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Abstracts 

Oxidative stress is an underlying cause for vascular pathologies including inflammation, 

hypertension, and atherosclerosis. Sirtuins (SIRTs) are a family of NAD+ dependent 

deacetylases with pronounced roles in cellular metabolism and aging. SIRT6 is expressed in 

vascular smooth muscle cells (SMCs) and may offer protection from oxidative stress-induced 

damage. To study the role of SIRT6 in SMCs, we created a novel strain of SMC-specific 

SIRT6-deficient (SIRT6KO) mice with Cre-lox technology. Because no defects were observed 

in the aortas of SIRT6KO mice, they were then infused with angiotensin II (Ang II) to induce 

oxidative stress. Compared with vehicle controls, SIRT6KO mice developed aortitis, aortic 

hemorrhage, and aneurysms in response to Ang II. Therefore, we propose that SIRT6 has an 

anti-inflammatory role in aortic SMCs that is necessary for maintaining vessel wall integrity 

in the presence of oxidative stress. 
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Chapter 1  

1 Introduction 

1.1 General Introduction 

Cardiovascular disease (CVD) remains the leading cause of death worldwide, a fact that 

drives ongoing research towards its prevention and intervention. To many, CVD such as 

coronary artery disease, hypertension, congestive heart failure, and stroke have become 

household terms. Overall cardiovascular well-being is dependent on the condition of our 

blood vessels, which ultimately points toward the health of cells comprising the 

vasculature, including endothelial cells (ECs), vascular smooth muscle cells (SMCs), and 

other cell types resident in the vascular wall. It is fundamental to understand the biology 

of the vascular wall and the cellular constituents for the prevention and treatment of CVDs. 

1.2 Vasculature and Cellular Composition of the Vessel 
Wall 

The vasculature is an intricate network of blood vessels that transports blood between the 

heart and peripheral parts of our body. Oxygen, nutrients, and other circulating factors, 

such as hormones, are carried through the blood. Of the three main types of vessels—

arteries, veins, and capillaries—arteries carry oxygenated blood away from the heart, veins 

carry deoxygenated blood to the heart, and capillaries are responsible for delivering all the 

aforementioned components of blood flow to end organs. Exceptions are found in the 

pulmonary vasculature with pulmonary arteries carrying deoxygenated blood away from 

the heart and pulmonary veins carrying oxygenated blood to the heart. 

The vessel wall is made up of three distinct layers that are comprised of different cell types 

and have unique characteristics that contribute to the overall functionality of the blood 

vessel. The innermost layer, tunica intima, is made up of a single layer of endothelial cells. 

The middle layer, tunica media, has many concentric layers of vascular SMC and elastin 

fibers. The outer and most diverse layer, tunica adventitia, is comprised of a collagen-rich 

extracellular matrix (ECM) containing fibroblasts, progenitor cells, nerves, adipocytes, 

immune cells, and a microvascular network known as the vasa vasorum [1]. 
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Although veins and arteries have the same three layers, arterial walls have a substantially 

thicker media to withstand direct pressure from cardiac output as well as high oxygen 

content. An overall decrease in wall thickness, elastin, and collagen result in veins that are 

less stiff than arteries [2].  In contrast, capillaries are comprised of a one cell layer thick 

endothelium wrapped with pericytes. There are three types of capillary EC structure: 

continuous, fenestrated, and discontinuous. These differences are indispensable for 

simultaneously producing continuous capillaries in the blood brain barrier to block out 

toxic substances and fenestrated capillaries in the glomerulus to allow for the filtration of 

blood [3]. 

1.2.1 Layers of the Arterial Wall 

1.2.1.1 Intima 

Vascular ECs in the intima regulate blood flow through the production of nitric oxide (NO), 

a vasodilator that controls the tone of vascular SMC [4]. Direct contact with the lumen 

allows ECs to act as border guards that control wall permeability. ECs prevent unwanted 

plasma proteins from moving into the wall through their tight junctions as well as facilitate 

leukocyte extravasation in cases of injury or damage [4].  

1.2.1.2 Media 

In large arteries such as the aorta, the media is by far the thickest layer, therefore, making 

vascular SMCs the major constituents of the aortic wall and the cell type of interest for this 

project. In mice, there are 3-6 concentric layers of SMCs and elastin fibers depending on 

which aortic region is under observation. The greatest number of layers are found in aortic 

root media with progressively fewer layers the more distal it is to the heart.  

The media exclusively consists of SMCs and the associated ECM during embryonic 

development (i.e. collagen, elastin fibers, proteoglycans). The primary role of SMCs is to 

mediate contraction and relaxation of the arterial wall, which is indispensable for efficient 

regional distribution of blood flow into different tissues. Compared to smaller arteries, 

aortas have increased collagen content for vessel wall strength [5]. This combined with 
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higher quantities of elastin give the aorta the ability to simultaneously stretch and also 

withstand the highest levels of blood pressure coming directly out of the heart [5].  

Of greater interest to this project, the other main responsibility of SMCs is its response to 

injury and repair of the vessel wall. Both roles are realized due to the profound phenotypic 

plasticity of SMCs, setting them apart from striated (skeletal or cardiac) muscle cells.  

Normal “contractile” SMCs are characterized by a very low rate of proliferation and 

expression of proteins and signaling molecules necessary for contraction. These include 

proteins such as SM α-actin, smooth muscle-myosin heavy chain (SMMHC), h1-calponin, 

SM22α, and smoothelin [6]. Morphologically, they appear long and spindle-shaped [7]. 

Being the only protein found exclusively in SMCs, SMMHC is currently the most specific 

marker protein for identifying contractile SMC. Other contractile proteins mentioned 

previously are also expressed in cardiomyocytes, myofibroblasts, and endothelial cells 

during vascular remodeling [6,7]. In the event of vascular damage, SMCs respond to either 

acute or chronic stimuli with a phenotypic change in protein expression. The switch is 

facilitated via ligand-receptor interactions and epigenetic modifications, respectively. 

Platelet-derived growth factor-BB (PDGF-BB) is a key repressor of vascular SMC-specific 

gene expression while TGF-β a major promoter of it [8]. These rhomboid-shaped 

“synthetic” SMCs have an increased ability to synthesize ECM components, proliferate, 

and migrate [6].  

1.2.1.3 Adventitia 

Because the adventitia is home to such a variety of cell types, its function is expectedly 

complex. The adventitia serves as a storehouse for many types of progenitor cells (e.g. 

endothelial, mesenchymal, SMC, pericyte) [1]. A large population of fibroblasts, 

macrophages, and dendritic cells allows the adventitia to have one of the first inflammatory 

responses to vascular stressors. 
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The intima and media are comprised of endothelial cells and smooth muscle cells, 

respectively. The adventitia is host to a variety of cell types and the wall’s main blood 

source, the vasa vasorum. (Image adapted from Stenmark 2013 [1]) 

 

 

Figure 1.1 Schematic of the three layers in the arterial wall: intima, media, adventitia. 
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1.3 Oxidative Stress in the Vascular Wall 

Of the various insults that can threaten the integrity of the vascular wall, oxidative stress is 

a common denominator among vascular diseases. Vascular cells naturally produce reactive 

oxygen species (ROS) such as hydroxyl radicals (OH•), superoxide anion (O2
•-), and 

hydrogen peroxide (H2O2). During aerobic metabolism, low levels of ROS are formed as a 

byproduct from the reduction of oxygen and used to regulate SMC contraction [9]. Oxidant 

enzyme systems that facilitate these reactions include nicotinamide adenine dinucleotide 

phosphate hydrogen (NAD(P)H) oxidase, xanthine oxidase (XO), myeloperoxidase, and 

endothelial nitric oxide synthase (eNOS) [10]. ROS generation as a consequence of 

oxidative phosphorylation also makes the mitochondria a major source of ROS [11]. 

However, the aforementioned enzymes have been implicated in the development of 

vascular pathologies that make them of particular interest to this project. In particular, 

NAD(P)H oxidase accounts for the majority of ROS in all vascular cells [9]. Different 

isoforms of this multi-subunit protein are found in ECs, vascular SMCs, and adventitial 

fibroblasts [10] and activated by vascular injury (e.g. cytokines, hormones, and 

hemodynamic forces) [12]. Consequently, an increase in intracellular ROS results in 

impaired vessel tone; an exaggerated inflammatory response; and SMC hypertrophy, 

hyperplasia, and apoptosis [13]. To protect against accumulation of ROS, endogenous 

antioxidants such as superoxide dismutase (SOD) convert superoxide radicals into H2O2 

[10]. From that point on, catalase and glutathione peroxidase further catalyze H2O2 into 

water and oxygen [14].  

Whether caused by increased oxidase activity or deficient removal by antioxidants, excess 

ROS exert their detrimental effects through uncontrolled oxidation of deoxyribonucleic 

acid (DNA), proteins, and lipids [10]. Structural changes in such biological molecules 

result in defective DNA replication and transcription, decreased enzymatic activity, and 

loss of membrane permeability. Accordingly, oxidative stress is the term given for 

collective ROS-induced damage in cells. In vascular cells, oxidative stress has a role in the 

advancement of various cardiovascular pathologies that will be discussed in the following 

sections.  
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1.3.1 Angiotensin II Induces Oxidative Stress 

A diverse range of molecules activate NAD(P)H oxidase and increase ROS production: 

growth factors (e.g. platelet-derived growth factor (PDGF), epidermal growth factor 

(EGF), transforming growth factor-β (TGF- β), thrombin), cytokines (e.g. angiotensin II 

(Ang II), interferon-γ (IFNγ), interleukin-1 (IL1), tumor necrosis factor-α (TNF-α)), lipids 

(e.g. low-density lipoprotein (LDL) cholesterol, oxidized LDL), and even ROS (i.e. H2O2) 

[14].  

Ang II is one of the most potent and well-studied stimuli of NAD(P)H oxidase. It is the 

most important effector of the blood pressure-regulating renin angiotensin system. 

Through a series of cleavage reactions, angiotensinogen is converted to angiotensin I, 

which is then converted to Ang II through angiotensin-converting enzyme (ACE). Ang II 

can then be further cleaved by ACE2 into Ang-(1-7) [15]. As a result, ACE and ACE2 are 

potential targets for diminishing the potential harmful effects of Ang II by controlling the 

production and degradation of the peptide. This peptide hormone carries out its effects 

through angiotensin type 1 and 2 receptor, AT1R and AT2R, respectively [16]. However, 

Ang II’s harmful effects are predominantly carried out through AT1Rs expressed in liver, 

adrenals, brain, lung, kidney, heart, and vasculature. In vascular SMCs, Ang II binding to 

AT1R initiates a G-protein-dependent signaling pathway that triggers an influx of Ca2+ 

from the sarcoplasmic reticulum into the cell [17]. This increases the interaction of actin 

and myosin filaments, resulting in vasoconstriction and elevated blood pressure over time. 

Prolonged Ang-II infusion was shown to induce hypertension in mice, rats, rabbits, and 

humans [18].  

The AT1R-initiatied G-protein-dependent pathway also serves to activate NAD(P)H 

oxidase [16]. This is mediated through intracellular signaling molecules upstream of 

NAD(P)H (e.g. phospholipase D, protein kinase C, c-Src, phosphoinositide 3-kinase 

(PI3K), Rac) [15]. Moreover, Ang II increases the abundance of essential NAD(P)H 

oxidase subunits (e.g. gp91phox, p22phox, p47phox) [19]. There are many studies that 

confirm the association between Ang II, NAD(P)H, oxidative stress, and hypertension. Ang 

II-infusion increased both blood pressure and vascular O2
•- levels in mice. p47phox 

deficiency was enough to blunt the hypertension and eliminate increases in O2
•- [20]. 
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Another mouse study generated similar decreases in Ang II-induced hypertension and O2
•- 

production using a peptide that inhibited interaction between NAD(P)H subunits, 

gp91phox and p47phox [21]. Two different rat models of hypertension showed that 

increased NAD(P)H activity was correlated with elevated Ang II levels [22] or was brought 

down by treatment with an AT1R antagonist [23]. 

1.3.2 Effects of Oxidative Stress in Vascular Inflammation and 
Atherosclerosis 

Atherosclerosis is a disease characterized by chronic inflammation that begins as a local 

response to endothelial damage. As the disease progresses, oxidized LDLs, inflammatory 

cells, and SMCs form a plaque comprised of a lipid core protected by a fibrous cap [24]. 

The presence of increased ROS and upregulation of NAD(P)H oxidase subunits in all 

layers of the diseased wall indicate a positive correlation between oxidative stress and 

atherosclerosis [14].  One of the initial effects of ROS is the oxidization of LDL particles 

that have invaded the subendothelium. A proinflammatory environment is created as ECs 

secrete signals such as TNF-α and Ang II. Both cytokines induce the expression of vascular 

cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-

1), thereby drawing leukocytes into the vascular wall [13].  

Once in the wall, monocytes mature into macrophages that generate even more ROS [24]. 

Macrophages that take up oxidized LDL become foam cells which eventually aggregate 

and form the core of an atherosclerotic plaque. In addition to those processes, O2
•- 

inactivates EC-secreted NO; therefore, disrupting its important vasodilatory and anti-

inflammatory effects of on both ECs and vascular SMCs [13]. In the course of plaque 

development, SMCs proliferate and are recruited in an attempt to stabilize the lesion with 

ECM that they produce. PDGF triggers SMC proliferation and migration in a ROS-

dependent manner [10]. 

In summary, ROS are extensively involved in all phases of atherosclerosis. Oxidative stress 

is crucial in initiating the inflammatory response as well as propagating it throughout the 

vascular wall. 
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1.3.3 Oxidative Stress-Induced DNA Damage in SMC 

In addition to attacking proteins and lipids, free radicals have the ability to oxidize DNA. 

Because hydroxyl radicals react readily with both purines and pyrimidines, it has the 

potential to form DNA adducts with all bases. This leaves DNA susceptible to single strand 

breaks (SSBs), double-strand breaks (DSBs), and base modifications [25]. An example of 

a common site of hydroxyl radical attack is carbon 8 on guanine (8-oxo-guanine). This 

base modification has received special attention because of its ability to avoid detection by 

the DNA repair system and high mutagenicity (i.e. 8-oxo-G mis-pairs with adenine; 

therefore, causing a guanine to thymine mutation) [26]. The consequences of DNA damage 

in a cell can be devastating: mis-pairings of bases during replication, interruption of 

transcription, and overall increased mutagenesis [26]. 

Accumulation of oxidative stress-induced DNA damage can cause cellular senescence, a 

state of permanent cell cycle arrest. Cells naturally lose the ability to divide as they age and 

telomere lengths shorten from multiple rounds of replication [27]. As telomeres are tandem 

repeats of nucleotide sequences at the ends of chromosomes, they protect the cell from 

losing important coding and noncoding sequences during replication. Therefore, shortened 

telomeres signal cell cycle arrest as a defensive measure against the malignant 

transformation that is seen in cancer cells [28]. Cells remain viable until eventually 

succumbing to apoptosis through activation of the tumor suppressor, p53 [27].  

Aside from replicative senescence, cells exposed to external stimuli such as irradiation and 

oxidative stress undergo stress-induced premature senescence (SIPS) that is largely 

independent of telomere status [27]. The senescence is considered premature because cells 

of similar age that are not exposed to such insults have normal proliferation rates. DNA 

damage from ROS triggers the DDR mentioned earlier; therefore, causing the cell to stop 

dividing until repairs can be made. An unsuccessful attempt results in senescence and 

inevitably, apoptosis through p53 signaling [29]. Relatedly, ROS are implicated in 

telomere-based senescence because of their ability to induce DNA strand breaks in 

telomeres [30]. This can exacerbate the DDR already triggered by telomere shortening 

during replication and further accelerate telomere loss.  
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The association of oxidative stress with both telomere-based senescence and SIPS 

demonstrates the connection between the two different types of cellular senescence. 

Cultured aortic SMCs from aged mice produced higher levels of ROS with decreased 

proliferation compared to cells from younger mice [31]. Another study showed that 

expression of telomerase, an enzyme that facilitates telomere extension, delayed SMC 

senescence in vitro [32]. Furthermore, vascular SMCs in an in vivo atherosclerotic model 

show this overlap particularly well. Plaque vascular SMC showed a positive correlation 

between markers of senescence (i.e. senescence-associated beta-galactosidase (SA-β-gal) 

and p16) and oxidative stress-induced DNA damage (i.e. 8-oxo-guanine) and had shorter 

telomere lengths compared to normal vessel SMC [32].  

1.4 The Role of NAD+ Consuming Enzymes in 
Managing Oxidative Stress 

Nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH were first 

discovered as electron carriers in cellular oxidation/reduction reactions. For many decades, 

NAD+ was mainly known as a cofactor for enzymes in energy metabolism pathways such 

as glycolysis and oxidative phosphorylation [33]. In contrast to its usage in redox reactions 

where it can be recycled over and over again, NAD+ has only recently been discovered to 

be consumed as a cosubstrate in biochemical reactions.   

1.4.1 NAD+ Biosynthesis and Consumption Pathways 

 There are three major classes of enzymes that deplete cellular NAD+ levels: cyclic 

adenosine diphosphate (cADP)-ribose synthases, adenosine diphosphate (ADP)-ribose 

transferases, and sirtuins (SIRTs) [34]. Therefore, NAD+ deficiency disrupts the many 

crucial pathways that these enzymes participate in. cADP-ribose synthase is involved in 

calcium signaling. It uses NAD+ to make cADP-ribose, a second messenger that triggers 

the release of calcium from intracellular stores [35]. The poly (ADP-ribose) polymerase 

(PARP) family of proteins are the most prevalent ADP-ribose transferases. PARPs detect 

DNA damage, bind to those sites, and form poly (ADP)-ribose (PAR) chains using NAD+. 

These chains recruit other DNA repair factors to initiate a cascade of DNA repair events 

[35]. Out of the three classes of enzymes mentioned previously, SIRTs were the last NAD+ 
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consumers to be discovered. This family of deacetylases requires NAD+ to catalyze the 

removal of acetyl groups from proteins. SIRTs have been considered regulators of 

mammalian healthspan because of their impact on energy metabolism, cellular stress 

resistance, genomic stability, aging, and tumorigenesis [36]. 

Naturally, discovery of NAD+ consumption pathways stemmed renewed interest in 

enzymes of NAD+ biosynthesis. NAD+ is synthesized de novo from the amino acid L-

tryptophan that comes from dietary intake. The majority of NAD+, however, is generated 

from the salvage pathway which uses other NAD+ precursors from our diet (e.g. 

nicotinamide (NAM), nicotinamide riboside (NR), nicotinic acid) [34]. Nicotinamide 

phosphoribosyltransferase (NAMPT) is a key enzyme in the salvage pathway because it 

catalyzes the first, rate-limiting step in the conversion of NAM into NAD+ [34]. The ability 

of NAMPT to influence PARP and SIRT activity underscores their reliance on NAD+ [37]. 

In cultured human SMCs, overexpression of NAMPT protected cells from NAD+-

dependent oxidative stress-induced damage [38]. Decreased expression of NAMPT 

prompted premature senescence while conversely, its overexpression postponed 

senescence. A corresponding increase in SIRT1 activity indicates a role for SIRTs in 

resisting oxidative stress [38]. This study by our lab demonstrates the association between 

NAD+ bioavailability and oxidative stress-induced damage.  

1.4.2 PARPs 

DNA lesions from free radicals or other sources of damage are often categorized as either 

SSBs or DSBs because of the distinct repair mechanisms associated with them. Base 

excision repair (BER) and nucleotide excision repair mend SSBs, while homologous 

recombination (HR) and non-homologous end joining (NHEJ) process DSBs [39]. 

Common to all repair mechanisms is the DDR, a cascade of damage sensing and signal 

amplifying enzymes (e.g. PI3K-related kinase family, PARPs, MRE11-RAD50-NBS1 

complex) that regulate recruitment of DNA repair factors [40].  

The PARP family, most notably PARP1, plays an important role in sensing DNA damage 

and is recruited prior to all SSB and DSB repair mechanisms [41]. Although PARP1 in 

itself does not have any intrinsic DNA repair activity, it binds DNA lesion sites and 
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catalyzes the addition of adenosine diphosphate (ADP)-ribose units onto a target protein 

(e.g. histones H1 and H2B, PARP1 itself) [42]. This ADP-ribosylation reaction involves 

NAD+ hydrolysis and produces poly(ADP-ribose) (PAR) chains that are linked via 

glycosidic ribose-ribose bonds [43]. Although there is some baseline PARP1 activity, DNA 

breaks increase the level of PAR chains by 10- to 500-fold. At more than 200 PAR units 

on each target protein, this makes PARP1 a major consumer of NAD+ [44]. PAR chains 

continue to advance the DDR by recruiting ataxia telangiectasia mutated (ATM) and ataxia 

telangiectasia and Rad3-related protein (ATR), major signaling factors in the PI3K-related 

kinase family [41]. Additionally, the presence of PAR chains on histones interferes with 

transcription factors and loosens chromatin structure [42]. This further facilitates the DDR 

or activates apoptosis in cases of damage too extensive to be repaired efficiently.   

1.4.3 Sir2 and Sirtuin family 

Through mutation studies, the silent information regulator (SIR) family of genes were first 

discovered as negative regulators of mating type loci in Saccharomyces cerevisiae [45–

48]. In addition, SIR gene products are required for silencing at telomeres and ribosomal 

DNA (rDNA) [49–53]. SIR2 is distinct from the remaining family members in two notable 

areas: it is highly conserved from lower organisms like S. cerevisiae and Caenorhabditis 

elegans to humans [54]; its gene product, Sir2, is necessary for all three areas of silencing 

previously mentioned. Enzymatically, Sir2 was initially identified as an ADP-

ribosyltransferase, an enzyme that uses NAD+ to transfer an ADP-ribose group to a protein 

carrier [55]. However, further studies showed that Sir2’s role as a chromatin silencer is 

predominately mediated through its role as a NAD+-dependent histone deacetylase 

(HDAC) [56]. While a classical HDAC mechanism uses metal ions and water molecules, 

Sir2 couples NAD+ hydrolysis with deacetylation [57]. This reactions results in the 

production of a deacetylated substrate and NAM. Interestingly, the expected ADP-ribose 

was replaced by O-acetyl-ADP ribose (OAADPr), a novel product comprised of the ADP-

ribose moiety of NAD+ and the transferred acetyl group [58]. Interest in Sir2 took a big 

leap when it was found to promote longevity in S. cerevisiae by repressing rDNA 

recombination. This is thought to happen by reducing production of extrachromosomal 
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rDNA circles that cause aging in yeast [59]. As a result, more effort was put into 

understanding the role of Sir2-like proteins in mammals. 

Sir2-like proteins are found in prokaryotes and eukaryotes and given the name, sirtuins. 

There are seven mammalian SIRTs, SIRT1-7, that have conserved catalytic core domains 

with Sir2 and varying N- and C-terminals [60,61]. Although SIRTs are phylogenetically 

classified into four classes, they are more practically organized by their typical cellular 

localizations: SIRT1, 6, 7 in the nucleus, SIRT2 in the cytoplasm, and SIRT3-5 in the 

mitochondria [61,62]. SIRT mRNA is ubiquitously expressed in all human organs tested, 

although each SIRT has its own unique expression profile [62]. SIRTs make up the class 

III family of HDACs based on their unique mechanism of deacetylation as described 

previously with Sir2. All SIRTs are deacetylases with the exception of SIRT4 which only 

functions as an ADP-ribosyltransferase [63]. Deacetylation targets are unique to each 

SIRT—with some overlap—which give rise to different physiological functions. 

1.4.4 Sirtuin 1 

Since its discovery, the majority of sirtuin-related studies have focused on SIRT1, the 

family member with the greatest sequence similarity to SIR2 [61]. Although predominantly 

located in the nucleus [62], it can also travel to and from the cytoplasm [64]. SIRT1-

deficient mice models generated different phenotypes based on varying strain 

backgrounds. Inbred 129/Sv SIRT1KO mice showed gross signs of developmental defects 

(i.e. eye abnormalities), were consistently smaller than the WT, and seldom survived 

postnatally [65,66]. In an outbred background, SIRT1KO mice survive to adulthood but 

are sterile and smaller than WT [66]. As SIR2’s closest homolog, there was great interest 

in a possible role for SIRT1 in lifespan extension. Lack of SIRT1 in mice decreased their 

median lifespan [67]. Though, transgenic mice overexpressing SIRT1 exhibited delayed 

progression of age-associated diseases (e.g. cancer, metabolic syndrome), overall longevity 

was not extended [68]. Interestingly, brain-specific SIRT1 overexpression increased 

lifespan through SIRT1-dependent activation of the hypothalamus. This resulted in 

enhanced physiological functions such as physical activity, body temperature, oxygen 

consumption, and quality of sleep compared to control mice [69].  
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As a major regulator of metabolism, SIRT1 deacetylates important metabolic targets in 

skeletal muscle and the liver including peroxisome proliferator-activated receptor alpha 

(PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-

1α). PPARα belongs to a family of lipid-sensing receptors that activate genes involved in 

fatty acid homeostasis [70]. Particularly activated during prolonged periods of fasting, 

PPARα acts to conserve energy via its role in fatty acid catabolism (i.e. ketogenesis). 

SIRT1 stimulates fatty acid oxidation (FAO) by deacetylating and activating hepatic 

PPARα [71]. Another layer of SIRT1-dependent FAO regulation comes from activation of 

the PPARα transcriptional coactivator PGC-1α in skeletal muscle and the liver [71,72]. 

Interaction with PGC-1α also gives SIRT1 control over the initiation of gluconeogenesis 

during fasting [73]. In white adipose tissue (WAT), SIRT1 deacetylation of PPARγ 

represses its function as a promoter of adipogenesis [74]. In addition, deacetylation of 

PPARγ at Lys268 and Lys 293 allows for recruitment of coactivators that simultaneously 

induce brown adipose tissue (BAT) genes and repress WAT genes in white adipocytes 

[75]. This “browning” of WAT is thought to increase energy expenditure. Therefore, 

SIRT1-dependent PPARγ deacetylation in adipocytes is hypothesized to protect against 

obesity-related diseases.  

1.4.4.1 Sirtuin 1 in Vascular Smooth Muscle Cells 

Our lab was one of the first groups to study the importance of SIRT1 in vascular SMCs. 

We found that NAMPT overexpression extends lifespan in SMCs by increasing SIRT1 

deacetylation of p53 [38]. SMCs overexpressing SIRT1 are senescence-resistant, provided 

there are adequate NAD+ levels to sustain SIRT1 activity [76]. Furthermore, SIRT1 levels 

decline with age, making SMCs more vulnerable to genomic stress and cellular senescence 

[77]. SIRT1’s role in DNA repair has been a focal point for its importance in 

atherosclerosis. In the event of oxidative stress, SIRT1 deacetylates and activates the DNA 

repair protein Nijmengen Breakage Syndrome-1 (NBS1). As a result of reduced SIRT1 

levels in atherosclerotic plaques, these diseased vascular SMCs have increased rates of 

DNA damage and apoptosis [78]. SIRT1’s beneficial effects also extend toward possible 

complications of atherosclerosis such as calcification and neointima formation. SIRT1 

prevents hyperphosphatemia-induced-calcification in SMCs, a pathology that is associated 
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with increased cellular senescence [79]. Using carotid artery ligation and wire injury 

models, SIRT1 overexpression was shown to reduce neointima thickening. SIRT1 

inhibited SMC proliferation and migration via downregulation of cyclin D1 and matrix 

metalloproteinase-9 (MMP-9) [80].  

In vitro and in vivo Ang II models have been used to elucidate SIRT1’s role in vascular 

SMCs. One of the many negative effects of Ang II is increased ROS levels in the 

vasculature. In particular, Ang II activation of the NAD(P)H oxidase isoform, Nox1, 

induces vascular hypertrophy. Accordingly, SIRT1 inhibits hypertrophy in SMCs by 

suppressing Nox1 mRNA expression, and thereby, reducing oxidative stress [81]. As 

discussed previously, Ang II-induction of hypertension and oxidative stress is 

predominantly mediated via AT1R. In vascular SMCs, overexpression of SIRT1 

downregulated both AT1R mRNA expression and AT1R signaling via ERK 

phosphorylation. Resveratrol, an activator of SIRT1, reduced aortic AT1R protein 

abundance and reduced Ang II-induced hypertension in mice [82]. A separate group 

created SMC-specific SIRT1 transgenic mice that were also resistant to Ang II-induced 

hypertension. Aortas from these mice had reduced ROS levels, inflammation, and collagen 

accumulation. These beneficial effects of SIRT1, however, were not because of changes in 

AT1R levels. It was proposed that SIRT1 decreases TGF-β1 expression via inhibition of 

p65/RelA binding on its promoter [83]. Lastly, a recent SMC-specific SIRT1KO mouse 

model demonstrated the protective effect of SIRT1 against aortic dissection. After a 14-

day course of Ang II infusion, mice lacking SIRT1 in aortic SMCs had increased mortality 

rates. The manifestation of aortic dissection was attributed to increased MMP2 and MMP9 

expression in SMCs. Interestingly, aortic dissection was not a result of increased 

hemodynamic stress because SMC-specific SIRT1-deficiency attenuated Ang II-induced 

hypertension [84]. 

1.4.5 Sirtuin 2 

SIRT2 is deacetylase that is ubiquitously expressed in mouse tissues and predominantly 

cytoplasmic, but also found in the nucleus [85]. The first deacetylation target identified 

was α-tubulin [86], important in regulating oligodendrocyte cytoskeleton myelination and 

maturation [87]. During mitosis, SIRT2 will migrate to the nucleus and ultimately help 
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maintain genomic stability [85]. SIRT2 regulation of chromatin condensation is associated 

with histone H4 lysine 16 deacetylation [88]. Interestingly, SIRT2’s role in cell cycle 

control via deacetylation of the mitotic checkpoint kinase, BubR1, links SIRT2 with aging. 

Overexpression of SIRT2 increases BubR1 abundance, which was shown to increase 

median lifespan in BubR1-deficient male mice [89]. SIRT2-dependent genomic stability is 

also believed to be the reason why SIRT2-deficient mice develop tumorigenesis [90].  

SIRT2 is also involved in lipogenesis, glucose metabolism, and inflammation. Forkhead 

box protein O1 (FOXO1) is a transcription factor that initiates transcription of 

gluconeogenic genes (i.e. glucose-6-phosphatase (G6P)) and inhibits peroxisome 

proliferator-activated receptor gamma (PPAR-γ), a nuclear receptor that activates 

adipocyte maturation [91]. SIRT2 deacetylation of FOXO1 results in its activation; 

therefore, promoting gluconeogenesis and preventing adipogenesis [92,93]. Nuclear factor 

kappa B (NF-κB) is a major transcription factor that induces expression of inflammatory 

genes. SIRT2 exhibits an anti-inflammatory role by directly deacetylating NF-κB, 

hindering transcription, and weakening any resultant inflammatory response [94]. SIRT2-

deficient mice are more susceptible to dextran sulfate sodium-induced colitis and have 

increased levels of pro-inflammatory cytokines (e.g. TNF-α, interleukin-1 beta (IL1B), 

interleukin 6 (IL-6)) compared to wildtype (WT) mice [95].  

SIRT2 also contributes towards oxidative stress resistance via interactions between 

FOXO3a and SOD. Deacetylation of FOXO3a increases FOXO3a binding and activation 

of SOD, thus, decreasing ROS levels [96]. However, one study found contradicting results 

where inhibition of SIRT2 protected ECs from H2O2-induced cell death [97]. SIRT2 is also 

necessary in ECs, mediating Ang II-induced cell migration. SIRT2 deacetylates tubulin in 

the aortic intima of mice and promotes microtubule reorganization. Therefore, SIRT2 

mediates Ang II-induced vascular remodeling [98]. 

1.4.6 Sirtuin 3 

SIRT3 is a mitochondrial SIRT expressed in all tissues with higher levels in the liver, 

kidney, and heart [99,100]. SIRT3KO mice are healthy with no observable differences 

compared to controls. Mitochondrial hyperacetylation in these mice identified SIRT3 as a 
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major mitochondrial protein deacetylase [101]. Because SIRT3 target proteins are involved 

in almost all mitochondrial functions, loss of SIRT3 has been shown to accelerate a wide 

range of diseases.  

With respect to energy homeostasis, SIRT3 regulates mitochondrial oxidative 

phosphorylation by deacetylating proteins involved in the electron transport chain. SIRT3 

deacetylates and activates the Complex I subunit, NADH dehydrogenase [ubiquinone] 1 

alpha subcomplex subunit 9 (NDUFA9), and the Complex II subunit, succinate 

dehydrogenase flavoprotein (SdhA) [99,102]. Consequently, SIRT3KD causes a decrease 

in basal ATP levels and oxygen consumption in vitro [99,103]. In nitrogen metabolism, 

SIRT3 activates glutamate dehydrogenase (GDH), a mitochondrial enzyme that converts 

glutamate into α-ketoglutarate [104]. The nitrogen from glutamate is released as the 

byproduct ammonia and is removed via the urea cycle. The second step in this cycle is 

catalyzed by ornithine transcarbamoylase (OTC), another SIRT3 protein target. SIRT3 

deacetylation and activation of OTC promotes amino acid catabolism and ammonia 

detoxification [105].  

SIRT3’s role in glucose metabolism is a mechanism through which it acts as a tumor 

suppressor. An early clue came from oncogene expressing SIRT3KO MEFs that had 

increased metabolic activity from sources besides mitochondrial oxidative phosphorylation 

[106]. Indeed SIRT3 regulates the Warburg effect, typical metabolic reprogramming in 

cancer cells that favors aerobic glycolysis, through deacetylation of hypoxia-inducible 

factor-1α (HIF1α). SIRT3 suppresses the Warburg effect by destabilizing HIF1α, a 

transcription factor that upregulates glycolytic genes [107]. Pyruvate dehydrogenase 

phosphatase (PDP) and pyruvate dehydrogenase alpha 1 (PDHA1), a subunit of the 

pyruvate dehydrogenase complex (PDC), are also deacetylation targets of SIRT3. These 

actions work to activate PDC and promote oxidative phosphorylation; thereby, possibly 

oppose the Warburg effect [108].  

SIRT3’s capacity as a tumor suppressor via glucose metabolism regulation is dependent on 

its ability to modulate ROS levels. SIRT3 deacetylation reduces oxidative stress by 

activating SOD2 and isocitrate dehydrogenase 2 (isocitrate dehydrogenase 2 (IDH2) [109–
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112]. The previously discussed SOD2 neutralizes O2
•-, while IDH2 supports regeneration 

of glutathione, the antioxidant that breaks down H2O2 [110]. In a study mentioned earlier, 

increased ROS levels were observed in SIRT3KO MEFs and supplementing SOD2 was 

enough to stop immortalization of SIRT3-deficient MEFs expressing an oncogene [106]. 

SIRT3 attenuates HIF1α activity via reducing ROS production [107,113].  

1.4.6.1 Sirtuin 3 in Cardiovascular Disease 

As the most well-defined mitochondrial SIRT, studies have revealed protective roles for 

SIRT3 in cardiovascular disease. SIRT3 drives the FAO pathway by deacetylating and 

activating long-chain acyl coenzyme A dehydrogenase (LCAD). Under fasting conditions, 

SIRT3-deficient mice displayed metabolic stress symptoms consistent with defective FAO 

such as lower ATP levels and intolerance to cold exposure [114]. SIRT3KO mice on a 

high-fat diet demonstrate an accelerated metabolic syndrome that coincides with global 

mitochondrial hyperacetylation. Diet-induced obesity, insulin resistance, hepatic steatosis, 

and hyperlipidemia are all exacerbated in SIRT3-deficient mice compared to WT [115]. 

In cardiomyocytes, SIRT3 levels increase in response to stress and is required for cell 

viability [116]. SIRT3 suppresses cardiac hypertrophy by regulating the activation of 

mitochondrial permeability transition pores. In addition to cardiac hypertrophy, SIRT3KO 

mice develop fibrosis and have increased signs of aging in their hearts [117]. SIRT3 also 

inhibits cardiac hypertrophy by lowering cellular ROS levels. By deacetylating and 

stabilizing FOXO3, SIRT3 facilitates upregulation of FOXO3-dependent mitochondrial 

antioxidant enzymes, SOD2 and catalase [118]. The anti-oxidant properties of SIRT3 also 

play a role in protecting ECs. In response to hypoxic stress, SIRT3 mediates ROS 

detoxification through the same FOXO3 pathway [119]. SIRT3-null hypercholesterolemic 

(i.e. LDL receptor-KO) mice fed a high-fat diet had elevated ROS levels, accelerated 

weight gain, and impaired metabolic adaptation to changes in nutrient intake. Surprisingly, 

SIRT3 deficiency did not exacerbate advanced atherosclerotic lesions when compared to 

controls [120]. Lastly, SIRT3-dependent mitochondrial function is necessary for 

pulmonary artery SMCs and preventing spontaneous pulmonary arterial hypertension in 

SIRT3KO mice [121]. 



18 

 

1.4.7 Sirtuin 4 

This second mitochondrial SIRT is expressed in all tissues with higher levels in the kidney, 

heart, brain, liver, and pancreatic β cells [63]. Little is known about SIRT4’s enzymatic 

function; it is the only SIRT that cannot carry out NAD+-dependent deacetylation. Initial 

studies implicate SIRT4 in glucose metabolism, cancer, and lipid metabolism. 

Though SIRT4KO mice were developmentally normal and did not show any gross defects 

compared to WT littermates, SIRT4KO pancreatic β cells had higher GDH activity. SIRT4 

was first described to ADP-ribosylate, and thus, inhibit GDH activity [63]. In addition to 

its role in nitrogen waste disposal, GDH metabolizes glutamate to generate more ATP and 

ultimately promote insulin secretion [122]. So, SIRT4 blocks insulin secretion in pancreatic 

β cells. Another study affirmed SIRT4 expression in β cells and proposed negative 

regulation of insulin through interactions with insulin-degrading enzyme (IDE) [123]. 

Because some cancer cells need glutamine to survive [124], inhibition of glutamine 

metabolism by SIRT4 gives it a tumor-suppressive role. With genomic instability being a 

characteristic of all cancers, DNA damage was shown to induce SIRT4 expression [125]. 

SIRT4 repressed both tumor proliferation in vitro and tumor formation in vivo [125,126]. 

SIRT4 expression was found to be significantly lower in human bladder, breast, colon, 

gastric, ovarian, and thyroid carcinomas compared to normal tissue [127]. Lastly, SIRT4 

has a role in hepatic lipid metabolism that contrasts the functions of other SIRTs. SIRT4 

represses FAO in primary mouse hepatocytes and in vivo [128,129]. Malonyl -oA 

decarboxylase (MCD) deacetylation by SIRT4 results in elevated levels of malonyl-CoA 

[129]. This metabolite’s levels are closely regulated because of its important role in 

simultaneously promoting fat synthesis and inhibiting FAO [129]. Interestingly, this effect 

of SIRT4 seems to be dependent on SIRT1-repression [128] . 

With respect to vascular health, SIRT4 appears to have an anti-inflammatory role in 

protecting ECs from cigarette smoke-induced inflammatory responses. Overexpression of 

SIRT4 in the cigarette smoke-activated endothelium helped decrease monocyte adhesion 

to ECs by inhibiting adhesion molecules VCAM-1 and E-selectin. Moreover, SIRT4 

reduces NF-κB activity and its downstream cytokines TNFα, IL-1β, and IL-6 [130]. 
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1.4.8 Sirtuin 5 

SIRT5 is primarily located in the mitochondria but also found in the cytosol [131]. In mice, 

SIRT5 protein is expressed in all tissues with higher levels in brain, heart, liver, and kidney 

[132]. Upon gross inspection, SIRT5-deficient mice are normal and healthy [101,133,134]. 

SIRT5 was originally identified as a deacetylase with carbamoyl phosphate synthetase 1 

(CPS1) as its target in vitro and in vivo [132,135]. SIRT5 deacetylation activates CPS1, the 

rate-limiting step in the urea cycle that is necessary for removing potentially toxic buildup 

of ammonia from the body [132]. Though this finding established SIRT5’s role in ammonia 

detoxification, the underlying mechanism was brought into question when SIRT5 was 

shown to remove succinyl and glutaryl moieties from CPS1 in a NAD+-dependent manner 

[136,137]. The physiological function of SIRT5-dependent deacetylation is unclear 

because the catalytic efficiencies of desuccinylation and demalonylation were 29- to 

>1000-fold higher than deacetylation [136]. SIRT5 also desuccinylates and inhibits 

glutaminase, an enzyme that generates ammonia. By lowering glutaminase activity, SIRT5 

protects against ammonia-induced autophagy and mitophagy [138].  

SIRT5 also targets enzymes involved in mitochondrial metabolism. High percentages of 

proteins in the amino acid degradation pathway, tricarboxylic acid (TCA) cycle, and fatty 

acid metabolism were succinylated. Specifically, SIRT5-dependent succinylation of 

pyruvate dehydrogenase complex (PDC) and succinate dehydrogenase suppresses their 

activity in MEFs [139]. SIRT5 may play a role in FAO, the pathway with the highest 

percentage of succinylation target proteins and SIRT5 target proteins [133]. SIRT5 is also 

proposed to regulate ketone body production because there was evidence of 3-hydroxy-3-

methylglutaryl-CoA synthase 2 (HMGCS2) desuccinylation under fasting conditions in 

vivo [133]. A recent study highlighted a new role for SIRT5 in glucose metabolism. 

Pathway analysis revealed glycolysis as the foremost SIRT5-regulated pathway via 

demalonylation of a plethora of proteins including, glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) [140]. Though SIRT5 is associated with many different 

metabolic pathways, the biological significance of its various enzymatic functions remains 

unclear. Multiple normal SIRT5-deficient mouse lines imply the dispensable nature of 

SIRT5’s role in metabolic homeostasis under basal conditions [134]. Thus far, SIRT5’s 
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only relevance to cardiovascular health is an association between single nucleotide 

polymorphisms in the Sirt5 gene and risk of carotid plaques [141]. 

1.4.9 Sirtuin 7 

SIRT7 is one of the least studied SIRT and uniquely located in the nucleolus [62]. It is 

found in all mouse tissue with higher expression in metabolically active tissues (e.g. liver, 

spleen, testis) and lower expression in non-proliferating tissues (e.g. muscle, heart, brain) 

[142]. With rDNA transcription as the foremost activity of the nucleolus [143], SIRT7 has 

been found to increase rRNA synthesis by promoting RNA polymerase I (Pol I)-mediated 

transcription [142]. SIRT7 is involved via direct interaction with the rDNA transcription 

factor, upstream binding factor (UBF) [144]), and deacetylation of Pol I subunit, 

polymerase-associated factor 53 (PAF53) [145]. Following the pattern of other SIRTs, 

SIRT7 is a specific histone deacetylase. SIRT7-mediated H3K18 deacetylation represses 

transcription at promoters of tumor suppressor genes [146]. The physiological significance 

of this interaction is that SIRT7 is required for maintaining a cell’s cancerous phenotype. 

SIRT7’s potential as an oncogene is helped by evidence of its upregulation in all cancers 

that have been studied so far (e.g. thyroid, breast, bladder, colorectal) [143]. With respect 

to metabolic regulation, two separate SIRT7-deficient models revealed contrasting results. 

One study reported that SIRT7 prevents the development of hepatic steatosis by 

suppressing endoplasmic reticulum stress [147]. Another study showed that SIRT7-

deficient mice were resistant to high-fat diet-induced fatty liver. SIRT7 promoted hepatic 

steatosis via regulation of the ubiquitin-proteasome pathway [148].  

Thus far, only one study has described a role for SIRT7 in cardiovascular health. In the 

first SIRT7KO model, SIRT7 was shown to protect mice from a decreased lifespan due to 

heart hypertrophy and inflammatory cardiomyopathy. SIRT7-deficient myocardium 

revealed inflammatory infiltrations paralleled with higher levels of cytokines IL-12 and IL-

13. SIRT7 also protects cardiomyocytes from apoptosis by deacetylating, and therefore, 

decreasing p53 activity [149].  
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1.5 Sirtuin 6 

SIRT6’s core domain is flanked by an N-terminal important for histone deacetylation and 

chromatin association and a C-terminal necessary for nuclear localization [150]. Mouse 

mRNA and protein expression is highest in the brain, heart, and liver [151]. Primarily 

characterized as an NAD+-dependent HDAC, SIRT6 uses the same mechanism as Sir2 to 

remove acetyl groups from lysines [152,153]. Solving its crystal structure led to the 

discovery that SIRT6 is uniquely able to bind NAD+ in absence of an acetylated substrate 

[153]. SIRT6 targets histones H3K9, H3K56, and also directly deacetylates proteins [154–

157]. In addition to deacetylation, SIRT6 has deacylase and weak mono-ADP-ribosylase 

activity [151,158]. Surprisingly, in vitro measurements of deacetylase activity were 300-

fold lower than deacylation of a myristoyl group [158]. In vivo, this low intrinsic 

deacetylation is activated by long-chain fatty acids [159] and SIRT6’s association with the 

nucleosome complex [160]. In addition to fatty acid activation, only a few mechanisms of 

SIRT6 regulation have been discovered. At the transcriptional level, c-FOS binds the 

promoter to induce expression [161]. SIRT6 is negatively regulated post-transcriptionally 

via micro RNA (miR)-766, -33a, and -33b [162,163]. Post-translationally, the ubiquitin 

ligase CHIP ubiquitinates SIRT6 to increase protein stability and prevent proteasome-

mediated degradation [164]. 

1.5.1 SIRT6 Knockout and Transgenic Animal Models 

Three week-old 129Sv SIRT6-deficient mice developed an acute degenerative aging-like 

phenotype and died shortly after postnatal day 24. Defects included reduced body size, 

severe lymphopenia, hypoglycemia, acute loss of subcutaneous fat, lordokyphosis, and 

osteopenia. At the cellular level, MEFs from these mice showed enhanced sensitivity to 

DNA damage agents. SIRT6KO-induced genomic instability was attributed a role in base 

excision repair [165]. A separate SIRT6KO mouse line demonstrated a similar premature 

aging phenotype, hypoglycemia, and early lethality in 60% of mice [166]. Interestingly, 

early lethality was circumvented by feeding mice with glucose containing water; therefore, 

identifying hypoglycemia as the main cause of death. This was due to enhanced insulin 

dependent and independent glucose uptake from increased levels of both glucose 

transporter 1 and 4 (GLUT1, 4) [166]. The mice that survived past 4 weeks of age went on 
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to develop chronic liver inflammation starting at 2 months of age [167]. In addition to 

SIRT6KO models, transgenic mice overexpressing SIRT6 were also created. Lifespan was 

extended in male, but not female, SIRT6 transgenic mice. This male-specific phenomenon 

was associated with lower insulin-like growth factor 1 (IGF1) signaling in WAT, an 

observation that has been linked to prolonged lifespan in rodent models [168]. Transgenic 

mice overexpressing SIRT6 are also less prone to high fat diet-induced metabolic damage 

[169]. 

Tissue-specific SIRT6KO models have also been created for brain, liver, and heart. Neural-

specific deletion of SIRT6 led to growth retardation at 4 weeks of age [170]. However, not 

only did the mutant mice eventually reach normal size, they showed increased adiposity 

and became obese by 6-8 months of age. Modified growth hormone (GH)/IGF1 signaling 

and obesity-related neuropeptides were the likely causes of this phenotype [170]. Liver-

specific SIRT6KO mice have fatty livers from an accumulation of triglycerides (TGs) 

[171]. With respect to heart-specific models, both SIRT6KO and transgenic SIRT6 

overexpressing mice were created. Both models showed that SIRT6 protects against 

cardiac hypertrophy and heart failure [172]. 

In conclusion, SIRT6 mouse KO models have been crucial in elucidating SIRT6’s various 

biological functions: glucose and lipid metabolism, genomic stability/DNA repair, and 

inflammation. The following sections will further discuss the mechanisms behind these 

functions and how they impact disease. 

1.5.2 SIRT6 in Lipid and Glucose Metabolism 

SIRT6 protects against the physiological damage of obesity through the regulation of TG 

and cholesterol homeostasis. SIRT6 silences glycolytic and lipogenic genes in the liver via 

H3K9 deacetylation [171]. In the absence of hepatic SIRT6, genes involved in TG 

synthesis were overexpressed while expression of genes for β-oxidation were reduced. 

Liver-specific SIRT6KO mice developed fatty livers as a result of TG accumulation [171]. 

SIRT6 also represses sterol regulatory element binding proteins 1 and 2 (SREBP1/2) 

expression by deacetylating H3K56 at their promoters [163,173]. SREBP1/2 are 

transcription factors that control expression of key genes in FA and TG biosynthesis and 
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cholesterol synthesis, respectively. In addition to reducing their transcription levels, SIRT6 

regulates SREBP1/2 via two other mechanisms: inhibiting the formation of their active 

cleaved forms and increasing the inactive phosphorylated form of SREBP. SIRT6 

promotes the latter event by activating another enzyme with a major role in inhibiting TG 

and cholesterol synthesis, AMP-activated protein kinase (AMPK) [163]. SIRT6 also 

lowers LDL-cholesterol levels by suppressing proprotein convertase subtilisin kexin type 

9 (PCSK9)-dependent degradation of LDL-receptor. Similar to SREBP1/2, deacetylation 

of H3K56 at the PCSK9 promoter decreases its expression [163]. As mentioned previously, 

transgenic SIRT6 mice were protected from fat accumulation, impaired glucose tolerance, 

and impaired insulin secretion. That study found reduced expression of PPARγ-regulated 

genes and DGAT1, an important enzyme in TG synthesis [169]. Neural-specific SIRT6KO 

triggered obesity in adult mice by reducing hypothalamic expression of Pomc, Sim1, Bdnf. 

In humans, decrease in any one of those neuropeptides can results in obesity [170]. With 

such a large range of targets, SIRT6 is an important regulator of lipid metabolism. 

Lethal hypoglycemia in SIRT6-deficient mice was the first piece of evidence that indicated 

an important role for SIRT6 in glucose metabolism [165,166]. As discussed, this resulted 

from increased insulin dependent (GLUT4) and independent (GLUT1) glucose uptake 

[166]. Since then, SIRT6 has been described as a central regulator of glycolysis and 

gluconeogenesis [36]. Hypoxia-inducible factor 1 alpha (HIF1α) is a transcription factor 

that mediates the shift from aerobic to anaerobic metabolism in cells under hypoxic or low 

nutrient environments. SIRT6 directly interacts with HIF1α and represses transcription at 

the promoters of HIF1α target genes. In addition, SIRT6 directly inhibits expression of 

important glycolytic genes such as lactate dehydrogenase (LDH), triose phosphate 

isomerase (TPI), adolase, and phosphofructokinase-1 (PFK-1), glucokinase (GK), and liver 

pyruvate kinase (LPK) [171,174]. With respect to gluconeogenesis, SIRT6 directly 

deacetylates general control nonrepressed protein (GCN5) to enhance its activity. GCN5 

in return acetylates and deactivates PGC-1α, a potent stimulator of gluconeogenic enzymes 

including FOXO1 [157]. FOXO1 plays a prominent role in gluconeogenesis by 

upregulating expression of the rate-limiting enzymes phosphoenolpyruvate carboxykinase 

(PCK1) and glucose-6-phosphatase (G6P). SIRT6 exerts yet another layer of control as it 

promotes FOXO1 deacetylation and subsequent nuclear exclusion [175]. Therefore, SIRT6 
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a negative regulator of hepatic glucose production. Furthermore, SIRT6 overexpression in 

mice prevented a high caloric diet-induced hyperglycemia and glucose intolerance. 

Transgenic mice had enhanced insulin sensitivity in skeletal muscle and liver, making 

SIRT6 a possible target for treatment of type 2 diabetes mellitus [176].   

1.5.2.1 Cancer 

The interaction here between SIRT6 and HIF1α was an early clue concerning a possible 

role for SIRT6 in cancer. SIRT6-deficient cells favored glycolysis and lactate production 

in the presence of oxygen, a metabolic shift usually reserved for anaerobic conditions 

[174]. This finding was reminiscent of the “Warburg effect” in cancer and exceedingly 

proliferative cells. Also known as aerobic glycolysis, cancer cells undergo metabolic 

reprogramming that generates a surplus of glycolytic intermediates for cell growth and 

proliferation [177]. Further studies showed that indeed, SIRT6 suppresses tumor formation 

in vivo by repressing aerobic glycolysis. SIRT6 also co-represses c-Myc, a key regulator 

of cell proliferation that is often constitutively activated in cancer cells [178].  

The tumor-suppressing ability of SIRT6 has been observed in different cancers. In 

hepatocellular carcinoma, c-Fos induces SIRT6, which then reduces expression of the 

tumor initiation protein survivin. Expression of SIRT6 is enough to prevent liver 

tumorigenesis in wild-type mice compared to mice carrying a malfunctioning SIRT6 [161]. 

SIRT6 inhibition of survivin also suppresses endometrial cancer by inducing apoptosis and 

suppressing proliferation [179]. The breast cancer drug Trastuzumab inhibits cancer cell 

proliferation through the induction of SIRT6. In addition, the oncoprotein AKT1 promotes 

proteasome degradation of SIRT6 in breast cancer cell lines [180]. Recently, eight point 

mutation in SIRT6 were observed to be selected for in a variety of tumor types including 

non-small-cell lung cancer, renal clear cell carcinoma, cervical carcinoma, and melanoma. 

The mutations inhibited SIRT6 deacetylase activity, affecting its repression of glycolytic 

genes [181]. 
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1.5.3 SIRT6 in Genomic Stability 

SIRT6 plays a vital role in maintaining genomic stability, interacting with many different 

DDR factors. The necessity of SIRT6 has been implicated in both SSB and DSB repair 

pathways. In the first knockout mouse study, SIRT6-deficient MEFs were hypersensitive 

to DNA damage agents due to defective BER [165]. However, most studies have focused 

on SIRT6’s role in DSB repair processes. As one of the first factors recruited during the 

DDR, SIRT6 acts as a scaffold protein and recruits the chromatin remodeler SNF2H to 

DSBs. This, combined with H3K56 deacetylation promotes chromatin relaxation and 

further recruitment of DNA repair factors [40]. In NHEJ, SIRT6 is needed to mobilize 

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to DNA ends [182]. 

Morever, SIRT6 directly deacetylates C-terminal binding protein interacting protein (CtIP) 

and promotes DSB end resection in HR [156]. Overexpressing SIRT6 was able to prevent 

the decline in HR efficiency observed in presenescent cells [183]. As discussed previously, 

the DDR factor PARP1 is recruited to both SSBs and DSBs. Accordingly, SIRT6’s 

interaction with PARP1 allows for additional control over DNA repair via BER, NHEJ, 

and HR. Decreasing efficiency of BER in aging cells is rescued by SIRT6 overexpression 

in a PARP1-dependent manner [184]. In cells exposed to oxidative stress, SIRT6 

overexpression increased the efficiency of NHEJ and HR. This was attributed to SIRT6 

activation of PARP1 by mono-ADP-ribosylation [185]. 

The protective effect of SIRT6 for DNA damage extends towards telomeres as well. SIRT6 

deacetylation of H3K9 at telomeric chromatin inhibits chromosomal end-to-end fusions 

from forming and causing genomic instability. The hypothesis is that hypoacetylated 

telomeres makes it easier for WRN binding, a protein involved in telomere maintenance 

and replication [152].  

1.5.4 SIRT6 in Inflammation 

Depending on its surroundings, SIRT6 has been shown to be both proinflammatory and 

anti-inflammatory. SIRT6 positively regulates inflammation in human monocytic cells via 

two different modifications of TNF-α, the proinflammatory cytokine. As a deacylase, 
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SIRT6 removes myristoyl groups from lysine 19 and 20 of TNF-α and promotes its 

secretion [158]. SIRT6 increases TNF-α mRNA translational efficiency when it is 

overexpressed in cells [186]. In pancreatic cancer cells, the byproduct of SIRT6’s 

deacetylase activity, OAADPr, triggers a Ca2+ response that results in enhanced expression 

of inflammatory cytokines in addition to TNF-α: IL1α, IL6, IL8, and CSF1 [187].  

SIRT6’s anti-inflammatory role is mediated through the NF-κB signaling pathway, a 

transcription factor necessary for the expression of many proinflammatory genes. SIRT6 

binds the NF-κB subunit, RELA, and deacetylates H3K9 at the promoters of target genes 

to repress transcription. TNF-α, an upstream activator of NF-κB, induces the interaction 

between SIRT6 and RELA [188]. In a rheumatoid arthritis mouse model, SIRT6 

overexpression helped to block TNF-α-induced NF-κB target gene expression. Mice had 

lesser incidence and severity of collagen-induced arthritis with lower levels of 

inflammatory cytokines [189]. Similarly, attenuation of NF-κB-dependent inflammatory 

genes by SIRT6 overexpression was shown to prevent osteoarthritis in mice [190]. As 

previously discussed, SIRT6 has an anti-inflammatory role in the liver. SIRT6KO mice 

develop chronic liver inflammation because of SIRT6 deficiency in lymphocytes and 

myeloid-derived cells, as opposed to in hepatocytes. Further analysis revealed that SIRT6 

represses inflammatory cytokine production in macrophages by inhibiting c-JUN signaling 

[167]. 

1.5.5 SIRT6 in Cardiovascular Disease 

In cardiomyocytes, SIRT6 offers protection from cardiac hypertrophy and heart failure. 

Global SIRT6KO mice given hypertrophic agonists have hearts with increased 

cardiomyocyte size and fibrosis compared to WT. Consistent results were found in cardiac-

specific SIRT6KO mice, while SIRT6 overexpression in cardiac-specific transgenic mice 

were protected from developing hypertrophy. Because continued hyperactivation of IGF-

Akt signaling induces hypertrophy, SIRT6 represses c-JUN transcriptional activity at the 

promoters of those signaling genes [172]. A separate study confirmed the anti-hypertrophic 

properties of SIRT6 with a different cardiomyocyte model. Ang II-induced hypertrophy 

was inhibited via SIRT6 suppression of NF-κB transcriptional activity [191]. SIRT6 also 
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protects cardiomyocytes from hypoxic damage including ROS production, apoptosis, and 

inflammation [192].  

Though SIRT6 is expressed in both aortic ECs and vascular SMCs, very little is known 

about its role in the vessel wall. SIRT6-deficient ECs have decreased rates of proliferation 

and are prone to premature senescence. Mechanistically, these ECs are more susceptible to 

DNA damage and have higher levels of p21, a cyclin-dependent kinase inhibitor that 

promotes growth arrest and senescence [193]. In vascular SMCs, SIRT6 mediates 

contractive to synthetic phenotypic switching associated with cyclic mechanical strain 

from arterial blood flow. Cyclic strain is thought to upregulate SIRT6 via TGF-β signaling 

[194]. 

From the human internal thoracic aorta, our lab isolated the first line of adult SMCs that 

can convert between a synthetic and contractile state [195]. We show that SIRT6 is 

abundantly expressed in the nuclei of human vascular SMCs (Figure 1.2, A). A preliminary 

experiment was conducted to investigate a potential protective role for SIRTs in response 

to oxidative stress in vascular SMCs. We found that SIRT6-deficient SMCs were 

particularly susceptible to cell death after exposure to oxidative stress in the form of H2O2 

(Figure 1.2, B).  

In summary, oxidative stress underlies many pathological conditions that are important in 

the development of vascular diseases [24]. The majority of ROS in vascular SMCs are 

generated by NAD(P)H oxidases. Ang II is a potent physiological activator of NAD(P)H 

oxidase which then results in increased production of ROS in SMCs [15]. Through this 

signaling pathway, Ang II both initiates and propagates vascular pathologies such as 

vascular remodeling, inflammation, and DNA damage. In time, these manifest into diseases 

such as hypertension, atherosclerosis, and aortic aneurysms [17]. Our lab has studied the 

importance of NAD+ bioavailability in conjunction with NAD+ consuming enzymes in 

SMCs. We were particularly interested in Sirtuins, a family of NAD+ dependent 

deacetylases implicated in a plethora of biological functions. Our lab found that increased 

SIRT1 activity in vascular SMCs resulted in increased replicative lifespan and resistance 

to oxidative stress [76]. Moreover, SMC SIRT1 protects mice from Ang II-induced aortic 
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dissections [84]. This, together with our preliminary in vitro experiments with SIRT6 in 

SMCs led us to the following hypothesis.  

1.6 Aims and Hypothesis 

I hypothesize that SIRT6 in vascular smooth muscle cells is required to maintain blood 

vessel wall integrity.  

To test this hypothesis, I will address two aims:  

1. To generate a mouse model with SIRT6-deficient smooth muscle cells 

2. To characterize the SMC-specific SIRT6-deficient aorta at baseline and following 

persistent oxidative stress  
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A) Cultured human vascular SMC show nuclear expression of SIRT6. Cells were 

immunostained for SIRT6 (green) and smooth muscle-actin (red). B) SIRT6-deficient cells 

are particularly susceptible to cell death in response to oxidative stress via hydrogen 

peroxide. 

 

A 

B 

Figure 1.2 SIRT6 is expressed in cultured SMCs and may play a role in resistance to 

oxidative stress 
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Chapter 2  

2 Materials and Methods 

2.1 Animals 

All animals were cared for in accordance with the Canadian Guide for the Care and Use of 

Laboratory Animals, and all experimental procedures were approved by the Animal Care 

Committee at the University of Western Ontario. FVB/NJ floxed mutant mice with loxP 

sites flanking exons 2-3 of SIRT6 targeted gene (SIRT6f/f) (Figure 2.1) were purchased 

from Jackson Laboratory (Bar Harbor, ME) [171]. C57BL/6 smooth muscle-specific Cre 

transgenic males were obtained from our collaborator, Dr. S. Offermanns (Heidelberg, 

Germany). Only males were used because the construct containing a smooth muscle 

myosin heavy chain (SMMHC) promoter and Cre recombinase fused to a 

G400V/M543A/L544A triple mutation of the human estrogen receptor ligand binding 

domain (ERT2) is located on the Y chromosome [196]. Mice were fed ad libitum, a 

phytoestrogen-free rodent chow diet (Harlan Teklad Global Soy Protein-Free Extruded 

Rodent Diet 2020X, Madison WI) and housed with littermates in standard cages at 23°C.  

To create SMC-specific SIRT6 KO mice, we first generated mice that had floxed SIRT6 

alleles and expressed SMMHC-CreERT2. SIRT6f/f FVB females were crossed with 

SMMHC-CreERT2 C57BL/6 males to produce male offspring that were heterozygous for 

floxed SIRT6 (SIRT6f/+) with Cre expression. These males were then backcrossed with 

SIRT6f/f FVB females to generate SMMHC-CreERT2;SIRT6f/f mice on a 75% FVB and 

25% C57BL/6 background (Figure 2.1, B). To identify SIRT6f/f from SIRT6f/+ mice, 

animals were anesthetized with isoflurane and tail samples were obtained at 21 dyas of age. 

SIRT6 WT and mutant alleles are amplified using primers P1: 5’ AGT GAG GGG CTA 

ATG GGA AC 3’ and P2: 5’ AAC CCA CCT CTC TCC CCT AA 3’ (Figure 2.1, A).  
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A) Schematic diagram of SIRT6 gene with loxP sites and primers. B) Mice homozygous 

for the floxed SIRT6 allele on a FVB background (SIRT6f/f) were crossed with mice 

C57BL/6 mice expressing SMMHC-CreERT2 supplied by Dr. Offermanns’ laboratory. 

Only male offspring were used because in the initial creation of SMMHC-CreERT2 mice, 

the bacterial artificial chromosome containing SMMHC-CreERT2 inserted onto the Y 

chromosome. Resultant males heterozygous for the wildtype and floxed SIRT6 allele 

(SIRT6f/+) were crossed with SIRT6f/f
 to produce mice homozygous for floxed SIRT6 allele 

that simultaneously expresses SMMHC-CreERT2. Experimental mice on a 75% FVB and 

25% C57BL/6 background received intraperitoneal injections of corn oil as the vehicle 

control or tamoxifen (dissolved in corn oil) for 5 days at 8 weeks of age to induce SIRT6 

deficiency. 

Figure 2.1 SMC-specific SIRT6KD Mouse Breeding Strategy. 
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2.2 Induction of SIRT6 Deficiency and Angiotensin II 
Treatment 

2.2.1 Cre-Lox Recombination Induced by Tamoxifen 

SMMHC is expressed exclusively in SMCs; therefore, using this promoter allows for 

spatial control of CreERT2 expression. The modified estrogen receptor on CreERT2 provides 

temporal control over Cre-mediated recombination by specifically binding the synthetic 

estrogen antagonist, 4-hydroxy-tamoxifen, as opposed to endogenous estrogen. Moreover, 

CreERT2 is a second-generation inducible Cre recombinase that is ten times more specific 

to 4-hydroxy-tamoxifen than the original CreERT [197]. After 4-hydroxy-tamoxifen binds 

CreERT2, Cre recombinase translocates into the nucleus and facilitates recombination at 

the floxed SIRT6 alleles (Figure 2.2).  

The experimental timeline is illustrated in Figure 2.3. Eight-week old SMMHC-

CreERT2;SIRT6f/f mice were given tamoxifen, which is metabolized into 4-hydroxy-

tamoxifen by the liver [198], administered via 1.5mg/20g body weight intraperitoneal 

injections per day for five consecutive days, to induce SIRT6 deficiency in SMCs. 

SMMHC-CreERT2;SIRT6f/f mice administered the vehicle alone, corn oil, were used as 

littermate controls. 

2.2.2 Angiotensin II Treatment 

At 6 weeks after initial administration of corn oil or tamoxifen, mice were anesthetized 

with isoflurane. Osmotic minipumps (Alzet M-1004) were surgically implanted 

subcutaneously to allow infusion of angiotensin II (A9525, Sigma-Aldrich) at a rate of 1.44 

mg/kg/day or saline for 28 days. 

 

 

 

 



33 

 

A 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) DNA construct containing a smooth muscle myosin heavy chain (SMMHC) promoter 

controlling Cre recombinase fused with a modified estrogen receptor-binding domain 

(ERT2). SMMHC is a contractile protein expressed exclusively in SMCs during 

embryogenesis. B) Under the control of the SMMHC promoter, Cre-ERT2 is specifically 

expressed in SMCs. After the administration of tamoxifen, the liver metabolizes it into 4-

hydroxytamoxifen (OHT). Binding of OHT to ERT2 enables the translocation of Cre to the 

nucleus where it can catalyze the recombination at loxP sites on the modified SIRT6 allele.  

 

Figure 2.2 Schematic of an inducible smooth muscle cell-specific SIRT6 knockdown 

using the Cre-Lox System. 
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2.2.3 Blood Pressure Measurements 

Blood pressure was measured using a non-invasive CODA tail-cuff system (Kent 

Scientific, Torrington). To avoid effects of environmental stress on blood pressure, mice 

were transported to the experimental room 1 hour before measurements were taken to 

ensure that mice were calm. Prior to minipump implantation, mice were trained on the 

blood pressure machine for at least 5 days to accustom them to the procedure. The 

measurements on the final 3 days were averaged to obtain a baseline blood pressure before 

surgery. Over the course of the 28-day Ang II or saline-infusion, blood pressure was 

measured twice a week (Figure 2.3). The two measurements were averaged to represent 

the weekly blood pressure. 

2.3 Qualitative Analysis of Aortic Media DNA 

Genomic DNA was isolated from medial SMCs in descending aorta of mice at 8 weeks of 

age (i.e. 2 weeks after initiation of tamoxifen injection). To isolate SMCs and reduce the 

possibility of contamination from other cell types, we used a dissecting microscope to 

carefully remove the adventitia and scrape along the inner wall with forceps to remove the 

endothelium. The aortic media was then digested with a proteinase K lysis buffer. PCR 

was performed to determine the recombination of floxed SIRT6 alleles. In addition to the 

P1 and P2 primers used for genotyping, the recombination allele was amplified using 

primers P1 and P3: 5’-GCGTCCACTTCTCTTTCCTG-3’ (Figure 2.1, A). 
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Six weeks after injection with vehicle corn oil or tamoxifen, mice were surgically 

implanted with osmotic pumps that infused saline or Ang II for 28 days. Ang II was infused 

at a rate of 1.44 mg/kg/day. For blood pressure measurements, a baseline was taken at 4 

weeks post injection. Two measurements were taken weekly during the entire course of 

saline/Ang II-infusion. Aortas were harvested at 4 weeks post saline/Ang II-infusion, i.e. 

10 weeks post injection. 

 

 

 

 

Figure 2.3 Experimental timeline for Angiotensin II-induced aortic stress. 
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2.4 Quantitative Real-Time PCR Analysis for Gene 
Abundance 

Control and SIRT6-deficient mice were euthanized at 2 weeks (n=7-13) and 10 weeks 

(n=4-7) after initial administration of vehicle or tamoxifen. The vasculature was perfused 

with PBS via the left ventricle at physiological pressure before aortas were dissected. 

Infrarenal aortic tissue samples were used and both the adventitia and endothelium were 

removed as previously described. 

For RNA extraction, TRIzol® (Life Technologies) and chloroform were added to tissue 

samples and centrifuged for 15 min at 4°C. The upper aqueous phase was mixed with 100% 

ethanol before transfer to an RNeasy column. From this point on, the RNeasy Plus Mini 

Kit protocol (Qiagen) was used to complete RNA extraction. RNA was eluted with 30μl 

of RNase-free water.  

Nano-Drop spectrometry (Wilmington, DE) was used to measure RNA concentrations. 

RNA was reverse transcribed into cDNA using a High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems) on an Eppendorf Master cycler Gradient S thermal 

cycler. Specific mRNA abundances of Sirt6 and Rn18S, as a housekeeping gene, were 

measured with quantitative real-time PCR. Each 10μl reaction contained 5 ng of 

cDNA/well and samples were run in triplicates, and the mouse Sirt6 transcript abundance 

was normalized to Rn18S level and analyzed using Ct method on a ViiA7 PCR system 

(Life Technologies). 

2.5 Immunoblotting 

Infrarenal aortic media tissue samples were taken from control and SIRT6-deficient mice 

euthanized at 2 weeks after initial administration of vehicle or tamoxifen. Tissue samples 

were lysed with RIPA buffer containing protease inhibitor cocktail (Sigma-Aldrich), 

phosphatase inhibitor cocktail 2 (Sigma-Aldrich), phenylmethanesulfonylfluoride, and 

nicotinamide (Sigma-Aldrich). Proteins were separated by SDS-PAGE. Total cell lysates 

isolated from tissue samples were loaded onto a 10% polyacrylamide gel at 20 μg per well. 
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The gel was run at 80V for 2.5 hrs before the protein was transferred onto a 0.45μm pore 

polyvinylidene fluoride membrane at 110V for 1h.  

The membrane was blocked with 5% skim milk in Tris-buffered saline with 0.1% Tween 

20 (TBS/t) for 1h at room temperature. The primary antibodies used were rabbit 

monoclonal SIRT6 antibody (D8D12, Cell Signaling) and rabbit polyclonal β-actin 

antibody (4967, Cell Signaling). Both antibodies were diluted 1:1000 in 2.5% skim milk 

TBS/t buffer before incubation with the membrane overnight at 4°C. The secondary 

antibody used was an HRP-conjugated donkey anti-rabbit antibody (GE Healthcare Life 

Sciences) diluted 1:10000 in TBS/t, incubated for 1h at room temperature. ECL 

chemiluminescence of target proteins was detected and quantified using LI-COR imaging 

system (LI-COR Fc). 

2.6 Histology 

Control and SIRT6-deficient mice were anesthetized with isoflurane and perfusion-fixed 

at physiological pressure with 4% paraformaldehyde (PFA). Tissue was kept in 4% PFA 

overnight and immersed in 70% ethanol the next day for storage. The heart connected to 

the aorta was dissected and the surrounding fat and tissue were removed. For macroscopic 

examination, the heart and aorta were imaged with a dissecting microscope (Olympus). 

Four specific aortic regions were sectioned for histology: one ascending segment (Asc), 

two descending thoracic segments (Desc 1, Desc 2), and one abdominal segment [199] 

(Figure 2.4). These were located using the aortic root, left subclavian artery, and superior 

mesenteric artery as landmarks. Aortic segments were embedded in paraffin and 5μm-

thick-transverse sections were stained with hematoxylin and eosin (H&E). Three 

histological sections per aortic region were measured using ImageJ software 

(www.imagej.nih.gov/ij/) and averaged to obtain aortic lumen measurements. 
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Four regions were sectioned and histologically examined: A) Ascending, B) Descending 

1, C) Descending 2, D) Suprarenal. The aortic root, left subclavian artery, and superior 

mesenteric artery were used as landmarks for standardization among animals. 

 

 

 

 

 

Figure 2.4 Schematic diagram of aortic regional segments. 
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2.6.1 Characterization of Cell Infiltration and Aortic Wall 
Destruction 

To calculate the percentage of medial layers affected by the cellular infiltrate, the number 

of layers affected was divided by the average number of medial layers usually found in that 

specific region. For each animal, the percentages of layers infiltrated was measured in three 

sections per aortic region and averaged.  

We developed a grading criteria to assess the varying degrees of aortic wall destruction 

seen in our mice (Figure 2.5). This criteria took into account the area occupied by the cell 

infiltrate, SMC degradation, elastin breakage, and neointima formation. 

2.7 Immunohistochemistry 

PFA-fixed, paraffin-embedded 5μm-thick aortic sections were immunolabeled with 

primary antibodies overnight at 4°C: smooth muscle α-actin (1:300 M0851, Dako), Ki67 

(1:100 ab16667, Cell Signaling), and CD45 (1:100 ab10558, Cell Signaling). To detect 

smooth muscle α-actin, an HRP-conjugated sheep anti-mouse secondary antibody (GE 

Healthcare Life Sciences) was used with 3-3-diaminobenzidine tetrahydrochloride (DAB) 

(Vector Labs). To detect Ki67, sections underwent antigen retrieval in a 10mM sodium 

citrate buffer and pre-blocked with an avidin/biotin kit (Vector Labs). To complete 

detection, a goat anti-rabbit biotinylated secondary antibody (Vector Labs), Vectastain 

ABC Kit (Vector Labs), and DAB (Vector Labs) were used. For CD45 immunostaining, 

sections underwent antigen retrieval in a 10mM sodium citrate buffer. An HRP-conjugated 

donkey anti-rabbit secondary antibody (GE Healthcare Life Sciences) was used with DAB 

(Vector Labs). All immunohistochemistry sections were counterstained with eosin. Bright-

field images were acquired using an Olympus BX51 microscope. 

2.8 Statistical Analysis 

The data were expressed as mean ± standard error (SE). A p < 0.05 was considered 

statistically different. Statistical analysis was determined using Graphpad Prism software 

version 6.0. 
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Outline of grading system used to assess the degree of damage to the aortic wall. H&E 

images are representative of the four levels of destruction with arrowheads marking the 

boundaries of the area of cell infiltrate and destruction. 

Figure 2.5 Grading criteria for degree of cell infiltration and aortic wall destruction. 
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Chapter 3  

3 Results 

3.1 Confirmation of SIRT6 Knockdown in Aortic Medial 
DNA, mRNA, and Protein in Novel Mouse Strain 

To determine whether SIRT6 was necessary for vascular wall integrity, we first generated 

a novel mouse model specifically lacking SIRT6 in SMCs. Mice homozygous for the Sirt6 

transcript flanked by loxP sites around exons 2 and 3 [171] were bred with mice expressing 

Cre recombinase fused with a mutated estrogen receptor binding domain (ERT2) under 

control of a smooth muscle myosin heavy chain (SMMHC) promoter [196]. This allowed 

for spatial and temporal control of Sirt6 disruption in our experimental mice with the 

administration of a synthetic estrogen antagonist, tamoxifen. Littermate controls were 

injected with corn oil.  

We sought confirmation of SIRT6 knockdown in aortic SMCs with three different 

methods. First, we sought to show evidence that a recombination event had occurred within 

the Sirt6 transcript. Aortic media was isolated from SMMHC-CreERT2;SIRT6+/f, 

SMMHC-CreERT2;SIRT6f/f, and SMMHC-CreERT2;SIRT6f/f mice given tamoxifen. Using 

three primers, DNA fragments from WT, floxed, and recombination Sirt6 alleles were 

amplified (Figure 3.1, A). The heterozygous Sirt6 mouse produced the WT allele (399 bp) 

and the heavier floxed allele (453 bp) while the homozygous Sirt6 mouse yielded the floxed 

allele alone. The Cre-deleted allele (524 bp) was only found in the homozygous Sirt6 

mouse given tamoxifen; thereby, confirming a recombination event (Figure 3.1, B). The 

presence of the unmodified floxed allele in homozygous Sirt6 mouse given tamoxifen may 

be a result of additional cell types in the aortic tissue that was analyzed.  
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A) Schematic showing the location of LoxP sites flanking exon 2 and 3 of the SIRT6 allele 

[171].  Primers 1 and 2 were used to make the distinction between heterozygous SIRT6+/f 

and homozygous SIRT6f/f mice. Primers 1 and 3 were used to detect the presence of the 

predicted allele following a recombination event. B) Qualitative PCR detected 399 bp WT, 

453 bp floxed (Lox), and 524 bp Cre-deleted (Del) bands in the aortic media of SMMHC-

CreERT2;SIRT6+/f, SMMHC-CreERT2;SIRT6f/f, and SMMHC-CreERT2;SIRT6f/f mouse 

given tamoxifen. 

Figure 3.1 Evidence of recombination allele present in the smooth muscle of SMMHC-

CreERT2;SIRT6f/f mice. 
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Next, real time-PCR was used to detect Sirt6 mRNA levels in aortic SMCs from vehicle 

(Veh) and tamoxifen (Tmx) injected SMMHC-CreERT2;SIRT6f/f mice (Figure 3.2, A). 

Robust Sirt6 mRNA expression was observed in SMMHC-CreERT2;SIRT6f/f mice given 

corn oil. This result was expected as Sirt6 mRNA expression is found all mouse tissues 

tested: heart, brain, spleen, lung, liver, skeletal muscle, kidney, testis, and thymus 

[151,165]. We confirmed knockdown of Sirt6 mRNA in Tmx mice at two time points. 

Compared to Veh, Sirt6 mRNA was reduced to 16.6% (p<0.0001) in Tmx mice 2 weeks 

after initial injection with tamoxifen. At 10 weeks after administration of tamoxifen, Sirt6 

mRNA was reduced to 13.1% (p<0.001) in Tmx mice (Figure 3.2, A).  

SIRT6 protein has been found in all tissues where its mRNA is expressed [151,165]. 

Western analysis confirmed the presence of a 37 kDa SIRT6 protein appearing as a doublet 

in aortic SMCs of Veh mice (Figure 3.2, B). Although Western analysis of most mouse 

tissues produce a single band for SIRT6 at 37 kDa, SIRT6 is reported as a doublet in MEFs 

[200]. We also confirmed the deletion of SIRT6 in aortic SMCs 2 weeks after initial 

injection with tamoxifen. Densitometry revealed a 99.9% knockdown of SIRT6 protein 

(p<0.0001) in Tmx mice (n=3) compared to Veh mice (n=3) (Figure 3.2, B).  
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A) Quantitative real time-PCR analysis of aortic media-derived RNA transcripts from 

SMMHC-CreERT2;SIRT6f/f mice that were either injected with the vehicle (Veh) or 

tamoxifen (Tmx). Aortas were harvested at 2 weeks (Veh n=13; Tmx n=7) and 10 weeks; 

(Veh n=7; Tmx n=4) post injection. SIRT6 mRNA abundance is presented as a ΔΔCt 

comparison of Tmx expression to Veh; bars represent means±SEM. *Significant compared 

to Veh (p<0.05), 2-way ANOVA and Sidak’s multiple comparisons test. B) 

Immunoblotting for SIRT6 protein in aortic medial tissue from SMMHC-CreERT2;SIRT6f/f 

mice harvested 2 weeks post injection of Veh (n=3) or Tmx (n=3). Band densities were 

normalized to corresponding β-actin bands and expressed as a fraction of a control value. 

*Significant compared to Veh (p<0.05) using t test. RU, relative units. 

Figure 3.2 SIRT6 knockdown in mRNA expression and protein in aortic SMCs. 
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3.2 SIRT6-Deficient Aortas Appear Healthy 

Vascular characterization of SMC-specific SIRT6 deficiency began with gross 

examination of perfusion-fixed aortas. The heart and kidneys served as boundaries while 

various arteries branching off the aorta were used as landmarks (e.g. left subclavian a., 

intercostal a., renal a.). Six weeks after the initial injection, the ascending, aortic arch, 

thoracic, and abdominal aortic regions appeared normal and without any obvious signs of 

damage in both corn oil (control) and tamoxifen (SIRT6KO) injected mice (Figure 3.3, A).  

Four regions of the aorta were subjected to histological examination, adapted from Owens 

2010 [199]: ascending (Asc), two descending thoracic sections (Desc 1, Desc 2), and 

abdominal/suprarenal (Supra) (Figure 3.3, B). Distinctions were made between different 

areas of the aorta because of the regional heterogeneity of aortic SMCs that exists along 

the length of the aorta. This is attributed to differing embryonic origins of SMCs at 

anatomical locations. Aside from neuroectoderm-derived SMCs in the aortic root and arch, 

all other SMCs are mesoderm-derived [201]. Interestingly, one of the typical Ang II effects 

in the aortic wall, medial thickening, has different regional causes. SMCs from ascending 

sections were hyperplastic while thoracic and abdominal regions were hypertrophic [199]. 

This, in addition to varied responses to TGF-β1 [202] affirms aortic regional diversity as 

an important factor for understanding varied pathologic responses in blood vessels. 

H&E stained histological sections of all regions also showed no signs of aortic medial 

abnormalities or damage in both control and SIRT6KO mice (Figure 3.3, B). We further 

analyzed aortic morphometry via lumen area measurements for evidence of structural 

damage (i.e. vessel dilation) and found no differences between control and SIRT6KO mice 

(Figure 3.3, C). 
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Aortas were dissected from SMMHC-CreERT2;SIRT6f/f mice at six weeks post vehicle 

(Veh) or tamoxifen (Tmx) injection. A) Representative gross images of ascending, aortic 

arch, thoracic, and abdominal aorta; Veh n=4, Tmx n=4. Scale bar: 10 mm. B) Panel of 

representative H&E stained sections of ascending (Asc), descending thoracic (Desc 1, Desc 

2), and suprarenal (Supra) regions of the aorta; Veh n=4, Tmx n=4. Scale bars: 100μm. C) 

Lumen area measurements of ascending and descending thoracic sections of aorta. 

Histobars represent means±SEM; Veh n=4, Tmx n=4. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Gross aortic morphology, aortic morphometry, and aortic histology 

appear normal after induction of SIRT6 knockdown. 
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3.3 Ang II-Infusion Induces Inflammatory Aortic Wall 
Destruction in SMC-specific SIRT6-Deficient Mice 

3.3.1 Saline-Infused Corn Oil and Tamoxifen Injected Mice have 
Healthy Aortas 

To further our understanding of SIRT6 in vascular SMCs, we infused Veh and Tmx 

injected SMMHC-CreERT2;SIRT6f/f mice with Ang II to create an environment of 

prolonged exposure to oxidative stress in the vasculature. Ang II-infusion via subcutaneous 

surgical implantation of osmotic minipumps have been used to study a range of vascular 

pathologies including atherosclerosis, hypertension, vascular remodeling, and 

inflammation [17]. Ang II-infusion typically lasts either 7, 14, or 28 days. Saline-infusion 

is commonly used to control for any stress or damage from surgery. Saline-infused control 

and SIRT6KO mice had aortas that were normal without any obvious signs of 

abnormalities or damage (Figure 3.4). Aortic histology of saline-infused mice was identical 

to that of previous mice without saline-infusion. 
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Aortas dissected from Veh and Tmx injected SMMHC-CreERT2;SIRT6f/f mice after 28 day 

saline-infusion (i.e. 10 weeks post Veh or Tmx injection). A) Panel of representative H&E 

stained sections of ascending (Asc), descending thoracic (Desc 1, Desc 2), and suprarenal 

(Supra) regions of the aorta; Veh n=4, Tmx n=4. Scale bars: 100μm. B) Lumen area 

measurements of ascending and descending thoracic sections of aorta. Histobars represent 

means±SEM; Veh n=6, Tmx n=6. 

Figure 3.4 Aortic morphometry and histology appear normal in the saline-infused in 

SIRT6KD mouse. 
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3.3.2 Ang II-Infusion causes Aortic Petechial Hemorrhage in SMC-
specific SIRT6-Deficient Mice 

At 6 weeks post Veh or Tmx injection, SMMHC-CreERT2;SIRT6f/f mice were infused with 

Ang II over the course of 28 days and then euthanized. Upon gross inspection, we observed 

marked sites of petechial, or punctate, hemorrhage along the external surface of the aorta 

in 67% (n=4/6) of SIRT6KO mice (Figure 3.5, A). Though gross abnormalities were absent 

in the majority of control mice, there was one incident of minor hemorrhaging just inferior 

to the left subclavian artery that was nominally visible under the dissecting microscope 

(n=1/8). Hemorrhage sites were patchy in nature and consistently located inferior to the 

left subclavian artery in the descending thoracic aorta with extension into the abdominal 

aorta.  

Histological examination of these sites revealed an accumulation of hemosiderin within the 

outer layers of the media and adventitia (Figure 3.5, B). Hemosiderin is an aggregate of 

ferritin found within cells that often forms after bleeding and subsequent degradation of 

red blood cells. Histology revealed traces of hemosiderin in aortic regions that were not 

visible grossly. Hemosiderin was found in all regions (Asc, Desc 1, Desc 2, Supra) of 

SIRT6KO aortas, while in the control, it was minimally present in the ascending and upper 

descending thoracic (Asc and Desc 1) regions. The presence of hemosiderin was 

significantly greater in lower descending thoracic (Desc 2) region of SIRT6KO mice 

compared to control (Figure 3.5, C). Finding hemosiderin, as opposed to red blood cells, 

suggests that a significant amount of time has passed since the initial hemorrhage event. 

Moreover, its location predominately in the peripheral layers of the media and in the 

adventitia suggests the vasa vasorum as the source of blood and not the lumen. 
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Aortas were harvested from Veh and Tmx-injected SMMHC-CreERT2;SIRT6f/f mice after 

28 day Ang II infusion (10 weeks post Veh or Tmx injection). A) Representative gross 

images of ascending, aortic arch, thoracic, and abdominal aorta; Veh n=8, Tmx n=6. 

Arrowheads mark gross petechial hemorrhage in descending thoracic and abdominal aorta; 

Veh n=1/8, Tmx n=4/6. Scale bar: 1cm. B) Representative H&E stained sections of Veh 

and Tmx-injected descending thoracic aorta. Arrows mark buildup of hemosiderin in the 

media (middle) and adventitia (right). L, lumen; M, media; A, adventitia. Scale bar: 100μm. 

C) Presence of hemosiderin in 4 aortic regions; Veh n=8, Tmx n=6. Histobars represent 

means±SEM. *Significant compared to Veh (p<0.05), Chi-square and Fisher’s exact test. 

 

 

 

Figure 3.5 Ang II-infusion causes petechial hemorrhage in SMC-specific SIRT6KO 

aortas. 
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3.3.3 Ang II-Infusion causes Aortic Aneurysms in SMC-specific 
SIRT6-Deficient Mice 

In addition to petechial hemorrhage, gross observation revealed aortic aneurysms in Ang 

II-infused SIRT6KO mice only, and not in control mice. By definition, an aneurysm is 

defined as the permanent, localized dilatation of a vessel [203]. We observed aneurysms in 

33% (n=2/6) of SIRT6KO mice and located in different regions of the aorta. While one 

mouse (Mouse 2) had a single aneurysm in the descending thoracic region, the other 

(Mouse 1) had two (Figure 3.6, A). Mouse 1 had one aneurysm positioned close to the 

aortic root in the ascending region and another in the suprarenal region (Figure 3.6, A). 

Histology revealed almost complete loss of media in the ascending aneurysm and massive 

adventitial reaction in the suprarenal aneurysm (Figure 3.6, B). 

After the discovery of aortic aneurysms, we wanted to know if SMC-specific SIRT6KO 

caused increased aortic dilatation. Measuring the lumen area in four different regions 

revealed a slight trend of increased dilatation in the ascending (p=0.09), descending 2, and 

suprarenal sections of SIRT6KO mice (i.e. regions with aneurysm) without statistical 

significance (Figure 3.6, C).  
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Aortas were harvested from Veh and Tmx-injected SMMHC-CreERT2;SIRT6f/f mice after 

28 day Ang II-infusion (10 weeks post Veh or Tmx injection). A) Gross images of 

aneurysms in ascending, descending thoracic, and abdominal aorta of Tmx-injected mouse; 

Veh n=0/8, Tmx n=2/6. Scale bar: 1cm. B) H&E stained sections of ascending and 

suprarenal aortic aneurysm in Tmx-injected mouse. Scale bar: 100μm. C) Lumen area 

measurements of four aortic regions; Veh n=8, Tmx n=6. Histobars represent means±SEM.  

 

 

 

Figure 3.6 Ang II-infusion causes aortic aneurysms in SMC-specific SIRT6KO mice. 
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3.3.4 Evidence of an Inflammatory Cell Infiltrate in Ang II-Infused 
SIRT6-Deficient Mice and Minor Cell Infiltration in the 
Vehicle Control 

Even more striking than hemorrhaging was the deposition of a prominent cellular infiltrate 

in the aortic media of Ang II-infused SIRT6KO mice (n=6/6). Cell infiltration was also 

found in vehicle control mice (n=6/8) at a lower degree of severity. H&E staining revealed 

areas containing high concentration of nuclei that were morphologically different from the 

conventional elongated SMC nuclei (Figure 3.7, A). In such areas, vascular SMCs were 

absent and replaced with a cellular infiltrate.  

In every case, cell infiltration and loss of SMCs began in the outermost layer of media and 

gradually progressed towards the lumen. Therefore, we first sought to describe this unique 

phenotype by calculating the percentage of aortic medial layers penetrated by the cell 

infiltrate in both control and SIRT6KO mice. Cell infiltrate medial layer permeation was 

greater in SIRT6KO mice compared to control in all regions: 37±16% in ascending 

(p<0.05), 32±14% in descending-1 (p<0.05), 31±19% in descending-2 (p=0.12), 32±11% 

suprarenal (p<0.05) (Figure 3.7, B). Moreover, areas that were infiltrated showed signs of 

aortic wall destruction such as breaks in the elastic lamella and formation of a neointima. 

To assess the degree of damage and destruction to the aortic wall, we created a scoring 

system from 0 being no presence of cellular infiltration to 4 representing massive 

infiltration penetrating all layers of the aortic wall. Grading was based on criteria that took 

into account cell infiltrate area, increase in medial thickness, neointima formation, and 

elastin breakage. Within this system, aortic wall destruction was significantly greater 

across all aortic regions in SIRT6KO mice compared to control (Figure 3.7, C). Therefore, 

though cell infiltration was also found in control mice, its severity and damage was to a far 

lesser extent than SIRT6KO mice. 

Next, we sought to identify the cell types that comprised the cell infiltrate. While some 

nuclei were characteristic of inflammatory cells (i.e. monocytes), round and stained darkly 

with hematoxylin, the morphology of most nuclei were provided insufficient information 

for accurate characterization. Histological sections were immunostained with α-smooth 

muscle actin (α-SMA), CD45, and Ki67 to identify constituents of the cell infiltrate (Figure 
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3.7, D). The contractile protein α-SMA is expressed in both differentiated SMCs and 

myofibroblasts [6]. Most infiltrated areas stained positive for α-SMA staining, signifying 

the presence of myofibroblasts in a wound-healing situation. However, its staining pattern 

was patchy and integrated with α-SMA-negative areas. The leukocyte common antigen 

CD45 is expressed in all hematopoietic cells such as macrophages, monocytes, T, B, 

dendritic, and natural killer cells. Positive brown staining for CD45 revealed the 

prominence of inflammatory cells in the cell infiltrate. The marker Ki67 was used to assess 

proliferative activity at the sites of inflammation. Ki67-positive staining overlapped with 

CD45-positive areas as opposed to α-SMA-positive areas. This suggests that the cell 

infiltrate is not comprised of actively proliferating myofibroblasts or SMCs. Rather, there 

is a portion of the inflammatory cell infiltrate that is proliferative (e.g. monocytes and in 

some cases macrophages [204]). 

In a different mouse, α-SMA staining revealed a clear boundaries outlining actin-negative 

layers sandwiched between actin-positive layers adjacent to either the lumen or the 

adventitia (Figure 3.7, E). Within the actin-negative layers we see loss of SMCs as well as 

Ki67 and CD45-positive cells that appear to be invading the remaining inner medial layers 

that do not show signs of damage. The actin-positive layer adjacent to the adventitia implies 

the presence of myofibroblasts and a wound healing response following SMC death and 

inflammation. 
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Aortas were harvested at 10 weeks post Veh and Tmx-injection and 4 weeks post Ang-II 

infusion; Veh n=8, Tmx n=6. A) Representative H&E stained sections of Veh-injected 

descending thoracic aorta showing minor cell infiltration in the outer layer of aortic media 

(n=6/8) and Tmx-injected descending thoracic aorta showing massive cell infiltration 

affecting all layers of the aortic media (n=6/6). L, lumen; M, media; A, adventitia. Scale 

bar: 100μm. B) Percentage of aortic medial layers invaded by cell infiltration in four aortic 

regions. Histobars represent means±SEM. *Significant compared to Veh (p<0.05), t test. 

C) Evaluation of the degree of aortic wall destruction in four aortic regions. Histobars 

represent means±SEM. *Significant compared to Veh (p<0.05), t test. D) Representative 

histological sections of descending thoracic aorta (Desc-2) of Veh-injected mouse and 

inflammatory cell infiltrate in Tmx-injected mouse immunostained with Hematoxylin and 

Eosin (H&E), alpha-smooth muscle actin (α-SMA), Ki67, and CD45. Scale bar: 100μm. 

E) Representative histological sections of descending thoracic aorta (Desc-1) of Tmx-

injected mice. Arrowheads show inflammatory cells infiltrating the inner medial layers. 

Arrows show evidence of SMC loss in media. Scale bar: 100μm. 

Figure 3.7 Ang II-infusion of SIRT6KO mouse shows greater degree of inflammatory 

cell infiltration and aortic wall destruction compared to vehicle-control. 
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3.3.5 Ang II-Induced Hypertensive Response in Vehicles and 
SIRT6KO Mice 

Prolonged Ang II-infusion causes steady increases in blood pressure (BP) and is commonly 

used to induce hypertension in animal models [18]. We wanted to know whether there was 

a correlation between high blood pressure and the aortic hemorrhage, aneurysms, and 

inflammation seen in Ang II-infused SIRT6KO mice. In addition, we wanted to know 

whether control and SIRT6KO mice differed in their response to Ang II. Measurements 

were taken 2 weeks prior to saline or Ang II-infusion (i.e. 4 weeks post Veh or Tmx-

injection) to establish baseline BP levels. Two measurements per week were taken and 

averaged as weekly measurements during the 28 day-infusion of saline or Ang II.  

With respect to baseline BPs in both control and SIRT6KO mice, no statistical difference 

was found in mice that were eventually saline-infused (mean difference = 11.59±7.54 

mmHg; p=0.16). However, in mice that would later receive Ang-II, SIRT6KO mice had 

significantly higher baseline BP than control (mean difference = 23.17±6.92 mmHg; 

p<0.05) (Figure 3.8, B).    

As expected, saline-infusion did not significantly increase mean arterial BP in control (n=6) 

or SIRT6KO mice (n=6) (Figure 3.8, A). Ang II-infusion produced a hypertensive response 

in both control (n=8) and SIRT6KO mice (n=6) (Figure 3.8, B). Comparing baseline 

measurements with those taken in the final week of infusion, BP increased by 31.0 and 

24.5 mmHg in control and SIRT6KO mice, respectively. Though there was a slight trend 

towards higher BP in Ang II-infused SIRT6KO mice compared to control, the difference 

was not statistically different. Another observation made was that in SIRT6KO mice, BP 

gradually increased from 154.2 mmHg in the first week of Ang II-infusion to 168.7 mmHg 

in the final week. In the control, BP stayed the same at 151.3 mmHg in the first week to 

152.0 mmHg in the final week. Therefore, the hypertensive response appeared to be 

continually increasing in SIRT6KO while it reached a plateau in control mice by the first 

week of Ang II-infusion. 
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A) Weekly blood pressure measurements of Veh and Tmx-injected saline-infused mice; 

Veh n=6, Tmx n=6. Points represent means±SEM. B) Weekly blood pressure 

measurements of Veh and Tmx-injected Ang II-infused mice; Veh n=8, Tmx n=6. Points 

represent means±SEM. *Significant compared to Veh (p<0.05), 2-way ANOVA and 

Sidak’s multiple comparisons test. 

 

 

Figure 3.8 Aortic mean arterial blood pressures of vehicle and tamoxifen-injected 

mice after saline/Ang II-infusion. 
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4 Discussion 

In summary, we were able to create a novel SMC-specific SIRT6-deficent (SIRT6KO) 

mouse model that was inducible upon tamoxifen injection. This was evidenced via SIRT6 

knockdown at the DNA, mRNA, and protein level. We showed that aortas in SIRT6KO 

mice were normal and free from gross and histological signs of damage. In response to 

Ang II-infusion, SIRT6KO aortas develop petechial hemorrhage and aneurysms. We also 

found evidence of widespread aortic inflammatory cell infiltration and medial degeneration 

in SIRT6KO mice. Therefore, we propose a protective role for SIRT6 against oxidative 

stress-induced inflammation and aortic wall destruction. 

4.1 Oxidative Stress Causes Aortic Wall Destruction in 
the Absence of SIRT6 

The effect of oxidative stress via Ang II on vascular injuries has been well studied. Ang II 

is known to initiate and advance pathologies such as aortic dissection, aortic aneurysms, 

high blood pressure, and vascular inflammation. As discussed previously, most Ang II-

induced vascular injuries are mediated via activation of NAD(P)H oxidases and increased 

ROS levels in SMCs.     

4.1.1 Petechial Hemorrhage and Aneurysm 

Ang II-infusion has been shown to cause aortic hemorrhages in hyperlipidemic (i.e. 

apolipoprotein E- and LDL receptor-deficient), older (i.e. 6-12 months), and various KO 

mouse models, including SMC-specific SIRT1KO mice [84,205,206]. The presence of 

blood within the vessel wall is primarily presented as an aortic dissection. This disorder 

occurs when blood enters the media through a break in the intima and propagates 

longitudinally along the aorta. As blood pools into the media, it creates a “false lumen” 

that protrudes into the true lumen. Less common are hemorrhages that lack an intimal tear 

are classified as intramural hematomas [207]. Blood is thought to be sourced by the vasa 

vasorum, though, a recent study identified medial tears in aortic arterial branches as the 

rupture point and source of blood [208]. Upon gross observation, intramural hematomas 

differ from aortic dissections and present as a crescent-shaped bulge that protrudes 

outwardly from the aortic wall (Figure 4.1).  
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Aortic dissection presents with a false lumen that encroaches upon the intraluminal area 

while intramural hematoma bulges outward from the aortic wall. 

 

 

 

 

 

Figure 4.1 Diagram depicting the difference between aortic dissection and intramural 

hematoma. 
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Our finding of petechial hemorrhage in the descending thoracic and abdominal aorta in 

SIRT6KO mice differed from both aortic dissection and intramural hematoma. The patchy 

appearance of hemosiderin at both the macro- and microscopic level points toward ruptures 

in the vasa vasorum as the most probably source of the bleed. Most studies that report aortic 

dissections present H&E images with red blood cells present in the aorta. In contrast, our 

histology shows traces of hemosiderin as evidence that a considerable amount of time has 

passed from when the hemorrhage was initiated to when mice were sacrificed. Though 

hemosiderin can be found in all cells, it is most commonly found in macrophages. 

Hemosiderin-laden macrophages may represent the aftermath of a medial and adventitial 

inflammatory response to wall injury.  

In the presence of Ang II, SIRT6KO mice also developed aneurysms in the ascending, 

descending thoracic, and abdominal aorta. H&E sections revealed substantial loss of both 

SMCs and elastin, demonstrating complete medial destruction in the ascending aneurysm. 

On the other hand, aneurysms in the descending thoracic and abdominal aorta presented 

with massive adventitial reactions. Ang II-infused hyperlipidemic mice have long been 

used as models of aortic aneurysms, though, aneurysms are also found in 

normocholesterolemic C57Bl/6 mice at a lower rate [209,210]. Differences between 

ascending and abdominal aneurysms that have been recognized in the literature were also 

observed in SIRT6KO mice. Ascending aneurysms have minimal adventitial thickening 

and diffuse elastin degradation compared to a large adventitial reaction and minor changes 

in elastin integrity in abdominal aneurysms. Although reasons for these differences are 

unclear, they are frequently attributed to differences in embryonic cell origins [210].  

4.1.2 Aortitis  

Although SIRT6KO mice presented with aortic dissections and aneurysms, the most 

prevalent and striking finding was the presence of an inflammatory cell infiltrate in the 

aortic media. Moreover, this finding seems to be crucial for understanding the root causes 

of the gross abnormalities. An inflammatory cell infiltrate was found in the media of at 

least one aortic region of every SIRT6KO mouse with the highest incidence and severity 

in the descending thoracic regions. The medial infiltrate in SIRT6KO mice was massive 

compared to the minor infiltrate seen in the vehicle controls or C57Bl/6 mice in response 
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to Ang II [211]. Its pervasiveness throughout the aortic media is most similar to aortitis, a 

pathological term for inflammation localized to the aortic wall. Generally, cases are 

classified according to the cause of inflammation: infectious aortitis (e.g. infection from 

Salmonella), noninfectious aortitis (e.g. diseases such as giant cell arteritis, Takayasu 

arteritis), or isolated aortitis (e.g. inflammatory abdominal aortic aneurysm) [212]. The 

phenotype seen in SIRT6KO mice is best categorized as isolated aortitis. In one human 

study looking at the prevalence of aortitis among resected thoracic samples, about 75% 

were isolated cases. Risk factors for aortitis include advanced age, history of connective 

tissue disease, diabetes mellitus, and heart valve pathology [213]. In mice, inflammatory 

cell infiltration is most often seen in conjunction with aortic dissection and/or suprarenal 

aneurysm in Ang II-infused hyperlipidemic mice [205]. Though there was evidence of 

inflammation at aneurysmal sites in SIRT6KO mice, most incidences of aortitis were found 

in the absence of aneurysm.  

With the information collected via immunostaining, we hypothesize the following 

progression of events in SIRT6KO mice: increased sensitivity to oxidative damage and 

possibly cell death in SIRT6-deficient SMCs, heightened pro-inflammatory response, 

massive infiltration of inflammatory cells from the adventitia into the media, SMC and 

elastin degeneration, and finally, media remodeling initiated by adventitial myofibroblasts. 

Our phenotype is consistent with the “outside-in” theory of vascular inflammation whereby 

adventitial inflammatory cells enter the media through the vasa vasorum [214]. Next, 

adventitial fibroblasts differentiate into myofibroblasts, migrate to the site of injury, and 

begin vascular remodeling by synthesizing collagen and ECM proteins (e.g. elastin and 

fibronectin) [1]. 

To connect all our findings together, we believe that SIRT6KO-induced aortitis and 

subsequent medial degeneration (i.e. elastin and medial loss) is the basis for prospective 

development of hemorrhages and aneurysms. Whether aortitis progresses into those aortic 

syndromes or not might depend on the balance between medial degeneration by 

macrophages and the wound healing response by myofibroblasts. A study on aneurysm 

formation in Ang II-infused hyperlipidemic mice over 56 days identified a similar sequence 



68 

 

of events. Accumulation of macrophages in the media and elastin degradation always 

preceded aortic dissection and subsequent aneurysm [205]. 

4.1.3 Hypertension 

Prolonged Ang II-infusion stimulates vascular remodeling (i.e. SMC hypertrophy and 

hyperplasia) in SMCs, thereby inducing thickened walls and a consequent hypertension 

[17]. SIRT6KO mice developed an Ang II-induced hypertensive response that was not 

significantly different from vehicle controls. SIRT6KO mice blood pressure prior to Ang 

II-infusion was significantly higher than controls, causing speculation as to whether 

baseline hypertension was a causal factor in the phenotype seen in SIRT6KO mice. While 

hypertension is a risk factor for aortic dissection, hyperlipidemic mouse models show that 

Ang II-induced increases in blood pressure do not account for the development of aortic 

aneurysms, atherosclerotic lesions, or their associated inflammatory responses 

[18,203,209,210]. Oxidized LDL in hyperlipidemic mice increase ROS levels and 

sensitizes the vessel wall to the inflammatory effects of Ang II [206]. We propose that 

SIRT6 acts in a similar manner, where it plays an anti-inflammatory role in SMCs that 

prevents aortitis, petechial hemorrhage, and aortic aneurysms. Ultimately, we are 

persuaded to believe that we see a SIRT6-dependent phenotype in our mice. 

We also note that no increase in baseline blood pressure was observed in the same number 

of SIRT6KO mice (n=6) prior to saline-infusion. Therefore, it is unclear if SMC-specific 

SIRT6-deficiency induces hypertension in mice.  

4.1.4 Protective Effect of SIRT6 in SMCs  

Our findings provide additional evidence towards an anti-inflammatory role for SIRT6, 

specifically in SMCs. Pending continued work on this project, we hope to elucidate the 

molecular mechanisms and signaling pathways behind our phenotypes. SIRT6’s anti-

inflammatory role through binding of NF-κB and repressing transcription at its target genes 

has been well described [188]. In arthritis mouse models, SIRT6 overexpression inhibited 

production of NF-κB downstream proinflammatory cytokines such as TNF-α and IL-6 in 

injured tissues. Moreover, mRNA expression of MMPs were downregulated [189,190]. 

Vascular inflammation is also largely mediated by NF-κB signaling pathway. This includes 
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increased expression of the cytokines IL-6 and monocyte chemoattractant protein (MCP-

1), cell adhesion molecules VCAM-1 and ICAM-1, and the major players in collagen 

degradation, MMPs [17,206]. Therefore, one might expect to find significant increased 

expression of the aforementioned cytokines and proteins in SIRT6-deficient SMCs in 

response to Ang II.   

4.2 Reflections on Vascular Inflammation in Ang II-
Infused Vehicle Controls and Cre-lox Technology  

As previously discussed, a SMC-specific SIRT1-deficient mouse model was recently 

generated using a smooth muscle 22α promoter for tissue specificity [84]. For our model, 

we chose a Cre construct with a SMMHC promoter because it is the marker with the highest 

specificity for SMCs. In addition to vascular SMCs, SMMHC-CreERT2 is expressed in the 

gastrointestinal tract, urinary bladder, and lung bronchial SMCs. The SMMHC-CreERT2 

mouse was given to us by our collaborator, Dr. Offermanns and has been used by others to 

successfully generate SMC-specific Gq-G11/G12-G13, PPARγ, and TGF-β type II receptor 

KO mouse models without any reports of “Cre leakage” (i.e. expression of Cre in the 

absence of tamoxifen) [196,215,216]. Similar to our mice, the PPARγ KO mice had a 

mixed genetic background (i.e. BALB/c and C57BL/6). To ensure that all our mice 

maintained a 75% FVB and 25% C57BL/6 background, control and SIRT6KO mice were 

always generated in the same way as 3rd generation FVB backcrosses. Our induction 

protocol (i.e. tamoxifen dose, treatment length, recovery time prior to examining 

knockdown efficiency, oil usage as a vehicle control) was also comparable to the 

aforementioned models.  

4.2.1 Hypotheses for Aortic Phenotype in Vehicle Controls 

Typical Ang II responses in healthy WT mice include increased aortic medial thickness, 

elevated blood pressure, and low incidence of aortic dissection and aneurysms [209,217]. 

Ang II also promotes vascular inflammation through NF-κB activation and consequent 

recruitment of cell adhesion molecules and chemokines [17]. In WT mice, Ang II-induced 

recruitment of inflammatory cells predominantly occurs in the adventitia where resident 

immune cells are stored. Some recruitment happens in the intima via leukocyte 
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extravasation and even fewer are found in the media [211,214]. Therefore, the discovery 

minor of aortic wall disruption and a low grade inflammatory cell infiltrate in some vehicle 

control mice was surprising, though both its incidence and degree of severity are 

considerably less compared to SIRT6KO mice. This finding was unexpected because our 

mRNA and protein data show that no downregulation of SIRT6 expression could be 

detected in vehicle control mice, as compared to mice that had not been subjected to 

intraperitoneal injection. We put forward three hypotheses in an attempt to explain the 

appearance of mild phenotype in the control: 1) deleterious side effects from intraperitoneal 

injections of corn oil, 2) mixed genetic background predisposes SIRT6f/f;SMMHC-

CreERT2 mice to a spontaneous aortic pathology, and 3) leaky SMC Cre 

expression/activation and subsequent loxP recombination at floxed SIRT6 in the absence 

of tamoxifen, leading to minor and/or local SIRT6 depletion. 

Oil is an unlikely culprit because it is used ubiquitously as a vehicle for administering 

lipophilic chemicals to rodents, including the SMMHC-CreERT2 models previously 

mentioned, without any reports of inflammation or vascular defects [218]. With respect to 

strain related pathologies, while FVB mice have no known strain pathologies that are 

relevant to this project, spontaneous aortitis was found in Balb/c mice. Though it was 

initially attributed to femoral artery ligation, incidence rates of aortic root inflammation in 

controls were comparable to mice that underwent hind limb ischemia [219]. However, 

because we are using a mixed (i.e. 75% FVB and 25% C57BL/6) background, there is a 

possibility that we are the first to report Ang II-induced aortitis in mice with this genetic 

background.  

Though Cre-lox technology has been widely used to create knockout and transgenic animal 

models, recently, its limitations have been highlighted in the scientific community. Studies 

show that Nestin-Cre, the main construct used for gene deletions in neuronal tissue, causes 

a metabolic phenotype of decreased linear growth, decreased lean mass, and increased 

insulin sensitivity in mice [220]. Nonspecific recombination leading to hypopituitarism and 

decreased growth hormone is thought to be behind this phenotype. Adding to the 

peculiarity is the fact that not all strains of Nestin-Cre mice will exhibit a metabolic 
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phenotype. Increased understanding of Cre-lox system shortcomings underscore the need 

for experiments to use a variety of controls.  

In our mouse model, there is a possibility that the phenotype observed in the vehicle 

controls happened as a result of unintended SIRT6 deletion. Because our mRNA and 

protein data show that SMC SIRT6 is robustly expressed in controls, aberrant SMC Cre 

activation might manifest in a mosaic pattern in the aortic media. In general, the minor 

lesions in controls are more localized and contained compared to SIRT6KO mice. This 

suggests that there are “hotspots” of SIRT6-deficient SMCs in controls that allow for focal 

SMC damage while the larger aortic section demonstrates significantly elevated SIRT6 

levels compared to SIRT6KO mice.  

4.2.2 Creating SIRT6f/f Cre-negative Controls 

To determine whether the phenotype in controls is due to strain background or leaky Cre 

expression, we chose to create another group of controls. We are currently in the process 

of generating a line of control mice with the same FVB/C57BL/6 mixed genetic 

background that lacks SMMHC-CreERT2. These Cre-negative controls will be subjected 

to Ang-II infusion and have their aortas examined. If they are free of an inflammatory cell 

infiltrate, this would rule out the mixed genetic background as being responsible for the 

phenotype. We might also consider is using the Rosa26lacZ (R26-lacZ) reporter mouse 

line to profile Cre expression in the aortic media. Crossing a R26-lacZ with a 

SIRT6f/f;SMMHC-CreERT2 will produce mice that express β-galactosidase in all cells 

where a Cre-mediated recombination event takes place [198]. Cells can then be stained 

blue with the addition of X-Gal and visualized.   

4.3 Conclusion 

In summary, we created a novel mouse model with SMC-specific SIRT6 deficiency. With 

these mice, we found that SMC SIRT6 is necessary for vascular wall integrity in response 

to the potent oxidant and inflammatory stimulus, Ang II. In particular, SIRT6 protects the 

aorta from aortitis and subsequent development of aortic hemorrhage and aneurysm. 
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Appendices 

Appendix A: Statement of permission for the use of animals for experimental 

research 

All animal experimentation was conducted in compliance with the animal use protocol 

2010-244 held by Dr. J. Geoffrey Pickering, principal investigator at the Schulich School 

of Medicine and Dentistry and the Department of Biochemistry at the University of 

Western Ontario in London, Ontario, Canada. 
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