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 ABSTRACT: 

RNA binding proteins (RBP) influence RNA editing, localization, stability and translation and 

may contribute to oocyte developmental competence by regulating the stability and turnover of 

oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA binding proteins 

during cow early development was characterized. Cumulus-oocyte complexes were collected from 

slaughterhouse ovaries, matured, inseminated and subjected to embryo culture in vitro. Oocyte or 

preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence 

analysis of mRNA expression and protein distribution. STAU1 and STAU2, and ELAVL1 mRNAs and 

proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) 

oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage 

whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The 

findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation 

and early embryogenesis. 
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INTRODUCTION:  

Oocyte cytoplasmic maturation involves the accumulation of mRNAs, proteins, substrates and 

nutrients that are required to achieve the oocyte developmental competence that fosters embryonic 

development (Calder et al., 2003; Calder et al., 2001). RNA binding proteins (RBP) influence RNA 

editing, localization, stability and translation (Saunders and Barber, 2003). Therefore RBPs may 

contribute to oocyte competence by regulating the stability and turnover of oogenetic mRNAs.  In 

addition, variations in oocyte competence may reflect differences in RBP levels and thus turnover of 

their target mRNAs during early development.  

As a prelude to investigating these possibilities it is imperative that the expression of RBPs 

during mammalian oocyte maturation and early embryogenesis be first determined. Staufen is a 

Drosophila RBP that assists in establishing the anterior-posterior embryonic axis by regulating target 

mRNA localization in the Drosophila oocyte (St Johnston et al., 1991). There are two mammalian 

staufen genes, STAU1 (Marion et al., 1999) and STAU2  (Duchaine et al., 2000). ELAVL1 (HuR, HuA, 

elrA) is a widely expressed RBP (Fan and Steitz, 1998), which is present in the Xenopus embryo (Good, 

1995) and can shuttle between the nucleus and cytoplasm (Atasoy et al., 1998). It binds to A-U rich 

sequences (AREs) to regulate mRNA half-life (Atasoy et al., 1998; Fan and Steitz, 1998). ELAVL2 

(HuB, elrB, Hel-N1/2) is also an ARE binding RBP (Jain et al., 1997), which is predominantly neuronal 

but is also expressed in the ovary, testis, oocyte and Xenopus embryo (Good, 1995).  ELAVL2 affects 

mRNA degradation, and may increase protein translation (Jain et al., 1997). The present study was 

conducted to characterize the expression of Staufen and ELAVL mRNAs and proteins during oocyte 

maturation and preimplantation development in the cow. 
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MATERIALS AND METHODS: 

Production of Bovine Embryos In Vitro 

Cumulus-oocyte complexes were isolated, placed into oocyte maturation and were fertilized in 

vitro and cultured up to the blastocyst stage as outlined in (Madan et al., 2005). Bovine ovaries were 

transported from a slaughterhouse in sterile saline at 32-37oC for oocyte collection using standard 

protocols. Cumulus-oocyte complexes (COCs) from 3-6 mm follicles were aspirated into the follicular 

aspiration medium consisting of Dulbecos’s phosphate buffered saline (Gibco BRL; Invitrogen, 

Burlington, ON), 0.3% bovine serum albumin (Sigma-Aldrich Canada Ltd, Oakville, ON) and 50 g/ml 

Gentamycin (Sigma-Aldrich Canada Ltd.) using an 18G needle attached to vacuum suction apparatus. 

COCs that contained an oocyte with an evenly granulated cytoplasm and surrounded by more than three 

layers of cumulus cells were selected for maturation in vitro. For maturation in vitro  COCs were 

cultured in oocyte maturation medium composed of modified synthetic oviductal fluid (SOF) medium 

with 0.8% BSA, modified Eagle medium (MEM) non essential amino acids (Gibco), MEM essential 

amino acids (Gibco),1mM glutamine, 0.5% g/ml FSH and 1g//ml 17-estradiol. 50 COCs were 

placed in each well of a 4-well culture plate and incubated in a humidified atmosphere for 24h at 38.5C 

and 5% CO2 in air atmosphere.  

For fertilization in vitro,  50 mature COCs were added to 330 l drops containing modified 

Tyrode lactate medium (TLH) supplemented with 0.6% BSA fatty acid free (Sigma-Aldrich), 0.2 mM 

pyruvic acid, 10 g/ml heparin and 50 g/ml gentamycin under mineral oil. Frozen semen was thawed 

and processed through a standard “swim-up” method (Madan et al., 2005). Sperm concentration was 

adjusted to and added to each insemination culture drop at 1 x 106 spermatozoa/ml. COCs and 

spermatozoa were co-incubated in a humidified 5% CO2 in air atmosphere at 38.5C and for 15-18 h. 
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Following fertilization, zygotes were denuded of investing cumulus cells  by vortexing, washing 

three times in culture media consisting of  SOF1 plus 0.8% BSA, MEM non essential amino acids, 1mM 

glutamine and 1.5 mM glucose and 10 M EDTA. Subsequently, 20-30 zygotes were placed into 50 l 

culture drops under mineral oil and cultured at 38.5C, 5% CO2, and humidified air with reduced oxygen 

atmosphere (7%).  Following 3 days of culture, SOF1 medium was replaced with SOF2 medium, which 

contained 0.8%, BSA, MEM non essential amino acids, MEM essential amino acids, 1mM glutamine 

and 1.5 mM glucose. Pools of 20 embryos were harvested at timed stages of development [2-, 4-, 8-

cells, morulae, and blastocysts] for RNA extraction or application of immunofluorescence localization 

methods. 

 

Primer Design 

Primer sets were designed to recognize and amplify conserved nucleotide sequences encoding 

human and murine Staufen or ELAVL cDNAs. cDNA sequences and/or homologue(s)  were identified 

using BLAST (Basic Local Alignment Search Tool) computer program (NCBI, Bethesda, MD). Primers 

were designed using the ‘Primer3’ computer program (Whitehead Institute, Cambridge, MA) and the 

corresponding oligonucleotides (Table 1), were synthesized (Invitrogen, Burlington, ON).  

 
 
RNA extraction, reverse transcription and PCR 
 

Total RNA was extracted from bovine embryos (pools of 20 embryos/stage at 1-, 2-, 4-, 8-cell, 

morula and blastocyst stages)  as described (Madan et al., 2005). The total RNA extracts were digested 

with deoxyribonuclease (DNAse)-1 to eliminate possible contamination from genomic DNA. The RT 

reactions were conducted using oligo-dT primers (Gibco BRL) as previously described (Barcroft et al., 

1998; Calder et al., 2005; Calder et al., 2003; Calder et al., 2001; Natale et al., 2004; Offenberg et al., 
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2000). Samples were incubated for 90 min at 42oC in a 20 l volume of 50mM Tris-HCl (pH 8.3), 75 

mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5 mM dNTPs, and 200 units of Superscript II (Gibco BRL) 

followed by heating the samples to 95oC for 5 min reaction termination. 

PCR was conducted as described (Calder et al., 2005; Calder et al., 2003; Calder et al., 2001). 

Briefly, two embryo equivalents for each stage of development under investigation were used per PCR 

reaction, which was repeated a minimum of three times from pools of three different developmental 

series of embryos.  PCR products were resolved on 2.0% agarose gels containing 0.5 g/ml ethidium 

bromide (Invitrogen, Burlington, ON). To confirm the specificity of each PCR product, representative 

amplicons were extracted from the gels and purified using a QIAquick Gel Extraction Kit (Qiagen, 

Mississauga, ON) and submitted for nucleotide sequencing (DNA Sequencing Facility, Robarts 

Research Institute, London, ON, Canada). The nucleotide sequences were compared to sequences 

available in GenBank to confirm the specificity of each PCR product.  

 
 
Whole-mount indirect immunofluorescence 

To localize Staufen and ELAVL proteins in bovine oocytes and preimplantation embryos we 

employed whole-mount immunofluorescence methods as outlined  in (Calder et al., 2005; Calder et al., 

2003; Calder et al., 2001; Madan et al., 2005). Embryos (oocytes, 2-, 4- 8-cell, morula and blastocyst 

stages) were washed in 1X phosphate buffer saline (PBS) and then fixed in 2% paraformaldehyde (PFA) 

in PBS for 20 min at room temperature. These fixed embryos were washed in 1X PBS and either 

processed immediately for immuno-labeling or stored at 4oC in PBS + 0.09% sodium azide for a 

maximum of 3 weeks. Fixed embryos were permeabilized and blocked in 1X PBS + 5% goat Serum + 

0.01% Triton X-100 for 1 hour at room temperature. Embryos were washed in 1X PBS and incubated 

with primary antibody diluted 1:100 in 1X PBS +1% goat Serum + 0.005% Triton X-100 for one hour at 
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room temperature followed by additional washes totaling 1 hour at 37oC. Primary antibodies were 

detected by exposure for one hour to FITC-conjugated secondary antibodies (Jackson Immuno Labs, 

MA, USA) diluted 1:200. Embryos were then treated with rhodamine-conjugated phalloidin (5g/ml; 

1:20) and DAPI (1mg/ml; 1:2000) for 30 minutes at 37oC followed by 2 washes for 2 hours each at 

37oC. Embryos were mounted in Fluoro-Guard Antifade Mounting Reagent (BioRad, Mississauga, ON, 

Canada). Fluorescence patterns were examined using a Zeiss LSM 410 (laser scanning microscope) with 

an inverted Axiovert 100 microscope under 20-40X magnification. The images were then captured and 

stored as TIFF files by the Zeiss LSM software package. Rabbit polyclonal anti-human STAU1, 

ELAVL1 and ELAVL2 antibodies were obtained from (Chemicon, Temecula, CA).   

 

RESULTS AND DISCUSSION:  

STAU1 mRNA was detected from the germinal vesicle (GV) oocyte to the blastocyst stage (Fig. 

1A). The primers used to amplify STAU1 revealed two mRNA isoforms expressed in oocytes and 

embryos, which differ due to a splicing event resulting in an insertion of 18bp (6aa) in RNA binding 

domain 3, similar to isoforms reported in mouse (Duchaine et al., 2000). STAU1 protein was detected in 

the cytoplasm of bovine oocytes and embryos at all stages examined (Fig.1C-K).  Staufen was observed 

in the GV, pronuclei or nuclei up to the morula stage but this localization was rarely stronger than 

cytoplasmic fluorescence (Fig. 1 C-K). STAU2 mRNA was also detected in all cow preimplantation 

stages (Figure 1B). ELAVL1 mRNA was detected continuously from the GV oocyte to the blastocyst 

stage (Fig. 2A). ELAVL1 protein was cytoplasmic at all stages examined, but was also present in the 

GV and most nuclei at all stages, but was less evident at the blastocyst stage (Fig. 2 C-K). ELAVL2 

mRNAs were detected from the GV oocyte to the 8-cell stage in all replicates (Fig. 2B). ELAVL2 

mRNA was detected only in some replicates at the morula stage and not at all at the blastocyst stage 
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(Fig. 2B). Two ELAVL2 mRNAs were detected. The larger band corresponds to a 539bp product 

common to human and mouse sequences in Genbank (mouse, NM_207685).  In the mouse, there is an 

ELAVL2 mRNA splice variant lacking 36nt, this isoform would amplify as 503bp (NM_207686).  

Another isoform lacks the bases AGG (R) before this splice junction, the 36 bp and has the addition of 

AGT (S) at the end of the splice junction, making it also 503bp (AY035379).  Yet another splice variant 

reported contains the 5’ R, misses the 36nt, and contains the 3’ S, making it 506bp (AY035378).  

However, a human variant contains only 500bp and the 5’ R, the 36nt and the 3’ S are missing 

(BC030692). ELAVL2 immunofluorescence was cytoplasmic at all stages examined, but was also 

detectable in the GV, pronuclei and most nuclei, and was brighter in the nucleus than cytoplasm at 

particularly the 4- and 8-cell stages (Fig. 2 L-T).  At the blastocyst stage, ELAVL2 also appeared at the 

borders of trophectoderm cells (Fig. 2S).  

As the vast majority of mammalian in vitro matured oocytes are meiotically competent, 

deficiencies in cytoplasmic maturation are proposed as a primary reason for their low developmental 

rates. Transcription and storage of maternal mRNAs occurs during follicular growth and slows as the 

oocyte reaches mature size (Fair et al., 1995). The embryo is dependent on stored maternal mRNAs until 

at least the maternal-zygotic transition (MZT), when transcription of embryonic genes begins in earnest 

with a major burst of embryonic transcription initiating at the 8-cell stage in the cow  (Telford et al., 

1990). Many maternal mRNAs become deadenylated during oocyte maturation and early cleavage 

(Brevini-Gandolfi et al., 1999). Over 200 RBP candidate genes have been identified in Drosophila 

(Lasko, 2000). Regulated mRNA stability occurs in mammalian cells in response to nutrient levels, 

hormones and environmental stresses such as hypoxia and heat stress (reviewed by (Guhaniyogi and 

Brewer, 2001). It has been suggested that variations in transcriptional activity largely govern changes in 

embryonic mRNA abundance associated with exposure to sub-optimal environments (Niemann and 
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Wrenzycki, 2000). However, oocyte and embryo competence could also be affected by environmental 

effects acting through RBPs to alter transcript stability or translation.  

During oogenesis, oocytes acquire a depository of maternally-encoded transcripts that must be 

stored and remain dormant until their translation is required following oocyte activation and 

insemination. This delay between their production and translation is important as the oocyte becomes 

transcriptionally silent during the final stages of folliculogenesis and transcription is not renewed until 

post-insemination and early embryogenesis (Schultz, 2005). Yet few studies have investigated mRNA 

stability during preimplantation development. Instead, the majority of studies have focused upon 

understanding transcriptional regulation (Knijn et al., 2002; Knijn et al., 2005; Niemann and Wrenzycki, 

2000; Rinaudo and Schultz, 2004; Wrenzycki et al., 1999; Wrenzycki et al., 2005). Our study provides 

the first indications that gene products encoding Staufen and ELAVl RBPs are expressed during bovine 

preimplantation development. 

Preimplantation mammalian embryos attempt to respond positively to the pressures that sub-

optimal culture environments place upon them (Ho et al., 1994; Ho et al., 1995; Niemann and 

Wrenzycki, 2000; Watson et al., 2000). The embryo, (at least partially), compensates for missing 

components or offsets the presence of deleterious components, by regulating its developmental program 

(Niemann and Wrenzycki, 2000). This capacity however must operate within a defined range of 

tolerances, (Bavister, 2000; Bolton, 1992; Gardner et al., 2002; Leese, 2002; Schultz and Williams, 

2002) and current media, are still sub-optimal for all species. We are aware that current media are still 

sub-optimal since cultured embryos from all species display a reduced pregnancy rate following embryo 

transfer, and are also prone to metabolic and growth disorders that may find their origin in a culture 

induced “metabolic re-programming” during the preimplantation development period as compared to 

their in vivo derived counterparts (Adamiak et al., 2005; Barker, 2003; Boerjan et al., 2000; McEvoy et 
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al., 2001; McEvoy et al., 2000; Sinclair et al., 1999; Sinclair et al., 2003; van Wagtendonk-de Leeuw et 

al., 2000). 

Due to these concerns great effort has been focused on understanding how early embryos adjust 

their developmental program to compensate for exposure to sub-optimal culture environments. 

Approaches in this research area have included studies directly comparing the levels of “marker” gene 

expression, also variations in embryo metabolism between in vitro and in vivo derived preimplantation 

embryos and most recently epigenetic re-programming as signified by variation in DNA methylation 

patterns (Brevini-Gandolfi et al., 1999; De Sousa et al., 1998; Ecker et al., 2004; Knijn et al., 2005; 

Leese, 2002; Mann et al., 2004; Watson et al., 2000; Wrenzycki et al., 1999; Wrenzycki et al., 2005). 

The prevailing interpretation of the majority of these studies is that gene transcription is influenced by 

exposure to varying culture environments. Only a very few studies have begun to examine the influences 

of varying culture environments on mRNA deadenylation, and mRNA stability (Brevini-Gandolfi et al., 

1999; Gandolfi and Gandolfi, 2001; Temeles and Schultz, 1997). In addition, there is a need to 

understand the role of RBPs in regulating preimplantation mRNA stability as these proteins represent 

reasonable targets for culture induced influences on embryonic mRNAs (Yang et al., 2005; Yang et al., 

2006; Yang et al., 2005; Yu et al., 2003). This study therefore provides a foundation for investigating the 

roles of RBPs during early development and will allow for investigations regarding their putative roles 

in regulating preimplantation development and more importantly, eventually, their collective roles in 

regulating mRNA transcripts during early embryogenesis. 
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Table 1. Primers used to detect RBP mRNAs in cow oocytes and embryos 

 
  

 Sequence Anneal 
 Temp. 

Size 
 in bp 

Accession # 

STAU1 5’ ATTTCCAGTC/TCCACCTTTAC 53 318bp 
300bp 
 

BC082277 mouse 
NM_001037328 human 

STAU1 3’ TGGTCACAAAGTTCTTCAT   BC082277 mouse 
NM_001037328 human 

STAU2 5’ GAAGTTGCTACTGGAACAGG 52 342bp XM_872380 cow 
STAU2 3’ AGCTGAACTACTCGATGTGG   XM_872380 cow 
ELAVL1 5’ AAGACCACATGGCG/CGAAGAC 59 474bp NM_010485 mouse 

NM_001419 human 
ELAVL1 3’ TTGCCTCTTCTGCC/TTCC/TGAC   NM_010485 mouse 

NM_001419 human 
ELAVL2 5’ AGGTCACTGGCATATCAAGG 55 539bp 

500-506bp 
NM_207686 mouse 
NM_004432 human 

ELAVL2 3’ TCCATTGAGGCTAC/GC/GTATCG   NM_207686 mouse 
NM_004432 human 
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Fig 1.  Staufen mRNA and protein during cow preimplantation development. A: Staufen 1; B: Staufen 2; 

C-K: Staufen protein in cow oocytes and embryos. Green is FITC-labeled 2’ antibody against rabbit 

anti-staufen.  Red is rhodamine-phalloidin stain for F-actin.  Blue is DAPI stained nuclei.  GV-germinal 

vesicle stage; 24h, in vitro matured 24h; Mat-matured 24h in vitro;  1c-1 cell stage; 2c-2 cell stage; 4c-4 

cell stage; 8c-8 cell stage; Mor-morula stage; Bl-blastocyst stage; Neg-negative control; MW, 100bp 

molecular weight standard; +, positive control tissue, br=brain. Bar is approximately 50µm. N=3 

replicates, 25-39 embryos examined at each stage.   

 

Fig.2. ELAVL mRNA and protein during cow preimplantation development. A: ELAVL1; B: ELAVL2; 

C-K ELAVL1 protein, N=3 replicates, 29-48 embryos examined at each stage; L-T ELAVL2 protein, 

N=3 replicates, 25-43 embryos examined at each stage. Green is FITC-labeled 2’ antibody against rabbit 

anti-ELAVL1 or 2.  Red is rhodamine-phalloidin stain for F-actin.  Blue is DAPI stained nuclei. GV-

germinal vesicle stage; 24h, in vitro matured 24h; Mat-matured 24h in vitro;  1c-1 cell stage; 2c-2 cell 

stage; 4c-4 cell stage; 8c-8 cell stage; Mor-morula stage; Bl-blastocyst stage; Neg-negative control; 

MW, 100bp molecular weight standard; +, positive control tissue, br=brain, gc=granulosa cells. Bar is 

approximately 50µm.  
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Fig. 2. ELAV mRNA and Protein During Cow Preimplantation Development 
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