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Abstract

Portmanteau test serves an important role in model diagnostics for Box-Jenkins Modelling pro-
cedures. A large number of portmanteau test based on the autocorrelation function are proposed
for a general purpose goodness-of-fit test. Since the asymptotic distribution for the statistics
has a complicated form which makes it hard to obtain the p-value directly, the gamma approx-
imation is introduced to obtain the p-value. But the approximation will inevitably introduce
approximation errors and needs a large number of observation to yield a good approximation.
To avoid some pitfalls in the approximation, the Lin-Mcleod Test is further proposed to obtain
a numeric solution to this problems based on Monte Carlo Simulation.

In this thesis, we first identify the problem of nuisance parameters for Autoregressive Fraction-
ally Integrated Moving Average Model (ARFIMA model) in the Lin-McLeod Test; the size
would be distorted, leading to an inaccurate level of type I error. We solve the problem through
a modification of Lin-McLeod Test: Wild Monte Carlo Test, borrowing the idea of Wild De-
pendent Bootstrapping. In order to validate the algorithm, we derive the asymptotic distribution
for the bootstrapped statistics in ARFIMA cases. By perturbing the estimated residuals, the
Wild Monte Carlo Test outperforms a wide spread of Portmanteau test for this type of model. It
solves the problem of the size underestimation and improves the test power for ARFIMA cases.

Later, we consider the general variance Portmanteau test on Autoregressive Moving Aver-
age Model with Generalized Autoregressive Conditional Heteroskedasticity Error (ARMA −
GARCH Model), as a special case of weak ARMA model . When we have the null hypothesis
of an ARMA − GARCH process, the asymptotic distribution of general variance are derived.
With the complicated structure of the asymptotic distribution, the Lin-McLeod Test can serve
a better solution to obtain the p-value rather than the gamma approximation. However, the
test will still suffer from the size distortion due to the nuisance parameter issues. In this chap-
ter, we mainly derive the asymptotic distribution for general variance Portmanteau tests on the
ARMA − GARCH models and propose to use the Wild Monte Carlo Test to reduce the effect
of nuisance parameters. The simulation and practical examples show the power of the newly
test compared to the results of Francq et al. (2005).

Additionally, we shall consider the data generating process as the ARMA with infinite vari-
ance errors. In order to valid the general variance Portmanteau test and Fisher-Gallagher Test
under this setup, we use the idea of the autocorrelation of the trimmed time series to construct
the modified Portmanteau test and derive the asymptotic distribution for these two kind of Port-
manteau tests on trimmed time series. Still, when we use the Lin-McLeod Test to obtain the
p-value, Wild Monte Carlo Test can correct the nuisance parameter distortion for the size and
improve the model performance.

Finally, we revisit the cross correlation test for two independent time series. A mistake in Hong
(1996) simulation is pointed out and the corrected size for the test is provided later. Then we
identify a spurious correlation for the time series with GARCH type errors.
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Chapter 1

Introduction

As an important part of Box-Jenkins modelling procedure, the Portmanteau Test is used to per-
form diagnostic checks on various models. Box and Pierce (1970) and Ljung and Box (1978)
proposed these tests initially and derive the asymptotic distribution as chi-square distribution
when applied on linear process. Later various modifications to the original tests are provided
in order to improve the performance under specific models (Monti, 1994; Kheoh and McLeod,
1992). Then Peňa and Rodríguez (2002, 2006) give another type of portmanteau test based
on the general variance of the autocorrelation matrix, hereafter the general variance test or the
Peňa-Rodríguez Portmanteau Test. However, Lin and McLeod (2006) pointed out the defects
in the test and proposed a Monte Carlo based Test to obtain the p-value to avoid the approxi-
mation errors with Gamma Approximation proposed by Peňa and Rodríguez (2002), hereafter,
the Lin-McLeod Test, and achieve a better performance. Mahdi and McLeod (2011) extend
the General Variance portmanteau test to multivariate Autoregressive Moving Average Model
(ARMA Model) and propose an modification of the General Variance Portmanteau Test for
univariate linear time series (hereafter the Mahdi-McLeod Test). Later, Fisher and Gallagher
(2012a) provide another type of the portmanteau test based the autocorrelation matrix, here-
after the Fisher-Gallagher Test. Various comparisons are provided in Gallagher and Fisher
(2013) and compare the powers of these tests. In general, the Mahdi-McLeod Test and the
Fisher-Gallagher Test would yield best performance among all the tests. From these simulation,
these tests could achieve satisfactory results under linear time series, like ARMA . However,
When we consider the application of these tests on some specific models, like Autoregres-
sive Fractionally Integrated Moving Average Model (ARFIMA Model) and Autoregressive
Moving Average Model with Generalized Autoregressive Conditional Heteroskedasticity Er-
ror (ARMA − GARCH model), the size level is inaccurate and the powerfulness of the test is
undermined, as we demonstrated in chapter 2, 3, 4.

Initially, Chapter 2 discovers the size distortion for ARFIMA model when we implement the
Lin-McLeod Test (Lin and McLeod, 2006) on General Variance Portmanteau test. The under-
estimation of the size appears due to the nuisance parameters in the models, which is partially
mentioned by Dufour (2006). Dufour (2006) proposed to used the Maximized Monte Carlo
test (MMC Test) to mitigate this problem but the calculation is cumbersome. In order to fur-

1



ther diminish the size distortion issue more efficiently, we borrow the idea of Wild Dependent
Bootstrap (Shao, 2010) and disturb the residuals by a kernel random variable. The asymptotic
distribution of the bootstrapped statistics is derived with complicated structure, and we develop
the Wild Monte Carlo Test to improve the performance of the Lin-McLeod test with ARFIMA
model specification. Simulation comparisons are based on the various time series model such
as ARMA , ARFIMA with strong white noise and show the mitigation of the size distortion
issue. After resolving the size distortion, simulation experiments shows the power for the Wild
Monte Carlo Test and it outperforms the Lin-McLeod Test. In the simulation study, we show
that the Wild Monte Carlo Test could achieve improvements in the power test for these time
series model as well as correcting the type I error level. A real data example is shown at the
end of the chapter.

Secondly, in Chapter 3, we extend the univariate General Variance Portmanteau test (Mahdi and
McLeod, 2011) to the ARMA model with GARCH type errors. The main idea is stimulated
by Francq et al. (2005). They point out the convergence distribution when traditional portman-
teau test applied in ARMA −GARCH model and the inconsistence of χ2 approximation to the
Box-Pierce Test as well as provided a modified Box-Pierce Test to perform the goodness-of-fit
test in ARMA model with GARCH error, as one of the important type of weak ARMA model.

In chapter 3, we consider the General Variance Portmanteau Tests in time domain, applied
on ARMA − GARCH . Initially we derive the asymptotic distribution of the General Vari-
ance Portmanteau Test on ARMA − GARCH model. Due to the complicated structure of the
asymptotic distribution, we propose to use the Wild Monte Carlo Test to evaluate the p-value,
addressing potential issues for the Lin-McLeod test. In order the validate the portmanteau
tests, the asymptotic distributions of the bootstrapped statistics are derived. Further, we point
out the similarity with the methods proposed by Harris and Kew (2014) involving the trimmed
autocorrelation on the portmanteau test but with different implementation approaches. The
simulations results show the advantages over the modified Box-Pierce Portmanteau test and
other possible alternatives (Francq et al., 2005). A real example is presented to show the power
of the test.

Thirdly, in Chapter 4, the study is based on Lin and McLeod (2008) on the linear time series
model with infinite variance error. In the paper, they modify the portmanteau test on this type
of model and implement the Lin-McLeod test to evaluate the p-value, compared to the other
existing tests. The asymptotic distribution for the test is presented here and compared with
other alternatives.

In order to validate the portmanteau test on linear time series model with infinite variance er-
rors, we consider the use of the trimmed autocorrelation on infinite variance time series and
apply the Lin-McLeod test for the power evaluation. The idea of trimmed autocorrelation is
raised by Lee and Ng (2010) and they derive the asymptotic distribution for trimmed autocorre-
lation with application on the Ljung-Box Portmanteau Test. We extend this idea to the General
Variance Portmanteau test and the Fisher-Gallagher test, resulting the asymptotic distributions
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of these tests. Still, to obtain the p-value and avoid the nuisance parameter issue from the
Lin-McLeod test, the newly developed Wild Monte Carlo test is employed as mentioned in the
previous chapters. The results are compared to Cui and Wu (2014) which consider the distribu-
tion of the Monti portmanteau test for ARMA model with infinite variance. Simulation results
and practical examples are used to prove the validity of the test.

In the end, we revisit carefully Hong (1996) and point out a mistake in the simulation study.
After correcting the mistake here, we show a more accurate result to compare Hong Test and
Haugh Test for independence of two time series. Later, a special type of spurious correlation
is pointed out.

This thesis reviews the general practices for the portmanteau test in Box-Jenkins Modeling
process and considers several special models with their portmanteau tests. With some defects
for tradition portmanteau test as well as those later modifications, further modifications are
proposed for specific models to improve the test performances and accuracy under these model
specfication. In addition, Wild Monte Carlo Test is proposed during the process as an modi-
fication to the Lin-McLeod Test in order to solve the issues caused by the nuisance parameter
and gains improvement for these applications.
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Chapter 2

Improved Portmanteau Test

2.1 Introduction

Goodness-of-fit tests are treated as one of the important parts in model diagnostics steps for
Box-Jenkins modelling procedure. Usually, one would use portmanteau tests to test for the
randomness for the model residuals in order to check the adequacy of the fitted model.

Among all the portmanteau tests, the test was first introduced by Box and Pierce (1970),

QBP = n
m∑

k=1

r̂2
k , (2.1)

where r̂k is defined as the autocorrelation for the residuals of lag k, and

r̂k =

∑n
t=k+1 âtât−k∑n

t=1 â2
t

. (2.2)

The asymptotic distribution of the Box-Pierce test is derived as χ2
m−(p+q), where p and q are the

parameters in ARMA (p, q) model. Considering an adequate fitted model, if the series length n
is large enough, we could state r̂1 � r̂2 � ... � r̂m � 0 indicating the lack of the autocorrelation
in the residuals.

Ljung and Box (1978) proposed a modified version of the Portmanteau test,

QLB = n(n + 2)
m∑

k=1

r̂2
k

n − k
. (2.3)

The statistics QLB has a finite sample distribution closer to that of χ2
m−(q+p). However, accord-

ing to Davis et al. (1977), the variance of QLB will be significantly larger than its asymptotic
distribution.

Kwan et al. (2005) has pointed out that various Portmanteau tests such as (Box and Pierce,
1970; Ljung and Box, 1978; Peňa and Rodríguez, 2002) would have a distorted empirical size
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when the residuals follow a non-gaussian distribution. Therefore, they suggest to use the non-
parametric test on the rank of the autocorrelation for the estimated residuals (Dufour and Roy,
1986) to fix the problem. The Portmanteau test is based on asymptotic distribution provided
that the innovations in the time series are statistically independent and identically distributed.
Today it is realized that in some areas of application this assumption is violated by conditional
heteroscedasticity. In this chapter we will assume strong white noise, that is, we assume that the
innovations are statistically independently distributed with mean zero and constant variance.
An improved Portmanteau test for dealing with some departures from the strong white noise
assumption, including conditional heteroscedasticity, will be discussed in Chapter 3.

Kheoh and McLeod (1992) showed that QLM perform slightly better than QLB in many cases.
To deal with the incorrect size problem, Li and McLeod (1981) proposed another modification
of the QLB,

QLM = QLB +
m(m + 1)

2n
. (2.4)

Monti (1994) proposed another Portmanteau test based on the partial autocorrelation for the
residuals. Let π̂k be the kth partial autocorrelation which is approximately distributed as a
normal random variable with mean zero and variance (n− k)/ (n(n + 2)). The test statistics can
be defined as follows,

QMT = n(n + 2)
m∑

k=1

(n − k)−1π̂k. (2.5)

The asymptotic distribution of QMT is χ2 with m − (p + q) degrees of freedom. A detailed
introduction is presented in Li (2004).

These proposed Portmanteau tests are based on the sum of the weighted autocorrelations or
partial autocorrelation functions. Later, in Peňa and Rodríguez (2002), they raise the idea of
another new Portmanteau test as defined,

D̂m = n
[
1 − |R̂m|1/m

]
, (2.6)

where we define the R̂m as the residual correlation matrix

R̂m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 r̂1 . . . r̂m
r̂1 1 . . . r̂m−1
...

...
. . . . . .

r̂m r̂m−1 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The asymptotic distribution of the D̂m is derived in Peňa and Rodríguez (2002).

Theorem 2.1. If the model is correctly defined,D̂m is asymptotically distributed as
∑m

i=1 λiχ
2
1,i,

where χ2
1,i (i = 1, ...m) are independent χ2

1 random variables and λi (i = 1, 2, ...m) are the
eigenvalues of (I−Qm)Wm, where Wm is a diagonal matrix with elements ωi = (m−i+1)/m(i =
1, 2, ...m) and Qm = ImV−1IT

m,V is the information matrix for the parameters φ and θ and Im is
diagnostic identify matrix.
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Since this Portmanteau test is mainly based on the general variance of the autocorrelation
matrix, we consider these type of tests as the Generalized Variance Portmanteau test. Peňa and
Rodríguez (2002) replace r̂2

k with r̃2
k = (n + 2)(n − k)−1r̂2

k in autocorrelation matrix R̂m, defined
as R̃m in order to improve the performance of the gamma approximation.

Later Peňa and Rodríguez (2006) proposed a modified portmanteau,

D̂∗m = −
n

m + 1
log |R̂m|, (2.7)

Under the corrected identification of the model, the D̂∗m is asymptotically distributed as the
same distribution as the previous D̂m. However several limitations for the test D̂∗m have been
pointed out in Lin and McLeod (2006). Firstly, the approximation to D̂m proposed in Peňa
and Rodríguez (2002) would not agree with the original distribution if m is small based on the
gamma approximation. Secondly, the modified R̃m is not always positive definitive.

Later a novel portmanteau statistics for both vector and univariate ARMA model is proposed
by Mahdi and McLeod (2011). The new Portmanteau test is an extension of the General Vari-
ance Portmanteau test. For univariate time series, the Portmanteau test on standardized residu-
als could be written as,

D̃m = − 3n
2m + 1

log
∣∣∣R̂m

∣∣∣ . (2.8)

Its asymptotic distribution and more accurate approximation is derived in Mahdi and McLeod
(2011). And the performance is evaluated via simulation which shows its preferable proper-
ties in testing. Still, the Lin-McLeod test is recommended unless the series is very long for
estimation.

Another types of important Portmanteau tests are proposed by Fisher and Gallagher (2012a).
The two test statistics are defined as follows,

Q̃W = n(n + 2)
m∑

k=1

m − k + 1
m

r̂2
k

n − k
. (2.9)

M̃W = n(n + 2)
m∑

k=1

m − k + 1
m

π̂2
k

n − k
. (2.10)

The above two statistics could be treated as the weighted Ljung-Box test. The asymptotic
distribution for this statistic is identical with the distribution of Peňa and Rodríguez (2002).
Another similar statistic could be constructed based on the weighted Monti Test,

According to Gallagher and Fisher (2013), all the above statistics could be expressed as weighted
Ljung-Box or Monti Test.

QW = n
m∑

k=1

wkr̂2
k . (2.11)

The above r̂k could be replaced by π̂k. The Portmanteau test in Mahdi and McLeod (2011) is
essentially a weighted Monti Test.
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2.2 ARFIMA Model and Diagnostic Checks

Let Xt, t = 1, 2, . . . be a stationary and invertible Autoregressive Moving Average Model
ARMA (p, q) model in Box et al. (2008),

(1 − φ1B − φ2B2 − . . . − φpBp)Xt = (1 − θ1B − . . . − θqBq)at, (2.12)

where B is the backshift operator on t and at follow an identical and independent normal dis-
tribution with mean of zero and constant variance, σ2

a. For convenience, we write the ARMA
model,

φ(B)Xt = θ(B)at, (2.13)

where φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp and θ(B) = 1 − θ1B = θ2B2 − . . . − θqBq. Since the
stationarity and casuality of the model, all the roots of φ(B) = 0 and θ(B) = 0 is outside of the
unit root circle. 1

We could employ maximum likelihood or least square method to estimate the parameters β =
(φ1, φ2, . . . , φp, θ1, θ2, . . . , θq) as β̂ = (φ̂1, φ̂2, . . . φ̂p, θ̂1, θ̂2, . . . θ̂q). Then we can have the residuals
estimator ât,

ât =
(1 − φ̂1B − . . . − φ̂pBp)
(1 − θ̂1B − . . . − θ̂qBq)

Xt. (2.14)

The most widely used long memory model is the Autoregressive Fractionally Integrated Mov-
ing Average model (ARFIMA ),

φ(B)(1 − B)d f Xt = θ(B)at, (2.15)

where φ(B), θ(B) and at are defined the same as previously defined for the ARMA and df
is defined in the range of −1/2 < df < 1/2. The parameter df determines the long mem-
ory property as defined in Granger and Joyeux (1980) and Hosking (1981). For the frac-
tional ARMA model, maximum likelihood could still be used to estimate the parameter β =
(φ1, φ2, . . . , φp, d, θ1, θ2, . . . , θq). However, the directly Maximized Likelihood Estimation (MLE)
is slow in computation due to the complicated structure in the autocovariance. Therefore, we
could use approximate maximum likelihood to estimate the parameters in the model. The
properties of the parameter estimators are discuss in Li and McLeod (1986) and Beran (1994).
The parameters could be estimated via the R package FGN (McLeod and Veenstra, 2007) and
arfima (Veenstra and McLeod, 2013). A detailed introduction to the model estimation and
these packages are presented given by (Veenstra, 2013).

In order to consider the Portmanteau test in ARFIMA , first we consider the distribution of the
autocorrelations of the residuals. The distribution is derived in Li and McLeod (1986).

Theorem 2.2. For any fixed m ≥ 1,
√

n {r̂1, r̂2, . . . r̂m} is asymptotically normal with mean zero
and covariance matrix Im − XI−1XT,where Im is the m × m identity matrix and

X = (−φ′i−j|θ′i−j|K)m,

1As in Box et al. (2008), the symbol B is over-loaded in the sense that it may represent either the backshift
operator on t or a complex variable depending on how it is used.
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where K′ =
{
1, 1

2 , . . . ,
1

m−1

}
, and the parameters θ′i− j and φ′i− j are defined as in the ARMA

model.

According to this theorem, we can see the inner structure of the autocovariance matrix for the
estimate residual autocorrelations in the ARFIMA model is more complicated than that in the
ARMA model.

However, the same undersize problem for the p-value happens when we apply the new Port-
manteau test (Peňa and Rodríguez, 2002; Mahdi and McLeod, 2011) to the ARFIMA model.

This section addresses this problem. In order to fix the test inaccuracy of Lin-McLeod Test on
ARFIMA Model, a more advanced Monte Carlo test using the idea of wild dependent bootstrap
(Shao, 2010) is developed. Simulations and real examples demonstrate the effectiveness of the
new test.

2.3 Lin-McLeod Test based on Portmanteau test

We revise the Lin-McLeod Test proposed by Lin and McLeod (2006) and use it on the ARFIMA
model to check the goodness-of-fit in the residuals. The algorithm is restated below. In the
statement of this algorithm, the Portmanteau test statistic, General Variance Portmanteau test
Dm, is used but any of the other Portmanteau test statistics could be substituted.

Algorithm 2.1. For an observed series,

• Step One: Fit the predetermined model with appropriate number of p, q. Obtain the
estimated parameter space Λ̂ = (φ̂, d̂ f , θ̂) as well as the residuals ât, t = 1, 2, . . . , n.
Calculate the D̂m based on ât.

• Step Two: Re-simulate the X∗t , t = 1, 2, . . . , n based on the estimated parameter space
Λ̂ = (φ̂, d̂ f , θ̂) as the parameters in equation 2.12 and random variable ãt following nor-
mal distribution with the mean and variance as ât. Refit the simulated Xi

t , t = 1, 2, . . . , n
based on the number of parameters and obtain the residuals âi

t. Calculate the statistics
D̂i

m.

• Step Three: Repeat Step Two N times. The p-value could be calculated as followed:

p-value =
#

{
D̂i

m > D̂m
}
+ 1

N + 1
. (2.16)

For simulation study, the above algorithm could be applied to a predetermined time series
with known parameters. According to Lin and McLeod (2006), the Lin-McLeod Test can
outperform the original Peña-Rodríguez test both in power and providing a correct type I error
rate. In order to fully explore effectiveness of the Lin-McLeod Test, we apply the algorithm
on the ARFIMA model. However, in this case, severe size distortions problems happened
resulting in an invalid diagnostic test.
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We will fit the algorithm for the following model to see the performance. For simplicity,
we will test for the simple model: ARFIMA (0, 0, 1) and ARFIMA (1, 0, 0) under corrective
specifying model and incorrectly specifying model. All of the following simulations are based
on 102 bootstrap iteration of 103 simulations for each parameter setting. In order to improve the
calculation efficiency, we employ the High Performance Computing Center ( https://www.
sharcnet.ca/), to run the simulation as well as parallel computing technique. The parallel
package Rmpi (Yu, 2014) in R. The simulations was conducted using 30 core cluster. The
CPU Running time for the calculation is around 70 Days.

2.3.1 Test Size Comparison

In the first model, Xt = (1− θ1B)∇d f at, we test for ARFIMA (0, 0, 1). Table 2.1 exhibits the test
output where the true value of parameter is θ1 = ±0.3,±0.6,±0.9, df = 0.2, 0.4.

Table 2.1: Size Comparison for Monte-Carlo Test for ARFIMA (0, 0, 1)(%) with θ =
±0.3,±0.6 and ±0.9, df = 0.2, 0.4 with the series length n = 200, 500 and lag m = 10, 30.
Bootstrapping replication number is 102 and each time simulations number is 103

m = 10 m = 30
θ/df 0.2 0.4 0.2 0.4

n = 200

−0.9 4.7 4.8 4.8 6.5
−0.6 4.2 6.0 4.1 4.8
−0.3 5.6 5.8 3.4 5.0
0.3 6.9 6.1 4.6 6.0
0.6 4.8 5.9 5.5 6.7
0.9 4.5 4.9 4.9 5.1

n = 500

−0.9 3.9 3.9 4.7 5.8
−0.6 4.9 5.7 5.5 5.9
−0.3 5.6 4.5 6.2 5.8
0.3 5.2 3.8 3.6 5.0
0.6 5.1 5.3 5.4 4.7
0.9 5.2 4.8 5.3 4.9

From Table 2.1, showing the results for ARFIMA (0, 0, 1), we see that the type I errors maintain
at a reasonable level close to the nominal level of 5%.

In Table 2.2 the simulation results are shown for the second model, (1− φ1B)∇d f Zt = at, where
φ1 = ±0.3,±0.6,±0.9, df = 0.2, 0.4

The Lin-McLeod Test (Lin and McLeod, 2006) shows its inefficiency especially when the
predetermined model has autoregressive components and the parameters for it are near the
boundary of stationarity. The type I error is drastically underestimated. Increasing the num-
ber of sample size does not help improve the performance of the tests. As previously pointed
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Table 2.2: Size Comparison for Lin-McLeod Test for ARFIMA (1, 0, 0)(%) with φ =

±0.3,±0.6 and ±0.9 , df = 0.2, 0.4 with the series length n = 200, 500 and lag m = 10, 30.
Bootstrapping replication number is 102 and each time simulations number is 103

m = 10 m = 30
φ/df 0.2 0.4 0.2 0.4

n = 200

−0.9 ∗ ∗ ∗ ∗
−0.6 ∗ ∗ ∗ ∗
−0.3 ∗ ∗ ∗ ∗
0.3 4.6 3.0 3.2 3.2
0.6 3.1 2.9 3.2 3.3
0.9 ∗ 3.8 2.6 ∗

n = 500

−0.9 ∗ ∗ ∗ ∗
−0.6 ∗ ∗ ∗ ∗
−0.3 ∗ ∗ ∗ ∗
0.3 3.0 4.2 4.4 4.9
0.6 4.5 4.7 3.3 3.5
0.9 3.6 2.2 4.4 3.0

out by Dufour (2006), the results of the Lin-McLeod Test may be severely distorted by nui-
sance parameters which the asymptotic distribution depends on especially for type I error and
Table 2.2 confirms that this problem may exist when the usual Lin-McLeod test is applied to
the ARFIMA . Based on this distortion, Dufour (2006) proposed the Maximized Monte Carlo
test (MMC) to remove the effect of the nuisance parameters. But the MMC is quite cumber-
some, difficult to implement in practice and no examples to demonstrate its effectiveness were
reported either in Dufour (2006) or in any other literature of which we are aware. MMC is
similar to the double bootstrap method (McCullough and Vinod, 1998) but the Wild Monte
Carlo test is computationally more efficient and easier to implement.

2.4 Wild Monte-Carlo Test

In order to accurately test for the goodness-of-fit under the ARFIMA structure, we develop a
new Wild Monte Carlo test (WMC) for the Portmanteau test, which perturbs the residuals by
the random variable defined in Shao (2010).

2.4.1 Re-sampling Bootstrap for Time Series

As an important extension to bootstrap by Efron (1979), the block-based bootstrap methods
can be used to approximate the sampling distribution of complicated data structure especially
in time series. The Moving Block Bootstrap (MBB) was first introduced by Kunsch (1989)
and Liu and Singh (1992). In order to improve the performance for bootstrap on temporal
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dependence series, based on the idea of re-sampling block bootstrap, a large number of other
similar bootstraps were developed by various researchers including the circular block boot-
strap (CBB) (Politis and Romano, 1992), the stationary bootstrap (SB) (Politis and Romano
(1994) and Tapered Block Bootstrap (TBB) (Paparoditis and Politis, 2001a) and Paparoditis
and Politis (2001b). In the book of Lahiri (2003), detailed comparison between these methods
are presented as well as detailed derivations.

Another type of bootstrap is called Dependent Wild Bootstrap proposed by Shao (2010) which
is considered as an extension of traditional Wild Bootstrap (Wu, 1986) to time series. The tra-
ditional Wild Bootstrap would allow the auxiliary variables to mimic the weak dependence in
the series, which will improve the test power. Several dependent random variables are recom-
mended to capture the dependence in the series. The newly proposed Dependent Wild Boot-
strap has extended the Wild Bootstrap to time series and allowed more complicated dependence
structure. Dependent random variables with kernel are used to make this technique applicable
to weakly dependent series. Another advantage for Dependent Wild Bootstraps compared to
the block-based bootstrap methods is that it can avoid the choice of block size. The window
length, similar to the block-size, is used to control the number of autocorrelations entering into
the statistics, and should be well-specified and the choice of windows length will affect the
performance of the Portmanteau test. The dependence is conveyed by the kernel smoothing
function.

First we should define the dependent wild bootstrap pseudo-observation as

X∗i = X̄n + (Xi − X̄n)Wi, (2.17)

where i = 1, 2, . . . , n, X̄n is the sample mean of the original data. Without loss of generality,
we can consider the data with mean of zero, then the pseudo-observations are changed into the
simplified version,

X∗i = Xi ×Wi, i = 1, 2, . . . , n, (2.18)

where the Wi is the random variable to consider the dependence in the series which is defined
as followed assumption from Shao (2010),

Assumption 2.1. The random variables {Wi}nt=1 are independent of the series Xt, t = 1, 2, . . . , n.
E(Wt) = 0,Var(Wt) = 1 for t = 1, 2, . . . , n. Assume that Wt is a stationary process with
Cov(Wt,Wt′) = a{(t− t′)/l}, where a(·) is a kernel function and l = ln is a bandwidth parameter.
Furthermore, assume that

Ka(x) =
∫ +∞

−∞
a(u)e−iuxdu ≥ 0, (2.19)

for x ∈ R.

According to Theorem 3.1 in Shao (2010), we can see the statistics from the pseudo-observations
X∗t will convergence in law to the true value of the statistics. Proof of the convergence will be
discussed in the next section.

With this assumption, we can see the lag window l will serve as the same function as the the
block size. The condition for the kernel function ensures the nonnegative definitiveness of the
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covariance matrix of Wt. According to Andrews (1991), we know several kernel functions such
as Bartlett, Parzen and Quadratic Spectral Kernels, can be used here. These independent vari-
able with these kernel functions can use reject methods or the methods proposed in Mammen
(1993) to simulate the kernel for the bootstrap.

2.4.2 Algorithm for the Wild Monte-Carlo Test

We modify the Lin-McLeod Test in order to incorporate the Dependent Wild Bootstrapping
into the test to convey the dependence in the residuals of ARFIMA Model.

Algorithm 2.2. The algorithm for the Wild Monte-Carlo Test is stated as follows. For a given
time series data,

• Step One: Fit the series Xt with appropriate p, df , q and obtain the estimates φ̂1, . . . , φ̂p,
d̂ f , θ̂1, . . . , θ̂q as well as the residuals ât. Simulate dependent random variable Wt, t =
1, 2, . . . , n based on the kernel. Generate the pseudo-observations,

â∗t = ât ×Wt, (2.20)

and then calculate the D∗M statistics based on â∗t .

• Step Two: Re-simulate the model based on the estimated φ̂1, . . . , φ̂p, d̂ f , θ̂1, . . . , θ̂q as
well as simulated random variable ãt following normal distribution with same mean as
ât. Then we refit the model gaining the residuals â j

t . Generate the dependent random
variable W∗

t based on the same kernel in Step One. Generate the pseudo-observations
â j∗

t ,
â j∗

t = â j
t ×W∗

t , (2.21)

and then calculate the statistics Dj∗
m .

• Step Three: Repeat the Step Two for N times and obtain the estimated p-value.

p-value =
#

{
Dj∗

m > D∗m
}
+ 1

N + 1
. (2.22)

The above algorithm is proposed based on the idea of Shao (2010). We perturb residuals for
the observed and simulated series by the random variable as defined in assumption 3.1. Based
on Shao (2010), several eligible kernel, such as Parzen, Bartlett and Quadratic Spectral Kernel,
could be used here. For illustrative purpose, we restate the Parzen kernel here.

Definition 2.1. Parzen Kernel

KP(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 6(x/6l)2 + 6 |x/6l|3 0 ≤ |x/l| ≤ 1/2
2(1 − |x/6l|3) 1/2 ≤ |x/l| ≤ 1
0 Otherwise

. (2.23)
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The Parzen kernel can be used to adjust the underestimating problems in the Portmanteau test.
We need to establish the asymptotic distributions for the bootstrapped statistics to validate the
Wild Monte Carlo Test. Here we use the parameter m as the bandwidth, and x = |i − j| as
the distance between i and j. As we could see from the Parzen Kernel would consider exact
number of autocorrelation in the bandwidth m.

We incorporate the Wild Monte Carlo Test in the portest function in the packages portes
(Mahdi and McLeod, 2013) by setting the argument Kernel=TRUE. Here we use the DLSim-
ulate function in package tsar McLeod et al. (2007) to simulate a stationary random variable
following a given autocovariance function.

Therefore, we can derive the asymptotic distribution for the bootstrapped statistics.

Theorem 2.3. The bootstrapped determinant based Test D∗m (Mahdi and McLeod, 2011), under
the Parzen kernel function Kn(|i − j|/m), would hold for the asymptotic distribution as follows,

D∗m →d

m∑
i=1

λiχ
2
1,i, (2.24)

where λi, i = 1, 2, . . . ,m are the eigenvalues of the matrix (I − Q)W∗. W∗ = KTWK , where
W and K are both diagonal matrices with the following definition. And Q is the projection
matrix defined as XT (XT X)−1X.

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3m
2m+1 0 · · · 0
0 3(m−1)

2m+1 · · · 0
...

. . .
. . .

...
0 · · · 0 3

2m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.25)

and
K =

(
Kn(|i − j|)|i− j|=1,2,...,m

)
. (2.26)

Proof:

According to Mahdi and McLeod (2011), the determinant-based Portmanteau test is defined
as,

Dm = − 3n
2m + 1

log |Rm| . (2.27)

According to Ramsey et al. (1974),

|Rm| =
m∏

i=1

(1 − π2
i )

m+1−i.

Therefore, we could write the test statistics as:

Dm = −n
m∑

i=1

3(m + 1 − i)
2m + 1

log(1 − π2
i ). (2.28)
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The wild dependent bootstrapped test statistics could be defined as,

D∗m = −n
m∑

i=1

3(m + 1 − i)
2m + 1

log(1 − (π∗i )
2), (2.29)

where π∗i is the Parzen Kernel adjusted partial autocorrelation with π∗i = Kn(i/m)πi. Follow-
ing the steps of Peňa and Rodríguez (2002), assuming (nπ2

1, nπ
2
2, . . . , nπ

2
m) is asymptotically

distributed as Y , based on the matrix form, we can have n(π∗1)
2, n(π∗2)

2, . . . , n(π∗m)2 is asymp-
totically distributed as KT YK ,where K is the diagonal matrix with Kn(i/m), i = 1, 2, . . . ,m.
Then, we could apply the multivariate δ-method in Arnold (1990) to equation 2.29 to give,

D∗m →
(

3m
2m + 1

,
3(m − 1)
2m + 1

, . . . ,
3

2m + 1

)
KT YK . (2.30)

We know the fact that,
(

3m
2m + 1

,
3(m − 1)
2m + 1

, . . . ,
3

2m + 1

) (
n(π∗1)

2, n(π∗2)
2, . . . , n(π∗m)2

)T → (2.31)
(

3m
2m + 1

,
3(m − 1)
2m + 1

, . . . ,
3

2m + 1

)
KT YK , (2.32)

based on the fact that n1/2π(m) → N(0,Im − Qm), where Qm is the project matrix and the
quadratic forms by Box et al. (1954):

(
3m

2m + 1
,
3(m − 1)
2m + 1

, . . . ,
3

2m + 1

) (
n(π∗1)

2, n(π∗2)
2, . . . , n(π∗m)2

)T
(2.33)

= nπT
(m)KTWKπ(m) →

m∑
i=1

λiχ
2
1,i, (2.34)

where λi, i = 1, 2, . . . ,m are the eigenvalues of matrix (Im − Qm)W∗ andW∗ = KTWK .

From Theorem 4.1, after perturbing the residuals, the bootstrapped statistics would follow
as the weighted χ2 distributions. The perturbed residuals would have less sensitivity to the
estimated parameters and further give a more stabilized type I error.

Ljung and Box (1978) originally proposed the Ljung-Box test to perform the goodness-of-fit
test for time series models. Still based on Li (2004), some biasness are possibly incurred due
to the weak dependence in the residuals. Therefore, we can still perturb the estimated residuals
by the dependent random variable wt via the Wild Monte Carlo test. The test statistics can be
restated as,

QLB = n(n + 2)
m∑

k=1

(n − k)−1 r̂2
k , (2.35)

where r̂k, k = 1, 2, . . . ,m represent the autocorrelation of the residuals. The bootstrapped statis-
tics Q∗LB will converge to asymptotic distribution.
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Corollary 2.1. Under the Parzen kernel function Kn, the asymptotic distribution of the Wild
Monte Carlo Test based on Ljung-Box Statistics could be specified as followed:

Q∗LB →d

m∑
i=1

λiχ
2
1,i, (2.36)

where λi, i = 1, 2, . . . ,m are the eigenvalues of the matrix (I − Q)W∗. W∗ = KTWK where
W and K are both diagonal matrices with the following definition, and Q is the projection
matrix defined as XT (XT X)−1X,

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−2
n−1 0 · · · 0
0 n−2

n−2 · · · 0
...

. . .
. . .

...
0 · · · 0 n−2

n−m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.37)

and
K =

(
Kn(|i − j|)|i− j|=1,2,...,m

)
. (2.38)

The proof of this corollary follows similar steps like theorem 4.1 by adding the weights for
the autocorrelation function which leading to dissimilar asymptotic distribution. This algo-
rithm could be extended to various Portmanteau test including the Box-Pierce test (Box and
Pierce, 1970), the Fisher-Gallagher test (Fisher and Gallagher, 2012a). The asymptotic distri-
bution could be obtained based on the derivations already presented but still we recommend
the numeric approaches to obtain the p-values since we have demonstrated already that the
asymptotic distribution often has incorrect size.

2.5 Wild Monte Carlo Test Simulation Experiments

We have already validated the Wild Monte Carlo test by providing the asymptotic distribution.
Now, we redo the size comparison for ARFIMA model and provide some further power com-
parisons for numerous models are implemented here to show the validation of the Wild Monte
Carlo test compared with the Portmanteau test as well as the Lin-McLeod Test.

2.5.1 Size Comparisons

The serious problem for the the Lin-McLeod Test (Lin and McLeod, 2006) is the underesti-
mation of the type I error. Though the underestimation of the type I error would lead to a
comparatively conservative model, somehow, this problem could lead to an inadequate model.
Table 2.3 showing the size may be compared with Table 2.2 for ARFIMA (0, 0, 1) model.

From the Table 2.3, we can see the Wild Monte Carlo adjusts the type I error for ARFIMA (0, 0, 1)
model especially when the parameters are near the stationarity boundary. Compared with Ta-
ble 2.1, with various choice of parameters, the type one errors for Wild Monte Carlo Test are
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Table 2.3: Size Comparison for Wild Monte-Carlo Reject Rate for ARFIMA (0, 0, 1)(%)with
θ = ±0.3,±0.6,±0.9, df = 0.2, 0.4 with the series length n = 200, 500 and lag m = 10, 30.
Bootstrapping replication number is 102 and each time simulations number is 103.

m = 10 m = 30
θ/df 0.2 0.4 0.2 0.4

n = 200

−0.9 3.4 4.1 2.8 2.2
−0.6 4.2 3.5 2.5 3.3
−0.3 4.0 3.7 3.6 2.9
0.3 4.7 4.4 4.6 4.2
0.6 4.2 4.6 4.6 4.5
0.9 4.5 3.5 4.7 4.3

n = 500

−0.9 3.6 4.1 4.3 3.7
−0.6 4.5 4.6 4.1 3.9
−0.3 3.6 3.7 3.2 3.7
0.3 4.7 4.4 3.0 3.6
0.6 3.9 3.7 2.9 3.4
0.9 4.9 4.3 5.5 4.8

stabilized, closer to the nominal level of test 5%. In Table 2.3, we see the increasing of series
length does not help the performance of the test.

The improvement for the type I errors for ARFIMA (1, 0, 0) would be much noticeable as
shown in Table 2.4.

Originally, in Table 2.2, severe type I error underestimations would take place: some of type I
error would even shrink near zero. Although conservative models are recommended by some
authors, such as Dufour (2006), accurate estimated type one error would be informative for us
to identify the appropriate models for the data. Under the framework of Wild Monte Carlo test,
we can see the test is not sensitive to the length series and lag number.

In order to further compare the Wild Monte Carlo Test here with the original Lin-McLeod Test,
we redo the simulation study of Lin and McLeod (2006) for ARMA (1, 0) model.

Table 2.5 compares the Wild Monte Carlo Test (D̃m) with the Lin-McLeod Test D̂m under the
first-order autoregressive models. With various choice of autoregressive parameter φ, under
different nominal level α = 1%, 5%, the type one errors for various models would stay at the
same level for both the Lin-McLeod Test and the Wild Monte Carlo Test which gives credence
to the validity of the Wild Monte Carlo Test.

2.5.2 Power Comparisons

Further, we wish to compare the performance for Wild Monte Carlo Test on various ARMA
model. We choose the data generating process in Peňa and Rodríguez (2002) and compare the
results between the Lin-McLeod Test and the Wild Monte Carlo test.
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Table 2.4: Size Comparison for Wild Monte Carlo Reject Rate for ARFIMA (1, 0, 0)(%)with
θ = ±0.3,±0.6,±0.9, df = 0.2, 0.4 with the series length n = 200, 500 and lag m = 10, 30.
Bootstrapping replication number is 102 and each time simulations number is 103.

m = 10 m = 30
θ/df 0.2 0.4 0.2 0.4

n = 200

−0.9 3.5 4.0 2.1 2.9
−0.6 3.2 4.5 2.8 2.1
−0.3 3.2 4.1 2.6 2.7
0.3 3.5 3.7 3.6 2.5
0.6 5.4 4.6 4.8 3.6
0.9 3.5 3.6 4.6 4.7

n = 500

−0.9 4.6 4.3 3.0 4.5
−0.6 3.8 3.4 3.1 3.4
−0.3 3.3 3.6 3.7 4.2
0.3 3.9 3.0 4.7 4.5
0.6 3.9 4.2 3.3 4.4
0.9 3.8 4.6 3.9 3.7

Table 2.5: Empirical Size Significance Levels Comparison between the Lin-McLeod Test (D̂m)
and Wild Monte Carlo Test (D̃m) under ARMA (1, 0) Model with φ = 0.1, 0.3, 0.5, 0.7, 0.9,
series length n = 103 and lag m = 10, 20. Choosing nominal level α = 1%, 5%. Bootstrapping
replication number is 102 and each time simulations number is 103

φ = 0.1 φ = 0.3 φ = 0.5 φ = 0.7 φ = 0.9

α = 5% m=10 5.0, 5.1 5.0, 5.3 4.9, 5.5 5.5, 4.7 5.6, 5.5
m=20 5.2, 5.4 4.1, 4.8 4.0, 4.4 5.3, 5.1 5.5, 5.5

α = 1% m=10 1.3, 1.1 1.0, 0.9 0.6, 0.9 1.4, 1.0 0.9, 1.2
m=20 1.0, 1.2 0.8, 0.8 1.2, 1.2 0.9, 0.9 1.1, 1.1

For convenience, we state the data generating process as followed: ARMA (p, q) model is
defined as:

φ(B)Zt = θ(B)at, (2.39)
φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp, (2.40)
θ(B) = 1 − θ1B − θ2B2 − . . . − θqBq. (2.41)

Here we use a series of ARMA model to verify the power of Wild Monte Carlo test. The
model parameters are set as Peňa and Rodríguez (2002) and are listed below:

• Model 1: θ1 = −0.5

• Model 2: θ1 = −0.8

• Model 3: θ1 = −0.6, θ2 = 0.3
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• Model 4: φ1 = 0.1, φ2 = 0.3

• Model 5: φ1 = 1.3, φ2 = −0.35

• Model 6: φ1 = 0.7, θ1 = −0.4

• Model 7: φ1 = 0.7, θ1 = −0.9

• Model 8: φ1 = 0.4, θ1 = −0.6, θ2 = 0.3

• Model 9: φ1 = 0.7, θ1 = 0.7, θ2 = −0.15

• Model 10: φ1 = 0.7, φ2 = 0.2, θ1 = 0.5

• Model 11: φ1 = 0.7, φ1 = 0.2, θ1 = −0.5

• Model 12: φ1 = 0.9, φ2 = −0.4, θ1 = 1.2, θ2 = −0.3

We generate the data through the above ARMA models and fit the model by ar(1). We exam
the residuals and evaluate the power of the Lin-McLeod Test and Wild Monte Carlo Test here.

Table 2.6: Power Comparison for ARMA Model (Peňa and Rodríguez, 2002) between Lin-
McLeod Test (D̂m) and Wild Monte Carlo Test (D̃m) with series length n = 103 and lag m =
1, 2, 3, 4, 5. Bootstrapping replication number is 102 and each time simulations number is 103

Model m = 1 m = 2 m = 3 m = 4 m = 5
D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m

1 97.1 89.1 94.7 92.1 88.9 88.4 85.4 91.3 84.3 93.7
2 100 90.1 100 100 100 100 100 100 100 100
3 95.3 84.3 84.3 78.3 71.1 62.7 63.7 65.2 53.4 59.3
4 82.3 97.3 84.6 98.6 97.5 98.5 96.2 97.9 96.1 97.8
5 87.8 100 91.2 100 93.5 100 95.2 100 96.2 100
6 89.3 84.4 88.5 91.8 84.8 77.7 54.7 60.9 34.9 47.0
7 60.5 40.4 60.5 44.4 59.5 52.4 50.8 58.1 61.0 67.9
8 85.4 75.6 84.7 65.7 73.4 81.2 71.8 71.0 63.6 69.0
9 100 90.2 100 100 100 100 100 100 100 100
10 100 98.7 100 99.2 100 98.1 98.0 99.7 98.2 99.9
11 98.3 99.9 99.2 99.7 99.9 99.9 99.8 99.7 99.6 99.7
12 95.7 100 100 100 100 100 100 100 100 100

From Table 2.7, we can see the Wild Monte Carlo would achieve better results with regarding
to the power. In general, the performances of the test are improved and in some cases, the pow-
ers are increasing with large level. Such as, when the data generating process is the MA (1) and
we test for the lag m = 20, the Lin-McLeod Test would get 64.5% power while the Wild Monte
Carlo test gains 80.4% power. The power increases by (80.4 − 64.5)/64.5 = 24.2%. Another
case should be mentioned is the model 8 as ARMA (1, 2) with φ1 = 0.4, θ1 = −0.6, θ2 = −0.3,
for lag m = 20, the power is increased by (70.8 − 57.7)/57.7 = 22.7%. This exemplifies the
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Table 2.7: Power Comparison for ARMA Model (Peňa and Rodríguez, 2002) between Lin-
McLeod Test (D̂m) and Wild Monte-Carlo Test (D̃m) with series length n = 103 and lag
m = 10, 15, 20, 25 and 30. Bootstrapping replication number is 102 and each time simulations
number is 103

Model m = 10 m = 15 m = 20 m = 25 m = 30
D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m

1 79.9 89.9 73.0 84.8 64.5 80.4 61.7 77.8 59.3 75.9
2 100 100 100 100 100 100 100 100 100 100
3 47.3 51.9 43.0 53.6 39.9 51.9 37.7 49.0 33.1 45.6
4 94.2 97.6 90.6 96.8 87.5 95.1 84.0 93.4 83.1 93.5
5 99.7 100 100 100 100 100 100 100 100 100
6 28.6 35.9 27.1 36.8 22.9 31.6 23.5 32.8 18.6 26.3
7 68.2 69.5 69.1 69.9 62.8 66.3 62.7 72.3 56.6 69.9
8 68.3 76.6 61.0 72.3 57.7 70.8 53.0 69.2 53.3 67.4
9 100 100 100 100 100 100 100 100 100 100
10 94.3 99.2 98.0 99.7 88.7 97.8 88.0 99.7 82.6 94.1
11 99.8 100 99.9 100 99.4 99.9 98.9 99.9 98.9 99.1
12 100 100 100 100 100 100 100 100 100 100

advantages of the Wild Monte Carlo test in ARMA model here.

In order to fully investigate the effect of the kernel bandwidth b here, we compare the Lin-
McLeod Test with Wild Monte Carlo Test when we have fixed number of autocorrelation, m
and change the kernel bandwidth, l.

From Table 2.8 we see that when we fixed the number of autocorrelation m and change the
kernel bandwidth l, the power has not change at a marginal level and generally when b gets
reasonably large, the power will be optimal of the models.

As we can see, generally the Wild Monte Carlo Test would have higher power compare to the
Lin-McLeod Test here. Another important model considered in Lin and McLeod (2006) is the
long memory model. As one of the important long memory model, Fractionally Differenced
White Noise (FD ) model and its extension the ARFIMA model are evaluated. For comparison,
we apply the Lin-McLeod Test and Wild Monte Carlo Test on these models to evaluate the
performance on randomness test.

In the Tables 2.9 and 2.10, we generate the data based on FD model and test for its randomness.
We employ the randomness test algorithm in Lin (2006). The FD model can be specified as
followed:

∇d f Zt = at, t = 1, 2, · · · , n, (2.42)

where at follows a standard normal distribution. Here, we choose the df = ±0.1,±0.2,±0.3
and various lags m = 5, 10, 20, 30, 40. We consider the series lengths n = 128 and n = 256
following the convention of Lin and McLeod (2006) to see the impact of the serious length on
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Table 2.8: Power Comparison between MC and Wild MC test with m = 20 and b = 5, 10, 20.
Bootstrapping iteration N = 103

Model b = 5 b = 10 b = 20
D̃m D̂m D̂m D̂m D̂m D̂m

1 83.6 84.6 85.2 83.9 84.7 83.5
2 100 100 100 100 100 100
3 50.6 49.6 53.1 48.3 52.3 49.2
4 95.3 91.3 97.1 90.8 96.2 91.4
5 100 97.2 100 98.6 100 96.3
6 31.2 28.3 33.6 29.8 32.5 30.2
7 66.8 57.6 70.1 59.3 68.6 61.2
8 65.2 56.8 72.1 60.9 69.3 65.8
9 100 100 100 100 100 100
10 99.6 96.9 100 97.4 100 97.9
11 100 98.8 100 96.2 100 95.7
12 100 100 100 100 100 100

the test.

From Tables 2.9 and 2.10, we can see when the lag number m is relatively small m < 5,
the difference for the performance between the Lin-McLeod Test and the Wild Monte Carlo
is not noticeable. However, when the lag number m gets relatively large, the Wild Monte
Carlo Test would outperform the Lin-McLeod Test. In some cases, the improvement is not
marginal. For example, when d = 0.2 with lag m = 20, the Wild Monte-Carlo Test could
achieve (72.6 − 59.6)/59.6 = 21.8% improvement. When d = −0.2 and lag m = 30, the
achievement in power could be (83.6 − 69.4)/69.4 = 20.5% and (50.2 − 36.6)/36.6 = 37.2%
with m = 30, n = 128. Therefore, we could safely obtain the conclusion that the Wild Monte
Carlo Test could improve the power for long memory models such as fractional difference for
randomness test.

Still, we are considering for the effect of the kernel bandwidth l in the performance for the long
memory model.

From Table 2.11, we can see the kernel bandwidth l will have less impact on the Wild Monte
Carlo Test with the Lin-McLeod Portmanteau test D̂m than its on the Ljung-Box Test Q̂m if we
fixed the number of autocorrelation m.

In comparing the above models for its power, we can see the Wild Monte Carlo Test would be
more powerful especially when the tested series have some dependence left. The simulation
study shows the Wild Monte Carlo Test fix problem of underestimations for the type one errors
and also improve the test power for various models.
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Table 2.9: Power Comparison between MC Test (D̂m) and Wild MC Test (D̃m) in Long
Memory Structure (Lin and McLeod, 2006). Choosing df = ±0.1,±0.2,±0.3, series length
n = 128, 256, 512 and lag m = 1, 2, 3, 4, 5. Bootstrapping replication number is 102 and each
time simulations number is 103

d n m = 1 m = 2 m = 3 m = 4 m = 5

D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m

−0.3 128 80.2 72.3 85.4 80.3 87.3 81.4 85.9 80.5 87.5 83.8
−0.2 128 49.7 49.2 54.9 52.0 55.5 51.6 53.3 53.2 54.8 53.9
−0.1 128 20.0 18.7 24.1 24.6 20.9 21.7 20.3 19.9 20.3 21.3
0.1 128 19.6 18.2 18.2 17.2 16.7 17.2 18.6 19.1 14.8 15.9
0.2 128 83.8 76.8 82.1 81.9 80.2 82.9 77.9 83.0 77.7 93.9
0.3 128 99.2 96.5 99.6 99.8 98.9 99.3 98.5 99.0 98.4 98.4
−0.3 256 96.3 91.1 99.0 96.7 99.3 97.1 99.3 97.9 99.6 98.8
−0.2 256 80.4 80.4 79.6 84.3 77.7 84.0 84.9 89.7 85.2 83.8
−0.1 256 33.2 29.1 31.0 30.4 34.4 34.0 29.8 30.6 33.5 34.2
0.1 256 36.9 38.8 34.8 33.7 34.4 34.7 32.8 34.6 31.3 35.8
0.2 256 99.4 97.3 99.2 99.2 98.7 98.8 98.9 98.9 97.8 98.0
0.3 256 97.9 100 100 100 100 100 100 100 100 100
−0.3 512 100 93.9 100 99.9 100 100 100 100 100 100
−0.2 512 96.6 90.6 99.0 96.7 99.2 98.3 99.6 98.2 99.2 98.9
−0.1 512 55.9 49.6 57.7 55.4 57.8 51.4 58.4 56.6 56.1 59.8
0.1 512 60.4 58.9 67.6 64.6 64.4 63.8 63.9 65.2 63.3 65.6
0.2 512 100 97.9 100 100 100 100 100 100 100 100
0.3 512 100 98.4 100 100 100 100 100 100 100 100

2.6 Application to Beveridge Wheat Prices

In order to compare the Portmanteau test, we apply the methods to the famous Beveridge Wheat
Price Index, which presents the annual price data from 1500 through 1869, averaged over many
locations in Western and Central Europe.

According to the Figure 2.1, we can see the data presents an obviously increasing trend with
a persistent long memory autocorrelation function. After first differencing, the sample auto-
correlations are very small and are randomly positive and negative so neither long memory
or its negative counterpart , anti-persistence, seems to be present. Nevertheless Baillie (1996)
analyzed the data and fit the ARFIMA (2, 1, 0) and the ARFIMA (2, 0, 0) models. We compare
the performance of different Portmanteau tests on these two models with the change of the lag
m.

From Table 2.12, we can see clearly that, when we fit the ARFIMA (2, 0, 0) model, we un-
derestimate the difference number which indicates the rejection of the null hypothesis for the
Portmanteau test on the estimated residuals. We list various Portmanteau test p-value and find
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Table 2.10: Power Comparison between MC Test (D̂m) and Wild MC Test (D̃m) in Long
Memory Structure (Lin and McLeod, 2006). Choosing df = ±0.1,±0.2,±0.3, series length
n = 128, 256, 512 and lag m = 10, 15, 20, 25, 30, 40. Bootstrapping replication number is 102

and each time simulations number is 103

d n m = 10 m = 15 m = 20 m = 25 m = 30 m = 40
D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m D̂m D̃m

−0.3 128 83.5 87.4 78.5 86.5 77.6 88.0 73.8 84.5 73.1 84.1 64.9 77.1
−0.2 128 47.8 54.8 44.3 53.9 38.8 49.7 37.9 48.9 36.6 50.2 32.9 44.0
−0.1 128 16.3 19.8 13.4 18.4 14.6 17.2 12.8 17.6 11.2 14.7 12.9 15.5
0.1 128 11.9 13.8 12.6 16.4 11.0 14.6 10.3 13.6 9.0 9.9 8.5 10.3
0.2 128 71.1 79.8 65.7 78.3 59.6 72.6 58.7 73.3 58.8 70.5 53.7 65.4
0.3 128 97.8 98.8 96.7 98.9 95.3 98.1 93.7 96.7 93.5 96.6 90.5 95.5
−0.3 256 99.0 99.2 99.3 99.7 98.9 99.6 98.3 99.6 97.9 99.5 97.3 99.3
−0.2 256 82.0 86.1 78.6 86.5 74.3 85.0 73.0 83.8 69.4 83.6 62.7 76.0
−0.1 256 30.5 36.2 26.5 35.1 25.1 30.7 22.2 28.7 21.8 29.4 17.1 24.2
0.1 256 28.6 35.2 24.4 32.3 21.6 31.0 19.6 27.3 17.9 26.2 17.3 24.4
0.2 256 97.7 98.9 95.9 97.8 95.2 97.3 93.3 97.1 92.5 96.5 88.8 95.2
0.3 256 100 100 100 100 100 100 100 100 99.8 100 100 100
−0.3 512 100 100 100 100 100 100 100 100 100 100 100 100
−0.2 512 99.4 99.7 98.7 99.2 98.5 99.3 98.8 99.7 97.1 99.3 98.4 98.6
−0.1 512 51.0 57.9 52.4 60.3 42.5 54.5 42.3 53.7 40.9 53.4 38.3 51.2
0.1 512 56.0 62.7 53.3 64.1 46.9 59.3 43.8 55.2 39.3 53.7 39.4 51.2
0.2 512 100 100 100 100 99.9 99.9 100 100 99.9 100 100 100
0.3 512 100 100 100 100 100 100 100 100 100 100 100 100

the Wild MC Test could achieve the most consistent results with the change of lag m. Other
Portmanteau tests, including Box-Pierce test (Box and Pierce, 1970), General-Variance Port-
manteau test (Mahdi and McLeod, 2011), Fisher-Gallagher Test (Fisher and Gallagher, 2012a)
and Lin-McLeod Test (Lin and McLeod, 2006), would achieve satisfactory results only when
the lag m increases to enough and need more information to do the goodness-of-fit test. When
we fit the appropriate ARFIMA (2, 1, 0) model, we should fail to reject the hypothesis, which
indicates the adequacy of models. The Wild MC Test would still give the most consistent re-
sults compare to other goodness-of-fit test. In this case, we can say the Wild MC test would
improve our test performance. The performance of the various tests is visualized in Figure 2.2

The above examples shows the power of Wild MC Test in goodness-of-fit in practical dataset
especially when the fitted models involve some long memory component such as the ARFIMA ,
the FD models here. Especially the Wild MC method shows a clear rejection for the inadequate
model fitting as ARFIMA (2, 0, 0) for the data.
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Table 2.11: Power Comparison Wild MC in Long Memory Structure with b Change with
m = 40 and b = 10, 20, 40. Test for d = ±0.3,±0.1 and n = 128, 256, 512

d n b = 10 b = 20 b = 40
D̂m Qm D̂m Qm D̂m Qm

−0.3 128 77.5 71.1 82.1 70.9 79.2 68.3
−0.1 128 13.9 9.0 17.9 11.1 15.7 10.2
0.1 128 9.2 4.2 10.9 5.8 9.6 6.8
0.3 128 91.9 81.7 95.2 84.2 93.6 82.5
−0.3 256 99.7 88.9 100 86.3 100 85.6
−0.1 256 22.6 18.5 27.8 21.3 25.9 20.4
0.1 256 24.6 21.1 27.1 20.9 26.3 18.7
0.3 256 99.1 95.3 100 92.5 100 91.6
−0.3 512 98.5 96.1 100 95.9 100 93.1
−0.1 512 51.6 40.8 55.4 39.1 52.8 37.8
0.1 512 49.8 34.1 54.7 37.8 51.9 36.2
0.3 512 100 100 100 100 100 100

2.7 Conclusion

In this chapter, we could see the pitfalls of the Lin-McLeod Test (Lin, 2006) on the ARFIMA
model could be successfully alleviated by the Wild Monte Carlo Test with application of Wild
Dependent bootstrap (Shao, 2010).. The simulations and real world data examples shows the
Wild MC Test would enjoy more consistent and reliable test results and is less sensitive to the
lag m.
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Figure 2.1: Beveridge(1925) Wheat Price Index Data Description with Autocorrelation Plot
for Original Data and the Difference of the Original Data
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Figure 2.2: Power Comparison for Beveridge Wheat Prices for ARFIMA (2, 1, 0) model and
ARFIMA (2, 0, 0) model for Various Portmanteau tests.
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Table 2.12: p-value for Fitting ARFIMA Model on Beveridge Data between Box-Pierce,
Mahdi-McLeod, Fisher-Gallagher, Lin-McLeod and Wild MC Test. Choosing the lag m =
5, 10, 20, 30, 40, 50.

ARFIMA (2, 1, 0)

Test/Lag m = 5 m = 10 m = 20 m = 30 m = 40 m = 50
Box-Pierce 0.6555 0.5442 0.0032 0.0315 0.0936 0.0583

Mahdi-McLeod 0.8649 0.6462 0.1258 0.0432 0.03428 0.0234
Fisher-Gallagher 0.868 0.6227 0.0972 0.0319 0.0339 0.0322

Lin-McLeod 0.3766 0.2177 0.0149 0.0079 0.00399 0.0029
Wild MC 0.3996 0.4275 0.2647 0.1578 0.0629 0.0329

ARFIMA (2, 0, 0)
Box-Pierce 0.3040 0.3705 0.0032 0.0306 0.1015 0.0546

Mahdi-McLeod 0.4994 0.3859 0.0486 0.0162 0.0142 0.0096
Fisher-Gallagher 0.5178 0.3616 0.04907 0.0211 0.0273 0.0273

Lin-McLeod 0.1218 0.1288 0.0059 0.0029 0.00399 0.0019
Wild MC 0.0189 0.0118 0.0128 0.0199 0.0379 0.0109
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Chapter 3

Improved Portmanteau Test for
ARMA − GARCH Models

3.1 Introduction

Portmanteau tests plays an important role in evaluating the model performance in the Box-
Jenkin modelling process to identify the appropriate model for the time series data. Based on
the famous paper of Box and Pierce (1970) and Ljung and Box (1978), two portmanteau tests,
Box-Pierce Test and Ljung-Box Test are defined as followed:

QBP = n
m∑

h=1

r̂2
k , (3.1)

QLB = n(n + 2)
m∑

h=1

r̂2
k

n − k
. (3.2)

where r̂k is the autocorrelation function of lag k, k = 1, 2, . . . ,m. Under a certain lag m, we
know these two portmanteau tests are following a χ2 distribution. Later, Monti (1994) replaced
the autocorrelation function r̂k by the partial autocorrelation function π̂k and found the asymp-
totic distribution for Monti Test:

QM = n(n + 2)
m∑

k=1

π̂2
k

n − k
. (3.3)

where m is a certain number of lag window.

Peňa and Rodríguez (2002, 2006) suggested another type of portmanteau test based on the
general variance of the autocorrelation matrix, hereafter, General Variance Portmanteau test,
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R̂m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 r̂1 · · · r̂m−1

r̂1 1 · · · ...
...

. . .
. . . r̂1

r̂m−1 · · · r̂1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.4)

where r̂k, k = 1, 2, . . . ,m. Peňa and Rodríguez (2006) proposed the new portmanteau test
statistic,

D̂m = −n log
∣∣∣R̂m

∣∣∣ . (3.5)

and showed that the asymptotic distribution is the sum of weighted χ2 distribution. In order
to calculate the p-value for the test, they proposed to use the gamma approximation to obtain
the approximate distributions. In order to avoid the inaccuracy of this approximation, Lin
and McLeod (2006) proposed to use the Monte Carlo test to calculate p-value and showed
its better performance over other tests, hereafter, the Lin-McLeod Test. Mahdi and McLeod
(2011) further extended the general variance test to multivariate time series model and provide
a optimal modification for Peňa and Rodríguez (2006) test as:

D̂m = − 3n
2m + 1

log
∣∣∣R̂m

∣∣∣ . (3.6)

The asymptotic distribution is still the sum of weighted χ2 distributions. As we notice, one of
the key assumptions for these statistics is that the series follows i.i.d. (independent and identi-
cal distribution) which enable the validity of asymptotic distribution.

In contrast to the above mentioned assumption, these statistics would become invalid once we
replace the independent identical distribution (i.i.d.) assumption by the uncorrelated, but not
independent assumption as weak white noise assumption, such as GARCH error. We will fo-
cus on ARMA − GARCH model in this chapter.

Recently, a large number of research papers attempted to weaken the assumption of strong
white noise for the portmanteau test (Romano and Thombs, 1996; Francq and Zakoïan, 1998;
Francq et al., 2005). In order to solve this problem of non-i.i.d. noise, some researchers (Chen
and Deo, 2004; Deo, 2000) derived the spectral density test for the martingale difference hy-
pothesis in the presence of conditional heteroscedasticity. Later, Lobato et al. (2001, 2002)
addressed the problems to test the null hypothesis with time series to uncorrelated up to a fixed
order m and proposed a modified Box-Pierce test for this null hypothesis. However, these tests
do not solve the problem of weak white noise including the important special case of GARCH
innovations. Francq et al. (2005) successfully derived the distribution of the residuals under
the null hypothesis of uncorrelated, but not independent errors and then proposed another mod-
ification for Box-Pierce Test similar to McLeod (1978). They show the advantages and better
performance of their tests compared to the original portmanteau tests.

Later, we consider the general variance portmanteau test on ARMA −GARCH model by using
the asymptotic distribution of the autocorrelation and extend the general variance portmanteau
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test (Mahdi and McLeod, 2011) to ARMA − GARCH model. Still, since the asymptotic
distribution is the sum of weighted χ2 distributions with complicated structure, using gamma
approximation, like Peňa and Rodríguez (2002), still suffer from approximation errors. There-
fore, we consider to use the Lin-McLeod Test (Lin and McLeod, 2006) to evaluate the test to
avoid the inconsistency of the approximation. However, the nuisance parameters in the asymp-
totic distribution for the Lin-McLeod Test would still severely distort the size of the test when
applied on the GARCH errors, as in the previous mentioned ARFIMA model. Therefore, we
would use the Wild Monte Carlo Test to adjust the calculation for this potential issue and miti-
gate this limitation with potential performance improvement. The asymptotic distributions for
the bootstrapped statistics are derived later in the chapter and the empirical evaluations show
satisfactory results compared to the Lin-McLeod Test.

3.2 Model Specification

Since we are considering the portmanteau test for ARMA −GARCH models, we would follow
the model specification as Francq et al. (2005) and Zhu and Li (2013). According to Box et al.
(2008), ARMA (p, q) model,

φ(B)Xt = θ(B)at, (3.7)
φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp, (3.8)
θ(B) = 1 − θ1B − θ2B2 − . . . − θqBq. (3.9)

All the portmanteau tests (Box and Pierce, 1970; Ljung and Box, 1978; Peňa and Rodríguez,
2002, 2006; Mahdi and McLeod, 2011; Fisher and Gallagher, 2012a) and their asymptotic
distributions are derived under the assumption that at is independent and uncorrelated series
with mean of zero. Then according to Francq et al. (2005), we could classify the model into
three categories based on the underlying assumption of error:

1. Strong ARMA model, {at} is independent and uncorrelated sequence,

2. Weak ARMA model, {at} is uncorrelated but not independent sequence. GARCH type
of error served as the main type of errors,

3. Semi-strong ARMA model, {at} is a martingale difference sequence.

For further discussion, we would restrict our discussions under the GARCH type error frame-
work as an important kind of weak ARMA model. Therefore, we would define the GARCH
type error as Francq and Zakoian (2011).

Definition 3.1. A sequence {at} is called a GARCH (r, s) process if E(at|au, u < t) = 0 for all t,
and let ηt be an i.i.d. sequence with mean 0 and standard deviance 1,

at = σtηt, (3.10)
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σ2
t = Var(at|au, u < t) = ω +

s∑
i=1

αia2
t−1 +

r∑
j=1

β jσ
2
t− j. (3.11)

ω, αi, i = 1, 2, . . . , s and β j, j = 1, 2, . . . r and the first two conditional moments of {at} are
assumed to exist.

The GARCH type of error is firstly introduced by Bollerslev (1986) as an extension of ARCH
(Engle, 1982), mainly used to model the financial market data. Moreover, according to Tsay
(2005), many empirical studies show the economic and financial data following the ARMA
model with uncorrelated but not independent error GARCH type errors (ARMA −GARCH ).
In addition, Francq et al. (2005) showed many nonlinear time series models admit the ARMA
representation with these type of error terms, especially in financial market time series data.

For diagnostic checks, according to Francq et al. (2005), the distribution of autocorrelation
function would be severely distorted under the GARCH errors with different asymptotic dis-
tribution. Therefore, some careful modifications for the original portmanteau test are needed
to correct the distortion to achieve better diagnostic performance.

Therefore, Francq et al. (2005) proposed a modified Box-Pierce Test which gives better perfor-
mance under the correct asymptotic distribution of autocorrelation for the purpose of goodness-
of-fit test. From both theoretical and empirical perspectives, this statistics would have favorable
features for ARMA − GARCH model and can yield better performance.

Since the asymptotic distribution for these tests embedded with complicated structure, usually
it is difficult to obtain the p-value based on the asymptotic distributions. Using approximate
distribution, like Peňa and Rodríguez (2002), will introduce approximation errors. There-
fore, the Lin-McLeod Methods are proposed to evaluate the p-value using Monte Carlo test.
However, as shown in later empirical experiments, the Lin-McLeod Test would still have the
nuisance parameter impacts. In order to eliminate this potential issue, we would use the Wild
Monte Carlo test in previous chapter to remove the effects of nuisance parameters.

For simplicity, we define ât = at(θ) as the residuals where θ = (pi, qj, ω, α, β) as a vector of
parameters in the estimated model. Then we can define the following auto-covariance function
for the residuals in the test.

Γ̂(l, l′) =
∞∑

h=−∞
E(âtât+lât+hât+h+l′), ĉll =

1
n

n−l∑
l=1

âtât−l, (3.12)

for (l, l′) � (0, 0) and the autocorrelation function as:

r̂k = ĉk/ĉ0, (3.13)

where ĉl is the auto-covariance function with lag k. Let r̂m = (r̂1, r̂2, . . . , r̂m). Therefore, under
the null hypothesis H0, according to Francq et al. (2005), we know the following theorem:
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Theorem 3.1. Under the regulatory assumption, we have:
√

nr̂m →d N(0,Σr̂m), (3.14)

where Σr̂m = Rm,m when p = q = 0, and when p > 0 or q > 0

Σr̂m = Rm,m + Λ
′
m

{
Λ∞Λ′∞

}
Λ∞R−1

∞,∞Λ
′
∞

{
Λ∞Λ′∞

}−1
Λm

−Λ′m
{
Λ∞Λ′∞

}−1
Λ∞R∞,m − Rm,∞Λ′∞

{
Λ∞Λ′∞

}−1
Λm,

where R(l, l′) = Γ(l, l′)/σ4 and Ri, j =
(
R (l, l′)i≤l≤l′≤i,1≤l′≤ j

)
for i, j = 1, 2, · · · ,∞ and

Λm is defined as the equation (5) in Francq et al. (2005),

Λm = (λ1, λ2. . . . , λm), (3.15)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −φ∗1 · · · −φ∗m−1

0 −1 . . .
...

...
. . .

0 · · · −1 −φ∗1 · · · −φ∗m−p
1 ψ∗1 · · · ψ∗p · · · ψ∗m−1

0 1 . . .
...

...
. . .

0 · · · 1 ψ∗1 · · · ψ∗m−q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.16)

where φ∗i and ψ∗i is defined as,

φ−1(B) =
∞∑

i=0

φ∗i B
i, (3.17)

ψ−1(B) =
∞∑

i=0

ψ∗i B
i, (3.18)

and B is the backward operator and φ(B), ψ(B) are the function with the parameters of ARMA model.

Thanks to the above statement, we can successfully understand the distortion of GARCH type
errors on the portmanteau test for the ARMA − GARCH model. Therefore, we are now de-
veloping a more accurate portmanteau with implementation of Mahdi and McLeod (2011) and
Fisher and Gallagher (2012a).

3.3 Extension to Univariate General Variance Portmanteau
Test

Based on the asymptotic distribution of the autocorrelation, we can extend its distribution to
the partial autocorrelation function and then derive the distribution of the portmanteau test
for Mahdi and McLeod (2011). With derived asymptotic distribution, the General Variance
Portmanteau test on the ARMA − GARCH model is valid.
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3.3.1 Asymptotic Distribution for Partial Autocorrelation Function

In order to further our study, we need to derive the asymptotic distribution for the General Vari-
ance Portmanteau statistics proposed by Peňa and Rodríguez (2002) and improved by Mahdi
and McLeod (2011).

Under the the assumption of strong white noise, Mahdi and McLeod (2011) derived the asymp-
totic distribution as a sum of weighted χ2 distributions. According to Gallagher and Fisher
(2013), on various simulated data from models with strong white noise, the General Variance
Portmanteau test outperforms other portmanteau tests such as Box-Pierce test (Box and Pierce,
1970), Ljung-Box test (Ljung and Box, 1978) and Monti test (Monti, 1994). However, under
the GARCH type error assumptions, similar to the statement in Francq et al. (2005), the distri-
bution of the autocorrelation and partial autocorrelation for residuals are dissimilar, leading to
some potential issues as mentioned in previous chapter. Therefore, the asymptotic distribution
for the General Variance Portmanteau test need to be adjusted.

Firstly, we need to extend the result of Francq et al. (2005) for the autocorrelation to the partial
autocorrelation under ARMA − GARCH model. According to Francq et al. (2005), we can
estimate the parameters of ARMA model using the Maximized Likelihood Estimation and
obtain the residuals.

Theorem 3.2. Under the ARMA −GARCH model, we define π̂k as the partial autocorrelation
function with lag k and r̂k as the autocorrelation function of lag k for residuals, then we have:

√
n(π̂(m) − π(m))→d N(0,ΛmJ−1ImJ−1ΛT

mσ
2), (3.19)

where π̂(m) is defined as (π̂1, π̂2, . . . , π̂m).

Proof:

According to Monti (1994), equation 1, we can see the partial autocorrelation function πk could
be treated as a function of autocorrelation function (r(k)) :

πk = Ψ(r(k)) =
rk − rT

(k−1)R
−1
(k−1)r

∗
(k−1)

1 − rT
(k−1)R

T
k−1r(k−1)

, (3.20)

where r(m) = (r1, r2, . . . , rm)T , π(m) = (π1, π2, . . . , πm)T , r∗(m) = (rm, rm−1, . . . , r1),

R(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 r2 · · · rk
r2 r1 · · · rk−1
...

...
. . .

...
rk rk−1 · · · r1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the estimated partial correlation function π̂(k) has the same relationship with autocorre-
lation function r̂k. In addition, if the model is correct identified, we could see that π̂(k) =
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r̂(k) + Op(n−1). Therefore, we could expand π̂(k) = Ψ(r̂(k)) around r(k), yielding:

π̂(m) = πm +
∂π(k)

∂r(k)

(
r̂(m) − r(m)

)
+ Op(n−1). (3.21)

Under correct model identification, from equation 3.21, we could know that ∂πk/∂rk = Im +

Op(n−1), according to Francq et al. (2005),

r̂(k) − r(k) = σ2ΛT
m(θ̂ − θ0) + Op(n−1), (3.22)

where Λm is as defined in equation 3.15:

Λm = (λ1, λ2, . . . , λm)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −φ∗1 · · · −φ∗m−1

0 −1 . . .
...

...
. . .

0 · · · −1 −φ∗1 · · · −φ∗m−p
1 ψ∗1 · · · ψ∗p · · · ψm−1

0 1 . . .
...

...
. . .

0 · · · 1 ψ∗1 · · · ψ∗m−q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

where φ∗k, ψ
∗
k are defined as McLeod (1978):

φ−1(B) =
+∞∑
i=0

φ∗i B
i, (3.23)

ψ−1(B) =
+∞∑
i=0

ψ∗i B
i. (3.24)

Therefore, due to Francq and Zakoïan (1998), we know that
√

n(θ − θ0)→d N(0, J−1IJ−1), (3.25)

where I = I(θ0) and J = J(θ0),

I(θ) = lim
n→+∞ var

{√
n
∂ log Ln(θ̂)

∂θ

}
, (3.26)

J(θ) = lim
n→∞

∂2

∂θ∂θT log Ln(θ̂). (3.27)

log Ln(θ̂) is the log-likelihood function evaluated at θ = θ̂. Combined with equation 3.22, we
can have: √

n(π̂(m) − π(m)) �
√

n(r̂(m) − r(m))→d N(0,ΛmJ−1ImJ−1ΛT
mσ

2). (3.28)

We can see under the ARMA −GARCH model, generally, the partial autocorrelation function
π̂m is followed similar normal distribution to the autocorrelation function r̂m. The above proof
uses the major results in Monti (1994) and Francq et al. (2005).
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3.3.2 Asymptotic Distribution for General Variance Portmanteau Statis-
tics D̂m

With the distribution for the partial autocorrelation function in ARMA − GARCH model, we
can further attempt to derive the asymptotic distribution for the General Variance Portmanteau
test.

Theorem 3.3. Under the ARMA −GARCH model, the general variance portmanteau test D̂m
defined by Mahdi and McLeod (2011) has the following asymptotic distribution:

Dm →d

m∑
i=1

λiχ
2
1,i, (3.29)

where λi, i = 1, 2, . . . ,m are the eigenvalues of matrix ΛmJ−1ImJ−1ΛT
mΛmJ−1ImJ−1ΛT

mσ
4.

Proof:

Based on the above distribution, we attempt to derive the asymptotic distribution of Dm. The
following proof follows the general steps of Peňa and Rodríguez (2002). According to Mahdi
and McLeod (2011), the univariate General Variance Portmanteau test statistics Dm is defined
as:

Dm = − 3n
2m + 1

log
∣∣∣R̂m

∣∣∣ . (3.30)

According to Ramsey et al. (1974), we can rewrite:

Dm = −n
m∑

i=1

3(m + 1 − i)
2m + 1

log(1 − π̂2
i ). (3.31)

Assume (nπ̂1, nπ̂2, · · · , nπ̂m) is asymptotic distributed as Y . Based on the multivariate δ method
in Arnold (1990), we can say:

Dm →d

(
3m

2m + 1
,
3(m − 1)
2m + 1

, . . . ,
3

2m + 1

)
Y, (3.32)

and from the Cramer-Wold theorem,
(

3m
2m + 1

,
3(m − 1)
2m + 1

, · · · , 3
2m + 1

) (
nπ̂2

1, nπ̂
2
2, . . . , nπ̂

2
m

)

→d

(
3m

2m + 1
,
3(m − 1)
2m + 1

, . . . ,
3

2m + 1

)
Y.

If the model is correctly identified, from the equation 3.28, we can see
√

nπ̂(m) →d N(0,ΛmJ−1ImJ−1ΛT
mσ

2).
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Therefore, we have Dm →d
∑m

i=1 λiχ
2
1 where λi, i = 1, 2, . . . ,m are the eigenvalues of matrix

ΛmJ−1ImJ−1ΛT
mΛmJ−1ImJ−1ΛT

mσ
4.

Generally, under the framework of ARMA − GARCH model, the Dm will follow a sum of
weighted χ2 distribution. Therefore, as a typical ARMA − GARCH model (Francq et al.,
2005), the above asymptotic distribution can be applied to ARMA (p, q)−GARCH (r, s) model:

(1 − φ1B − · · · − φpBp)Xt = (1 − θ1B − · · · − θqBq)at, (3.33)

where the error term at can be defined as:

at = σtηt, (3.34)

σ2
t = ω +

r∑
i=1

αia2
t−i +

s∑
j=1

β jσ
2
t− j. (3.35)

And ηt is i.i.d. sequence with normal distribution of mean 0 and standard deviance 1. For
an observed time series data, we can fit the data with the ARMA − GARCH model and test
against the null hypothesis:

H0: Xt admit a ARMA − GARCH model.

For better illustrative purposes, we restrict the discussions to the residuals of ARMA −GARCH
model, a typical weak ARMA model. Based on previous derivation, with a more complicated
asymptotic distribution specified above, the p-value for the portmanteau test on ARMA −
GARCH model is harder to implement with the gamma approximation in Mahdi and McLeod
(2011). In order to decide the p-value of the general variance portmanteau test and avoid
approximation errors , we choose to use the Lin-McLeod test (Lin and McLeod, 2006) for the
test.

3.4 Lin-McLeod Test and its Extension

3.4.1 Lin-McLeod Test and its Limitations

Due to the complicated structure of the asymptotic distribution, two approaches are proposed
to handle the p-value calculation: Peňa and Rodríguez (2002) suggest to use the gamma ap-
proximation and use the approximate distribution to obtain the p-value. This approach will
inevitably introduce approximation errors and larger number of observations are needed to
gain an acceptable level of approximation. In order to solve these problems, Lin and McLeod
(2006) proposed to use the Lin-McLeod Test based on the Monte Carlo test to numerically
calculate the p-value for the general variance portmanteau test (Peňa and Rodríguez, 2002).
Later, Mahdi and McLeod (2011) still use the Lin-McLeod test to evaluate the newly proposed
multivariate portmanteau test. For simplicity, we restate the algorithm here.
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Algorithm 3.1. The following algorithm is a simple restatement of Lin and McLeod (2006):
for a given time series data,

Step One: Fit the predetermined model with appropriate number of p, q, r, s. Obtain the esti-
mated parameter space Λ̂ for equation 3.33 as well as the residuals ât, t = 1, 2, . . . , n following
GARCH type errors with estimated parameters. Calculate the D̂m based on ât, where D̂m is
defined as general variance portmanteau test in Lin and McLeod (2006).

Step Two: Re-simulate the X∗t , t = 1, 2, . . . , n based on the estimated parameter space Λ̂ . Refit
the simulated Xi

t , t = 1, 2, . . . , n based on the number of parameters and obtain the residuals i
t.

Calculate the statistics D̂i
m.

Step Three: Repeat the Step Two for N times. The p-value could be calculated as followed:

p-value =
#

{
D̂i

m > D̂m
}
+ 1

N + 1
(3.36)

The usual Lin-McLeod test on ARMA − GARCH model suffers from the following two lim-
itations: firstly, according to Section 4 in Dufour (2006), the nuisance parameters existing in
the model would result in inaccurate type I error. With the proposed Maximized Monte Carlo
algorithm, Dufour (2006) can solve alleviate issue, but this approach is hard to implement with
cumbersome calculation caused by the optimization. Especially in ARMA −GARCH model,
the heteroscedasticity lying in the residuals would change the observed statistic value. Due
to the fact that p-value is calculated based on the empirical distribution of the statistics in the
simulation and the observed statistic value, An inaccurate observed value would inevitably con-
tribute to a inaccurate type I error and lower test power. Secondly, the consistency of parameter
estimation would further lead to the distortion of type I error and lower power. Especially when
the error follows an GARCH type white noise, the parameters estimated based on Maximized
Likelihood Estimator (MLE) would be biased and inconsistency (see Li (2004)).

In order to further diminish the aforementioned issues, we consider the Wild Monte Carlo Test.
The size distortion problem for the portmanteau tests when applied on the time series model
with heteroscedasticity has been pointed out. Phillips and Xu (2006) derive the parameters
inferences for ar(p) model with heteroscedasticity. Lobato et al. (2001) propose a modification
of Box-Pierce test to be more robust to the model with GARCH type of errors. Godfrey
and Tremayne (2005) solve the problems by implementing the wild bootstrap method in the
estimating the regression error term. Their simulations show good power for Wild Bootstrap to
remove the effect of heteroscedasticity and improve the test power. Recently, Harris and Kew
(2014) propose to alleviate the problems with GARCH type errors through the modification of
the autocorrelation function with weights. The weighted autocorrelation is defined as followed:

ρ̂ j(ω) =
∑N

t=1 ω
2
t Xt− jXt∑N

t=1 w
2
t X2

t
. (3.37)
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where ωt is the fix weighted related to the time t. By using this weighted autocorrelation with
kernel function, they showed the performance of the portmanteau test is improved with higher
power in the test. In their cases, they choose the weights from a non-parametric estimator of
the variance function of Xt. After carefully adjusting, the proposed Wild Monte Carlo Test can
combine the ideas of Godfrey and Tremayne (2005) and Harris and Kew (2014) by using the
Wild Dependent bootstrap method (Shao, 2010) to improve the performance of portmanteau
test in the ARMA − GARCH model.

3.4.2 Wild Monte Carlo Test and its Asymptotical Properties

Several ways are proven to reduce these nuisance parameter effect on the Lin-McLeod test.
Based on the previous chapter, we propose the Wild Monte Carlo Test through perturbing the
estimated the residuals in the Lin-McLeod Test. This method is shown to be efficient to remove
effect of nuisance parameters in ARFIMA model to handle the complicated asymptotic distri-
butions. The underestimated size distortion (Francq et al., 2005) would be addressed by this
algorithm and the improvement of the power on ARMA −GARCH models would be expected
here.

The perturbed residuals would introduce weights when applying the portmanteau test similar
to Harris and Kew (2014). Still, we restate the algorithm here:

Algorithm 3.2. The algorithm for the Wild Monte Carlo Test is stated as follows: for a given
time series data

• Step One: Fit the series Xt with appropriate (pi, qj, ω, αn, βn) and obtain the the pa-
rameter estimates as well as the residuals ât. Simulate dependent random variable
Wt, t = 1, 2, . . . , n based on the kernel outlined as followed. Generate the pseudo-
observations,

â∗t = ât ×Wt. (3.38)

and then calculate the D∗M statistics based on â∗t . Here D∗M can be defined as General
Variance Portmanteau Test or other type of portmanteau test

• Step Two: Re-simulate the model based on the estimated (pi, qj, ω, αn, βn) and at follows
a GARCH type errors with estimated parameters. Refit the model obtaining the residuals
â j

t . Generate the dependent random variable W∗
t based on the same kernel in Step One.

Generate the pseudo-observations â j∗
t ,

â j∗
t = â j

t ×W∗
t (3.39)

and then calculate the statistics Dj∗
m .

• Step Three: Repeat the Step Two for N times and obtain the estimated p-value.

p-value =
#

{
Dj∗

m > D∗m
}
+ 1

N + 1
. (3.40)
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Then the dependent random variable Wt can be outlined as:

Assumption 3.1. The random variables {Wi}nt=1 are independent of the series Xt, t = 1, 2, . . . , n.
E(Wt) = 0,Var(Wt) = 1 for t = 1, 2, . . . , n. Assume that Wt is a stationary process with
Cov(Wt,Wt′) = a{(t− t′)/l}, where a(·) is a kernel function and l = ln is a bandwidth parameter.
Furthermore, assume that

Ka(x) =
∫ +∞

−∞
a(u)e−iuxdu ≥ 0, (3.41)

for x ∈ R

We can use the Parzen kernel to generate the dependent random variable:

Definition 3.2. Parzen kernel could be stated as followed:

Ka(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 6(x/6l)2 + 6 x/6l|3 0 ≤ |x/l| ≤ 1/2,
2(1 − x/6l|3) 1/2 ≤ |x/l| ≤ 1,
0 Otherwise .

(3.42)

When we use the Wild Monte Carlo test on the residuals, the kernel applied on the critical
value estimation procedure would control the observed statistics value and force it close to the
natural level. While we simulate the series according to the fitted model and refit the model,
the choice of kernels will not affect the statistics due to the lack of heteroscedasticity in the
simulated residuals. Therefore, the type I error would be further corrected through use of the
Wild Monte Carlo test.

When the model is correctly identified, if the observed statistics value is larger than it should
be, the size estimated would be underestimated. Furthermore, if the model is incorrectly iden-
tified, the power would be inevitably lower than it should be. At this time, the Wild Monte
Carlo Test would not only amend the nuisance parameters problem in the Lin-McLeod Test,
but improve the power of the test.

Additionally, the perturbed estimated error would get implemented by the weights on the auto-
correlation, leading to the performance improvement on the portmanteau test. The autocorre-
lation function for the bootstrapped statistics can be easily written as,

ρ̂t =

∑
a∗t a∗t−k∑
(a∗t )2 =

∑
WtWt−katat−k∑

W2
t a2

t
. (3.43)

The autocorrelation works similar to the weighted autocorrelation function in equation 3.37 as
fixed weights chosen from the Parzen kernel in the Wild Monte Carlo Test. This algorithm
is implemented in the portes package (Mahdi and McLeod, 2013) in R. Therefore, we would
need to employ the High Performance Computing in Canada with 36 cores parallel. The CPU
running time is around 70 days.
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3.5 Simulation Results

In order to fully evaluate the validity of the Wild Monte Carlo test compared with the General
Variance Portmanteau test, the Wild MC test is proven to be a more stable approach to evaluate
the goodness-of-Fit in the model.

Li and Mak (1994) theoretically derived the asymptotic distribution for the Box-Pierce Test on
non-linear time series model with GARCH errors. Therefore, it is reasonable to compare these
tests on the ARMA − GARCH models.

3.5.1 Size Comparison

First, we compare the sizes to of what correctly identified ARMA − GARCH model. In order
to further evaluate the performance of the tests on the ARMA −GARCH model, we apply the
Wild Monte Carlo Test with Parzen kernel and the Lin-McLeod Test on the ar(1) − ARCH (1)
model to compare with the results of Francq et al. (2005). We defined the data generating
process as follows:

Xt = φ1Xt−1 + at, (3.44)

at =

√
1 + α1a2

t−1ηt, (3.45)

where ηt is defined as i.i.d normal distribution N(0, 1). We simulate the data from the following
model as Francq et al. (2005):

Model 1 : φ1 = 0 and α1 = 0,

Model 2 : φ1 = 0 and α1 = 0.2,

Model 3 : φ1 = 0.5 and α1 = 0.2,

Model 4 : φ1 = 0.9 and α1 = 0.2,

Model 5 : φ1 = 0.9 and α1 = 0.4.

Then we fit the these series with corresponding fitting models and applied the different tests on
the residuals. Once the model is correct identified, the type I error for the tests can be evaluated.
In the following table,the QBP denotes the Standard Box-Pierce Test with adjustment, Q∗BP
denotes the modified Box-Pierce Test (Francq et al., 2005), D̂m denotes the Lin-McLeod Test
(Lin, 2006), D̃m denotes the Wild Monte Carlo Test with Parzen kernel. We compare these tests
on the above five models with various lag m = 2, 4, 12, 24 and 36. The simulation is based on
103 replications with series length of 103 as defined in Francq et al. (2005)
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Table 3.1: Size Comparison between ARMA (1, 0) − GARCH (1, 1) for Box-Pierce QBP,
Modified Box-Pierce Q∗BP, Monte Carlo D̂mand Wild Monte Carlo Test D̃m. Choosing lag
m = 2, 4, 12, 24 and 36 and Nominal Level α = 5%.

m QBP Q∗BP D̂m D̃m

Model 1

2 5.3 5.2 5.2 5.8
4 5.6 5.2 4.5 5.1
12 4.6 4.3 5.3 5.5
24 5.6 4.9 5.5 5.0
36 5.4 4.9 4.8 4.8

Model 2

2 7.2 5.8 6.2 5.7
4 4.2 3.7 5.8 5.7
12 5.9 5.0 5.4 5.3
24 4.5 3.5 4.9 5.0
36 4.6 5.6 4.7 5.8

Model 3

2 7.7 5.8 10.0 5.5
4 5.9 4.3 6.6 3.1
12 5.1 3.8 5.6 5.5
24 5.1 3.9 4.9 6.0
36 3.6 2.8 5.2 5.4

Model 4

2 15.4 5.7 6.4 4.6
4 9.2 5.2 6.5 4.8
12 6.4 5.0 9.0 5.3
24 7.4 5.0 6.7 6.5
36 4.7 4.0 5.7 5.5

Model 5

2 26.3 5.1 6.9 5.6
4 20.0 5.6 6.2 4.6
12 12.2 5.3 6.6 4.6
24 10.7 5.7 2.3 5.8
36 8.2 4.7 8.8 4.1

From the above simulation results, we can see the Box-Pierce Test and the Lin-McLeod Test
would suffer from the over large size especially when the the lag m is a small number. When
the parameters are more wildly defined like in model 5, the size distortion would be more
severe. The modified Box-Pierce Test (Francq et al., 2005) and the Wild Monte Carlo Test
would outperform the other two tests here. These two tests would perform at the nearly same
level of size on various cases. This supports our conclusions about the validity of Wild Monte
Carlo Test on ARMA − GARCH models.
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3.5.2 Power Comparison

In order to further compare the Lin-McLeod Test and the Wild Monte Carlo test, we followed
the structure of Peňa and Rodríguez (2002) and Lin (2006) to test the performance of the these
tests for randomness diagnostic. First, We defined the data generating process,

Yt = atσt, (3.46)
σ2

t = 1 + αY2
t−1 + βσ

2
t−1, (3.47)

where α ≥ 0, β ≥ 0 and α + β < 1. This defines a typical covariance stationary GARCH (1, 1)
model. Then we could choose the following two models.

Model A : α = 0.05, β = 0.9.

Model B : α = 0.15, β = 0.8.

We use the Lin-McLeod Test for randomness from Lin (2006) to evaluate the performance of
the tests.

Table 3.2: Power Comparison between Lin-McLeod Test D̂m, Wild MC Test D̃m in
GARCH (1, 1) Model. Choosing series length n = 250, 500, 1000, lag m = 12, 24, 32 and
Nominal Level α = 5%. D̂m stands for Monte Carlo Test and D̃ stands for Wild Monte Carlo
Test. The p-value is based on 103 simulation and the power is evaluated at 103 iteration.

Model
n m = 12 m = 24 m = 32

D̂m D̃m D̂m D̃m D̂m D̃m

A 250 28.9 24.6 29.1 31.1 27.6 30.0
B 250 84.1 82.6 80.7 82.1 79.4 83.7
A 500 49.9 43.7 52.5 52.5 48.9 50.4
B 500 99.2 98.3 98.4 98.1 98.4 99.0
A 1000 79.7 71.5 82.7 81.54 79.7 81.74
B 1000 100 100 100 100 100 100

From the simulation results in the table 3.2, The Wild Monte Carlo Test would still remains at
the same level of power compare to the traditional Lin-McLeod Test. When we choose a large
number for lag m, the Wild Monte Carlo Test would overpower the performance of the other
two tests.

We intend to compare the Wild Monte Carlo Test with the Modified Box-Pierce Test (Francq
et al., 2005). In the following simulation, we compare the power for goodness of fit on the
ARMA − GARCH model based on Francq et al. (2005). In the section, we simulate the data
based on various ARMA (1, 1) - GARCH (1, 0) models with different θ, φ, α, β and fit the data
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with ar(1) model. Then we compare the performance of various tests including Box-Pierce
Test, Modified Box-Pierce Test (Francq et al., 2005), the Lin-McLeod Test (Lin, 2006). In the
simulation study, we choose n = 103, N = 103 and choose the lag number m = 2, 4, 12, 24 and
36 to compare the power for different tests.

The data generating process is defined as followed:

Xt = φ1Xt−1 + at + θ1at−1, (3.48)

at =

√
1 + α1a2

t−1ηt, (3.49)

where ηt is i.i.d normal distribution N(0, 1). Then the data is generating by the following five
models.

• Model 1 φ1 = 0, θ1 = 0.2, α1 = 0.

• Model 2 φ1 = 0, θ1 = 0.2, α1 = 0.2.

• Model 3 φ1 = 0.5, θ1 = 0.2, α1 = 0.2.

• Model 4 φ1 = 0.9, θ1 = 0.2, α1 = 0.2.

• Model 5 φ1 = 0.9, θ1 = 0.2, α1 = 0.4.

In table 3.3, the QBP denotes the Standard Box-Pierce Test with adjustment, Q∗BP denotes the
modified Box-Pierce Test (Francq et al., 2005), D̂m denotes the Lin-McLeod Test (Lin, 2006),
D̃m denotes the Wild Monte Carlo Test with Parzen kernel. Best performance test is bolded in
the table.

We can see from the table 3.3, the Wild Monte Carlo test with Parzen kernel is significantly
better than other tests with larger power in the models listed above.

Table 3.3: Power Comparison for Box-Pierce Test QBP, Modified Box-Pierce Test Q∗BP, Lin-
McLeod Test D̂m and Wild Monte Carlo Test D̃m . Lag m = 2, 4, 12, 24, 36 and Nominal Level
α = 5%.
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m QBP Q∗BP D̂m D̃m

Model 1

2 27.0 27.8 26.9 87.5
4 19.3 18.0 21.6 35.6
12 11.8 11.0 14.3 20.0
24 9.9 8.20 13.0 18.7
36 6.9 10.5 10.6 15.4

Model 2

2 19.1 23.1 28.3 86.8
4 17.2 20.0 24.3 37.2
12 10.1 9.1 17.2 24.5
24 9.6 8.1 12.0 18.2
36 10.5 7.5 11.9 15.7

Model 3

2 90.7 91.7 97.9 100
4 89.7 89.5 95.2 99.8
12 76.2 73.5 89.8 96.3
24 56.8 55.9 99.7 100
36 47.8 47.3 74.8 89.0

Model 4

2 99.7 99.6 100 100
4 99.3 99.2 100 100
12 97.7 97.5 99.8 100
24 91.3 91.6 98.6 99.5
36 88.7 89.0 98.9 99.7

Model 5

2 96.7 95.9 100 100
4 96.2 95.0 99.9 100
12 92.5 91.8 99.1 99.5
24 86.1 85.0 97.7 99.2
36 81.4 80.6 96.3 98.7

From the table 3.3, we see that the Wild Monte Carlo test generally has the highest power
in model identification. When we have Data Generating Process (DGP) following ARMA −
GARCH model, we fit them with the strong ARMA model. Then during the Lin-McLeod
Test, the observed statistics would increase due to the heteroscedasticity in the residuals. How-
ever, we would re-simulate the data based on a strong ARMA model and fit it.

The Box-Pierce statistics on squared residuals reduces the sensitivity for the statistics on the
parameters estimated; therefore, the power for this statistics on ARMA model will be higher.
The Wild Monte Carlo Test reduces the overinflated observed statistics by the kernel function
but remains the simulate statistics at the original level. Thereby, it achieves the improvement
in the goodness-of-fit power.

Another point needs our attention is the effect of the lag m. In most of cases, increasing the lag
m will not affect the performance of the tests. We would expect a more stable test especially
when we intend to use the general variance portmanteau test on the Wild Monte Carlo Test.
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3.6 Illustrative Application

We consider that the use of the newly developed portmanteau test with the Wild Monte Carlo
Test to evaluate the null hypothesis of ARMA − GARCH Model. We use the daily return
of S &P 500 Index for January 3, 1979 - December 31, 2001 as in Francq et al. (2005). The
length of the series n = 103. Initially, based on the standard economic series, the return of such
stock price should be martingale differenced (e.g. semi strong time series model) rather than
generally independent time series model. We show the data in the Figure 3.1:

Figure 3.1: Daily Return Series for S &P 500 Index from January 3, 1979-December 31, 2001
and Autocorrelation, Partial Autocorrelation Function
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From the figure 3.1, we can see the plot exhibits the features of differenced martingale. Then
we compare the p-value of the newly developed portmanteau test with Wild Monte Carlo Test
with the Ljung-Box test.

In order to evaluate the randomness of the time series, we use the algorithm proposed by Lin
(2006). For simplicity, we restate the algorithm here:
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Algorithm 3.3. Assume we have the series of interest {Xt}, t = 1, 2, . . . , n,

Step One: Calculate the sample autocorrelation function of the first m lags and use them to
calculate the portmanteau test Do

m

Step Two: Re-sample n observations with replacement from the original data set.

Step Three: Repeat Step Two for N times and then calculate the sample autocorrelation
function each time and use them to calculate the corresponding portmanteau test Dm, j, j =
1, 2, . . . ,N.

Step Four: Then the p-value could be calculated based on the following formula:

p-value =
#

{
Dm, j > Do

m

}
+ 1

N + 1
. (3.50)

Remark: Step Two could be modified to incorporate the Wild Monte Carlo Test into the ran-
domness test

Step Two: Re-sample n observations with replacement from the original data set as X∗t . Gen-
erate the dependent random variable Wt, t = 1, 2, · · · , n and then generate the pseudo-sample:

X̃∗t = X̄∗t + (X∗t − X̄∗t ) ×Wt. (3.51)

Where X̄∗t denote the sample mean of X∗t .

We could apply Step Three on the pseudo-sample X̃∗t .

Table 3.4: P Value Comparison on Evaluating GARCH type errors for return of S &P 500 Index
for Randomness. Series Length n = 5807. Monte Carlo Iteration N = 103. MC represent the
Monte Carlo Randomness test in Lin (2006) and WMC represent the newly developed Wild
Monte Carlo Test for randomness test

Lag
1 2 3 4 5 8 10 15 20

LB Stats 7.90 16.71 22.96 25.17 25.54 28.23 28.34 36.14 38.63
PValue(LB) 0.0049 0.0002 0.00005 0.00005 0.00001 0.0004 0.0002 0.0002 0.0007
PValue(MC) 0.007 0.003 0.002 0.001 0.001 0.001 0.002 0.001 0.002
PValue(WMC) 0.7033 0.6813 0.2937 0.1378 0.164 0.113 0.107 0.117 0.12

From the Table 3.4, we can see the tradition Lin-McLeod Test would behave similar to the
Ljung-Box Test. The Wild Monte Carl Test would be more appropriate to check the weak
white noise assumption here. Though in long term cases, the p-value would decrease, since
too much information is included and the weak white noise would be partly undermined. Com-
pared to Francq et al. (2005), though the test performance would be worse than their test if the
lag m chooses large number. The Wild Monte Carlo Test would be more practical especially
for short length time series data.
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According to the Ljung-Box Test and the Lin-McLeod Test, we can see the strong white noise
assumption gets rejected while the weak white noise fails to be rejected according to the Wild
Monte Carlo test.

Then we are fit an ARMA (1, 1) Test to the squares of the S &P returns. According to the pa-
rameter estimation, We get an ARMA (1, 1) Model as Zt − 0.8313Zt−1 = at + 0.7269at−1. Then
we apply the statistics on the residuals here to evaluate the weak white noise assumptions.

Table 3.5: p-value Comparison on Evaluating the GARCH type error for Return of S &P 500
Index. Series Length n = 5807. Monte Carlo Iteration N = 103. MC represent the tradition
Monte Carlo Randomness test in Lin (2006) and WMC represent the newly developed Wild
Monte Carlo Test for randomness test

Lag
1 2 3 4 5 8 10 15 20

LB Stats 2.26 15.53 16.86 37.61 83.37 97.77 95.93 96.69 98.28
PValue(LB) 0.132 0.0004 0.0008 0.00005 0.0000 0.000 0.000 0.000 0.000
PValue(LM) 0.042 0.013 0.001 0.005 0.002 0.0001 0.0001 0.004 0.008
PValue(WMC) 0.782 0.449 0.2797 0.181 0.121 0.129 0.117 0.107 0.108

From the table 3.5, we can reject the strong white noise assumptions based on the Ljung-
Box and Lin-McLeod Test here. But we fail to reject the weak white noise assumption for
Wild Monte Carlo. The underestimation for the p-value of the Lin-McLeod Test can still be
attributing to the nuisance parameters in the residuals due to the weak white noise assumptions.

We are attempting to evaluate the weak white noise by fitting GARCH Model. We first fit
GARCH (1, 1) Model to the squares of S &P 500 returns. And then we apply the portmanteau
test on the residuals of the GARCH (1, 1) Model.

Table 3.6: p-value Comparison on Evaluating the Residuals of GARCH (1, 1) Model for
Squares of S &P 500 Index Returns. Series Length n = 5807. Monte Carlo Iteration N = 103.
MC represent the tradition Monte Carlo Randomness test in Lin (2006) and WMC represent
the newly developed Wild Monte Carlo Test for randomness test

Lag
1 2 3 4 5 8 10 15 20

LB Stats 4.87 6.29 7.28 7.34 7.39 9.85 12.34 24.43 36.79
PValue(LB) 0.027 0.043 0.063 0.118 0.193 0.2755 0.263 0.06 0.012
PValue(LM) 0.028 0.03 0.041 0.049 0.063 0.115 0.122 0.08 0.067
PValue(WMC) 0.067 0.026 0.022 0.024 0.029 0.041 0.041 0.073 0.0949

After fitting the GARCH (1, 1) Model, from Table 3.6, we could see based on the Ljung-Box
Test, we fail to reject the strong white noise for most lags. The Wild Monte Carlo Test shows
we should reject the assumption of weak white noise. Still, the Lin-McLeod Test would suffer
test bias due to the nuisance parameters of the asymptotic distribution.
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3.7 Conclusion

In this chapter, we considered the goodness-of-fit test in ARMA −GARCH model. To weaken
the assumption of strong white noise, we introduce the GARCH type errors in the ARMA
model and extended the conclusion of Mahdi and McLeod (2011) to the ARMA − GARCH
model and derived the asymptotic distribution for the general variance Portmanteau test. The
asymptotic distribution for the Portmanteau test is still a sum of weighted χ2 distributions.

Due to the complicated structure of the asymptotic distribution, the gamma approximation
adopted by Peňa and Rodríguez (2002) and Mahdi and McLeod (2011) is not a convenient way
to calculate the p-value. Therefore, we choose the Lin-McLeod Test (Lin and McLeod, 2006)
and provide accuracy estimation of the p-value for the test. However, due to the null hypothesis
of ARMA −GARCH model, when we fit the ARMA model for the series, the nuisance param-
eters in the GARCH type error would distort the power and the size of the Lin-McLeod Test
for the Portmanteau test. We considered using the Wild Monte Carlo test to get rid of the ef-
fect of nuisance parameters here, as we had done the previous chapter for the ARFIMA model.

After we applying the Wild Monte Carlo Test on the ARMA − GARCH , the power of model
mis-identification is significantly improved, while the size still remains at a stable level. Due
to the wide existence for GARCH type series in the economic and financial data, we would
use this proposed method as a more accurate detection for the existing GARCH type of errors.
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Chapter 4

Trimmed Portmanteau Test for ARMA
Model with Infinite Variance

4.1 Introduction

Several new portmanteau tests have been developed recently. Under the assumption of infinite
variance, Adler et al. (1998) claim that the Box-Jenkins modelling process could be applied to
the ARMA model with infinite variance with careful modifications. The process Xt can be a
strictly stationary process defined by:

Xt =

∞∑
j=−∞

ψ jat− j, t = 1, 2, . . . , n, (4.1)

where parameter ψi satisfy the following condition:
∞∑

j=−∞
| j|

∣∣∣ψ j
∣∣∣δ < ∞, δ ∈ (0, α) ∩ [0, 1], (4.2)

and at, is defined as the stable distribution with its characteristic function in the following type:

E(eita) =

⎧⎪⎪⎨⎪⎪⎩
exp

{−σ |t|α (
1 − iβ × Sign (t) tan(πα/2)

)
+ iμt

}
α � 1,

exp
{−σ |t| (1 − iβ × Sign (t) log |t|) + iμt

}
α = 1.

(4.3)

and i2 = −1, α ∈ (0, 2] is the stability index, β ∈ [−1, 1] is the skewness parameter, μ ∈ R
define the location and

Sign (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 t > 0,
0 t = 0,
−1 t < 0.

Under this model, the stable analogue of autocorrelation function at lag k is defined as:

ρk =

∑
j ψ jψ j+k∑

j ψ
2
j

, k = 1, 2, . . . (4.4)
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The autocorrelation function ρk can be estimated by the sample autocorrelation as,

rk =

∑n−k
t=1 XtXt+k∑n

t=1 X2
t

, k = 1, 2, . . . (4.5)

For α > 1, the mean-correct sample autocorrelation r̂k at lag k can be defined as,

r̂k =

∑n−k
t=1 (Xt − X̄)(Xt+k − X̄)∑n

t=1(Xt − X̄)2
, (4.6)

where X̄ is the sample average of the series t. Based on Davis and Resnick (1986), for any lag
k, the limiting distribution for the sample autocorrelation function is,

[
n

log n

]1/α

(r1 − ρ1, · · · , rk − ρk)T →d (Y1, · · · ,Yk)T , (4.7)

where Yh is,

Yh =

∞∑
j=1

(ρk+ j + ρk− j − 2ρ jρk)
S j

S 0
, (4.8)

and S 0 ∼ Zα/2(Cα/2, 1, 0), S j ∼ Zα(C−1/α
α , 0, 0).

Cα =

⎧⎪⎪⎨⎪⎪⎩
(1 − α)/ (Γ(2 − α) cos(πα/2)) α � 0,
2/π α = 0.

From Davis and Resnick (1986), we know the limiting distribution of r̂k is the same as that of
rk. Under the null hypothesis of Xt are a sequence of i.i.d stable Paretian random variable, then
ρ0 = 1, ρk = 0 which can simplify the limiting distribution for sample autocorrelation function:

[
n

log n

]1/α

(r̂1, · · · , r̂k)T →d (W1, · · · ,Wk)T (4.9)

where Wj, j = 1, 2, . . . ,m are defined by Wj = S j/S 0.

Based on this conclusion, Runde (1997) developed the asymptotic distribution of the Box-
Pierce Statistics. His result shows:

QBP =

(
n

log(n)

)2/α m∑
j=1

r̂2
j →d

m∑
j=1

W2
j , (4.10)

Later, Lin and McLeod (2008) study both Box-Pierce and Peňa-Rodríguez test under the
ARMA model with infinite variance and proposed a better modification based on,

D̂m =

(
n

log n

)2/α

(1 − |Rm|)1/m , (4.11)
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where Rm is the autocorrelation matrix of Xt, t = 1, 2, . . . , n. The asymptotic distribution of
the new portmanteau statistics is:

D̂m →d

m∑
j=1

m + 1 − i
m

W2
j , (4.12)

where W j is as defined in 4.9. Still, according to their simulation, the Lin-McLeod Test is
recommended based on the better simulation performance.

Another type of modification on portmanteau test for ARMA models with infinite variance
is proposed by Lee and Ng (2010). The process can be defined as equation 4.1 and other
parameters have the same meaning as defined before. They proposed to replace the original
autocorrelation function r̂k by the autocorrelation of the trimmed time series (e.g. trimmed
autocorrelation r̃k). In order to calculate the trimmed autocorrelation, first we defined the
trimmed series:

X̃t =

⎧⎪⎪⎨⎪⎪⎩
Xt ML < Xt < MU ,

0 Otherwise .
(4.13)

Then r̃k is defined as the sample autocorrelation function of the trimmed time series.

ML and MU are the nλU and nλL-th order statistics, 0 < λL < λU < 1, where λL is the lower
trimming portion and (1 − λU) is the upper trimming proportion.

r̃k =

∑n−k
t=1 X̃tX̃t+k∑n

t=1 X̃2
t

, k = 1, 2, . . . (4.14)

For simplicity, we restate the key result in Lee and Ng (2010):

Theorem 4.1. For any positive integer m, the asymptotic distribution of (r̃1, r̃2, . . . , r̃m) is given
by: √

n(r̃1, . . . , r̃m)→d N(0, Im), (4.15)

where Im is the m-dimensional identity matrix.

From the theorem 4.1, they derived the asymptotical distribution of Box-Pierce Test:

Q̃BP = n(n + 2)
m∑

k=1

r̃2
k

n − k
→d χ

2
m.

They claim that though the trimming autocorrelation function r̃k may lose part of the infor-
mation in the series, this problem can be overcome by appropriately choosing the trimming
threshold. This idea actually simplifies the distribution of the autocorrelation function r̂k in
the ARMA model with infinite variance to the case with finite variance. Further, Cui and Wu
(2014) derived the asymptotic distribution of the trimmed partial autocorrelation function:
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Corollary 4.1. For any positive integer m, the asymptotic distribution of (π̃1, π̃2, . . . , π̃m) is
given by: √

n(π̃1, . . . , π̃m)→d N(0, Im). (4.16)

Therefore, the Monti-type of the portmanteau test can be defined in the trimming partial auto-
correlation function:

M̃ = n(n + 2)
m∑

k=1

π̃2
k

n − k
→d χ

2
m. (4.17)

Therefore, we can use the idea to improve the performance of the portmanteau test.

4.2 Improved Portmanteau Test for ARMA Model with In-
finite Variance

Now, we intend to incorporate the idea of trimmed autocorrelation into the general variance
portmanteau test (Peňa and Rodríguez, 2002):

D̂m = n
(
1 − |Rm|1/m

)
, (4.18)

where Rm is the autocorrelation matrix of the series Xt, t = 1, 2, . . . , n.

The asymptotic distribution of the portmanteau test is derived in Peňa and Rodríguez (2002)
and its application on the ARMA model with infinite variance has been developed in Lin and
McLeod (2008). Now we are trying to investigate its trimmed effect on the portmanteau test.
By convention, we defined the trimmed autocorrelation function (r̃k) and partial autocorrela-
tion function π̃k (Lee and Ng, 2010; Cui and Wu, 2014). We denote the original autocorrelation
function and partial autocorrelation function as r̂k and π̂k.

Definition 4.1. Based on the trimmed autocorrelation function,we define the trimmed version
of general variance Test as:

D̃∗m = n
(
1 − ∣∣∣R̃m

∣∣∣1/m)
, (4.19)

where R̃m is defined as the matrix of trimmed autocorrelation function,

∣∣∣R̃m
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 r̃1 · · · r̃m−1
r̃1 1 · · · r̃m−2
...

. . .
. . .

...
r̃m−1 · · · r̃1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.20)

where r̃t, t = 1, 2, . . . ,m − 1 are the trimmed autocorrelation function.
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Then we could have the following theorem:

Theorem 4.2. For a series Xt, t = 1, 2, .., n which follows a stable distribution with infinite
variance, then we have:

D̃∗m →d

∑
j=1

m + 1 − j
m

χ2
1, j. (4.21)

Proof: Generally the proof process would follow the procedure of Theorem 1 in Lin and
McLeod (2008) and Peňa and Rodríguez (2002). Since we have the distribution of the trimmed
autocorrelation, r̃k, √

n(r̃1, r̃2, . . . , r̃m)→d N(0, Im).

then we have the asymptotic distribution here.

A similar adjustment can be made to Fisher-Gallagher Portmanteau Test (Fisher and Gallagher,
2012a). As its defined:

QW = n(n + 2)
m∑

k=1

m − k + 1
m

r̂2
k

n − k

and

MW = n(n + 2)
m∑

k=1

m − k + 1
m

π̂2
k

n − k

by replacing the standardized autocorrelation and partial autocorrelation (n + 2/n − k)r̂k and
(n + 2/n − k)π̂k with the trimmed counterpart r̃k and π̃k. Firstly, following the ideas in Lin and
McLeod (2008), we can get the asymptotic distribution for the exact autocorrelation function
under slight modification to the origin QW test.

Theorem 4.3. In ARMA model with infinite variance errors, we define the Fisher-Gallagher
statistics as follows:

Q̂W =

(
n

log(n)

)2/α m∑
k=1

m − k + 1
m

r̂2
k . (4.22)

We have the asymptotic distribution under the stable distribution:

Q̂W →d

m∑
k=1

m − k + 1
m

W2
k , (4.23)

where Wk , i = 1, 2, . . . , m are as defined in 4.9.

Interestingly, we could see the asymptotic distribution for the Fisher-Gallagher Test is exactly
the same as the one in Lin and McLeod (2008) and the performance equivalence is evalu-
ated later by simulations. Actually, Fisher and Gallagher (2012a) show the general variance
portmanteau test (Mahdi and McLeod, 2011) is asymptotic equivalent to Fisher-Gallagher Port-
manteau test (Fisher and Gallagher, 2012a) . However the derivation would be different.
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Proof:

First we rewrite the modified Fisher-Gallagher Statistics in its quadratic form:

Q̂W =

(
n

log n

)2/α

r̂T Kr̂,

where r̂ = (r̂1, r̂2, . . . , r̂m) and

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 m−1

m · · · 0
... · · · . . .

...
0 · · · 0 1

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then under the null hypothesis of independent and identical random variable with a stable
Paretian distribution, the limiting distribution of the sample ACF is:(

n
log n

)1/α

rT →d WT , (4.24)

where W = (W1, . . . , Wm) and Wj = S j/S 0, j = 1, 2, . . . , m. According to the distribution of
the quadratic form, we could get the asymptotic distribution

Q̂W →d

m∑
j=1

m − j + 1
m

W2
j . (4.25)

We can apply the ideas of trimmed modification on the modified Fisher-Gallagher Portmanteau
Test and derive its asymptotic distribution.

Corollary 4.2. Let r̃k and π̃k, k = 1, 2,. . . , m be the trimmed autocorrelation function and
partial autocorrelation function for the series. Then we could have the modified portmanteau
statistics:

Q̃W = n
m∑

k=1

m − k + 1
m

r̃2
k , (4.26)

and

M̃W = n
m∑

k=1

m − k + 1
m

π̃2
k . (4.27)

with the asymptotic distribution

Q̃W →d

m∑
k=1

m − k + 1
m

χ2
1,k, (4.28)

M̃W →d

m∑
k=1

m − k + 1
m

χ2
1,k. (4.29)

The proof of this corollary is basically the same as the previous theorem except we would
consider the limit distribution of the trimmed autocorrelation function. According to Lee and
Ng (2010), we could know that:

√
n(r̃1, r̃2, . . . , r̃m) →d N(0, Im) Then obviously we could get

the asymptotic distribution above.
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4.3 Extension to the Diagnostic Check for Model Adequacy
of ARMA Model with Infinite Variance

In order to explore this question, according to Lin and McLeod (2008), we consider the case
of ar(p) model with infinite variance and extend the results to the ARMA case based on the
statements in Lin (2006). We specify the model as followed:

Definition 4.2. Define the general ar(p) model as followed:

φ(B)Xt = at, (4.30)

where at, t = 1, 2, . . . , n are the i.i.d random variables and follow the stable Paretian
distribution. As in convention, φ(B) is the polynomial function with backward operator B,
φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp. Then the residuals can be defined as follows:

ât = (1 − φ̂1B − φ̂2B2 − . . . − φ̂pBp)Xt = φ̂(B)Xt, (4.31)

and φ̂(B) = (φ̂1, φ̂2, . . . , φ̂p) are the estimation of the φ(B).

Under this definition, we define the autocorrelation function of the ât:

r̂k =

∑
âtât−k∑

â2
t

, (4.32)

under the assumption of Paretian stable distribution, we have the estimator φ̂ j, j = 1, 2, . . . , p
as follows:

φ̂ j = φ j + Op

⎛⎜⎜⎜⎜⎝
[

n
log n

]−2/α⎞⎟⎟⎟⎟⎠ , (4.33)

and we have

r̂k = rk +

p∑
j=1

(φ̂ j − φ j)ψk− j + Op

⎛⎜⎜⎜⎜⎝
[

n
log n

]−2/α⎞⎟⎟⎟⎟⎠ , (4.34)

where ψ j is the j-th term of the impulse response coefficients at lag i

rk =

∑
atat−k∑

a2
t

,

Under the null hypothesis of the portmanteau test, r1 = r2 = . . . = rk = 0. Then we can write
the equation 4.34 in its matrix form:

r̂ = r +Ψ(φ − φ̂), (4.35)

where

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
ψ1 1 · · · 0
ψ2 ψ1 · · · 0
...

...
. . .

...
ψm−1 ψm−2 · · · ψm−p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then based on above assumption and equation 4.35,we could get the asymptotic distribution
for modified Fisher-Gallagher Portmanteau Test for ar(p) Model with infinite variance.
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Theorem 4.4. Under the ar(p) model with infinite variance, assume ât is the estimated resid-
uals after estimation, then we have:

Q̃W =

(
n

log(n)

)2/α m∑
k=1

m − k + 1
m

r̂2
k →d WT

mUmWm, (4.36)

where Wm = (W1, W2, . . . , WM)T , Um = (Im − Q)T Km(Im − Q), Qm = X(XT X)−1XT , Im is the
identity matrix, and

Km =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 m−1

m · · · 0
...

. . .
. . .

...
0 0 · · · 1

m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof:

First, we write the quadratic form of the modified Fisher-Gallagher Portmanteau Test:

Q̃W =

(
n

log(n)

)2/α

r̂T Kmr̂. (4.37)

According to equation 4.33, we can have:

φ̂ j − φ j =

(
n

log n

)−1/α

. (4.38)

According to Box and Pierce (1970), the estimated residuals Ẑt satisfy the orthogonal condition
and to the order of Op

(
1/
√

n
{
n/ log n

}1/α
)
, we have:

r̂T X = 0. (4.39)

Multiple both side of 4.35 by Qm given by:

Qm = X(XT X)−1XT , (4.40)

we get the relationship between autocorrelation r and sample autocorrelation r̂ as

r̂ = (Im −Qm)r. (4.41)

Then according to equation 8 in Lin and McLeod (2008):
[

n
log n

]1/α

rT →d WT
m, (4.42)

where Wm = (W1,W2, . . . ,WM)T . We have the quadratic form of Fisher-Gallagher Portmanteau
test convergence:

Q̂W =

(
n

log(n)

)2/α

r̂T Kmr̂→d WT
mUmWm, (4.43)
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where Um is defined as (Im −Qm)Km.

According to Lee and Ng (2010), if the trimming proportion λ is close to zero, then we have
r̃k → r̂. Therefore, the above theorem can be extended:

Corollary 4.3. If λ is close to 0 then we could have the trimmed portmanteau test on the
residuals of ar(p) with infinite variance convergence:

Q̃W = nr̃T Kmr̃→d

m∑
j=1

λiχ
2
1, (4.44)

where λ j, j = 1, 2, . . . ,m is the eigenvalues of the matrix of (Im −Qm)Km.

Remark 1: According to Lin (2006) and Lin and McLeod (2008), the residuals in the fitted
ARMA model would be asymptotically equivalent to a certain ar(p) model under the general
linear process form. Then the behavior of the residuals and trimmed residuals in ar(p) could
be generalized to ARMA model with infinite variance.

Remark 2: According to Cui and Wu (2014), the trimmed partial autocorrelation function will
hold the same convergence as its trimmed autocorrelation function, hence one can generalized
this result to the weighted Monti-type Portmanteau Test (Fisher and Gallagher, 2012a) which
would have the similar convergence results.

4.4 Simulation Study on ARMA with Infinite Variance

We investigate the power of new portmanteau test in Fisher and Gallagher (2012a) and apply on
the ARMA Model with infinite variance. The powers of the tests are estimated by the Monte
Carlo Algorithm in Lin and McLeod (2006) (Lin-McLeod Test). The new portmanteau tests
are listed as follows:

QW = n(n + 2)
m∑

k=1

m − k + 1
m

r̂2
k

n − k
, (4.45)

and

MW = n(n + 2)
m∑

k=1

m − k + 1
m

π̂2
k

n − k
, (4.46)

The asymptotic distribution is the same as defined in Peňa and Rodríguez (2002) as the weighted
χ2 distribution. First, we investigate the empirical size of Lin-McLeod Test for randomness of
stable white noise with index α. We set the nominal size as 5% to compare. The simulations
are presented in Lin and McLeod (2008) for improved portmanteau test in Peňa and Rodríguez
(2002) and Box-Pierce Test (Box and Pierce, 1970).
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In the figure 4.1, we simulate the series length of n = 250 and trim its upper and lower 1%
of data. In this case, we assume β = 0, γ = 1. Figure 4.1 shows the comparison between the
original data and the trimmed data. From Figure 4.1, we can see clearly that after trimming,
the data has already been regulated and the behavior would be more like the finite variance data.

The blue line shows the original series with stable white noise innovation while the red line
shows the trimmed series. The below plot show the comparison between the series following
stable distribution and the series after trimming. Here, we choose the trimming rate as 0.01.

Figure 4.1: Comparison between Time Series with Paretian errors and its trimmed time series.
Choosing series length n = 250 and trimming level λ = 5%.
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4.4.1 Randomness Evaluation

In order to evaluate and compare the empirical size of the trimmed Fisher-Gallagher Portman-
teau test, we employ the Lin-McLeod Test here. First, in Table 4.1, we compare the empirical
size between the original Fisher-Gallagher Test and the trimmed Fisher-Gallagher Test on Sta-
ble White Noise Innovation with index α.

Table 4.1: Size Comparison between Fisher-Gallagher Test (both Ljung-Box type and Monti
Type) and its Application on the Trimmed Time Series. Choosing Stable Distribution Parame-
ters α = 1.1, 1.3, 1.5, 1.7, 1.9, β = 1, γ = 0. Trimmed Level λ = 5%, series length m = 5, 10, 15.

QW MW Q̃W M̃W
α/m 5 10 15 5 10 15 5 10 15 5 10 15
1.9 6.60 5.10 5.30 6.20 5.40 5.50 4.90 5.00 5.70 5.50 5.00 5.20
1.7 4.80 5.20 3.70 5.20 4.70 3.30 5.10 5.50 5.50 4.70 5.00 5.40
1.5 4.90 5.90 6.10 5.10 5.70 6.10 5.60 5.70 4.90 5.10 5.30 4.80
1.3 4.50 5.50 3.10 4.40 5.30 3.70 4.20 5.50 4.70 4.40 5.30 4.80
1.1 4.80 5.00 4.80 4.90 5.20 4.70 5.20 4.20 4.20 5.30 4.30 4.60

The empirical size listed above was calculated based on N = 103 simulations. Each Monte
Carlo p-value was estimated based on B = 103 simulation. Series length n = 250 and lags
m = 5, 10 and 15 were investigated. In the Fisher-Gallagher Portmanteau Test table above, the
bolded numbers mean significantly different from the nominal level 5% (Smaller than 4% and
larger than 6%).

Remark 3: By comparing the Fisher-Gallagher Portmanteau Test on stable white noise inno-
vation, we can see the trimmed portmanteau test would be more stable and accurate estimating
the type one error especially for larger α value. Less exotic numbers appear after we invite the
idea of trimming.

Secondly, we consider the comparisons between Fisher-Gallagher Test, general variance Port-
manteau test and Box-Pierce Test with their trimmed tests. Still we consider the size with the
change of α and lag number m. We choose the α = 1.1, 1.3, 1.5, 1.7, 1.9, m = 5, 10, 15, series
length is n = 250, Monte Carlo repetition time 103 and bootstrap iteration N = 104. Since the
environment set up is the same as the Table 1 in Lin and McLeod (2008), then can compare to
their results.

Table 4.2: Size Comparison between Monte Carlo Test D̂m, Box-Pierce Test QBP, Fisher Gal-
lagher Ljung-Box Type Test QW and Fisher Gallagher Monti Type Test MW . Choosing Stable
Distribution Parameters as α = 1.1, 1.3, 1.5, 1.7, 1.9, β = 1, γ = 0, Trimmed Level as λ = 5%
and lag m = 5, 10, 15
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Statistics m D̂m QBP QW MW Q̃W M̃W

α = 1.9
5 5.30 4.96 5.28 5.26 4.99 5.18
10 4.66 4.71 4.66 4.77 5.13 5.10
15 4.78 4.84 5.06 5.12 4.78 4.86

α = 1.7
5 5.18 4.82 4.42 4.36 5.06 5.18
10 4.44 4.43 4.71 4.77 4.89 4.86
15 4.44 4.41 4.68 4.50 4.94 5.05

α = 1.5
5 4.82 5.07 4.75 4.60 4.85 4.81
10 4.99 5.27 4.91 5.10 5.03 4.97
15 5.13 5.30 5.23 5.11 4.96 5.24

α = 1.3
5 4.80 5.04 5.05 5.01 5.09 4.93
10 5.03 5.00 4.91 4.95 4.78 4.81
15 5.18 5.27 4.72 4.79 5.14 5.20

α = 1.1
5 5.26 5.33 4.84 4.86 4.95 5.07
10 5.33 5.25 5.03 4.94 5.17 5.14
15 5.12 5.15 4.86 4.84 4.98 5.25

Remark 3: For comparison simplicity, we bolded the number with the smallest distance to
the nominal rate 5%. As we can see, generally the trimmed Fisher-Gallagher portmanteau Test
would dominate the test especially when α is close to 2. In a few cases where others tests
perform better, the trimmed Fisher-Gallagher Portmanteau would perform close to the best
performed tests. Therefore, we conclude that the trimmed tests could significantly increase the
performance of the test in terms of size.

4.4.2 Model Adequacy Checking

Now we are comparing the various portmanteau test with their trimmed counterpart and see
their performance on the model adequacy checking. The table 4.3 is simulated based on the
Table III in Lin and McLeod (2008). We set the simulation based on ar(1) model and infinite
variance (α = 1.5). And we fit the model with burg estimation since it can always estimate
the model in the stationary condition as the requirement of the Lin-McLeod Test. We fit the
model with ar(1) model with φ1 = ±1, ±3, ±5, ±7 and ±9. The empirical size of each test was
calculated based on N = 103 and for each Lin-McLeod Test, we use 103 iterations to calculate
the p-value. The series length is n = 102 and we calculated for lag m = 5, 10, 15.

Using Table 4.3, we can compare the Fisher-Gallagher Portmanteau Test (Weighted Ljung-
Box (QM) and Weighted Monti (WM)) (Fisher and Gallagher, 2012a), general variance Test D̂m
(Mahdi and McLeod, 2011) and their trimmed test (Q#

M, W#
M, D̂#

m). When applying this tests
on the ARMA model with infinite variance, we can see the performance of the original tests
become unstable. The bolded numbers in Table 4.3 present the number that are significantly
different from the nominal rate 5%, while their trimmed tests would be more stable than it.
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Figure 4.2: Comparison between Estimated Residuals after fitting ar(1) Model to ar(1) Model
with Paretian Errors. Original Residuals Series and its Trimmed Series Presented below.
Choosing φ = ±0.1,±0.5 and ±0.9 and Stable Parameter α = 1.5, β = 1, γ = 0. Series
length n = 1000 and trimming level λ = 5%.
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As we can see, the tests would be more stable when the lag m increases as it would include
more information about the residuals in the tests and would therefore be a more accurate esti-
mator. The Figure 4.3 show the residuals for various φ1 after being fitted by the ar(1) Model.
We can see the trimming could stabilize the residuals, therefore it can improve the performance
of the portmanteau test.
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Table 4.3: Size Comparison between Fisher-Gallagher Test (both Ljung-Box QW and
Monti MW) as well as Their Application on Trimmed Time Series, and General Vari-
ance Portmanteau Test D̂m and its Application on Trimmed Time Series. Choosing φ =
±0.1,±0.3,±0.5,±0.7,±0.9 and lag m = 5/10/15 and Stable Distribution Parameters α =
1.5, β = 1, γ = 0. Series length n = 103 and Nominal Level 5% .

φ1 m QW Q#
W MW M#

W D̂m D̂#
m

−0.9 5 6.5 5.9 6.4 5.5 6.4 5.5
−0.7 5 4.1 5.9 4.2 5.7 4.3 5.8
−0.5 5 5.0 4.4 4.9 4.4 5.0 4.4
−0.3 5 4.5 5.8 4.4 5.2 4.5 5.1
−0.1 5 5.2 5.1 5.4 5.3 5.4 5.3

0.1 5 4.3 4.9 4.6 5.1 4.6 5.2
0.3 5 3.8 5.4 4.3 5.2 4.3 5.3
0.5 5 3.5 5.7 3.2 5.6 3.0 5.6
0.7 5 4.5 5.1 4.8 5.3 4.7 5.2
0.9 5 6.1 5.7 5.9 5.9 5.9 5.9
−0.9 10 4.4 4.9 4.4 5.1 4.7 5.2
−0.7 10 4.6 4.8 4.7 4.4 4.8 4.4
−0.5 10 2.6 4.1 3.1 4.6 3.0 4.7
−0.3 10 5.9 4.0 4.0 5.5 4.0 5.7
−0.1 10 4.1 5.8 4.3 5.2 4.3 5.2

0.1 10 3.9 5.0 4.3 5.2 4.4 5.1
0.3 10 4.5 5.1 4.6 4.9 4.4 4.8
0.5 10 2.6 4.1 3.1 4.6 3.0 4.7
0.7 10 4.1 5.0 4.0 5.7 4.0 5.5
0.9 10 4.4 4.4 4.1 4.1 4.2 4.3
−0.9 15 4.9 5.2 5.0 5.3 4.9 5.0
−0.7 15 3.7 5.3 4.1 5.9 4.1 5.8
−0.5 15 5.1 4.8 4.1 5.3 3.9 5.2
−0.3 15 4.2 5.2 3.9 4.2 3.8 4.2
−0.1 15 4.1 5.7 4.5 5.1 4.5 5.5

0.1 15 4.4 5.5 4.0 5.2 4.0 5.6
0.3 15 5.1 4.5 4.8 5.5 5.0 5.0
0.5 15 4.5 5.3 4.6 4.9 4.7 5.1
0.7 15 4.1 5.0 4.0 5.7 4.0 5.5
0.9 15 4.8 4.9 4.1 5.2 4.1 5.3

4.4.3 Further Power Comparison

In order to fully explore the performance of the trimmed portmanteau test based on the Fisher
and Gallagher (2012a). Since they have already shown the asymptotic equivalence between
Mahdi-McLeod test Mahdi and McLeod (2011) and Fisher-Gallagher test Fisher and Gallagher
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(2012a), then we will mainly consider the Fisher-Gallagher portmanteau test with Ljung-Box
type and Moni Type. Here, we use the package WeightedPortTest (Fisher and Gallagher,
2012b) in R to perform the Fisher-Gallagher Test.

First, we simulate the following models from ARMA (2, 2) with stable distribution (α = 1.5, β =
1, γ = 0).

Model 1 : φ1 = 0.1, φ2 = 0.3

Model 2 : φ1 = 1.3, φ2 = −0.35

Model 3 : θ1 = −0.5

Model 4 : θ1 = 0.8

Model 5 : φ1 = 0.7, θ1 = −0.4

Model 6 : φ1 = 0.4, θ1 = −0.6

Model 7 φ1 = 0.7, φ2 = 0.2, θ1 = 0.5

Model 8 : φ1 = 0.9, φ2 = −0.4, θ1 = 1.2, θ2 = −0.3

In the table 4.4, we should have the simulate series from the above ARMA (2, 2) model with
stable distribution, and then fit the data with ar(1) Model. We evaluate the Fisher-Gallagher
Test and their applications on trimmed time series to compare their power. Then we increase
the sample size of the simulation.

As we can see from Table 4.4, under most cases of ARMA (2, 2), the Fisher-Gallagher Test
on the trimmed time series would outperform its original counterpart. Interestingly, as the
lag m increases, the power would decrease since the variance in the residuals would disturb
the portmanteau test. And further, we could see in the cases of ARMA (2, 2) with moving
average components of θ, the Monti type Fisher-Gallagher Test would perform better than its
Ljung-Box type. Their applications on the trimmed time series preserve this property.
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Table 4.4: Power Comparison between Portmanteau Test (Ljung-Box Fisher-Gallagher Test
QW and its Application on Trimmed Time Series Q∗W , Monti Fisher-Gallagher Test MW and its
Application on Trimmed Time Series M∗W). Choosing Trimmed Level λ = 0.01, Series Length
n = 100.

m QW Q∗W MW W∗
m

Model 1
5 63.3 75.2 59.9 74.3
10 57.0 65.3 53.8 57.1
15 53.7 53.6 49.1 48.9

Model 2
5 62.1 91.2 69.8 92.3
10 59.7 89.7 65.9 89.1
15 53.2 83.0 56.6 77.7

Model 3
5 30.6 46.1 35.5 52.3
10 22.4 31.4 27.9 35.9
15 23.2 28.4 26.6 30.8

Model 4
5 69.5 98.9 76.8 99.4
10 55.8 95.6 64.9 98.3
15 18.6 16.4 16.4 16.1

Model 5
5 18.6 16.4 16.4 16.1
10 17.0 12.8 15.4 12.2
15 14.7 11.6 12.6 10.6

Model 6
5 13.4 18.5 15.5 21.3
10 10.1 11.2 12.3 13.4
15 9.9 11.0 11.3 12.9

Model 7
5 26.6 63.5 33.0 72.6
10 20.7 45.4 26.1 56.3
15 18.2 36.6 23.8 44.0

Model 8
5 96.9 100 98.1 100
10 97.1 99.9 98.5 99.9
15 97.4 99.8 97.4 98.9
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4.5 Illustrative Application

Firstly, we consider the randomness test for the time series with infinite variance. As in Lin and
McLeod (2008), we choose the S &P 500 daily index from 2 January ,1999 to 29 December
,2006. Then we calculate the log returns, log(Xt+1/Xt), and test the randomness for the series.
We show the basic features of the data in the figure 4.3:

Figure 4.3: Daily Index Returns of S &P500 From 2 January 1999 to 29 December 2006,
Autocorrelation Plot (ACF) and Partial Autocorrelation Plot (PACF). Length of Series n =
2010
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We plot the original time series as blue and the trimmed time series as red with trimmed level
λ = 0.01. As we can see from the Figure 4.3, after trimming the time series, we have the time
series with more stable and behave like strong white noise time series.

From Figure 4.4, after trimming the time series, we can have a time series behave much like
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Figure 4.4: QQ Plot for Original Time Series and Trimmed Time Series with Trimmed Level
λ = 0.01

−3 −1 1 3

−0
.0

6
−0

.0
2

0.
02

0.
06

Original Time Series

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −1 1 3−0
.0

3
−0

.0
1

0.
01

0.
03

Trimmed Time Series

Theoretical Quantiles
S

am
pl

e 
Q

ua
nt

ile
s

the strong white noise case. However, we do need to choose the right level of trimming since
the trimming will cause the loss of information.

Therefore, we apply the portmanteau test in Lin and McLeod (2008) as well as their application
on trimmed time series to compare their performance. We use the algorithm for randomness
test to evaluate the randomness and goodness-of-fit of the model adequacy.

Table 4.5: p-value Comparison on Evaluating Randomness for Squares of S &P500 Index
Returns and the trimmed time series with Ljung-Box Test. Series Length n = 2011. Monte
Carlo iteration N = 1000. ∗ represent the trimmed level λ = 0.01 and ∗∗ represent the trimmed
level λ = 0.05

Test Statistic/Lag
1 5 10 15 20 30 50

LB Normal 39.8 12.1 27.6 8.25 2.24 1.44 0.55
LB Stable 22.8 8.55 17.2 7.66 4.77 4.77 0.47
LB Stable(Trim)∗ 41.3 10.1 23.1 11.34 15.4 23.2 4.7
LB Stable(Trim)∗∗ 6.4 36.4 73.4 86.3 68.7 65.8 34.0

As we can see from Table 4.5, under the assumption of normality, the Ljung-Box Test would
reject the null hypothesis of normality once the lag m is large enough. If we directly apply the
Ljung-Box Test to test the null hypothesis of stable distribution, with small lag number m, the
test works pretty well but it will reject the null hypothesis with large lag m. With trimmed time
series, the test would still identify the stable distribution for the larger lag m.

Now, we test the performance of modified Fisher-Gallagher Test on the time series with infinite
variance.

64



Table 4.6: P Value Comparison on Evaluating Randomness for Squares of S &P 500 Index
Returns and the trimmed time series with Fisher-Gallagher Test. Series Length n = 2011.
Monte Carlo Iteration N = 1000. ∗ represent the trimmed level λ = 0.01 and ∗∗ represent the
trimmed level λ = 0.05

Test Statistic/Lag
1 5 10 15 20 30 50

FG Normal 37.5 21.0 27.6 17.6 5.71 2.64 4.47
FG Stable 22.6 11.7 17.2 11.0 7.11 5.52 3.23
FG Stable(Trim)∗ 39.4 15.3 12.1 10.9 10.4 13.1 9.99
FG Stable(Trim)∗∗ 7.51 14.9 41.2 59.3 64.6 65.9 58.9

From Table 4.7, after trimming, the null hypothesis of stable distribution would not be rejected
at a large lag m for Fisher-Gallagher Test.

We follow the idea of Tsay (2005) and Lin and McLeod (2008) about the monthly simple return
of CRSP Value-Weighted Index from Jan 1926 to Dec 1997. After fitting ar(5) model and us-
ing the algorithm of McCulloch (1986), we can get α̂ = 1.635. Therefore, the infinite variance
is plausible for this data according to Lin and McLeod (2008). Then we apply the Ljung-Box
Test, Fisher-Gallagher Test and their applications on trimmed time series. We choose trimmed
level λ = 0.01 and 0.05

From Figure 4.5, when we choose trimmed level λ = 0.01, most information has already been
included in the trimmed data but still some outlying data would affect the stability of the time
series. While increasing the level of trimmed λ = 0.05, we will lose more information but the
trimmed time series would appear to be much more stable. We should balance the trade-off
between these two operations.

The model adequacy is evaluated based on the algorithm in the Appendix 4.7. We are at-
tempting to evaluate whether the model is following strong ARMA model or ARMA model
with infinite variance. Here, we compare the Ljung-Box Test and Fisher-Gallagher Test per-
formance. Then we have Table 4.7:

Table 4.7: P Value Comparison on Goodness-of-fit for Monthly Simple Return of CRSP and
the trimmed time series with Ljung-Box and Fisher-Gallagher Test against normal and stable
distribution error assumption. Series Length n = 864. Monte Carlo Iteration N = 1000. ∗
represent the trimmed time series with trimmed level λ = 0.01
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Figure 4.5: Month Simple Returns of CRSP Value-Weighted Index From January 1926 to
December 1997, Autocorrelation Plot (ACF) and Partial Autocorrelation Plot (PACF). Length
of Series n = 864
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Test Statistic/Lag
1 5 10 20 30 40 50

Ljung-Box Stable 0.1 0.1 4.3 1.5 1.6 2.7 3.0
Ljung-Box Normal 0.1 0.2 5.0 3.0 0.4 0.8 2.2
Ljung-Box Stable∗ 4.0 4.2 1.8 1.9 3.0 1.4 1.9
Ljung-Box Normal∗ 0.0 0.0 0.1 0.0 0.3 0.0 0.4
Fisher-Gallagher Stable 0.1 1.1 4.9 2.5 1.4 1.6 1.3
Fisher-Gallagher Normal 0.1 0.1 6.2 9.0 0.3 0.2 0.8
Fisher-Gallagher Stable∗ 4.0 3.0 1.7 1.8 0.8 1.4 1.3
Fisher-Gallagher Normal∗ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

From the table 4.7, the p-value for these tests are small and under the predetermined nomi-
nal level α = 0.5. Under a close look, we find after trimming, both Ljung-Box and Fisher-
Gallagher Test on Normal and Stable distribution assumption would get a more rejective p-
value while the traditional test on original time series will be inflated. Another notable point is
Fisher-Gallagher tend to be more conservative when testing for the error distribution especially
on stable distribution assumptions.
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4.6 Conclusion

In this chapter, we consider the Fisher-Gallagher Test on the trimmed time series. We derive
the asymptotic distribution for the portmanteau test and with this approach, the size distortion
problem alleviated. Various simulations show the better performance of the test on trimmed
time series especially when we have the infinite variance error assumptions. We apply this test
on various ARMA model and discover the power improvement in this case. Finally, we use
some practical examples to show the power of the tests here.
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4.7 Appendix

4.7.1 Lin-McLeod Test for Randomness on Trimmed Time Series

Here, we modify the Lin-McLeod Test (Lin and McLeod, 2008) on the trimmed time series for
randomness test:

Algorithm 4.1. We have a series Xt, t = 1, 2, . . . , n. We have the null hypothesis for the series
following a stable/normal distribution.

Step One: Calculate the portmanteau test statistics Q̂0
W/M̂0

W from the series/trimmed series
with predetermined trimmed level λ.

Step Two: Calculate the observed distribution estimation. For Stable Distribution Assumption,
calculate the parameters α̂, β̂, γ̂. For normal distribution assumption, calculate the parameters
μ̂, σ̂.

Step Three: Simulate the series X̂t, j, t = 1, 2, . . . , n based on the observed parameters calcu-
lated before. then calculate the portmanteau test Q̂ j

W/M̂ j
W from series and trimmed series with

the predetermined level λ.

Step Four: Repeat the Step Three for N times as X̂t, j, t = 1, 2, . . . , n, j = 1, 2, , . . . ,N. Calculate
the p value as

pvalue =
#

{
Q̂ j

W > Q̂0
W

}
+ 1

N + 1
. (4.47)

Under this test, we could test whether the series would follow the null hypothesis here. Then
the goodness-of-fit could be obtained by modified this algorithm slightly.

4.7.2 Lin-McLeod Test for Model Adequacy on Trimmed Time Series

Algorithm 4.2. We have a series Xt, t = 1, 2, . . . , n. And then we fit the data with models
and get the residuals. Then we evaluate the the model adequacy according to the residuals
series/trimmed residuals series.

Step One: Fit the model to the series Xt and get the estimated parameters λ̂ and the residuals
ε̂0

t , t = 1, 2, . . . , n. Calculate the portmanteau test statistics Q̂0
W/M̂0

W on the residuals series ε̂0
t

or trimmed residuals series ε̃0
t .
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Step Two: Fit the residuals ε̂0
t , t = 1, 2, . . . , n to get the distribution parameters. For stable

distribution assumption, we have α̂, β̂, γ̂. For normal distribution assumption, we have μ̂, σ̂.

Step Three: Simulate the series X̂t, j, t = 1, 2, . . . , n based on the estimated parameter λ̂ and
distribution estimator from the previous step. Then we could fit the simulated series X̂t, j and
get the residuals ε̂t, j.

Step Four: Calculate the portmanteau test Q̂M, j, M̂W, j from the series X̂t, j or trimmed series
X̃t, j with a predetermined trimmed level λ.

Step Five: Repeat the Step Three and Four for N times as X̂t, j, t = 1, 2, . . . , n, j = 1, 2, . . . ,N.
Calculate the p value as

pvalue =
#

{
Q̂ j

W > Q̂0
W

}
+ 1

N + 1
. (4.48)
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Chapter 5

Independent Test between Time Series

5.1 Introduction

In order to test the independence between two time series, Hong (1996) proposed an important
portmanteau test based on correlation:

QN =
N

∑N−1
j=1−N k2( j/M)ρ̂2

uv − S N(k)

{2DN(k)}1/2 , (5.1)

where M/N → 0 and

S N(k) =
N−1∑
1−N

(1 − | j|/N)k2( j/M), (5.2)

DN(k) =
N−2∑
2−N

(1 − | j|/N)(1 − (| j| + 1)/N)k4( j/M), (5.3)

k(| j|/M) is the kernel function. As proposed by Hong (1996), some common kernel, such as
Parzen, Bartlett, Daniell, and quadratic spectral kernel, can be used here. Under the regularity
condition, QN would converge to a normal distribution and the p-value could be calculated
accordingly. This test can be treated as an important modification of the portmanteau test
proposed by Haugh (1976) where the test statistics is defined as:

S = N
M∑

j=−M

ρ̂uv( j). (5.4)

We know this statistics would converge to a chi-squared distribution. Based on the simulation
results of Hong (1996), the Hong’s Test would outperform the Haugh’s Test under the hypoth-
esis of independence for the ar model with φ = 0.5 by providing a corrected type one error
and larger power level (Hong, 1996). However, after revisiting the paper. we discovered that
there is an error in the simulation process. When compared with the Haugh Test, according to
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the definition, the correct formula for the adjusted test is:

S ∗ = N2
M∑

j=−M

(N − | j|)−1ρ2
uv( j), (5.5)

However, when Hong simulates the results, mistakenly he put the formula as:

S ∗ = N2
M∑

j=−M

(N − j)−1ρ2
uv( j), (5.6)

Analytically, this changes would produce a lower level of statistics S ∗ which contribute to a
larger level of type one error. Therefore, we reproduce and compare the type one error for both
correct and incorrect Haugh’s Test.

Further, we investigate the independent test of two time series with GARCH type of error. The
test on this type of time series is rarely discussed in the literature. Hong (1999) point out the
tests based on correlation would be inappropriate since it would miss the nonlinear process
with zero autocorrelation. Then he theoretically propose an independent test based on the gen-
eralized spectral density function and theoretically justify the power of the test. His method is
extremely theoretical and hard to implement for this type of problems.

When we explore this type of tests here, we find out when the time series involved GARCH
type of error, not just inappropriately but incorrectly identify independence by providing a
spurious correlation between the series here. We explore the reasons for this phenomenon and
modify the independent test with the Lin-McLeod Test (Lin, 2006; Mahdi and McLeod, 2011)
and its modified version. The Lin-McLeod Test would give more adaption for the tests and
allow them to have more complicated residuals structure in the time series. The size and power
advantages will be shown in later the later simulation study.
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5.2 Corrected Empirical Results and Spurious Correlation

Hong (1996) develop the correlation-based portmanteau test and its adjusted statistics. Accord-
ing to his simulation results, we find out the Hong’s test would have a better performance on
type one error. However, the equation of Haugh’s adjust statistics on page 622 is clearly wrong
due to an omitted absolute operation. This would lead to different simulation results.

Table 5.1: Size Comparison between Hong Statistics (Hong, 1996) and Haugh Statistics
(Haugh, 1976) under Corrected Formula. Choosing Xt = 0.5Xt−1 + ut,Yt = 0.5Yt−1 + vt where
ut, vt ∼ N(0, 1) and ρuv = 0 for all j. Series Length n = 1000, Nominal Level α = 0.5%.
QN and Q	

N stand for Hong Statistics and its adjusted statistic. S N represent the Haugh Test.
S 	

R stands for the right adjusted Haugh statistic and S 	
W Stands for the wrong adjusted Haugh

statistic. We underline the statistics closest to the nominal level α.

lag
N = 100 N = 200

M = 5 M = 8 M = 12 M = 5 M = 9 M = 15
α 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
QN 10.3 7.6 10.3 6.2 9.5 6.3 10.1 6.4 10.5 7.0 11.4 6.5
Q	

N 9.9 6.7 10.2 5.9 5.9 3.2 10.9 6.5 9.3 5.7 7.5 3.9
S 7.7 3.1 8.7 4.2 6.2 1.9 8.1 3.8 7.7 3.6 6.0 3.1
S 	

R 9.3 4.6 9.9 4.8 9.9 4.9 9.5 4.8 10.0 4.6 10.0 5.0
S 	

W 12.2 5.6 8.4 5.0 10.2 4.9 10.9 5.2 7.6 3.7 10.5 4.7

From the table 5.1, we can easily see that with the correct form of Haugh adjusted statistics.
Actually, it gets close to the nominal level α which contradicts to the statement in Hong (1996).
Still, we explore the power of these tests under the null hypothesis and alternative hypothesis
following Hong (1996) simulation.

For convenience, we list the three hypothesises used in Hong (1996).

Alternative 1:

ρuv( j) =

⎧⎪⎪⎨⎪⎪⎩
0.2 j = 0
0 Otherwise

(5.7)

Alternative 2:

ρuv( j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.125 j = 0
sin(0.125π j)/π j 1 ≤ j ≤ 8
0 Otherwise

(5.8)
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Alternative 3:

ρuv( j) =

⎧⎪⎪⎨⎪⎪⎩
0.3 j = 3
0 Otherwise

(5.9)

We simulate two processes Xt and Yt as: Xt = 0.5Xt−1 + ut and Yt = 0.5Yt−1 + vt where the error
term we assumed they are under these three hypothesises. In the simulation we produce 104

replications.

Under Alternative 1, ut and vt are correlated simultaneously but not otherwise. In contrast, the
cross-correlation function of Alternative 2 has a maximum value at j = 0, and then decays
sinusoidally and smoothly to 0 at j = 8. For Alternative 3, ut and vt are correlated only at lag
j = 3. These three types of correlation present the basic linear correlations.

Table 5.2: Power Comparison under Three Alternative Comparison of ρuv( j). Choosing Xt =

0.5Xt−1 + ut,Yt = 0.5Yt−1 + vt where ut, vt ∼ N(0, 1) . Series Length n = 1000, Nominal Level
α = 5%

N = 100 N = 200
M = 5 M = 8 M = 12 M = 5 M = 9 M = 15

Alter 1

QN 34.24 28.65 23.77 63.32 53.32 43.39
Q	

N 32.65 26.66 18.72 63.48 51.08 37.87
S 14.95 10.65 6.71 34.71 25.09 15.56
S 	 17.33 13.37 10.32 35.87 26.47 20.12

Alter 2

QN 39.63 39.62 35.83 71.78 73.19 66.30
Q	

N 37.12 36.00 27.91 70.71 71.37 60.67
S 25.51 16.49 10.24 60.74 43.71 26.70
S 	 26.97 20.57 16.07 62.48 45.67 31.70

Alter 3

QN 17.84 42.15 43.80 46.22 84.49 84.26
Q	

N 15.54 35.67 36.98 44.52 82.61 81.02
S 37.98 28.08 21.02 82.96 71.39 57.37
S 	 41.64 34.17 28.27 83.92 73.66 63.36

As shown in Table 5.2, in general cases, Hong’s and its adjusted version outperform the
Haugh’s Test. However, in some cases with smaller lag m, the Haugh’s test shows its power
there. After we revise the Haugh’s Test formula, we see less differences lie between Hong and
Haugh Test. This gives evidences that Haugh’s Test still have good power for these types of
correlation between errors. Another point is that the adjust made on the original statistics is
not always improving the performance of the statistics.

In order to further explore and compare the power of the statistics, we reapply these tests on
the model with GARCH type of error. The data generating mechanics could be described

0In the table 5.2, QN and Q	
N stand for Hong Statistics and its adjusted statistic. S represent the Haugh Test. S 	

stands for the right adjusted Haugh statistic. The table shows the power of identification under three alternatives.
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as followed: Xt and Yt can still be defined as an autoregressive model with lag of 1, Xt =

0.5Xt−1 + ut, and Yt = 0.5Xt−1 + vt. Replacing the usual error assumption of normality, we
assume the following possible cases:

• ut follows N(0, 1) and vt follows GARCH (1, 1) model.

• Both ut and vt follow GARCH (1, 1) model.

In these cases, the errors are simulated independently but with weak autocorrelation embedded
in. For illustrative purpose, we choose the parameters in GARCH model as α0 = 10−6, α1 =

0.2, β = 0.7 and a skewed generalized error distribution with skewness of 1.25 and shape of
4.8. And the GARCH model defined as follows:

at = vt
√

ht, (5.10)

ht = α0 +

q∑
i=1

αia2
t−i +

p∑
i=1

βiat−i. (5.11)

Under the above data generating process, we produce the power table with 104 repetition iter-
ation for 95% confidence level.

Table 5.3: Power Comparison between Hong’s test and Haugh’s test under the GARCH error.
Series Length N = 100, 200. Choosing lag M = log n for Comparison. QN and Q	

N stand for
Hong Statistics and its adjusted statistic. S represent the Haugh Test. S 	 stands for the right
adjusted Haugh statistic. The table shows the power of identification under two models.

N = 100 N = 200

M = 5 M = 8 M = 12 M = 5 M = 9 M = 15

Model 1

QN 5.00 3.62 2.00 5.40 3.48 1.60
Q	

N 5.32 2.81 1.38 5.78 2.88 1.28
S 1.23 0.5 0.13 1.85 0.69 0.29
S 	 1.49 0.85 0.44 1.99 0.93 0.36

Model 2

QN 95.97 95.18 94.39 95.90 95.96 95.31
Q	

N 95.74 94.97 93.94 96.39 95.78 94.82
S 93.25 91.04 88.98 94.67 93.47 90.65
S 	 93.51 91.79 88.41 94.94 93.94 90.91

The drastic difference between these two models result alerts us about the usefulness of the in-
dependent tests. As we can clearly see from the model, when the tests are applied on the model
1, the rejection rate is usually less than 5%, the nominal level it should be. Especially when lag
M gets increased, the level would decrease significantly even lower than 1%. This gives us an
idea that the statistics would tend to the null hypothesis of independence. However, when the
tests are applied on the second model, the situation becomes reversed. The rejection rates are
usually no less than 88% which gives us a results in favor the alternative hypothesis. This form
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a kind of spurious autocorrelation with overestimated p-value. After careful exploration, we
find the test statistics of both Haugh and Hong tests would become enlarged after introducing
the GARCH type of error. Then, the asymptotic distribution of the test statistics would move
to the right significantly. Therefore, the p-value would increase significantly which contribute
to this inaccuracy of the tests. However, when we closely look at these results, Hong’s results
still outperform Haugh’s test.
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