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Trophectoderm differentiation in the bovine embryo:
characterization of a polarized epithelium

L. C. Barcroft, A. Hay-Schmidt, A. Caveney, E. Gilfoyle, E. W. Overstrom, P. Hyttel
and A. J. Watson

Reproductive Biology Laboratories, Departments ofObstetrics and Gynaecology and Physiology, The University ofWestern Ontario,
London, Ontario, Canada N6A 5C1; 2Department ofAnatomy and Physiology, The Royal Veterinary and Agricultural University,
Bulowsvej 13, Denmark DK-1870 Frederiksberg C; and ^Departments ofBiomedicai Sciences and Anatomy and Cellular Biology,

Tufts University, School ofVeterinary Medicine, North Grafton, MA 01536, USA

Blastocyst formation is dependent on the differentiation of a transporting epithelium,
the trophectoderm, which is coordinated by the embryonic expression and cell adhesive
properties of E-cadherin. The trophectoderm shares differentiative characteristics with
all epithelial tissues, including E-cadherin-mediated cell adhesion, tight junction
formation, and polarized distribution of intramembrane proteins, including the Na\p=n-\K
ATPase. The present study was conducted to characterize the mRNA expression and
distribution of polypeptides encoding E-cadherin, \g=b\-catenin,and the tight junction
associated protein, zonula occludens protein 1, in pre-attachment bovine embryos, in
vitro. Immunocytochemistry and gene specific reverse transcription\p=n-\polymerasechain
reaction methods were used. Transcripts for E-cadherin and \g=b\-cateninwere detected in
embryos of all stages throughout pre-attachment development. Immunocytochemistry
revealed E-cadherin and \g=b\-cateninpolypeptides evenly distributed around the cell
margins of one-cell zygotes and cleavage stage embryos. In the morula, detection of
these proteins diminished in the free apical surface of outer blastomeres. E-cadherin
and \g=b\-cateninbecame restricted to the basolateral membranes of trophectoderm cells of
the blastocyst, while maintaining apolar distributions in the inner cell mass. Zonula
occludens protein 1 immunoreactivity was undetectable until the morula stage and first
appeared as punctate points between the outer cells. In the blastocyst, zonula occludens
protein 1 was localized as a continuous ring at the apical points of trophectoderm cell
contact and was undetectable in the inner cell mass. These results illustrate that the
gene products encoding E-cadherin, \g=b\-cateninand zonula occludens protein 1 are

expressed and maintain cellular distribution patterns consistent with their predicted
roles in mediating trophectoderm differentiation in in vitro produced bovine embryos.

Introduction

Transporting epithelia differentiate from apolar cells during
development 'in concert' with the formation of epithelial
junctional complexes (Boiler et al, 1985; Gumbiner and
Simons, 1987; Gumbiner et al, 1988), resulting in the
establishment of distinct apical and basolateral plasma
membrane domains (Vestweber et al, 1987; D'Angelo
Siliciano and Goodenough, 1988; Fleming and Johnson, 1988;
Rodrigez-Boulan and Nelson, 1989; Wiley et al, 1990;
Watson, 1992; Watson et al, 1992a; Collins and Fleming,
1995). The epithelial junctional complexes are

macromolecular structures consisting of zonula occludens
(that is, tight junctions), zonula adherens (that is, adherent
junctions), macula adherens (that is, desmosomes), and gap
junctions (Fleming et al 1991, 1993; Citi, 1993; Kidder 1993).
E-cadherin (uvomorulin) forms the main component of the
Revised manuscript received 14 April 1998.

adherent junction, which is located at the lateral region of
epithelial cell contact. Stable cell contacts and adhesion
plaques are maintained via anchorage of E-cadherin to the
actin cytoskeleton through its cytoplasmic association with
ß-catenin, oc-catenin and  -catenin (Nagafuchi and Takeichi,
1988; Kemler and Ozawa, 1989; Gumbiner and McCrea, 1993;
McNeill et al, 1993; Ranscht, 1994). The requirement for E-
cadherin during epithelial differentiation has been
demonstrated through the transfection of non-epithelial cell
lines with cadherins (Nagafuchi et al, 1987; Marrs et al,
1993). While cells transfected with E-cadherin polarize and
adopt an epithelial phenotype, those transfected with the
brain-associated cadherin, B-cadherin, do not undergo these
differentiative events (Marrs et al, 1993).

The tight junction consists of a complex of at least five
proteins: zonula occludens protein 1 (ZO-1), ZO-2, 7H6,
cingulin and occludin (for review see Citi, 1993). Occludin is
the core integral membrane protein interacting with ZO-1 (a



220 kDa peripheral membrane protein) and cingulin to form
a link between the tight junction and the cytoskeleton
(Stevenson et al, 1986, 1988; Anderson et al., 1988; Citi et al,
1988, 1993; Furuse et al, 1993). At least two functions are

served by the tight junction: the regulation of paracellular
transport (the movement of water and solutes between
epithelial cells) and the maintenance of epithelial cell
polarity (Biggers et al., 1988; Stevenson et al, 1988; Watson,
1992; Citi, 1993).

Development of the early mammalian embryo to the
blastocyst stage is dependent upon the differentiation of a

transporting epithelium, the trophectoderm, required for the
vectorial transport of fluids to form and sustain the
blastocoel (Biggers et al, 1988; Watson, 1992; Kidder, 1993).
The events of trophectoderm differentiation parallel those
involved in the differentiation of all epithelia and are

dependent upon the establishment of E-cadherin mediated
cell-cell adhesion (Vestweber et al, 1987; Fleming and
Johnson, 1988; Watson et al, 1990). While the expression
patterns of junctional complex genes are well characterized
in early mouse embryos (Vestweber et al, 1987; Larue et al,
1994; Reithmacher et al, 1995), this type of analysis has only
just been initiated in embryos of other mammals (Reima et
al, 1993; Shehu et al, 1996). Shehu et al. (1996) characterized
the polypeptide distribution of a number of nuclear,
cytoplasmic and extracellular proteins, including E-cadherin
and ZO-1, in inseminated bovine oocytes transferred to

ligated sheep oviducts. This system is reported to produce
embryos that display identical characteristics of in vivo
embryos with regard to morphology and pregnancy rates
after transfer to recipient cows (Shehu et al, 1996). The
present study examines the expression of these gene
products in embryos produced exclusively within a culture
environment. In addition, the expression of ß-catenin gene
products during bovine pre-attachment development has
been examined for the first time. The present results
demonstrate that gene products encoding E-cadherin, ß-
catenin and ZO-1 are expressed and maintain cellular
distribution patterns consistent with their predicted roles in
mediating trophectoderm differentiation in bovine embryos
produced in vitro.

Materials and Methods

Bovine embryo culture
Bovine pre-attachment embryos were produced using

standard in vitro oocyte maturation, fertilization and embryo
culture methods (Wiemer et al, 1991; Watson et al, 1994;
Winger et al, 1997). Cumulus-oocyte complexes (COCs)
excised by razor blade from ovaries within 4 h of removal
from the animal at an abattoir, were washed four times with
oocyte collection medium (Hepes-buffered TCM-199 plus
2% newborn calf serum (NCS); Gibco, BRL, Burlington, ON).
COCs were matured in TCM-199 medium plus 10% NCS
supplemented with 35 yg sodium pyruvate ml-1 (Sigma
Chemical Co, St Louis, MO), 5 µ FSH ml-1 (Follitropin;
Vetrapharm, London, ON), 5 fig LH ml·1 (Vetrapharm) and 1
µ oestradiol ml·1 (Sigma) for 22 h at 39°C in a humidified 5%

C02 in air atmosphere. Matured oocytes were fertilized in
vitro with frozen-thawed bovine semen (Semex Canada Ine,
Guelph, ON) prepared using a 'swim-up' method in sperm
TL medium (Hepes-buffered modified Tyrodes solution;
Parish et al, 1986). Matured COCs were washed in sperm TL
and placed in equilibrated fertilization drops (50 COCs per
300 µ\ drop) composed of bicarbonate-buffered modified
Tyrodes solution under light paraffin oil (BDH Inc., Toronto,
ON). COCs and spermatozoa (2.25  IO5 motile spermatozoa
per drop) were incubated for 18 h at 39°C under 5% C02 in
air before removal of the cumulus investment with a fine
bored glass pipette. Inseminated oocytes were co-cultured in
50 u\ culture micro-drops (TCM-199 plus 10% NCS) under
oil with 25-30 primary oviduct cell vesicles (Xu et al, 1992;
Harvey et al, 1995; Xia et al, 1996) and were supplemented
with an additional 50 µ TCM-199 plus 10% NCS medium
after 48 h of culture to support development to the blastocyst
stage.

RNA isolation
Total RNA was extracted from bovine embryos according

to the method of Témeles et al. (1994). Bovine embryos were
allocated into pools of one-cell zygotes, two-five cell
embryos, six-eight cell embryos, morulae (day 6 after
insemination), and blastocysts (day 8 after insemination).
Pools of 50-100 embryos were lysed at room temperature in
100 µ] of GITC buffer (4 mol guanidinium isothiocyanate l·1;
Pharmacia, Quebec, PQ; 0.1 mol Tris-HCl H, pH 7.4; 1 mol 2-ß
mercaptoethanol  ; Sigma) in the presence of 20 /vg of
Escherichia coli rRNA (Gibco, BRL). Samples were vortexed
vigorously and either frozen and stored at -70°C or

processed by ethanol precipitation before DNase digest. The
precipitated samples were centrifuged at 10 000 g for 20 min
at room temperature; the pellets were washed twice with
cold 70% ethanol and air dried before re-suspension in 20 µ 
re-suspension buffer (40 mmol Tris-HCl l·1, pH 7.9; 10 mmol
NaCl H; 6 mmol MgCl211). Genomic DNA was degraded by
incubating the samples with 1 unit of RQ1 DNase (Promega,
Biotec, Madison, WI) for 30 min at 37°C. Samples were then
re-extracted with phenol and re-precipitated with ethanol
before the suspension of digested pellets in 10 µ autoclaved
MilliQ water. Oviductal total RNA was isolated by the same

method without addition of E. coli rRNA and was quantified
via spectrophotometry. Aliquots of 1 µ oviduct cell total
RNA was used for reverse transcription.

Reverse transcription and polymerase chain reaction
Total RNA was reverse-transcribed (RT) using oligo (dT)

priming and Superscript™ Reverse Transcriptase (Gibco,
BRL; Harvey et al., 1995; Watson et al, 1992b, 1994). RNA
samples were incubated with 0.5 yg Oligo (dT)12_1(j primer
(Gibco, BRL) for 10 min at 70°C. After cooling on ice, RNA
was incubated in First Strand Buffer (Gibco, BRL; containing
50 mmol Tris-HCl H, pH 8.3, 75 mmol KC1 l·1, 3 mmol
MgCLT1, 10 mmol dithiothreitol (DTT) H, 0.5 mmol
dNTPsl·1) and 200 units of Superscript™ Reverse



Transcriptase (Gibco, BRL) for 1.5 h at 43°C. The reaction was

terminated by heating at 94°C for 4 min and flash cooling on

ice. Newly produced cDNA was further diluted with sterile
distilled water to a concentration of two embryo equivalents
per µ or the equivalent of 40 ng of oviduct RNA ml·1.
Polymerase chain reaction (PCR) was performed as

described previously (Watson et al, 1992b, 1994; Betts et al,
1997). Aliquots of embryo and oviductal cDNA (2.5 µ\ of a

50 µ\ cDNA sample) were amplified with 1 unit of Taq DNA
polymerase (Gibco, BRL) in a final volume of 50 µ\
containing 10  PCR buffer (200 mmol Tris-HCl H, pH 8.8,
500 mmol KC1 H plus 1.0-2.0 mmol MgCl2 l·1, 0.2 mmol l·1 of
each dNTP and 2 mmol I"1 of each gene-specific primer). The
reaction mixture was covered with light paraffin oil and
amplified for up to 40 cycles in a DNA thermal cycler (Perkin
Elmer Cetus 480), with each cycle consisting of denaturation
at 94°C for 1 min, re-annealing of primers to target sequences
at 50-56°C for 30 s and primer extension at 72°C for 1 min.
PCR products were resolved on 2% agarose gels containing
0.5 mg ethidium bromide ml-1.

Polymerase chain reaction primers
Primer sequences for actin, E-cadherin, and ß-catenin were

designed from cDNA sequences retrieved from GENBANK
and were synthesized by Gibco, BRL (Burlington ON; see

Table 1 for sequences). cDNA samples were tested for the
presence of genomic DNA contamination before use in gene-
specific RT-PCR using a set of primers designed to bracket an

intron of the ß-actin cDNA. In the absence of genomic DNA,
this primer set produces a 243 bp amplification product
(Watson et al, 1992b, 1994; Harvey et al, 1995). All cDNA
samples used in the present study displayed amplification of
the appropriate sized ß-actin cDNA PCR product. Identity
of the products produced by PCR reaction was verified
using dye-coupled sequencing performed by GenAlyTiC
(University of Guelph, ON) for each primer set.

Immunocytochemistry
Characterization of E-cadherin, ß-catenin and ZO-1

polypeptides was conducted simultaneously in Danish and

Canadian laboratories. Two distinct methods of immuno¬
localization were used, consisting of wholemount confocal
immunofluorescence and peroxidase diaminobenzidine
immunocytochemistry. This strategy provided a unique
opportunity to compare two methods of analysis and
confirm the observed distribution patterns.

Wholemount indirect immunofluorescence. The following
antisera were used: (1) a mouse monoclonal IgG2a (clone 36)
raised against human E-cadherin (Transduction
Laboratories, Mississauga, ON; 1:100 dilution); (2) a mouse

monoclonal IgGl (clone 14) directed against mouse ß-catenin
(Transduction Laboratories; 1:400 dilution); and (3) a rat
monoclonal anti-ZO-1 antiserum (Chemicon, Mississauga,
ON; 1:100 dilution). Wholemount immunofluorescence was

applied to bovine embryos according to modifications of
previous methods (De Sousa et al, 1993; Betts et al., 1997).
Bovine embryos (from the one-cell stage to the blastocyst
stage) were collected, washed twice in cold 1  PBS. Embryos
were fixed through a methanol-PBS series consisting of
l:lMeOH-PBS for 2 min, 2:1 MeOH-PBS for 2 min and
transfer into 600 µ PBS containing 0.002% (v/v) Triton X-100
for 5 min to allow the embryos to sink to the bottom of the
chamber. Fixed embryos were washed in 1  PBS and either
stored at 4°C for up to 1 week or were further processed
immediately. Embryos processed for ZO-1 and ß-catenin
immunofluorescence were permeabilized in blocking
solution (0.01% (v/v) Triton X-100, 0.1 mol lysine l·1 and 1%
(v/v) goat serum in PBS) for 45 min at room temperature and
washed three times in fresh PBS. Embryos processed for E-
cadherin immunofluorescence were not subjected to Triton
X-100 extraction. Embryos were incubated overnight at 4°C
with primary antiserum (diluted in 0.002% (v/v) Triton X-100
plus 1% goat serum in PBS) and washed four times in 0.002%
(v/v) Triton X-100 plus 1% goat serum, with the final wash
lasting 4-6 h. Samples were then incubated in secondary
antisera consisting of either fluorescein isothiocyanate
(FITC)-conjugated rabbit anti-mouse IgG secondary
antibody (ICN Biochemicals, Montreal, PQ; 1:50 dilution) or

FITC-conjugated goat anti-rat secondary antibody (ICN
Biochemicals; 1:100 dilution) in 0.002% (v/v) Triton X-100
plus 1% goat serum in PBS for 2 h at room temperature.
Embryos were washed three times in fresh PBS for 10 min
and left overnight in a final wash of 0.002% (v/v) Triton X-100

Table 1. PCR primer sequences

PCR
Product Primer Sequences

Amplicon position
and size

(bp)

Genbank
Accession
Number References

ß-catenin 5'-primer =

GGTGCCATTCCACGACTAGTT
3'-primer =

CAGCAGTCTCATTCCAAGCCA
E-cadherin 5'-primer =

TGAGGCCAAGCAGCAATACA
3'-primer =

TGCTGTTCTTCACATGCTCA

1791-2283 of human
cDNA = 473

1405-1751 of mouse

cDNA = 350

emblZ19054

emblX06115

Hulsken et al., 1994
Nolleteía/.,1996

Nagafuchi et al, 1987



plus 1% goat serum in PBS before a final transfer onto glass
slides in 20 µ of Fluoro-Guard (BioRad, Mississauga, ON)
mounting medium under elevated 22  22 mm glass slides
sealed with nail polish. Slides were viewed on a BioRad
MRC 600 confocal laser scanning microscope (BioRad). The
procedures were repeated as many as six times for each
embryo stage and, in total, approximately 100 embryos of
each stage were examined.

Peroxidase diaminobenzidine staining. Embryos from the one-

cell to the blastocyst stage were collected for analysis of E-
cadherin, ß-catenin, and ZO-1 distributions by application of
peroxidase-diaminobenzidine (DAB) immunocytochemistry
(Hay-Schmidt, 1995). In total, 15 embryos of each stage were

examined, representing a total of 150 embryos for each
antiserum. The zona pellucida was removed by incubating
embryos in acid Tyrode's buffer (pH 2.1) for 1-3 min. After
removal of the zona pellucida, embryos were washed in
TCM-199 media at 39°C for 10 min and fixed in 4% (w/v)
paraformaldehyde in 0.1 mol phosphate buffer l-1 for 24 h at
4°C. Fixed embryos were stored in PBS with 0.1% (v/v) Triton
X-100 and 0.1% (w/v) sodium azide at 4°C. Identical primary
antisera for E-cadherin and ß-catenin were used in these
studies as described above. For immunocytochemistry, these
antiserum were diluted 1:2000 in PBS with 0.1% (v/v) Triton
X-100 (PBST). For these studies, a rabbit polyclonal ZO-1
primary antiserum (Zymed, San Francisco, CA) was diluted
1:3000 in PBST. For each antiserum, embryos were incubated
overnight at 4°C with the primary antibody and washed three
times in PBST. Embryos were then co-incubated with rabbit-
anti-mouse-biotinylated and swine-anti-rabbit-biotinylated
secondary antibodies (diluted 1:500 in PBST) for 2-4 h at 4°C
and then incubated for 1 h at room temperature. Embryos
were washed three times in PBST and incubated in
avidin-biotin complex (ABC; Vector, Burlingame, CA) for
1-3 h at 4°C and 1 h at room temperature and then washed a
further three times in PBST. ABC-treated embryos were
incubated in 0.05% (w/v) DAB without perhydrol for 15 min,
then incubated for 3-12 min in DAB plus perhydrol at room

temperature. The DAB reaction was stopped by two washes
in water. Subsequently, embryos were dehydrated, epon-
embedded and serial sectioned in 2 µ  sections, and every
second section was stained with toluidine blue.

Immunochemistry controls
All of the antisera used in this study were obtained from

commercial sources and their efficacy in specifically
recognizing epitopes unique to their individual polypeptides
has been determined by both western blot and in situ
immunolocalization methods (Stevenson et al, 1986;
Takeichi, 1988; Li and Poznansky, 1990; Ozawa et al, 1990;
Behrens et al, 1993; Su et al, 1993). Routine controls were
conducted to ensure that the experimental conditions were

optimal. These controls included testing each antiserum first
on untreated bovine tissue sections. Secondary antibody
controls were conducted in which the primary antiserum
was omitted to determine background fluorescence or DAB
staining. Methanol fixation of whole-mount bovine embryos

was used, as this method of fixation results in lower
background autofluorescence and increased antigenicity
compared with aldehyde fixatives (Davis, 1993). The
immunofluorescence distributions were consistently
observed among experimental replicate embryo pools for
each embryo stage.

Results

E-cadherin, and ß-catenin transcripts during bovine pre-
attachment development

Transcripts encoding E-cadherin, and ß-catenin (indicated
by amplicons having the predicted sizes of 350 and 473 bp,
respectively) were detected in one-cell bovine zygotes
through to blastocyst stages (Fig. 1). In each case, the
distribution of these transcripts suggests that these gene
products are of both maternal and embryonic origin. Bovine
RT-PCR products were sequenced to confirm the identity
and contrast nucleotide sequence identity among species.
Bovine RT-PCR products amplified using E-cadherin and ß-
catenin primers possessed 83% and 98% sequence identity
with corresponding murine and human mRNA sequences,
respectively (Fig. 2). An identical strategy for detecting
transcripts encoding ZO-1 during this developmental
interval was attempted. Experiments were conducted with
three separate primer sets designed to recognize conserved
regions of mouse and human ZO-1 cDNAs. For each primer
set, a series of PCR amplicons from bovine pre-attachment
embryo stages was produced (data not shown). However,
these products were not of the expected size and, upon

Fig. 1. Detection of transcripts encoding E-cadherin and ß-catenin in
bovine pre-attachment embryos. cDNA samples were amplified by
40 cycles of polymerase chain reaction, (a) ß-catenin lanes are: L,
100 bp DNA ladder (bands from top to bottom: 700 bp, 600 bp,
500 bp, 400 bp); 1, one-cell zygote; 2, 2-5-cell embryo; 3, 6-8-cell
embryo; 4, morula; 5, blastocyst; 6, negative control (no cDNA). (b)
E-cadherin lanes are: L, 1 kb DNA ladder (bands from top to bottom:
516/506 bp; 394 bp; 344 bp; 298 bp; 220/200 bp; 154/142 bp); 1, day
2 bovine oviduct monolayer; 2, one-cell zygote; 3, 2-5-cell embryo; 4,
6-8-cell embryo; 5, morula; 6, blastocyst; 7, negative control.



Fig. 2. Bovine ß-catenin and E-cadherin reverse transcription-polymerase chain reaction (RT-PCR) amplicon sequences.
Nucleotide sequences of bovine embryo products were compared with the corresponding human (ß-catenin) and mouse

(E-cadherin) cDNA sequences. Specific primer sequences and areas of non-conserved bases are highlighted. The bovine
ß-catenin cDNA sequence shares 98% sequence homology with the human cDNA sequence. Analysis of 275 bp of the bovine
E-cadherin cDNAby direct sequencing of PCR products demonstrated 83% homology to the known mouse cDNA sequence.

cloning and sequence analysis, did not share any homology
with known ZO-1 cDNAs. For these reasons, it is the opinion
of the authors that characterization of ZO-1 transcripts
during early bovine development must await cloning and
sequencing of the bovine ZO-1 gene.

E-cadherin, ß-catenin and ZO-1 polypeptides during bovine
pre-attachment development

E-cadherin and ß-catenin immunofluorescence was

detected encircling the cell margins of each blastomere in



one-cell zygotes through to the morula stage (Figs 3 and
4a-f). The fluorescence was confined to the cell periphery
and little cytoplasmic or nuclear signal was observed except
in morulae where ß-catenin was evident in the perinuclear
cytoplasm (Fig. 4e). E-cadherin and ß-catenin immuno¬
fluorescence diminished in the free apical surface of outer
blastomeres in the morula, becoming undetectable in the
apical surfaces of both mural and polar trophectoderm in the
blastocyst (Fig. 5a,b), and confined to the basolateral
membranes of trophectoderm cells and also encircling the
cell periphery of each inner cell mass (ICM) cell (Fig. 5a,b).

The fluorescent patterns displayed by E-cadherin and ß-
catenin antisera were consistently observed in all blastocysts
and were never observed to include the apical membrane
surfaces of the trophectoderm. However, immuno¬
fluorescence for both E-cadherin and ß-catenin did
demonstrate variations in the intensity of immunostaining in
the ICM of approximately 10% of blastocysts for both of
these polypeptides (data not shown). In the peroxidase-AB
stained embryos, perinuclear staining for E-cadherin was

observed from the four-cell to the 16-cell stage (Fig. 6a-c). At
the hatched blastocyst stage, E-cadherin was localized to the

Fig. 3. Immunofluorescence detection of E-cadherin polypeptides in cleavage-
stage bovine embryos. Staining of (a) one-cell, (b) two-cell, (c) four-cell, and (d)
eight-cell embryos with E-cadherin antiserum exhibit immunofluorescence
surrounding the cell margins of each blastomere. (e) In the 16-32-cell morula, E-
cadherin immunofluorescence was diminished in the free surfaces of outer
blastomeres. (f) Embryos treated with secondary antibody alone did not display
any fluorescence. All images are 1 µ  thick confocal laser scanning projections.
Scale bars represent 50 ^m.



Fig. 4. Detection of ß-catenin in early bovine pre-attachment embryos. Treatment of
embryos with ß-catenin-specific antiserum revealed universal staining
surrounding the cell margins of each blastomere from (a) one-cell, (b) two-cell, (c)
four-cell, and (d) eight-cell embryos, (e) ß-Catenin immunofluorescence in the
16-32-cell morula decreased in the free surface of outer blastomeres. (f) No
fluorescence was observed in secondary antisera controls. Scale bars represent
50 µ  .

lateral regions of trophectoderm cell margins extending from
the ZO-1 staining to basal regions adjacent to the blastocoel
cavity with sparse staining observed in the ICM cell
periphery confined to cell contacts. Peroxidase-DAB staining
for ß-catenin was observed from the two-cell stage at cell-cell
contacts (Fig. 6d-g). In hatched blastocysts, staining was

localized over the basolateral cell regions of the
trophectoderm and encircling all margins of the ICM cells
(Fig.6f,g).

In contrast to the distinct membrane associated
localization of E-cadherin and ß-catenin, no immuno¬
fluorescence signal was detected for ZO-1 in identical pools

of early cleavage stage bovine embryos (Fig. 7a-f). ZO-1
immunofluorescence was first detected at the morula stage,
appearing as punctate fluorescent points between the outer
cells (Fig. 7e). The ZO-1 fluorescence underwent a marked
transition from the morula to the blastocyst stage (Fig. 8a-d).
By the late morula, regions of continuous fluorescence
became apparent at regions of cell contact between the outer
cells of the embryo (Fig. 8a). As cavitation progressed, ZO-1
immunofluorescence became distinctly localized to apical
regions of cell contact (Fig. 8b), eventually forming a

continuous fluorescent ring confined to the apical points of
trophectoderm cell contact (Figs 8d and 6k). No fluorescence



Fig. 5. Localization of E-cadherin and ß-catenin in bovine blastocysts produced in vitro.
Both E-cadherin (a) and ß-catenin (b) are restricted to the basolateral cell margins in
trophectoderm cells (TE). This restricted distribution is more apparent in enlarged
inserts of TE cell-cell contact regions (insets). The distribution patterns for these
proteins remain apolar in the inner cell mass cells (ICM). Scale bars represent 50 µ  .

signal for ZO-1 was detected within the ICM (Figs 8c and 6k).
ZO-1 staining was observed from the morula stage as

cytoplasmic staining in peroxidase-DAB-stained embryos
(Fig. 6h-k). The precise cellular distributions displayed by all
antisera and the low amounts of background staining in
controls (Figs 3f, 4f and 5f) ensured that specific
immunolocalization patterns were observed.

Discussion
In mammalian preimplantation embryos, cell proliferation
and differentiation after fertilization culminate in the
formation of a fluid-filled blastocyst. Vectoral fluid transport

and accumulation during blastocyst formation is attributed
to the polarized epithelial characteristics of the
trophectoderm, which arise as a consequence of
differentiative events initiated during compaction. E-
cadherin mediated cell-cell adhesion associated with
compaction synchronizes and orients cell polarity in the
embryo (Pratt et al, 1982; Johnson et al, 1986), representing a

critical event in epithelial differentiation (Fleming et al, 1994;
Lame et al, 1994; Reithmacher et al, 1995). The results of the
present study show that transcripts and proteins encoding E-
cadherin and its associated cytoplasmic protein, ß-catenin,
are present throughout bovine pre-attachment development
in vitro. These results suggest that these gene products have
both oogenetic and embryonic origins. The immuno-



Fig. 6. Peroxidase diaminobenzidine (DAB) staining of bovine pre-attachment embryos for E-cadherin, ß-catenin
and zonula occludens protein 1 (ZO-1). (a,d,g) E-cadherin; (b,e,h,j) ß-catenin; (c,f,i,k) ZO-1. (a,b,c) Four-cell embryo
stage; (d,e,f) 8-16-cell embryo stage; (g,h,i,j,k) hatched blastocysts. E-cadherin immunoreactivity was not strongly
detected until the 8-16-cell embryo stage, where it assumed a distribution associated with cell-cell contacts (large
arrowhead) and perinuclear regions (small arrowhead) of each blastomere. In hatched blastocysts, E-cadherin
immunoreactivity was confined to cell-cell contact regions of the TE (arrowheads), remaining undetected in apical
TE cell surfaces, ß-catenin immunoreactivity mirrored (arrowheads) the distribution observed for E-cadherin
throughout bovine early development. In contrast, ZO-1 immunoreactivity was first detected in compacting
morulae confined to adjacent apical regions of TE (large arrowheads). Scale bar represents 20 ^m.

localization studies demonstrated that E-cadherin initially
maintains an apolar distribution in blastomeres before
compaction. Coincident with increased apposition of
adjacent blastomeres and the onset of cavitation, these
proteins adopt a polarized distribution in the basolateral
membranes of trophectoderm cells, while maintaining an

apolar distribution in ICM cell margins. The polarized E-
cadherin distribution pattern observed in differentiating
bovine trophectoderm is comparable with distributions
reported for pig (Reima et al, 1993), and mouse early
development (Vestweber et al, 1987; Reima, 1990; Larue et al,
1994; Riethmacher et al, 1995). In addition, Shehu et al. (1996)

reported an identical E-cadherin distribution from the eight-
cell stage through to the blastocyst in embryos transferred to
ligated sheep oviducts. Therefore, the results obtained from
in vitro derived embryos indicate that culture has little
impact on embryonic E-cadherin distribution patterns. The
present study reports the distribution of E-cadherin
polypeptides in earlier stages than that reported by Shehu
et al. (1996). It is now clear that E-cadherin is present in cell
margins from the one-cell zygote stage onward during
bovine early development.

The integral role played by E-cadherin in blastocyst
formation has been demonstrated in transgenic mouse lines,



Fig. 7. Immunolocalization of zonula occludens protein 1 (ZO-1) polypeptides in
bovine cleavage and morula stage embryos. Polypeptides encoding ZO-1 were

undetectable by indirect immunofluorescence in (a) one-cell, (b) two-cell, (e) four-cell,
and (d) eight-cell bovine embryos, (e) ZO-1 first became detectable as punctate points
of immunofluorescence between the outer cells of the morula (arrows), (f) Controls
displayed a consistent absence of fluorescence signal. Scale bars represent 50 µ  .

generated through gene targeting and homologous
recombination, that carry null mutations for E-cadherin
(Larue et al, 1994; Riethmacher et al., 1995). Riethmacher et al.
(1995) reported that, initially, homozygous null embryos
underwent compaction (an event contributed to residual
oogenetic E-cadherin proteins) but failed to form normal
blastocysts and never hatched from the zona pellucida.
Removal of E-cadherin mediated cell-cell adhesion does not

prevent cell polarization (Pratt et al, 1982; Johnson et al,
1986) but rather delays and randomizes the orientation of
cell polarity (Johnson et al, 1986). Loss of ordered cell
polarity in the embryo during compaction prevents the

formation of a coherent trophectoderm cell layer (Larue et al,
1994; Reithmacher et al, 1995). Further characterization of
these null mutant embryos has revealed that expression of
both oc- and ß-catenin is downregulated and that ZO-1
expression is not detectable (Ohsugi et al, 1997). These
studies clearly demonstrate that E-cadherin plays a pivotal
role in the differentiation of the trophectoderm and, thus,
plays a central role in supporting further embryonic
development.

ß-catenin binds to the cytoplasmic domain of the E-
cadherin molecule and shares homology with the armadillo
protein of Drosophila which is involved in the wingless



Fig. 8. Localization of zonula occludens protein 1 (ZO-1) during the morula-to-blastocyst transition of bovine
development in vitro, (a) By the mid-late 16-32-ceIl morula stage (arrows), regions of continuous
immunofluorescence become apparent between the outer differentiating trophectoderm cells, (b) As cavitation
progresses, ZO-1 fluorescence is restricted to the apical region of trophectoderm (TE) cell contact (arrows), (c) In the
blastocyst, ZO-1 immunofluorescence is restricted to apical TE contact points (arrows and inset) while remaining
undetectable in the inner cell mass (ICM). (d) A cross-section plane through the apical TE surface of an expanded
blastocyst displays the continuous ring of ZO-1 immunofluorescence that forms between these cells. Scale bars
represent 50 µ  (a-c) and 25 µ  (d).

intracellular signalling pathway (Kemler and Ozawa, 1989;
McCrea et al, 1991; Hynes, 1992; Kemler, 1993). This protein
also shifts to a polarized distribution in differentiating
mouse trophectoderm (Haegel et al, 1995). The distribution
pattern of ß-catenin mRNAs and polypeptides has not been
examined previously during bovine pre-attachment
development. The results of the present study indicate that
both mRNA and proteins encoding this gene are present in
bovine embryos from the one-cell through to the blastocyst
stage in patterns consistent with mouse development. Mouse
embryos homozygous for ß-catenin null mutations develop
to the blastocyst stage and continue to progress until
gastrulation (Haegel et al, 1995). It would appear that
plakoglobin/y-catenin interactions with E-cadherin are

sufficient to mediate trophectoderm differentiation (Haegel
et al, 1995). It has been demonstrated that catenins associate
with ZO-1 in Madin-Darby canine kidney cells during the
early stages of tight junction assembly (Rajasekaran et al,
1996). Weak association of these catenin-ZO-1 complexes
with E-cadherin may play a role in the shuttling of
components of the tight junction to the lateral membranes
mediating junction assembly (Rajasekaran et al., 1996).
Bovine morulae immunostained with ß-catenin antibodies in
the present study demonstrated cytoplasmic localization of

these polypeptides in addition to the membrane-bound
distribution. Sheth et al. (1997) demonstrated that ZO-loc+
isoform proteins first appear in compacting mouse morulae
as perinuclear foci and then accumulate in the membrane
between the outer blastomeres. These apparent spatial
similarities in the localization of ß-catenin and ZO-1 further
support a proposed shuttling role for ß-catenin during tight
junction assembly.

In contrast to E-cadherin and ß-catenin proteins, ZO-1
polypeptides were not detected in early cleavage stage
bovine embryos, but were first observed in morulae in
differentiating outer blastomeres. These results are in
contrast to previous findings in the bovine embryo, where
ZO-1 polypeptides were not reported until the blastocyst
stage (Shehu et al, 1996). The distribution pattern of ZO-1
consisted of punctate points of fluorescence that combined to
form a thin fluorescent band confined to the apical contact
regions of adjacent outer cells as the morula progressed
towards the blastocyst stage. The two ZO-1 antibodies used
in this study produced a similar detection pattern to that
previously reported in mouse embryos (Fleming et al, 1989;
Fleming and Hay, 1991), in which ZO-1 protein was localized
at contact sites between outer blastomeres after compaction.
Bovine embryos processed for peroxidase DAB staining with



the rabbit polyclonal antibody revealed cytoplasmic as well
as membrane staining in morulae coincident with
cytoplasmic staining for ß-catenin at this stage. Sheth et al
(1997) demonstrated that ZO-la+ isoform proteins first
appear in compacting mouse morulae as perinuclear foci and
then accumulate in the membrane between the outer
blastomeres. As compaction progresses, bovine embryos
demonstrate a gradual establishment of continuous ZO-1
immunofluorescence along the apical regions of outer
blastomeres. The establishment of zonular ZO-1 localization
(Fleming et al, 1989, 1994) and tight junction formation
coincide with the onset of cavitation (Ducibella and
Anderson, 1975; McLaren and Smith, 1977; Pratt, 1985).

Our research is directed at providing an understanding of
the mechanisms underlying blastocyst formation. These
events are not well characterized during bovine early
development and, owing to the limited availability of bovine
early embryos derived in vivo for research, the majority of
studies have investigated events in embryos derived in vitro.
There are increasing concerns about the possible influence of
varied culture environments on gene expression patterns. It
is possible that the variation in the apparent intensity of ICM
immunostaining observed for E-cadherin and ß-catenin
among blastocysts may also reflect in vitro effects on gene
expression. Lower E-cadherin and ß-catenin protein
expression in the ICM may reflect embryo health and quality.
However, direct comparison between embryos derived in
vitro and in vivo is required to confirm this assumption.

In conclusion, the gene products encoding E-cadherin, ß-
catenin and ZO-1 have been shown to be expressed and to
maintain distribution patterns consistent with their
predicted role in coordinating the events of trophectoderm
differentiation in the early bovine embryo. Furthermore, the
results of the present study indicate that bovine embryos
derived in vitro express these important mediators of early
development in patterns consistent with gene expression
patterns associated with development in vivo.
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