundary files.  

Ranges are assigned as constant values based on the weighted average uncertainty value 

in each cell.  These constant values are added to or subtracted from the reference model 

value in a specific cell to create a maximum or minimum boundary file: 
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 𝑚𝑎𝑥(𝜑) =  𝜑 +  �̅� (3) 

 𝑚𝑖𝑛(𝜑) =  𝜑 − �̅�  

where Ū is the weighted average of the set of uncertainty values, U.  This technique of 

using measured geophysical data points takes advantage of the knowledge of the 

geological trend of the deposit.  Since the deposit is expected to be subhorizontal and 

contained within the top 400 metres (Ciuculescu et al., 2013), it can be assumed that the 

geophysical values are relatively continuous in both lateral directions and therefore may 

benefit from interpolation in these directions.  The three-dimensional reference model 

produced by this interpolation method is a vast improvement in terms of the quantity of 

cells that contain data (Figure 3.9).  Overall approximately 2.186% of the cells now 

contain data, and the top 400 metres reveals that approximately 7.129% of these cells are 

filled.  By inverse theory standards, this is a significant amount of data that can be used to 

constrain the model and remove ambiguity.  However, as with all interpolation methods, 

it must be used with caution as error in these values is created as a by-product of these 

assumptions.  A statistical variation of this method, as well as a comparison to classic 

kriging methods are discussed in section 3.5.1.    
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Figure 3.9:  Sample cross-section from the three-dimensional reference model for 

core density data created using lateral interpolation methods (northing line 6885900 

[UTM], facing north).  The reference model contains much more data than the 

previous three-dimensional model. 

3.2.3  Joint Inversion 

Geophysical measurements can be used to sense and differentiate a variety of different 

geological structures and trends.  For example, in the work by Kouhi and Tiampo (2016), 

subsurface magnetic susceptibility was used as a proxy for the degree of alteration as 

suggested by Möller and Williams-Jones (2016).  Total magnetic field anomalies are 

directly related to the volume of susceptible minerals beneath the surface.  Similarly, 

gravitational field anomalies are directly related to the density of the materials beneath 

the surface.  While these two potential fields track different variations in the subsurface, 

often there are correlations between minerals that display high magnetic susceptibilities 

and minerals that have high density.   



94 

 

The Nechalacho deposit represents an interesting case study for the use of joint inversion 

due to its complex paragenesis.  As summarized above, the magmatic layering from both 

the top and bottom of the intrusion resulted in a high density layer that hosts the deposit 

(Möller and Williams-Jones, 2016).  A later hydrothermal event altered the majority of 

the original mineralogy with magnetite being the major alteration mineral (Sheard et al., 

2012).  Due to the high iron content in the densely packed eudialyte, the largest 

proportions of magnetite, and thus the highest susceptibilities, are expected in the same 

region as the high density layers.  Therefore supplementing gravity inversions with 

knowledge of the lithological changes sensed by magnetic inversions and vice versa can 

be an effective way to help further delineate the boundaries of the deposit.  Each of these 

potential fields is sensing different geophysical properties of the subsurface lithology, 

therefore the technique is analogous to investigating beneath the surface from two 

different perspectives.  

The joint inversion methodology used in this study is adapted from the work by Lelièvre 

et al. (2009).  The method requires reliable models for all datasets based on knowledge of 

the geology.  For this study, this relies on having obtained reasonable results from 

individual gravity and magnetic inversions.  Lelièvre et al. (2009) described an L2-norm 

based approach in which the magnitude of the spatial model gradient of the best current 

model was used to adjust inversion smoothness weights.  The magnitude of the gradient 

given by: 

 
‖∇𝑚‖ =  √((∇𝑥𝑚)2 + (∇𝑦𝑚)

2
+ (∇𝑧𝑚)2) 

(4) 
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   where m is the current best model, and is used to inversely weight the smoothing 

weights (Lelièvre et al., 2009).  Where the gradient is high, smoothness is penalized to 

suggest a change in lithology and where the gradient is low, smoothness weights are 

increased to promote a smoother model in regions that are assumed to be homogeneous 

lithology.  This method was first introduced as a way to encourage sharp boundaries 

between rock units.  However its application to cooperative inversion techniques was also 

addressed (Lelièvre et al., 2009).  Models from different potential field datasets can be 

used to influence the lithological structure of one another by calculating the magnitude of 

the spatial model gradient for each dataset, as described above.  The magnitudes are then 

normalised, summed and used to adjust inversion smoothness weights for the subsequent 

individual inversions and then the process is repeated (Lelièvre et al., 2009).  This 

iterative process converges structural characteristics from each individual field into one 

weighting file that is then used as an equal influence in both subsequent individual 

inversions.  

A variation of this procedure, used in this study, makes use of an updated software 

package by UBC-GIF.  Rather than calculating the magnitude of the spatial model 

gradient, gradient tensors can be implemented into a smoothness weighting file.  In 

essence, this allows for the smoothness to be promoted or penalized depending on the 

changes in geophysical properties with direction.  Updates to both mag3d and grav3d 

allow for an input weighting file which contains data for each individual cell in the x, y 

and z directions (UBC-GIF, 2013).  The technique described above is then carried out 

without the use of the L2-norm, in an iterative fashion with the goal of refining the 

boundaries of the Nechalacho deposit.     
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3.3 Results 

3.3.1  Gravity 

Initial inversions of airborne gravity data were completed using basic input files.  These 

files are the mesh file which defines the cell sizes as well as the number of cells in each 

of the three dimensions (Figure 3.6), the airborne data file, and an elevation file.  The 

purpose behind starting with an inversion without any constraints is to analyze the 

problem in its simplest form before the complexity of constraining models and other such 

knowledge is included.  Figure 3.10 shows a cross-section that summarizes the results of 

the basic inversion.  The model has some structure that could be interpreted as layering.  

That layering could agree with a partial melting process in which denser crystals 

underwent gravitational settling first, followed by lighter, less dense crystals.  However, 

similar to unconstrained magnetic inversion results obtained by Kouhi and Tiampo 

(2016), the majority of the high anomaly in the gravitational field data is attributed to a 

source deep within the subsurface.  This is often a problem associated with the ambiguity 

of the inversion process.  As there are infinitely many solutions to the problem, inversion 

processes tend to place anomalies deeper, with higher geophysical property contrasts 

unless constraining parameters promote a more complex model. 
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Figure 3.10:  Cross-section of the preliminary, unconstrained gravity inversion for 

the Thor Lake study area (northing line 6885890, facing north).  Units on the right 

side represent density in g/cm3 above or below 2.67 g/cm3.  Scale on the left is 

elevation ASL in metres. 

By incorporating additional information about the subsurface that is known within 

reasonable error bounds through geophysical measurements, the problem of non-

uniqueness can be mitigated.  Figure 3.11 is a cross-section of the model and geological 

interpretation obtained through the addition of laterally interpolated maximum and 

minimum boundary files and reference models.  The contrast between the constrained 

model and the unconstrained model is immediately evident.  Similar layering structure 

can be seen beneath the deposit.  However this new model contains a large, highly dense 

layer within the top 400 metres.  Unlike the unconstrained model, this inversion had 

access to more information about the structure and expected values within the subsurface.  
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The result is a model where much of the signal that was assumed to originate deep 

beneath the surface in previous models is allocated to a relatively shallow region.   

 

Figure 3.11: Cross-section of the constrained gravity inversion for the Thor Lake 

study area (northing line 6885270, facing north).  A laterally interpolated reference 

model was used in the inversion.  Units on the right side represent density in g/cm3 

above or below 2.67 g/cm3.  Scale on the left is elevation ASL in metres.  The 

approximate interpretation of the Thor Lake syenite, Nechalacho nepheline syenite 

and Upper/Basal Zones have been included. 

The layer of high density forms a dome-like structure that extends from the surface at the 

apex down to depths of approximately 300 metres.  The anomaly extends for 

approximately 1800 metres in the east-west direction and approximately 2000 metres in 

the north-south direction.  Therefore, based on its geometry and location, it can be 

inferred that this represents the densely packed layer of secondary minerals after 

eudialyte that hosts the Nechalacho deposit.  Another way to evaluate the reliability of a 

model is to assess not only whether it agrees with known geological processes in the 
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region, but also if the model as a whole is geologically plausible.  An effective way to do 

this is through the representation of the anomaly as an isosurface (Figure 3.12).  

 

Figure 3.12: A density isosurface of the shallow, high density anomaly.  The figure 

displays densities greater than +0.1 g/cm3 within the top 400 metres.  Units on the 

right side represent density in g/cm3 above or below 2.67 g/cm3. 

The isosurface representation of the modelled deposit shows a relatively smooth layer of 

highly dense material.  Aside from the bulk mass near the centre of the inversion area, 

there are other small zones where highly dense material has been modelled.  These zones 

could represent pockets of densely packed mineralization or artifacts of inversion.  

However, it is also possible that they represent further extensions of the deposit that have 

been modelled as isolated features rather than a continuation of the main body.  Figure 



100 

 

3.13 shows a geological model by Ciuculescu et al. (2013) with the density isosurface 

approximately positioned as an overlay.  This geological model was created based on 

drillhole measurements and knowledge of subsurface geological trends.  The figure 

shows the difference in interpretation of the small isolated body just north of the main 

body.  In the geological model, this drillhole measurement data point was assumed to be 

a continuation of the main body, where in the geophysical model, the inversion has 

modelled it as a separate entity.  A future exploration goal to drill between these two 

bodies would help discern between these two possibilities and help to better evaluate the 

potential increase in REE mineralization to the north.      

 

Figure 3.13:  The isosurface for the shallow density anomaly approximately overlain 

on a geological model from Ciuculescu et al. (2013) to show the geometrical and 
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geographical similarities.  Northing values range from line 6885500 to line 6888000 

and easting values range from line 415500 to line 418000. 

3.3.2  New Magnetic Results 

Improvements to the inversion workflow as well as the similarities in the geometry of the 

density anomaly to the magnetic susceptibility anomaly lead to a second pass at the 

inversion of magnetic data.  As discussed above, the previous magnetic susceptibility 

model by Kouhi and Tiampo (2016) resolved a subhorizontal, yet relatively discontinuous 

highly susceptible layer (Figure 3.1).  The model is a by-product of the wavenumber 

filtered data inverted using constraining data in cells where core magnetic susceptibility 

measurements were taken. 

To avoid the increase in potential error that arises from manipulating the airborne data 

using filtering techniques, the inversion was rerun for the deeper mesh that was used in 

the inversion of gravity data.  Additionally, a new three-dimensional magnetic reference 

model was calculated with the goal to increase lateral continuity in the final model 

(Figure 3.14).  When creating the minimum boundary model file, small negative 

susceptibilities were allowed in order to allow the inversion more freedom to resolve the 

structure of the deposit and match the reference model.  While this is unphysical, these 

small negative susceptibilities will not greatly alter the result, and may allow the freedom 

necessary to resolve the bottom of the anomaly.  Figure 3.15 shows a cross-section and 

geological interpretations from the new magnetic model. 
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Figure 3.14:  Sample cross-section from the three-dimensional reference model for 

core magnetic susceptibilitiy data created using lateral interpolation methods 

(northing line 6885890 [UTM], facing north).  Units on the right side represent 

magnetic susceptibility in SI units.  Scale on the left is elevation ASL in metres.   

 

Figure 3.15:  Cross-section of the new constrained magnetic inversion for the Thor 

Lake study area (northing line 6885890, facing north).  A laterally interpolated 

reference model was used in the inversion.  Units on the right side represent 
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magnetic susceptibility in SI units.  Scale on the left is elevation ASL in metres.  The 

approximate interpretation of the Thor Lake syenite, Nechalacho nepheline syenite 

and Upper/Basal Zones have been included.  

The first major distinction between this model and previous models is the apparent lateral 

continuity that was lacking in earlier models (Figure 3.16).  Aside from the continuity, 

the general shape of the anomaly agrees well with both previous susceptibility models as 

well as the density model.  However, the issue of negative magnetic susceptibilities does 

arise in the centre cells of the two small pockets beneath the anomaly.  While this is 

geophysically unrealistic, the main takeaway from the model is the structure of the 

deposit.  Cooperative inversion methods will ideally help to maintain this structure when 

susceptibilities are forced above zero in future models.   
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Figure 3.16:  An isosurface of the shallow high magnetic susceptibility anomaly.  

The figure displays susceptibilities greater than 0.04 SI within the top 400 metres.  

Units on the right side represent magnetic susceptibility in SI units. 

Structure and lateral continuity are two of the main improvements of the new magnetic 

model over previous versions.  More potentially overlooked differences include the 

surface trends.  Figure 3.17 shows the surface magnetic susceptibilities from the 

improved magnetic model.  There is a north-west trending structure with higher 

susceptibilities north of the deposit and a few north-east trending features with slightly 

increased susceptibilities running over top of the deposit.  These could be the first 

appearance in these inversions of the Indin swarm and the Hearne swarm dykes, 

respectively, that are known to cross-cut the region (Mumford and Cousens, 2014).  
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These features were not discernable in the previous magnetic model, although their 

magnetic signatures were evident in the airborne data (Kouhi and Tiampo, 2016).  

 

Figure 3.17: A view of the new magnetic susceptibility model from above, looking at 

the surface.  There are northeast trending lines in the centre of the model and a 

northwest trending line north of the deposit which may delineate subsurface dykes. 

    

3.3.3  Joint Inversion 

Joint inversion techniques described in the previous section were applied to the density 

model and the new magnetic susceptibility model with the goal of improving the 

resolution of the true boundaries of the deposit.  There are several key parameters 

involved in implementing the joint technique.  First, the cut-off parameters for the 

normalized gradient must be estimated.  The sum of the normalized gradients ranges from 

0 to 1.  One must decide whether to incorporate all gradients, even those that are 



106 

 

relatively low, in order to determine smoothing weights or decide to only include 

gradients that are larger than a certain threshold.  Once a threshold is in place, the 

intensity with which the smoothness weights are scaled with the gradient is the next 

important decision.  A high intensity factor means that cells with high gradients will have 

their smoothness greatly penalized while cells with low gradients will have the 

smoothness greatly promoted.  Finally, the choice of which cells to include in the 

structure-based cooperative inversion can have a significant impact on the final model. 

The first set of joint inversions were carried out using smoothness weights that were 

scaled across all gradients with a low intensity scaling factor.  All cells in the volume 

were included, with the exception of the padding cells, and five iterations were run.  

Figure 3.18 is a cross-section from both the density and magnetic susceptibility models.  

The density model displays little to no change from previous models and it does not 

appear to have influenced the magnetic susceptibility model.  This is likely caused by 

using too low of an intensity scaling factor, as the influence of the joint method is not 

significant enough see changes in the results.  The susceptibility model appears to have 

lost structure.   
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Figure 3.18:  Cross-sections of the northing line 6885890 [UTM] obtained through 

joint inversion.  The joint inversion included all cells with no threshold and a low 

intensity factor.  The top figure is a density model with units displayed in g/cm3 

above or below 2.67 g/cm3 and the bottom figure is a magnetic susceptibility model 

with units displayed in SI units.  Units on the left side represent depths in metres 

ASL. 

The next joint inversion attempt was run including all cells with a high intensity factor 

for 3 iterations.  Figure 3.19 shows a sample cross-section of the best results.  The 
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magnetic susceptibility model is beginning to display some of the structure that the 

density model displays at shallow depths again but, the density model has now been 

influenced by the magnetic data.  This influence has greatly smoothed the moderate to 

large depths while almost completely erasing the shallow anomaly.  The effect of the 

joint process are evident in these models, however signs of over-influence are apparent.  

Over-influence occurs when the inversion is run with an intensity factor that is too high.  

As the intensity factor increases, the smoothness of the model is penalized greatly and 

cells are increasingly forced toward reference model values, resulting in discontinuous, 

non-geological artifacts.   It appears as if the deeper structure of the magnetic model is 

influencing the density model in a negative way, although the shallow structure in the 

magnetic model seems to be improving.  These results are likely a product of trying to 

influence the same structure on both models, even in deeper cells where density 

anomalies are not necessarily expected to coincide with anomalies in magnetic 

susceptibility.  It should be noted that an important distinction between the gravity and 

magnetic signals is their origin and the processes by which their sources were formed.  

While both anomalies are expected in the host rock for the deposit, the rest of the 

structure may differ quite significantly.  The secondary magnetite that is being modelled 

as magnetic susceptibility was formed through hydrothermal processes and was an 

overprint on preliminary lithology.  On the other hand, the highly dense layer that hosts 

the deposit was formed through magmatic processes.  Therefore, while both signals 

should correspond with similar structures in the shallow subsurface, there is no such 

guarantee deeper beneath the surface. 
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Figure 3.19:  Cross-sections of the northing line 6885890 [UTM] obtained through 

joint inversion.  The joint inversion included all cells with no threshold and a high 

intensity factor.  The top figure is a density model with units displayed in g/cm3 

above or below 2.67 g/cm3 and the bottom figure is a magnetic susceptibility model 

with units displayed in SI units.  Units on the left side represent depths in metres 

ASL. 

With the different processes that form  the structure in mind, the next joint inversion 

included only the cells contained within the top 400 metres.  The rest of the cells were set 
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to default smoothing weights so changes in the density structure in these cells are not 

projected on the susceptibility model, and vice versa.  A high intensity factor was used 

and sample cross-sections from the second iteration are shown in Figure 3.20.  The 

density model once again looks quite similar to past models, however the susceptibility 

model appears relatively smooth with subhorizontal features that coincide with predicted 

subsurface geology.  The long wavelength signal is contributing to a magnetic high deep 

within the mesh and the short wavelength signal is contributing to subhorizontal magnetic 

high similar to the isolated magnetic model.   
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Figure 3.20:  Cross-sections of the northing line 6885890 [UTM] obtained through 

joint inversion.  The joint inversion included only cells in the top 400 metres with no 

threshold and a high intensity factor.  The top figure is a density model with units 

displayed in g/cm3 above or below 2.67 g/cm3 and the bottom figure is a magnetic 

susceptibility model with units displayed in SI units.  Units on the left side represent 

depths in metres ASL. 

The isosurface (Figure 3.21) shows that this susceptibility model is similar in shape and 

size to isolated models, although it is more discontinuous laterally.  This is likely because 
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the intensity factor is too high.  Other evidence of its over-influence can be seen in 

Figure 3.22.  The cells that are influenced by the drillhole also are clearly visible in the 

model.  This is because as per Equation 5 in chapter 1, as smoothness factors decrease, 

more emphasis is placed on the smallest component.  Therefore smoothness penalties are 

forcing the cells closer to the reference model.   

 

Figure 3.21:  An isosurface of the shallow high magnetic susceptibility anomaly 

from the joint inversion using only the top 400 metres, no threshold and a high 

intensity factor.  The figure displays susceptibilities greater than 0.04 SI within the 

top 400 metres.  Units on the right side represent magnetic susceptibility in SI units. 
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Figure 3.22:  Cross-section from the joint inversion using only the top 400 metres, 

no threshold and a high intensity factor (northing line 6885690 [UTM]).  This figure 

shows the effects of over-influencing the model in the joint inversion process.  If the 

intensity factor is too high, the model is forced closer to the reference model, which 

results in cells where the influence a drillhole is evident.   

The final parameter that has not been discussed is the threshold value.  A final joint 

inversion was run using a threshold value of 0.25.  This means that only cells that have 

gradients large enough (normalised value greater than 0.25) will affect the smoothness 

weights.  All other cells are set to the default.  Similar to the last inversion, only the top 

400 metres will be considered as influencing cells and a moderate intensity factor was 

used.  The magnetic susceptibility cross-section (Figure 3.23) shows a relatively smooth 

shallow subhorizontal anomaly.  This model is similar to the isolated magnetic inversion 
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but, the issue resulting from the negative susceptibilities has now been removed, 

representing a more realistic model.   

 

Figure 3.23: Magnetic cross-section of northing line 6885890 [UTM] obtained 

through joint inversion.  The joint inversion included only cells in the top 400 

metres with a threshold of 0.25 and a high intensity factor.  The figure is a magnetic 

susceptibility model with units displayed in SI units.  Units on the left side represent 

depths in metres ASL.  Note that  model susceptibilities no longer contain negative 

values. 

3.4 Discussion 

3.4.1  Lateral Interpolation vs. Kriging 

The lateral interpolation method for enhancing subsurface geophysical datasets proved to 

be quite effective.  In order to test its validity against more traditional methods, a three-

dimensional reference model was calculated using a method of ordinary kriging.  Kriging 

is a statistical approach to solving scarce sampling issues through interpolation using the 
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variability of known data points in the vicinity (Samsonov, 2007).  Ordinary kriging is a 

method of geostatistical interpolation that does not rely on knowing the mean of the data 

and thus it is the simplest application to this problem (Chilès and Delfiner, 2012).  The 

kriging approach fits a variogram to nearby points to assess the variability and 

interpolates a model that fits the statistical trend of the variogram as well as the known 

data points (Journel, 1974).  For comparison to the lateral interpolation model, two-

dimensional interpolation using ordinary kriging was carried out on each of the layers of 

the x-y plane.  While three-dimensional kriging is possible, this two-dimensional method 

provides a simple, computationally inexpensive way to directly compare the results of the 

two techniques.   

A Gaussian variogram was chosen because it had the best correlation with the data 

(Figure 3.24).  Kriging was completed layer-by-layer in Matlab, using code adapted from 

Schwanghart (2010).  A sample cross-section of the resulting three-dimensional reference 

model is displayed in figure 3.25.  Even before this reference model is used in a 

geophysical inversion, it displays some interesting characteristics that the laterally 

interpolated model did not.  It is clear that the kriging method is over-smoothing the data 

points across the full extent of the mesh, creating a layer of high susceptibility 

approximately 400 metres thick.  While it seems that the kriging method has smoothed 

out the high susceptibility region over entire x-y planes at shallow depths, some of the 

structure seen in the lateral interpolation model is still prevalent.  The issue with 

smoothing could be the result of the minimization of the estimation variance which often 

causes the kriging process to smooth true spatial fluctuations (Journel, 1974).  The 

deposit was targeted strategic drilling, therefore a large proportion of the drillholes cross-
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cut the anomalous region.  Since the deposit is subhorizontal, the variance for values is 

going to be relatively small, resulting in the overestimation of densities outside of the 

boundaries of the deposit due to smoothing.  Another interesting point to consider is the 

sensitivity of the ordinary kriging process to the specification of the variogram (Chilès 

and Delfiner, 2012).  An inappropriately chosen variogram fit can result in kriging 

estimates that differ from the ideal estimates.  While the Gaussian variogram fit the data 

reasonably well, there will be some error contributed from this part of the process. 

 

Figure 3.24:  A sample variogram showing the fit of the data to a Gaussian trend.  

Created with code modified from Schwanghart (2010). 
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Figure 3.25:  Sample cross-section from the three-dimensional reference model for 

core density data created using ordinary kriging methods (northing line 6885890 

[UTM], facing north).  The reference model shows evidence of lateral over-

smoothing.  Units on the right side represent density in g/cm3 above or below 2.67 

g/cm3.  Scale on the left is elevation ASL in metres.   

The kriging model was then used as a reference model and its variances were used to 

calculate the maximum and minimum boundary constraints for an inversion of gravity 

data.  Figure 3.26a shows a cross-section from the resulting inversion.  The shallow 

regions of this model display some of the features of the subhorizontal high density layer 

seen in the lateral interpolation model as well as some of the layering seen at moderate 

depths.  However, the over-smoothing overprints a large portion of the shallow structure 

and results in an overall smooth model.  Figure 3.26b is a cross-section of the previous 

laterally interpolated model with the same density scaling as the kriging model for 

comparison.  The lateral interpolation technique proposed earlier appears to do a better 
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job of resolving a reliable reference model for the given drillhole geometry and 

subsurface structure.  A modified, more statistically robust version of the lateral 

interpolation method described in the previous sections was also tested for its validity.  

Rather than assign ranges for the maximum and minimum boundary models based solely 

on the uncertainty value for a given cell, the weighted standard deviation plays a role in 

this method.  The weighted standard deviation was based on the deviations of each of the 

values binned into each cell and combined with the uncertainty value to assign error 

tolerances.  This method did not appear to enhance the resulting inversions; rather it 

appeared to hinder them due to not allowing a large enough range for the cells.  This 

method could be investigated further by increasing the role that the uncertainty value 

plays in the range, although it also might be due to the fact that individual cells generally 

do not have large enough populations of data to calculate a reliable standard deviation.  



119 

 

 

Figure 3.26:  Comparison cross-sections of constrained gravity inversions for the 

Thor Lake study area (northing line 6885270, facing north).  In the top figure, a 

reference model obtained via ordinary kriging was used while in the bottom figure, 

the laterally interpolated model has been rescaled for comparison.  Units on the 

right side represent density in g/cm3 above or below 2.67 g/cm3.  Scale on the left is 

elevation ASL in metres.   

        

a) 

b) 
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3.4.2  Comparison Between Gravity and Magnetics 

In the case of the Nechalacho deposit, a layer of densely packed minerals also is expected 

that is heavily altered and with a high magnetic signature.  Based on geological 

modelling from drillhole data, initial magnetic susceptibility models were reasonably 

successful in approximating the boundaries of the deposit.  However, these models lacked 

geological plausibility.  Density models presented in this work appear to have been the 

most successful in providing a geologically realistic model that agrees with previous 

research.  Improved magnetic susceptibility models displayed better continuity that 

resembles both previous geologic models as well as the density models obtained in this 

work.  Overall, the shallow high density anomaly and the shallow high susceptibility 

anomaly are geographically and geometrically similar.  Figure 3.27 is a set of isosurface 

maps that show the correspondence of the anomalies from each dataset.  With the cut-off 

for a density anomaly set at +0.1 g/cm3 and the cut-off for magnetic susceptibility at 0.04 

SI, the cells that contain both anomalies form a relatively flat surface extending for 

almost 2000 metres in each direction.  The individual density and susceptibility 

components are systematically similar in shape and size with small but significant 

differences.  In the magnetic susceptibility component the north-west trending Indin dyke 

is clearly visible north of the deposit while, in the density component there is a semi-

spherical body northeast of the deposit.  It is important to note that this is focusing on the 

top 400 metres and that the bottom layers of the models differ more significantly.   
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Figure 3.27:  Isosurfaces comparing shallow density anomalies to shallow magnetic 

susceptibility anomalies (top 400 metres).  Cells that have density values greater 

than +0.1 g/cm3 are considered density anomalies while cells that have magnetic 

susceptibility values greater than 0.4 SI are considered susceptibility anomalies.  

Figure (a) shows all cells that are considered anomalies.  Cells that are only 

considered susceptibility anomalies are in pink (b), cells that are only considered 

density anomalies are in blue (c) and cells that are anomalous for both fields are in 

green (d). 

3.4.3  Validity of Joint Inversion 

As discussed above, the different processes by which the sources of the gravity and 

magnetic signals were created has a large impact on the validity of a joint inversion to 

a) b) 

c) d) 
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solve the problem.  This is where the key parameters make a large difference in how 

effective the joint inversion is.  Preliminary joint inversion parameters resulted in the 

over or under-influence of the individual models in the result, while the choice of cells 

used to influence the joint model also proved to be vital.  Results shown here demonstrate 

the potential, and the complexity, of using cooperative techniques to better resolve a 

model.  Best model results for both datasets in this study were the result of using prior 

geological knowledge to choose the region within the inversion area where the 

geophysical sources should align.  From there, it is a matter of trial and error to find 

suitable influence factors and thresholds.   

Another technique is to increase the threshold with each subsequent inversion as more 

inversions are run (Lelièvre et al., 2009).  This means that with each iteration the number 

of cells that influence the final model is decreasing resulting in later iterations and only 

taking very large changes in geophysical properties into account.   This technique could 

help further resolve boundaries of the deposit and result in more definitive edges, but at 

the risk of promoting further discontinuity in certain cells within the deposit.  Overall, the 

joint inversion process obtained a more geologically realistic magnetic susceptibility 

model.  However, when comparing the isosurface maps from individual and joint 

inversion techniques, it is difficult to discern any significant differences in the shape or 

size of the anomaly (Figure 3.28). 
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Figure 3.28: Comparison isomaps of anomalous cells for the final joint inversion 

(top) and the final individual inversions (bottom).  Green cells are cells where both 

density and magnetic susceptibility are considered anomalous, blue are only density 

and pink are only susceptibility.  Both maps are nearly identical. 
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3.5 Conclusions 

When it comes to inverse modelling, each step in the inversion workflow from starting 

models to inversion parameters can be crucial.  In this study, a new technique in laterally 

interpolating measured geophysical properties has proven to be an effective method to 

help constrain an inversion.  Airborne gravity data was successfully inverted to obtain a 

subsurface density model that agrees with prior geophysical work with magnetics, as well 

as geological modelling.  Similar techniques were also successful in improving the 

magnetic susceptibility model from the previous study (Kouhi and Tiampo, 2016).  While 

effective here, this method relies on the assumption that the subsurface geology that 

contributes to the signal is relatively subhorizontal in structure and should be used with 

caution in other regions.  This is similar to all geophysical inversion constraints in that, 

while inverse modelling is a robust technique, each parameter, constraint or method must 

be tailored to the specific problem at hand. 

The validity of joint inversion techniques was investigated for the Nechalacho deposit 

with limited, but overall positive results.  While definitive boundaries of the deposit are 

not any clearer after cooperative inversion techniques than they were prior, both models 

have incorporated the multiple potential field results.  The magnetic susceptibility model 

benefited from the density structure to better separate the magnetic high at shallow depths 

from the deeper signal as well as to eliminate negative susceptibilities.  Overall, the 

boundaries of the deposit did not undergo significant change, however the fact that both 

joint and individual inversion techniques delineated similar bodies can speak to the 

confidence in the modelled results. 
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Chapter 4  

4 Relating Magnetic Susceptibility of Deep-Hole Samples 
to Mineralogy in Thor Lake, N.W.T. 

In this section, magnetic susceptibility values for drill core from the Nechalacho deposit 

at Thor Lake, NT were measured and validated using field instruments in previous 

research.  These measurements also were used as constraints for magnetic inversions in 

the region.  In this study, in-lab techniques for measuring the magnetic susceptibility of 

off-cut blocks were used to once again validate the measurements taken in the past.  

These measurements on specific samples also were used to relate their geophysical 

properties to their mineralogy.  It is shown that rare earth element mineralization 

increases proportionally with magnetic susceptibility in the Nechalacho deposit.  In 

addition, there is evidence that density may also be play a role in REE mineralization if 

the sample displays even small amounts of magnetic susceptibility.  Finally, the use of 

computational colour analysis to identify minerals shows the potential for use as a 

preliminary method for designating mineral abundances in a simplified mineral system.     

4.1 Introduction 

Magnetic susceptibility is an important geophysical property that helps to distinguish 

different lithological units within the Blatchford Lake Intrusive Complex (BLIC).  The 

upper zone and the basal zone that host the large concentrations of rare earth elements 

(REE) associated with the Nechalacho deposit formed through a combination of 

magmatic and hydrothermal processes.  Magmatically, the layered intrusion was formed 

from the top downward and the bottom upward, resulting in the layering associated with 

the upper and basal zones crystallizing last (Möller and Williams-Jones, 2016).  Sodalite 
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and nepheline crystallized early, followed by potassium-feldspar resulting in higher iron 

concentrations in these densely-packed layers.  Further enrichment with iron due to the 

lack of primary magnetite and olivine phases associated with the high concentrations of 

sodium in the melt compounded to produce the host layers that were highly enriched in 

aegirine and eudialyte (Möller and Williams-Jones, 2016).  The extensive hydrothermal 

alteration that then overprinted the majority of the original mineralogy in the deposit left 

behind an abundance of magnetite as the principal alteration mineral, specifically in these 

regions of high iron content (Sheard et al., 2012).  Therefore magnetic susceptibility can 

be used as a proxy for the intensity of the alteration in the deposit due to the strong signal 

associated with magnetite.   

4.1.1 Previous Measurements 

Avalon Rare Metals Inc. (Avalon) has drilled core for more than 400 holes in the region.  

Previous magnetic susceptibility measurements were taken on each of the cores at 1 

metre intervals using a KT-9 Kappameter hand-held instrument (Avalon, 2013).  These 

measurements provide excellent spatial coverage of the region and were used in the 

geophysical inversions described in previous sections to constrain the models.  A second 

set of measurements were taken on a subset of the cores with a KT-10 instrument by 

Nichols (2014).  The cores chosen for these secondary measurements were based on 

targeting known subsurface geology.  The measurements were taken by holding the stub 

of the instrument up against the rounded outer edge of the core.  Measurements were then 

used to constrain preliminary magnetic and gravity inversions of the region (Tiampo and 

Nichols, 2014).  Before the data from Avalon (2013) was used in the work in Chapter 2 

(Kouhi and Tiampo (2016a)) mentioned above, it was compared with the updated KT-10 
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measurements to ensure its accuracy and reproducibility (Figure 4.1).  While there are 

some slight variations in the magnitudes of the magnetic susceptibility, the overall peaks 

in both datasets appear to coincide, but with a slight offset in the depth domain.  This can 

potentially be attributed to human error in the recorded depths for each measurement on 

the core.  Any small offsets in measurements on the scale of a few metres depth will not 

affect the inversion results, as this is too fine resolution compared to the cell size.  

Otherwise, the original measurements by Avalon appear to be of reasonable quality.  

 

Figure 4.1:  Comparison of the magnetic susceptibilities measured on the core from 

drillhole L09-160 by Avalon (2013) and Nichols (2014) using KT-9 and KT-10 

instruments, respectively.  Note the slight offset in the depth domain. 

4.1.2 Off-Cut Blocks 

The majority of the drillholes extend to depths between 250 metres and 400 metres in 

order to target the Nechalacho deposit.  However, drillhole L09-194 was drilled to 

approximately 1065 metres depth and therefore allows for the analysis of the intrusion as 

a whole (Avalon, 2013).  Extensive mineralogical work has been completed by Möller 
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and Williams-Jones (2016) on the entire intrusion and its petrogenesis while Sheard et al. 

(2012) focused mainly on those shallow depths where the deposit itself is hosted.  Off-cut 

block samples that remained from the research by Möller and Williams-Jones (2016) 

where available for further study of the magnetic susceptibility of the intrusion.  The set 

of samples consists of 70 off-cut blocks that were left over from the creation of thin-

sections.  Although  they vary in total volume, most samples are approximately 

rectangular in shape and have one smooth face.  The depths of the core from which the 

samples were taken vary in distribution and extend from 46.4 metres to 1065.4 metres 

depth.  Möller and Williams-Jones (2016) subdivided the intrusion into fourteen different 

lithological units based on mineralogy and textural properties (NLS-1 to NLS-14).  The 

distribution of the off-cut blocks throughout these units can be seen in Table 4.1. 

Table 4.1:  Brief summary of off-cut samples from drillhole L09-194 

Unit Description Depth Range Number of Samples 

NLS-4 Foyaite – host of upper and basal 

zones 

Top 135m 1 

NLS-5 Upper Zone 15-60m 1 

NLS-6 Basal Zone 95-135m 7 

NLS-8 Microlayered Aegirine-Nepheline 

Syenite 

150-300m 12 

NLS-9 Rhythmically Layered Syenite 300-450m 22 

NLS-11 Microlayered Annite-K-Feldspar-

Sodalite-Aegirine Syenite 

480-720m 4 

NLS-12 Trachytoidal Annite-Sodalite 

Syenite 

720-870m 12 

NLS-13 Aegirine-Sodalite Foyaite 870-1065m 10 
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NLS-14 K-Feldspare-Sodalite-Aegirine 

Syenite 

1065-?? m 1 

Total   70 

Table summarized from Möller and Williams-Jones (2016) 

 

4.1.3 This Study 

The primary purpose of this study was to analyze the variability between the portable 

magnetic susceptibility measurements and the in-lab susceptibility measurements.  This is 

important to the geophysical inversions in the previous sections because it provides an 

idea of the accuracy of the values used in the reference models.  It is expected that both 

methods of measuring the magnetic susceptibility will yield peaks in signal at similar 

depths, however the magnitudes of the susceptibility values may vary.  If the values vary 

with a systematic bias, the results could play an important role in future geophysical 

inversions. 

A second research goal was to further tie the mineralogy of the deposit to the geophysical 

properties observed in the magnetic susceptibility measurements, as well as the modelled 

susceptibility values obtained through inversion.  Work by Sheard et al. (2012) found 

that the principal alteration mineral associated with the deposit is magnetite, while work 

by Möller and Williams-Jones (2016) breaks down the deep hole (L09-194) into specific 

units including the REE mineralized upper zone and basal zone.  The samples have been 

intensely studied from a mineralogical standpoint and can be assigned specific magnetic 

susceptibility values and then analyzed based on their lithological unit.  The effect of the 



133 

 

mineralogy on the geophysical properties in each unit can be assessed in detail and 

related back to the models obtained in the geophysical inversions above. 

Lastly, this study is a preliminary step toward analyzing the geophysical differences 

between hydrothermal and magmatic magnetite.  Due to high activity of sodium in the 

melt, the magnetite phase is absent and thus there is no magmatic magnetite in the 

intrusion (Möller and Williams-Jones, 2016).  While this does not bode well for a direct 

comparison of magmatic and hydrothermal magnetite in the deposit, it presents the 

opportunity to directly relate the effects of the anbundance secondary magnetite to the 

magnetic susceptibility values.  

4.2 Methods 

4.2.1 Magnetic Susceptibility Measurements 

The masses of each of the 70 samples were taken prior to magnetic susceptibility 

measurements.  Each of the samples was weighed individually, using an analytical 

balance.  Magnetic susceptibility measurements were performed using a benchtop 

Sapphire Instruments SI2b susceptibility meter.  Before any measurements were made, 

the susceptibility meter was calibrated using a MnO2 sample with known magnetic 

susceptibility for reference.  Susceptibilities were measured as mass-based susceptibilities 

with SI output units in m3/kg.  Each measurement was corrected for instrument drift by 

running the susceptibility meter without a sample before and after the sample 

measurement.  The process was then repeated, once again correcting for instrument drift 

in order to ensure the repeatability of each measurement.  The software outputs the 

average of the two measurements as well as the standard deviation of all measurements 
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on the same sample.  While the standard deviation of a population of two cannot be 

considered statistically significant, checking this value ensures that the measurement was 

reproducible.  If the two measurements differed significantly, a third measurement was 

taken and the standard deviation was reassessed.    

4.2.2 Mass- to Volume-Based Susceptibility Conversion 

Once the mass-based magnetic susceptibility measurements were taken, the values were 

compared to each other.  However, in order to compare these values to the susceptibilities 

measured using the KT-9 and -10 instruments from the geophysical inversions, they must 

be converted to dimensionless, volume-based susceptibilities.  The conversion is trivial if 

the density values are known for each sample, using the equation: 

 𝜒𝑣 = 𝜒𝑚𝜌 (1) 

where 𝜒v is the volume-based susceptibility in SI units, χm is the mass-based 

susceptibility and ρ is the density of the sample in kg/m3 (Hinze et al., 2013).  For the 

drillhole L09-194, core density measurements are available at approximately 5 metre 

intervals for the length of the core.  For the purpose of this study, density measurements 

at depths that most closely matched sample depths were assumed for the density of each 

sample.  It also should be noted that the magnetic susceptibility meter is capable of 

performing direct volume-based susceptibility measurements if the volumes of each 

sample are known initially.  However, this study makes use of alternative methods of 

measuring magnetic susceptibility due to the solubility of the original sample label in 

water.  Therefore traditional methods of measuring volume such as wet-dry techniques 

were not attempted here.  Because the interpolation of densities from the core logs 



135 

 

potentially incorporates an additional error in the volume-based susceptibility 

calculations, a simple sensitivity analysis was conducted on the results (see Results 

section below). 

 

4.3 Results 

4.3.1 Mass-Based Magnetic Susceptibility 

The results of the mass-based magnetic susceptibility measurements yielded values that 

span four orders of magnitude (Figure 4.2).  It is important to note that these values are 

mass-based and, as a result, a relatively constant density must be assumed throughout all 

samples in order to compare values to one another.  Also note there are no error bars 

because only two measurements were taken on each sample, therefore a reliable estimate 

of the error could not be assigned.  Geophysical inverse modelling shows that density 

values range from approximately 2.57 g/cm3 to 3.07 g/cm3 (Kouhi and Tiampo, 2016b).  

This represents a percentage difference of approximately 17.7% between the two 

endpoint values.  While significant, this difference is small enough to assume a relatively 

constant density in order to perform a relative comparison of the susceptibility values.   
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Figure 4.2:  Mass-based magnetic susceptibilities measured using the in-lab 

magnetic susceptibility meter.  Lithological units are based from work by Möller 

and Williams-Jones (2016).  Note there are no error bars because only two 

measurements were taken on each sample, therefore a reliable estimate of the error 

could not be assigned. 

Susceptibilities from the shallow units that are associated with the upper zone (NLS-5) 

and the basal zone (NLS-6) have the highest values and very little variance with depth.  

As depth increases down hole, the variability in the measured values appears to increase 

with relatively low susceptibility in the middle units (NLS-8 and -9) and a wide range of 

high and low susceptibility in the deeper units (NLS-11 to -14) (Figure 4.2). 

4.3.2 Volume-Based Magnetic Susceptibility 

Converted volume-based susceptibility values are plotted over the previous 

measurements from Avalon (2013) in Figure 4.3.  The in-lab susceptibility measurements 

and the field susceptibility measurements have corresponding peaks at similar depths for 



137 

 

the entire drillhole.  While these high susceptibility regions occur at the same depth in 

both datasets, the in-lab measurements appear to be systematically higher in magnitude.  

The difference between the red and green data points can be considered a simple 

sensitivity analysis for the density values.  This is important due to the large margin of 

error associated with using density measurements, which could be up to 2.5 metres 

deeper or shallower than the true sample depth.  The green data points represent the 

volume-based susceptibilities assuming a constant density of 2.67 g/cm3 throughout the 

entire intrusion.  The susceptibilities remain largely unchanged with the exception of the 

shallow data points, where the values decrease.  This is because these units are truly 

much denser than the average density of 2.67 g/cm3, therefore assuming the average 

density is results in the under-estimation in susceptibility via Equation 1 (Kouhi and 

Tiampo, 2016b).  However, assuming a lower density value for these samples still results 

in the measured magnetic susceptibilities being higher than those measured on the cores.  
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Figure 4.3:  Volume-based magnetic susceptibilities measured using the in-lab 

magnetic susceptibility meter (red circles).  Green circles represent the 

susceptibilities using a constant density of 2.67 g/cm3 for sensitivity analysis.  

Lithological units are based from work by Möller and Williams-Jones (2016). 

4.4 Discussion 

4.4.1 Geophysical Implications of the Mineralogy 

Knowledge of the specific magnetic susceptibilities for each sample is important when 

relating the mineralogy to geophysics.  A set of magnetic susceptibility values for 

samples where the mineralogy has been studied and interpreted can be an important basis 

for interpreting geophysical inversions.  For example, the major alteration mineral in the 

upper units is magnetite, therefore high magnetic susceptibility values are expected here 

(Sheard et al., 2012).  From this study, samples in the upper 150 metres of the intrusion 

display the highest susceptibilities with values ranging from approximately 0.1 to 0.3 SI 

units.  An exception to this trend is a sample from 93.75 metres depth, from the foyaite 
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unit (NLS-4) that hosts the upper and basal zones.  This sample originates in the unit that 

hosts the highly susceptible layering, however it was formed in a sequence of layering 

that is sandwiched between the upper and basal zones that displays significantly less 

alteration (Möller and Williams-Jones, 2016).  This is evident in its comparatively low 

magnetic susceptibility as well as the relative lack of magnetite upon visual inspection 

(Figure 4.4).  This tie between the lithological unit and the magnetic susceptibility, and 

thus the estimated magnetite content, is important when interpreting geophysical models 

of the intrusion.  While the resolution of such models may not detect each layering 

sequence within the foyaite unit, higher susceptibilities in this region can be attributed to 

those units that contain high concentrations of REE (NLS-5 and -6).   
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Figure 4.4:  Comparison of the visual mineralogy of a sample from 93.75 metres 

depth (top) and a sample from 118.5 metres depth (bottom).  The top sample is from 

unit NLS-4 between the upper and basal zones while the bottom sample is from the 

basal zone (NLS-6).  The bottom sample appears to contain significantly more 

magnetite by visual inspection.  This is confirmed by the magnetic susceptibility 

measurements. 
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Below the basal zone, magnetic susceptibilities vary from relatively low to negligible, 

with minor regions of high susceptibility, with values up to 0.05 SI.  Samples with these 

higher susceptibilities appear to display magnetite forming rims around aegirine crystals 

(Figure 4.5).  The geophysical importance of these regions relates to the allocation of 

deep-seated signal in magnetic susceptibility models.  Geophysical inverse modelling 

solves for subsurface geophysical properties using measured data to constrain the models.  

Earlier chapters display models with relatively large susceptibility values at depth.  

Susceptibility measurements on samples from this drillhole can provide some insight that 

there may be pockets or layers that have been weakly altered to contain magnetite at 

depth.  This may account for some of the extra magnetic signal, described in the results 

sections of both previous chapters, that is incorrectly allocated to padding cells at the 

bottom of the mesh.   
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Figure 4.5:  A moderately susceptible sample from 1044.9 metres depth that shows 

potential evidence of aegirine altering to magnetite.   

Figure 4.6 is a density versus magnetic susceptibility plot for each sample that also 

displays the relationship between these variables, REE concentration and lithological 

unit.  From this plot, a couple of interesting trends are evident.  First, the relatively high 

densities and magnetic susceptibilities in samples from NLS-5 and -6 also contain high 

concentrations of REE as expected.  The general trend displays magnetic susceptibility 

increasing with increases in density which implies that magnetite abundance could 
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potentially be a proxy for density as well as magnetic susceptibility.  However, this trend 

only appears to fit for shallow units.  Deeper units such as NLS-9 contain a similar range 

of densities to the shallower units, but with a lack of magnetic susceptibility increase.  

This suggests that there is much less magnetite at these depths, but another mineral is 

contributing to the density of these samples.  All of the samples with the highest 

concentrations of REE are also highly susceptible.  While a proportionally increasing 

relationship is apparent between REE concentrations and magnetic susceptibility, another 

factor affecting REE concentration may be density.  It was noted above that REE 

concentration does not necessarily increase with denser samples, however in units where 

samples contain any significant magnetic susceptibility, it could be argued that these 

variables begin to increase proportionally.  

 

Figure 4.6:  Plot of density versus volume-based magnetic susceptibility for each 

sample.  The approximate REE concentrations are represented by the sizes of the 

markers and the different colours represent the different lithological units. 
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4.4.2 Systematic Bias 

Figure 4.3 shows strong evidence for a systematic bias in the magnetic susceptibilities 

measured in the lab.  Peaks in susceptibility occur in approximately the same positions in 

both datasets, however the magnitude of the measurements from the samples are 

systematically larger than the measurements from the core by a factor of approximately 

1.5.  Figure 4.7 displays these values scaled down by this factor.  There are a few 

potential sources that could account for this discrepancy.  The first potential source that 

may result in some variation is the way in which the measurements are taken.  The KT-9 

instrument measurements were taken by placing the end of the instrument on the rounded 

exterior of the core.  This could result in some systematic loss of signal due to coupling 

issues between the instrument and the curved surface of the core.  The in-lab magnetic 

susceptibility meter measures the sample susceptibility as a whole by placing it in an 

enclosed field.  Calibration error also could play a role, depending on how recently the 

portable instrument was calibrated using a standard; however, while potentially 

systematic, these errors are likely to be less significant.  The lab instrument is calibrated 

prior to each use as described above.  Finally, there may be error associated with the 

conversion from mass-based susceptibility and volume-based susceptibility.  The 

inaccuracy of the density values for each sample plays a large role in this source of error.  

Due to the linear relationship between the sample density and the mass- to volume-based 

susceptibility conversion, changes in the density value assigned to the sample will change 

the susceptibility measurement proportionally.  Assigning density values that were 

measured up to 2.5 metres away from the true sample depth is likely a source of random 

error and therefore cannot solely account for the systematic bias.  Additionally, 
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sensitivity analysis on the effects of varying sample density also yields values higher than 

those obtained by Avalon (2013). 

 

Figure 4.7:  Volume-based magnetic susceptibilities measured using the in-lab 

magnetic susceptibility meter, scaled down by a factor of 1.5.  Lithological units are 

based from work by Möller and Williams-Jones (2016). 

While the majority of the susceptibility values from this study are larger than the values 

from previous measurements, the data point at 46.35 metres depth does not scale with the 

other values.  Previous susceptibility measurements yielded values in the upper zone of as 

much as approximately 0.1 SI (Avalon, 2013).  This data point represents the only sample 

within the upper zone unit and was measured at a value more than three times higher than 

previous measurements.  A high susceptibility is anticipated, as the sample appears to 

contain significant amounts of magnetite (Figure 4.8).  However, the difference between 

sample measurements and core measurements in this region also is significant.  The 
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reason for this discrepancy is a target for future work, but it is interesting to note that this 

depth corresponds to the highest concentrations of REE (Figure 4.9).   

 

Figure 4.8:  The only sample from within the upper zone (NLS-5).  The measured 

magnetic susceptibility for this off-cut block is anomalously higher than previously 

measured by Avalon (2013).  While most samples appear to be approximately 1.5 

times higher in susceptibility than previously measured, this sample measured at 

values more than 3 times higher.  Magnetite can be identified by visual inspection. 
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Figure 4.9:  Scaled down volume-based susceptibility measurements with REE 

abundance overlain below (modified from Möller and Williams-Jones (2016)). 

  

This trend of higher magnetic susceptibility than measured previously may play a role in 

future magnetic inversions.  Increasing the measured susceptibilities would increase the 

expected values in inversion reference models and may result in the allocation of more 

deep-seated signal to these shallow units that host the deposit. 

4.4.3 Colour Analysis 

In order to compare the overall mineralogy of the samples to their geophysical properties, 

this study attempted to quantify the colour of each sample using RGB colour values.  

Multiple different methods of colour analysis were tested in order to visualize 

mineralogical trends in the geophysical data.  The first method involved pulling the RGB 
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values from each individual pixel in a high resolution photograph and averaging these 

values to assign an overall colour to the sample (Figure 4.10).  From the figure, it is 

evident that none of the samples bias toward any of the three RGB (red-green-blue) 

colours, resulting in different shades of grey.  However, data points with higher magnetic 

susceptibilities appear to have darker overall colours which are likely a direct result of the 

amount of magnetite in these samples.  As depth increases, the data points trend toward 

lighter shades of grey due to the increase in lighter minerals such as albite as well as the 

lack of magnetite. 

 

Figure 4.10:  Plot of magnetic susceptibility with depth for drillhole L09-194.  

Marker colours were determined by the average red, green and blue values 

extracted from each image.  Darker shades of grey represent minerals that were 

generally dominated by darker coloured minerals such as magnetite while lighter 

shades represent minerals that were dominated by minerals such as albite. 
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In addition to averaging the RGB values for each pixel, another program was developed 

that assigns a mineral name to each pixel depending on a system of RGB value criteria.  

The criteria generally consist of a maximum threshold for all RGB values, as well as 

Boolean relationships between each of the three components.  For example, magnetite is 

assigned to all black minerals, therefore the threshold for the RGB values is 65 (on a 

standard 0-255 RGB scale).  This means that only pixels with all three components less 

than 65 will be considered.  Next, from sampling multiple pixels where magnetite is 

present, it was determined that the blue component was always larger than both the red 

and green componenets.  Therefore Boolean conditions were assigned such that this was 

also true.  These images were broken up into a few basic minerals found in the samples:  

magnetite, aegirine, albite, sodalite, eudialyte (Möller and Williams-Jones, 2016; Sheard 

et al., 2012).  Therefore in this simplified system any mineral that displays similar colour 

on the RGB value scale will be assigned as one of these minerals (Table 1).  It should be 

noted that in the field of mineralogy, colour is not always a distinguishing feature, 

therefore there is a significant amount of error associated with this process.  However , in 

a mineral system such as the Nechalacho deposit where each of the highlighted minerals 

have generally distinct colours, this could work as a first-pass technique of assigning 

mineral abundances.  Magnetite is black, aegirine is green, albite is white, sodalite is 

blue, and altered eudialyte is yellow.  Figure 4.11 shows an original image that is 

compared to the colours assigned by the program to the mineral types to each pixel.  

There are a few discrepancies in the mineral assignment in addition to a few pixels where 

a mineral type could not be assigned (shown in red).  However, the overall mineralogical 

geometry appears to match the sample very well as a preliminary technique.   
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Table 4.2:  A summary of the minerals included in RGB colour analysis methods. 

Mineral Chemical Formula Assigne
d Colour 

Magnetite Fe3O4 black 

Aegirine NaFeSi2O6 green 

Albite NaAlSi3O8 white 

Sodalite Na8(AlSiO4)6Cl2 blue 

Eudialyte Na15Ca6(Fe,Mn)3Zr3SiO(O,OH,H2O)3(Si3O9)2(Si9O27)2 

(OH,Cl)2 

yellow 

Other N/A red 

Chemical Formula Reference:  mindat.org 
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Figure 4.11:  The original high resolution photograph (above) of a sample at 118.5 

metres depth, and the reproduced image via computational colour analysis (below).  

This method uses colours to distinguish between different minerals.  Black 

represents magnetite, green represents aegirine, white represents albite, blue 
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represents sodalite, yellow represents eudialyte and red represents pixels that are 

unassigned. 

The output of the colour analysis program is a list of mineral abundances for the five 

minerals mentioned above.  These abundances are plotted against the magnetic 

susceptibility of each sample in Figure 4.12, along with any unassigned pixel 

percentages that may be used as a proxy for the amount of error in each measurement.  

The susceptibility data points are plotted in colour based on their average RGB values 

described above unless there was a dominant colour component.  For example, blue 

circles represent samples where the blue value was significantly higher than the red and 

green values.  Note that there are several interesting trends in this data.  The albite 

abundance increases with depth which results in a decrease in magnetic susceptibility as 

noted above.  On the other hand, increases and decreases in eudialyte appear to be 

directly correlated with similar trends in susceptibility.  Finally, magnetite abundances 

increase where high magnetic susceptibilities were measured as expected, with the 

exception of a couple of data points at depth.  The majority of these outliers that occur 

with depth were noted when recording the mineral abundances and are due to incorrect 

mineral assignment where what appears to be nepheline appears as a dark grey.  Figure 

4.13 shows the magnetic susceptibilities with the exception of four outlying points.  From 

this plot, it appears that the preliminary mineral assignment is doing a very good job 

assigning a relative value to the abundance of magnetite because increases in abundance 

correlate very well with susceptibility highs with the exception of two data points at 

depth.  These errors could be similar to the outliers that were removed above, or they 

could be associated with other dark-coloured minerals such as biotite contributing to the 

abundance.  Another interesting point is that the high abundance of magnetite assigned to 
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the first data point.  This is of interest because this is the sample that displayed much 

higher values of magnetic susceptibility than earlier measurements.   

 

 



154 

 

 

Figure 4.12:  Mineral abundances as calculated from the computational colour 

analysis technique (coloured lines) versus depth for each sample are plotted on the 

right-hand y-axis.  Magnetic susceptibilities are plotted (circles) versus depth on the 

left-hand y-axis.  The filling colours for the circles represent the average RGB 

values for that sample unless the sample was dominated by a specific red, green or 

blue value (i.e. blue circles represent samples that had an average blue value 

significantly higher than its red or green values). 
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Figure 4.13:  Plot of the magnetic susceptibility (left-hand axis, circles, in SI units) 

and magnetite abundance (right-hand axis, dashed line) versus depth for the 

samples from drillhole L09-194.  Abundances were calculated using computational 

colour analysis and exclude the four data points that were deemed outliers during 

the process. 

4.4.4 Future Work 

Future work to be completed as a continuation of this study would include further 

investigation of the systematic increase in values between field measurements and lab 

measurements.  The first step in this process would be to obtain reliable density 

measurements for each sample.  While methods exist for obtaining such measurements, 

traditional techniques cannot be used on these samples.  An option for obtaining an 

accurate measurement of the volume and density is through the use of X-ray computed 

tomography (CT-scanning) (McCausland et al., 2010).  The CT-scanning technique is a 

non-destructive method, analogous to waveform tomography techniques used in 
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exploration seismology (Pratt, 2015).  By using X-rays to scan the sample, CT-scanning 

can measure and digitize volume with resolutions between 20 and 100 µm and can also 

be used to calculate bulk percentages of dense materials within the sample (McCausland 

et al., 2010).  This also presents an interesting way to quantify the amount of dense 

materials, such as magnetite, in the samples and could lead to advanced studies of the 

geophysical properties of hydrothermal magnetite.  Similar research could be performed 

on magmatic magnetite in another intrusion to assess potential differences in magnetic 

properties.  Additional testing could also be completed to adapt the RGB conditions for 

mineral assignment in the colour analysis portion of this study.  Enhancing the accuracy 

of these conditions could help increase the consistency of the calculated abundances and 

eliminate outliers that occur with depth.  Another potential application and quality check 

for this method could be to assign densities to each pixel that are dependent on the 

mineral assignment.  This could give important information about the density distribution 

within the sample and, additionally, could be used to compare a calculated bulk density to 

a measured bulk density for each sample in order to assess the accuracy of the RGB 

colour analysis.  Finally, this could give some insight into what minerals are making up 

the unassigned minerals in the anaylsis. 

4.5 Conclusion 

Overall, this work has provided a confirmation of the quality of the previously measured 

magnetic susceptibility values.  The values obtained here reproduced the trends in 

magnetic highs measured in original measurements by Avalon (2013).  The peaks of high 

magnetic susceptibility aligned reasonably well.  However, a systematic increase in the 

magnitudes of these values by a factor of approximately 1.5 was observed throughout the 
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entire drillhole.  These geophysical measurements were compared to mineralogical work 

by Möller and Williams-Jones (2016) that divided the intrusion into lithological units, as 

well as mineralogical knowledge of the hydrothermal alteration from Sheard et al. (2012) 

in order to integrate geophysical models with the subsurface geology.  This study also 

provides a preliminary foundation for further research into the geophysical comparison of 

magmatic and hydrothermal magnetite.  Finally, work with colour analysis using high 

resolution photographs has shown promise as a preliminary method of evaluating mineral 

abundances if the system is simplified to a subset of colour-distinct minerals. 
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Chapter 5  

5 General Discussion and Conclusions 

The goal of this research was to model the geophysical properties of the subsurface at the 

Thor Lake region in the Northwest Territories.  This modelling was achieved through 

constrained inverse modelling of airborne potential field data with the support of 

subsurface drillhole measurements.  These models provide supplementary information on 

the geological features of the Nechalacho rare earth element deposit.  The magnetic 

susceptibility and density models obtained were integrated to perform preliminary 

structural joint inversions.  This geophysical information, combined with mineralogical 

work by Möller and Williams-Jones (2016) and Sheard et al. (2012), provides insight 

into the relationships between geological and geophysical properties. 

5.1 Model Improvements 

Geological models of the Nechalacho deposit show a sub-horizontal layered region with 

high concentrations of rare earth elements (REE).  These layers were expected to be 

substantially denser and highly altered in relation to the rest of the intrusion (Sheard et 

al., 2012).  Innovative lateral interpolation techniques for creating reference models from 

drillhole data have been successful in constraining the inversions in order to retrieve 

realistic models.  Magnetic susceptibility and density models agree well with these 

studies, displaying anomalously high values in the shallow subsurface.  Both models 

further validated prior geological work in regions with the highest concentrations of REE, 

but this modelling of geophysical properties indicates that the deposit may extend further 

north than previously estimated.  Density modelling yields a densely packed layer with 
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relatively sharp boundaries and evidence of the fractional crystallization expected at 

depth within the intrusion.  Both susceptibility and density models resolve a lower 

contact between the basal zone and the Nechalacho nepheline syenite.  It is important to 

assess the limits of the model resolution when discussing lithological contacts in 

geological interpretation.  With relatively flat-lying contacts, the resolution is controlled 

mainly by the vertical cell thickness, which is 10 metres in this case.  However, when 

evaluating the ability of the model to resolve contacts that do not align with an axis, it 

gets more complicated.  An angled contact, such as the contact between the upper/basal 

zones and the rooftop sodalite (or Thor Lake syenite), is difficult to identify because it 

will cut across the centre of multiple cells, and therefore may be washed out due to 

averaging.  Therefore, this contact is estimated based on geological interpretation of the 

geophysical models and its exact position and trend is difficult to determine.  In addition, 

the magnetic susceptibility model appears to map sections of the Hearne dyke swarm as 

well as the large Indin dyke that cross-cuts the area. 

Core magnetic susceptibility values that were measured in the field (Avalon, 2013; 

Nichols, 2014) were validated with the use of in-lab instruments.  Relationships between 

magnetic susceptibility measurements and sample mineralogy were analyzed with 

experimental computational techniques with promising results.  This preliminary study 

represents a first-pass method of quantifying mineral abundances.  In addition, trends 

between magnetic susceptibility, density, REE concentrations and mineral abundance 

further support the role of magnetite content in the Nechalacho deposit, and thus, the 

effectiveness of geophysical modelling.   
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Geological interpretations of the model delineate a combined region that includes the 

upper and basal zones.  This region is relatively flat in geometry and extends for 

approximately 2000 metres in each direction with a thickness of approximately 300 

metres, beginning from the surface in areas.  Contacts with the rooftop sodalite and/or the 

Thor Lake syenite are inferred based on a graded contact in the geophysical models, and 

using prior knowledge of subsurface geology. 

5.2 Structural Joint Inversion 

While isolated inversion techniques yielded interesting results, the implementation of 

both datasets in cooperative inversions yielded positive, but subtle results.  The structural 

cooperative inversion techniques used in this research aided in solving for more realistic 

geophysical models by eliminating small negative susceptibilities.  However, when 

comparing the isolated models with joint models there are few additional differences.  

This may speak to the accuracy of the isolated models obtained.  Both isolated and 

cooperative inversions delineate the upper and basal zones, as well as reasonable 

resolution of the lower contact between the basal zone and the Nechalacho nepheline 

syenite.  Lateral contacts between the deposit and the Thor Lake syenite cannot be 

identified clearly due to the resolution of the models, however they can be inferred by 

relating knowledge of the geology of the deposit to the geophysical models obtained. 

5.3 Newly Developed Techniques 

For this thesis, multple innovative techniques were tested and developed.  A new 

technique of laterally interpolating between known data points proved to be extremely 

effective in enhancing the dataset for use in inverse modelling methods, as well as 
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predicting subsurface geology.  This technique may have further applications in the 

mineral exploration industry where methods such as kriging have traditionally been used 

such as resource estimation, as well as applications in other fields such as statistics. 

In addition to a lateral interpolation method, innovative inversion techniques such as the 

structural joint inversion method proposed by Lelièvre et al. (2009) were implemented 

and adapted.  This joint inversion technique, as well as the other techniques for 

influencing the inverse problem via UBC-GIF software, were developed in this work and 

implemented successfully.  

Finally, a technique that uses high-resolution photographs of samples to obtain modal 

percentages was developed and tested on specific samples.  This first-pass method 

assigns mineral abundances to each sample in an automated manner based on colour 

using a simplified system of minerals.  While further testing is necessary to assess the 

robust accuracy of this technique, preliminary studies yielded magnetite abundances that 

trend very closely with known magnetic susceptibility measurements.  This method has 

the potential to be an excellent tool in the mineral exploration industry due to its ability to 

analyze large quanities of samples in a short period of time. 

5.4 Future Work 

Future work includes further experimentation with computational colour analysis.  

Results shown here displayed the potential for quantifying minerals through their colours, 

however a larger database of colour variations in minerals is needed to extend this 

research, as well as mitigate some error in computation.   
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Additional in-lab sample measurements on other drill cores could help determine whether 

the higher magnetic susceptibilities measured in this work are uniform across the entire 

deposit.  This has implications to any future magnetic or joint inversions that may be 

completed.  Finally, further experimentation with the cooperative inversion problem 

could resolve the optimal intensity of adjusting the weighting coefficients. 
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Appendices 

Appendix A:  Matlab Code 

UBC-GIF_Conversion.m 

% UBC-GIF Conversion Codes V2.0 

% Written by Derek Kouhi 

% Last Updated:  June 29, 2015 

 

% This script takes drillhole measurements and bins/averages them into 

% their appropriate cells to create a 3-D reference model.  This  

% reference model is then used to calculate maximum and minimum  

% boundary constraints, as well as starting models. 

 

%% Import Data and Recover Well Locations 

 

% Important Variables: 

%       new = list of well locations 

%       all = data in the format: x,y,z,susc 

 

clear new 

clear new1 

clear new2 

clear data 

clear data2 

data = xlsread('BH_locations.xlsx',1,'A1:E65512'); 

data2 = xlsread('BH_locations.xlsx',1,'A65513:E113943'); 

count = 1; 

for i = 1:length(data) 

   if data(i,3) == 0 

      new1(count,1) = data(i,1); 

      new1(count,2) = data(i,2); 

      count = count + 1; 

   end 

end 

count = 1; 

for i = 1:length(data2) 

   if data2(i,3) == 0 

      new2(count,1) = data2(i,1); 

      new2(count,2) = data2(i,2); 

      count = count + 1; 

   end 

end 

count = 1; 

for i = 1:length(data) 

   if isfinite(data(i,4)) 

      all1(count,1) = data(i,1); 

      all1(count,2) = data(i,2); 

      all1(count,3) = data(i,5); 

      all1(count,4) = data(i,4)/1000; 

      count = count + 1; 

   end 

end 

count = 1; 
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for i = 1:length(data2) 

   if isfinite(data2(i,4)) 

      all2(count,1) = data2(i,1); 

      all2(count,2) = data2(i,2); 

      all2(count,3) = data2(i,5); 

      all2(count,4) = data2(i,4)/1000; 

      count = count + 1; 

   end 

end 

new = [new1;new2]; 

all = [all1;all2]; 

 

clear count 

clear i 

clear new1 

clear new2 

clear all1 

clear all2 

clear data 

clear data2 

%% Input Dimensions and Set Mesh Layout 

 

% Important Variables: 

%       dim() = size of the model in the x,y,z directions 

%       dimmodel = the total size of the model file (x*y*z) 

%       x,y = cell sizes in the x and y directions 

%       zcells = cell sizes in the depth domain 

%       X,Y = gridded meshes 

 

space = 25; 

x = [413150,413950,414350,414550:space:418250,418450,418850,419650]; 

y = 

[6883350,6884150,6884550,6884750:space:6889250,6889450,6889850,6890650]

; 

zcells = [300:-12.5:-700,-725:-25:-1700]; 

dimx = length(x) - 1; 

dimy = length(y) - 1; 

dimz = length(zcells) - 1; 

dimmodel = dimx*dimy*dimz; 

[X,Y]=meshgrid(x,y); 

 

clear count 

clear i 

clear space 

 

%% Plot the Grid and Well Locations 

 

% OPTIONAL CODE 

 

close all; 

figure('units','normalized','outerposition',[0 0 1 1]) 

plot(new(:,1),new(:,2),'.') 

hold on; 

plot(X,Y,'r') 

plot(X',Y','r') 

plot(new(:,1),new(:,2),'.') 

title('X-Y Plane Grid and Drillhole Locations','FontSize',32); 
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xlabel('Easting','FontSize',20); 

ylabel('Northing','FontSize',20); 

legend('Drillholes','Grid Lines'); 

set(gca,'fontsize',18); 

xt=get(gca,'xtick');  

xt(2:2:end)=[]; 

set(gca,'xtick',xt); 

curtick = get(gca, 'XTick'); 

set(gca, 'XTickLabel', cellstr(num2str(curtick(:)))); 

yt=get(gca,'ytick');  

yt(1:2:end)=[]; 

set(gca,'ytick',yt); 

curtick = get(gca, 'YTick'); 

set(gca, 'YTickLabel', cellstr(num2str(curtick(:)))); 

 

%% Sort the Data into Cells 

 

% Important Variables: 

%       timet = total time of the run 

%       percentile = percentage of the highest values to use in the 

model 

%       model = the model created using the data 

 

% Inputs 

 

percentile = 0.5; 

 

% 

clc 

timet = 0; 

if percentile > 0.9 && percentile <= 1.0 

    C = 1; 

elseif percentile > 1.0 || percentile <= 0.0 

    errordlg('The percentile must be between 0 and 1.0!'); 

    return 

else 

    C = 0; 

end  

for i = 1:dimy 

    tic; 

    disp(['y-index ',num2str(i),' of ',num2str(dimy)]); 

    for j = 1:dimx 

        for k = 1:dimz 

            cellno = dimx*dimz*(i-1)+dimz*(j-1)+k; 

            emin = x(j); 

            emax = x(j+1); 

            nmin = y(i); 

            nmax = y(i+1); 

            zmin = zcells(k+1); 

            zmax = zcells(k); 

%             m = 1; 

%             while m <= length(all) 

                indices = find(all(:,1) >= emin & all(:,1) <= emax &... 

                all(:,2) >= nmin & all(:,2) <= nmax &... 

                all(:,3) >= zmin & all(:,3) <= zmax); 

%                 m = m + 1; 

%             end 
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            if ~isempty(indices) 

                addition(1,:) = all(indices,4); 

                addition = sort(addition); 

                start = length(addition)-

ceil(length(addition)*percentile)+C; 

                if start < 1 

                    start = 1; 

                end 

                useadd = addition(start:length(addition)); 

                count = length(useadd); 

                model(cellno,1) = sum(useadd)/count; 

            else 

                model(cellno,1) = 0; 

            end 

            clear addition 

            clear useadd 

            clear count 

        end 

    end 

    time = toc; 

    timet = timet + time; 

    clc 

    disp(['Time for run:  ',num2str(floor(time/60)),' minutes and 

',num2str(((time/60)-floor(time/60))*60),' seconds']); 

    disp(['Estimated time remaining:  ',num2str(floor(time*(dimy-

i)/3600)),' hours and ',... 

        num2str(((time*(dimy-i)/3600)-floor(time*(dimy-i)/3600))*60),' 

minutes']); 

end 

clc 

disp('************MODEL COMPLETED************'); 

disp(['Total Run Time:  ',num2str(floor(timet/3600)),' hours, ',... 

    num2str(floor((timet/3600-floor(timet/3600))*60)),' minutes and 

',... 

    num2str(timet-(floor(timet/3600))*3600-(floor((timet/3600-

floor(timet/3600))*60))*60),' seconds']); 

clear count 

clear emin 

clear emax 

clear nmin 

clear nmax 

clear zmax  

clear zmin 

clear percentile 

clear start 

clear time 

clear timet 

clear k 

clear C 

clear indices 

clear i 

clear j 

clear cellno 

clear p 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_model.txt

'],... 

    model,'precision',7,'newline','pc'); 
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%% Write the Model to a Text File 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_model.txt

'],... 

    model,'precision',7,'newline','pc'); 

 

%% Create an Active Cell Matrix Based on the Model 

 

% Important Variables: 

%       active = the active cells matrix 

 

active = zeros(length(model),1); 

for i = 1:length(model) 

    if model(i) > 0 

        active(i) = 1; 

    else 

        active(i) = -1; 

    end 

end 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_active.tx

t'],... 

    active,'precision',7,'newline','pc'); 

 

clear i 

 

%% Create a Starting Model 

 

% Important Variables: 

%       zeroval = the value to give to points that do not contain data 

%       start_mod = the starting model 

 

% Inputs 

 

zeroval = 0.0001; 

 

% 

 

start_mod = zeros(length(model),1); 

for i = 1:length(model) 

    if model(i) == 0 

        start_mod(i) = zeroval; 

    else 

        start_mod(i) = model(i); 

    end 

end 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_start.txt

'],... 

    start_mod,'precision',7,'newline','pc'); 

 

clear i 

clear zeroval 

 

%% Create Maximum and Minimum Boundary Models 

 

% Important Variables: 
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%       range = the value to +/- from the measured value to form the 

range 

%       maxnon = the value to assign for the maximum of cells with no 

data 

%       max_mod = the maximum boundary model 

%       min_mod = the minimum boundary model 

 

% Inputs 

 

range = 0.05; 

maxnon = 0.6; 

 

% 

 

max_mod = zeros(length(model),1); 

min_mod = zeros(length(model),1); 

for i = 1:length(model) 

    if model(i) == 0 

        max_mod(i) = maxnon; 

        min_mod(i) = 0; 

    else 

        max_mod(i) = model(i)+range; 

        min_mod(i) = model(i)-range; 

        if min_mod(i) < 0 

            min_mod(i) = 0; 

        end 

    end 

end 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_max.txt']

,... 

    max_mod,'precision',7,'newline','pc'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_min.txt']

,... 

    min_mod,'precision',7,'newline','pc'); 

 

clear i 

clear range 

clear maxnon 

upward_cont.m  

% upward_cont.m 

% Written by Derek Kouhi 

% July 2015 

%  

% This script takes airborne data and interpolates it onto a courser 

grid 

% using a biharmonic spline interpolation from MathWorks.  The data is  

% then upward continued using the mfilter function adapted from ES3320 

% by Derek Kouhi and re-gridded back to a finer grid. 

 

%% 

% Import the airborne data for the region 

magdata = xlsread('allmagdata.xlsx'); 

 

% Inputs: 
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% - width: the user-definted resolution for upward continuation 

% - xi,yi: vectors define the grid over which the data will be 

calculated 

 

width = 200; 

xi = 414300:width:418500; 

yi = 6884500:width:6889500; 

 

% Eliminate all data that does not lie between grid vector dimensions 

count = 1; 

for i = 1:length(magdata) 

    if magdata(i,1) >= 414800 && magdata(i,1) <= 418000 && ... 

            magdata(i,2) >= 6885000 && magdata(i,2) <= 6889000 

        X(count,1) = magdata(i,1); 

        Y(count,1) = magdata(i,2); 

        Z(count,1) = magdata(i,3); 

        count = count + 1; 

    end 

end 

 

% Create a grid from the grid vectors and use a biharmonic spline 

% interpolation function to reposition datapoints if necessary 

 

[XI,YI] = meshgrid(xi,yi); 

ZI = biharmonic_spline_interp2(X,Y,Z,XI,YI); 

alldim = [X,Y,Z]; 

ppc = 0; 

 

% Calculate the points per cell to help find parameters that avoid 

aliasing 

 

for i = 1:length(alldim) 

 if alldim(i,1) >= 414800 && alldim(i,1) <= 414800+width && 

alldim(i,2) >= 6885000 && alldim(i,2) <= 6885000+width 

        ppc = ppc + 1; 

    end 

end 

disp(['This is approximately ',num2str(ppc),' points per cell.']); 

clear alldim 

clear ppc 

 

% Plot the interpolated figure for reference 

 

figure 

imagesc(xi,yi,ZI); 

set(gca,'YDir','normal') 

colorbar; 

clear count 

clear i 

 

% Upward continue the data using the mfilter function (see below) 

 

howhigh = 5;  

dec = 17.593; 

inc = 81.196; 

[upcon,rtp,uprtp] = mfilter(ZI,howhigh,inc,dec); 

figure 
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imagesc(xi,yi,upcon); 

set(gca,'YDir','normal') 

colorbar; 

 

% Rewrap the data into vector format and check the vector length 

newmagdat = zeros(length(xi)*length(yi),1); 

for i = 1:length(yi) 

    for j = 1:length(xi) 

        Xup(((j-1)*length(yi))+i,1) = XI(i,j); 

        Yup(((j-1)*length(yi))+i,1) = YI(i,j); 

        Zup(((j-1)*length(yi))+i,1) = upcon(i,j); 

    end 

end 

fzero = find(Xup==0); 

disp(['The number of zeros in this vector is:  

',num2str(length(fzero))]); 

disp(['The vector has a length of ',num2str(length(Xup)),' which is 

',... 

    num2str(length(Xup)/(length(xi)*length(yi))),' times the size it 

should be.']); 

clear fzero 

clear i 

clear j 

 

% Interpolate the data onto a higher resolution grid 

 

xi = 414800:50:418000; 

yi = 6885000:50:6889000; 

[XI,YI] = meshgrid(xi,yi); 

Znorm = biharmonic_spline_interp2(X,Y,Z,XI,YI); 

Zupcon = biharmonic_spline_interp2(Xup,Yup,Zup,XI,YI); 

 

% Plot comparison plots for each anomaly 

figure 

imagesc(xi,yi,Znorm); 

set(gca,'YDir','normal') 

colorbar; 

title(['Original Magnetic Anomaly on a 

',num2str(length(xi)),'x',num2str(length(yi)),' Grid']); 

figure 

imagesc(xi,yi,Zupcon); 

set(gca,'YDir','normal') 

colorbar; 

title(['Magnetic Anomaly Upward Continued by 

',num2str(howhigh*1000),... 

    'm']); 

Zfinal = Znorm - Zupcon; 

figure 

imagesc(xi,yi,Zfinal); 

set(gca,'YDir','normal') 

colorbar; 

title(['Remaining Magnetic Anomaly on a 

',num2str(length(xi)),'x',num2str(length(yi)),' Grid']); 

 

% Put the data into the UBC-GIF observation file format 
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% Read an xls file containing x and y measurement locations in columns 

1 

% and 2, and altitude measurements in column 3. 

 

elev = xlsread('elevation.xlsx'); 

finalmag = zeros(length(xi)*length(yi),1); 

for i = 1:length(yi) 

    for j = 1:length(xi) 

        finalmag(((j-1)*length(yi))+i,1) = XI(i,j); 

        finalmag(((j-1)*length(yi))+i,2) = YI(i,j); 

        finalmag(((j-1)*length(yi))+i,4) = Zfinal(i,j); 

    end 

end 

fzero = find(finalmag==0); 

disp(['The number of zeros in this vector is:  

',num2str(length(fzero))]); 

disp(['The vector has a length of ',num2str(length(finalmag)),' which 

is ',... 

    num2str(length(finalmag)/(length(xi)*length(yi))),' times the size 

it should be.']); 

clear fzero 

clear i 

clear j 

finalmag(:,3) = elev(:,3); 

finalmag(:,5) = 5; 

 

% Write the data to a text file to be used as the input observation 

file 

dlmwrite('thorlake_up.mag.txt',finalmag,'precision',7,'newline','pc'); 

 
function [output,output2,output3] = mfilter(data,dz,inc,dec); 

% output = mfilter(data); 

% 

% This program was adapted by Derek Kouhi from a similar program 

written  

% for ES3320 at Western University (Taught be Dr. Gerhard Pratt).   

% It applies a forward and inverse 2-D Fourier transform. A filter can  

% be implemented after the forward transform. The units of dx and dy  

% are km. 

 

ic = sqrt(-1); 

dx = 0.2; 

dy = 0.2; 

[m,n] = size(data); 

 

[fftout,dbamp,u,v,k] = fft2d(data,dx,dy); 

dec = dec*pi/180; 

inc = inc*pi/180; 

f = [cos(inc)*sin(dec),cos(inc)*cos(dec),sin(inc)]; 

a1 = f(3)^2-f(1)^2; 

a2 = f(3)^2-f(2)^2; 

a3 = -f(2)*f(1)-f(1)*f(2); 

b1 = 2*f(1)*f(3); 

b2 = 2*f(2)*f(3); 

 

for i = 1:m 
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 for j = 1:n 

       

 

%Upward Continuation filter 

      filt(i,j) = exp(-dz*abs(k(i,j))); 

%Reduction to the Pole filter 

      filtrtp(i,j) = 

abs(k(i,j)^2)/(a1*u(i,j)^2+a2*v(i,j)^2+a3*u(i,j)... 

          *v(i,j)+ic*abs(k(i,j))*(b1*u(i,j)+b2*v(i,j))); 

 

   end 

end 

 

filtdat = fftout .* filt; 

filtdat2 = fftout .* filtrtp; 

filtdat3 = fftout .* filt .* filtrtp; 

%Output upward, rtp, both 

output = ifft2d(filtdat); 

output2 = ifft2d(filtdat2); 

output3 = ifft2d(filtdat3); 

 

 

grad_attenuate.m 

% grad_attenuate.m  

% Written by Derek Kouhi 

% September 2015 

 

% This program takes the current best model from geophysical inversion,  

% removes padding cells and calculates the gradient between each cell 

in 

% 3 dimensions.  These gradients are used to adjust weighting 

coefficients 

% in subsequent inversions.  

 

%% Unwrap a Model 

 

% Important Variables: 

%       inmodel = the model that is being unwrapped 

%       unwrap = the unwrapped 3-D matrix (x,y,z) 

 

clc 

fileID = fopen('model3.txt','r'); 

formatSpec = '%f'; 

inmodel = fscanf(fileID,formatSpec); 

 

ind = find(inmodel == -100); 

inmodel(ind) = 0; 

unwrap = zeros(dimx,dimy,dimz); 

count = 1; 

for i = 1:dimy 

    for j = 1:dimx 

        for k = 1:dimz 

            unwrap(j,i,k) = inmodel(count);  

            count = count + 1; 
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        end 

    end 

end 

 

clear fileID 

clear formatSpec 

clear inmodel 

clear count 

clear i 

clear j 

clear k 

 

%% Remove Padding 

 

% Important Variables: 

%       xypadding = the number of padded cells on either side on x-y 

plane 

%       zpadding = the number of cells padding the bottom in z-

direction 

%       unwrap = the unwrapped 3-D matrix (x,y,z) 

%       unpad = the unwrapped 3-D matrix with padding removed 

 

% Inputs 

 

xypadding = 3; 

zpadding = 3; 

 

% 

 

clc 

unpad = unwrap(xypadding+1:dimx-xypadding,xypadding+1:dimy-

xypadding,... 

    1:dimz-zpadding); 

 

 

%% Find the Gradient of the Unpadded Model 

 

% Important Variables: 

%       HX,HY,HZ = cell spacing in each direction (x,y,z) 

%       unpad = the unwrapped 3-D matrix with padding removed 

%       FX,FY,FZ = the gradient in each component 

 

% Inputs 

 

HX = 25; 

HY = 25; 

HZ = 10; 

 

% 

 

clc 

[FX,FY,FZ] = gradient(unpad,HX,HY,HZ); 

FX = FX/max(max(max(abs(FX)))); 

FY = FY/max(max(max(abs(FY)))); 

FZ = FZ/max(max(max(abs(FZ)))); 

 

answer = input('Would you like to sample your gradient? (Y/N)  ','s'); 
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if answer == 'y' || answer == 'Y' 

    znum = input('What z cell would you like to sample?  '); 

    if znum < 1 || znum > dimz 

        errordlg('Your chosen z cell is not within the bounds of the 

model'); 

    end 

    px = FX(:,:,znum); 

    py = FY(:,:,znum); 

    figure 

    contour(unpad(:,:,znum)) 

    colorbar; 

    hold on; 

    quiver(px,py) 

else return 

end 

 

clear znum 

clear HX 

clear HY 

clear HZ 

clear px 

clear py 

clear answer 

 

%% Repad and Rewrap the Gradient Models 

 

% Important Variables: 

%       HX,HY,HZ = cell spacing in each direction (x,y,z) 

%       unpad = the unwrapped 3-D matrix with padding removed 

%       FX,FY,FZ = the gradient in each component 

 

% Inputs 

 

overzero = 0.01; 

 

% 

 

clc 

FXrr = zeros(dimx-1,dimy,dimz); 

FYrr = zeros(dimx,dimy-1,dimz); 

FZrr = zeros(dimx,dimy,dimz-1); 

FXrr(xypadding+1:dimx-xypadding,xypadding+1:dimy-xypadding,... 

    1:dimz-zpadding) = FX; 

FYrr(xypadding+1:dimx-xypadding,xypadding+1:dimy-xypadding,... 

    1:dimz-zpadding) = FY; 

FZrr(xypadding+1:dimx-xypadding,xypadding+1:dimy-xypadding,... 

    1:dimz-zpadding) = FZ; 

 

gradmodX = zeros(dimmodel-dimy*dimz,1); 

gradmodY = zeros(dimmodel-dimx*dimz,1); 

gradmodZ = zeros(dimmodel-dimx*dimy,1); 

for i = 1:dimy 

    for j = 1:dimx-1 

        for k = 1:dimz 

            cellno = (dimx-1)*dimz*(i-1)+dimz*(j-1)+k; 

            gradmodX(cellno,1) = FXrr(j,i,k); 

        end 
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    end 

end 

for i = 1:dimy-1 

    for j = 1:dimx 

        for k = 1:dimz 

            cellno = dimx*dimz*(i-1)+dimz*(j-1)+k; 

            gradmodY(cellno,1) = FYrr(j,i,k); 

        end 

    end 

end 

for i = 1:dimy 

    for j = 1:dimx 

        for k = 1:dimz-1 

            cellno = dimx*(dimz-1)*(i-1)+(dimz-1)*(j-1)+k; 

            gradmodZ(cellno,1) = FZrr(j,i,k); 

        end 

    end 

end 

gradmodX = ones(dimmodel-dimy*dimz,1)*(1+overzero)-abs(gradmodX); 

gradmodY = ones(dimmodel-dimx*dimz,1)*(1+overzero)-abs(gradmodY); 

gradmodZ = ones(dimmodel-dimx*dimy,1)*(1+overzero)-abs(gradmodZ); 

 

gradmodS = ones(dimmodel,1)*0.0002; 

gradmodS(ind) = -1.0; 

weightmod = [gradmodS;gradmodX;gradmodY;gradmodZ]; 

 

%% 

dlmwrite('weightmod.txt',weightmod,'precision',7,'newline','pc'); 

 

lat_interp.m 

% lat_interp.m v2.0 

% Written by Derek Kouhi 

% Last Updated: June 10th 2016 

%  

% This program takes the magnetic susceptibility or density drillhole  

% data and bins it into user-determined cells for inversion similar to 

% UBC-GIF_Conversion.m.  It implements lateral interpolation methods 

% described in Kouhi and Tiampo (2016b) to created a weighted average 

% reference model which is used to calculate maximum and minimum 

boundary 

% models.  These models can be calculated using set +/- values 

(default)  

% or statistically using standard deviation.  Magnetic and gravity  

% codes are very similar, with slight distinctions. 

 

 

%% Magnetic 

 

% Import Data and Recover Well Locations 

 

% Important Variables: 

%       new = list of well locations 

%       all = data in the format: x,y,z,susc 
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clear new 

clear new1 

clear new2 

clear data 

clear data2 

data = xlsread('BH_locations.xlsx',1,'A1:E65512'); 

data2 = xlsread('BH_locations.xlsx',1,'A65513:E113943'); 

count = 1; 

for i = 1:length(data) 

   if data(i,3) == 0 

      new1(count,1) = data(i,1); 

      new1(count,2) = data(i,2); 

      count = count + 1; 

   end 

end 

count = 1; 

for i = 1:length(data2) 

   if data2(i,3) == 0 

      new2(count,1) = data2(i,1); 

      new2(count,2) = data2(i,2); 

      count = count + 1; 

   end 

end 

count = 1; 

for i = 1:length(data) 

   if isfinite(data(i,4)) 

      all1(count,1) = data(i,1); 

      all1(count,2) = data(i,2); 

      all1(count,3) = data(i,5); 

      all1(count,4) = data(i,4)/1000; 

      count = count + 1; 

   end 

end 

count = 1; 

for i = 1:length(data2) 

   if isfinite(data2(i,4)) 

      all2(count,1) = data2(i,1); 

      all2(count,2) = data2(i,2); 

      all2(count,3) = data2(i,5); 

      all2(count,4) = data2(i,4)/1000; 

      count = count + 1; 

   end 

end 

new = [new1;new2]; 

all = [all1;all2]; 

 

clear count 

clear i 

clear new1 

clear new2 

clear all1 

clear all2 

clear data 

clear data2 

 

% Input Dimensions and Set Mesh Layout 
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% Important Variables: 

%       dim() = size of the model in the x,y,z directions 

%       dimmodel = the total size of the model file (x*y*z) 

%       x,y = cell sizes in the x and y directions 

%       zcells = cell sizes in the depth domain 

%       X,Y = gridded meshes 

 

space = 20; 

x = [413150,413950,414350,414550:space:418250,418450,418850,419650]; 

y = 

[6883350,6884150,6884550,6884750:space:6889250,6889450,6889850,6890650]

; 

zcells = [300:-12.5:-700,-725:-25:-1700]; 

dimx = length(x) - 1; 

dimy = length(y) - 1; 

dimz = length(zcells) - 1; 

dimmodel = dimx*dimy*dimz; 

[X,Y]=meshgrid(x,y); 

 

clear count 

clear i 

clear space 

 

% Laterally Interpolate and Sort the Data into Cells 

 

% Important Variables: 

%       timet = total time of the run 

%       percentile = percentage of the highest values to use in the 

model 

%       model = the model created using the data 

%       addition = the running sum of all weighted values for each cell 

%       total = the total number of values added to addition 

%       accurval = the running sum of all weighted accuracy values for  

%                  each cell 

 

 

% Inputs 

 

percentile = 0.1; 

 

% 

clc 

timet = 0; 

if percentile > 0.9 && percentile <= 1.0 

    C = 1; 

elseif percentile > 1.0 || percentile <= 0.0 

    errordlg('The percentile must be between 0 and 1.0!'); 

    return 

else 

    C = 0; 

end  

model = zeros(dimmodel,1); 

addition = zeros(dimmodel,1); 

total = zeros(dimmodel,1); 

accurval = zeros(dimmodel,1); 

standevadd = zeros(dimmodel,1); 

totaldev = zeros(dimmodel,1); 
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accurvaldev = zeros(dimmodel,1); 

for i = 1:dimy 

    tic; 

    disp(['y-index ',num2str(i),' of ',num2str(dimy)]); 

    for j = 1:dimx 

        for k = 1:dimz 

            cellno = dimx*dimz*(i-1)+dimz*(j-1)+k; 

            emin = x(j); 

            emax = x(j+1); 

            nmin = y(i); 

            nmax = y(i+1); 

            zmin = zcells(k+1); 

            zmax = zcells(k); 

 

            indices = find(all(:,1) >= emin & all(:,1) <= emax &... 

            all(:,2) >= nmin & all(:,2) <= nmax &... 

            all(:,3) >= zmin & all(:,3) <= zmax); 

 

            if ~isempty(indices) 

                %Implement percentile 

                add1(1,:) = all(indices,4); 

                add1 = sort(add1); 

                standevadd(cellno,1) = standevadd(cellno,1) + 

std(add1); 

                start = length(add1)-ceil(length(add1)*percentile)+C; 

                if start < 1 

                    start = 1; 

                end 

                useadd = add1(start:length(add1)); 

                 

                addition(cellno,1) = addition(cellno,1) + 

4*sum(useadd); 

                total(cellno,1) = total(cellno,1) + length(useadd); 

                accurval(cellno,1) = accurval(cellno,1) + 

4*length(useadd); 

                totaldev(cellno,1) = totaldev(cellno,1) + 1; 

                accurvaldev(cellno,1) = accurvaldev(cellno,1) + 4; 

            

                %Interpolate to surrounding cells 

                for w = -3:3 

                    for v = -3:3 

                        if (w~=v~=0) 

                            if abs(w) >= abs(v) 

                                if (cellno+w*dimx*dimz+v*dimz <= 

dimmodel-3*dimx*dimz) 

                                    

addition(cellno+w*dimx*dimz+v*dimz,1)=addition(cellno+w*dimx*dimz+v*dim

z,1)+(4-abs(w))*sum(useadd); 

                                    total(cellno+w*dimx*dimz+v*dimz,1) 

= total(cellno+w*dimx*dimz+v*dimz,1) + length(useadd); 

                                    

accurval(cellno+w*dimx*dimz+v*dimz,1) = 

accurval(cellno+w*dimx*dimz+v*dimz,1) + (4-abs(w))*length(useadd); 

                                    

standevadd(cellno+w*dimx*dimz+v*dimz,1)=standevadd(cellno+w*dimx*dimz+v

*dimz,1)+(4-abs(w))*std(add1); 
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totaldev(cellno+w*dimx*dimz+v*dimz,1) = 

totaldev(cellno+w*dimx*dimz+v*dimz,1) + 1; 

                                    

accurvaldev(cellno+w*dimx*dimz+v*dimz,1) = 

accurvaldev(cellno+w*dimx*dimz+v*dimz,1) + (4-abs(w)); 

                                end 

                            else 

                                if (cellno+w*dimx*dimz+v*dimz <= 

dimmodel-3*dimx*dimz) 

                                    

addition(cellno+w*dimx*dimz+v*dimz,1)=addition(cellno+w*dimx*dimz+v*dim

z,1)+(4-abs(v))*sum(useadd); 

                                    total(cellno+w*dimx*dimz+v*dimz,1) 

= total(cellno+w*dimx*dimz+v*dimz,1) + length(useadd); 

                                    

accurval(cellno+w*dimx*dimz+v*dimz,1) = 

accurval(cellno+w*dimx*dimz+v*dimz,1) + (4-abs(v))*length(useadd); 

                                    

standevadd(cellno+w*dimx*dimz+v*dimz,1)=standevadd(cellno+w*dimx*dimz+v

*dimz,1)+(4-abs(v))*std(add1); 

                                    

totaldev(cellno+w*dimx*dimz+v*dimz,1) = 

totaldev(cellno+w*dimx*dimz+v*dimz,1) + 1; 

                                    

accurvaldev(cellno+w*dimx*dimz+v*dimz,1) = 

accurvaldev(cellno+w*dimx*dimz+v*dimz,1) + (4-abs(v)); 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

            clear add1 

            clear useadd 

        end 

    end 

    time = toc; 

    timet = timet + time; 

    clc 

    disp(['Time for run:  ',num2str(floor(time/60)),' minutes and 

',num2str(((time/60)-floor(time/60))*60),' seconds']); 

    disp(['Estimated time remaining:  ',num2str(floor(time*(dimy-

i)/3600)),' hours and ',... 

        num2str(((time*(dimy-i)/3600)-floor(time*(dimy-i)/3600))*60),' 

minutes']); 

end 

disp('Calculating Model...........'); 

for ii = 1:dimmodel 

    if accurval(ii)==0 

        accurval(ii) = 1; 

    end 

    if total(ii)==0 

        total(ii) = 1; 

    end 

end 

for ii = 1:dimmodel 
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    if accurvaldev(ii)==0 

        accurvaldev(ii) = 1; 

    end 

    if totaldev(ii)==0 

        totaldev(ii) = 1; 

    end 

end 

% Calculate the weighted average for susceptibility and acuracy values 

model = addition./accurval; 

avgacc = floor(accurval./total); 

standev = standevadd./accurvaldev; 

avgaccdev = floor(accurvaldev./totaldev); 

clc 

disp('************MODEL COMPLETED************'); 

disp(['Total Run Time:  ',num2str(floor(timet/3600)),' hours, ',... 

    num2str(floor((timet/3600-floor(timet/3600))*60)),' minutes and 

',... 

    num2str(timet-(floor(timet/3600))*3600-(floor((timet/3600-

floor(timet/3600))*60))*60),' seconds']); 

clear count 

clear emin 

clear emax 

clear nmin 

clear nmax 

clear zmax  

clear zmin 

clear percentile 

clear start 

clear time 

clear timet 

clear k 

clear C 

clear indices 

clear i 

clear j 

clear cellno 

clear p 

disp('Writing Model to Text File..'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_magmod.tx

t'],... 

    model,'precision',7,'newline','pc'); 

disp('COMPLETE'); 

 

% Create a Starting Model 

 

% Important Variables: 

%       zeroval = the value to give to points that do not contain data 

%       start_mod = the starting model 

 

% Inputs 

 

zeroval = 0.0001; 

 

% 

disp('CREATING MODELS....'); 

 

start_mod = zeros(length(model),1); 
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for i = 1:length(model) 

    if model(i) == 0 

        start_mod(i) = zeroval; 

    else 

        start_mod(i) = model(i); 

    end 

end 

 

disp('Writing starting model..'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_magstart.

txt'],... 

    start_mod,'precision',7,'newline','pc'); 

disp('Starting model saved!'); 

clear i 

clear zeroval 

 

% Create Maximum and Minimum Boundary Models 

 

% Important Variables: 

%       range = the value to +/- from the measured value to form the 

range 

%       maxnon = the value to assign for the maximum of cells with no 

data 

%       max_mod = the maximum boundary model 

%       min_mod = the minimum boundary model 

 

% Inputs 

 

% r1-r4 are the +/- values depending on the accuracy value of the cell 

r1 = 0.01; 

r2 = 0.075; 

r3 = 0.05; 

r4 = 0.025; 

 

maxnon = 0.6; 

minnon = 0; 

 

% 

 

max_mod = zeros(length(model),1); 

min_mod = zeros(length(model),1); 

 

% OPTIONAL CODE:  takes a statistical approach to assigning max/min 

values 

%                 using standard deviations rather than set +/- values  

% mult1 = 2.5; 

% mult2 = 2; 

% mult3 = 1.5; 

% mult4 = 1; 

% 

% for i = 1:length(model) 

%     if model(i) == 0 || standev(i) == 0 

%         max_mod(i) = maxnon; 

%         min_mod(i) = minnon; 

%     else 

%         if avgacc(i) == 1 

%             max_mod(i) = model(i)+standev(i)*mult1; 
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%             min_mod(i) = model(i)-standev(i)*mult1; 

%             if max_mod(i) > maxnon 

%                 max_mod(i) = maxnon; 

%             end 

%             if min_mod(i) < minnon 

%                 min_mod(i) = minnon; 

%             end 

%         elseif avgacc(i) == 2 

%             max_mod(i) = model(i)+standev(i)*mult2; 

%             min_mod(i) = model(i)-standev(i)*mult2; 

%             if max_mod(i) > maxnon 

%                 max_mod(i) = maxnon; 

%             end 

%             if min_mod(i) < minnon 

%                 min_mod(i) = minnon; 

%             end 

%         elseif avgacc(i) == 3 

%             max_mod(i) = model(i)+standev(i)*mult3; 

%             min_mod(i) = model(i)-standev(i)*mult3; 

%             if max_mod(i) > maxnon 

%                 max_mod(i) = maxnon; 

%             end 

%             if min_mod(i) < minnon 

%                 min_mod(i) = minnon; 

%             end 

%         elseif avgacc(i) == 4 

%             max_mod(i) = model(i)+standev(i)*mult4; 

%             min_mod(i) = model(i)-standev(i)*mult4; 

%             if max_mod(i) > maxnon 

%                 max_mod(i) = maxnon; 

%             end 

%             if min_mod(i) < minnon 

%                 min_mod(i) = minnon; 

%             end 

%         end 

%     end 

% end 

 

% Calculate max/min boundary models using accuracy values 

for i = 1:length(model) 

    if model(i) == 0 || standev(i) == 0 

        max_mod(i) = maxnon; 

        min_mod(i) = minnon; 

    else 

        if avgacc(i) == 1 

            max_mod(i) = model(i)+r1; 

            min_mod(i) = model(i)-r1; 

            if max_mod(i) > maxnon 

                max_mod(i) = maxnon; 

            end 

            if min_mod(i) < minnon 

                min_mod(i) = minnon; 

            end 

        elseif avgacc(i) == 2 

            max_mod(i) = model(i)+r2; 

            min_mod(i) = model(i)-r2; 

            if max_mod(i) > maxnon 
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                max_mod(i) = maxnon; 

            end 

            if min_mod(i) < minnon 

                min_mod(i) = minnon; 

            end 

        elseif avgacc(i) == 3 

            max_mod(i) = model(i)+r3; 

            min_mod(i) = model(i)-r3; 

            if max_mod(i) > maxnon 

                max_mod(i) = maxnon; 

            end 

            if min_mod(i) < minnon 

                min_mod(i) = minnon; 

            end 

        elseif avgacc(i) == 4 

            max_mod(i) = model(i)+r4; 

            min_mod(i) = model(i)-r4; 

            if max_mod(i) > maxnon 

                max_mod(i) = maxnon; 

            end 

            if min_mod(i) < minnon 

                min_mod(i) = minnon; 

            end 

        end 

    end 

end 

for i = 1:length(model) 

if max_mod(i) == min_mod(i) 

    max_mod(i) = maxnon; 

    min_mod(i) = minnon; 

end 

end 

for i = 1:length(model) 

if round(max_mod(i),9) == round(min_mod(i),9) 

    max_mod(i) = max_mod(i) + 0.01; 

    min_mod(i) = min_mod(i) - 0.01; 

end 

end 

 

disp('Writing maximum model..'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_magmax.tx

t'],... 

    max_mod,'precision',7,'newline','pc'); 

disp('Maximum model saved!'); 

disp('Writing minimum model..'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_magmin.tx

t'],... 

    min_mod,'precision',7,'newline','pc'); 

disp('Minimum model saved!'); 

 

clear i 

clear range 

clear maxnon 

 

% Create Active Cell Matrix (OPTIONAL) 

 

active = ones(length(avgacc),1); 
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for i = 1:length(avgacc) 

    if avgacc(i) == 4 

        active(i) = -1; 

    end 

end 

 

disp('Writing active cell matrix..'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_active_ma

g.txt'],... 

    active,'precision',7,'newline','pc'); 

disp('Active cell matrix saved!'); 

clc 

disp('~****MODELS COMPLETE****~'); 

 

%% Gravity Variation of Interpolation Code  

 

% Import Data and Recover Well Locations 

 

% Important Variables: 

%       new = list of well locations 

%       all = data in the format: x,y,z,susc 

 

clear new 

clear new1 

clear new2 

clear data 

data = xlsread('BH_locations_den.xlsx'); 

 

count = 1; 

for i = 1:length(data) 

   if data(i,3) == 0 

      new1(count,1) = data(i,1); 

      new1(count,2) = data(i,2); 

      count = count + 1; 

   end 

end 

 

count = 1; 

for i = 1:length(data) 

   if isfinite(data(i,4)) 

      all1(count,1) = data(i,1); 

      all1(count,2) = data(i,2); 

      all1(count,3) = data(i,5); 

      all1(count,4) = data(i,4); 

      count = count + 1; 

   end 

end 

 

% new = new1; 

all = all1; 

 

clear count 

clear i 

clear new1 

clear all1 

clear data 
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%% Input Dimensions and Set Mesh Layout 

 

% Important Variables: 

%       dim() = size of the model in the x,y,z directions 

%       dimmodel = the total size of the model file (x*y*z) 

%       x,y = cell sizes in the x and y directions 

%       zcells = cell sizes in the depth domain 

%       X,Y = gridded meshes 

 

space = 20; 

x = [413150,413950,414350,414550:space:418250,418450,418850,419650]; 

y = 

[6883350,6884150,6884550,6884750:space:6889250,6889450,6889850,6890650]

; 

zcells = [300:-12.5:-700,-725:-25:-1700]; 

dimx = length(x) - 1; 

dimy = length(y) - 1; 

dimz = length(zcells) - 1; 

dimmodel = dimx*dimy*dimz; 

[X,Y]=meshgrid(x,y); 

 

clear count 

clear i 

clear space 

 

% Sort the Data into Cells (rewrite) 

 

% Important Variables: 

%       timet = total time of the run 

%       percentile = percentage of the highest values to use in the 

model 

%       model = the model created using the data 

 

% Inputs 

 

 

% 

clc 

timet = 0; 

model = zeros(dimmodel,1); 

addition = zeros(dimmodel,1); 

total = zeros(dimmodel,1); 

accurval = zeros(dimmodel,1); 

for i = 1:dimy 

    tic; 

    disp(['y-index ',num2str(i),' of ',num2str(dimy)]); 

    for j = 1:dimx 

        for k = 1:dimz 

            cellno = dimx*dimz*(i-1)+dimz*(j-1)+k; 

            emin = x(j); 

            emax = x(j+1); 

            nmin = y(i); 

            nmax = y(i+1); 

            zmin = zcells(k+1); 

            zmax = zcells(k); 

 

            indices = find(all(:,1) >= emin & all(:,1) <= emax &... 
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            all(:,2) >= nmin & all(:,2) <= nmax &... 

            all(:,3) >= zmin & all(:,3) <= zmax); 

 

            if ~isempty(indices) 

                addition(cellno,1) = addition(cellno,1) + 

4*sum(all(indices,4)); 

                total(cellno,1) = total(cellno,1) + length(indices); 

                accurval(cellno,1) = accurval(cellno,1) + 

4*length(indices); 

            

                 

                for w = -3:3 

                    for v = -3:3 

                        if (w~=v~=0) 

                            if abs(w) >= abs(v) 

                                if (cellno+w*dimx*dimz+v*dimz <= 

dimmodel-3*dimx*dimz) 

                                    

addition(cellno+w*dimx*dimz+v*dimz,1)=addition(cellno+w*dimx*dimz+v*dim

z,1)+(4-abs(w))*sum(all(indices,4)); 

                                    total(cellno+w*dimx*dimz+v*dimz,1) 

= total(cellno+w*dimx*dimz+v*dimz,1) + length(indices); 

                                    

accurval(cellno+w*dimx*dimz+v*dimz,1) = 

accurval(cellno+w*dimx*dimz+v*dimz,1) + (4-abs(w))*length(indices); 

                                end 

                            else 

                                if (cellno+w*dimx*dimz+v*dimz <= 

dimmodel-3*dimx*dimz) 

                                    

addition(cellno+w*dimx*dimz+v*dimz,1)=addition(cellno+w*dimx*dimz+v*dim

z,1)+(4-abs(v))*sum(all(indices,4)); 

                                    total(cellno+w*dimx*dimz+v*dimz,1) 

= total(cellno+w*dimx*dimz+v*dimz,1) + length(indices); 

                                    

accurval(cellno+w*dimx*dimz+v*dimz,1) = 

accurval(cellno+w*dimx*dimz+v*dimz,1) + (4-abs(v))*length(indices); 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

    time = toc; 

    timet = timet + time; 

    clc 

    disp(['Time for run:  ',num2str(floor(time/60)),' minutes and 

',num2str(((time/60)-floor(time/60))*60),' seconds']); 

    disp(['Estimated time remaining:  ',num2str(floor(time*(dimy-

i)/3600)),' hours and ',... 

        num2str(((time*(dimy-i)/3600)-floor(time*(dimy-i)/3600))*60),' 

minutes']); 

end 

disp('Calculating Model...........'); 

for ii = 1:dimmodel 
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    if accurval(ii)==0 

        accurval(ii) = 1; 

    end 

    if total(ii)==0 

        total(ii) = 1; 

    end 

end 

model = addition./accurval; 

avgacc = floor(accurval./total); 

clc 

disp('************MODEL COMPLETED************'); 

disp(['Total Run Time:  ',num2str(floor(timet/3600)),' hours, ',... 

    num2str(floor((timet/3600-floor(timet/3600))*60)),' minutes and 

',... 

    num2str(timet-(floor(timet/3600))*3600-(floor((timet/3600-

floor(timet/3600))*60))*60),' seconds']); 

clear count 

clear emin 

clear emax 

clear nmin 

clear nmax 

clear zmax  

clear zmin 

clear percentile 

clear start 

clear time 

clear timet 

clear k 

clear C 

clear indices 

clear i 

clear j 

clear cellno 

clear p 

disp('Writing Model to Text File..'); 

modelsave = model; % Save a copy of calculated model 

for i = 1:length(model) 

    if model(i) == 0 

        model(i) = 0; 

    else 

        model(i) = model(i) - 2.67; % Subtract average density 

    end 

end 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_density.t

xt'],... 

    model,'precision',7,'newline','pc'); 

disp('COMPLETE'); 

 

% Create a Starting Model 

 

% Important Variables: 

%       zeroval = the value to give to points that do not contain data 

%       start_mod = the starting model 

 

% Inputs 

 

zeroval = 0; 
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% 

 

start_mod = zeros(length(model),1); 

for i = 1:length(model) 

    if model(i) == 0 

        start_mod(i) = zeroval; 

    else 

        start_mod(i) = model(i); 

    end 

end 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_density_s

tart.txt'],... 

    start_mod,'precision',7,'newline','pc'); 

 

clear i 

clear zeroval 

 

% Create Maximum and Minimum Boundary Models (rewrite) 

 

% Important Variables: 

%       range = the value to +/- from the measured value to form the 

range 

%       maxnon = the value to assign for the maximum of cells with no 

data 

%       max_mod = the maximum boundary model 

%       min_mod = the minimum boundary model 

 

% Inputs 

 

r1 = 0.5; 

r2 = 0.3; 

r3 = 0.2; 

r4 = 0.1; 

maxnon = 1.0; 

minnon = -1.0; 

 

% 

 

max_mod = zeros(length(model),1); 

min_mod = zeros(length(model),1); 

for i = 1:length(model) 

    if model(i) == 0 

        max_mod(i) = maxnon; 

        min_mod(i) = minnon; 

    else 

        if avgacc(i) == 1 

            max_mod(i) = model(i)+r1; 

            min_mod(i) = model(i)-r1; 

        elseif avgacc(i) == 2 

            max_mod(i) = model(i)+r2; 

            min_mod(i) = model(i)-r2; 

        elseif avgacc(i) == 3 

            max_mod(i) = model(i)+r3; 

            min_mod(i) = model(i)-r3; 

        elseif avgacc(i) == 4 
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            max_mod(i) = model(i)+r4; 

            min_mod(i) = model(i)-r4; 

        end 

    end 

end 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_max.txt']

,... 

    max_mod,'precision',7,'newline','pc'); 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_min.txt']

,... 

    min_mod,'precision',7,'newline','pc'); 

 

clear i 

clear range 

clear maxnon 

 

% Create Active Cell Matrix (OPTIONAL) 

 

active = ones(length(avgacc),1); 

for i = 1:length(avgacc) 

    if avgacc(i) == 4 

        active(i) = -1; 

    end 

end 

 

dlmwrite([num2str(dimx),'x',num2str(dimy),'x',num2str(dimz),'_active_de

ns.txt'],... 

    active,'precision',7,'newline','pc'); 

 

joint.m 

% joint.m 

% Written by Derek Kouhi 

% June 2016 

%  

% This program takes the current best models for both datasets as 

inputs 

% and calculates their gradients.  These values are then normalized  

% and summed and used to inversely proportion weighting coefficients 

% for subsequent inversions.  Gradient method is similar to that 

% of grad_attenuate.m 

 

%% Input Dimensions and Set Mesh Layout 

 

% Important Variables: 

%       dim() = size of the model in the x,y,z directions 

%       dimmodel = the total size of the model file (x*y*z) 

%       x,y = cell sizes in the x and y directions 

%       zcells = cell sizes in the depth domain 

%       X,Y = gridded meshes 

clear 

clc 

tic; 

space = 20; 

x = [413150,413950,414350,414550:space:418250,418450,418850,419650]; 
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y = 

[6883350,6884150,6884550,6884750:space:6889250,6889450,6889850,6890650]

; 

zcells = [300:-10:-800,-820:-20:-1340]; 

% zcells = [300:-12.5:-700,-725:-25:-1700]; 

dimx = length(x) - 1; 

dimy = length(y) - 1; 

dimz = length(zcells) - 1; 

dimmodel = dimx*dimy*dimz; 

[X,Y]=meshgrid(x,y); 

 

clear count 

clear i 

clear space 

 

 

% Unwrap a Model 

 

% Important Variables: 

%       inmodel = the model that is being unwrapped 

%       unwrap = the unwrapped 3-D matrix (x,y,z) 

 

disp('Unwrapping magnetic model...     [1/6]'); 

fileID = fopen('mag2.txt','r'); 

formatSpec = '%f'; 

inmodel = fscanf(fileID,formatSpec); 

 

fileID = fopen('191x231x137_magmax.txt','r'); 

formatSpec = '%f'; 

maxmag = fscanf(fileID,formatSpec); 

fileID = fopen('191x231x137_magmin.txt','r'); 

formatSpec = '%f'; 

minmag = fscanf(fileID,formatSpec); 

 

ind = find(inmodel == -100); 

for i = 1:length(inmodel) 

    if inmodel(i) < minmag(i) 

        inmodel(i) = minmag(i); 

    elseif inmodel(i) > maxmag(i); 

        inmodel(i) = maxmag(i); 

    end 

end 

 

dlmwrite('prevmag.txt',inmodel,'precision',7,'newline','pc'); 

unwrap = zeros(dimx,dimy,dimz); 

count = 1; 

for i = 1:dimy 

    for j = 1:dimx 

        for k = 1:dimz 

            unwrap(j,i,k) = inmodel(count);  

            count = count + 1; 

        end 

    end 

end 

 

magunwrap = unwrap; 

disp('Magnetic model unwrapped!'); 
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clear fileID 

clear formatSpec 

clear inmodel 

clear minmag 

clear maxmag 

clear unwrap 

clear count 

clear i 

clear j 

clear k 

 

disp('Unwrapping density model...     [2/6]'); 

fileID = fopen('den2.txt','r'); 

formatSpec = '%f'; 

inmodel = fscanf(fileID,formatSpec); 

 

 

fileID = fopen('191x231x137_max.txt','r'); 

formatSpec = '%f'; 

maxden = fscanf(fileID,formatSpec); 

fileID = fopen('191x231x137_min.txt','r'); 

formatSpec = '%f'; 

minden = fscanf(fileID,formatSpec); 

 

for i = 1:length(inmodel) 

    if inmodel(i) < minden(i) 

        inmodel(i) = minden(i); 

    elseif inmodel(i) > maxden(i); 

        inmodel(i) = maxden(i); 

    end 

end 

 

ind = find(inmodel == -100); 

inmodel(ind) = 0; 

dlmwrite('prevden.txt',inmodel,'precision',7,'newline','pc'); 

unwrap = zeros(dimx,dimy,dimz); 

count = 1; 

for i = 1:dimy 

    for j = 1:dimx 

        for k = 1:dimz 

            unwrap(j,i,k) = inmodel(count);  

            count = count + 1; 

        end 

    end 

end 

 

denunwrap = unwrap; 

disp('Magnetic model unwrapped!'); 

 

clear fileID 

clear formatSpec 

clear inmodel 

clear minden 

clear maxden 

clear unwrap 

clear count 

clear i 
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clear j 

clear k 

 

% Remove Padding 

 

% Important Variables: 

%       xypadding = the number of padded cells on either side on x-y 

plane 

%       zpadding = the number of cells padding the bottom in z-

direction 

%       unwrap = the unwrapped 3-D matrix (x,y,z) 

%       unpad = the unwrapped 3-D matrix with padding removed 

 

% Inputs 

 

xypadding = 3; 

zpadding = 3; 

 

% 

 

disp('Removing padding...     [3/6]'); 

magunpad = magunwrap(xypadding+1:dimx-xypadding,xypadding+1:dimy-

xypadding,... 

    1:dimz-zpadding); 

denunpad = denunwrap(xypadding+1:dimx-xypadding,xypadding+1:dimy-

xypadding,... 

    1:dimz-zpadding); 

clear magunwrap 

clear denunwrap 

 

disp('Padding Removed!'); 

 

% Find the Gradient of the Unpadded Model 

 

% Important Variables: 

%       HX,HY,HZ = cell spacing in each direction (x,y,z) 

%       unpad = the unwrapped 3-D matrix with padding removed 

%       FX,FY,FZ = the gradient in each component 

 

% Inputs 

 

HX = 20; 

HY = 20; 

HZ = 10; 

 

% 

 

disp('Calculating gradients...     [4/6]'); 

[FXmag,FYmag,FZmag] = gradient(magunpad,HX,HY,HZ); 

[FXden,FYden,FZden] = gradient(denunpad,HX,HY,HZ); 

clear magunpad 

clear denunpad 

FXmag = FXmag/max(max(max(abs(FXmag)))); 

FYmag = FYmag/max(max(max(abs(FYmag)))); 

FZmag = FZmag/max(max(max(abs(FZmag)))); 

FXden = FXden/max(max(max(abs(FXden)))); 

FYden = FYden/max(max(max(abs(FYden)))); 
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FZden = FZden/max(max(max(abs(FZden)))); 

FX = abs(FXmag) + abs(FXden); 

FY = abs(FYmag) + abs(FYden); 

FZ = abs(FZmag) + abs(FZden); 

FX = FX/max(max(max(abs(FX)))); 

FY = FY/max(max(max(abs(FY)))); 

FZ = FZ/max(max(max(abs(FZ)))); 

FX = FX*1; 

FY = FY*1; 

FZ = FZ*1; 

% Set threshold for what gradients are included 

delx = find(FX > 0.5); 

dely = find(FY > 0.5); 

delz = find(FZ > 0.5); 

FX(delx) = 0.5; 

FY(dely) = 0.5; 

FZ(delz) = 0.5; 

clear delx 

clear dely 

clear delz 

delx = find(FX < 0.3); 

dely = find(FY < 0.3); 

delz = find(FZ < 0.3); 

FX(delx) = 0.3; 

FY(dely) = 0.3; 

FZ(delz) = 0.3; 

clear delx 

clear dely 

clear delz 

clear FXmag 

clear FYmag 

clear FZmag 

clear FXden 

clear FYden 

clear FZden 

 

% Repad and Rewrap the Gradient Models 

 

% Important Variables: 

%       HX,HY,HZ = cell spacing in each direction (x,y,z) 

%       unpad = the unwrapped 3-D matrix with padding removed 

%       FX,FY,FZ = the gradient in each component 

 

% Inputs 

 

overzero = 0.3; % Sets the minimum weighting coefficient 

 

% 

 

disp('Creating weighting file and rewrapping...     [5/6]'); 

FXrr = zeros(dimx-1,dimy,dimz); 

FYrr = zeros(dimx,dimy-1,dimz); 

FZrr = zeros(dimx,dimy,dimz-1); 

FXrr(xypadding+1:dimx-xypadding,xypadding+1:dimy-xypadding,... 

    1:dimz-zpadding) = FX; 

FYrr(xypadding+1:dimx-xypadding,xypadding+1:dimy-xypadding,... 

    1:dimz-zpadding) = FY; 
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FZrr(xypadding+1:dimx-xypadding,xypadding+1:dimy-xypadding,... 

    1:dimz-zpadding) = FZ; 

clear FX 

clear FY 

clear FZ 

 

gradmodX = zeros(dimmodel-dimy*dimz,1); 

gradmodY = zeros(dimmodel-dimx*dimz,1); 

gradmodZ = zeros(dimmodel-dimx*dimy,1); 

for i = 1:dimy 

    for j = 1:dimx-1 

        for k = 1:dimz 

            cellno = (dimx-1)*dimz*(i-1)+dimz*(j-1)+k; 

            if k <= 41 

                gradmodX(cellno,1) = FXrr(j,i,k); 

            else 

                gradmodX(cellno,1) = overzero; 

            end 

        end 

    end 

end 

for i = 1:dimy-1 

    for j = 1:dimx 

        for k = 1:dimz 

            cellno = dimx*dimz*(i-1)+dimz*(j-1)+k; 

            if k <= 41 

                gradmodY(cellno,1) = FYrr(j,i,k); 

            else 

                gradmodY(cellno,1) = overzero; 

            end 

        end 

    end 

end 

for i = 1:dimy 

    for j = 1:dimx 

        for k = 1:dimz-1 

            cellno = dimx*(dimz-1)*(i-1)+(dimz-1)*(j-1)+k; 

            if k <=41 

                gradmodZ(cellno,1) = FZrr(j,i,k); 

            else 

                gradmodZ(cellno,1) = overzero; 

            end 

        end 

    end 

end 

gradmodX = ones(dimmodel-dimy*dimz,1)*(0.5+overzero)-abs(gradmodX); 

gradmodY = ones(dimmodel-dimx*dimz,1)*(0.5+overzero)-abs(gradmodY); 

gradmodZ = ones(dimmodel-dimx*dimy,1)*(0.5+overzero)-abs(gradmodZ); 

 

gradmodS = ones(dimmodel,1)*0.0001; 

gradmodS(ind) = -1.0; 

weightmod = [gradmodS;gradmodX;gradmodY;gradmodZ]; 

disp('Weighting file created!'); 

 

disp('Saving weighting file...     [6/6]'); 

dlmwrite('weightmod2.txt',weightmod,'precision',7,'newline','pc'); 

disp('Weighting file saved!'); 
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clc 

disp('~****PROGRAM COMPLETE****~'); 

timet = toc; 

disp(['Total Run Time:  ',num2str(floor(timet/3600)),' hours, ',... 

    num2str(floor((timet/3600-floor(timet/3600))*60)),' minutes and 

',... 

    num2str(timet-(floor(timet/3600))*3600-(floor((timet/3600-

floor(timet/3600))*60))*60),' seconds']); 

 

geo_analysis.m 

% geo_analysis.m 

% Written by Derek Kouhi 

% July 2016 

% A script that takes mass- and volume-based magnetic susceptibility  

% measurementsat depth, along with their densities to create plots to  

% find geological trends in the data. 

 

%% Mass-Based Magnetic Susceptibility Analysis 

 

% This section reads input mass-based susceptibility measurements at 

% depth and plots them over their lithological units.  Unit names and 

% depth boundaries must supplied. 

 

% Input depth and mass-based susceptibility data via xls 

data = xlsread('geology.xlsx'); 

depth = data(:,1); 

msusc = data(:,2); 

 

clear data 

 

%Create a log-y plot of depth vs. magnetic susceptibility 

figure('units','normalized','outerposition',[0 0 1 1]) 

semilogy(depth,msusc,'k.','MarkerSize',15); 

hold on; 

axis([0 1080 0 1000]); 

 

% Identify the depth limits on each lithological unit (x-component)  

% and plot as the area under a line.  The y-component is arbitrary 

% given the maximum height of the plot 

 

%NLS-5 

x = [15,60]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[1 0 0],'FaceAlpha',0.3); 

text(16,600,'NLS-5','Color',[1 0 0],'FontSize',10,'FontWeight','bold'); 

%NLS-6 

x = [95,135]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[0 0 0],'FaceAlpha',0.3); 

text(96,600,'NLS-6','Color',[0 0 0],'FontSize',10,'FontWeight','bold'); 

%NLS-7 

x = [135,150]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[0 0.5 0],'FaceAlpha',0.3); 

%NLS-8 
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x = [150,300]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[0 1 0],'FaceAlpha',0.3); 

text(200,600,'NLS-8','Color',[0 0.5 

0],'FontSize',12,'FontWeight','bold'); 

%NLS-9 

x = [300,450]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[0 0 1],'FaceAlpha',0.3); 

text(350,600,'NLS-9','Color',[0 0 

1],'FontSize',12,'FontWeight','bold'); 

%NLS-10 

x = [450,480]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[0 0 0.5],'FaceAlpha',0.3); 

%NLS-11 

x = [480,720]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[0.5 0.25 0.1],'FaceAlpha',0.3); 

text(570,600,'NLS-11','Color',[0.5 0.25 

0.1],'FontSize',12,'FontWeight','bold'); 

%NLS-12 

x = [720,870]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[1 0 1],'FaceAlpha',0.3); 

text(770,600,'NLS-12','Color',[1 0 

1],'FontSize',12,'FontWeight','bold'); 

%NLS-13 

x = [870,1065]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[1 0.5 0.5],'FaceAlpha',0.3); 

text(950,600,'NLS-13','Color',[1 0.5 

0.5],'FontSize',12,'FontWeight','bold'); 

%NLS-14 

x = [1065,1080]; 

y = [1000,1000]; 

area(x,y,'FaceColor',[1 0.5 0],'FaceAlpha',0.3); 

 

% Label the figure 

xlabel('Depth (m)'); 

ylabel('Magnetic Susceptibility (m^3/kg)'); 

title('Mass-Based Magnetic Suscpetibility by Lithological Unit'); 

 

%% Volume Based Magnetic Susceptibility Analysis 

 

% This section reads input volume-based susceptibility measurements at 

% depth, plots them over their lithological units and compares their 

% values to previously measured susceptibilities.  Unit names and 

% depth boundaries must supplied. 

 

% Inputs: 

% - drilldata:  previous susceptibility measurements 

% - vsusc:  converted volume-based susceptibility data 

% - vsuscsens:  converted susceptibility data using constant density 

for  

%               sensitivity analysis 
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data = xlsread('geology.xlsx'); 

drilldata = xlsread('deephole_susc.xlsx');  

vsusc = xlsread('geology2.xlsx');  

vsuscsens = xlsread('geology3.xlsx'); 

depth = data(:,1); 

drilldepth = drilldata(:,1); 

drillsusc = drilldata(:,2); 

 

clear data 

clear drilldata 

 

% Plot the previous magnetic data vs. new data for contrast 

figure('units','normalized','outerposition',[0 0 1 1]) 

plot(drilldepth,drillsusc); 

hold on; 

axis([0 1080 0 0.35]); 

plot(depth,vsusc,'ro'); 

plot(depth,vsuscsens,'o','Color',[0 0.5 0]); 

 

% Identify the depth limits on each lithological unit (x-component)  

% and plot as the area under a line.  The y-component is arbitrary 

% given the maximum height of the plot 

 

%NLS-5 

x = [15,60]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[1 0 0],'FaceAlpha',0.3); 

text(16,0.33,'NLS-5','Color',[1 0 

0],'FontSize',10,'FontWeight','bold'); 

%NLS-6 

x = [95,135]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[0 0 0],'FaceAlpha',0.3); 

text(96,0.33,'NLS-6','Color',[0 0 

0],'FontSize',10,'FontWeight','bold'); 

%NLS-7 

x = [135,150]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[0 0.5 0],'FaceAlpha',0.3); 

%NLS-8 

x = [150,300]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[0 1 0],'FaceAlpha',0.3); 

text(200,0.33,'NLS-8','Color',[0 0.5 

0],'FontSize',12,'FontWeight','bold'); 

%NLS-9 

x = [300,450]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[0 0 1],'FaceAlpha',0.3); 

text(350,0.33,'NLS-9','Color',[0 0 

1],'FontSize',12,'FontWeight','bold'); 

%NLS-10 

x = [450,480]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[0 0 0.5],'FaceAlpha',0.3); 

%NLS-11 

x = [480,720]; 
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y = [0.35,0.35]; 

area(x,y,'FaceColor',[0.5 0.25 0.1],'FaceAlpha',0.3); 

text(570,0.33,'NLS-11','Color',[0.5 0.25 

0.1],'FontSize',12,'FontWeight','bold'); 

%NLS-12 

x = [720,870]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[1 0 1],'FaceAlpha',0.3); 

text(770,0.33,'NLS-12','Color',[1 0 

1],'FontSize',12,'FontWeight','bold'); 

%NLS-13 

x = [870,1065]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[1 0.5 0.5],'FaceAlpha',0.3); 

text(950,0.33,'NLS-13','Color',[1 0.5 

0.5],'FontSize',12,'FontWeight','bold'); 

%NLS-14 

x = [1065,1080]; 

y = [0.35,0.35]; 

area(x,y,'FaceColor',[1 0.5 0],'FaceAlpha',0.3); 

 

% Add labels and legend 

xlabel('Depth (m)'); 

ylabel('Magnetic Susceptibility (SI)'); 

title('Volume-Based Magnetic Suscpetibility Comparison'); 

legend('Avalon (2013)','Kouhi and Tiampo (2016)','Density = 

2.67','Location','Best'); 

 

% Scale the new measurements down by a factor of 1.5 and replot 

figure('units','normalized','outerposition',[0 0 1 1]) 

plot(drilldepth,drillsusc); 

hold on; 

axis([0 1080 0 0.23]); 

plot(depth,vsusc/1.5,'ro'); 

 

% Identify the depth limits on each lithological unit (x-component)  

% and plot as the area under a line.  The y-component is arbitrary 

% given the maximum height of the plot 

 

%NLS-5 

x = [15,60]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[1 0 0],'FaceAlpha',0.3); 

text(16,0.21,'NLS-5','Color',[1 0 

0],'FontSize',10,'FontWeight','bold'); 

%NLS-6 

x = [95,135]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[0 0 0],'FaceAlpha',0.3); 

text(96,0.21,'NLS-6','Color',[0 0 

0],'FontSize',10,'FontWeight','bold'); 

%NLS-7 

x = [135,150]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[0 0.5 0],'FaceAlpha',0.3); 

%NLS-8 

x = [150,300]; 
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y = [0.23,0.23]; 

area(x,y,'FaceColor',[0 1 0],'FaceAlpha',0.3); 

text(200,0.21,'NLS-8','Color',[0 0.5 

0],'FontSize',12,'FontWeight','bold'); 

%NLS-9 

x = [300,450]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[0 0 1],'FaceAlpha',0.3); 

text(350,0.21,'NLS-9','Color',[0 0 

1],'FontSize',12,'FontWeight','bold'); 

%NLS-10 

x = [450,480]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[0 0 0.5],'FaceAlpha',0.3); 

%NLS-11 

x = [480,720]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[0.5 0.25 0.1],'FaceAlpha',0.3); 

text(570,0.21,'NLS-11','Color',[0.5 0.25 

0.1],'FontSize',12,'FontWeight','bold'); 

%NLS-12 

x = [720,870]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[1 0 1],'FaceAlpha',0.3); 

text(770,0.21,'NLS-12','Color',[1 0 

1],'FontSize',12,'FontWeight','bold'); 

%NLS-13 

x = [870,1065]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[1 0.5 0.5],'FaceAlpha',0.3); 

text(950,0.21,'NLS-13','Color',[1 0.5 

0.5],'FontSize',12,'FontWeight','bold'); 

%NLS-14 

x = [1065,1080]; 

y = [0.23,0.23]; 

area(x,y,'FaceColor',[1 0.5 0],'FaceAlpha',0.3); 

 

% Add labels and legend 

xlabel('Depth (m)'); 

ylabel('Magnetic Susceptibility (SI)'); 

title('Volume-Based Magnetic Suscpetibility Scaled Down by a Factor of 

1.5'); 

legend('Avalon (2013)','Kouhi and Tiampo (2016)','Location','Best'); 

 

%% Rare Earth Concentration Analysis 

 

% A plot comparing 4 key variables:  density, magnetic susceptibility, 

% lithological unit, and rare earth element concentration.  This 

section  

% takes similar inputs to previous section, in addition to the 

densities  

% used to covert the mass-based data as well as approximate rare earth  

% element concentrations. 

 

% Input data 

data = xlsread('geology.xlsx'); 

del = xlsread('geology4.xlsx'); 
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vsusc = xlsread('geology2.xlsx'); 

dens = xlsread('geodens.xlsx'); 

depth = data(:,1); 

REE = del(:,2); 

 

clear data 

clear del 

 

% ih, im and il are indexing vectors for REE concentrations 

ih = find(REE>=1000); 

im = find(REE<1000 & REE>=200); 

il = find(REE<200); 

 

% Plot the outline of each point in a density vs susceptibility plot   

figure('units','normalized','outerposition',[0 0 1 1]) 

plot(dens(ih),vsusc(ih),'ko','MarkerSize',10); 

hold on; 

plot(dens(im),vsusc(im),'ko','MarkerSize',6); 

plot(dens(il),vsusc(il),'ko','MarkerSize',4); 

 

% Create a matrix for each depth interval associated with lithology 

ind = zeros(20,9); 

id = [15,60,95,135,300,450,720,870,1065,2000]; 

for i = 1:length(id)-1 

    delind = find(depth >= id(i) & depth < id(i+1)); 

    ind(1:length(delind),i) = delind; 

    clear delind 

end 

 

% Remove zeros by setting to NaN 

[del,del2] = find(ind == 0); 

for i = 1: length(del) 

    ind(del(i),del2(i)) = NaN; 

end 

 

% Set size values for each point based on REE concentration 

reesize = zeros(length(depth),1); 

for i = 1:length(depth) 

    if REE(i) >= 1000 

        reesize(i) = 100; 

    elseif REE(i) < 1000 && REE(i) >= 200 

        reesize(i) = 50; 

    else  

        reesize(i) = 20; 

    end 

end 

 

% Plot each datapoint based on lithology (colour) and REE (size) 

scatter(dens(ind((~isnan(ind(:,1))),1)),vsusc(ind((~isnan(ind(:,1))),1)

),... 

    reesize(ind((~isnan(ind(:,1))),1)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[1 0 0],'LineWidth',1.5); 

scatter(dens(ind((~isnan(ind(:,2))),2)),vsusc(ind((~isnan(ind(:,2))),2)

),... 

    reesize(ind((~isnan(ind(:,2))),2)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[0.7 0.7 0.7],'LineWidth',1.5);           
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scatter(dens(ind((~isnan(ind(:,3))),3)),vsusc(ind((~isnan(ind(:,3))),3)

),... 

    reesize(ind((~isnan(ind(:,3))),3)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[0 0 0],'LineWidth',1.5);   

scatter(dens(ind((~isnan(ind(:,4))),4)),vsusc(ind((~isnan(ind(:,4))),4)

),... 

    reesize(ind((~isnan(ind(:,4))),4)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[0 0.5 0],'LineWidth',1.5); 

scatter(dens(ind((~isnan(ind(:,5))),5)),vsusc(ind((~isnan(ind(:,5))),5)

),... 

    reesize(ind((~isnan(ind(:,5))),5)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[0 0 1],'LineWidth',1.5); 

scatter(dens(ind((~isnan(ind(:,6))),6)),vsusc(ind((~isnan(ind(:,6))),6)

),... 

    reesize(ind((~isnan(ind(:,6))),6)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[0.5 0.25 1],'LineWidth',1.5); 

scatter(dens(ind((~isnan(ind(:,7))),7)),vsusc(ind((~isnan(ind(:,7))),7)

),... 

    reesize(ind((~isnan(ind(:,7))),7)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[1 0 1],'LineWidth',1.5);           

scatter(dens(ind((~isnan(ind(:,8))),8)),vsusc(ind((~isnan(ind(:,8))),8)

),... 

    reesize(ind((~isnan(ind(:,8))),8)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[1 0.5 0.5],'LineWidth',1.5);  

scatter(dens(ind((~isnan(ind(:,9))),9)),vsusc(ind((~isnan(ind(:,9))),9)

),... 

    reesize(ind((~isnan(ind(:,9))),9)),'MarkerEdgeColor',[0 0 0],... 

              'MarkerFaceColor',[1 0.5 0],'LineWidth',1.5); 

           

% Add labels and legend 

legend('>=1000ppm REE','200-1000ppm REE','<200ppm REE',... 

    'NLS-5','NLS-4','NLS-6','NLS-8','NLS-9','NLS-11','NLS-12',... 

    'NLS-13','NLS-14','Location','NorthWest');           

xlabel('Density [g/cm^3]'); 

ylabel('Magnetic Susceptibility [SI]'); 

 

pixel_test.m 

% pixel_test.m 

% Written by Derek Kouhi 

% August 2016 

% A program that searches through a high resolution image of a sample 

% and assigns a mineral type on a pixel-by-pixel basis based on the  

% RGB values of each pixel.  The script then analyzes any trends in 

colour 

% with respect to geophysical measurements. 

 

%% Computational Colour Analysis 

 

% Clear all past data from previous run 

clear all 

clc 

 

% Read the image and display it for reference 

RGB = imread('f4bz.JPG'); 

image(RGB) 
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% Create variables for each mineral 

mag = 0; 

aeg = 0; 

alb = 0; 

soda = 0; 

eud = 0; 

other = 0; 

newpic = 255*zeros(size(RGB)); 

 

% Search image, pixel-by-pixel and assign a mineral to that pixel based 

% on a set of RGB value conditions determined through experimentation 

total = size(RGB,1)*size(RGB,2); 

for i = 1:size(RGB,1) 

    for j = 1:size(RGB,2) 

%         pixel = impixel(RGB,i,j); 

        pixel = [RGB(i,j,1) RGB(i,j,2) RGB(i,j,3)]; 

        % magnetite 

        if pixel(1) <= 65 && pixel(2) <= 65 && pixel(3) <= 65 && 

pixel(3) > pixel(1) && pixel(3) > pixel(2) 

            mag = mag + 1; 

            newpic(i,j,:) = [0 0 0]; 

        % aegirine 

        elseif pixel(1) <= 85 && pixel(2) <= 85 && pixel(3) <= 80 && 

pixel(3) < pixel(2) && pixel(2) >= pixel(1)-3 

            aeg = aeg + 1; 

            newpic(i,j,:) = [0 100 0]; 

        % sodalite     

        elseif pixel(1) <= 90 && pixel(2) <= 90 && pixel(3) <= 100 && 

pixel(3) >= pixel(1)+4 && pixel(3) >= pixel(2)+4 && pixel(2) > pixel(1) 

            soda = soda + 1; 

            newpic(i,j,:) = [0 0 100]; 

        % eudialyte     

        elseif pixel(1) <= 110 && pixel(2) <= 110 && pixel(3) <= 110 && 

pixel(1) > pixel(2) && pixel(1) > pixel(3)  

            eud = eud + 1; 

            newpic(i,j,:) = [255 255 0]; 

        % albite     

        elseif pixel(1) >= 70 && pixel(2) >= 70 && pixel(3) >= 70 && 

pixel(3) > pixel(1) && pixel(3) > pixel(2) 

            alb = alb + 1; 

            newpic(i,j,:) = [220 220 220]; 

        % other     

        else 

            other = other + 1; 

            newpic(i,j,:) = [255 0 0]; 

        end 

    end 

end 

 

% Write mineral abundances as output 

disp(['The proportions are as follows:  ']) 

disp(['Magnetite = ',num2str(mag/total*100),'%']) 

disp(['Aegirine = ',num2str(aeg/total*100),'%']) 

disp(['Albite = ',num2str(alb/total*100),'%']) 

disp(['Sodalite = ',num2str(soda/total*100),'%']) 

disp(['Eudialyte = ',num2str(eud/total*100),'%']) 
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disp(['Other = ',num2str(other/total*100),'%.']) 

 

% Output the average red, green and blue values for the image 

disp(['R_avg = ',num2str(sum(sum(RGB(:,:,1)))/total),'  G_avg = ',... 

    num2str(sum(sum(RGB(:,:,2)))/total),'  B_avg = 

',num2str(sum(sum(RGB(:,:,3)))/total)]) 

 

% Plot calculated image 

figure 

image(newpic) 

 

%% Analyzing Trends in Colour Data 

 

% Inputs 

% - data: depth data for each sample 

% - del: approximate REE concentrations for each sample 

% - vsusc: volume-based magnetic susceptibilities for each sample 

% - dens: densities for each sample 

% - minperc: a matrix where each column represents a different mineral 

%            percentage and each row represents a different sample 

% - minrgb: a matrix that contains the average RGB values for each 

sample 

 

data = xlsread('geology.xlsx'); 

del = xlsread('geology4.xlsx'); 

vsusc = xlsread('geology2.xlsx'); 

dens = xlsread('geodens.xlsx'); 

minperc = xlsread('minperc.xlsx'); 

minrgb = xlsread('minrgb.xlsx'); 

 

depth = data(:,1); 

REE = del(:,2); 

mag = minperc(:,1); 

aeg = minperc(:,2); 

alb = minperc(:,3); 

soda = minperc(:,4); 

eud = minperc(:,5); 

oth = minperc(:,6); 

 

clear data 

clear del 

 

% Plot the average red, green and blue components of each sample 

figure('units','normalized','outerposition',[0 0 1 1]) 

plot(depth,minrgb(:,1),'r'); 

hold on 

plot(depth,minrgb(:,2),'g'); 

plot(depth,minrgb(:,3)); 

xlabel('Depth [m]'); 

ylabel('RGB Value'); 

legend('R','G','B'); 

 

% Plot the average RGB values as the corresponding colour (shades of 

grey) 

figure('units','normalized','outerposition',[0 0 1 1]) 

scatter(depth,vsusc,30,minrgb/255,'filled','MarkerEdgeColor',[0 0 0]); 

xlabel('Depth [m]'); 
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ylabel('Magnetic Susceptibility [SI]'); 

 

% Search through the average RGB values for a dominant colour 

thresh = 4; % User-set threshold for RGB values to be considered 

dominant 

for i = 1:length(depth) 

    if minrgb(i,1) >= minrgb(i,2)+thresh && minrgb(i,1) >= 

minrgb(i,3)+thresh 

        colmin(i,:) = [1 0 0]; 

    elseif minrgb(i,2) >= minrgb(i,1)+thresh && minrgb(i,2) >= 

minrgb(i,3)+thresh 

        colmin(i,:) = [0 1 0]; 

    elseif minrgb(i,3) >= minrgb(i,1)+thresh && minrgb(i,3) >= 

minrgb(i,2)+thresh 

        colmin(i,:) = [0 0 1]; 

    elseif minrgb(i,1) >= minrgb(i,2)+thresh && minrgb(i,3) >= 

minrgb(i,2)+thresh 

        colmin(i,:) = [1 0 1]; 

    elseif minrgb(i,1) >= minrgb(i,3)+thresh && minrgb(i,2) >= 

minrgb(i,3)+thresh 

        colmin(i,:) = [1 1 0]; 

    elseif minrgb(i,2) >= minrgb(i,1)+thresh && minrgb(i,3) >= 

minrgb(i,1)+thresh 

        colmin(i,:) = [0 1 1]; 

    else 

        colmin(i,:) = minrgb(i,:)/255; 

    end 

end 

 

% Create a series of subplots displaying susceptibility vs mineral 

% abundance 

 

% Magnetite subplot 

figure('units','normalized','outerposition',[0 0 1 1]) 

subplot(3,1,1) 

yyaxis left 

scatter(depth,vsusc,30,colmin,'filled','MarkerEdgeColor',[0 0 0]); 

ylabel('Mag Susc'); 

hold on; 

yyaxis right 

plot(depth,mag,'k--'); 

ylabel('Min %'); 

text(1050,50,'Magnetite','Color','k','FontSize',15,'FontWeight','bold')

; 

 

% Aegirine subplot 

subplot(3,1,2) 

yyaxis left 

scatter(depth,vsusc,30,colmin,'filled','MarkerEdgeColor',[0 0 0]); 

ylabel('Mag Susc'); 

hold on; 

yyaxis right 

plot(depth,aeg,'g--'); 

ylabel('Min %'); 

text(1050,50,'Aegirine','Color','g','FontSize',15,'FontWeight','bold'); 

 

% Albite subplot 
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subplot(3,1,3) 

yyaxis left 

scatter(depth,vsusc,30,colmin,'filled','MarkerEdgeColor',[0 0 0]); 

ylabel('Mag Susc'); 

hold on; 

yyaxis right 

plot(depth,alb,'--','Color',[0.7 0.7 0.7]); 

ylabel('Min %'); 

text(1050,85,'Albite','Color',[0.7 0.7 

0.7],'FontSize',15,'FontWeight','bold'); 

 

% Sodalite subplot 

figure('units','normalized','outerposition',[0 0 1 1]) 

subplot(3,1,1) 

yyaxis left 

scatter(depth,vsusc,30,colmin,'filled','MarkerEdgeColor',[0 0 0]); 

ylabel('Mag Susc'); 

hold on; 

yyaxis right 

plot(depth,soda,'c--'); 

ylabel('Min %'); 

text(1050,70,'Sodalite','Color','c','FontSize',15,'FontWeight','bold'); 

 

% Eudialyte subplot 

subplot(3,1,2) 

yyaxis left 

scatter(depth,vsusc,30,colmin,'filled','MarkerEdgeColor',[0 0 0]); 

ylabel('Mag Susc'); 

hold on; 

yyaxis right 

plot(depth,eud,'Color',[1 0.87 0]); 

ylabel('Min %'); 

text(1050,70,'Eudialyte','Color',[1 0.87 

0],'FontSize',15,'FontWeight','bold'); 

 

% Other subplot 

subplot(3,1,3) 

yyaxis left 

scatter(depth,vsusc,30,colmin,'filled','MarkerEdgeColor',[0 0 0]); 

ylabel('Mag Susc'); 

hold on; 

yyaxis right 

plot(depth,oth,'r'); 

ylabel('Min %'); 

xlabel('Depth [m]'); 

text(1050,25,'Other','Color','r','FontSize',15,'FontWeight','bold'); 
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