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Tensions Between Mathematics and Science Disciplines: Creative Opportunities to 
Enrich Teaching Mathematics and Science 

Miroslav Lovric 
McMaster University 

 
Abstract 

An application in mathematics is any context, within science or broader, which 
involves or requires some kind of quantitative thinking. For instance, arguments 
involving risk, chance, or uncertainty use probabilistic concepts. Every time we 
interpolate or extrapolate from a given set of data we employ functional relationships. 
In discussing dynamics of drug absorption, we use exponential or more complex 
mathematical models. Describing viruses infecting bacteria or studying interactions 
between species in an ecosystem requires that we use mathematics tools. 

In this paper I study certain teaching and learning situations, named tensions, 
which arise when the students, practitioners, or instructors engage with applications in 
mathematics that require modifications to our cognitive models. Tensions can be 
identified in the ways we formulate the problem of our inquiry, in defining the objects 
we study, in the implicit and explicit assumptions we make, in the interpretations of 
results of experiments and mathematical calculations, in visual interpretations, and in 
other situations. 

Using specific examples, I illustrate that these tensions could be viewed as living 
in a specific zone of proximal development. This concept provides a framework within 
which we contrast what a single discipline can achieve, compared to fresh new visions 
and insights generated when the diverse views of mathematics and other science 
disciplines are brought together.  
 
Keywords: Modeling, applications in mathematics, definition, language, interpretation 

 
Introduction 

Mathematics modeling (i.e., working with applications1) involves identifying and 
formulating a problem, making observations, experimenting and collecting data, 
conceptualizing, identifying mathematical techniques and tools, choosing relevant 
assumptions, making and testing hypotheses, graphing and calculating, approximating, 
interpreting, comparing different solutions, and so on. Even a brief look at this list 
suggests that engaging with mathematics is close to the ways scientists engage with 
physics, biology, or any other discipline. 

Published papers, conference presentations, and panels attest to the need and 
importance of teaching applications in science within mathematics courses (Baker 1975; 
Berlin & Lee, 2005; Davidson, Miller, & Metheny, 1995; Matthews, Adams, & Goss, 
2009; Pang & Good, 2000; Stillman, 2012; Stillman, Kaiser, Blum, & Brown, 2013). 
Applications are now an integral part of curricula of many mathematics courses. And 

                                                        
1 Often called “real-life applications” or “true applications” 
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yet, there is a feeling that we are still not doing it right: applications discussed in high 
schools and university classrooms tend to be artificial; textbooks relegate application 
questions to the end of a section instead of giving them a more prominent place, such 
as using an application to motivate a new concept or algorithm. As well, there are 
numerous problems with method of teaching students to apply mathematical concepts. 
Gainsburg (2008) writes “research suggests that real-world connections (applications) 
are infrequent and cursory in mathematics classrooms” (p. 200). Many teachers view 
the true contexts of word problems as irrelevant distractions (Chapman, 2006). When 
teachers do connect mathematics to the real world, it is usually not to promote higher-
order thinking but to teach procedures instead (Zeuli & Ben-Avie, 2003). Furthermore, 
anecdotal evidence suggests that teaching of applications in tertiary math courses might 
suffer from similar problems. Blum and Niss (1991) point at a potential source of 
problems: “Many mathematics teachers from school to university are afraid of not 
having enough time to deal with problem solving, modelling and applications in addition 
to the wealth of compulsory mathematics included in the curriculum.” (p. 53). 

Greater effort should be made in the education system to focus on mathematical 
applications because these are many benefits of this process. When working with 
applications in mathematics, a learner or a teacher/instructor encounter certain 
situations which we name, for their dynamic nature, tensions. Tensions arise when 
cognitive models that have been created within the context of (pure) mathematics need 
to be modified to accommodate for the broader context of an application. They demand 
to be explored and understood, and the resulting enriched cognitive model allows for 
switching between (the pure math and the application) contexts. 

Tensions can be identified in the ways we formulate the problem of our inquiry, 
in defining the objects we study, in the notation used, in the implicit and explicit 
assumptions we make, in the interpretations of results of experiments and 
mathematical calculations, or in visual interpretations, and so on. They are (at least 
metaphorically) related to the notion of a boundary, in particular, to the concepts of 
boundary objects and boundary crossing (Akkerman & Bakker, 2011). 

In this paper, I explore tensions and demonstrate that—instead of presenting an 
obstacle—they provide great opportunities to teach applications in somewhat novel and 
imaginative ways. As well, knowing the dynamics of tensions can provide teachers and 
instructors with a better understanding of relationships between mathematics and 
other sciences, which may prove helpful in interdisciplinary classrooms. Whenever we 
discuss a scientific phenomenon (say, interaction between competing species) using 
quantitative tools, tensions inevitably show up. I argue that, by contrasting the ways 
these tensions co-exist and operate within each science discipline, we can create rich 
teaching and learning situations that will deepen our understanding of both 
mathematics and science. I illustrate this point in several examples. 

 
Framework 

Teaching modelling in mathematics has two objectives: (a) to understand and 
solve a particular problem (short-term objective), and (b) to develop necessary skills to 
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apply to a wide variety of problems which require quantitative reasoning (long-term 
objective). One of the key commitments of a genuine modelling process is to preserve 
authenticity. Commenting on modern approaches to modelling in mathematics, 
Galbraith (2013) proposes that “Authenticity be viewed in terms of four dimensions: 
content authenticity, process authenticity, situation authenticity, and product 
authenticity” (p. 33). It is this quest for authenticity that invites the appearance of 
tensions that I analyze in this paper. 

Perhaps the most appropriate way to frame our research is provided by the 
notion of distributed expertise (Brown et al. 1993) and a related notion of the zone of 
proximal development (ZPD). Initially defined as “the ‘distance’ between what a learner 
can achieve alone, and with the assistance of a more advanced teacher or mentor” 
(Galbraith 2013, p. 36), the ZPD naturally generalizes to a relationship between a 
researcher and practitioner (i.e., a mathematician and a “user” of mathematics). 
Commenting on applying the concept of ZPD to groups of individuals, Galbraith writes 
that:  

“participants with partially overlapping ZPDs provide a changing mix of levels of 
expertise, so enabling many different productive partnerships [..] overlapping 
individual ZPDs can create a combined ZPD which promotes a higher vision of 
possibilities than either separately could provide. Here partnerships are located 
in the community itself, where the participants are professionally linked, 
typically as researchers and/or practitioners.”(p. 37) 
This ecosystem of partially overlapping ZPDs, where the researchers and 

practitioners are most likely to interact, is inhabited by tensions: (a) between the 
notation and symbols in mathematics, and the way practitioners use them; (b) between 
the clarity and sharpness of a mathematical definition and the appearance of vagueness 
in definitions in life sciences; (c) between exactness of mathematics calculations and the 
necessity to approximate “real-life” quantities which are modelled; (d) between the 
mathematics’ irresponsibility toward reality and the interpretations of mathematical 
results in the context of an applied problem; and (e) between a rigidity of assumptions 
in a theorem and a fictional freedom of selecting quantities for a model.  

 
Tensions 

The limits on the size of this paper permit me to discuss only a few examples of 
tensions in the world of math and science (i.e., in the overlapping ZPDs of mathematics 
and its applications in other sciences). Although they succeed in giving a general idea, I 
decided to present additional scenarios in a separate publication.  
 
Definition 

A definition in mathematics is a statement that introduces something new—a 
new object, concept, or property of a mathematical object—based on previously 
established objects, concepts, and/or properties. Definitions are clear, concise and 
unambiguous; once established, they rarely change. The following statement, more than 
two thousand years old, defines a prime number: 
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A prime number is a natural number that has exactly two distinct divisors: 
number 1 and itself. 

Within this definition, clearly the context is natural numbers. Also, the requirement 
“two distinct divisors” removes 1 from the list of prime numbers2. The definition draws 
a clear line—there is no number that is both prime and non-prime3.  

On the other hand, scientists might operate with objects without clearly defining 
them. For example, the commonly used term “species” is taken for granted. 
Additionally, there is no generally accepted single definition of climate change. 
Sometimes, definitions are made purposely vague and misleading. For instance, the 
label “sodium free” on bottles of water does not imply that there is no sodium—but 
that the levels of sodium are below some low level4. It is impossible to find an 
agreement of what exactly the word organic, as in “organic produce,” really means5.  

“Real-life” definitions are modified over time and space: the definition of ADHD 
(attention deficit hyperactivity disorder) changed within the last five years and so did 
the classification of overweight and obese in North America. In Japan, a person whose 
body mass index is higher than 25 is considered obese. In China, that threshold is 28, 
and in North America it is 30. 

It is not reasonable to expect that real-life definitions6 retain the clarity and 
sharpness of a mathematical definition. However, it is desirable that they be made as 
clear and as sharp as possible, to minimize misinterpretations and misuses. Horwitz and 
Wakefield (2012) point at an alarming finding: 

[…] a systematic study of diagnostic practices […] found massive differences: 
New York psychiatrists diagnosed nearly 62 percent of their patients as 
schizophrenic, while in London only 34 received this diagnosis7. 

Another example of the issues that can arise from the lack of clear definitions comes 
from the British Medical Journal. Mistaking a vague term “size” for the length instead of 
the volume was behind a major error in the Journal’s paper which attempted to dismiss 
the benefits of mammographic screening (Mittra, Baum, Thornton, & Houghton, 2000)8.  

                                                        
2 This is important; without it, we would not have a unique factorization theorem, which is a cornerstone 
of number theory. 
3 composite 
4 The label on the bottle of Canadian Essence natural spring water states that “Products containing less 
that 5mg sodium per 100mL are permitted to state ‘sodium-free.’” 
5 For a variety of definitions and conventions consult, for instance, the subsection “Legal definition” in 
Wikipedia entry “Organic food.” 
6 Very often, other terms are used in lieu of “definition,” such as: convention, rule, principle, standard, 
practice, and so on. 
7 This estimate is based on two major factors: attempts (mainly through Diagnostic and Statistical Manual 
of the American Psychiatric Association) to make psychiatric diagnoses more rigorous and predictable 
(which leads to simplistic, symptom-based diagnoses), and preferences and prejudices of each group 
(New York vs. London) of psychiatrists. 
8 The authors erroneously concluded that the lead time for mammographic detection of breast cancer is 
one doubling time ahead of the clinical breast examination detection. This would imply that there are no 
true benefits to mammography. The correct lead time is a significant, three doubling times interval—and 
thus mammography is most certainly beneficial. 
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To conclude, a student, taught about definitions in a (pure) mathematics 
context, needs to modify her cognitive model (and is thus entering a ZPD between a 
researcher and practitioner) in order to work with an application. The resulting, 
enriched cognitive model of the definition relaxes the rigidity of a mathematical 
definition to allow for a degree of vagueness and ambiguity. 
 
Language and Interpretation 

Math language is cold and precise, and it is mostly communicated through 
symbols and formulas. Narratives in other sciences are closer to the language used in 
everyday communication, with symbols and formulas replaced by abbreviations, verbal 
descriptions, metaphors, and analogies. The tensions between the two languages, when 
resolved, deepen our understanding and clarity. Consider the statement: The number of 
infected people will climb until it eventually plateaus at 1200. A mathematician would 
replace “climb” by “increase” and give a precise meaning (horizontal asymptote) to the 
visual metaphor of a plateau. The fact that the limit, as the time approaches infinity, is 
1200 infected people does not mean much, as stated, to a practitioner. “Eventually” is a 
word that people “in the field” understand and can relate to: it means that some time, 
in the near (or not so near) future, the number of infected people will increase to 
around 1200.  

The ability to translate mathematical facts into a language understandable by a 
layperson is an essential skill, which, unfortunately, is not given sufficient attention in 
various university programs. Unambiguous and clear communication—between 
professionals, and between a professional and a patient—is a crucial component of 
effective work in a health care setting. A survey of medical school students showed that 
while 90% correctly identified which of the two drugs offered works better (based on 
information about risk), only 61% were able to accurately interpret the given 
quantitative data9 (Sheridan & Pignone, 2002). A large number of physicians and nurses 
have difficulties communicating information about risk and chance to their patients (for 
instance, in discussing dangers of a surgical procedure, or side-effects of a drug), which 
is a serious concern (Gigerenzer, 2003). 

The graph (a) in Figure 1 shows the dependence of the heartbeat frequency h of 
a mammal on its body mass m, drawn from a given principle10, but without taking 
context into consideration. With the meaning of m in mind, we redraw the diagram by 
identifying the domain of the function (interval from the mass of the lightest, to the 
mass of the heaviest mammal). 
 

                                                        
9 The authors demonstrate that the ability to interpret data is strongly correlated to quantitative literacy 
(thus, this is not just a communication issue, but also a learning issue). 
10 Heartbeat frequency is inversely proportional to the fourth root of the body mass. 
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Figure 1. Graph of a function in mathematics (a) and its interpretation in biology (b). 

 
Thus, an application (practitioner’s viewpoint) brings something abstract, such as 

a function and its domain, into a more familiar and real space. For a mathematician, the 
graph (a) in Figure 2 represents a decreasing function, which approaches zero as t 
increases. The function (b) in Figure 2 has a relative minimum at t0. 

 
Figure 2. Modeling population dynamics.  

 
For a population biologist, the two diagrams say something different, hence the 

tension. The population modeled by (a) in Figure 2 will go extinct after some time, and 
the tail of the graph has no meaning. The relative minimum value P0 shown in graph (b) 
in Figure 2 could fall below the minimum that the population needs to survive; thus, the 
population will continue falling and go extinct, rather than increase as suggested by the 
graph. 
 
Assumptions and Context 

Working with assumptions brings one again into an overlapping ZPD of a 
(mathematics) researcher and practitioner (working on an application). Whereas 
mathematician makes an assumption, a practitioner hypothesizes, provides a best 
guess, works with a common belief, and so on. 

Before we can model a predator-prey interaction between foxes and rabbits, we 
have to make important decisions. To reduce the complexity of the problem (thus 
increasing the chances that we can actually solve it), we assume that rabbits and foxes 
are the only inhabitants of the ecosystem we study. Next, we assume that there is 
plenty of food for rabbits, and that in the absence of foxes, rabbit population increases 
(modeled by some law, usually exponential or logistic). Next we assume that, on its own 

m

h 

m (kg)

h (beats/minute)

(b)(a)

m
L

m
H

h

m

h

m

t

P 

(b)(a)
t

P 

t
0

P
0

6

Discussions on University Science Teaching: Proceedings of the Western Conference on Science Education, Vol. 1 [2017], Iss. 1, Art. 17

https://ir.lib.uwo.ca/wcsedust/vol1/iss1/17



and without food, the population of foxes would dwindle, again according to some law. 
Finally, we assume that nothing else significantly affects the dynamics of the two 
populations. This example illustrates the necessity of making assumptions, as well as 
their importance in modelling. As in a previous case of the domain of a function, 
something abstract that we encounter in mathematics (assumptions which appear in 
every theorem), is brought, with the help of a scientific context, into the realm of a real, 
tangible object.  

Ignoring assumptions is one of the defining characteristics of the surface 
approach to learning mathematics, and it is a serious problem (Galbraith & Stillman, 
2001). Seino (2005) develops the “awareness of assumptions teaching principle,” to 
emphasize the role of making appropriate assumptions in mathematics. Quite often 
students show a correct use of an algorithm or a technique, but skip what they perceive 
as a “theoretical” part, which consists of checking whether or not the assumptions are 
satisfied. In grading assignments or test questions, anecdotal evidence suggests that 
instructors are guilty of the same crime: they assign full credit even when they realize 
that a student did not justify their work by checking assumptions. 

In mathematics textbooks, as well as in lectures, students see a large number of 
(abstract) exercises and problems whose solutions are integers or simple fractions, such 
as 1/2 or 2/5. The cumulative effect of exposure to such situations skews students’ 
thinking to the point where they believe that their answer is not correct because it does 
not look “nice11.” Working with models and applications in sciences removes this bias, 
and modifies students’ expectations of the kinds of answers they are supposed to get. 
(For instance, all coefficients in the differential equations for the predator-prey model 
are decimal numbers.) 

Usual conventions (x is an independent variable, y is a dependent variable) are of 
no help when we consider modeling situations. Based on the context, we need to decide 
which quantity is a dependent variable (and use appropriate symbol), and which 
quantity (or quantities) it depends on. The remaining quantities are viewed as 
parameters, and often visualized as a family of curves12. Moreover, the choice of a 
coordinate system is no longer limited to the default xy-coordinate system: sometimes, 
we replace linear scales on one or both axes with logarithmic scales (for instance Richter 
scale is logarithmic). Again, something that does not usually leave the realm of abstract 
(such as the concept of a variable) is made palpable in an application. Mindless drawing 
of x and y coordinate axes is replaced by an informed decision about the type of a 
coordinate system that is the most appropriate for the model we work with. 
 
Theorem 

Based on assumptions and supported by a rock solid proof, a (mathematical) 
theorem establishes something new (fact, formula, property, or connection between 

                                                        
11 Anecdotal evidence coming from author’s interactions with students working on applications questions. 
Students often view numbers 23, 3/4 and 0.5 as “nice”; however, 23/18 and 0.00102 are not considered 
“nice.”  
12 Families of curves are rarely fully discussed in mathematics textbooks. 
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objects). It is optimal in the sense that if even one of its assumptions is removed, the 
claim might no longer be true. Theorem is the only acceptable type of evidence in 
mathematics13. 

No other science has theorems14. Usually it is not even possible to list all 
assumptions that are behind a phenomenon in biology or geology. Certain facts (such as 
Schrödinger’s equation in physics) are assumed to be true, without theoretical proof.  
Goldbach’s conjecture15 has been shown to be true for 400 thousand billion numbers. 
To rephrase, an experiment has been performed 400 thousand billion times, and it gave 
the same outcome every time. In any discipline this would be fairly significant, and quite 
likely lead to a new theory. However, a mathematician cannot accept this experiment as 
evidence that the conjecture is true for all positive numbers.  

In science, we sometimes form theories based on outcomes from a single 
experiment (cosmology16). Although we cannot expect math-type proofs in geology or 
chemistry, we can borrow a healthy dose of math skepticism. The same questions that 
eventually lead us to consider a formal proof (“Why is this true?” or “How does this 
follow from that?” or “Is there a way I can verify this in a different way?”), we can, and 
must, ask whenever we study science. 

 
Conclusion 

I gave examples and discussed a few tensions (i.e., situations which arise when a 
cognitive model developed within a narrow scope of mathematics needs to be modified 
to accommodate for the concepts and notions from applications which are investigated 
using mathematics). Living in the ZPD, tensions enable us to look at a science discipline 
through the lens of mathematics, and vice versa. Tensions provoke questions and 
demand communication between science disciplines. They open doors through which 
mathematics enters into realms of other sciences, ultimately for a more active presence 
in textbooks and lectures in those disciplines. 

I believe that, by experiencing tensions and seeing how they co-exist in various 
disciplines, students might enhance their understanding of all sciences. It is my hope 
that these comments might be helpful in enriching integrated science curricula.  
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