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ABSTRACT 

Two-stage concrete (TSC), also known as preplaced aggregate concrete, is a special type of 

concrete that is produced using a unique procedure which differs from that of conventional 

concrete. TSC is distinguished by its high coarse aggregate content and exceptional 

placement technique, whereby aggregates are first pre-placed in the mold then injected with a 

special grout. The preplacement of aggregates saves substantial energy since only the grout 

needs mechanical mixing; the grout is self-leveling and needs no vibration and no 

mechanical compaction. However, TSC applications are still limited despite substantial 

advancement of modern concrete technology. Therefore, there is a need to explore new 

possibilities and applications for TSC through adjusting and improving its properties. The 

objective of this study is to advance the TSC technology through the use of supplementary 

cementitious materials (SCMs), fibre reinforcement, capturing its sustainability features to 

develop novel pavements with very high recycled content, and establishing models with 

predictive capability for its engineering properties. 

Therefore, the fresh and hardened properties of grout mixtures incorporating various 

SCMs, including fly ash (FA), silica fume (SF) and metakaolin (MK) were investigated. An 

attempt was made to identify the optimum water-to-binder (w/b) ratio and the high-range 

water-reducing admixture (HRWRA) dosages for grout mixtures that meet the recommended 

efflux time (i.e. 35-40 ± 2 sec) according to ACI 304.1 (2005). Moreover, the effects of 

various SCMs at different dosages on the development of TSC mechanical properties were 

investigated. Likewise, the performance of TSC made with single, binary and ternary binders 

exposed to different environments conducive to physical and chemical sulfate attack was 

explored.  

The negative influence of fibres on the workability of conventional concrete is 

eliminated in TSC since the coarse aggregates and fibres are preplaced in the formwork and 

then injected with a flowable grout. This allows using fibre dosages beyond the practical 

levels typically adopted in conventionally mixed concrete. Therefore, the mechanical 

performance of two-stage steel fibre-reinforced concrete (TSSFRC) made with different 

dosages of steel fibres having various lengths was explored for the first time.  
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The high coarse aggregate content endows TSC with superior volume stability, making it 

an ideal contender for pavements and sidewalks, which typically suffer from shrinkage and 

thermal cracking. In this study, the preplaced material consists of recycled concrete aggregate 

and scarp tire rubber granules along with scrap tire steel wire fibres, while the grout uses 

high-volume fly ash. The performance of such a “green” TSC pavement construction 

technology was explored. Finally, the experimental results were used to create a database 

which was utilized for developing fuzzy logic (FL) models as a means of predicting the grout 

flowability (i.e. efflux time and spread flow) and the mechanical properties (i.e. compressive 

and tensile strength) of a variety of two-stage concrete (TSC) mixtures.  

Results indicated that grouts made with water-to-binder ratio (w/b) = 0.45 can achieve 

the recommended grout flowability for successful TSC production. Moreover, TSC grout 

properties highly depended on the type and dosage of SCM used. The grout flowability was 

significantly enhanced as the FA dosage was increased, while the compressive strength was 

decreased. Partially replacing cement with 10% SF or 10% MK reduced the grout flowability 

and enhanced its compressive strength. Moreover, the binder composition has a great 

influence on the TSC mechanical properties. Empirical relationships between the properties 

of the grout and those of the corresponding TSC were proposed, offering a potential tool for 

estimating TSC properties based on primary grout properties.  

Furthermore, the ease of using a high dosage of pre-placed fibres in TSSFRC allowed 

achieving exceptional engineering properties for the pre-placed aggregate concrete. Indeed, 

TSSFRC can easily be produced with 6% steel fibre dosage, which makes it an innovative 

option and a strong contender in many construction applications. 

Fully immersed TSC specimens incorporating FA or MK in sodium sulfate solution 

exhibited high sulfate resistance. Surprisingly, TSC specimens incorporating SF deteriorated 

significantly due to thaumasite formation. Under physical sulfate attack exposure, TSC 

specimens incorporating FA and/or SF incurred severe surface scaling at the evaporative 

front, while those made with MK exhibited high resistance to surface scaling.  

A novel eco-efficient technology for the construction of pavements and sidewalks was 

proposed. The results demonstrate the feasibility of TSC eco-efficient technology to produce 
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durable and cost-effective sidewalks and pavements, offering ease of placement and superior 

sustainability features. Finally, the performance of the developed FL models was evaluated 

using error and statistical analyses. The results indicate that the FL models can offer a 

flexible, adaptable and reasonably accurate tool for predicting the TSC grout flowability and 

mechanical properties. 

The findings of this study should provide a leap forward in establishing the TSC 

technology as a strong contender in many construction applications. It contributes to taking 

the TSC from a basic technology to a more modern system that benefits from advancements 

in concrete technology through the use of SCMs, chemical admixtures and fibre 

reinforcement. In particular, in a new context that values sustainability and “green” 

construction technology, this study has proven TSC to be exceptional in its ability to use 

recycled materials without the drawbacks observed in normal concrete technology. These 

findings should contribute to enhancing the understanding of the TSC behaviour, paving the 

way for its wider implementation in today’s concrete industry.  

 

Keywords: Two-stage; concrete, grout, supplementary cementitious materials, flowability, 

mechanical properties, durability, steel fibre, sulfate attack, pavements, sidewalks, 

sustainability, fuzzy logic; model. 
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Chapter 1 

 

1. INTRODUCTION 

 

 

1.1. TWO-STAGE CONCRETE 

Two-Stage Concrete (TSC), also known worldwide under different names such as Colcrete, 

Prepacked Concrete and Preplaced Aggregate Concrete, is considered as a unique type of 

concrete that is produced using a special procedure, which differs from that of conventional 

concrete (ACI 304.1, 2005). In conventional concrete, all concrete ingredients are mixed then 

placed in the formwork. However, in TSC, coarse aggregates are first placed in the 

formwork. Subsequently, voids between coarse aggregate particles are filled through 

injecting special cementitious grout mixtures (Abdelgader and Najjar, 2009). The properties 

of the used grout and its ability to flow around the pre-place aggregate particles and 

effectively fill voids have a predominant effect on the TSC properties (Abdel Awal, 1984; 

Abdelgader and Elgalhud, 2008). Moreover, the TSC technique provides cost benefits since 

60% of the material (i.e. coarse aggregate particles) is directly placed into formwork and only 

40% (i.e. grout) goes through mixing and pumping procedures (Abdelgader, 1996). 

TSC has been successfully used for many years in special applications including 

underwater construction, placement in areas with closely spaced reinforcement and 

rehabilitation of existing concrete structures (ACI 304.1, 2005). It is distinguished by its 

unique placement technique, which offers several technological and sustainability 

advantages. Preplacing the coarse aggregates in the formwork before injecting grout allows 

using aggregates that constitute challenges in normal concrete production. For example, the 

production process of TSC makes it one of the preferable technologies for the construction of 

nuclear power plants (ACI 304.1, 2005). Since the coarse aggregates are pre-placed, very 

heavy materials incorporated within aggregates can be used in concrete production without 

segregation. Moreover, TSC has a high potential for use in mass concrete (e.g. dams) due to 

the low volume changes and heat of hydration of the TSC compared to that of conventional 
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concrete (ACI 304.1, 2005; Bayer, 2004). Furthermore, recycled concrete aggregates that 

normally cause loss of workability and severe pumping problems due to their higher water 

absorption will not contribute to concrete casting problems in the TSC technology 

(Morohashi et al., 2013). However, TSC technology has remained elementary and basic, 

rather targeting the lower end of the construction market. 

1.2. RESEARCH NEEDS AND MOTIVTION 

The TSC technology has been well established since the early 1950ies; however, its 

applications are still limited despite major advancements in modern concrete technology. 

Therefore, there is need to discover new possibilities and applications for TSC through 

adjusting and improving its properties. The key controlling factor of the mechanical strength 

and durability of TSC is the quality of the grout used in injecting the preplaced coarse 

aggregate, along with the rheological properties of the grout which should be conducive to 

effectively filling the space between preplaced aggregates and reducing the voids volume to a 

minimum.  

Resorting to new generation admixtures can allow producing low water-to-binder ratio 

(w/b) and high-strength grouts with adequate flowability, which should produce higher 

strength TSC. Moreover, using binary and ternary binders in producing TSC grouts can 

enhance the interfacial transition zone between the preplaced aggregates and the injected 

grout matrix. Furthermore, supplementary cementitious materials used in TSC grouts can 

enhance the durability of TSC to sulfate attack, damage by freezing-thawing cycles, ingress 

of chloride ions and various other degradation mechanisms, in a similar manner to that well 

documented in normally placed concrete. However, the use of emerging new admixtures and 

more sustainable and highly durable binder systems have rarely been explored in TSC. 

According to (ACI 304.1, 2005) “Class C fly ash and blast-furnace slag have been employed 

to a limited extent, but data on grout mixture proportions, properties, and in place 

experience are lacking. There are no known data on the application of silica fume in grout 

for Preplaced Aggregate Concrete.” Therefore, a detailed study is required to investigate 

enhancing the TSC rheological, mechanical, and durability properties based on recent 

developments in materials science and technology.  
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Furthermore, the fibre reinforcement dosage in fibre-reinforced concrete (FRC) is 

severely hampered by the interference of fibres with placement since the fibres cause serious 

concrete casting and consolidation problems. Conversely, in TSC, very high dosages of 

fibres can be premixed dry and preplaced with the coarse aggregates in the mold and later 

injected with a grout, allowing to possibly reach ductility and toughness levels that are not 

conceivable using the normal FRC technology. However, there is currently no accessible data 

in the open literature regarding the mechanical performance of TSC incorporating different 

steel fibre dosages. In addition, TSC long-term performance under different exposure 

conditions is still unclear and there are scant data available. Hence, before the wide 

implementation of TSC in full-scale construction, the durability and long-term properties of 

TSC under sulfate attack need to be explored under different simulated field-like ageing 

conditions. 

Moreover, incorporating different types of concrete waste by-products such as recycled 

aggregates and demolished concrete as coarse aggregate in TSC needs to be investigated. 

This will pave the way for using TSC on site to recycle demolished and waste concrete along 

with saving natural resources. Furthermore, a major problem with recycle aggregate concrete 

is the pumping difficulties associated with the slump loss due to absorption of moisture in the 

hollow aggregate. TSC is not vulnerable to this effect, and thus green TSC is an attractive 

option that needs detailed investigation.  

Most TSC past applications have been limited to mass concrete (e.g. dams), underwater 

concrete (e.g. bridge piers), and the rehabilitation of existing concrete structures. In order to 

pave the way for the TSC industry, there is need to discover the possibility of producing new 

TSC products based on the results obtained from this study.  

1.3. SPECIFIC RESEARCH OBJECTIVES 

In order to accomplish the above-mentioned research needs, the specific research goals are: 

1. Investigating the effect of different binder compositions, supplementary cementitious 

materials (SCMs), and new generation chemical admixtures on TSC grout properties. 

2. Investigating the effects of various SCMs at different addition rates on the 

development of TSC mechanical properties over time and exploring possible 
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correlations between the grout properties and the corresponding TSC mechanical 

properties. 

3. Exploring the mechanical performance of two-stage steel fibre-reinforced concrete 

made with different steel fibres dosages and lengths. 

4. Studying the durability of TSC under different sodium sulfate exposure regimes. 

5. Developing green sustainable TSC using recycled solid construction waste as coarse 

aggregate.  

6. Building models based on fuzzy logic inference systems (FIS) that are capable of 

predicting the grout flowability and the mechanical properties of various TSC 

mixtures made with single, binary and ternary binders. 

1.4. STRUCTURE OF THESIS 

This dissertation has been prepared according to the integrated-article format predefined by 

the Faculty of Graduate Studies at Western University, London, Ontario, Canada. It consists 

of 9 chapters covering the scope of this study: Innovating Two-Stage Concrete with 

Improved Rheological, Mechanical and Durability Properties. Substantial parts of this thesis 

have been published, accepted, or submitted for possible publication in peer-reviewed 

technical journals and conference proceedings.  

Chapter 1 provides a brief introduction along with the research motivation, objectives, 

thesis structure and original contributions of the research. 

Chapter 2 reviews the state-of-the-art knowledge on the two-stage concrete technology, 

including its development history, material specifications, engineering properties and long-

term performance. Also, this chapter provides useful information that can assist contractors 

and engineers in producing TSC. 

Chapter 3 explores the effects of using different supplementary cementitious materials 

(SCMs), including fly ash, silica fume and metakaolin, on the properties of TSC grout 

mixtures. Moreover, grout mixture proportions that can achieve high-strength TSC were 

identified. 

Chapter 4 presents the mechanical properties of TSC made with various grout mixtures 

and incorporating single, binary, and ternary binders. Also, empirical relationships between 
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the properties of the grout and those of the corresponding TSC are proposed, offering a 

potential tool for estimating TSC properties based on primary grout properties. 

Chapter 5 presents a study on the mechanical performance of two-stage steel fibre-

reinforced concrete (TSSFRC) incorporating various steel fibre lengths and dosages. Two 

types of steel fibre with aspect ratio of 44 and 80 (short and long steel fibres) were added at 

dosages of 1%, 2%, 4% and 6%. The TSSFRC mechanical performance was evaluated based 

on the mechanical properties, load–deflection curves and toughness. 

Chapter 6 investigates the performance under sulfate exposure of TSC mixtures 

incorporating different SCMs, including fly ash (FA), silica fume (SF) and metakaolin (MK) 

as partial replacement for ordinary portland cement (OPC). Two different sodium sulfate 

exposure conditions were simulated: full immersion (i.e. chemical sulfate attack) and partial 

immersion combined with cyclic temperature and relative humidity (i.e. physical sulfate 

attack). 

Chapter 7 explores the performance of “green” TSC incorporating recycled concrete 

aggregates (RCA) and crumb rubber from scrap tires. Mechanical properties of the proposed 

green TSC including compressive strength, modulus of elasticity, flexural strength and 

toughness, as well as durability to freezing-thawing cycles were investigated. Moreover, a 

novel eco-efficient technology for the construction of pavements and sidewalks is proposed. 

Chapter 8 presents the development of fuzzy logic (FL) models for predicting the grout 

flowability and mechanical properties for various TSC mixtures made with single, binary and 

ternary binders. A database of laboratory work presented in chapters 3, 4 and 5 was utilized 

to build the FL models. 

Chapter 9 includes general and specific conclusions drawn from the research study 

along with recommendations for further research. 

1.5. ORIGINAL CONTRIBUTIONS 

To the best of the author’s knowledge, there is currently no comprehensive research that 

investigates enhancing the TSC rheological, mechanical, and durability properties based on 

recent developments in materials science and technology. Thus, the findings of the research 
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program provide useful and comprehensive information on the TSC technique, including its 

mechanical and durability performance. This information contributes to enhancing the 

understanding of TSC behaviour, paving the way for its wider implementation in today’s 

concrete industry. Moreover, the findings of the present research are a step towards revisiting 

the TSC technology in order to upgrade it to the state-of-the-art of normally placed concrete, 

which now experiences the advent of applications of novel admixtures, nano-materials, bio-

inspired and self-healing technologies, etc.  

The specific original contributions of this research include: 

1. Providing a detailed study on the flowability of various TSC grout mixtures made 

with single, binary and ternary binders. The findings of this study provide 

practitioners with new guidance to produce more sustainable and more durable high-

strength TSC, which can open the door for novel applications of TSC never 

considered before.  

2. Conducting a detailed investigation on the mechanical properties of TSC made with 

various grout mixtures and incorporating single, binary, and ternary binders.  The 

findings of this investigation filled a considerable knowledge gap in the TSC 

literature. In addition, empirical correlations between the properties of grouts and the 

mechanical properties of the corresponding TSC have been proposed, offering a 

simple tool for designing TSC mixtures incorporating SCMs. 

3. Providing, for the first time in the open literature, a detailed study on the mechanical 

properties of TSSFRC. TSSFRC can easily be produced with 6% steel fibre dosage, 

which makes it an innovative option and a strong contender in many construction 

applications. 

4. Exploring the performance of TSC made with single, binary and ternary binders 

exposed to different environments conducive to physical and chemical sulfate attack. 

The findings should outline the mechanisms of damage of TSC incorporating SCMs 

under various sulfate exposure regimes and point out to needed future research in this 

area. 

5.  Discovering the performance of “green” TSC mixtures incorporating recycled 

concrete aggregates, scrap tire granules, and tire steel wire fibres along with grouts 

made with ternary binders incorporating high-volume fly ash. This material was 
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intended for creating a novel eco-efficient construction technology of sidewalks and 

pavements. The findings demonstrate the feasibility of TSC eco-efficient technology 

to produce durable and cost-effective sidewalks and pavements, offering ease of 

placement and superior sustainability features.  

6. Finally, developing fuzzy logic models for predicting the flowability and mechanical 

properties of TSC, offering an accurate tool for designing TSC mixtures incorporating 

several types and dosages of SCMs.  
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Chapter 2 

2. LITRATURE REVIEW
(*)

 

 

 

2.1. INTRODUCTION 

Two-stage concrete (TSC) is defined as concrete produced by placing coarse aggregate 

particles in the designed formwork, then filling the internal gaps with a special grout mixture. 

TSC is known worldwide under different terms that are listed in Table 2.1. These different 

names of TSC reflect the difference in its production methods. For instance, in the United 

Kingdom it is known as “Colcrete” as they mix the grout in a colloidal mixer before injecting 

it into the coarse aggregate. 

Table ‎2.1 – Different names of Two-Stage Concrete 

 

 

 

 

 

 

 

Generally, the TSC grouting process can be done either by gravity or by a pumping 

process (Abdul Awal, 1984). In the gravity process (i.e. penetration method), the grout is 

poured on the top surface of the preplaced aggregate and allowed to penetrate through the 

aggregate body to the bottom of the section under its own weight. However, this method is 

particularly useful for grouting thin sections with a depth of less than 300 mm [12 in] 

(Champion and Davis, 1958). In the pumping process, the grout is pumped into the aggregate 

mass from the bottom through a network of pipes as illustrated in Figure 2.1. The minimum 

TSC Name Ref. 

Colcrete ( Manohar, 1967; Abdelgader, 1996) 

Polcrete (Abdelgader, 1996; ACI 304.1, 2005) 

Naturbeton (ACI 304.1, 2005) 

Arbeton (ACI 304.1, 2005) 

Prepacked concrete 
( Baumann, 1948; Abdul Awal, 1984; 

Tang, 1977) 

Preplaced aggregate concrete (ACI 304.1, 2005) 

Grouted aggregate concrete 
(Champion and Davies, 1958; ACI 304.1, 

2005) 

Injected aggregate concrete (ACI 304.1, 2005) 

Rock- filled Concrete (Huang et al., 2008) 
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coarse aggregate size plays a major role in selecting the suitable grouting method. For 

instance, the gravity process can be successfully used for aggregates with a minimum size of 

50 mm [2 in], while the pumping method is preferred with lower void content coarse 

aggregate (i.e. finer aggregates) (Casson and Davies, 1986). 

 

 

Figure ‎2.1 ‒‎TSC grout pumping process: a) Coarse aggregate placement and, b) Grout 

pumping through pipes. 

 

TSC differs from conventional concrete in several aspects. First, all ingredients of 

conventional concrete are mixed together and then placed in the formwork, while in TSC the 

grout ingredients are mixed separately and then injected into the pre-placed aggregate mass 

as mentioned earlier. Second, TSC has a higher coarse aggregate content (about 60% of the 

total volume) than that of conventional concrete (about 40% of the total volume) 

(Abdelgader, 1996). Hence, TSC can be considered as a skeleton of coarse aggregate 

particles resting on each other, leaving only internal voids to be filled with grout 

(Abdelgader, 1996). Conversely, in normal concrete the aggregates are rather dispersed. 

Therefore, TSC has a specific stress distribution mechanism at which the stresses are 

transferred through contact areas between aggregate particles (Figure 2.2) (O’Malley and 

Abdelgader, 2009). These stresses can be responsible for the fracture and tearing of aggregate 

particles away from the grout (Abdelgader and Górski, 2003).  
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The TSC technique provides a solution for the coarse aggregate segregation problem, 

especially for heavy weight aggregate concretes, through pre-placing the aggregates in the 

formwork. Furthermore, TSC does not need compaction, vibration or any other consolidation 

processes to achieve a dense structure, which in turn reduces its production cost. The 

formwork used for TSC must be strong and sufficiently tight to resist the lateral pressure 

induced by the injected grout and to minimize its leakage. Consequently, the cost of TSC 

formwork is about one-third higher than that used for conventional concrete (US Army Corps 

of Engineers, 1994). On the other hand, TSC is considered as the most cost-effective 

technique for underwater concreting compared to other techniques (Abdelgader, 1999). 

However, the construction of TSC requires special skill and experience that most contractors 

do not have. Therefore, this chapter provides useful information that can assist contractors 

and engineers in producing TSC. 

 

Figure ‎2.2 ‒‎Mechanism of transmission of stresses in TSC. 

 

2.2. HISTORY OF TWO-STAGE CONCRETE APPLICATIONS 

In 1930s, TSC was developed after the invention of the high-speed colloidal mill mixer, 

which made the manufacture of highly stable flowable grout feasible (Reschke, 2000). 

Initially, TSC was introduced as a repair technique for existing concrete infrastructure such 

as bridges and tunnel linings. The first use of TSC was in 1939 for the rehabilitation of the 

Santa Fe railroad tunnel, California (ACI 304.1, 2005). In 1950, Japanese construction 
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companies bought rights to use TSC in their construction projects (ACI 304.1, 2005). Since 

then, TSC has been widely used in many construction applications. For example, about 

383000 m
3
 [13525520 ft

3
] of TSC were used to construct the 34 piers of the Mackinac Bridge 

(ACI 304.1, 2005; Davis and Haltenhoff, 1956). 

On the other hand, the production process of TSC makes it one of the preferable 

technologies for the construction of nuclear power plants since the coarse aggregate is pre-

placed. Hence, very heavy minerals incoperated within aggregates (e.g. magnetite, which is a 

highly effective material in nuclear and biological shields) can be used in concrete 

production without segregation concerns (ACI 304.1, 2005). Morover, the low volume 

changes and heat of hydration of the TSC compared to that of conventional concrete 

increased its potential appliactions in mass concrete in which thermal cracking, shrinkage, 

and cold joints are major considerations (O’Malley and Abdelgader, 2009).  

Recently, a modified TSC was developed and used in several projects in China. This 

modified TSC was produced by pouring ready-mixed self-compacting concrete instead of 

grout to fill voids between large rock (i.e. minimum size of 300 mm [12 in]) (Huang et al., 

2008). Hence, TSC is a technique that is gaining momentum in the construction market. 

Table 2.2 summarizes important projects in which TSC was implemented as a major 

construction material. 

Table ‎2.2 – Examples of TSC conducted projects 

Project 
Date of 

Construction 
Ref. 

Pre-facing of Barker Dam at 

Nederland in Colorado. 1946 (Davis et al. 1948) 

Scroll case at Bull Dam Powerhouse. 1951 (ACI 304.1, 2005) 

Piers of Mackinac Bridge. 1954-1955 (Davis and Haltenhoff, 1956) 

Plugs in gold mine in South Africa 2001-2006 (Littlejohn and Swart, 2006) 

Auxiliary dam in China 2006 (Huang et al., 2008) 
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2.3. MATERIALS SPECIFICATIONS  

2.3.1. Coarse Aggregate 

The engineering properties of TSC depend to a large extent on the properties of the coarse 

aggregate used. As mentioned early, the applied stresses in TSC are transferred first to the 

coarse aggregate particles and then to the hardened grout (Abdelgader, 1996). Hence, 

choosing the coarse aggregate is a key aspect in TSC mixture design. According to ACI 

304.1 “Guide for the Use of Preplaced Aggregate Concrete for Structural and Mass Concrete 

Applications”, the coarse aggregate used in TSC should be washed, free of surface dust and 

fines, and chemically stable in order to achieve a high bond with the injected grout (ACI 

304.1, 2005). Moreover, the shape, texture and mineralogy of the coarse aggregate particles 

significantly affect the developed bond. 

Bulky rounded or angular shaped aggregate particles are preferred to flat and elongated 

particles (O’Malley and Abdelgader, 2009). Flat and elongated particles can cause narrow 

channels and inhibit the flow of grout, leading to honeycombing and weak zones in the TSC 

(O’Malley and Abdelgader, 2009). Interestingly, the mechanical strength of the used coarse 

aggregate did not have a significant influence on the TSC mechanical strength, while its 

shape, texture, grading and void content had a dominant effect (O’Malley and Abdelgader, 

2009). This is probably because very high strength TSC has not yet been produced. 

Aggregate particles with a rough texture provide a better surface for grout inter-keying, 

leading to enhanced mechanical interlock, and consequently higher strength than that 

produced with smooth rounded stone (Manohar, 1967; O’Malley and Abdelgader, 2009). 

On the other hand, crushed aggregate entraps large voids between its particles, leading to 

more grout consumption per concrete volume. Hence, a well graded aggregate is often 

recommended in order to minimize the void content between aggregates (ACI 304.1, 2005). 

Generally, this void content will range between 35% and 50% of the total volume for well 

graded and uniformly sized aggregates. However, combing two coarse aggregates with 

different grading (e.g. mixing 12 to 38 mm [0.5 to 1.5 in] and 200 to 250 mm [7.9 to 9.8 in]) 

can reduce the void content to 25% of the total volume (ACI 304.1, 2005). Moreover, mixing 

crushed aggregate with round aggregate particles was found beneficial in producing an 

aggregate skeleton with low void content and high contact points, leading to lower grout 
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consumption and consequently lower cost TSC (O’Malley and Abdelgader, 2009; 

Abdelgader, 1999). Nevertheless, reducing the void content between coarse aggregate 

particles can also cause difficulties in the grouting process. Hence, a more flowable grout and 

higher injection pressure will be required. Table 2.3 provides different recommended 

gradings for TSC coarse aggregates. 

Table ‎2.3 – Grading limits for TSC coarse aggregate 

Sieve Size 

mm
*
 

Cumulative Percentage Passing 

Ref. 
Grading 

(1) 

Grading 

(2) 

Grading 

(3) 

37.5  95 - 100 ---- 0.5 

(ACI 304.1, 2005; ACI 304, 

2005) 

 

25.0  40 - 80 ---- ---- 

19.0  25 - 40 00 - 10 ---- 

12.5  00 - 10 00 - 02 ---- 

9.50  00 - 02 00 - 01 ---- 

150  100 ---- ---- 

(Neville and Brooks, 2010) 

75.0  67 100 ---- 

37.5  40 62 97 

19.0  06 04 09 

12.5  01 01 01 
*1mm = 0.039 in 

 

In reinforced concrete structures, the TSC largest coarse aggregate size will depend on 

the dimensions of the structural member and spacing between reinforcement bars, which is 

similar to conventional concrete. In TSC mass concrete, there are no specific limitations on 

the maximum size of the coarse aggregate used, while the smallest aggregate size is 

controlled by the targeted grout flowability and its penetrability in voids (Abdul Awal, 1984). 

For instance, the maximum aggregate size used for repairing the Barker Dam in the USA was 

114 mm [4.5 in] (Davis et al., 1948), whereas a maximum size of 300 mm [12 in] was used 

in constructing a dam in Switzerland (Baumann, 1948).  

The smallest size of coarse aggregate should be at least four times that of the largest size 

of the used fine aggregate in order to improve grout penetrability through the aggregate 

skeleton (Orchard, 1973). Moreover, coarse aggregate particles smaller than 20 mm [0.8 in] 

are eliminated as they could block the grout injection pipes and impede grout flow 

(Abdelgader and Najjar, 2009). According to Champion and Davis, the recommended 
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minimum particle size of coarse aggregate is 38 mm [1.5 in] (Champion and Davis, 1958). 

However, Orchard suggested that the minimum size of coarse aggregate could be 10 mm [0.4 

in] (Orchard, 1973). Indeed, the selection of the minimum size of coarse aggregate depends 

on the grout mixture type and the applied grouting method to produce the TSC. For instance, 

with a minimum size of coarse aggregate of 300 mm [12 in], the gravity grouting process can 

be conducted using self-compacting concrete or grout containing coarse sand. On the other 

hand, with a 20 mm [0.8 in] minimum coarse aggregate size, a special pumping process for 

grouting should be implemented in order to insure the penetrability of the grout through 

small voids between aggregates (Abdelgader and Najjar, 2009).  

2.3.2. Grout Mixture 

The grout used in TSC normally consists of pure or blended Portland cement, well graded 

sand, water, and chemical admixtures. The ability of grout to flow around the pre-placed 

aggregates is essential. Therefore, some chemical admixtures are recommended to improve 

the penetrability of the grout and better control the engineering properties and performance.  

2.3.2.1. Fine Aggregate 

The used fine aggregate should be hard, dense, and stable (ACI 304.1, 2005). The grading of 

the fine aggregate plays a significant role in controlling the flowability of the used grout. 

Table 2.4 summarizes recommended fine aggregate gradations and sizes for TSC. It was 

reported that using a well graded fine aggregate increased the stability of the grout and 

reduced segregation (O’Malley and Abdelgader, 2009). On the other hand, using fine 

aggregate with a high fineness modulus will increase the water demand, leading to a 

reduction in compressive strength and an increase of drying shrinkage. It was recommended 

that the fineness modulus of the used fine aggregate should range from 1.2 to 2.0 (King, 

1959).  
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Table ‎2.4 – Recommended grading limits of fine aggregate for TSC 

Sieve Size 
Cumulative Percentage 

Passing 
Ref. 

mm ASTM # 

 Grading (1) Grading  (2) 

(ACI 304.1, 2005; ACI 304, 2005) 

4.75 No.4 ---- 100 

2.36 No.8 100 90 - 100 

1.18 No.16 95 - 100 80 - 90 

0.60 No.30 55 - 80 55 - 70 

0.30 No.50 30 - 55 25 - 50 

0.15 No.100 10 - 30 05 - 30 

0.075 No.200 00 - 10 00 - 10 

Fineness Modulus 1.3-2.1 1.6-2.45 

2.36  No.8 100 

(Neville and Brooks, 2010) 

1.18  No.16 98 

0.60  No.30 72 

0.30  No.50 34 

0.15 No.100 11 

2.36  No.8 100 

(Davis and Haltenhoff, 1956) 

1.18  No.16 95-100 

0.60  No.30 55-75 

0.30  No.50 25-45 

0.15 No.100 05-20 

0.075 No.200 00-05 

Fineness Modulus 1.65-2.1 

2.36  No.8 100 

(Orchard, 1973) 

1.18  No.16 90 

0.60  No.30 60-80 

0.30  No.50 20-50 

0.15 No.100 10-20 

0.075 No.200 00-07 

Fineness Modulus 1.6-2.2 
*1mm = 0.039 in 

 

2.3.2.2. Cementitious Materials 

Ordinary Portland cement (OPC) is the commonly used cementitious material for TSC 

grouts. Supplementary cementitious materials (SCMs) including ground granulated blast 

furnace slag (GGBFS), and silica fume (SF), and metakaolin (MK) had also been used in 

TSC. Generally, SCMs contribute to the hardened properties of TSC through enhanced 

particle packing, pozzolanic activity, or both depending on their chemical and physical 

properties. Hence, SCMs addition is expected to provide several benefits to TSC such as 
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reducing its permeability and improving its mechanical properties and durability (Malhotra, 

1993). For instance, the effect of using OPC and fly ash on the mechanical properties of TSC 

was investigated (Abdelgader, 1999). The addition of class F fly ash led to several benefits, 

including improvement of the grout flowability, extending the grout’s handling time, and 

reducing the water demand and bleeding of the TSC grout. Adding up to 33% of fly ash as 

partial replacement for OPC was recommended for TSC mass concrete as it reduces the heat 

of hydration significantly (ACI 304.1, 2005).  

On the other hand, the effect of silica fume addition on TSC properties was investigated 

by O’Malley and Abdelgader (2009). It was reported that silica fume had two conflicting 

effects on the TSC properties: increasing the mechanical strength and reducing workability. 

SF acts as a micro filler material for spaces between cement and sand grains due to its very 

fine particle size. Simultaneously, it is a very reactive pozzolanic material. Hence, it reacts 

chemically with calcium hydroxide (CH) in the cement paste to form more calcium silicate 

hydrate (CSH), which is responsible for additional strength gain (Malhotra, 1993). However, 

SF usually has an adverse effect on the flowability of the grout (O’Malley and Abdelgader, 

2009). Therefore, the addition rate of SF to TSC grout should be optimized through 

conducting different trial batches and using adequate chemical admixtures to achieve higher 

strength grout with adequate flowability. 

Metakaolin (MK), which is classified as a natural pozzolan, has a similar effect to that of 

silica fume. Other filler materials (e.g. limestone powder) have been used in conventional 

concrete as it acts as a fine filler material along with improving flowability. Generally, the 

effect of these filler materials on TSC properties will be affected by their fineness, water 

demand and compatibility with chemical admixture (Christianto, 2004).  

Beside the many benefits that SCMs and other filler materials can import to TSC, using 

these as partial replacement for cement can reduce the TSC carbon footprint, leading to 

greener and more environmental friendly TSC construction. 

2.3.2.3. Admixtures 

Fluidifier admixtures have been used in TSC grout mixtures in order to reduce its mixing 

water, retard the setting time and provide expansion during the plastic state of the grout. 
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According to ASTM C937, a TSC grout fluidifier admixture should meet the requirements 

shown in Table 2.5 (ASTM C937, 2004). A grout fluidifier commonly consists of a water-

reducing admixture, expanding agent, and a chemical buffer (ACI 304.1, 2005; ASTM C937, 

2004). The recommended dosage of grout fluidifier is usually 1% by weight of the grouts 

cementitious materials (ACI 304.1, 2005). 

 

Table ‎2.5 – Grout fluidifier admixture requirements 

Physical Requirements Limit 

Min reduction in mixing water 3% 

Expansion after 3 hrs from mixing 

relative to cement alkali content : 

0.80 or more 7 to 14% 

0.40 to 0.79 5 to 12% 

0.39 or less 3 to 9% 

Max. bleeding after 3 h from mixing 2% 

Min increase in water retentively 60% 

Min initial setting time 4 hrs 

Max. final setting time 24 hrs 

 

Aluminum powder is an expanding agent that chemically reacts with the lime freed by 

cement hydration to generate hydrogen gas (Goual et al., 2006). The generated gas induces 

slight expansion of the grout before setting. As a result, bleed water pockets that can 

cumulate under coarse aggregate particles can be removed, leading to enhanced grout coarse 

aggregate bond (Abdul Awal, 1984).  

In 1943, the effect of aluminum powder on TSC compressive strength was investigated 

for the first time by Menzel (1943). He reported an increase in the TSC compressive strength 

by the addition of a limited amount of aluminum powder (about 13 g [0.46 oz] per 100 kg 

[220.4 lb] of cement for dry gravel and 8 g [0.28 oz] for wet gravel). However, adding higher 

amounts of aluminum powder was found to increase the TSC porosity, consequently 

reducing its compressive strength (Menzel, 1943). Therefore, the recommended dosage of 
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aluminum powder in TSC grout should range between 0.01 and 0.02% by weight of cement 

(Casson and Davies, 1986).  

In general, new generations of expanding admixtures contain aluminum powder. Hence, 

using 1% by weight of cement of these admixtures was found to improve the TSC 

compressive strength by about 46% (Abdul Awal, 1984), while adding 2% had caused only 

20% increase (Abdelgader and Elgalhud, 2008). However, selecting the suitable dosage of an 

expanding admixture mainly depends on the amount of generated hydrogen gas, while 

caution should be taken regarding the effect on the TSC compressive strength. 

Air-entraining admixtures can also be added to enhance the durability of TSC to 

freezing/thawing cycles (ASTM C260, 2006). However, the air voids induced by the 

expanding admixture should be considered in dosing the air-entraining admixture in order to 

prevent excessive increase of the voids content, which can compromise the TSC mechanical 

strength. 

Water-reducing and retarding admixtures have been used to improve the flowability for 

TSC grouts (ACI 304.1, 2005). Although, high-range water-reducing admixtures enhance the 

strength and durability of concrete, there is no accessible data on their effect in TSC. The 

addition of a superplasticizer increases the grout fluidity even at low water/binder ratio (w/b) 

and consequently facilitates the effective filling of voids between aggregate particles. 

However, using an over dosage of a superplasticizer could increase bleeding, thus leading to 

excessive segregation of the sand in the grout mixture (Tang, 1977). The recommended 

dosage of superplasticizer for TSC normally ranges between (1.2 to 2% by cement weight) 

depending on its type (i.e. naphthalene sulphonate acid, poly-carboxylate ester, etc.) (Abdul 

Awal, 1984; Abdelgader and Elgalhud, 2008; O’Malley and Abdelgader, 2009). Moreover, it 

was reported that combining a superplasticizer and a viscosity modifying admixture can 

improve the TSC grout properties significantly. The use of a viscosity modifying admixture 

along with an adequate dosage of a superplasticizer can ensure high stability and adequate 

flowability for the grout, allowing the production of TSC grouts with superior bleeding 

resistance (Christianto, 2004). 
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2.3.3. Grout Mixture Proportions 

The ASTM C938 “Standard Practice for Proportioning Grout Mixtures for Preplaced-

Aggregate Concrete” provides procedures for selecting the grout mixture proportions based 

on the measured flowability and bleeding for different trial grout mixtures (ASTM C938, 

2010). The suitable proportions (i.e. water/binder ratio (w/b) and sand/binder ratio (s/b)) are 

selected to produce a flow of 22±2 sec according to the flow cone test (as will be discussed 

later). Moreover, bleeding of the grout should be less than 0.5% (ACI 304.1, 2005). The 

grout mixture proportions of TSC will vary depending on the application and required 

specifications.  

It was reported that a leaner grout mixture having s/b equal to 4 could be used to produce 

more cost-effective TSC (Abdul Awal, 1984). However, grouts used for underwater TSC 

applications should be rich mixtures (i.e. s/b = 1 to 2) (Orchard, 1973). A grout mixture with 

(s/b = 1.0 and w/b = 0.47) exhibited adequate flowability to produce TSC (Tang, 1977). 

Furthermore, it was reported that the optimum grout proportions for mixtures incorporating 

fly ash are s/b = 1.33 and w/b = 0.53 (Taylor, 1965). According to ACI 304.1 for beams, 

columns, and thin concrete sections, the ratio of (s/b) should usually be equal to 1.0, while in 

massive concrete elements this ratio may be increased up to 1.5 (ACI 304.1, 2005). 

Comparing the flowability of different grout mixtures with a s/b ratio ranging from 1.0 

to 1.5, it was found that there was little difference in the achieved flowability at similar w/b 

ratio (Abdul Awal, 1984). Based on economic considerations, an optimum grout mixture 

with a flow time of 25 s had s/b = 1.5 and w/b = 0.52 without superplasticizer, or w/b = 0.47 

with 1.25% superplasticizer by cement weight (Abdul Awal, 1984). 

The effect of the grout mixture proportions on the bleeding of grout consisting of OPC, 

fly ash, sand, and 2% superplasticizer by weight of cement was investigated (Abdelgader, 

1999). For a grout mixture with w/b = 0.4 and s/b = 1.5, the bleeding was zero. However, the 

grout was too thick and it could not penetrate through aggregate voids. At the same w/b, 

reducing the s/b to 1.0 enhanced the fluidity partially, even with the addition of 

superplasticizer. On the other hand, increasing the w/b ratio within the range of (0.45-0.55) at 

s/b =1.5 led to adequate rheological and bleeding properties (Abdelgader, 1999). Therefore, 
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selecting the s/b and w/b is extremely important since the amount of sand and water control 

the rheological and bleeding properties of the TSC grout. 

Based on the data discussed above, it is argued that selecting an optimum proportion for 

a TSC grout mixture is highly affected by the chemical and physical properties of the 

materials used (i.e. sand, cement, and SCMs). Moreover, the addition of chemical admixtures 

induces significant changes in the fresh properties of the TSC grout. Therefore, trial grout 

mixtures should be conducted in order to achieve optimum grout proportions that can meet 

the requirements of ASTM C938 (2010) and successful full-scale construction. 

2.3.4. Grout Flowability Measuring Techniques 

Evaluating the grout consistency is very important since it has a direct effect on pumpability 

and void penetrability (Abdul Awal, 1984). The flow cone method is the most commonly 

used test for measuring the TSC grout flowability. The flow cone test consists of measuring 

the time of efflux of 1725 ml [0.06 ft
3
] of the grout through a specific cone having a 12.7 mm 

[0.5 in] discharge tube according to ASTM C939 “Standard Test Method for Flow of Grout 

for Preplaced-Aggregate Concrete” (ASTM C939, 2010). Previous research has shown that 

grout with a time of efflux between 20 and 24 s is ideal for TSC (ACI 304.1, 2005; ASTM 

C939, 2010). However, grout with time of efflux as high as 35 to 40 s is recommended for 

high-strength concrete (ACI 304.1, 2005). 

The other method used is the spread flow test. In this test, a fixed volume of grout (i.e. 

250 ml [0.008 ft
3
]) is filled into a cylinder then poured from a height of 1 cm [0.4 in] over a 

scaled plate. The spreading diameter of the grout over the plate is then recorded as an 

indication of the TSC grout flowability (Abdelgader, 1996). It is believed that using modern 

rheometers that can characterize the yield value and plastic viscosity of the grout, which 

could lead to better characterization of the TSC grout rheology.  

2.4. CONSTRUCTION PROCEDURE OF TWO-STAGE CONCRETE 

Generally, the construction process of TSC includes two main stages: placing the coarse 

aggregate particles in the formwork, followed by the injection the grout. Detailed steps for 

the construction process of TSC reinforced elements are outlined below. 
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Initially, the construction location is prepared and an impermeable strong formwork is 

erected to prevent grout leakage and resist the lateral pressure induced during the grout 

pumping. Plywood formwork systems have been used successfully in large TSC projects. 

However, for underwater pier construction, steel sheet piling is preferred to resist water 

pressure. In deep-water piers, an adequate internal anchorage for the steel sheet piling should 

be secured to avoid any deflection during the grouting process (ACI 304.1, 2005; ACI 304, 

2005). 

Subsequently, the steel reinforcement is placed and arranged according to the design 

detailing and drawings, followed by coarse aggregate placement. For constructing TSC 

foundations, the aggregates and reinforcement can be placed in sequence at different layers 

depending on the construction conditions and the spacing between the reinforcement mesh 

(ACI 304.1, 2005).  

Prior to placing the aggregates, pipes for injecting the grout are fixed in carefully 

selected locations. These pipes are normally 20 to 30 mm [0.8 to 1.2 in] in diameter for 

normal structural concrete and up to 40 mm [1.6 in] for massive concrete. These grout insert 

pipes should be extended vertically about 150 mm [6 in] above the bottom of the aggregate 

mass to provide adequate space during the first flow of grout. Moreover, pipes may be 

extended horizontally through the formwork at different elevations, especially in repair 

works (ACI 304.1, 2005; ACI 304, 2005). For very deep placements (e.g. caissons in deep 

water), double insert pipes should be used to inject grout at different levels. For example, to 

inject grout at 30 m [98 ft] depth, two pipes are used. A 25 mm [1 in] pipe to grout the 

bottom portion (i.e. depth of 15 m [49 ft] and down to 30 m [98 ft]), while the remainder 

from the surface to a depth of 15 m [49 ft] is injected using a 50 mm [2 in] pipe. The required 

number of grout insert pipes and their locations depend on the size and shape of the 

constructed concrete element (US Army Corps of Engineers, 1994). Moreover, the spacing 

between these pipes relies on the propagation of grout mixtures. ACI 304.1 (2005) provides 

detailed guidelines on the installation of pipes for uniform distribution of grouts in TSC. 

Figure 2.3 illustrates a typical propagation curve of a grout mixture in preplaced coarse 

aggregate. The propagation curve is the shape of grout flow through the preplaced aggregate 

particles and it is used to describe the relation between grouting level and the spacing 

between grouting pipes (Abdelgader, 1995). The shape of the curve depends on several 
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factors such as the grout mixture density, intensity of mixing, shape and size of the coarse 

aggregate (Abdelgader, 1995). It was reported that the grout propagation generally has a 

slope (vertical: horizontal) of 1:4 and 1:6 for dry conditions and under water placements, 

respectively (ACI 304.1, 2005). An empirical equation (Eq. 2.1) for the propagation curve of 

grout in coarse aggregates was derived (Abdelgader, 1995): 

𝑦 =  
𝛼

(𝛽𝑥2+1)√
𝛾

𝑡
−

1

𝛽
+1

                                                           Eq. 2.1 

Where 𝑦 = grout mixture level in coarse aggregate (m), 𝑥 = spacing between grout insert 

pipes (m), 𝛼 = thickness of stone layer (m), 𝑡 = time (min), 𝛽 = (𝑎 × 𝑏 × 𝑓), 𝑎 = 

parameter dependent of the mixture fluidity,  𝑏 = parameter dependent of stone: shape, size, 

type of grain, surface texture, and coarse aggregate fraction, 𝑓 = parameter dependent of the 

environment of construction, 𝛾 = (𝑐 × 𝑑 × 𝑒), 𝑐 = parameter dependent of efficiency of 

flushing pipe (m
3
/min), 𝑑 = parameter dependent of perforation, 𝑒 = parameter dependent 

of the type of excavation bottom.  

 

 

Figure ‎2.3 ‒‎Propagation curve of grout mixture in coarse aggregates for TSC 

(Abdelgader, 1995). 

 

Placement of the coarse aggregates can be done by hand or mechanically using dumping. 

If it is necessary to saturate the coarse aggregate after placement in the formwork, water 

should be injected through the insert pipes rather than by flushing. Flushing water will 

accumulate fines at the lower aggregate layer, leading to the development of honeycombing, 
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while injecting the water will uplift any fines to the surface without causing problems (ACI 

304, 2005).  

The flowability of the used grout should be carefully selected relatively to the 

dimensions of the constructed concrete element, the coarse aggregate size and the 

reinforcement detailing. After selection, the grout is injected using a delivery system 

consisting of a single line from the grout pump directly to the grout insert pipe. This delivery 

line should have a sufficient diameter to control the grout velocity according to the planned 

operating rate (i.e. 0.6 to 1.2 m/sec [1.97 to 3.9 ft/sec]) (ACI 304, 2005). Very low velocity 

will permit segregation and eventual line blockage, while too high velocity will force the 

grout to cascade over adjacent aggregates rather than penetrating their internal voids (ACI 

304, 2005).  

Finally, the hardened TSC is cured and finished following similar procedures to that of 

conventional concrete, taking into consideration that the curing time may be extended to 

achieve the target compressive strength. Moreover, in case of cold joints, the grout pumping 

should be stopped before the grout reaches the upper surface of the aggregate (i.e. 300 mm 

[12 in] under the aggregate surface). Hence, a clean rough exposed aggregate surface for the 

next grout should be provided (ACI 304.1, 2005). 

2.5. PROPERTIES OF TWO-STAGE CONCRETE 

2.5.1. Compressive Strength 

Compressive strength is generally considered as the key property of concrete. Hence, the 

compressive strength of TSC has been investigated extensively (Abdul Awal, 1984; 

Abdelgader, 1996; Bayer, 2004; O’Malley and Abdelgader, 2009). It was concluded that 

TSC compressive strength is mainly affected by its w/b ratio, s/b ratio, type of coarse 

aggregate and its void content, and the compressive strength of the used grout. Table 2.6 

summarizes data of compressive strength of TSC at different ages with respect to the used 

grout mixture collected from various studies. 
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Table ‎2.6 – TSC compressive strength 

Grout Mixture Proportions  
Compressive Strength 

(MPa)  
Ref. 

w/b s/b 
Mineral 

Admixture 

Chemical 

Admixture  

Age (Days) 

28 90 365 

0.38 0.60 
---- 

---- 41.10 48.50 NA (Klein and 

Crockett, 

1953) 0.38 0.67 ---- 40.30 50.50 NA 

0.44 1.50 ---- ---- 22.20 32.34 NA 
(Davis et al., 

1955) 

0.56 1.68 
---- 1% EA 

22.20 29.72 NA (Davis and 

Haltenhoff, 

1956) 0.62 2.63 15.50 23.93 NA 

0.52 

1.50 ---- 

---- 28.90 31.90 39.10 

(Abdul Awal, 

1984) 

0.50 1.25 % SP 29.00 32.00 41.60 

0.47 1% EA 42.30 45.60 54.80 

0.45 
1% EA +1.25 % 

SP 
42.50 46.50 50.60 

0.40 

1.25 35% FA 2% SP  

35.16 NA NA 

(Abdelgader, 

1996) 

0.45 31.81 NA NA 

0.50 26.90 NA NA 

0.55 21.31 NA NA 

0.40 

1.50 35% FA 2% SP 

28.35 NA NA 

0.45 30.71 NA NA 

0.50 25.57 NA NA 

0.55 23.94 NA NA 

0.45 0.00 

20% RP 
1% SP 

+  

0.2% AEA 

10.90 14.90 19.50 

(Bayer, 

2004) 

25% RP +25% FA 13.70 15.50 28.90 

50% GGBFS 19.50 23.70 25.70 

50% FA 10.60 14.90 19.60 
Note: Ordinary Portland Cement (OPC) was used in all mixtures, mineral admixtures were added as partial replacement for 

OPC. 

(FA): Fly Ash, (RP): Rock Powder, (GGBFS): Ground Granulated Blast Furnace Slag. (EA): Expanding Admixture, (SP): 

Superplasticizer, (AEA): Air – Entraining Admixture. 

 

It can be observed in Table 2.6 that increasing the w/b reduces the TSC compressive 

strength as expected. However, using very low w/b drastically affects the grout flowability, 

resulting in honeycombed TSC. In conventional concrete, the compressive strength increases 

as the cement content increases up to an optimum level, beyond which no significant strength 

is gained (Ezgi, 2010). However, the optimum cement content for TSC depends on the void 

content of the coarse aggregate used and the required flowability of the grout mixture 

(Abdelgader, 1999). Although using a high cement dosage will increase the compressive 
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strength of the grout, it may reduce the TSC compressive strength due to increasing the water 

demand, consequently lowering grout flowability (Abdelgader, 1999). Hence, the use of 

water-reducing admixtures is critical for providing high strength TSC. 

The s/b seems to have insignificant effect on the TSC compressive strength. Conversely, 

it has great influence on the flowability and stability of the grout mixture. For example, at s/b 

= 1.5 and w/b = 0.4, the grout was too thick to penetrate all voids between aggregate 

particles, leading to honeycombed TSC with lower strength (Abdelgader, 1996). On the other 

hand, adjusting the w/b in the range of 0.45 to 0.55 along with changing the s/b ratio induced 

slight difference in compressive strength as shown in Figure 2.4 (Abdelgader, 1996). 

 

 

Figure ‎2.4 ‒ Influence of s/b ratio on compressive strength of TSC versus w/b ratio 

(Abdelgader, 1996). 

 

Furthermore, adding a superplasticizer was found to improve the TSC compressive 

strength. This can be ascribed to the reduction in w/b required to achieve adequate flowable 

grout (Abdul Awal, 1984). Moreover, expanding admixtures are commonly used in TSC to 

expand the grout before its setting as mentioned earlier. Adding such expanding admixtures 

significantly increased the TSC compressive strength (Ezgi, 2010). For instance, adding 1% 
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of expanding admixture increased the TSC compressive strength by about 46% with respect 

to that of the control TSC mixture without expanding admixture at age of 28 days (Table 

2.6) (Abdul Awal, 1984). This can be attributed to better bond as a result of removing void 

spaces between the aggregates as discussed earlier. 

The effect of adding mineral admixtures such as rock powder (RP), fly ash, and GGBFS 

on the TSC compressive strength was investigated by Bayer (2004). It was found that the 

mixture incorporating 50% GGBFS as partial replacement for cement exhibited the highest 

compressive strength at 28 days (Figure 2.5). Moreover, after one year, the compressive 

strength of TSC mixtures incorporating mineral admixtures at rates of (20% RP, 25% FA + 

25% RP, and 50% FA) was approximately twice that at 28 days (Abdelgader, 1995). This 

indicates the role of mineral admixture in improving the long- term strength of TSC. 

 

 

Figure ‎2.5 ‒‎Development‎of‎TSC‎compressive‎strength‎with‎different‎mineral‎

admixtures (Bayer, 2004). 

 

The effects of the void content and shape of the coarse aggregate on the TSC 

compressive strength have also been investigated (Abdelgader, 1996; O’Malley and 

Abdelgader, 2009). TSC mixture incorporating crushed aggregate exhibited higher 
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compressive strength than that of the mixture incorporating rounded aggregates at the same 

w/b ratio. This can be attributed to the fact that crushed aggregates provide better interlock 

than that of rounded aggregates (Abdelgader, 1996). Compressive strength of TSC made with 

recycled concrete aggregate is investigated. It was concluded that natural aggregate used to 

produce TSC can be partially replaced with recycled coarse and fine aggregate without a 

major drop in TSC strength, especially for grouts have a high w/b ratio (i.e. w/b ratios more 

than 0.45). For low w/b ratios, the grout flowability reduces, leading to insufficient 

penetration of grout through recycled aggregate particles (Morohashi et al., 2013).  

Figure 2.6 shows a comparison between the compressive strength of grout and the 

corresponding TSC strength for several mixtures. It can be observed that usually the TSC 

compressive strength is lower than that of the used grout. Increasing the strength of the grout 

does not guarantee an improvement of the TSC compressive strength. For instance, mixture 

#2 had a grout compressive strength higher than that of mixture #1; however, the achieved 

compressive strength for both TSC mixtures was comparable. Conversely, adding an 

expanding admixture (i.e. mixture #3) improved the TSC compressive strength despite that 

the corresponding grout compressive strength was lower (i.e. compared to that of mixtures #1 

and 2). This can be explained as follows. In the grout mixture there was no expansion 

restraint; hence, the generated hydrogen gas will increase voids, leading to lower 

compressive strength. Conversely, the interlocked aggregate particles in the TSC mixture 

limit the expansion of the grout and induce a confinement. Moreover, this early expansion 

removes cumulated water pockets under coarse aggregate particles as discussed earlier 

(Abdul Awal, 1984). 

Thus, the compressive strength of the grout is not a direct indication of the TSC 

compressive strength. Furthermore, there is no direct proportional relationship between the 

increase in the grout strength and the corresponding increase in the TSC strength. As shown 

in Figure 2.6, an 80% increase in the grout strength could only cause 60-65% increase in the 

TSC strength (Abdelgader, 1996, 1999). The bond properties between aggregate particles and 

the grout have a significant effect on the compressive strength of TSC (Abdul Awal, 1984; 

Abdelgader, 1996; O’Malley and Abdelgader, 2009) and require dedicated research. 



28 
 

 

 
Figure ‎2.6 ‒ Comparison between compressive strength of grout and TSC in several 

mixtures (Mixtures 1-3 (Abdul Awal, 1984), Mixtures 4-7 (Abdelgader, 1996)). 

 

To investigate the effects of the production process of TSC on its compressive strength, 

the compressive strength of TSC and that of conventional concrete with identical mixture 

proportions were compared. Several researchers found that TSC was weaker than 

conventional concrete of similar mixture design, while others claimed that it was stronger 

(Abdul Awal, 1984). Figure 2.7 displays a comparison between the compressive strength of 

TSC and that of conventional concrete obtained from two studies (Abdul Awal, 1984; Bayer, 

2004). In fact, it is very difficult to compare TSC directly with conventional concrete, not 

only because of its quite different placement method, but also because of its different mixture 

proportions. However, an attempt was made in these studies to design normal concrete 

mixtures having water-to-binder ratio (w/b) and aggregate-to-binder ratio (A/b) similar to 

those in TSC mixtures. For mixtures 1-2, the variable parameter was the type of chemical 

admixtures (Abdul Awal, 1984). While mixtures 3-5, the variable parameter was the type of 

cementitious materials (Bayer, 2004). It can be observed that the compressive strength of 

TSC is comparable to that of conventional concrete. However, TSC mixtures incorporating 

expanding admixtures (e.g. mixture #2) exhibited higher strength than that of the control 
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conventional mixture. This can be attributed to the absence of expansion restraint in 

conventional concrete; hence, the generated hydrogen gas increased voids in its matrix, 

consequently reducing its compressive strength. Conversely, the interlocked aggregate 

particles in TSC limit the expansion of the grout and induce a confinement. Moreover, the 

compressive strength of the mixture #5 TSC was higher than that of conventional concrete 

since the TSC mixture contains 50% Ground Granulated Blast-Furnace Slag (GGBFS) as a 

mineral admixture, leading to enhance its compressive strength. 

 

 
Figure ‎2.7 ‒ Comparison between compressive strength of conventional concrete and 

TSC (Mixtures 1-2 (Abdul Awal, 1984), Mixtures 3-5 (Bayer, 2004)). 

 

The relationship between the compressive strength of TSC and the grout mixture 

proportions (i.e. w/b and s/b) is illustrated using nonlinear regression analysis. Several 

equations have been proposed as shown in Table 2.7. Some of these formulas depend on the 

coarse aggregate shape (Abdelgader, 1999), while others are based on the used admixtures 

(Abdelgader and Elgalhud, 2008).  
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Table ‎2.7 – Compressive strength (fc′) as a function of (w/b) ratio and (s/b) ratio 

Equation Ref. 

𝑓𝑐
′ = 64.27 − 72.25 (𝑤 𝑏) − 0.06 (𝑠 𝑏)⁄ −1⁄  (MPa) 

For rounded coarse aggregate 

(Abdelgader, 

1999) 

𝑓𝑐
′ = 62.08 − 71. 00(𝑤 𝑏) + 0.52 ⁄ (𝑠 𝑏)⁄ −1

 (MPa) 

For crushed coarse aggregate 

𝑓𝑐
′ = 64.78 − 75.33 (𝑤 𝑏) + 0.26 ⁄ (𝑠 𝑏)⁄ −1

(MPa) 

For mixed ( rounded and crushed) coarse aggregate 

𝑓𝑐
′ = −3.67 + 11.20 (𝑤 𝑏) + 3.96(𝑤 𝑏)⁄ −1.79

+ 3.7 ⁄ (𝑠 𝑏)⁄ −1
(MPa) 

Without admixture 

(Abdelgader 

and Elgalhud, 

2008) 

𝑓𝑐
′ = 43.90 − 32.55 (𝑤 𝑏) − 3.27(𝑤 𝑏)⁄ −1.68 + 2.42 ⁄ (𝑠 𝑏)⁄ −1

 (MPa) 

With 2% SP 

𝑓𝑐
′ = −14.31 − 39.83 (𝑤 𝑏) + 68.45(𝑤 𝑏)⁄ 0.47

+ 2.63 ⁄ (𝑠 𝑏)⁄ −1
(MPa) 

With 2% EA 

𝑓𝑐
′ = −25.70 − 87.70 (𝑤 𝑏) + 126.75(𝑤 𝑏)⁄ 0.52 + 1.88 ⁄ (𝑠 𝑏)⁄ −1

(MPa) 

With 2% SP and 2% EA 

(EA): Expanding Admixture, (SP): Superplasticizer. 

 

2.5.2. Tensile Strength 

The tensile strength of concrete is an important property; especially during early stages when 

concrete is a vulnerable to volumetric deformation due to moisture and thermal gradients 

(Nehdi and Soliman, 2011). Such deformations induce stresses that can lead to cracking once 

they exceeded the concrete tensile strength. In TSC, the splitting tensile strength has 

commonly been used to represent tensile strength (Abdul Awal, 1984; Abdelgader and 

Elgalhud, 2008; Abdelgader and Ben-Zeitun, 2005). 

Table 2.8 summarizes TSC tensile strength results for different grout mixtures. It can be 

observed that the tensile strength of TSC increased as the w/b was decreased to 0.40. 

Decreasing the w/b ratio below 0.40 led to a honeycombed structure that is partially binding 

coarse aggregates, consequently reducing the tensile strength (Abdelgader and Elgalhud, 

2008). The effect of adding superplasticizer and expanding admixtures on the TSC tensile 
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strength was also investigated (Abdul Awal, 1984). Results indicated that a significant 

improvement in tensile strength can be achieved by combining a superplasticizer and an 

expanding admixture. Moreover, it was found that at constant w/b ratio, the effect of different 

s/b ratios on the tensile strength of TSC was negligible as shown in Figure 2.8 (Abdelgader 

and Ben-Zeitun, 2005). 

 

Table ‎2.8 ‒ TSC tensile strength 

Grout Mixture Proportions  Tensile Strength (MPa) at 

28 days 
Ref. 

w/b s/b Chemical Admixture  

0.52 

1.5 

---- 3.00 

(Abdul Awal, 1984) 
0.50 1.25%SP 3.10 

0.47 1 % EA 3.30 

0.45 1% EA + 1.25 % SP 3.50 

0.40 

0.5 ---- 

3.35 

(Abdelgader and 

Ben-Zeitun, 2005) 

0.45 3.14 

0.50 2.83 

0.55 2.72 

0.40 

1.0 ---- 

3.34 

0.45 3.02 

0.50 2.86 

0.55 2.53 

0.38 

0.5 

2% SP 2.38 

(Abdelgader and 

Elgalhud, 2008) 

0.38 2% EA 2.16 

0.38 2% SP + 2% EA 2.54 

0.55 

0.5 

2% SP 2.84 

0.55 2% EA 2.82 

0.55 2% SP + 2% EA 3.36 

0.38 

1.0 

2% SP 1.98 

0.38 2% EA 1.86 

0.38 2% SP + 2% EA 2.06 

0.55 

1.0 

2% SP 2.66 

0.55 2% EA 2.58 

0.55 2% SP + 2% EA 2.88 
(EA): Expanding Admixture, (SP): Superplasticizer. 
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Figure ‎2.8 ‒ Influence of s/b ratio on tensile strength of TSC versus w/b ratio 

(Abdelgader and Ben-Zeitun, 2005). 

 

Generally, TSC exhibits lower tensile strength than that of ordinary concrete with similar 

mix design (Tang, 1977; Chefdeville, 1963). This was attributed to the weaker interfacial 

bond between coarse aggregate particles and the grout mixture, leading to splitting failure. 

Conversely, TSC mixtures incorporating a superplasticizer and an expanding admixture 

exhibited higher tensile strength than that of the control ordinary concrete (Figure 2.9) 

(Abdul Awal, 1984).  
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Figure ‎2.9 ‒‎Comparison‎between‎tensile‎strength‎of‎conventional‎concrete‎and‎TSC‎

(Abdul Awal, 1984). 

 

According to Abdelgader and Elgalhud (2008), the tensile strength of TSC can be 

estimated as a function of the w/b ratio, s/b ratio, and the compressive strength of TSC using 

equations listed in Table 2.9 (Abdelgader and Elgalhud, 2008). These equations are based on 

certain dosages and types of admixtures (i.e. 2% superplasticizer and/or 2% expanding 

admixture). On the other hand, it was found that the tensile strength of TSC increased as the 

compressive strength increased, which is similar to conventional concrete. Therefore, more 

general correlations between the tensile and compressive strengths of TSC have been 

proposed (Table 2.10).  

 

 

 

 

 

0

80

160

240

320

400

480

560

640

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4

T
en

si
le

 S
tr

en
g

th
 (

M
P

a
)

Mixture No.

Conventional Concrete Two- Stage Concrete

T
en

si
le

 S
tr

en
g

th
 (

p
si

)



34 
 

 

Table ‎2.9 ‒ Tensile strength (ft) of TSC as a function of (w/b) ratio, (s/b) ratio, and 

compressive strength for TSC (fc′) (Abdelgader and Elgalhud, 2008) 

Equation Admixture Type 

𝑓𝑡 = −0.25 + 1.26 (𝑤 𝑏) + 0.67(𝑤 𝑏)⁄ −1.29 + 0.51 ⁄ (𝑠 𝑏)⁄ −1 (MPa) 

𝑓𝑡 = −49.67 − 0.44 𝑓𝑐
′ + 38.63 (𝑓𝑐

′)0.15 (MPa)  

Without 

 admixture 

𝑓𝑡 = −12.75 − 25.27(𝑤 𝑏) + 39.03(𝑤 𝑏)⁄ 0.5
+ 0.39 ⁄ (𝑠 𝑏)⁄ −1

 (MPa) 

𝑓𝑡 = 39.97 + 0.36 𝑓𝑐
′ − 32.28 (𝑓𝑐

′)0.1 (MPa) 
2% SP 

𝑓𝑡 = −11.54 − 23.20(𝑤 𝑏) + 36.12(𝑤 𝑏)⁄ 0.52 + 0.48 ⁄ (𝑠 𝑏)⁄ −1 (MPa)  

𝑓𝑡 = −4.30 − 0.30 𝑓𝑐
′ + 1.28 (𝑓𝑐

′)0.658 (MPa) 
2% EA 

𝑓𝑡 = 9.82 − 7.41 (𝑤 𝑏) − 1.37 (𝑤 𝑏)⁄ −1.39
+ 0.42 ⁄ (𝑠 𝑏)⁄ −1

 (MPa) 

𝑓𝑡 = 162.65 + 1.15 𝑓𝑐
′ − 132.28 (𝑓𝑐

′)0.108 (MPa) 
2% SP and 2% EA 

(EA): Expanding Admixture, (SP): Superplasticizer. 

 

Table ‎2.10 ‒ Tensile strength (ft) as a function of compressive strength (fc′) for TSC 

Equation Ref. 

𝑓𝑡 = 0.677 𝑓𝑐
0.434 (MPa) (Splitting Tensile Strength) 

(Abdul Awal, 

1984) 

𝑓𝑡 = 0.768 𝑓𝑐
0.441 (MPa) (Splitting Tensile Strength) (Abdelgader and 

Ben-Zeitun, 2005) 𝑓𝑡 = 0.374 𝑓𝑐
0.540 (MPa) (Double-Punch Tensile Strength) 

 

2.5.3. Modulus of Elasticity 

The modulus of elasticity is a principal property of concrete, which reflects its stiffness and 

ability to deform elastically. Generally, it is obtained from the stress–strain curve at a certain 

stress level relative to the ultimate strength (Nehdi and Soliman, 2011). The modulus of 

elasticity for both TSC and conventional concrete is mainly affected by the compressive 

strength. However, it was reported that TSC exhibits higher modulus of elasticity than that of 

conventional concrete even for mixtures with similar compressive strength (Akatsuka and 

Moriguchi , 1967). This can be ascribed to the fact that TSC is a skeleton of coarse aggregate 

particles resting on each other. Therefore, loads will transmit through contact points between 

aggregate particles as illustrated earlier. In addition, the modulus of elasticity of coarse 
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aggregates is generally higher than that of cement paste (Abdul Awal, 1984). Consequently, 

the higher elastic modulus of TSC can be considered as a consequence of the modulus of 

elasticity of the used coarse aggregate (Abdul Awal, 1984; Abdelgader and Górski, 2003). 

Modulus of elasticity values for several TSC mixtures are summarized in Table 2.11. 

Moreover, the modulus of elasticity of the coarse aggregate usually will not change with 

time; hence, TSC is expected to have a nearly constant modulus of elasticity (Abdul Awal, 

1984; Davis et al., 1955). 

Several studies reported that changing the w/b ratio of the grout mixture had no effect on 

the TSC modulus of elasticity (Abdul Awal, 1984; Abdelgader and Górski, 2003), while 

reducing the s/b ratio can cause a reduction in modulus (Abdelgader and Górski, 2003; 

Bayer, 2004). Figure 2.10 illustrates the effect of s/b ratio on modulus of elasticity versus 

w/b for TSC made using crushed basalt as a preplaced aggregate. For instance, at w/b = 0.45, 

increasing the s/b from 0.8 to 1.5 increased the modulus of elasticity by about 15% 

(Abdelgader and Górski, 2003).  

Similar to conventional concrete, the modulus of elasticity of TSC was correlated to its 

compressive strength (Abdelgader and Górski, 2003). Equations 2.2 to 2.4 have been 

proposed to estimate the TSC modulus of elasticity (𝐸) according to its compressive 

strength (𝑓𝑐
′). However, these equations can only be used for a limited range of compressive 

strength  (22 𝑀𝑃𝑎 ≤ 𝑓𝑐
′ ≤ 32 𝑀𝑃𝑎) (Abdelgader and Górski, 2003). 

𝐸 = 28.7 + 0.080 𝑓𝑐
′ (GPa) (rounded aggregate)                                        Eq. 2.2 

𝐸 = 33.9 − 0.049 𝑓𝑐
′ (GPa) (crushed aggregate)                                         Eq. 2.3 

𝐸 = 34.9 − 0.090 𝑓𝑐
′ (GPa) (mixed: rounded and crushed aggregate)        Eq. 2.4 

 

 

 

 

 



36 
 

 

Table ‎2.11 ‒‎Modulus‎of‎elasticity‎of‎TSC 

Grout Mixture Proportions  
Modulus of Elasticity 

(GPa) 
Ref. 

w/b s/b Mineral Admixture 
Chemical 

Admixture  

Age (Day) 

28 90 365 

0.52 

1.50 

---- ---- 34.60 34.80 36.20 

(Abdul 

Awal, 1984) 

0.50 ---- 1.25%SP 35.7 36.00 39.80 

0.47 ---- 1%EA 39.30 39.80 40.30 

0.45 ---- 
1% EA and  

1.25 % SP 
36.60 37.40 39.10 

0.45 

1.50 

---- 

2% SP  

34.48 NA NA 

(Abdelgader 

and Górski, 

2003) 

0.50 ---- 34.68 NA NA 

0.55 ---- 34.88 NA NA 

0.45 

1.00 

---- 

2% SP  

31.88 NA NA 

0.50 ---- 32.08 NA NA 

0.55 ---- 32.28 NA NA 

0.45 

0.80 

---- 

2% SP  

30.00 NA NA 

0.50 ---- 30.12 NA NA 

0.55 ---- 30.32 NA NA 

0.45 0.00 

20% RP 
1% SP 

and  

0.2% AEA 

10.15 11.95 13.83 

(Bayer, 

2004) 

25% RP+25% FA 11.12 13.25 16.75 

50% GGBFS 12.73 13.94 15.49 

50% FA 8.96 10.67 12.80 
(FA): Fly Ash, (RP): Rock Powder, (GGBFS): Ground Granulated Blast Furnace Slag. (EA): Expanding 

Admixture, (SP): Superplasticizer, (AEA): Air – Entraining Admixture. 

 

 

Figure ‎2.10 ‒ Influence of s/b ratio on crushed basalt TSC modulus of elasticity versus 

w/b ratio (Abdelgader and Górski, 2003). 
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2.5.4. Shrinkage  

Shrinkage is generally known as a reduction of the concrete volume with time due to loss of 

physically adsorbed water from cement paste (Mehta and Monteiro, 2006). There are 

generally three types of shrinkage including drying shrinkage, autogenous shrinkage, and 

carbonation shrinkage (Nehdi and Soliman, 2011). The shrinkage of TSC was found to be 

much lower than that of conventional concrete (ACI 304.1, 2005; Abdelgader and Elgalhud, 

2008; Abdelgader and Ben-Zeitun, 2005). This can be explained according to the drying 

shrinkage equation (Eq. 2.5) proposed by Lyse (1959). 

 

𝑆𝑡 = 𝑆0 (1 − 𝑒−𝑆𝑡)𝜌                                                              Eq. 2.5 

Where 𝑆𝑡 = shrinkage after time of drying (t), 𝑆0  = final shrinkage in relation to the 

percentage of cement paste in the concrete, 𝑆 = rate of shrinkage depending on the relative 

humidity of the ambient atmosphere, and 𝜌 = percentage of cement paste in the concrete. 

Therefore, since TSC contains less cement paste and more coarse aggregate than 

conventional concrete, TSC is expected to exhibit lower shrinkage. Experimentally, it was 

found that the drying shrinkage of TSC was about 330 micro-strains compared to about 600 

micro-strains for conventional concrete (Davis, 1960). Adding a superplasticizer and/or an 

expanding admixture was found to reduce the TSC shrinkage (Abdul Awal, 1984). However, 

TSC mixtures incorporating superplasticizers have shown lower drying shrinkage than that of 

TSC made with expanding admixtures. This was attributed to reduction of the water demand 

induced by the superplasticizers (Abdul Awal, 1984).  

2.5.5. Creep 

Very limited data on TSC creep are available in the open literature. Three months creep tests 

for TSC have shown much lower creep values than that of normal concrete (Tang, 1977). It 

was also reported that the 90 days creep strain in conventional concrete was about 24% 

higher than that in TSC at the same age (Abdul Awal, 1984). This can be ascribed to the fact 

that TSC is considered volumetrically more stable than conventional concrete. Indeed, TSC 

has a higher amount of coarse aggregate and lower amount of cement paste, which is 

primarily responsible for creep. Hence, it is expected that creep of TSC will be lower since it 
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is proportional to the cement paste content (Abdul Awal, 1984). Furthermore, creep recovery 

for TSC, which is defined as the amount of strain that is recovered immediately after 

removing the load, was investigated (Abdul Awal, 1984). Results showed that TSC has lower 

creep recovery compared to that of conventional concrete (Table 2.12).  

 

Table ‎2.12 ‒‎Creep‎recovery‎of‎TSC‎and‎conventional‎concrete‎(CC)‎[adapted‎after‎

(Abdul Awal, 1984)] 

Concrete 

Type 

(w/b) 

Ratio 

Admixture 

Type 

Compressive 

Strength (MPa) 

Creep 

(10
-6

) 

Creep Recovery 

(10
-6

) 

TSC 
0.52 

without 

admixture 

31.90 779 61 

CC 33.20 965 97 

TSC 
0.47 1.25% SP 

32.00 688 72 

CC 44.80 731 75 

TSC 
0.50 1% EA 

45.60 945 71 

CC 38.20 1325 100 

TSC 
0.45 

1% EA + 

1.25% SP 

46.50 719 96 

CC 40.20 947 110 

 

2.5.6. Heat of Hydration 

During the hydration process of cementitious materials, significant heat is liberated. The 

amount of heat will mainly depend on the type of cement (i.e. cement composition and 

cement fineness), and the concrete mixture proportions (i.e. cement content, SCMs content, 

and aggregate content) (Chefdeville, 1963). Moreover, the geometry of the concrete member 

and ambient temperature have a significant influence on the resultant rise of the concrete 

temperature. In massive concrete, the external surface cools faster than the core, leading to 

tensile strains and stresses that can cause thermal cracking (ACI 207, 1996). It is 

recommended that the maximum temperature difference between the concrete core and its 

exterior surface not to exceed 20C to avoid the development of thermal cracking (Portland 

Cement Association, 1997). 

TSC has been used in massive concrete structures such as dams owing to its low cement 

content leading to lower heat of hydration and consequently less thermal cracking. However, 

there is limited research on the thermal properties of TSC. Changes in massive TSC 

temperature were monitored in 1-m
3
 [35.3 ft

3
] specimens (Bayer, 2004). Periodical 
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temperature measurements were taken every 8 hours until the temperature reached a steady-

state. It was found that adding mineral admixtures (i.e. rock powder, fly ash, GGBFS) as 

partial replacement for cement significantly reduced the temperature differences between the 

surface and core of TSC specimens (Table 2.13).  

 

Table ‎2.13 ‒ Peak temperature differences with different mineral admixtures for TSC 

[adapted after (Bayer, 2004)] 

Specimen 

No. 

Mineral Admixture as Partial 

Replacement for Cement (%) 

Peak Temperature 

Difference (C) 

1 20% Rock Powder 08.5 

2 50% Rock Powder 08.0 

3 25% Fly Ash and 25% Rock Powder 08.0 

4 50% GGBFS 13.0 

5 50% Fly Ash 09.5 

6 50% Brick Powder 07.0 

7 25% Brick Powder and 25% Fly Ash 09.5 

 

2.5.7. TSC Durability 

Concrete durability is defined as its ability to resist damaging effects induced by different 

mechanical and environmental loadings during its service life. The penetration rate for any 

aggressive substances (e.g. chloride and sulphate ions, carbon dioxide, etc.) into concrete is 

controlled by the porosity of concrete and its connectivity and the existence of micro-cracks 

(Mehta, 1988).  

According to ACI 304.1 (2005), TSC was very durable when exposed to aggressive 

environments (ACI 304.1, 2005). Moreover, TSC containing air entraining admixtures 

showed high frost resistance similar to that of conventional concrete (Tynes and McDonald, 

1968). Recently, field investigation of TSC piles of the Tasman Bridge in Australia was 

conducted after 48 years of service in order to evaluate the TSC long-term durability. Results 

showed that the TSC technique produced dense and durable concrete in this marine 

environment. The chloride and sulfate contents based on examining cores from these piles 

were low at the reinforcement bars depth (Berndt, 2012). Moreover, minimal corrosion of 

reinforcement was observed during visual inspection. Furthermore, the sulfate concentrations 
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ranged between 1.3% and 3.8% by weight of cement, which is not an excessive concentration 

under such severe exposure condition (Berndt, 2012).  

2.6. CONCLUDING REMARKS AND RECOMMENDATIONS 

The TSC technology has been widely used in many applications over the past 70 years, 

including repair, massive concrete, underwater concreting, etc. In some of these applications, 

the TSC was by far the most economical. In others, favorable properties were the principal 

reason for its use. Based on this review chapter, the following concluding remarks on TSC 

can be outlined: 

 TSC provides cost benefits since 60% of the material (i.e. coarse aggregate particles) is 

directly placed into the formwork and only 40% (i.e. grout) goes through mixing and 

pumping procedures. 

 TSC has a high aggregate to cement ratio (A/C) compared to that of conventional 

concrete, which can lead to higher volume stability, thus resulting in less cracking.  

 The selection of the type and size of the coarse aggregates is a key aspect since these 

influence the TSC mechanical properties.  

 Grout flowability is a paramount factor affecting the TSC engineering properties as it 

directly controls the inter-aggregate void penetrability.  

To the best of the author’s knowledge, there is currently scarce data that evaluate the 

effects of adding different admixtures and/or SCMs (e.g. silica fume, metakaolin, fly ash, and 

GGBFS) on TSC properties. To gain a better understanding of TSC and the factors 

controlling its properties, there is need to investigate the following: 

 Effect of different binder compositions (e.g. using SCMs) and/or new generation 

chemical admixtures (e.g. superplasticizers, viscosity modifying admixtures) on TSC 

grout properties. 

 Effect of the coarse aggregate properties on the mechanical properties of TSC. For 

instance, the use of recycled aggregates with TSC, dense aggregates for TSC radiation 

shielding, and lightweight aggregate TSC need yet to be explored. 

 The durability and long-term performance of TSC under different exposure conditions 

(e.g. wetting/drying and/or freezing/thawing cycles combined with chloride or sulphate 

ion environments) need dedicated investigation.  
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 Moreover, mobilizing the TSC technology in precast applications where it can provide 

particular advantages still needs dedicated research. 
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Chapter 3 

3. GROUTS INCORPORATING SUPPLEMENTARY 

CEMENTITIOUS MATERIALS FOR TWO-STAGE 

CONCRETE
(*)

 

 

 

3.1. INTRODUCTION 

Two-stage concrete (TSC), also known as preplaced aggregate concrete, is produced by first 

placing the dry coarse aggregate in the formwork and then filling the inter-particle voids with 

a flowable grout mixture. It has been successfully used in various applications, such as 

concrete repair, underwater construction and mass concrete (Najjar et al., 2014). The unique 

placement technique of TSC offers several technological and sustainability advantages. 

Preplacing the coarse aggregates in the formwork before injecting grout allows using 

aggregates that constitute challenges in normal concrete production. For example, very heavy 

aggregates (e.g. magnetite, which is highly desirable in the construction of nuclear power 

plants) can be used in concrete production without segregation concerns (ACI 304.1, 2005). 

Moreover, recycled concrete aggregates that normally cause loss of workability and severe 

pumping problems due to their higher water absorption will not contribute to concrete casting 

problems in the TSC technology (Morohashi et al., 2013). Likewise, in TSC, the coarse 

aggregate, which represents the predominant fraction of the concrete volume, is not mixed in 

concrete mixers. Not only does this accelerate construction by dramatically reducing the 

volume of the concrete mixture, but also reduces the energy consumed in concrete mixing 

and pumping (ACI 304.1, 2005). 

The key controlling factor of the mechanical strength and durability of TSC is the quality 

of the grout used in injecting the preplaced coarse aggregate, along with the rheological 

properties of the grout, which should be conducive to effectively filling the space between 

preplaced aggregates and reducing the volume of voids to a minimum (Abdul Awal, 1984; 

ACI 304.1, 2005). Therefore, grouts used for TSC applications have to meet specific criteria 
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for flowability, stability and mechanical strength as recommended by ACI 304.1. The 

mixture proportions of TSC grouts are generally selected according to ASTM C938-2010, 

which mainly depends on the grout flowability. 

The most important parameter in the TSC production process is the grout flowability, 

which is an indicator of the ability of the grout penetrate around the aggregate particles and 

effectively fill the inter-particle space. The Grout flowability depends mainly on the chemical 

and physical properties of the used mixture ingredients (i.e. sand, cement, SCMs and 

admixtures) along with their respective proportions (Abdelgader and Elgalhud, 2008; Najjar 

et al., 2014). Moreover, the optimum water content, defined as the amount of water at the 

point where the powder material starts to flow freely, is a significant parameter for 

controlling TSC grout flowability. Furthermore, the mixing water acts as a dispersing phase 

for the binder and sand in the grout mixture (Hunger and Brouwers, 2009). For cementitious 

materials, the useful water is that needed for cement hydration reactions. Any water added in 

excess of that is used to adjust the cementitious material flowability (Hunger and Brouwers, 

2009; Kismi et al., 2011). Consequently, the surface texture and particle shape of the powder 

(i.e. binder) in a grout mixture will affect its flowability (Khayat et al., 2008).  

The use of emerging new admixtures and more sustainable and highly durable binder 

systems have rarely been explored in TSC. Previous research showed that the addition of fly 

ash (FA) up to 33% as partial replacement for cement improved the flowability, extended the 

handling time and reduced the water demand of TSC grout mixtures (ACI 304.1, 2005). 

Moreover, partially substituting cement by 6% silica fume (SF) was found to improve the 

TSC grout compressive strength, while adversely affecting its flowability (O’Malley and 

Abdelgader, 2010). Resorting to new generation admixtures can allow producing low w/b 

high-strength grouts with adequate flowability, which should produce higher strength TSC. 

Moreover, using binary and ternary binders in producing TSC grouts can enhance the 

interfacial transition zone between the preplaced aggregates and the injected grout matrix. 

Furthermore, SCMs used in TSC grouts can enhance the durability of TSC in a similar 

manner to that well documented in normally placed concrete. 

Therefore, this research work aims at quantifying the relationship between SCMs and 

TSC grout properties. Moreover, the changes in water demand for TSC grout mixtures 

incorporating different types and dosages of SCMs were investigated. The effect of high-
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range water-reducing admixture (HRWRA) addition on the flowability of grout mixtures was 

also monitored. An attempt was made to identify an optimum w/b ratio and HRWRA dosages 

for further testing of the associated TSC grout mixtures to evaluate their properties. The 

findings of this study should provide practitioners with new guidance to produce more 

sustainable and more durable high-strength TSC, which can open the door for novel 

applications of TSC never considered before.  

3.2. EXPERIMENTAL PROGRAM  

3.2.1. Materials and Grout Mixture Proportions 

Ordinary portland cement (OPC) was used as the main binder for all tested grout mixtures. 

Three types of SCMs including Fly Ash (FA), Silica Fume (SF), and Metakaolin (MK) were 

used as partial replacement for OPC. Table 3.1 summarizes physical and chemical properties 

of the used materials. In TSC, relatively finer sand having a fineness modulus ranging from 

1.2 to 2.0 is desirable since it is used in the grout injection between preplaced aggregates. 

Using coarse sand can reduce the stability of the grout and increase the segregation. 

Therefore, silica sand with a fineness modulus of 1.47 and a saturated surface dry specific 

gravity of 2.65 was used as a fine aggregate. Moreover, Figure 3.1 shows SEM images 

illustrating the size and shape difference of the used cementitious materials. Three water-to-

binder ratios (w/b) of 0.35 (Group A), 0.45 (Group B) and 0.55 (Group C) were tested. A 

poly-carboxylate HRWRA with a specific gravity of 1.064, a solid content of 34% and pH of 

5 was added at different dosages in order to control the grout’s flowability. Several TSC 

grout mixtures were prepared using single, binary, and ternary binders. The SCMs 

substitution rates were selected based on guidance in the open literature (e.g. Kosmatka et al., 

2003). The mixtures proportions of the tested grouts are provided in Table 3.2. 
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Table ‎3.1 ‒‎Chemical‎analysis‎and‎physical‎properties‎of‎OPC,‎FA,‎SF,‎and‎MK 

 OPC FA SF MK 

SiO2 (%) 19.60 43.39 95.30 53.50 

Al2O3 (%) 4.80 22.08 00.17 42.50 

CaO (%) 61.50 15.63 00.49 0.20 

Fe2O3 (%) 3.30 7.74 00.08 1.90 

SO3 (%) 3.50 1.72 00.24 0.05 

Na2O (%) 0.70 1.01 00.19 0.05 

Loss on ignition (%) 1.90 1.17 4.7 0.50 

Specific gravity  3.15 2.50 2.20 2.60 

Surface area (m
2
/kg)

*
 371 280 19500 15000 

Particle size (m)
 *
     

D10 2.47 1.98 0.06 2.0 

D50 14.97 14.06 0.17 4.5 

D90 40.90 81.68 0.29 25 
*
1 m

2
/kg = 4.882 ft

2
/lb, 1m =0.000393 in. 

 

 

Figure ‎3.1 ‒‎SEM‎images‎illustrating‎the‎size‎and‎shape‎difference‎of‎the‎used‎

cementitious materials. 

 

 

 

OPC 

MK SF 

FA 
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Table ‎3.2 ‒‎Grout‎mixture‎proportions 

Grout 

Mixture ID 

Grout Mixture 

Notation 

Binder (kg/m
3
)

*
 Sand 

(kg/m
3
)

*
 

Water 

(kg/m
3
)

*
 OPC FA SF MK 

C-0.35 100OPC 957 -- -- -- 957 335 

F1-0.35 90OPC-10FA 855 95 -- -- 950 332 

F3-0.35 70OPC-30FA 654 280 -- -- 935 327 

F5-0.35 50OPC-50FA 460 460 -- -- 921 322 

S1-0.35 90OPC-10SF 850 -- 94 -- 945 331 

SF4-0.35 50OPC-10SF-40FA 458 366 92 -- 916 321 

M1-0.35 90OPC-10MK 856 -- -- 95 951 333 

MF4-0.35 50OPC-10MK-40FA 461 369 -- 92 922 323 

C-0.45 100OPC 874 -- -- -- 874 393 

F1-0.45 90OPC-10FA 781 87 -- -- 867 390 

F3-0.45 70OPC-30FA 599 257 -- -- 855 385 

F5-0.45 50OPC-50FA 422 422 -- -- 843 379 

S1-0.45 90OPC-10SF 777 -- 86 -- 863 388 

SF4-0.45 50OPC-10SF-40FA 420 336 84 -- 839 378 

M1-0.45 90OPC-10MK 782 -- -- 87 868 391 

MF4-0.45 50OPC-10MK-40FA 422 338 -- 84 844 380 

C-0.55 100OPC 803 -- -- -- 803 442 

F1-0.55 90OPC-10FA 718 80 -- -- 798 439 

F3-0.55 70OPC-30FA 551 236 -- -- 788 433 

F5-0.55 50OPC-50FA 389 389 -- -- 778 428 

S1-0.55 90OPC-10SF 715 -- 79 -- 795 437 

SF4-0.55 50OPC-10SF-40FA 387 310 77 -- 774 426 

M1-0.55 90OPC-10MK 719 -- -- 80 799 439 

MF4-0.55 50OPC-10MK-40FA 389 311 -- 78 778 428 
*
1 kg/m

3
= 0.06247 lb/ft

3 

 

3.2.2. Experimental Procedures 

All grout mixtures were prepared as per the guidelines of ASTM C938-2010. Mixing and 

flowability measurements were conducted at room temperature (T = 23 ± 2C) [73.4 ± 

3.6F]. Immediately after mixing, the grout flowability was evaluated using a flow cone test 

according to ASTM C939-2010 (Figures 3.2). The flow cone test consists of measuring the 

time of efflux of 1725 ml [0.06 ft
3
] of the grout through a specific cone having a 12.7 mm 

[0.5 in.] discharge tube.  
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Figure ‎3.2 ‒ Flow cone test. 

 

In addition, the spread flow test was conducted to study the effects of SCMs on the point 

where the grout mixture starts to flow freely, which identifies an optimum water content 

(Hunger and Brouwers, 2009). The grout is filled in a special conical mould, which is lifted 

straight upwards in order to allow free flow. From the spread-flow test, two diameters 

perpendicular to each other (D1 and D2) are determined. Then, the relative slump, Rp, which 

is a measure for the deformability of the mixture, can be calculated using the following 

equation (Eq. 3.1).  

𝑅𝑝 = (
(

𝐷1 + 𝐷2

2 )

𝐷𝑜
)

2

− 1 Eq. 3.1 

Where Do represents the base diameter of the used cone (i.e. 100 mm [4 in.]). The spread 

flow test is described in greater detail elsewhere (Hunger and Brouwers, 2009). 

Based on the efflux time and the spread flow results of various grout mixtures, an 

optimum w/b was identified. Thereafter, the optimum HRWRA dosage that meets the 

required efflux time (i.e. 35-40 ± 2 sec) recommended by ACI 304.1 (2005) was considered 

for each grout mixture made with the selected w/b.  Moreover, the effects of incorporating 
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various rates and types of SCMs on the properties of selected TSC grouts were investigated 

based on evaluating the flowability loss, the resistance to bleeding, the setting time and the 

compressive strength.  

In order to monitor the loss in grout flowability, the efflux time for each grout mixture 

was measured at 0, 30, 60 and 90 minutes from the end of the mixing stage to demonstrate 

that the grout flowability is suitable for field practical conditions (Nehdi and Martini, 2009a 

and 2009b). The grouts rested undisturbed between testing at laboratory conditions; i.e. (T = 

23 ± 2C) [73.4 ± 3.6F] and with a RH of 70%. However, immediately before testing, grouts 

were stirred in an identical manner before measuring the efflux time. Moreover, the 

resistance to bleeding of the grout mixtures was also evaluated according to ASTM C940-

2010. After 3 h, the grout bleeding is calculated according as per equation (Eq. 3.2): 

 Grout bleeding (%) =  
𝑉𝑤

𝑉1
× 100  Eq. 3.2 

Where  𝑉1 is the volume of grout at the beginning of test (ml [oz]) and 𝑉𝑤 is the volume 

decanted bleed water (ml [oz]). 

The initial and final setting times of the grout mixtures were determined using the Vicat 

apparatus following the procedure of ASTM C953-2010. The compressive strength 

development of the TSC grout mixtures was monitored through testing 50 mm [2 in.] cubic 

specimens at the ages of 7, 28, and 56 days according to ASTM C942-2010. Immediately 

after demolding, cube test specimens were moved to a moist curing room (T = 23 ± 2C [73.4 

± 3.6F] and RH = 98%) until the desired testing ages. 

Differential scanning calorimetry (DSC) tests were performed at 7 days on samples 

taken from selected TSC grout mixtures. Samples were ground to powder with an average 

particle size of 45 m. Then, a 30 to 60 mg [0.001 to 0.002 oz.] powder specimen was heated 

in a helium atmosphere at a constant rate of 10°C [50°F] per minute up to 550°C [1022°F]. 

The endothermic peak for CH was observed at approximately 440°C [824°F]. The area under 

the curve was related to the quantity of CH in the sample using a built-in regression equation. 
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3.3. RESULTS AND DISCUSSION 

3.3.1. Effects of SCM Type on Flow Properties of TSC Grouts 

Tables 3.3 and 3.4 report the efflux time and spread flow results for all the tested grout 

mixtures. For mixtures with 0% HRWRA, it can be observed that the efflux time increased as 

the w/b ratio decreased. Moreover, some grout mixtures exhibited very long efflux time (i.e. 

> 300 sec) or even did not show any measurable flowability. For instance, the grout mixture 

incorporating 10% SF did not show any flow at a w/b = 0.35, while it exhibited a very long 

efflux time (i.e. > 300 sec) as the w/b was increased to 0.45. This is due to the high yield 

stress and high viscosity of these grouts. However, all the grout mixtures made with w/b = 

0.55 can flow easily without the need for HRWRA addition. This can be attributed to the 

lower viscosity of such grouts. 

The flowability of the grout mixture is mainly affected by the amount of water used, 

which depends on the amount of required water to cover binder particles and fill the inter-

granular porosity in the mixture. The amount of pore water is influenced by the SCMs type 

and its replacement rate (Kismi et al., 2011). This can be explained using a graphical analysis 

of the spread flow results. All measured relative slump, Rp, values are plotted versus the 

respective w/b ratio at 0% HRWRA (Figures 3.3 and 3.4). A linear relation can be computed 

for each mixture via linear regression using the following equation (Eq. 3.3):  

𝑤
𝑏⁄ = 𝐸𝑝𝑅𝑝 + 𝐵𝑝 Eq. 3.3 

Where the value Bp is the intersection of this linear function with the ordinates axis at Rp 

= 0, which depicts the minimum water content needed to initiate flow (Okamura and Ouchi, 

2003; Khayat et al. 2008); Ep is the deformation coefficient, which indicates the sensitivity to 

the water needed for a specified flowability.  

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0958946508001224#bib22
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Table ‎3.3 ‒‎Grout‎efflux‎time‎results 

Grout Mixture 

ID 
Grout Efflux Time (sec) 

Group A 
HRWRA Dosage (%) 

0.6 1.0 1.2 1.6 2.0 

C-0.35 >300.0 164.0 130.0 115.0 114.0 

F1-0.35 299.0 117.0 114.0 110.0 109.0 

F3-0.35 153.0 103.0 66.0 59.0 57.0 

F5-0.35 80.0 52.0 46.0 44.0 43.0 

S1-0.35 >300.0 >300.0 >300.0 215.0 193.0 

SF4-0.35 >300.0 >300.0 240.0 170.0 98.0 

M1-0.35 >300.0 >300.0 >300.0 247.0 218.0 

MF4-0.35 >300.0 >300.0 262.0 186.0 103.0 

Group B 
HRWRA Dosage (%) 

0.0 0.2 0.4 0.6 0.8 

C-0.45 >300.0 91.0 39.0 38.0 -- 

F1-0.45 312.0 43.0 35.0 34.0 -- 

F3-0.45 90.0 34.0 24.0 22.0 -- 

F5-0.45 39.0 25.0 22.0 19.0 -- 

S1-0.45 >300.0 95.0 60.5 44.0 41.0 

SF4-0.45 60.0 39.0 23.5 23.0 -- 

M1-0.45 >300.0 >300.0 99.0 64.0 42.0 

MF4-0.45 130.0 56.0 38.0 29.0 -- 

Group C 
HRWRA Dosage (%) 

0.0 0.1 0.2 -- -- 

C-0.55 35.0 25.0 16.0 -- -- 

F1-0.55 24.0 21.0 15.0 -- -- 

F3-0.55 18.0 16.0 14.0 -- -- 

F5-0.55 15.5 14.0 13.0 -- -- 

S1-0.55 130.0 62.0 35.0 -- -- 

SF4-0.55 34.0 22.0 14.0 -- -- 

M1-0.55 145.0 70.0 39.0 -- -- 

MF4-0.55 40.0 27.0 17.0 -- -- 
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Table ‎3.4 ‒‎Grout‎spread‎flow‎results 

Grout Mixture 

ID 
Grout Spread Flow (cm)

*
 

Group A 
HRWRA Dosage % 

0.6 1.0 1.2 1.6 2.0 

C-0.35 13.0 20.5 25.5 28.5 30.0 

F1-0.35 17.4 23.0 27.5 29.0 31.0 

F3-0.35 27.4 26.5 31.5 31.5 32.0 

F5-0.35 28.0 30.5 32.0 34.0 33.0 

S1-0.35 12.0 18.0 22.0 27.0 30.0 

SF4-0.35 14.0 20.0 24.0 29.0 32.0 

M1-0.35 11.0 16.0 21.0 26.0 26.3 

MF4-0.35 13.0 19.0 23.0 28.0 31.5 

Group B 
HRWRA Dosage (%) 

0.0 0.2 0.4 0.6 0.8 

C-0.45 12.0 18.0 24.5 30.0 -- 

F1-0.45 13.0 23.5 28.5 36.0 -- 

F3-0.45 16.0 25.0 30.0 37.0 -- 

F5-0.45 19.0 28.0 35.0 39.0 -- 

S1-0.45 11.0 17.5 24.0 31.0 33.0 

SF4-0.45 17.0 23.0 34.0 37.0 -- 

M1-0.45 11.0 12.0 19.5 26.0 33.5 

MF4-0.45 15.0 17.5 28.0 36.0 -- 

Group C 
HRWRA Dosage (%) 

0.0 0.1 0.2 -- -- 

C-0.55 18.0 22.0 24.0 -- -- 

F1-0.55 19.0 23.0 24.5 -- -- 

F3-0.55 22.0 28.5 30.0 -- -- 

F5-0.55 27.0 29.0 31.0 -- -- 

S1-0.55 13.0 19.0 21.0 -- -- 

SF4-0.55 16.0 21.0 23.0 -- -- 

M1-0.55 12.0 18.0 20.0 -- -- 

MF4-0.55 15.0 20.0 22.0 -- -- 
* 
1 cm = 0.3937 in. 

 

 

 

 

 

 



56 
 

 

 

Figure ‎3.3 ‒‎Relative‎slump‎flow‎based‎on‎the‎spread‎flow‎test‎as‎a‎function‎of‎the‎

water/binder ratio for grout mixtures (C, F1, F3 and F5). 
 

 

Figure ‎3.4 ‒ Relative slump flow based on the spread flow test as a function of the 

water/binder ratio for grout mixtures (S1, SF4, M1 and MF4). 

 

For grout mixtures incorporating 30% FA and 50% FA, the Bp value was about 0.33 and 

0.30, respectively, as shown in (Figure 3.3). It can be observed that the higher the FA partial 

replacement level for OPC, the lower was the water content required to initiate flow. This is 
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attributed to the spherical shape and smooth surface texture of the FA (Khayat et al. 2008). 

However, the Bp value was about 0.37 for both grout mixtures S1 and M1 (Figure 3.4), 

which means that a grout mixed with a w/b lower than this value will not cause those 

mixtures to flow. As the w/b exceeded 0.37, the S1 and M1 mixtures started to flow. The 

high value of Bp for the S1 and M1 grout mixtures is mainly due to the high surface area of 

SF and MK, leading to increasing water demand in these grouts (e.g. Khayat et al. 2008).  

Generally, all grout mixtures made with a w/b = 0.35 were unlikely to flow at 0% 

HRWRA. This can be attributed to the high yield stress and high viscosity of these grout 

mixtures due to their relatively low free water content. Significant water gets adsorbed on the 

surface of binder particles and trapped between them as they form flocs, and this is more 

stringent at higher binder content and higher binder surface area (Mehta, 2004). As a result, 

solid particles become connected by capillary forces since the water content is lower than the 

required pore water volume (Kismi et al., 2011). Thus, lubrication between particles gets 

diminished and grouts will not flow under their own weight (Wong and Kwan, 2008). This 

was true for mixtures incorporating different dosages of FA despite that FA is generally 

perceived as conducive to better workability. At low w/b and due to the low density of FA, 

increasing the mass replacement of cement by FA increased the water requirement due to 

higher surface area of particles, thus compromising flowability (Sahmaran et al., 2006).  

Conversely, all the grout mixtures made with w/b = 0.55 had sufficient flow (i.e. grouts 

can flow easily under their own weight) without the need for HRWRA addition. This can be 

attributed to the fact that increasing the w/b ratio results in an increase of the free water 

volume in the grout mixture (i.e. excess water), which acts as a lubricating agent between the 

solid particles, hence leading to higher grout flowability (Kismi et al., 2011). Therefore, the 

grout efflux time decreased as the free water volume increased. However, the binder type and 

its dosage had a significant effect on the water demand, and thus on the flowability of the 

grout mixtures, even at high w/b (Khayat et al., 2008). For example, the grout mixtures F1-

0.55, F3-0.55 and F5-0.55 exhibited 31.4%, 48.6% and 55.7% shorter efflux time compared 

to that of the control grout mixture (C-0.55), respectively. Moreover, the spread flow for 

these mixtures was higher than that of the control grout mixture (C-0.55) by 5.6%, 22% and 

50%, respectively. This in agreement with the spread flow results since the value of Bp 

decreased as the percentage of FA increased (Figure 3.3). This can be attributed to the fact 
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that FA can reduce frictional forces among particles due to its spherical particles (so called 

ball bearing effect) as illustrated in Figure 3.1, leading to lubricating effect, thus facilitating 

mobility (Yung et al., 2013). Moreover, FA can be adsorbed on the surface of oppositely 

charged cement particles, preventing flocculation and enhancing particle dispersion, which 

consequently enhances flowability through freeing additional water (Kismi et al., 2011).  

On the other hand, partially replacing OPC using SF or MK significantly increased the 

grout efflux time. For instance, at w/b = 0.55, grout mixtures incorporating 10% MK as 

partial replacement for OPC exhibited an efflux time around 4 times that of the control grout 

mixture (100% OPC). Moreover, the 10% MK grout mixture exhibited about 33.3% lower 

spread flow and consequently higher Bp compared to that of the control grout mixture 

(Figure 3.4). This can be attributed to the high water demand of the high surface area MK 

(Razak and Wong, 2001). Similar trend was exhibited by grout mixtures incorporating SF.  

However, ternary grout mixtures involving a combination of OPC+FA+SF or 

OPC+FA+MK exhibited shorter grout efflux time and higher spread flow compared to that of 

binary grout mixtures made with OPC+SF or OPC+MK. For instance, the grout mixture 

MF4-0.55 achieved a 72.4% shorter efflux time than that of the M1-0.55 mixture. This is 

confirmed through the analysis of spread flow results (i.e. minimum water demand (Bp)) for 

mixtures incorporating 10% MK or 10% MK+40% FA. The addition of 40% FA to the 

mixture incorporating 10% MK decreased the water demand from 0.375 to 0.237 (Figure 

3.4) (i.e. about 37% reduction). This can be ascribed to the lubricant effect induced by the 

addition of 40% FA as discussed earlier and the enhanced particle packing density of the 

ternary binder blend whereby smaller particles fit in between coarser particles, leading to a 

lower inter-particle space and lower water demand.  

3.3.2. Effect of HRWRA Dosage on Flow Properties of TSC Grout 

Adding adequate dosages of HRWRA into cementitious grouts has a great effect on the 

grout’s flowability as illustrated in Table 3.3. The higher the HRWRA dosage, the shorter 

the efflux time of the grout mixture. For instance, increasing the HRWRA dosage from 0% to 

0.4% shortened the efflux time of the grout mixture SF4-0.45 by about 61%. The poly-

carboxylate admixture prevents the binder-water agglomeration and the formation of flocs 

through the steric repulsion mechanism. Moreover, it has unique poly-ethylene oxide side 
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chains, which move in water and steer the binder grains to disperse evenly into the grout 

mixture (Safiuddin, 2008). Hence, the addition of the HRWRA reduced the inter-particle 

friction (i.e. flow resistance) between solid particles, and hence improved the grout’s efflux 

time. Moreover, the HRWRA dosage required for the grout mixture to flow under its self-

weight will depend on the type and dosage of SCM. For example, at similar SCM content, 

the grout mixtures F1-0.45 (made with FA) and M1-0.45 (made with MK) needed about 

0.4% and 0.8% HRWRA dosage to meet the targeted efflux time (i.e. 35-40±2 sec), 

respectively. This is expected since FA has a spherical particular size conducive to lowering 

friction and smaller surface area per unit weight than that of MK. In contrast, for the same 

SCM type, mixtures F1-0.45 and F5-0.45 (both made with FA) needed about 0.2% and 0.0% 

to achieve the recommended efflux time for high strength TSC, respectively. At the same w/b 

of 0.45, mixture F5-0.45 achieved better flow since it has 50% FA particle replacement for 

OPC, while mixture F1-0.45 only has 10% FA replacement for OPC. 

The spread flow of the grouts depends primarily on the degree of dispersion of the binder 

particles, which largely depends on the HRWRA dosage (e.g. Khayat et al., 2008). The 

higher the HRWRA dosage, the greater the spread flow diameter. Therefore, the effect of the 

HRWRA on the spread flow was analyzed graphically, similar to the effect of the w/b. All 

measured Rp values were plotted versus the respective HRWRA dosage and a linear relation 

were computed for each mixture through linear regression as per the following equation (Eq. 

3.4):  

                                         𝐻𝑅𝑊𝑅𝐴 (%) = 𝑆𝐻𝑝 𝑅𝑝 + 𝐻𝑝 Eq. 3.4 

Where Hp is the intersection of this linear function with the ordinates axis at Rp = 0, 

which is considered as the minimum HRWRA dosage to disperse the powder particles 

(Okamura and Ouchi, 2003), SHp is the deformation coefficient, which indicates the required 

HRWRA dosage to increase the unit dispersing effect. An example of an analyzed spread-

flow test for mixtures with w/b = 0.45 is illustrated in Figures 3.5 and 3.6. 

 

http://www.sciencedirect.com/science/article/pii/S0958946508001224#bib22
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Figure ‎3.5 ‒‎Relative‎slump‎flow‎based‎on‎the‎spread‎flow‎test‎as‎a‎function‎of‎the‎

HRWRA dosage for grout mixtures (C, F1, F3 and F5). 
 

 

Figure ‎3.6 ‒ Relative slump flow based on the spread flow test as a function of the 

HRWRA dosage for grout mixtures (S1, SF4, M1 and MF4). 
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initiate flow behavior without the need for HRWRA addition. This is due to the fact that such 

y = 0.0777x - 0.0046
R² = 0.9882

y = 0.0542x - 0.0294
R² = 0.9873

y = 0.0548x - 0.0766
R² = 0.9899

y = 0.0507x - 0.1421
R² = 0.9931

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16

H
R

W
R

A
 (

%
)

Relative Slump (Rp)

Control

FA 10%

FA 30%

FA 50%

y = 0.0699x + 0.0267
R² = 0.9749

y = 0.0496x - 0.0648
R² = 0.9586

y = 0.0948x + 0.0816
R² = 0.9014

y = 0.0503x + 0.022
R² = 0.9279

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14

H
R

W
R

A
 (

%
)

Relative Slump (Rp)

SF 10%

SF 10% + FA 40%

MK 10%

MK 10% + FA 40%



61 
 

 

mixtures have excess water, which acts as a dispersing phase for the binder, leading to 

initiating the flow without the need for HRWRA. However, using HRWRA is still needed to 

achieve the targeted flowability for effective TSC production. Moreover, the binder type has 

a significant effect on the grout spread flow. A shown in Figure 3.6, mixtures S1-0.45 and 

M1-0.45 required a higher HRWRA dosage than that of the mixtures SF4-0.45 and MF4-

0.45. For instance, the Hp value for mixture M1-0.45 decreased from 0.081% to 0.022% as 

40% FA was added to the mixture, owing to the lubricating effect induced by FA discussed 

earlier.   

Based on the experimental results discussed above and outlined in Tables 3.3 and 3.4, it 

can be argued that all grout mixtures made with a w/b ratio = 0.45 could achieve the efflux 

time of 35-40 ± 2 sec recommended for successful TSC production. Mixtures having a w/b = 

0.35 need difficult efflux time tailoring and even at 2.0% HRWRA dosage, their efflux time 

remained too high.  Conversely, those made with a w/b = 0.55 can face stability problems via 

bleeding and separation of the solid-liquid phases. Therefore, in the remainder of this study, 

grout mixtures with w/b = 0.45 with an optimum HRWRA dosage were selected for further 

investigation as shown in Table 3.5. 

 

Table ‎3.5 ‒ Optimum w/b and HRWRA dosage for TSC grout mixtures 

Grout Mixture ID Optimum w/b Ratio 
Optimum HRWRA 

Dosage (%) 

C 0.45  0.40  

F1 0.45 0.40  

F3 0.45 0.20 

F5 0.45 0.00 

S1 0.45 0.80 

SF4 0.45 0.20 

M1 0.45 0.80 

MF4 0.45 0.40 

 



62 
 

 

3.3.3. Properties of TSC Grouts 

3.3.3.1. Loss of Grout Flowability 

Table 3.6 reports the efflux time results for the selected grout mixture, which was measured 

at 0, 30, 60 and 90 minutes from the end of the mixing stage. It was found that the binder 

type and HRWRA dosage had a significant influence on the grout’s flowability loss. For 

example, after 90 minutes and with a 0.4% HRWRA dosage, flowability loss for grout 

mixtures F1 and MF4 were 22% and 38% lower than that of the control mixture C, 

respectively. It can be observed that the addition of FA decreased the flowability loss. This 

can partly be attributed to the lubricant effect induced by FA, as discussed earlier. Moreover, 

FA addition prolonged the grout setting time and consequently led to lower flowability loss 

with time (Li et al., 2004).  

Conversely, similar rate of flowability loss was observed for grout mixtures S1 and M1 

with incorporating similar HRWRA dosage (i.e. 0.8%). The addition of SF or MK, which are 

both characterized by a high specific area as reported in Table 3.1, increased the water 

demand and consequently reduced the flowability as observed elsewhere for instance by 

(Khatib and Clay, 2004; Sakir et al., 2011). However, partially replacing cement with FA 

into these mixtures to get ternary binders, which also allowed to decrease the HRWRA for 

the same flow behavior, resulted in mixed results in terms of flowability loss. This can be 

ascribed to two compensating effects: the lubricant effect induced by fly ash through its 

spherical shape and reduction of cement hydration through cement dilution (Yung et al., 

2013), and the increase in water demand due to the higher surface area of fly ash combined 

with the use of lower HRWRA dosage, which tends to decrease the effectiveness of the 

admixtures in inhibiting binder agglomeration/fluctuation, thus leading to a higher 

flowability loss (Safiuddin, 2008).   

3.3.3.2. Bleeding (stability) 

Bleeding occurs due to the settlement of heavier solid particles suspended in water under 

their own weight (Tan et al., 2004). As shown in Table 3.6, the binder type and HRWRA 

dosage have significantly affected the resistance to bleeding of the tested grout mixtures. 

Increasing the FA cement replacement rate was found to increase the mixture bleeding. For 
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example, increasing the FA content from 10% to 50% increased the bleeding from 0.40% to 

1.26%. Generally, fly ash will reduce the amount of bleeding due to the reduction in water 

demand (Gebler, 1986). However, an exception to this condition is when the fly ash, 

especially class F, is added without reducing the water content (Thomas, 2007). Therefore, 

the high bleeding of FA mixtures in this study can be attributed to the increase in the free 

water content since a constant water content was used in the mixture design. However, the 

grout mixtures incorporating 10% SF and 10% MK exhibited very low bleeding. This can be 

ascribed to their very fine particles and high surface area, leading to a reduction in the 

amount of free water in the grout mixture. Also, the physical filler effect of these very fine 

materials (i.e. SF and MK) will reduce bleeding due to blocking up pores between cement 

particles (Khayat et al., 1997, Hsing, 1997, Khatib and Clay, 2004). For ternary binder grout 

mixtures, FA addition offset the reduction in bleeding induced by SF and MK. For example, 

the bleeding of mixtures SF4 and MF4 were 8.5 and 3.3 times that of the grout mixtures S1 

and M1, respectively. 

 

Table ‎3.6 ‒‎Fresh‎Properties‎of‎TSC‎grouts 

Grout 

Mixture 

ID 

Bleeding 

% 

Initial 

Setting 

Time (h) 

Final 

Setting 

Time (h) 

Grout Efflux Time (sec)
*
  

0 

(min) 

30 

(min) 

60 

(min) 

90 

(min) 

C 0.25 5.5 10.0 39 47 51 59 

F1 0.40 6.0 10.5 35 43 46 49 

F3 1.13 6.0 11.0 34 44 50 61 

F5 1.20 7.5 12.5 39 42 46 50 

S1 0.13 5.5 10.5 41 46 48 51 

SF4 1.10 5.5 10.0 39 46 49 54 

M1 0.15 5.0 10.0 42 47 50 52 

MF4 1.12 6.0 11.0 38 42 47 50 
*
Grout efflux time results were measured at 0, 30, 60, and 90 minutes from the end of the mixing 

stage. 

 

3.3.3.3. Setting Time 

The initial and final setting times of TSC grouts provide an idea about the window of time 

for injecting the grout through the preplaced aggregate particles before its hardening (Tan et 
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al., 2004). As shown in Table 3.6, the setting time was influenced by the binder type and 

HRWRA dosage. The initial setting time for mixture F3 was extended by about 10% 

compared to that of the control mixture C. Conversely, the grout mixture F5 showed a longer 

initial setting time. This can be attributed to the high percentage of FA (i.e. high cement 

dilution effect), leading to slower hydration reactions (Chabil et al., 2014). The grout 

mixtures incorporating 10 % SF and 10% MK as partial replacement for OPC exhibited 

similar or slightly shorter initial setting time than that of the control grout mixture C, 

respectively. This can be ascribed to the very high surface area of SF and MK, which provide 

locations for nucleation and growth of cement hydration reactions, which can shorten the 

setting time, in addition to more rapid development of pozzolanic reactions compared to the 

coarser fly ash (Tan et al., 2004). On the other hand, there was no discernable change in the 

setting time of grout mixtures made with a ternary OPC+FA+SF binder compared with that 

of the control mixture C due to the conflicting effects of 10% SF and 40% FA.  

3.3.3.4.  Compressive Strength 

The compressive strength results for TSC grout mixtures at different ages (7, 28, and 56 

days) are presented in Table 3.7. Results indicate that increasing the replacement rate of 

OPC by FA reduced the compressive strength measured at those dates. For example, at the 

age of 7 days, the grout mixtures incorporating 30% and 50% FA as partial replacement for 

OPC achieved 79% and 62 % of the compressive strength of the control grout mixture 

without FA. This can be attributed to the fact that calcium ions (Ca
++

) adsorb on the surface 

of FA particles at early ages, causing a depression of the calcium concentration in the pore 

solution, thus delaying the calcium hydroxide (CH) and calcium silicate hydrate (CSH) 

nucleation and crystallization. Consequently, such grouts gain mechanical strength much 

slower at early ages (Bouzoubaâ et al., 2004). This was confirmed by DSC results as shown 

in Figure 3.7. For example, the CH content at 7 days of specimens containing 30% and 50% 

fly ash was 48% and 56% lower than that of the control specimen without fly ash, 

respectively. Conversely, the partial substitution of OPC by 10% SF or 10% MK resulted in 

an increase in compressive strength by about 30 % and 54 % at 7 days, respectively, 

compared to that of the control C mixture. This is can be ascribed to the high pozzolanic 

activity induced by SF and MK (Razak and Wong, 2001; O’Malley and Abdelgader, 2009). 

The combination of fly ash with either 10% SF or 10% MK caused an increase in 



65 
 

 

compressive strength compared with grouts incorporating FA alone. Increasing the FA 

replacement rate led to more rapid compressive strength gain compared to that of the control 

mixture. For example, at 56 days, the rate of strength development of the F5 mixture was 

about 1.35 times that of the control mixture. However, 10% replacement of cement by SF or 

MK demonstrated lower strength gaining rate at later ages. For example, the gaining strength 

rate of mixtures S1 and M1 at 56 days was 0.5 and 0.38 times that of the control grout 

mixture. 

 

Table ‎3.7 ‒ Compressive strength of TSC grouts 

Grout 

Mixture 

ID 

Compressive strength of grout at days 

7 28 56 

(MPa)
*
 COV (%) (MPa)

*
 COV (%) (MPa)

*
 COV (%) 

C 33.8 1.3 50.4 1.0 54.3 0.6 

F1 31.5 1.2 48.0 1.0 53.8 1.1 

F3 27.1 2.0 38.5 1.1 46.2 0.8 

F5 21.0 1.7 28.0 1.3 38.2 1.2 

S1 43.8 1.2 52.2 1.0 57.0 0.6 

SF4 27.0 1.7 38.0 0.8 46.2 0.8 

M1 52.1 0.9 61.9 0.7 64.1 0.5 

MF4 29.0 1.0 41.0 1.1 49.0 1.5 
*
 1 MPa = 145.038 psi 
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Figure ‎3.7 ‒ CH content at 7 days of specimens from various TSC grout mixtures (C, 

F1, F3 and F5). 

 

3.4. CONCLUSIONS 

In this study, the flowability of grouts made with single, binary and ternary binders 

incorporating various supplementary cementitious materials and having different w/b ratios 

was investigated using the flow cone method and the spread flow test. The following 

concluding remarks can be drawn from this experimental work: 

 Grouts made with w/b = 0.45 and 0.55 can achieve the target flowability for TSC grouts 

specified in pertinent standards, while those made with w/b =0.35 were too thick to use 

in TSC production despite the use of poly-carboxylate admixtures. 

 The w/b ratio = 0.45 was perceived as optimum to produce grouts having an efflux time 

of 35-40 ± 2 sec. The optimum dosage of HRWRA varies depending on the type of 

SCM used for partial replacement of OPC and its dosage.  

 The partial replacement of OPC with FA improved the TSC grout’s flowability, 

increased its bleeding and reduced its compressive strength up to 56 days.  

 Partial substitution of OPC by 10% SF or 10% MK achieved a reduction in flowability, 

while enhancing the resistance to bleeding and the compressive strength of the TSC 

grout.  
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 Ternary binders incorporating OPC, FA and SF or MK produced grouts that exhibited 

acceptable flowability, adequate bleeding resistance and compressive strength. 

 Research is needed to produce TSC with superior mechanical properties, durability, and 

enhanced sustainability performance. The TSC technology is expected to shift from 

basic concrete technology to novel techniques that involve new generation admixtures, 

SCMs and to incorporate innovations that already made their way to normal concrete 

technology. 
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Chapter 4 

4. TWO-STAGE CONCRETE MADE WITH SINGLE, BINARY 

AND TERNARY BINDERS
(*)

 

 

 

4.1. INTRODUCTION 

Two-stage concrete (TSC) is a special type of concrete produced using a unique procedure 

which differs from that of conventional concrete. In TSC, coarse aggregate particles are first 

placed in the formwork. Subsequently, voids between the aggregate particles are injected 

with a highly flowable grout mixture. TSC is considered as a skeleton of coarse aggregate, 

which represents about 60% of its total volume (Abdelgader, 1996). Therefore, TSC has a 

specific stress distribution mechanism whereby stresses are transferred through contact areas 

between aggregate particles (O’Malley and Abdelgader, 2009). Such stresses can be 

responsible for the fracture and/or tearing of aggregate particles from the grout (Abdelgader 

and Górski, 2003). 

The grout used in TSC normally consists of ordinary portland cement (OPC), well 

graded sand, water and chemical admixtures. With the advent of supplementary cementitious 

materials (SCMs), blended binders have been used in some TSC mixtures. Partially replacing 

OPC with about 33% class F fly ash was recommended in order to improve the grout 

flowability, decrease its water demand and achieve lower heat of hydration (ACI 304.1, 

2005; Bayer, 2004).  

Moreover, using silica fume (SF) as partial replacement for OPC was found to induce 

two conflicting effects on TSC properties: reducing the grout’s workability and increasing 

the TSC strength (O’Malley and Abdelgader, 2009). Silica fume acts as a microfiller for 

voids between cement and sand grains and increases the water demand due to its very high 

surface area, thus leading to lower workability of TSC grouts (O’Malley and Abdelgader, 

2009). Simultaneously, SF is highly reactive with calcium hydroxide (CH), forming 
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additional calcium silicate hydrate (CSH), which is the primary mechanical strength 

producing hydration product (Molhotra, 1993). Likewise, metakaolin (MK) has comparable 

effects to that of the SF. Yet, no information is available in the open literature regarding its 

behavior in TSC.  

The mechanical properties of TSC have been investigated (Abdelgader, 1996; O’Malley 

and Abdelgader, 2009; Bayer, 2004; Abdul Awal, 1984). TSC’s mechanical properties are 

mainly affected by its water-to-cement ratio (w/b), sand-to-cement ratio (s/b), and properties 

of the coarse aggregate. It was argued that using SCMs could enhance the mechanical 

properties and durability of TSC (Molhotra, 1993). However, the effects of the binder type 

on the mechanical properties of TSC have not yet been duly explored in the open literature. 

For instance, no relationship between the SCM addition rate and the TSC mechanical 

properties has yet been established. Therefore, the present study investigates the effects of 

various SCMs at different addition rates on the development of TSC mechanical properties 

over time and explores possible correlations between the grout properties and the 

corresponding TSC mechanical properties.  

4.2. RESEARCH SIGNIFICANCE 

SCMs typically enhance the hardened properties of concrete through improved particle 

packing density and pozzolanic activity. Moreover, partial replacement of OPC with SCM 

often has economic and environmental benefits, including saving energy, reducing concrete’s 

carbon footprint, and beneficiation of industrial waste. Substantial research has investigated 

the mechanical properties of conventional concrete incorporating SCMs. However, only 

scarce research has explored the mechanical properties of TSC made with SCMs. The present 

chapter attempts to fill this knowledge gap. In addition, empirical correlations between the 

properties of grouts and the mechanical properties of the corresponding TSC have been 

proposed, offering a simple tool for designing TSC mixtures incorporating SCMs.  

4.3. EXPERIMENTAL PROGRAM  

4.3.1. Materials and Grout Mixture Proportions 

CSA A3001-08 GU cement (noted herein OPC) was used in all the grouts. Three types of 

SCMs including class F fly ash (FA), silica fume (SF), and metakaolin (MK) were used as 
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partial replacement for OPC. Physical and chemical properties of the used materials are listed 

in Table 4.1. Crushed limestone coarse aggregate with a maximum nominal size of 40 mm, a 

saturated surface dry specific gravity of 2.65 and water absorption of 1.63 % was used. Silica 

sand with a fineness modulus of 1.47 and a saturated surface dry specific gravity of 2.65 was 

used as a fine aggregate. To control the flowability of the grout mixtures, a poly-carboxylate 

high-range water-reducing admixture (HRWRA) was employed.  

 

Table ‎4.1 ‒‎Chemical‎analysis‎and‎physical‎properties‎of‎OPC,‎FA,‎SF,‎and‎MK 

 OPC FA SF MK 

SiO2 (%) 19.60 43.39 95.30 53.50 

Al2O3 (%) 4.80 22.08 00.17 42.50 

CaO (%) 61.50 15.63 00.49 0.20 

Fe2O3 (%) 3.30 7.74 00.08 1.90 

SO3 (%) 3.50 1.72 00.24 0.05 

Na2O (%) 0.70 1.01 00.19 0.05 

Loss on ignition (%) 1.90 1.17 4.7 0.50 

Specific gravity  3.15 2.50 2.20 2.60 

Surface area (m
2
/kg) 371 280 19500 15000 

 

Several grout mixtures were prepared using single, binary, and ternary binders. The 

proportions of SCMs in the tested grout mixtures are shown in Table 4.2. All grout mixtures 

had the same sand-to-binder ratio (s/b = 1.0) and water-to-binder ratio (w/b = 0.45). Several 

trial grout mixtures for each type of binder were conducted in order to identify the optimum 

HRWRA dosage that meets the recommended efflux time of grout (i.e. 35-40 ± 2 sec) for 

high strength TSC according to ACI 304.1 (ACI 304.1, 2005). Table 4.3 illustrates the 

optimum HRWRA dosage for the tested grout mixtures. 
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Table ‎4.2 ‒‎TSC‎grout‎mixture‎proportions 

Grout Mixture 

No. 

Grout Mixture 

Notation 

Binder (kg/m
3
) Sand 

(kg/m
3
) 

Water 

(kg/m
3
) OPC FA SF MK 

C 100OPC 874 -- -- -- 874 393 

F1 90OPC-10FA 781 87 -- -- 867 390 

F2 80OPC-20FA 689 172 -- -- 861 387 

F3 70OPC-30FA 599 257 -- -- 855 385 

F4 60OPC-40FA 509 340 -- -- 849 382 

F5 50OPC-50FA 422 422 -- -- 843 379 

S1 90OPC-10SF 777 -- 86 -- 863 388 

SF3 60OPC-10SF-30FA 507 254 85 -- 845 380 

SF4 50OPC-10SF-40FA 420 336 84 -- 839 378 

M1 90OPC-10MK 782 -- -- 87 868 391 

MF3 60OPC-10MK-30FA 510 255 -- 85 850 383 

MF4 50OPC-10MK-40FA 422 338 -- 84 844 380 

 

Table ‎4.3 ‒‎Adjustment‎of‎grout‎flowability‎(Flow‎Cone‎Method) 

Grout 

Mixture 

Number 

Grout Efflux Time (sec) Optimum 

HRWRA 

dosage (%) 

HRWRA dosage 

0.0% 0.2% 0.4% 0.6% 0.8% 

C >300.0 91.0 39.0 38.0 -- 0.40  

F1 >300.0 43.0 35.0 34.0 -- 0.40  

F2 180.0 38.0 29.0 25.0 -- 0.20 

F3 90.0 34.0 24.0 22.0 -- 0.20 

F4 53.0 29.5 23.0 20.0 -- 0.15 

F5 39.0 25.0 22.0 19.0 -- 0.00 

S1 >300.0 95.0 60.5 44.0 41.0 0.80 

SF3 100.0 42.5 27.0 26.0 -- 0.25 

SF4 60.0 39.0 23.5 23.0 -- 0.20 

M1 >300.0 >300.0 99.0 64.0 42.0 0.80 

MF3 260.0 180.0 39.0 37.5 -- 0.40 

MF4 130.0 56.0 38.0 29.0 -- 0.40 

 

4.3.2. Experimental Procedures 

The grout mixture was mixed for 6 minutes using a high-speed mixer according to ASTM 

C938 (Standard Practice for Proportioning Grout Mixtures for Preplaced-Aggregate 

Concrete) (ASTM C938, 2010). Immediately after mixing, the grout’s efflux time was 

measured according to ASTM C939 (Standard Test Method for Flow of Grout for Preplaced-
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Aggregate Concrete - Flow Cone Method) (ASTM C938, 2010). Moreover, the amount of 

accumulated bleeding water at the surface of the fresh grout was evaluated as per the 

guidelines of ASTM C940 (Standard Test Method for Expansion and Bleeding of Freshly 

Mixed Grouts for Preplaced- Aggregate Concrete in the Laboratory) (ASTM C940, 2010). 

The mixing and flowability measurements were conducted at room temperature (23±2C) 

[73.4±3.6F]. The compressive strength of the grout was  tested on 50 mm [2 in] cubic 

specimens at ages of 7, 28, and 56 days according to ASTM C 942 (Standard Test Method 

for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory) 

(ASTM C942, 2010). Immediately after demolding, specimens were moved to a moist curing 

room (T = 25C [77F] and RH = 98%) until the testing age. 

Furthermore, 21 TSC cylindrical specimens (150 mm  300 mm [3 in.  6 in.]) were 

prepared for each mixture. The molds were first filled with coarse aggregates and then the 

grout was injected into the voids (Figure 4.1). Specimens were covered with wet burlap to 

prevent surface drying. After 24 h, specimens were demolded and cured in the moist room 

described above. At each testing age (i.e. 7, 28 and 56 days), the compressive and split 

tensile strengths of TSC were evaluated according to ASTM C943 (Standard Practice for 

Making Test Cylinders and Prisms for Determining Strength and Density of Pre-placed-

Aggregate Concrete in the Laboratory) (ASTM C943, 2010) and ASTM C496/C496M 

(Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens) 

(ASTM C496/C496M, 2011), respectively. Moreover, the static modulus of elasticity of TSC 

at 28 days was measured as per the procedure of ASTM C469/C469M (Standard Test 

Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression) 

(ASTM C469/C469M, 2010). Table 4.4 shows the coefficient of variance (COV) for the 

various tests conducted. 

Differential scanning calorimetry (DSC) tests were performed on samples taken from 

selected TSC mixtures at 7 days. Samples were ground to powder with an average particle 

size of 45 m. Then, a 30 to 60 mg [0.001 to 0.002 oz.] powder specimen was heated in a 

helium atmosphere at a constant rate of 10°C [50°F] per minute up to 550°C [1022°F]. The 

endothermic peak for CH was observed at approximately 440°C [824°F]. The area under the 

curve was related to the quantity of CH in the sample using the regression equation obtained 

from calibration graphs built in the apparatus. Moreover, samples from selected TSC 
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mixtures were examined under scanning electron microscopy coupled with energy dispersive 

X-ray analysis (SEM/EDX) using a Hitachi S-4500 Field Emission SEM. 

 

 

Figure ‎4.1 ‒ TSC production stages. 

 

Table ‎4.4 ‒‎Coefficient‎of‎variance‎for‎various‎tests 

Mixture 

ID 

Coefficient of variance for various tests (%) 

Compressive strength 

of grout at days 

Compressive strength 

of TSC at days 

Splitting tensile 

strength of TSC at 

days 

Modulus of 

elasticity at 

28 days 
7 28 56 7 28 56 7 28 56 

C 1.28 0.97 0.60 1.44 1.19 1.07 1.05 0.80 0.98 1.19 

F1 1.19 1.03 1.06 1.53 1.02 1.24 1.55 1.63 0.96 1.36 

F2 1.29 1.25 0.90 2.69 2.14 1.74 2.26 1.78 1.40 1.59 

F3 1.98 1.12 0.81 2.54 2.41 1.76 2.04 1.54 1.38 1.25 

F4 1.57 1.55 1.04 2.70 2.57 1.39 1.89 1.63 1.15 2.13 

F5 1.69 1.34 1.19 4.14 2.52 3.06 1.63 1.96 1.05 1.46 

S1 1.16 0.98 0.62 0.90 1.10 1.17 1.18 1.41 2.04 1.29 

SF3 1.25 0.86 0.61 2.48 1.13 1.25 1.32 0.89 1.20 1.01 

SF4 1.68 0.77 0.81 2.40 1.42 1.39 2.04 0.95 1.33 1.49 

M1 0.87 0.70 0.46 1.02 0.94 1.06 1.31 1.27 1.81 1.39 

MF3 1.30 0.90 0.87 2.35 1.23 1.41 2.21 1.53 1.38 1.22 

MF4 1.02 1.11 0.88 1.48 1.15 1.87 1.60 1.84 1.34 1.71 

 

Stage (1) Stage (2) 
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4.4. RESULTS AND DISCUSSION 

The engineering properties of TSC are highly affected by the composition and properties of 

the used grout, including its flowability, stability and mechanical strength. In particular, the 

grout flowability is of paramount importance since it directly affects the penetrability of 

voids between aggregate particles, and consequently the mechanical strength of TSC (Abdul 

Awal, 1984). Therefore, the flowability of all used grouts was adjusted to similar efflux time 

in order to minimize variability in its effect on the TSC mechanical properties.  

4.4.1. Grout Efflux Time 

Several grout trial batches were conducted with different HRWRA dosages to achieve the 

required efflux time (i.e. 35 to 40 ± 2 sec) (Table 4.3). Results showed that the efflux time 

decreased significantly as the FA addition rate was increased. For example, the grout mixture 

incorporating 50% FA as partial replacement for OPC achieved the target flowability without 

need for HRWRA addition. This is because FA reduces frictional forces among particles 

owing to the spherical shape of its particles which have smooth vitreous surfaces, leading to a 

lubricant ball-bearing effect, thus facilitating mobility (Yung Wang et al., 2013). In addition, 

FA can be adsorbed on oppositely charged cement particles surfaces, preventing flocculation 

and enhancing particle dispersion, which consequently enhances flowability with more free 

water (Kismi et al., 2011). 

Conversely, partially replacing OPC with 10% SF or 10% MK increased the grout’s 

efflux time. For instance, at 0.6% HRWRA, grout mixtures S1 and M1 exhibited 16% and 

68% longer efflux time, respectively compared to that of the C mixture. This can be ascribed 

to the high water demand induced by the very fine particles of SF and MK (Khayat et al., 

1997; Razak and Wong, 2001). However, ternary grout mixtures involving a combination of 

OPC + FA + SF or MK exhibited better flowability compared to that of binary grout mixtures 

without FA (i.e. S1 and M1). For instance, at 0.6% HRWRA, the grout mixture SF3 achieved 

a 41% shorter efflux time than that of the S1 mixture. This can be attributed to the lubricant 

effect induced by FA addition as mentioned earlier. 
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4.4.2. Grout Bleeding Resistance 

Bleeding of the grout is considered as an important property affecting the performance of 

TSC. It is defined as the segregation of water on the grout’s surface before its setting time 

(Hsing Huang, 1997). Grout bleeding occurs due to the settlement of suspended materials in 

the mixing water (i.e. binder, fine aggregate) under its own weight due to gravity. The total 

amount of bleeding (i.e. sedimentation) depends on the mixture proportions of the grout (i.e. 

free water content) and properties of fine materials (i.e. including binder and sand), which 

will affect the cohesion of the mixture (Tan et al., 2005). The higher the grout cohesion, the 

lower is the bleeding (Bruce et al., 1997). As shown in Figure 4.2, increasing the FA dosage 

resulted in higher bleeding. Higher FA content tends to increase the free water as it reduces 

the water demand and the grout cohesion (Hasan, 2012). The reduction in water demand can 

be attributed to the particle shape of FA as mention previously along with its “particle 

packing effect”. OPC and FA generally have comparable particle size range (i.e. 1 to 45 m). 

Hence, both can be considered as excellent filler. However, due to the lower density and 

higher volume per unit mass of FA, it is a more efficient void-filler than OPC (Mehta, 2004). 

 

 

Figure ‎4.2 ‒‎Bleeding‎of‎grout‎mixtures. 
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Conversely, using SF or MK as partial replacement for OPC significantly minimized the 

grout’s bleeding. This can be attributed to the high fineness of SF and MK compared to that 

of OPC and FA, which in turn increases the contact area between particles and the amount of 

adsorbed water (Khayat et al., 1997; Hsing Huang, 1997; Khatib and Caly, 2004). Moreover, 

the physical microfiller effect provided by such ultrafine materials reduced bleeding by 

blocking pores between cement particles (Khayat et al., 1997). Interestingly, adding FA to 

grout mixtures incorporating SF or MK increased bleeding. For example, the bleeding for 

mixtures SF3 and MF3 was 3.8 and 2.3 times that of grout mixtures S1 and M1, respectively. 

This can be considered as a result of FA addition as it decreased the water demand, leading to 

more free water. 

4.4.3. Effect of Grout on TSC Compressive Strength 

Table 4.5 reports compressive strength results at different ages for the tested grouts and 

corresponding TSC mixtures at optimum HRWRA dosage. Generally, the grouts and TSC 

mixtures exhibited comparable compressive strength trend with respect to the type of binder. 

Moreover, the higher the FA partial replacement level for OPC, the greater was the reduction 

in compressive strength. For example, increasing the FA rate in the grout from 10% to 50% 

resulted in about 43.4% greater reduction in the 7-days compressive strength of TSC 

compared to that of the control TSC. This is because grouts incorporating FA gain strength 

slowly due to slower hydration reactions at early-age (Bouzoubaâ et al., 2004). At very early 

age, calcium ions (Ca
++

) adsorb on the surface of FA particles, leading to a depression of the 

calcium concentration in the pore solution and consequently delaying the CH and CSH 

nucleation and crystallization. This was confirmed by DSC results as shown in Figure 4.3. 

For example, the CH content of specimens containing 30% and 50% fly ash at 7 days was 

48% and 56% lower than that of the control mixture, respectively. Moreover, the reduction of 

the calcium concentration will result in a lower calcium/silica ratio, leading to slower 

pozzolanic reaction (Zhang et al., 2008; Narmluk and Nawa, 2011; Sarker, 2013).  

Conversely, adding SF or MK to mixtures incorporating OPC improved compressive 

strength. This can be attributed to its high pozzolanic activity (Snelson et al., 2008; Weng et 

al., 1997). This was also confirmed by DSC results; the measured CH contents at 7 days for 

the grout samples taken from TSC mixtures with S1 and M1 grouts were 26% and 50% lower 
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than that of the control mixture (C), respectively. In addition, the presence of such fine 

materials strengthens the microstructure through enhanced particle packing density. 

Further replacing 30% and 40% of OPC by FA in those TSC mixtures incorporating 

10% SF or MK reduced compressive strength, yet strength values were still higher than those 

of mixtures incorporating FA alone. According to the DSC results, the CH content was much 

lower in such mixtures (Figure 4.3) due to a delay of cement hydration reactions induced by 

FA (Weng et al., 1997; Snelson et al., 2008). For example, adding 30% FA to TSC mixtures 

made with 10% SF or 10% MK reduced compressive strength at 7 days by about 46.9% and 

34.9%, respectively compared to those of mixtures with SF or MK alone.  

At later ages (i.e. more than 7 days), mixtures incorporating 10% SF or MK achieved 

higher compressive strength than that of the control mixture. However, mixtures 

incorporating FA exhibited higher strength gaining rate, thus exceeding that of the control 

mixture. For instance, the TSC mixture with 20% FA had strength gaining rate was 1.7 and 

2.4 times that of the control mixture at 28 and 56 days, respectively. Hence, mixtures with 

FA are expected to achieve comparable compressive strength to that of the control at later 

age owing to more rapid strength gaining rate sustained over a longer period of time than that 

of mixtures made with pure OPC (Hwang et al., 2004; Chindaprasirt et al., 2005). 

However, the compressive strength level will depend on the ability of the grout to resist 

bleeding (Abdul Awal, 1984). The settlement of grout ingredients generally occurs at the 

underside of aggregates, leading to the formation of voids. These voids create weak 

aggregate-grout interfacial zones in TSC, hindering the grout bond to coarse aggregates 

(Abdul Awal, 1984). Moreover, TSC grouts incorporating FA (F3 and F6) produced voids 

(i.e. large capillary pores), which are considered as a source of weakness in concrete 

(Figures 4.4(a) and 4.4(b)). These voids formed due to excess water that remained as free 

water in the TSC grout structure. The volume of capillary voids increased with the increase 

of free water and depended on the degree of binder hydration (O’Malley and Abdelgader, 

2009). Conversely, TSC mixture M1 with lower amount of free water created less voids 

compared to other TSC mixtures (F6 and F3), thus achieving higher TSC compressive 

strength (Figure 4.4(c)). 
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Table ‎4.5 ‒‎Mechanical‎properties‎of‎TSC‎versus‎binder‎type 

Grout 

Mixture 

Number 

Compressive strength 

of grout (MPa) at days 

Compressive strength 

of TSC (MPa) at days 

Tensile strength of 

TSC (MPa) at days 

Elastic 

modulus at 

28 days 

(GPa) 7 28 56 7 28 56 7 28 56 

C 33.8 50.4 54.3 25.9 31.5 33.3 3.40 3.70 3.80 38.3 

F1 31.5 48.0 53.8 23.2 29.0 36.7 3.20 3.50 3.70 37.4 

F2 28.9 40.7 47.9 16.9 23.2 28.5 2.60 3.00 3.50 35.9 

F3 27.1 38.5 46.2 14.0 18.9 25.8 2.50 2.80 3.30 34.5 

F4 23.8 32.1 41.5 13.2 17.7 21.2 2.40 2.65 3.10 34.1 

F5 21.0 28.0 38.2 12.0 14.1 18.5 2.30 2.60 2.80 33.6 

S1 43.8 52.2 57.0 32.8 34.1 38.9 3.60 3.80 4.06 39.5 

SF3 30.0 41.4 48.1 17.4 26.1 29.9 2.70 3.30 3.60 37.0 

SF4 27.0 38.0 46.2 15.6 25.0 25.6 2.50 3.10 3.24 36.0 

M1 52.1 61.9 64.1 35.0 40.0 43.0 3.80 3.90 4.02 41.0 

MF3 34.9 48.1 58.4 22.8 30.4 36.2 3.02 3.50 3.60 37.3 

MF4 29.0 41.0 49.0 19.9 28.5 31.5 2.85 3.20 3.40 36.0 

 

 

Figure ‎4.3 ‒ CH contents for TSC mixtures (C, F1, F3, F5, S1, SF3, M1, and MF3) at 7 

days. 
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Figure ‎4.4 ‒‎SEM‎of‎specimens‎from‎different‎TSC‎mixtures:‎(a)‎F6;‎(b)‎F3;‎(c)‎M1. 

 

4.4.4. Relationship between Compressive Strength of Grout and Corresponding Two-

Stage Concrete 

The relation between the compressive strength of grout and that of the corresponding TSC is 

not yet well defined in the open literature. Therefore, an attempt has been made herein to fill 

this knowledge gap. Previous studies reported that increasing the grout’s compressive 

strength will lead to higher TSC compressive strength (Abdelgader, 1996; 1999). However, 

increasing in the grout’s strength did not always ensure similar improvement in the TSC 

compressive strength. For instance, 80% increase in the grout strength resulted only in about 

65% increase in the TSC strength (Abdelgader, 1996, 1999). For crushed aggregates, 

Abdelgader proposed the following empirical equation (Eq. 4.1) for the relationship between 

the grout and TSC compressive strength at 28 days (Abdelgader, 1999):  
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𝑓𝑐
` = 6.70 + 0.42 × 𝑓𝑔

1.07 Eq. 4.1 

Where 𝑓𝑐
` is the 28 days TSC compressive strength (MPa), and 𝑓𝑔 is the grout’s 28 days 

compressive strength (MPa). In the present study, Eq. 4.1 was modified to account for the 

addition of SCMs through a new parameter, β as shown in Eq. 4.2.  

𝑓𝑐
` = 6.70 + 0.42 × 𝑓𝑔

1.07−𝛽
 Eq. 4.2 

The constant 𝛽 is a function of the percentage of added SCMs (S), type of binder (𝛼) and 

number of added SCMs (N) as expressed in Eq. 4.3.  

𝛽 = 𝑁 × [((0.035 +
𝑆

1000
) ×

1

𝛼𝑁
) −  (

𝑆3 + 𝑆2 + 100 𝑆

(𝑆 + 1) × 105
)] 

Eq. 4.3 

Where 𝛼𝑁 is the multiplication of α for the used binder (the values of α obtained from 

regression analysis for each type of binder are: OPC:  1, FA: 0.5, SF: 3.5, MK: 4.5).  

The proposed modified equation was assessed statistically based on the root-mean-

square error (RMSE), absolute fraction of variance (R
2
) and correlation coefficient (rxy) 

between model and experimental results. RMSE, R
2
, and rxy values were 1.63 MPa, 0.996 and 

0.973, respectively, which indicates that the modified equation could reasonably capture the 

relation between the grout and TSC compressive strength. However, further study is needed 

to account for the effects of different aggregates on the proposed relationship. 

4.4.5. TSC Tensile Strength 

The splitting tensile strength is commonly used to evaluate the tensile strength of TSC 

(Abdul Awal, 1984; Abdelgader and Ben-Zeitun, 2005; Abdelgader and Elgalhud, 2008). As 

shown in Table 4.5, the TSC tensile strength followed similar trend to that of the 

compressive strength. The splitting tensile strength at 7 days was low, especially for mixtures 

incorporating FA, and then its rate of development increased with time. For instance, the 7-

days tensile strength for the mixture incorporating 20% FA was 24% lower than that of the 

control mixture, while its tensile strength development rate was 1.75 and 2.9 times that of the 

control mixture at 28 and 56 days, respectively.  
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Generally, the higher the TSC compressive strength, the greater the TSC tensile strength 

was, in agreement with previous studies (Abdul Awal, 1984; Abdelgader and Ben-Zeitun, 

2005). Several empirical equations have been proposed to describe the correlation between 

the compressive and tensile strengths of TSC.  In this study, the equation proposed by 

Abdelgader and Ben-Zeitun (Eq. 4.4) (Abdelgader and Ben-Zeitun, 2005) was adapted.  

𝑓𝑡 = 0.768 𝑓𝑐
`0.441                                                 Eq. 4.4 

Where, 𝑓𝑡 is the TSC’s tensile strength and 𝑓𝑐
` is its compressive strength in MPa. As 

shown in (Figure 4.5), a good fitting of experimental data using Eq. 4.4 was achieved. The 

residual between the experimental and predicted TSC tensile strength was only ± 0.2 MPa. In 

addition, the RMSE, R
2
, and 𝑟𝑥𝑦 values were 0.105 MPa, 0.999 and 0.979, respectively, 

which indicates that Eq. 4.4 can successfully predict the tensile strength of TSC made with 

different binders. 

 

 

Figure ‎4.5 ‒ Relationship between compressive and tensile strength of TSC. 
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4.4.6. TSC Modulus of Elasticity 

Modulus of elasticity values at 28 days for TSC mixtures made with various binders are 

presented in Table 4.5. It can be observed that similarly to compressive and tensile strength, 

the TSC modulus of elasticity is affected by the binder type. For example, TSC mixtures 

incorporating 50% FA achieved a modulus of elasticity 12% lower than that of the control 

mixture. However, TSC mixtures made with 10% SF or 10% MK achieved modulus of 

elasticity values 3% and 7% higher than that of the control, respectively. The relationship 

between the TSC modulus of elasticity and its compressive strength differs from that of 

conventional concrete. It was reported that TSC exhibits higher modulus of elasticity than 

that of conventional concrete with comparable compressive strength (Abdul Awal, 1984). 

This can be ascribed to the fact that TSC has higher coarse aggregate (about 60% of the total 

volume) than that of conventional concrete (about 40% of the total volume). Thus, TSC has a 

skeleton of coarse aggregate particles resting on each other and the stresses are transferred 

through their contact points (Abdul Awal, 1984; Abdelgader, 1996; Abdelgader and Górski, 

2003). An empirical relationship between the elastic modulus of TSC and its compressive 

strength was proposed in this study using nonlinear regression analysis as given in Eq. 4.5 

(Figure 4.6).  

𝐸 = 19.53 𝑓𝑐
`0.195                                                    Eq. 4.5 

Where, E is the modulus of elasticity for TSC (GPa) and 𝑓𝑐
` is its compressive (MPa). 

The RMSE, R
2
, and 𝑟𝑥𝑦 values were 0.67 MPa, 0.999 and 0.950, respectively, indicating 

satisfactory predictive ability of the proposed equation. Moreover, the modulus of elasticity 

of TSC can be estimated based on the compressive strength of the grout (i.e. Eq. 4.6, which 

is derived by substituting Eq. 4.2 in Eq. 4.5).  

𝐸 = 19.53 (6.70 + 0.42 × 𝑓𝑔
1.07−𝛽

)
0.195

                                                    
Eq. 4.6 
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Figure ‎4.6 ‒‎Relationship‎between‎compressive‎strength‎and‎modulus‎of‎elasticity‎of‎

TSC. 

 

4.5. CONCLUSIONS 

In this study, the rheological and mechanical properties of two-stage concrete made with 

single, binary and ternary binders were explored. The following conclusions can be drawn: 

 Partial replacement of OPC with FA improved the grout’s flowability while reducing its 

resistance to bleeding.  

 Partial replacement of OPC with SF or MK increased the grout’s bleeding resistance and 

mechanical properties, while reducing its flowability. However, flowability can be 

adjusted using a proper dosage of HRWRA.  

 An empirical equation for predicting the compressive strength of TSC based on the 

corresponding grout’s compressive strength and considering the binder type was 

proposed.  

 There was no significant effect of the binder type on the relation between the 

compressive and tensile strengths of TSC. 
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 An empirical relationship between the modulus of elasticity of TSC and its compressive 

strength was proposed in the present study. This equation can be extended to estimate 

the modulus of elasticity of TSC based on the grout’s compressive strength as outlined in 

Eq. 4.6.  

However, it should be mentioned that the proposed model highlighted the existence of a 

relationship between the properties of TSC and its grout formulation and binder type. Such a 

relationship cannot be extrapolated beyond the domain of the data used in this study. It can, 

however, be extended beyond the current experimental domain and include other 

experimental variables should sufficient data needed for such an extension become available 

in the future. 
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A version of this chapter was submitted to the Cement and Concrete Composites Journal (2016). 

Chapter 5 

5. MECHANICAL PERFORMANCE OF TWO-STAGE STEEL 

FIBRE-REINFORCED CONCRETE
(*)

 

 

 

5.1. INTRODUCTION 

Two-stage concrete (TSC), also called preplaced aggregate concrete, is a special type of 

concrete fabricated using a different casting method than that of conventional concrete. In 

TSC, the volume of coarse aggregate is first placed in the formwork. Subsequently, voids 

between aggregates are filled with a flowable grout. Since 1939, TSC has been successfully 

used in various applications, such as in underwater construction, mass concrete and concrete 

repair (Najjar et al., 2014). Over the last few decades, several researchers investigated the 

mechanical properties of TSC (Abdul Awal, 1984; Abdelgader, 1996; O’Malley and 

Abdelgader, 2010; Abdelgader et al., 2013; Coo and Pheeraphan, 2015). It was argued that 

the mechanical properties of TSC are mainly affected by the coarse aggregate properties and 

the mixture proportions of the grout (i.e. water/binder ratio (w/b) and sand/binder ratio (s/b)). 

However, up to now, there has been no data accessible in the open literature on two-stage 

concrete reinforced with fibres.  

Steel fibres have been used for several decades in many concrete applications such as in 

pavements, bridge decks, tunnel linings and various precast elements (Holschemacher et al., 

2010; Mohamed et al., 2014). It is well established that the addition of steel fibres in concrete 

can minimize crack forming, reduce crack width and limit its propagation via a crack 

bridging mechanism. Moreover, steel fibres increase the fracture toughness of concrete 

owing to the energy required to debond and pull-out the fibres from the cementitious matrix 

(Köksal, et al., 2008).  

Generally, the engineering properties of steel fibre-reinforced concrete (SFRC) depend 

on several variables, including the fibre dosage, shape, length and aspect ratio, along with the 
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properties of the cementitious matrix (Mohamed, et al., 2014). It was reported that using steel 

fibre dosages up to 1% had a minimal effect on the compressive strength of SRFC, while it 

significantly improved its splitting and flexural strength (Şahin and Köksal, 2011). However, 

the addition of high steel fibre dosages (more than 3%) can adversely affect the compressive 

and tensile strengths of concrete (Ikraiam et al., 2009; Yoo, et al., 2013). This can be 

ascribed to the fact that at high steel fibre dosage, the workability of concrete decreases 

dramatically due to the fibre-balling effect (Yang, 2011). As a result, internal voids increase 

in the concrete, leading to a reduction in mechanical properties (Ikraiam et al., 2009; Sahoo 

et al, 2015). Therefore, the ACI 544.1 (2002) (Report on Fibre-Reinforced Concrete) limited 

the maximum practical steel fibre dosage in conventional concrete produced by normal 

mixing and placing procedures to 1.5 to 2%.  

In the present study, the mechanical performance of two-stage steel fibre-reinforced 

concrete (TSSFRC) made with different steel fibres dosages and lengths was explored for the 

first time. It is anticipated that great enhancement in TSSFRC mechanical strength and 

toughness associated with savings through its highly effective placement technique can pave 

the way for its wider implementation in modern civil construction applications.  

5.2. EXPERIMENTAL PROGRAM 

5.2.1. Materials and Grout Mixture Proportions 

Ordinary portland cement (OPC) with a specific gravity of 3.15 and a surface area of 371 

m
2
/kg [1811 ft

2
/lb] was used in this investigation. Silica sand having a fineness modulus of 

1.47 and a saturated surface dry specific gravity of 2.65 was used as fine aggregate. It is to be 

noted that fine sand is desirable in TSC since it is used in the grout injected between 

preplaced coarse aggregates. The grout mixture with sand-to-binder ratio (s/b = 1.0) and 

water-to-binder ratio (w/b = 0.45) was used in the production of TSSFRC. The grout mixture 

composition was as follows: cement content = 874 (kg/m
3
), sand content = 874 (kg/m

3
) and 

water content = 393 (kg/m
3
). To improve grout flowability, a high-range water-reducing 

admixture (HRWRA) was added. Several trial grout mixtures were conducted in order to 

identify the adequate HRWRA dosage to achieve the efflux time of 35-40 ± 2 sec 

recommended by the ACI 304.1 (2005) (Guide for the Use of Preplaced Aggregate Concrete 

for Structural and Mass Concrete Applications). The optimum HRWRA dosage was 0.4% by 
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the weight of cement. The efflux time of the used grout mixture was 39 sec, while its 

bleeding was 0.25%. Crushed limestone coarse aggregate with a maximum nominal size of 

40 mm [1.57 in.], a saturated surface dry specific gravity of 2.65 and a water absorption of 

1.63% was used as preplaced coarse aggregate. Two types of cold-drawn hooked-end steel 

fibres were used and their properties are given in Table 5.1. The steel fibre dosages (i.e. 

volume fractions) used in TSC were 1%, 2%, 4% and 6%.  

 

Table ‎5.1 ‒ Properties of hooked-ends steel fibres 

Steel Fibre 

Type 

Length 

(mm)
*
 

Diameter 

(mm)
*
 

Aspect 

ratio 

Specific 

gravity 

Tensile strength 

(MPa)
*
 

Short (S) 33 0.75 80 7.85 1100 

Long (L) 60 0.75 44 7.85 1100 

* 1 in. = 25.4 mm, 1 ksi = 6.894 MPa 

 

5.2.2. Experimental Procedures 

TSSFRC cylindrical specimens (150 mm × 300 mm [6 in. × 12 in.]) and prisms (150 mm  

150 mm  550 mm [6 in. × 6 in. × 22 in.]) were prepared. First, coarse aggregates and steel 

fibres were premixed and preplaced in the molds (Figure 5.1). A grout was subsequently 

injected to fill in the space around the coarse aggregates and fibres. All TSSFRC specimens 

were demolded after one day and moist cured at 20 C [68 F] and 95% RH until the age of 

28 days. The compressive strength and splitting tensile strength were evaluated on TSSFRC 

cylinders according to ASTM C943 (Standard Practice for Making Test Cylinders and Prisms 

for Determining Strength and Density of Preplaced-Aggregate Concrete in the Laboratory) 

(ASTM C943, 2010) and ASTM C496 (Standard Test Method for Splitting Tensile Strength 

of Cylindrical Concrete Specimens) (ASTM C496/C496M, 2011), respectively. The flexural 

performance of TSSFRC prisms was assessed using a three-point bending test as per the 

guidelines of ASTM C1609 (Standard Test Method for Flexural Performance of Fibre-

Reinforced Concrete-Using Beam with Third-Point Loading) (ASTM C1609/C1609M, 

2012). The test was conducted using a closed loop deflection-controlled testing at a loading 

rate of 0.1 mm/min [0.004 in/min] (Figure 5.2). Toughness was calculated as the area under 
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the load-deflection curve up to a deflection of 3 mm [0.11 in.] in accordance with ASTM 

C1609. Moreover, the flexural toughness indices, which are defined as the ratio between the 

absorbed energy up to a given deflection to that at the first crack, were evaluated based on 

ASTM C1018 (Standard Test Method for Flexural Toughness and First-Crack Strength of 

Fibre-Reinforced Concrete-Using Beam with Third-Point Loading) (ASTM C1018, 1997). 

The standard toughness indices I5, I10, I20 and I30 are defined for deflections of 31, 5.51, 

10.51 and 15.51, respectively, where 1 is the deflection at the first crack. Values of 5, 10, 

20, and 30 for I5, I10, I20 and I30 correspond to a linear elastic material behaviour up to the 

first crack and perfectly plastic behaviour thereafter. Furthermore, the residual strength 

factors, which provide data on the level of strength retained after first crack formation as a 

percentage of the first-crack strength for different deflection intervals were calculated based 

on ASTM C1018 as per the following equations: 

 

𝑅5−10 = 20 × (𝐼10 − 𝐼5)                                                                  Eq. 5.1 

𝑅10−20 = 10 × (𝐼20 − 𝐼10)                                                               Eq. 5.2 

𝑅20−30 = 10 × (𝐼30 − 𝐼20)                                                               Eq. 5.3 

 

Moreover, analysis of variance (ANOVA) was used to analyze the experimental data. To 

investigate whether an experimental variable (e.g. fibre dosage or fibre length) is statistically 

significant, an F value is determined as the ratio of the mean squared error between 

treatments (e.g. different steel fibre dosages) to that of within treatments (due to using 

replicates rather than testing only one specimen). This value is then compared to a standard 

(critical) F value of an F-distribution density function obtained from statistical tables based 

on the significance level (α = 0.05) and the degrees of freedom of error determined from the 

number of treatments and observations in an experiment. Exceeding the critical value of an 

F-distribution density function reflects that the tested variable affects the mean of the results 

(Montgomery, 2013). 
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Figure ‎5.1 ‒ Preplacing coarse aggregates and steel fibres. 

 

 

Figure ‎5.2 ‒ Flexure test setup. 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Compressive Strength 

Table 5.2 presents the compressive strength results for the various TSSFRC mixtures 

incorporating different steel fibre dosages at 28 days. Results indicate that the compressive 

strength of TSSFRC increased as the steel fibre dosage increased. ANOVA at a significance 

level  = 0.05 (Table 5.3) confirmed that the variation in the fibre dosage had a significant 

effect on the mean of the total compressive strength results. The calculated F value of 276.03 

for the total compressive strength results was significantly larger than the corresponding 

critical F value of 5.19 (F0.05, 4, 5). According to Montgomery (2013), exceeding the critical 

value of F-distribution density function reflects that the tested variable affects the mean of 

the results.  

 

Table ‎5.2 ‒‎Compressive‎and‎tensile‎strength‎of‎TSSFRC‎specimens 

TSSFRC 

Mixture 

ID 

Steel 

Fibre 

Type 

Steel Fibre 

Dosage (%) 

Compressive Strength  
Tensile 

Strength  

(MPa)
*
 COV (%) (MPa)

*
 COV (%) 

M0 -- 0 31.5 4.1 3.7 4.4 

MS1 

Short 

1 35.9 3.9 4.8 3.4 

MS2 2 37.3 3.9 5.9 3.7 

MS4 4 40.8 3.0 6.7 1.6 

MS6 6 46.9 1.9 7.7 2.1 

ML1 

Long 

1 36.2 1.0 5.0 5.9 

ML2 2 38.4 1.7 6.2 2.6 

ML4 4 41.3 3.1 7.3 2.2 

ML6 6 47.9 1.8 8.2 1.7 

* 1 ksi = 6.894 MPa 
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Table ‎5.3 ‒‎Analysis‎of‎variance‎(ANOVA) 

Mechanical Properties of 

TSSFRC 

Effect of Fibre 

Dosage 

Effect of Fibre Length 

at Fibre Dosages  

(1% and 2%) 

at Fibre Dosages  

(4% and 6%) 

F F(0.05,4,5) F F(0.05,1,6) F F(0.05,1,6) 

Compressive Strength 276.03 5.19 0.01 5.99 0.09 5.99 

Tensile Strength 76.17 5.19 0.38 5.99 3.30 5.99 

Flexural Strength 8.85 5.19 3.26 5.99 7.12 5.99 

Toughness 16.93 5.19 0.36 5.99 6.55 5.99 

 

Based on the results in Table 5.2, the MS1 and MS2 mixtures (made with 1% and 2% 

short steel fibres, respectively) achieved around 14% and 18% higher compressive strength 

than that of the control specimens without steel fibres (M0). The steel fibre dosage in 

conventional SFRC is usually limited to 2% due to workability consideration and to maintain 

a homogeneous distribution of steel fibres (Ikraiam et al., 2009; Yoo, et al., 2013). Hence, 

higher steel fibre dosage (i.e. more than 2%) tends to induce voids, causing weaknesses and 

flaws where micro-cracks initiate, consequently reducing compressive strength (Aydin, 

2013). Conversely, the TSSFRC production method mitigates such problems since the coarse 

aggregates and fibres are preplaced before injecting the grout. It is interesting therefore that 

high steel fibres dosages up to 6% achieved higher compressive strength values in TSC. For 

instance, the MS4 and MS6 mixtures (incorporating 4% and 6% short steel fibres, 

respectively) achieved around 9% and 26% higher compressive strength than that of the MS2 

mixture (incorporating 2% steel fibres). This can be ascribed to the fact that increasing the 

steel fibre dosage improved the resistance to crack formation and propagation, leading to 

higher compressive strength (Farnam et al., 2010; Yang, 2011; Yoo, et al., 2013). 

However, the steel fibre length only had a minor effect on the compressive strength of 

TSSFRC, even at high fibre dosage. For instance, at a steel fibre dosage of 6%, the difference 

in compressive strength of TSSFRC mixtures made with short (i.e. 33 mm [1.3in.]) and long 

(i.e. 60 mm [2.4 in.]) steel fibres (i.e. MS6 and ML6) was about 2%. This was emphasized by 

ANOVA, which showed that the variation in fibre length had an insignificant effect on the 

mean of the total compressive strength results (Table 5.3). For example, the calculated F 

value of 0.09 for the total compressive strength at fibre dosages of 4% and 6% was lower 
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than the corresponding critical F value of 5.99 (F0.05, 1, 6). Yet, in normal SFRC, the fibre 

length can significantly affect its compressive strength. At high steel fibre dosage (i.e. more 

than 2%), long fibres generally tend to ball in the concrete mixture, causing workability 

problems and associated reduction in compressive strength (Singh et al., 2014). Conversely, 

such problems do not occur in TSSFRC since the fibres are premixed and preplaced in the 

mold with the coarse aggregates before injection of the grout. 

5.3.2. Splitting Tensile Strength 

The 28-day splitting tensile strength test results of TSSFRC mixtures incorporating different 

dosages of steel fibres having various lengths are presented in Table 5.2. It can be observed 

that the splitting tensile strength increased with increasing steel fibre dosage. This 

observation was confirmed by ANOVA since the F value of 76.17 was significantly larger 

than the corresponding critical F value of 5.19 (F0.05, 4, 5) (Table 5.3). For instance, an 

increase in the splitting tensile strength of about 30% and 60% was observed for the MS1 and 

MS2 mixtures compared with that of the control fibreless mixture (M0), respectively. 

Generally, the tensile strength of concrete increases with the increase of the number of fibres 

that are aligned along the tensile force (Lee and Kim, 2010). Therefore, the orientation of the 

fibres within the cementitious matrix with respect to the tensile load greatly dominates its 

tensile strength. In conventional SFRC, the fibre distribution and orientation are affected by 

the concrete workability and the direction of concrete placing (Barnett et al., 2010; Zofka et 

al., 2014).  

Increasing the steel fibre dosage beyond 2% tends to exhibit inadequate workability of 

SFRC along with a risk of fibre balling and improper distribution, which can result in a 

reduction of tensile strength (Boulekbache et al., 2010). Conversely, for the TSSFRC 

mixtures having high steel fibre dosage (i.e. more than 2%), fibres are randomly distributed 

in the preplaced aggregate matrix, resulting in multiple fibres crossing any failure plane. 

Thus, higher fibre dosage results in higher tensile strength (Lee and Kim, 2010; Manoharan 

and Anandan, 2014). For example, the MS4 and MS6 mixtures achieved around 14% and 

31% increase in splitting tensile strength compared with that of the MS2 mixture, 

respectively. Moreover, the splitting tensile strength of the TSSFRC specimens incorporating 

6% fibre dosage was around double that of the control mixture (M0). This is attributed to the 
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role of steel fibres in intersecting, blocking and arresting crack propagation (Song and 

Hwang, 2004).  

The fibre length had minor effects on the splitting tensile strength of TSSFRC. For 

example, the tensile strength of the ML2 mixture (made with 2% of long steel fibres (i.e.60 

mm)) was only 5% higher than that of the MS2 mixture (made with 2% of short steel fibres 

(i.e. 33 mm)). Moreover, ANOVA confirmed that the variation in the fibre length had an 

insignificant effect on the mean of the tensile strength results. The calculated F value of 0.38 

for the TSSFRC tensile strength results at fibre dosages of 1% and 2% was lower than the 

corresponding critical F value of 5.99 (F0.05, 1, 6) (Table 5.3).  

However, the slight increase in tensile strength for TSSFRC mixtures with long fibre can 

be attributed to the fact that TSC had relatively large internal voids around the aggregates 

due to bleeding of the grout mixture (Najjar et al., 2016). Therefore, these voids can 

adversely affect the fibre-matrix bond, especially in the case of short steel fibres, leading to a 

reduction in tensile strength. Long steel fibre have greater macro-crack bridging ability and 

bonded length than that of a short fibre, which can result in enhanced tensile strength 

(Brouwers et al., 2014).  

5.3.3. Flexural Strength and Load-Deflection Behaviour 

The flexural strength test results of TSSFRC specimens made with different dosages of steel 

fibres having various lengths are reported in Table 5.4. Similar to conventional concrete, the 

addition of steel fibres modified the failure mode of the tested specimens from brittle to 

ductile. As expected, the flexural strength of TSSFRC improved significantly with the 

addition of steel fibres. For example, the MS1 and MS2 mixtures achieved about 22% and 

41% higher flexural strength than that of the fibreless control mixture (M0). This has also 

been confirmed by statistical analysis (Table 5.3). For instance, ANOVA for the flexural 

strength results had F value of 8.85, which is larger than the corresponding critical F value of 

5.19 (F0.05, 4, 5). This means that the variation in the fibre dosage had a significant effect on 

the mean of the total flexural strength results. 
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Table ‎5.4 ‒‎Flexural‎test‎results‎of‎TSSFRC‎specimens 

TSSFRC 

Mixture 

ID 

Flexural Strength at First 

Crack 

Flexural strength at 

Peak Load 
Residual Strength (MPa)

*
 

(MPa)
*
 

COV 

(%) 
1 

(mm)
*
 

(MPa)
*
 

2 

(mm)
*
 

at  of L/600 

(0.75 mm)
*
 

at  of L/150 

(3 mm)
*
 

M0 3.7 6.8 0.049 3.7 0.049 -- -- 

MS1 4.5 2.8 0.049 4.5 0.049 2.1 1.3 

MS2 5.2 4.2 0.040 5.2 0.040 3.8 1.1 

MS4 5.3 3.6 0.057 6.6 0.279 5.6 3.2 

MS6 7.2 1.9 0.048 9.2 0.316 8.6 5.4 

ML1 4.0 3.1 0.041 4.0 0.041 1.8 1.4 

ML2 4.5 3.8 0.035 4.8 0.279 3.7 2.4 

ML4 7.4 1.9 0.057 9.5 0.345 8.2 5.1 

ML6 8.4 2.0 0.051 12.7 0.518 12.4 7.6 
* 1 in. = 25.4 mm, 1 ksi = 6.894 MPa 

 

Generally, the flexural strength of normal SFRC is significantly affected by the fibre 

dosage, length, shape and orientation, along with the characteristics of the cementitious 

matrix. It was found that the flexural strength increases as the fibres get more oriented in the 

direction of the tensile flexural stresses (Boulekbache et al., 2010). In conventional SFRC, 

the orientation and distribution of fibres are affected by the fibre dosage and the matrix 

workability, as well as the direction of concrete casting (Zofka et al., 2014). High fibre 

dosage (e.g. more than 2%) can cause fibres to intermingle, leading to their improper 

distribution (Barnett et al., 2010; Zofka et al., 2014). Increasing the workability of SFRC can 

overcome this problem. However, high workable SFRC can suffer from bleeding and/or 

segregation of fibres and aggregates, with consequent reduction in flexural performance 

(Barnett et al., 2010). On the other hand, during casting of SFRC, fibres tend to align 

perpendicular to the direction of concrete flow, leading to preferential improvement of 

flexural strength in one direction (Zofka et al., 2014). Conversely, in TSSFRC mixtures, 

fibres can have closer to random distribution and will disperse more uniformly, even at high 

fibre dosages, allowing significant improvement in flexural strength at high fibre dosages not 

conceivable in normal concrete mixing method. For instance, the ML4 and ML6 mixtures 

showed 64% and 87% increase in flexural strength compared with that of the ML2 mixture, 

respectively. Table 5.5 presents a comparison of the increase in the compressive and flexural 

strengths for various types of concrete versus TSSFRC. It was observed that TSSFRC 

achieved superior increase in the flexural strength compared with that of the SFRC and 
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HSFRC (i.e. high-strength fibre-reinforced concrete) (Barr et al., 1996; Berhe, 2014). 

Interestingly, TSSFRC mixture incorporating 6% steel fibres having length of 60 mm 

exhibited about 9% higher increase in the flexure strength compared with that of the 

UHPFRC (i.e. ultra-high performance fibre-reinforced concrete) incorporating 6% steel 

fibres having length of 16 mm (Abbas et al., 2015). 

 

Table ‎5.5 ‒‎Increase‎in‎the‎compressive‎and‎flexural‎strengths‎for‎various‎types‎of‎

concrete incorporating high steel fibre dosages compared with their plain concrete 

* 1 in. = 25.4 mm.
 

a
 HSFRC refers to high-strength fibre-reinforced concrete. 

b
 UHPFRC refers to ultra-high performance fibre-reinforced concrete. 

 

Figures 5.3 and 5.4 illustrate the load-deflection curves for TSSFRC specimens 

incorporating different dosages of short and long steel fibres, respectively. The initial 

stiffness of the load-deflection curves was generally comparable, while peak load increased 

with increasing steel fibre dosage. At low steel fibre dosage (i.e. 1%), TSSFRC specimens 

exhibited sudden increase in deflection coupled with a reduction in load capacity. For 

example, at the first crack, the defection of the MS1 specimens increased suddenly from 

0.049 mm to 0.558 mm, while the corresponding load dropped from 33.8 kN to 18.4 kN. This 

can be attributed to rapid crack opening once the crack formed due to insufficient number of 

fibres bridging the crack (Magnusson, 2006). Moreover, the TSSFRC specimens 

incorporating 1% and 2% steel fibre dosage showed a deflection-softening behaviour after 

Concrete Type 

Steel Fibre 

Length 

(mm)
*
 

Steel Fibre 

Dosage  

(Vol. %) 

Increase in 

Compressive 

Strength (%) 

Increase in 

Flexural 

Strength (%) 

SFRC (Barr et al., 

1996) 
40 

2 5 8 

3 7 17 

HSFRC
a
 (Berhe, 2014) 19 

2 19 27 

4 8 32 

UHPFRC
b
 ( Abbas et 

al., 2015) 
16 

3 9 112 

6 13 223 

UHPFRC
b
  (Kazemi 

and Lubell, 2012) 
13 

4 18 82 

5 25 132 

TSSFRC 

33 

2 18 41 

4 30 78 

6 49 149 

60 

2 22 30 

4 31 157 

6 52 243 
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first crack followed by a progressive load reduction as crack width increased. However, 

increasing the steel fibre dosage led to improvements in the post-peak flexural behaviour. It 

was observed that the TSSFRC specimens incorporating 4% and 6% steel fibre dosage 

exhibited a deflection–hardening behaviour due to the higher load-carrying capacity 

generated after the first cracking (Figures 5.3 and 5.4). At the high steel fibre dosages of 4% 

and 6%, fibres bridging micro-cracks can prevent their early development into principle 

cracks. Thus, multiple simultaneous cracks can be initiated, resulting in more favourable 

crack distribution (Magnusson, 2006). Since TSSFRC tends to have a random fibre 

orientation, at high steel fibre dosage, the crack path becomes more tortuous. Thus, much 

higher energy is required to de-bond and pull-out the fibres (Ostertag and Yi, 2007). 

 

 

Figure ‎5.3 ‒ Load-deflection curves for TSSFRC specimens incorporating different 

dosages of short steel fibres. 
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Figure ‎5.4 ‒ Load-deflection curves for TSSFRC specimens incorporating different 

dosages of long steel fibres. 

 

Based on the ANOVA results in Table 5.3, the variation in the fibre length did not 

significantly affect the mean of the total flexural strength results at fibre dosages of 1% and 

2%. For example, the calculated F value of 3.26 was less than the corresponding critical F 

value (F0.05, 1, 6). Conversely, at steel fibre dosages of 4% and 6%, ANOVA for the flexural 

strength results had F value of 7.12, which is larger than the critical F value (F0.05, 1, 6). This 

means the variation in the fibre length significantly affect the mean of flexural strength 

results at 4% and 6% fibre dosages. 

At low fibre dosage (i.e. 1%), TSSFRC with short steel fibres (i.e. 33 mm) exhibited 

higher resistance to the initiation of the first crack than that of TSSFRC incorporating longer 

fibres (i.e. 60 mm). For example, the flexural strength of the MS1 mixture at first crack was 

13% higher than that of the ML1 mixture (Table 5.4). This can be attributed to the greater 

number of short steel fibres in the MS1 mixture compared to that of the ML1 mixture, 

resulting in better crack bridging ability. On the other hand, for the ML1 mixture, long steel 

fibres had larger inter-fibre spacing, thus weakening its flexural performance (Abbas et al., 

2015). 
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Moreover, the TSSFRC MS2 mixture incorporating 2% of short steel fibres exhibited 

16% increase in flexural strength compared with that of the ML2 TSSFRC mixture having a 

similar dosage of the longer fibre. However, the ML2 mixture showed better post-crack 

behaviour than that of the MS2 mixture (Figures. 5.3 and 5.4). After the first crack, the short 

fibres require less energy to be pulled out, leading to more sudden increase in deflection 

coupled with a reduction in load capacity. Conversely, longer steel fibres have an average 

greater embedment length, resulting in greater resistance to pull-out. Figure 5.5(a) illustrates 

typical fibre pull-out for the TSSFRC specimens made with short steel fibres, while Figure 

5.5(b) shows the crack bridging mechanism in TSSFRC specimens incorporating the longer 

steel fibres. 

 

 

Figure ‎5.5 ‒‎Cracking‎patterns‎of‎TSSFRC‎specimens‎showing:‎(a)‎short‎steel‎fibres‎

pull-out, and (b) crack bridging by long steel fibres. 

 

On the other hand, specimens from mixtures ML4 (4% long fibre) and ML6 (6% long 

fibre) exhibited 39% and 16% lower flexural strength than that of specimens from mixtures 

MS4 and MS6, incorporating corresponding dosages of the short fibre, respectively. The long 

steel fibres allowed achieving enhanced post-crack behaviour compared to that of the short 

fibres. For example, specimens from the TSSFRC mixtures MS4 and ML4 exhibited 

substantial strain hardening and peak loads of 49.5 kN and 71.1 kN, respectively. The 

residual load for ML4 specimens at a corresponding deflection of 0.75 mm was 45% higher 

than that of the MS4 specimens since the long steel fibres had longer embedment length, 

leading to higher resistance to fibre pull-out. Furthermore, at high fibre dosages, fibres 

(a) (b) 
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become closer to each other, and thus more effective in restraining the growth of micro-

cracks (Mohamed, et al., 2014; Abbas et al., 2015).  

5.3.4. Toughness 

The toughness test results of specimens made from the various TSSFRC mixtures 

incorporating different dosages of steel fibres having different lengths is presented in Table 

5.6. As expected, toughness values increased with increasing steel fibre dosage. This was 

emphasized by ANOVA, which showed that the variation in fibre dosage had a significant 

effect on the mean of total toughness results (Table 5.3). The F value of 16.93 was 

significantly higher than the corresponding critical F value of 5.19 (F0.05, 4, 5). For example, 

specimens from mixture ML2 (2% long fibre) achieved about 77% higher toughness than 

that of specimens from mixture ML1 (1% long fibre). Moreover, specimens from mixtures 

ML4 and ML6 achieved 2 and 3 times higher toughness than that of specimens from mixture 

ML2, respectively. Generally, higher steel fibre dosage leads to increased energy for fibre 

pull-out, consequently, enhancing toughness (Köksal, et al., 2008).  

Furthermore, the toughness of TSSFRC was significantly affected by the fibre length. 

According to the statistical analysis in Table 5.3, the variation in the fibre length did not 

significantly affect the mean of the total toughness results at 1% and 2% fibre dosage as the 

calculated F value of 0.36 was less than the corresponding critical F value (F0.05, 1, 6). 

Conversely, at fibre dosage of 3% and 4%, ANOVA for the toughness results had F value of 

6.55, which is larger than the critical F value (F0.05, 1, 6). This means the variation in the fibre 

length significantly affect the mean of the toughness results at 4% and 6% fibre dosages. 

At a relatively low fibre dosage of 1%, specimens from mixture MS1 (1% short fibre 

(i.e. 33 mm)) reached 8% higher toughness than that of specimens from mixture ML1 (1% 

long fibre (i.e. 60 mm)). This can be attributed to that the greater number of fibres in MS1 

specimens, which achieved better ability of crack bridging (Brouwers et al., 2014). 

Conversely, at higher steel fibre dosage (i.e. 4% and 6%), specimens from the TSSFRC 

mixtures incorporating longer fibres exhibited higher toughness compared to that of 

specimens from mixtures incorporating similar dosage of the shorter fibre. In conventional 

SFRC, high dosage of long fibres can affect the relative mobility of coarse aggregates due to 

dimensional compatibility between fibres and aggregates (Figueiredo and Ceccato, 2015). 
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Moreover, the greater the size of aggregate particles, the more fibre balling and interaction 

occurs, consequently reducing toughness (Sahmaran et al., 2009). However, in TSSRC, the 

longer fibre could bridge cracks more effectively at high fibre dosage since fibre balling and 

interaction are absent. Moreover, TSSFRC incorporating long fibres combined with 

relatively large aggregate particle size (i.e. 40 mm [1.57 in.] crushed limestone aggregate) 

could achieve higher fracture toughness due to increased resistance to crack propagating 

(Chen and Juanyu, 2004). For instance, the toughness of specimens from mixture ML4 (4% 

long fibre) was 1.5 times that of specimens from mixture MS4 (4% short fibre). This can be 

ascribed to significant improvements in post-peak behaviour of TSSFRC specimens imparted 

by the longer steel fibres as explained earlier.  

5.3.5. Flexural Toughness Indices 

Flexural toughness indices are commonly used to evaluate the flexural toughness of concrete. 

The higher the value of flexural toughness indices, the higher is the flexural toughness of 

concrete (Appa and Sreenivasa, 2009; Zhang et al., 2014). The toughness indices values (I5, 

I10, I20, and I30) for the control fibreless specimens were equal to 1.0 since these specimens 

failed once they reached their ultimate flexural strength. Indeed, they possess no significant 

post-carking toughness (Yap et al., 2014). Figures 5.6 and 5.7 illustrate the variation in 

flexural toughness indices for tested specimens from the various TSSFRC mixtures 

incorporating different dosages of short and long steel fibres, respectively. It can be observed 

that the steel fibre dosage had a paramount effect on the flexural toughness indices. For 

example, the value of I20 for specimens from mixture ML2 (2% long fibre) was 34% higher 

than that of ML1 (1% long fibre) specimens. As the first crack was initiated, additional 

energy was required to pull-out the steel fibres from the cementitious matrix for crack 

propagation to proceed further. Increasing the steel fibre dosage is known to enhance the 

post-cracking behaviour (Yap et al., 2014). It was reported that maximum toughness indices 

values for conventional SFRC were achieved when the steel fibre content was 2%, while 

those values dropped down after the steel fibre dosage exceeded 2% (Zhang et al., 2014). In 

contrast, in TSSFRC, an increase of 12% and 24% in the I20 value was observed for the ML4 

(4% fibre) and ML6 (6% fibre) specimens compared with that of ML2 (2% fibre) specimens, 

respectively. 
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Figure ‎5.6 ‒‎Toughness‎indices‎for‎TSSFRC‎specimens‎incorporating‎different‎dosages‎

of short steel fibres. 

 

 

Figure ‎5.7 ‒ Toughness indices for TSSFRC specimens incorporating different dosages 

of long steel fibres. 
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60 mm) had greater toughness indices than that of specimens made with similar dosage of the 
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13% and 28% higher than that of MS2 specimens, respectively. Moreover, ML6 specimens 

achieved the highest values of toughness indices. This is can be ascribed to the relatively 

high dosage of long steel fibres, which imparted superior post-cracking behaviour owing to 

its longer embedment length, consequently leading to greater energy of fibre pull-out, and 

thus improved flexural toughness (Abbas et al., 2015).  

5.3.6. Residual Flexural Strength Factor 

The residual strength factor of tested specimens made from the various TSSFRC mixtures 

incorporating various dosages of long and short steel fibres are presented in Table 5.6 and 

further illustrated in Figures 5.8 and 5.9. It can be observed that the residual strength factors 

increased as the steel fibre dosage increased. For example, the R10-20 value for MS2 

specimens was 3% higher than that for MS1 specimens. Increasing the short steel fibre 

dosage from 1 to 2%, 4% and 6% resulted in 3% 26% and 41% higher residual strength 

factor (R10-20), respectively. This can be attributed to the fact that TSSFRC specimens 

incorporating higher steel fibre dosage (i.e. more than 2%) required higher energy for fibre 

pull-out, thus exhibiting higher residual strength after first crack initiation (Yap et al., 2014). 

Furthermore, it was observed that TSSFRC specimens incorporating longer steel fibres (i.e. 

60 mm) sustained higher post-cracking load than that of specimens incorporating short fibres 

(i.e. 33 mm). For example, the R20-30 for the ML2 specimens was 22% higher than that for 

MS2 specimens. Moreover, the R20-30 for ML6 specimens was 40% greater than that for the 

MS6 specimens. This can be attributed to the high toughness indices of TSSFRC specimens 

incorporating 6% of the long fibre as discussed earlier.  

 

Table ‎5.6 ‒‎Fracture‎toughness‎and‎residual‎strength‎of‎TSSFRC‎specimens 

TSSFRC 

Mixture ID 

Toughness Toughness Indices 
Residual Strength 

Factors 

(J) COV% I5 I10 I20 I30 R5-10 R10-20 R20-30 

M0 0.9 3.5 1.0 1.0 1.0 1.0 0.0 0.0 0.0 

MS1 45.6 5.5 3.8 6.1 12.0 16.0 46.0 59.0 40.0 

MS2 59.4 3.3 3.9 7.1 13.2 18.7 65.0 61.0 54.5 

MS4 107.4 3.0 4.0 8.2 15.6 23.3 84.0 74.5 77.0 

MS6 167.2 1.8 4.1 8.5 16.8 24.9 88.0 83.0 81.0 

ML1 42.3 2.8 3.9 7.1 12.6 16.6 65.0 54.5 40.5 

ML2 75.0 1.9 4.1 8.0 16.9 23.5 77.0 89.0 66.5 

ML4 160.4 1.2 4.5 9.6 19.0 28.2 103.0 94.0 93.0 

ML6 231.8 1.6 4.6 9.9 21.0 32.2 106.0 109.5 113.5 
* 1 ft. lbs. = 1.356 J 
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Figure ‎5.8 ‒‎Residual‎strength‎factors‎for‎TSSFRC‎specimens‎incorporating‎different‎

dosages of short steel fibres. 

 

 

Figure ‎5.9 ‒ Residual strength factors for TSSFRC specimens incorporating different 

dosages of long steel fibres. 

 

0

20

40

60

80

100

120

140

R
es

id
u

a
l 

st
re

n
g
th

 f
a
ct

o
r

MS1 MS2 MS4 MS6

R5-10 R10-20 R20-30

0

20

40

60

80

100

120

140

R
es

id
u

a
l 

st
re

n
g
th

 f
a

ct
o
r

ML1 ML2 ML4 ML6

R5-10 R10-20 R20-30



110 
 

 

5.4. CONCLUSIONS 

The present study investigates the mechanical properties of two-stage steel fibre-reinforced 

concrete (TSSFRC), which so far has not been explored in the open literature. TSSFRC is 

made by first placing previously dry-mixed coarse aggregates and steel fibres in a mold or 

formwork, and then injecting the internal voids with a grout having adequate flow properties. 

The conclusions emanating from this experimental study can be summarized as follows: 

 The compressive and tensile strengths of TSSFRC increased with increasing steel fibre 

dosage. In particular, a high steel fibre dosage (6%) achieved significant improvement in 

TSSFRC compressive and tensile strengths. Conversely, the steel fibre length had only a 

slight effect on the compressive and tensile strengths of TSSFRC.  

  The flexural strength and post-crack behaviour of TSSFRC were greatly enhanced by 

steel fibre addition. Higher steel fibre length also had significant influence on the 

flexural strength and post-crack behaviour. TSSFRC specimens incorporating 6% of the 

long steel fibre achieved best post-crack behaviour.  

 The addition of steel fibres greatly enhanced the flexural toughness and residual strength 

of TSSFRC. Highest values of toughness indices were obtained for TSSFRC specimens 

having 6% of steel fibre dosage. 

 In conventional steel fibre-reinforced concrete, optimal mechanical performance is 

usually reached at a fibre dosage of around 2% since greater dosages tend to cause 

serious concrete consolidation problems emanating from fibre intermingling and 

interaction. Conversely, TSSFRC can be produced with 6% of long steel fibres and even 

higher dosages, thus allowing to achieve superior mechanical performance. 
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Chapter 6 

6. DURABILITY OF TWO-STAGE CONCRETE TO CHEMICAL AND 

PHYSICAL SULFATE ATTACK
(*)

 

 

 

6.1. INTRODUCTION 

The deterioration of concrete due to sulfate attack is a complex process that has been widely 

investigated over several decades. Various damage mechanisms including expansion, 

cracking, spalling, and loss of strength can manifest in concrete sulfate attack. It has been 

argued that sulfate attack on concrete can be categorized into chemical and physical 

phenomena, depending on the sulfate exposure regime. The exposure condition could be 

through full immersion in a sulfate solution, cyclic wetting and drying in a sulfate rich media, 

or partial immersion under cyclic temperature and relative humidity.  

Chemical sulfate attack arises from various chemical reactions between sulfate ions 

migrating into the concrete and cement hydration products, leading to alteration of the 

composition of the cementitious matrix. For example, sulfate ions can react with calcium 

hydroxide (CH) to form gypsum (CS̄H2). Moreover, secondary ettringite (C6AS̄3H32) can be 

produced through the reaction of hydrated calcium aluminate (C4AH13), monosulfate 

(C4AS̄H12-18) or tri-calcium aluminate (C3A) with the gypsum formed during the first reaction 

(Mehta, 2000; Skalny et al., 2002). Formation of gypsum and ettringite is usually combined 

with an increase in volume of the reactant materials by about 1.2 to 2.2 times, thus leading to 

expansion and cracking (Hooton, 1993). Furthermore, in the presence of sulfate and 

carbonate ions, abundant moisture and low temperature, thaumasite (C3SS̄C̄H15) can form 

with decomposition of the calcium silicate hydrate (CSH) phases, resulting in strength loss of 

concrete (Skalny et al., 2002; Skaropoulou et al., 2009; Nielsen et al., 2014).  

On the other hand, concrete can be vulnerable to physical sulfate attack. This process 

usually occurs at the concrete surface in contact with the sulfate solution under varying 
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temperature and relative humidity conditions (Haynes et al., 2008). Physical sulfate attack is 

generally a result of the cyclic conversion of sulfate salts from hydrated to un-hydrated 

forms, which is combined with a volume increase. For example, the conversion of sodium 

sulfate from its un-hydrated phase (i.e. thenardite Na2SO4) to the hydrous form (i.e. 

mirabilite Na2SO4-10H2O) is combined with an increase in volume of about 314% (Haynes 

et al., 2008; Scherer, 2004; Bassuoni and Nehdi, 2009). 

The extent of damage to concrete due to chemical sulfate attack typically depends on the 

composition of the binder used, the concrete mixture design (especially w/b ratio) and the 

severity of exposure. It is well documented that using SCMs such as fly ash, silica fume and 

natural pozzolans enhanced the durability of conventional concrete fully immersed in sulfate 

solutions (e.g. Mehta, 1992; Mangat and Khatib, 1993; Skalny et al., 2002). However, under 

physical sulfate attack, the extent of damage mainly relates to the pore structure of the 

cementitious matrix and its tensile strength. The higher the volume of micro-pores connected 

with large pores, the more severe will be the damage due to salt crystallization (Nehdi et al., 

2014; Haynes and Bassuoni, 2011). Hence, while SCMs enhance the durability of concrete to 

chemical sulphate attack, it may reduce its resistance to physical sulphate attack. Indeed, 

SCMs tend to refine porosity, leading to higher capillary rise in concrete, and thus can cause 

more severe surface scaling (Nehdi et al., 2014).  

Two-stage concrete, also known as pre-placed aggregate concrete, has been successfully 

used for many years in various applications, such as underwater construction and in the 

rehabilitation of various concrete structures (ACI 304.1, 2005; Najjar et al., 2014). TSC is 

cast differently from normal concrete. Coarse aggregates are first preplaced, and then 

injected with a mixture of cement, water, fine sand and possibly chemical admixtures, 

commonly termed “grout” in TSC practice. Due to the particular effects of this unique 

casting process on the end product, the durability of TSC needs special focus, even for those 

aspects that are well established for normal concrete technology. However, data on TSC 

durability is still scarce. 

According to the ACI 304.1 (2005) (Guide for the Use of Preplaced Aggregate Concrete 

for Structural and Mass Concrete Applications), TSC was very durable when exposed to 

aggressive environments. Recently, a field investigation on the TSC piles of the Tasman 
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Bridge in Australia was conducted after 48 years of service. By examining core samples 

extracted from these piles, it was revealed that the sulfate concentrations at the reinforcement 

bar level ranged from 1.3% to 3.8% by cement mass. Such values were considered very low 

for such a long exposure to a severe environment (Berndt, 2012). However, the effect of 

SCMs on the durability of TSC exposed to various sulfate regimes is still largely unexplored 

and lacks dedicated research. There is only scant related data in the open literature. 

Therefore, to fill this knowledge gap, the present study explores the performance of TSC 

made with single, binary and ternary binders exposed to different environments conducive to 

physical and chemical sulfate attack. The findings should outline the mechanisms of damage 

of TSC incorporating SCMs under various sulfate exposure regimes and point out to needed 

future research in this area. 

6.2. EXPERIMENTAL PROGRAM  

6.2.1. Materials and Concrete Mixture Proportions  

Control TSC mixtures were prepared using both ordinary portland cement (OPC) and high 

sulphate resistant cement (HSRC). Three types of SCMs including fly ash (FA), silica fume 

(SF), and metakaolin (MK) were added as partial replacement for OPC in binary and ternary 

binders. Physical and chemical properties of the used binders are listed in Table 6.1. Crushed 

limestone coarse aggregate with a maximum nominal size of 40 mm, a saturated surface dry 

specific gravity of 2.65 and a water absorption of 1.63% was used. Silica sand with a 

fineness modulus of 1.47 and a saturated surface dry specific gravity of 2.65 was used as fine 

aggregate. A poly-carboxylate high-range water-reducing admixture (HRWRA) was used to 

adjust the flowability of the grout mixtures within the recommended efflux time (i.e. 35-40 ± 

2 sec) according to ACI 304.1 (2005). All grout mixtures had the same sand-to-binder ratio 

(s/b = 1.0) and water-to-binder ratio (w/b = 0.45). Several trial grout mixtures for each type 

of binder were conducted in order to identify the optimum HRWRA dosage that meets the 

recommended efflux time of grout (i.e. 35-40 ± 2 sec) for high strength TSC according to 

ACI 304.1 (2005). The mixture composition for all used TSC grouts is shown in Table 6.2.   
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Table ‎6.1 ‒‎Chemical analysis and physical properties of OPC, HSRC, FA, SF, and MK 

 OPC HSRC FA SF MK 

SiO2 (%) 19.60 22.0 43.39 95.30 53.50 

Al2O3 (%) 4.80 4.10 22.08 00.17 42.50 

CaO (%) 61.50 64.90 15.63 00.49 0.20 

Fe2O3 (%) 3.30 4.40 7.74 00.08 1.90 

SO3 (%) 3.50 2.25 1.72 00.24 0.05 

Na2O (%) 0.70 -- 1.01 00.19 0.05 

Loss on ignition (%) 1.90 0.7 1.17 4.7 0.50 

Specific gravity  3.15 3.12 2.50 2.20 2.60 

Surface area (m
2
/kg) 371 380 280 19500 15000 

 

Table ‎6.2 ‒‎TSC grout mixture proportions 

TSC grout 

Mixture  

Binder Proportions 

(%) 

Binder (kg/m
3
) 

Sand 

(kg/m
3
) 

Water 

(kg/m
3
) 

OPC HSRC FA SF MK   

C 100OPC 874 -- -- -- -- 874 393 

SR 100HSRC -- 871 -- -- -- 871 392 

F3 70OPC-30FA 599 -- 257 -- -- 855 385 

F5 50OPC-50FA 422 -- 422 -- -- 843 379 

S1 90OPC-10SF 777 -- -- 86 -- 863 388 

SF4 50OPC-10SF-40FA 420 -- 336 84 -- 839 378 

M1 90OPC-10MK 782 -- -- -- 87 868 391 

MF4 50OPC-10MK-40FA 422 -- 338 -- 84 844 380 

 

6.2.2. Experimental Procedures 

Different TSC specimens were prepared for each mixture. Initially, all molds were filled with 

the limestone coarse aggregate and then the specific grout was injected, similar to the 

procedures adopted in previous TSC studies (e.g. Abdelgader et al., 2010; O’Malley and 

Abdelgader, 2010). Specimens were covered with wet burlap immediately after casting to 

prevent surface drying. After 24 hours, specimens were demolded and cured in a moist 

curing room (temperature (T) = 25 C [77 F] and relative humidity (RH) = 98%) for 56 

days. 

For the chemical sulfate exposure, 150 mm × 300 mm [6 in. × 12 in.] cylindrical 

specimens and 100 mm × 100 mm × 285 mm [4 in. × 4 in. × 11.2 in.] prisms were prepared 

as shown in Figure 6.1. After 56 days of curing, the TSC specimens were fully immersed 
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into tanks filled with a solution of 5% sodium sulfate (Na2SO4) for 12 months at room 

temperature (22 C [71.6 °F]) (Figure 6.2). The sulfate solution was renewed every three 

months. Before exposure, the initial mass, length and compressive strength of specimens at 

56 days were recorded in order to monitor any changes over the investigation period (Figure 

6.3). The change of mass and length for each specimen were calculated according to Eq. 6.1: 

𝑋𝐶𝑡 =  (
𝑋𝑖 − 𝑋𝑡

𝑋𝑖
) ×  100 Eq. 6.1 

Where, XCt (%) is the change of mass or length at time t; Xt is the mass or the length at 

time t (g, mm) and Xi is the initial mass or gauge length before exposure to the 5% Na2SO4 

solution (g, 250 mm [9.84 in.]). 

For the physical sulfate exposure, 150 mm × 300 mm [6 in. × 12 in.] cylindrical 

specimens were prepared and partially immersed in a 5% Na2SO4 solution inside an 

environmental chamber for 6 months (Figure 6.4). During this period, cyclic temperature 

and relative humidity were applied. Each cycle consisted of one week at T = 20 °C [68 °F] 

and RH = 80%, followed by one week at T = 40 °C [104 °F] and RH = 35% according to a 

previous study by Nehdi et al. (2014). The sulfate solution was renewed each month. The 

initial mass and compressive strength of the TSC cylindrical specimens at 56 days were 

evaluated before sulfate exposure in order to capture any changes at the end of the physical 

sulfate exposure. The mass loss for each specimen was also calculated using Eq. 6.1. 

 

 

Figure ‎6.1 ‒‎TSC‎specimens‎before‎the‎exposure‎to‎chemical‎sulfate‎attack. 
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Figure ‎6.2 ‒ TSC specimens are fully immersed into tanks filled with a solution of 5% 

sodium sulfate (chemical sulfate exposure). 

 

 

Figure ‎6.3 ‒ Determining the change of mass and length for TSC specimens after 

chemical sulfate attack. 
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Figure ‎6.4 ‒ TSC specimens are partially immersed in a solution of 5% sodium sulfate 

inside an environmental (physical sulfate exposure). 

 

Before exposure to sulfates, small pieces were retrieved from selected TSC specimens to 

evaluate the pore size distribution using Mercury Intrusion Porosimetry (MIP) at the age of 

56 days. The MIP measurements were performed using a Micromeritics AutoPore IV 9500 

Series porosimeter within a pressure range of up to 414 MPa [60,000 psi]. The assumed 

surface tension of mercury was 0.484 N/m [2.76 × 10
−3

 lb/in.] at 25°C [77°F] according to 

ASTM D4404 (Standard Test Method for Determination of Pore Volume and Pore Volume 

Distribution of Soil and Rock by Mercury Intrusion Porosimetry). Moreover, scanning 

electron microscopy (SEM) with energy dispersive X-ray (EDX) analyses were conducted on 

thin sections and small pieces retrieved from selected TSC specimens in order to identify any 

sulfate reaction phases over the investigation period. Furthermore, X-ray diffraction analyses 

were carried out on samples taken from the TSC specimens. Co-Kα radiation with a 
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wavelength of 1.7902 Å was conducted at a voltage of 45 kV. The scanning speed was 

10°/min at a current of 160 mA.   

6.3. EXPRIMENTAL RESULTS AND DISCUSSION 

6.3.1. Chemical Sulfate Exposure 

6.3.1.1. Visual Examination 

Figure 6.5 shows various TSC specimens after 12 months of full immersion in the 5% 

Na2SO4 solution. It can be observed that all TSC specimens remained visually intact, except 

the S1 specimens incorporating 10% SF. For these specimens, deterioration started to appear 

after 9 months of chemical sulfate exposure. Cracks covered with a whitish soft material 

were observed. After 12 months of immersion, severe loss of cementitious matrix-aggregate 

bond at the top and bottom edges of the S1 specimens was observed. Moreover, broken 

chunks from the S1 specimens exhibited the formation of a whitish substance around the 

aggregate particles. 

6.3.1.2. Expansion Results 

Table 6.3 presents the expansion results for the TSC specimens after 12 months of full 

immersion in the 5% Na2SO4 solution. It can be observed that expansion results varied 

depending on the cement type as well as the type and dosage of SCMs. The control TSC 

mixture (C) made with 100% OPC yielded an expansion of about 0.23%, which is greater 

than the maximum allowable expansion limit (i.e. 0.1%) recommended by ACI 201.2R 

(2008) (Guide to Durable Concrete). However, the TSC mixture (SR) made with 100% 

HSRC showed an expansion of about 91% lower than that of the C mixture. This expected 

behavior can be attributed to the lower tri-calcium aluminate (C3A) content of HSRC, leading 

to less ettringite formation (e.g. Skalny et al., 2002).  
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Figure ‎6.5 ‒‎Specimens‎from‎various‎TSC‎mixtures‎after‎12‎months‎of‎full‎immersion‎in‎

sodium sulfate solution. 

 

Table ‎6.3 ‒‎Results of TSC specimens exposed to different sulfate exposure conditions 

TSC 

Mixture 

Chemical sulfate exposure  

(12 months) 

Physical sulfate exposure  

(6 months) 

Expansion Mass change Change in fc' Mass change Change in fc' 

(%) 
COV 

(%) 
(%) 

COV 

(%) 
(%) 

COV 

(%) 
(%) 

COV 

(%) 
(%) 

COV 

(%) 

C  0.23 9.53 0.34 9.93 12.90 2.95 -0.38 7.62 16.50 4.00 

SR  0.02 9.02 0.22 8.01 32.10 1.05 -1.39 3.06 3.80 8.97 

F3  0.05 3.26 0.22 7.38 34.70 1.00 -1.12 4.52 4.30 6.86 

F5  0.01 8.18 0.19 8.58 47.00 0.89 -4.08 2.28 5.10 6.73 

S1  0.13 4.83 -0.37 4.84 -59.90 0.80 -20.17 3.83 -84.60 1.79 

SF4  0.12 2.97 0.52 4.71 2.30 8.48 -6.52 7.68 -42.40 4.30 

M1  0.04 5.11 0.21 7.76 18.60 1.58 -0.49 7.06 5.10 6.17 

MF4  0.02 6.11 0.24 6.98 21.60 1.52 -1.77 5.18 9.50 5.06 

 

TSC mixtures incorporating SCMs as partial replacement for OPC exhibited lower 

expansion results in comparison with that of the control mixture (C). For example, the TSC 

C SR F3 F5 

S1 SF4 M1 MF4 
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mixtures F3 and F5 made with binary binders (70% OPC-30% FA and 50% OPC-50% FA, 

respectively) exhibited 78% and 96% lower expansion than that of the C mixture, 

respectively. Moreover, TSC mixtures SF4 and MF4 made with ternary binders (50% OPC-

10% SF-40% FA and 50% OPC-10% MK-40% FA, respectively) exhibited about 61% and 

91% lower expansion than that of the C mixture, respectively. 

It was reported that the concrete made with 100% OPC can be vulnerable to chemical 

sulfate attack due to its relatively high C3A content (e.g. Skalny et al., 2002). Despite the 

relatively high expansion of the control TSC specimens, no cracks appeared. This can be 

attributed to the fact that the control TSC had relatively large internal voids which can 

accommodate some of the pressure of sulfate attack reaction products (Najjar et al., 2014). 

Figure 6.6(a) confirms the existence of such large voids around aggregate particles in the C 

specimens before chemical sulfate exposure. These voids could relieve the internal pressures 

induced by the increase in volume of sulfate attack products, thus avoiding concrete damage 

by expansion stresses. Moreover, SEM image from the control specimen (Fig. 6.6(b)) 

illustrates gypsum produced from chemical sulfate attack. 

 

 

Figure ‎6.6 ‒ (a) SEM of thin section from control TSC specimen before sodium sulfate 

exposure. (b) SEM of chunk from control specimen after chemical sulfate exposure 

showing gypsum. 

 

Generally, the partial replacement of OPC by SCMs minimizes the expansion induced 

by chemical sulfate attack. This is due to reduction of the C3A content in the binder (dilution 

effect), along with the consumption of calcium hydroxide (CH) in pozzolanic reactions 

(Skalny et al., 2002) and an overall reduced permeability, thus limiting the intrusion of 

Voids 

Aggregate 

(a) (b) 
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sulfates in the cementitious matrix. Moreover, it was reported that the SO3/Al2O3 molar ratio 

in concrete mixtures significantly influences the expansion due to ettringite formation. It was 

found that there is a SO3/Al2O3 range for which expansion can occur. At very low Al2O3
 

content, ettringite does not typically form. Conversely, at high Al2O3 levels, 

monosulfoaluminate forms rather than ettringite, consequently reducing expansion 

(Ramlochan et al., 2003). In other words, the higher the Al2O3 level, the lower will be the 

resulting expansion. This highlights the benefits of adding SCMs that contain high Al2O3 

contents, such as fly ash and metakaolin, leading to better resistance to chemical sulfate 

attack (Nguyen et al., 2013).  

6.3.1.3. Mass Change 

Table 6.3 reports mass changes for specimens made from various TSC mixtures 

incorporating different SCMs after 12 months of exposure to chemical sulfate attack. The 

TSC mixture made with HSRC exhibited 36% lower mass gain compared to that of the C 

mixture. Moreover, partially replacing OPC with FA or MK led to an increase in the mass of 

TSC specimens after immersion in sodium sulfate solutions. However, the TSC mixture 

incorporating 10% SF as partial replacement for OPC exhibited unexpected mass loss. 

Ternary binder TSC mixtures (SF4 and MF4) gained mass after exposure. 

For the C mixture, the mass gain can be ascribed to the reaction between cement 

hydration products and the sulfate ions which ingress into the specimen. Consequently, 

expansive products (i.e. gypsum and ettringite) have formed and filled concrete pores, 

leading to an increase in the specimen mass. This was also observed for instance by Basista 

and Weglewski (2008) and Bassuoni and Nehdi (2009). The relatively lower mass gain of the 

SR specimens compared to that of the C specimens can be attributed to the limited formation 

of ettringite as mentioned earlier. 

Conversely, the increase in mass of TSC specimens incorporating SCMs can be 

attributed to the progress of pozzolanic reactions during exposure. For example, SEM images 

(Figure 6.7) for F5 specimens, before and after exposure to the 5% Na2SO4 solution, 

illustrate that the microstructure became denser around fly ash particles after sulfate 

exposure. Moreover, it was reported that the Na2SO4 solution can be an effective activator for 

pozzolanic reactions in concrete containing FA, leading to higher mass gain and better 

resistance to chemical sulfate attack (Liu et al., 2012). Indeed, SEM image (Figure 6.8) for 
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M1 specimens, after exposure to the 5% Na2SO4 solution, indicates denser microstructure 

and the absence of chemical sulfate attack products, which confirms the high resistance of 

the M1 mixture (90% OPC-10% MK) to chemical sulfate attack. 

 

 

Figure ‎6.7 ‒ (a) SEM of thin section from F5 specimen before chemical sodium sulfate 

exposure showing unreacted FA particles, and (b) SEM of chunk from F5 specimen 

after chemical sulfate exposure showing progress of pozzolanic reaction. 
 

 

Figure ‎6.8 ‒ SEM of chunk from M1 specimen after 12 months of full immersion in 

sodium sulfate solution showing denser microstructure.  
 

Moreover, SEM images and EDX analysis for S1 specimens (Figure 6.9) confirmed the 

formation of thaumasite, which caused severe mass loss in the S1 specimens containing 10% 

silica fume. In the presence of sufficient sulfate ions, abundant moisture and relatively cool 

temperatures, concrete incorporating a source of carbonates (the limestone coarse aggregates 

in the present case) can be vulnerable to thaumasite formation (e.g. Crammond, 2002; 

Ramezanianpour, 2012). The possibility of thaumasite formation increases in the case of 

(a) (b) 

Unreacted FA 



127 
 

 

TSC, which has 50% more coarse aggregate content than that of conventional concrete 

(Abdelgater, 1996). It was previously reported that thaumasite precipitated only in 

cementitious systems where the aluminum (Al) has been consumed to form ettringite and the 

SO3/Al2O3 molar ratio exceeded 3 (Crammond, 2002; Schmidt et al., 2008). As shown in 

Figure 6.10, the amount of aluminate (Al2O3) in the S1 specimens (10% SF) was less than 

that in specimens from the TSC mixtures incorporating other SCMs, resulting in a high 

SO3/Al2O3 and thus the possibility of thaumasite formation. It was also concluded that 

binders with higher Al2O3 content (e.g. TSC mixtures incorporating FA or/and MK) have 

higher resistance to thaumasite formation since it requires a higher content of sulfates (Juel et 

al., 2003) for thaumasite formation.  

 

 

Figure ‎6.9 ‒ (a) SEM of thin section from S1 specimen before chemical sodium sulfate 

exposure showing dense aggregate-grout interfacial zone, (b) SEM image of chunk from 

S1 specimen illustrating ettringite mixed with thaumasite, (c) SEM image of chunk 

from S1 specimen illustrating large amount of thaumasite formed on aggregate surface, 

(d) EDX analysis of circled area in (c) showing components of thaumasite. 

 

(b) (a) 

(c) (d) 
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Figure ‎6.10 ‒ Al2O3 content (%) in the binders used in the various TSC mixtures. 
 

Furthermore, it can be observed that there is a potential for thaumasite formation in 

specimens from the C and SR mixtures since their Al2O3 content is small, similar to that of 

S1 specimens (Figure 6.10). XRD analysis of powder samples from C specimens confirmed 

the formation of thaumasite as well as ettringite and gypsum (Figure 6.11). However, C 

specimens did not exhibit distinctive visual features of thaumasite damage. This can be 

attributed to the competition between ettringite and thaumasite formation (consuming 

sulfates) and the fact that the control TSC (C) contains larger internal voids near the 

aggregate particles induced by grout bleeding as discussed earlier, resulting in less dense 

aggregate-grout interfacial transition zone, capable of accommodating pressures from 

growing sulfate attack products. Conversely, S1 specimens exhibited denser aggregate-grout 

interfacial zone due to its higher resistance to bleeding (Najjar et al., 2016). Thus, S1 

specimens have undergone extensive thaumasite formation on the aggregate surfaces (e.g. 

Figure 6.9(c)) compared with that of the control TSC specimens, leading to an accelerated 

damage from thaumasite sulfate attack. 
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Figure ‎6.11 ‒ XRD of powder sample from (a) control TSC specimen, (b) S1 specimen 

after 12 months of exposure to chemical sodium sulfate attack. (E = Ettringite,T = 

Thaumasite, G = Gypsun, Q = Quartz C = Calcite P = Portlandite). 

 

6.3.1.4. Compressive Strength Change 

Compressive strength results for TSC mixtures before and after chemical sulfate exposure are 

presented in Figure 6.12. The TSC specimens continued gaining compressive strength after 

sulfate exposure, except for S1 specimens, which exhibited severe compressive strength loss. 

Binary binder TSC specimens incorporating 50% FA achieved the highest compressive 

strength gain during sulfate exposure compared to that of the other TSC mixtures.  

In general, the compressive strength increases as hydration reactions of the cementitious 

matrix progress and fill voids with hydration products (e.g. Bassuoni and Nehdi, 2009). For 

example, after 12 months of chemical sulfate exposure, F5 specimens gained about 47% 

higher compressive strength compared to its value before exposure. This can be attributed to 

the progress of pozzolanic reactions of FA during the exposure time, leading to a gain in 

mechanical strength (Torii et al., 1995). 
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Figure ‎6.12 ‒ Change in compressive strength (fc') for specimens from various TSC 

mixtures after 12 months of full immersion in sodium sulfate solution. 
 

The surprising severe strength loss of the S1 specimens is mainly related to the 

thaumasite formation, which caused significant deterioration. In thaumasite sulfate attack, 

CSH phases are destructed, leading to loss of cohesion and strength (Nielsen et al., 2014). 

This was confirmed in the present study by SEM imaging (Figure 6.9(c)), which 

demonstrated abundant formation of thaumasite around the limestone coarse aggregate 

surfaces.  

6.3.2. Physical Sulfate Exposure 

6.3.2.1. Visual Examination 

During the first week of exposure (i.e. T = 20 °C [68 °F] and RH = 80%), white efflorescence 

appeared on the evaporative surfaces of the TSC specimens. This efflorescence formed due 

to the disposition of soluble sodium sulfate salt (i.e. mirabilite formation), which moved up 

by capillary action towards the drying concrete surface (Liu et al., 2012). The TSC 

specimens which exhibited more efflorescence were from the F5 and SF4 mixtures (Figure 

6.13). In the second week of exposure (i.e. T = 40 °C [104 °F] and RH = 35%), the 

environmental condition was conducive to thenardite formation. Cyclic conversion of sodium 
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sulfate from thenardite to mirabilite can result in crystals growth from a highly 

supersaturated sodium sulfate solution. Consequently, disruptive pressures in the concrete 

pores can be generated, leading to surface scaling (Nehdi et al., 2014). 

 

 

Figure ‎6.13 ‒‎Efflorescence‎formed‎on‎SF4‎specimen‎after‎the‎first‎week‎of‎physical‎

sodium sulfate exposure at temperature of 20 °C [68 °F] and RH of 80%. 
 

Table 6.4 presents visual inspection based on the external concrete surface scaling for 

TSC specimens over the physical sulfate exposure period. After one month, surface scaling 

started to appear on F5 and SF4 specimens. Conversely, S1, F3 and SR specimens exhibited 

surface scaling only after two months of exposure. C and M1 specimens achieved better 

resistance to surface scaling during the entire exposure period. 

Figure 6.14 illustrates surface scaling on various TSC specimens after 6 months of 

physical sulfate attack. It can be observed that the immersed portion of S1 specimens 

exhibited severe deterioration typical of chemical sulfate attack. Figure 6.15 shows a 

comparison between the bottom surfaces of C, F5 and S1 specimens after 6 months of sulfate 

exposure. A significant loss of cementitious matrix-aggregate bond was observed in S1 

specimens, with a whitish soft substance covering the aggregate particles at the immersed 

portion of these specimens. This is expected since the submerged part of specimens mimics 

the chemical sulfate exposure discussed earlier. 
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Table ‎6.4 ‒‎Surface‎scaling‎visual‎rating‎for‎TSC‎specimens‎after‎exposure‎to‎physical‎

sulfate attack 

TSC 

Specimen 

Exposure period (months) 

1 2 3 4 5 6 

C 0 0 0 0 1 1 

SR 0 1 2 2 3 4 

F3 0 0 1 2 2 3 

F5 1 2 2 3 3 4 

S1 0 1 2 3 4 5 

SF4 1 2 2 3 4 4 

M1 0 0 0 0 1 1 

MF4 0 1 1 2 2 3 

0: No scaling; 1: Very slight scaling (3 mm depth, no coarse aggregate visible); 2: Slight to moderate 

scaling; 3: Moderate scaling (some coarse aggregate visible); 4: Moderate to severe scaling; 5: Severe 

scaling (coarse aggregate visible over entire surface) 

 

 

Figure ‎6.14 ‒‎Specimens‎from‎various‎TSC‎mixtures‎after‎6‎months‎of‎physical‎sodium‎

sulfate exposure. 

 

C SR F3 F5 

S1 SF4 M1 MF4 
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Figure ‎6.15 ‒ Comparison between bottom surface of C, F5 and S1 specimens after 6 

months of physical sodium sulfate exposure. 
 

6.3.2.2. Mass Change 

All TSC specimens exhibited mass loss after 6 months of exposure to physical sulfate attack 

as shown in Table 6.3. The extent of mass loss was primarily influenced by the type of 

binder used and SCMs type and dosage. The maximum mass loss was observed in the S1 

specimens, followed by that of SF4 and F5 specimens, while C and M1 specimens showed 

lower mass loss. In physical sulfate attack, the mass loss of concrete can occur due to 

supersaturation of sodium sulfate in the evaporative front of specimens, leading to high 

stresses within surface pores and consequently surface scaling (Liu et al., 2012; Nehdi et al., 

2014). Examining the drying surface of TSC specimens above the solution level using SEM 

and XRD analysis showed extensive thenardite formation within pores (Figure 6.16), which 

is responsible for the observed surface scaling. 

Moreover, mass loss of concrete specimens due to physical sulfate attack is mainly 

affected by its pore size distribution (Liu et al., 2012). Figure 6.17 illustrates MIP results at 

56 days for specimens retrieved from the various TSC mixtures before sulfate exposure. 

Capillary pores, which have sizes ranging from 0.1 m to 100 m, are responsible for 

transporting sulfate solutions toward the drying portion of concrete specimens (Nguyen, 

2011; Wittmann et al., 2014; Ma et al., 2015). Figure 6.18 illustrates the volume of capillary 

pores for each mixture. It can be observed that F5 and SF4 specimens had 35% higher 

capillary pore volume than that of the control C specimen. This can explain the high surface 

scaling due to physical salt attack exhibited by these specimens.  

C F5 S1 
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Figure ‎6.16 ‒ Illustration of thenardite at magnification of (a) 1000 x and (b) 10000 , 

and (c) XRD analysis of circled area in (b) showing components of Na2SO4 (thenardite). 
 

 

Figure ‎6.17 ‒ MIP results of specimens from various TSC mixtures before sodium 

sulfate exposure. 
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Figure ‎6.18 ‒ Capillary pore volume (0.1 m to 100 m) of specimens from various TSC 

mixtures before exposure to sodium sulfate attack. 
 

The TSC specimens incorporating 10% SF as partial replacement for OPC incurred 

excessive surface scaling and internal damage. This can be attributed to its relatively finer 

pore structure and higher capillary rise. Consequently, higher sulfate crystallization pressures 

can be generated, leading to extensive cracking as reported elsewhere (e.g. Aye and Oguchi, 

2011). Figure 6.19 illustrates SEM of micro-cracks at the aggregate-cementitious matrix 

interfacial zone for S1 specimens along with EDX analyses showing thenardite formation. 

Conversely, the M1 specimens showed slight surface scaling and little mass loss. This 

can be attributed to the low volume of capillary pores (i.e. 13.5%) in M1 specimens 

compared with that in specimens from the other mixtures (Figures 6.17 and 6.18). Yet, M1 

specimens had very fine pores (i.e. less than 0.1 m). While fine pores have proven 

detrimental in physical sulfate attack (e.g. Nehdi et al., 2014), this may have reduced 

capillary action for M1 specimen due to the overall low pore volume (e.g. Khatib and Roger, 

2004; Gesoğlu et al., 2014). Also, metakaolin may provide higher resistance to the formation 

of efflorescence due to observed densification of the concrete microstructure (Siddique and 

Klaus, 2009; Weng et al., 2013). Silica fume did not play this role probably due to the 
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observed higher pore volume. The relatively better performance of TSC specimens 

incorporating metakaolin under physical sulfate attack exposure in the present study warrants 

further investigation to determine whether this is a prevalent feature and to elucidate its true 

mechanisms. 

  

 
Figure ‎6.19 ‒ (a): SEM image of micro-cracks at aggregate-cementitious matrix 

interface for S1 specimen exposed to physical sodium sulfate attack, and  (b) XRD 

analysis of circled area in (a) showing components of Na2SO4 (thenardite). 

 

6.3.2.3. Compressive Strength Change 

Compressive strength results of specimens from various TSC mixtures tested before and after 

6 months of exposure to physical sulfate attack are presented in Figure 6.20. It can be 

observed that changes in concrete compressive strength depended mainly on the binder type. 

For example, the control C mixture showed the highest compressive strength gain after 

exposure compared with the other mixtures. This can be attributed to its least surface scaling 

and surface damage (Table 6.3). It is to be noted that the higher expansion of the submerged 

part of C specimens did not cause cracking and damage at 6 months of exposure. TSC 

specimens including SR, F3, F5, M1 and MF4 showed slight strength gain although some of 

these specimens (i.e. SR and F5) incurred great surface scaling, as shown in Figure 6.14. 

Surface scaling by physical sulfate attack will not immediately induce significant reduction 

in compressive strength since the concrete core was not yet degraded (Nehdi et al., 2014). 

Longer exposure can eventually compromise compressive strength. 

(a) (b) 
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Figure ‎6.20 ‒ Change in compressive strength (fc') for specimens from various TSC 

mixtures after 6 months of physical sodium sulfate attack. 
 

However, SF4 specimens suffered loss in compressive strength. This can be ascribed to 

the fact that the SF4 specimens had the highest volume of fine capillary pores, as shown in 

Figure 6.18. Therefore, sulfate salt crystallization could generate higher disruptive pressures, 

leading to concrete damage.  

As shown in Figure 6.20, S1 specimens incurred the most severe compressive strength 

loss amongst all specimens. SEM image analysis (Figure 6.19(a)) illustrates micro-cracks at 

the aggregate-cementitious matrix interface in S1 specimens above the solution level due to 

crystallization of sodium sulfate. Concomitantly, the immersed portion of S1 specimens 

suffered significant loss of bond between the aggregates and the cementitious matrix due to 

the formation of thaumasite as illustrated previously in Figures 6.9 and 6.15. Therefore, S1 

specimens were extensively damaged due to synergistic effects in a dual attack consisting of 

salt crystallization and chemical sulfate attack.  

The conflicting performance of TSC under chemical sulfate attack, where SCMs are 

highly beneficial, and physical sulfate attack, where SCMs have proven problematic, puts the 

designer at odds as to what compromise is needed between the two problems.  For example, 

the TSC mixtures incorporating FA showed good resistance to chemical sulfate attack, while 
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such mixtures exhibited severe surface scaling under physical sulfate exposure. Suleiman et 

al. (2014) have shown that some protective coatings applied at the evaporative front of the 

concrete subjected to dual sulfate attack can help resisting the distress from physical salt 

attack, allowing to focus on the submerged part of the concrete element exposed to chemical 

sulfate attack. However, a concerted research effort is still needed in this area to mitigate 

performance problems and the potential related litigation similar to that which cropped up 

over the past two decades.  

6.4. CONCLUSIONS  

The present study aimed at exploring the durability of TSC exposed to environments 

conducive to chemical and physical sodium sulfate attack. In both exposure regimes, the 

effects of using SCMs on TSC were investigated. The following conclusions can be drawn 

from the experimental study: 

 TSC specimens incorporating FA as partial replacement for OPC achieved adequate 

resistance to chemical sulfate attack. However, under physical sulfate exposure, such 

specimens exhibited significant surface scaling. 

 Under chemical sulfate exposure, TSC specimens incorporating 10% SF as partial 

replacement for OPC incurred severe damage as a result of thaumasite formation in the 

presence of limestone coarse aggregates. Moreover, such specimens were entirely 

destroyed after 6 months of physical sulfate exposure. The drying portion of these 

specimens was physically damaged by salt crystallization, while the immersed portion 

concomitantly suffered chemical attacked through thaumasite formation.  

 The TSC mixture incorporating 10% MK as partial replacement for OPC exhibited 

excellent resistance to both chemical and physical sulfate attacks. It also achieved a 

compressive strength gain after chemical and physical sulfate exposures.  

 TSC specimens made with a ternary binder (SF4 and MF4 mixtures) achieved adequate 

chemical sulfate resistance. Under physical sulfate exposure, the MF4 specimens 

exhibited better resistance to surface scaling compared with that of the SF4 specimens. 

This is ascribed to the fact that the SF4 specimens had higher volume of capillary pores 

(i.e. higher capillary rise), leading to increased surface scaling by physical salt attack. 
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 The apparently conflicting effects of SCMs on the resistance of concrete to chemical and 

physical attacks warrant concerted future research effort to permit the designer striking a 

balance for concrete exposed to environments conducive to both damage mechanisms.  

 The unexpected severe thaumasite formation in TSC incorporating 10% SF in the 

presence of limestone aggregates requires further attention since silica fume is generally 

perceived as a performance enhancer with regards to the durability of concrete. 

 The positive performance of TSC incorporating metakaolin in both chemical and 

physical sulfate exposures needs dedicated investigation to determine whether this is a 

prevalent feature and to elucidate the true mechanisms controlling this behavior. 
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Chapter 7 

7. NOVEL ECO-EFFICIENT PAVEMENT CONSTRUCTION 

TECHNOLOGY USING TWO-STAGE CONCRETE
(*)

 

 

 

7.1. INTRODUCTION 

The construction of roadways and sidewalks is energy and resource-intensive, releasing large 

amounts of emissions and depleting natural resources. In year 2014, the United States alone 

had constructed about 6.6 million kilometers of public roads, most of which are made of 

asphalt concrete, with growing use of portland cement concrete. There are approximately 18 

billion tons of asphalt on American roads, and roughly 3,500 asphalt concrete mixing sites, 

producing about 350 million tons of asphalt pavement material per year across the USA. In 

the United States and Canada, most sidewalks consist of a poured concrete ribbon.  Both 

asphalt and portland cement concrete take a fall on the environment due to depleting virgin 

aggregates and minerals, use of hydrocarbons, and emissions of greenhouse gas (GHG).  

There has been ongoing debate on the environmental footprint of asphalt and portland 

cement road construction. For instance, Stripple (2001) and the Athena Institute (Meli, 2006) 

compared flexible and rigid pavements in terms of energy consumption and GHG emissions 

using the process-based Life Cycle Analysis approach. Stripple found that the energy and 

GHG emissions for rigid pavements in Sweden were 30% and 29% higher, respectively, than 

that for flexible pavements when material, construction, and maintenance phases were 

considered. Conversely, the Athena Institute indicated that the energy use and GHG 

emissions for flexible pavements in Canada were 40% and 6.8% higher, respectively, than 

that for rigid pavements. 

There is currently clear need for sustainable pavement and sidewalk construction 

technology that outperforms both conventional techniques. In particular, beneficiating solid 

wastes in pavement construction can enhance its environmental footprint. For instance, it has 
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been estimated that in North America about 175 million tons of construction and demolition 

wastes and about 4.7 million tons of waste tires are generated annually (US EPA, 2009; Kim 

et al., 2011; Yeheyis et al., 2013).  

According to the Canadian Infrastructure Report Card (2016), 28% of the total sidewalks 

in Canada are in need of replacement. A primary damage mechanism for sidewalks and 

pavements in North America is surface scaling and cracking induced by freezing and thawing 

cycles (Hossack et al, 2014). It was reported that premature failure of concrete sidewalks can 

occur only five years after construction due to severe winter weather (Rajani and Zhan, 

1997). As reported by the Roads Construction Standard Specifications (2015), concrete 

sidewalks shall comply with the CSA A23.1 (2014) (Concrete Materials and Methods of 

Concrete Construction/Test Methods and Standard Practices for Concrete) requirements for 

class C2 exposure (i.e. non-structurally reinforced concrete exposed to chlorides with or 

without freeze-thaw conditions). Moreover, concrete mixtures for paving should be designed 

to meet the desired flexure strength along with adequate durability as recommended by ACI 

330 (2008) (Guide for Design and Construction of Concrete Parking Lots).  

Concrete incorporating scrap tire granules can offer a sustainable alternative for the 

construction of sidewalks where mechanical strength is not of utmost priority. Furthermore, 

previous study (e.g. Siddique and Naik, 2004) found that the resistance to freezing-thawing 

cycles of concrete was improved with the addition of rubber particles. This was attributed to 

the air-void system within the rubberized concrete matrix. Rubber particles are also 

considered as high-strain capacity materials, able to increase the ductility and toughness of 

concrete (Topçu, 1995). Moreover, rubber particles can act as crack arresters to control the 

initiation and propagation of cracks (Turatsinze et al., 2005). However, the compressive 

strength and workability of concrete are negatively affected by the addition of rubber 

particles, especially at high dosages (Taha et al., 2008) since rubber particles can form an 

interlocking structure resisting the normal flow of concrete, thus resulting in poor workability 

(Turatsinze and Garros, 2008). 

Two-Stage Concrete (TSC) is a special type of concrete produced by preplacing coarse 

aggregate particles in the formwork, followed by grout injection (Najjar et al., 2014). This 

unique production technique can overcome workability problems induced by the use of 
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recycled concrete aggregates (RCA) and tire rubber addition. A main hurdle in using RCA in 

concrete is its high absorption rate, which compromises workability. However, in TSC, the 

aggregates are preplaced and the effect of RCA on workability is therefore eliminated.  

Moreover, TSC has 50% more coarse aggregate content than that of conventional concrete 

(Abdelgater, 1996). Thus, it is endowed with superior resistance against shrinkage and 

thermal cracking, which are of paramount importance for flat concrete construction work 

such as pavements and sidewalks.  

Most of TSC past applications have been limited to mass concrete (e.g. dams), 

underwater concrete such (e.g. bridge piers), and the rehabilitation of existing concrete 

structures. An exciting potential application of TSC is the construction of sidewalks and 

pavements with high volume recycled materials. The TSC technique provides cost benefits 

since 60% of the material (i.e. coarse aggregate particles) is directly preplaced into the 

formwork and only 40% (i.e. grout) goes through mixing and pumping procedures. 

Accordingly, TSC made with RCA and tire rubber granules as partial or full replacement 

for virgin coarse aggregates, along with tire steel wire fibre reinforcement and a sustainable 

grout incorporating high volume fly ash and/or other recycled by-products as binders, can 

offer an exceptional eco-efficient alternative for the construction of economical and 

sustainable pavements and sidewalks. Thus, the present chapter explores this potential. The 

effects of incorporating RCA, tire rubber granules and tire steel wire fibres on the mechanical 

performance and freeze-thaw resistance of green TSC are investigated. The findings can pave 

the way for a novel technology for the construction of more economical, sustainable and eco-

efficient sidewalks and pavements with adequate mechanical strength and superior durability.  

7.2. EXPERIMENTAL PROGRAM 

7.2.1. Materials and Grout Mixture Proportions 

For grout mixtures, CSA A3001 GU cement (noted herein OPC) was used as the main 

binder. Two types of supplementary cementitious materials (SCMs) including class F fly ash 

(FA) and high reactivity metakaolin (MK) were added as partial replacement for OPC. Table 

7.1 shows physical and chemical properties for the used binders. Silica sand with a fineness 

modulus of 1.47 and a saturated surface dry specific gravity of 2.65 was used as a fine 
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aggregate. TSC grout mixtures with a water-to-binder ratio (w/b) of 0.45 and sand-to-binder 

ratio (s/b) of 1 were prepared using a single binder (i.e. grout made with 100% OPC (C)) and 

a ternary binder (grout made with 50% OPC, 10% MK and 40% FA (MF)). For ternary grout 

mixtures, the SCM substitution rates were selected to produce sustainable grouts with 

acceptable mechanical strength based on previous study (Najjar et al., 2016). A poly-

carboxylate high-range water-reducing admixture (HRWRA) with a specific gravity of 1.06 

and a solid content of 34% was used to adjust the flowability of the grouts according to ACI 

304.1 (2005) requirements (i.e. efflux time = 35-40 ± 2 sec). Table 7.2 presents the grout 

mixture proportions.  

 

Table ‎7.1 ‒ Chemical analysis and physical properties of OPC, FA and MK 

 OPC FA MK 

SiO2 (%) 19.60 43.39 53.50 

Al2O3 (%) 4.80 22.08 42.50 

CaO (%) 61.50 15.63 0.20 

Fe2O3 (%) 3.30 7.74 1.90 

SO3 (%) 3.50 1.72 0.05 

Na2O (%) 0.70 1.01 0.05 

Loss on ignition (%) 1.90 1.17 0.50 

Specific gravity  3.15 2.50 2.60 

Surface area (m
2
/kg)

*
 371 280 15000 

*
1 m

2
/kg = 4.882 ft

2
/lb 

 

Table ‎7.2 ‒‎Grout‎mixture‎proportions 

Grout 

Mixture No. 

Binder (kg/m
3
)

*
 Sand 

(kg/m
3
)

*
 

Water 

(kg/m
3
)

*
 

HRWRA 

dosage (%) OPC FA MK 

C 874 -- -- 874 393 0.40 

MF 422 338 84 844 380 0.35 

*
 1 kg/m

3
= 0.06247 lb/ft

3 
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RCA having particle size ranging between 19-38 mm [0.75-1.5 in.], a saturated dry 

specific gravity of 2.6 and a water absorption of 2.0% was used to produce the green TSC. 

Moreover, tire rubber particles with an average particle size of 20 mm [0.8 in.] were used as 

40% partial replacement for the recycled concrete aggregate. The rubber replacement rate 

was selected according to a previous study by Jackson (2014), which limited the rubber 

replacement rate to 40% to avoid excessive reduction in concrete compressive strength. 

Recycled tire steel wires having a mean diameter of 0.2 mm [0.008 in.], a length ranging 

between 3 mm and 22 mm [0.11 in. and 0.87 in.] and a tensile strength of 2000 MPa [290 

ksi] were incorporated in the green TSC. The volume fraction of the recycled tire wires was 

1% according to recommendations by Xie et al. (2015). Figure 7.1 exhibits the used recycled 

materials to produce the eco-efficient TSC mixtures. A summary of the various TSC 

mixtures is provided in Table 7.3.  

 

 

Figure ‎7.1 ‒ Illustration of ingredients used in producing various TSC mixtures.  
 

Table ‎7.3 ‒‎TSC‎mixtures 

TSC mixture ID 
Grout mixture 

ID
*
 

Coarse aggregate (%) Recycled tire wires 

(% by concrete 

volume) 

Recycled aggregate 

(RCA) 

Tire rubber 

particles (R) 

CRCA 

C 

100 0 0 

CR0 60 40 0 

CR1 60 40 1 

MFRCA 

MF 

100 0 0 

MFR0 60 40 0 

MFR1 60 40 1 
*
 Grout mixture proportions are presented in Table 7.2. 

Recycled concrete 

aggregate 

Tire rubber particles Recycled tire wire 
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7.2.2. Experimental Procedures 

Three types of TSC specimens including cylinders (150 mm  300 mm [6 in. × 12 in.]), 

prisms (150 mm  150 mm  550 mm [6 in. × 6 in. × 22 in.]) and panels (500 mm  500 mm 

 75 mm [20 in. × 20 in. × 3 in.]) were prepared for each green TSC mixture. Initially, 

aggregates were placed in the mold as shown in Figure 7.2 then injected by a grout. After 

casting, the specimens were covered with wet burlap to prevent surface drying. At age of 24 

hr, TSC specimens were demolded and cured in a moist room at temperature (T) of 25C 

[77F] and relative humidity (RH) of 98% until testing age. 

 

 

Figure ‎7.2 ‒‎Preplacing‎recycled‎materials‎to‎produce‎sustainable‎TSC. 

 

After 28 days, the compressive strength and the static modulus of elasticity of TSC were 

evaluated on cylindrical specimens according to ASTM C943 (Standard Practice for Making 

Test Cylinders and Prisms for Determining Strength and Density of Pre-placed-Aggregate 

Concrete in the Laboratory) and ASTM C469 (Standard Test Method for Static Modulus of 

Elasticity and Poisson's Ratio of Concrete in Compression), respectively. The flexural 

strength and toughness of TSC prisms were determined using a three-point bending test as 

per ASTM C1609 (Standard Test Method for Flexural Performance of Fibre-Reinforced 

Concrete-Using Beam with Third-Point Loading). The test was conducted using a closed 

loop deflection-controlled testing with a loading rate of 0.1 mm/min [0.004 in/min]. 
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Furthermore, toughness was calculated as the area under the load-deflection curve up to a 

deflection of 3 mm [0.11 in.] in accordance with ASTM C1609. 

The resistance to freezing-thawing cycles of TSC was assessed conforming to ASTM 

C666 (Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing). 

TSC prisms (275 mm  75 mm  75 mm [11 in. × 3 in. × 3 in.]), obtained by cutting TSC 

panels, were used in this test. After 28 days of moist curing, TSC specimens were exposed to 

nominal freezing-thawing cycles that consisted of alternately lowering the temperature of 

specimens from 4 to -18C [40 to 0F] and raising it from -18 to 4C [0 to 40F] over a 

period of 4 hours. Visual inspection and mass loss for all TSC specimens were observed after 

300 cycles of freeze-thaw. 

7.3. RESULTS AND DISCUSSION 

7.3.1. Compressive Strength 

The compressive strength test results of TSC mixtures are presented in Table 7.4. As 

expected, the compressive strength decreased when tire rubber particles were added. For 

example, the TSC specimens (CR0) incorporating 40% of recycled tire rubber particles 

exhibited 41% reduction in compressive strength compared to that of the control CRCA 

specimens (i.e. made with 100% RCA). This can be ascribed to: 1) reduction of load-carrying 

capacity as the amount of strong coarse aggregate was replaced; 2) the weak adhesion 

between rubber particles and the concrete matrix; 3) cracks that occurred around rubber 

particles due to the elastic and thermal mismatch between the rubber particles and the 

surrounding grout matrix (Nehdi and Khan, 2001; Zheng et al., 2008; Onuaguluchi and 

Panesar, 2014).  

However, the addition of 1% of recycled tire wires improved the compressive strength 

behaviour of TSC. For instance, TSC specimens (CR1) incorporating 40% rubber and 1% 

recycled tire wires achieved about 30% higher compressive strength than that of the CR0 

specimens. This is due to the role of recycled tire wires in resisting crack formation and crack 

propagation in the longitudinal direction (Farnam et al., 2010; Graeff et al., 2012).  

Moreover, the TSC specimens incorporating the MF grout mixture (i.e. grout made with 

50% OPC, 10% MK and 40% FA) exhibited a reduction in compressive strength compared 
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with that of the TSC specimens incorporating the C grout mixture (i.e. grout made with 

100% OPC). For example, the MFRCA specimens (i.e. made with MF grout mixture and 

100% RCA) exhibited around 5% lower compressive strength than that of the CRCA 

specimens. Also, the MFR0 specimens (i.e. incorporating 40% recycled tire rubber particles) 

and the MFR1 specimens (i.e. incorporating 40% recycled tire rubber particles and 1% 

recycled tire wires) showed about 28% and 24% reduction in compressive strength compared 

with that of the CR0 and CR1 specimens, respectively. This can be attributed to the high 

level of FA partial replacement (i.e. 40%) for OPC in such a grout mixture. It is well known 

that grouts incorporating FA gain strength slowly at the age of 28 days due to the slower rate 

of hydration reactions of FA at early-age (Bouzoubaâ et al., 2004). However, incorporating 

10% MK in such a grout mixture slightly offset this reduction in compressive strength due to 

its high pozzolanic activity (Najjar et al., 2016).  

 

Table ‎7.4 ‒‎Mechanical‎properties‎of‎TSC‎mixtures 

TSC 

mixture ID 

Compressive 

Strength 

Modulus of 

Elasticity 
Flexural Strength Toughness 

(MPa)
*
 COV % (GPa)

*
 COV % (MPa)

*
 COV % (J)

*
 COV % 

CRCA 26.5 5.3 29.8 3.4 2.8 7.1 0.5 2.2 

CR0 15.6 3.2 19.0 5.7 2.2 9.8 8.8 7.2 

CR1 20.3 5.6 22.6 4.0 2.8 8.4 30.5 9.6 

MFRCA 25.1 6.8 25.2 3.6 1.6 5.5 0.3 8.1 

MFR0 11.3 7.6 16.7 4.3 1.4 7.1 8.4 3.1 

MFR1 15.4 4.7 19.0 4.7 2.2 3.8 38.5 6.1 

* 1 ksi = 6.894 MPa = 0.006894 GPa; 1 ft. lbs. = 1.356 J 

 

7.3.2. Modulus of Elasticity 

The modulus of elasticity results of the TSC mixtures incorporating recycled materials are 

reported in Table 7.4. As expected, incorporating recycled tire rubber particles in TSC 

significantly reduced the modulus of elasticity. For example, the CR0 specimens exhibited 

36% lower modulus of elasticity than that of the CRCA specimens. This is ascribed to the 

very low elastic modulus of the added rubber particles, which affects the overall concrete 

modulus of elasticity (Turatsinze et al., 2005; Onuaguluchi and Panesar, 2014). However, the 
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TSC specimens (CR1) incorporating 1% of recycled tire wires achieved about 19% higher 

elastic modulus compared to that of the CR0 specimens. As mentioned earlier, recycled tire 

wires resist crack formation and arrest crack propagation, leading to improved stiffness and 

higher modulus of elasticity.  

Similar to compressive strength, the modulus of elasticity of TSC mixtures was affected 

by the binder type. For example, the MFR0 and MFR1 specimens showed about 17% and 

16% reduction in modulus of elasticity compared to that of the CR0 and CR1 specimens, 

respectively. The modulus of elasticity for TSC is mainly affected by its compressive 

strength (Najjar et al., 2014). As discussed above, incorporating a high dosage of FA in the 

grout mixture can reduce the 28-day TSC compressive strength due to the slower hydration 

reactions of FA at early-age; thus, weakening the modulus of elasticity (Bouzoubaâ et al., 

2004).  

7.3.3. Flexural Strength 

The flexural strength results of TSC specimens incorporating waste materials are presented in 

Table 7.4. Interestingly, incorporating tire rubber particles and/or recycled tire wires changed 

the failure mode of TSC specimens from brittle (i.e. broken into two pieces) to somewhat 

ductile. Moreover, the CR0 specimens achieved flexural strength 21% less than that of the 

CRCA specimens. This is attributed to the weak interfacial transition zone between rubber 

particles and the grout matrix, leading to initiation and propagation of cracks around the 

perimeter of the rubber particles (Najim and Hall, 2010; Xie et al., 2015). However, the 

addition of recycled tire steel wire fibre counterbalanced the negative effects of incorporating 

tire rubber particles owing to the crack bridging mechanism imparted by the fibres. 

Therefore, the CR1 specimens achieved similar flexural strength to that of the CRCA 

specimens.  

Figures 7.3 and 7.4 present the load-deflection curves for different TSC mixtures. It can 

be observed that the CR0 specimens exhibited sudden increase in deflection accompanied by 

a reduction in the load capacity after the first crack. However, such specimens showed an 

ability to withstand post failure loads and underwent significant displacement. This is 

ascribed to the fact that once the micro-cracks encounter rubber particles, the latter will act as 

crack arresters owing to their ability to sustain large elastic deformation (Toutanji, 1996; 
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Twumasi-Boakye, 2014). In addition, it was found that the CR1 specimens achieved better 

improvement in post-crack flexural behaviour than that of the CR0 specimens. This is due to 

the stress bridging across cracks induced by steel wire fibres, leading to enhanced post-crack 

flexural behaviour (Graeff et al., 2012). 

 

 

Figure ‎7.3 ‒ Load-deflection curves for TSC specimens made with the C grout mixture. 

 

0 0.025 0.05 0.075 0.1

0

1

2

3

4

5

0

5

10

15

20

25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Net Defelection (in.)

L
o
a

d
 (

k
ip

s)

L
o
a

d
 (

k
N

)

Net Defelection (mm)

CRCA CR0 CR1



153 
 

 

 

Figure ‎7.4 ‒ Load-deflection curves for TSC specimens made with the MF grout 

mixture. 

 

Furthermore, TSC specimens incorporating the MF grout mixture revealed a reduction in 
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7.3.4. Toughness 

The toughness test results of the various TSC specimens are presented in Table 7.4. The 

results indicated that the incorporation of recycled tire rubber particles and/or recycled tire 

wires improved the toughness. For example, the CR0 and CR1 specimens achieved 16 and 56 

times higher toughness than that of the control TSC made with 100% RCA (CRCA), 

respectively. Moreover, the toughness of TSC specimens made with the MF grout mixture 

was significantly enhanced. For instance, the MFR0 and MFR1 specimens achieved 28 and 

128 times higher toughness than that of the MFRCA specimens, respectively. Generally, 

replacing coarse aggregates by tire rubber particles enhanced the ability of TSC to absorb 

energy owing to their elastic properties (Toutanji, 1996). Moreover, the addition of recycled 

tire wires increased the required energy for crack growth, resulting in enhanced toughness of 

TSC (Graeff et al., 2012).  

7.3.5. Resistance to Freezing-Thawing Cycles 

The resistance to freezing-thawing cycles of the various TSC mixtures was appraised based 

on visual inspection and mass loss of TSC specimens subjected to 300 freezing-thawing 

cycles (Figures 7.5-7.7). It was observed that the TSC CRCA specimens made with RCA 

unveiled surface cracking and loss off concrete portions. The mass loss for CRCA specimens 

was about 22%. Moreover, the TSC specimens made with the MF grout mixture displayed 

similar damage features to that of TSC specimens made with the C grout mixture. For 

instance, the mass loss of MFRCA specimens was around 24%. The mass loss was due to 

internal stresses associated with ice formation, resulting in surface scaling and cracking of 

the concrete (Kosmatka, et al., 2003). 

Conversely, eco-efficient TSC specimens made with RCA and tire rubber particles were 

intact upon exposure to freezing-thawing cycles with negligible mass loss. This is attributed 

to the ability of tire rubber particles to induce entrained air via their non-polar rough surface. 

Entrained air voids act as stress relief sites, leading to enhanced freeze-thaw durability of 

TSC (Richardson et al., 2015). Furthermore, the rubber particles can relieve stress build-up 

induced by ice formation by acting as mini-expansion joints within the concrete (Kaloush et 

al., 2005). Moreover, the addition of recycled tire wires helped resist the development of 

cracks induced by freeze-thaw cycles (Sun et al., 1999; Graeff et al., 2012). Thus, CR1 and 
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MFR1 specimens achieved the best freeze-thaw resistance owing to combined effects of 

rubber particles and recycled tire wires.  

 

 

Figure ‎7.5 ‒ Illustration of various green TSC specimens after 300 freeze-thaw cycles. 

 

 

Figure ‎7.6 ‒ Mass change of TSC specimens made with the C grout mixture versus 

number of freeze-thaw cycles. 
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Figure ‎7.7 ‒ Mass change of TSC specimens made with the MF grout mixture versus 

number of freeze-thaw cycles. 
 

7.4. STATISTICAL ANALYSIS 

Analysis of variance (ANOVA) was used to examine the statistical significance of different 

experimental variables (e.g. incorporating tire rubber particles, recycled tire wire fibre, and 

binder type). The F value was determined for each variable as the ratio of the mean squared 
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F-distribution density function obtained from statistical tables based on the significance level 

(α = 0.05) and the degrees of freedom of error determined from the number of treatments and 

observations in an experiment. Exceeding the critical value of an F-distribution density 

function reflects that the tested variable affects the mean of the results (Montgomery, 2013). 

Table 7.5 presents ANOVA results at a significance level of  = 0.05 to examine the effects 

of tire rubber granules and the binder type on the properties of TSC mixtures. 

100

110

120

130

140

150

160

2900

3200

3500

3800

4100

4400

0 100 200 300

M
a

ss
 (

o
z)

M
a

ss
 (

g
)

No. of Cycles

MFRCA MFR0 MFR1



157 
 

 

Table ‎7.5 ‒ Analysis of variance (ANOVA) at a significance level of  = 0.05 

Properties of Green TSC 

Effect of 

Incorporating Tire 

Rubber Wastes 

Effect of Binder 

Type 

F F(0.05,2,6) F F(0.05,1,10) 

Compressive Strength 76.21 5.14 1.12 4.96 

Modulus of Elasticity 90.63 5.14 1.35 4.96 

Flexural Strength 7.00 5.14 14.63 4.96 

Toughness 238.86 5.14 0.07 4.96 

Mass Loss after 300 of 

Freeze-Thaw Cycles 
3857.82 5.14 0.01 4.96 

 

The ANOVA Results indicate that incorporating tire rubber wastes as partial 

replacement for RCA had a significant effect on the mean of the compressive strength, 

modulus of elasticity, flexural strength, toughness and durability to freeze-thaw cycles of 

TSC. For example, the calculated F value of 76.21 for the total results of compressive 

strength was larger than the corresponding critical F value of 5.14 (F0.05, 2, 6) (Table 7.5). 

This means that incorporating tire rubber wastes had a significant effect on the mean of the 

total compressive strength results. Moreover, the variation of the binder type had 

insignificant effect on the mean of compressive strength, modulus of elasticity, toughness 

and freeze-thaw durability of TSC. For example, ANOVA for the toughness results had F 

value of 0.07, which is less than the critical F value of 4.96 (F0.05, 1, 10). However, the 

variation in the binder type revealed a considerable effect of the flexural strength results as 

the F value of 14.63 was significantly greater than the critical F value of 4.96 (F0.05, 1, 10). 

7.5. CONCLUSIONS 

This study explored the performance of TSC mixtures incorporating recycled concrete 

aggregates, scrap tire granules, and tire steel wire fibres along with grouts made with ternary 

binders incorporating high volume fly ash. This material is intended for creating a novel eco-

efficient construction technology of sidewalks and pavements, which requires minimal 

materials mixing and minimal placement effort. Based on the experimental results, the 

following conclusions can be drawn: 
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 TSC mixtures made with recycled concrete aggregates performed poorly under freeze-

thaw cycles. Hence, it is may not be suitable for pavement construction in cold climates. 

 Incorporating tire rubber particles significantly decreased the mechanical properties of 

TSC, while enhancing its toughness and resistance to freezing-thawing cycles.  

 The addition of fibres made from recycled tire wire in TSC allowed overcoming the 

negative effects on the mechanical properties induced by tire rubber particles. Moreover, 

the toughness and freeze-thaw resistance were significantly enhanced. 

 Using fly ash and metakaolin in a ternary binder for green TSC resulted in a reduction in 

mechanical properties at 28 days, while the freeze-thaw resistance was comparable to 

that of TSC made with a 100% OPC single binder. 

 Further research is needed to refine TSC formulations for pavement construction, 

particularly with regards to using various binder combinations in the grout and 

developing various strength classes for structural pavement design requirements.  

 The novel TSC technology proposed for pavement and sidewalk construction is 

promising. The aggregates are preplaced and not involved in materials mixing. A self-

leveling grout is injected with no need for mechanical vibration or compaction effort. 

This offers substantial labor and energy savings. The preplaced aggregates consist of 

recycled concrete aggregate and scarp tire granules, thus saving virgin aggregates. The 

preplacement technique eliminates the well-known negative effects of RCA and tire 

rubber on concrete workability. The grout can be formulated to consist of high-volume 

recycled by-products such as fly ash and slag. Using fibres from recycled tire wire, 

which are preplaced with the aggregates, imparts further performance benefits. The TSC 

incorporates 50% more coarse aggregate than that of normal concrete. Not only does this 

offer cost savings, but also superior volume stability through high resistance to shrinkage 

and thermal cracking. In a nutshell, an eco-efficient technology for making durable, 

sustainable and more economical pavements and sidewalks seems to be possible using 

the proposed green TSC method. 
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Chapter 8 

8. FUZZY INFERENCE SYSTEMS BASED PREDICTION OF 

ENGINEERING PROPERTIES OF TWO-STAGE CONCRETE
(*)

 

 

 

8.1. INTRODUCTION 

Two-stage concrete (TSC), also known as preplaced aggregate concrete, has been 

successfully used for many years in numerous applications such as underwater construction 

and the rehabilitation of concrete structures (ACI 304.1, 2005; Najjar et al., 2014). It is cast 

differently from conventional concrete. Coarse aggregates are first preplaced and then 

injected with a mixture of cement, water, fine sand, and possibly chemical admixtures, 

commonly termed “grout” in TSC practice (Abdul Awal, 1984). The properties of the grout 

used and its ability to flow around the preplaced aggregate particles and effectively fill voids 

have a governing effect on the mechanical properties and durability of the final product 

(Abdelgader, 1996; ACI 304.1, 2005). 

Grout flowability is primarily dependent on the chemical and physical properties of the 

ingredients used in the mixture (i.e. sand, cement, supplementary cementitious materials 

(SCMs), and admixtures) along with their respective proportions (Abdelgader and Elgalhud, 

2008; O’Malley and Abdelgader, 2010; Najjar et al., 2014; Coo and Pheeraphan, 2015). It 

has been argued that using SCMs could enhance the mechanical properties and durability of 

TSC (ACI 304.1, 2005). However, limited research has been devoted to the investigation of 

the effects of SCMs on the grout flowability and the mechanical properties of TSC. A recent 

study has involved the examination of the mechanical properties of TSC incorporating a 

variety of SCMs. It was found that the type of SCM and the binder composition have a 

significant influence on the mechanical properties of TSC (Najjar et al., 2016).  

Over the last few decades, considerable research has been directed to generating models 

for predicting the properties of various types of concrete (Kute and Kale, 2013). However, 

only very few researchers have attempted to propose equations that are essentially based on 
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nonlinear regression analysis for predicting the flowability and mechanical properties of 

TSC. For example, nonlinear regression analysis was used as a means of establishing the 

relationship between the compressive strength of TSC and the mixture proportions of the 

grout (i.e. water-to-binder ratio (w/b) and sand-to-binder ratio (s/b)) (Abdelgader, 1999; 

Abdelgader and Elgalhud, 2008). Some of the proposed formulas are dependent on the shape 

of the coarse aggregate (Abdelgader, 1999), while others are based on the admixtures used 

(Abdelgader and Elgalhud, 2008). Empirical correlations between the grout properties and 

mechanical properties of the corresponding TSC have also been suggested (Najjar et al., 

2016).  

A number of modeling methods based on fuzzy logic systems (FLS) have recently been 

employed for a variety of civil engineering applications (Kute and Kale, 2013). The primary 

advantage of fuzzy logic (FL) models is their ability to describe knowledge in a descriptive 

human-like manner in the form of simple rules based on the use of linguistic variables 

(Demir, 2005). For instance, an FL model can be effectively used for estimating the 

properties of concrete without the necessity for performing costly experimental investigations 

(Feng et al., 2009). However, there has been so far no attempt to develop FL models for 

estimating the flowability and mechanical properties of TSC in the open literature. The goal 

of this study is therefore to create FL models that can estimate the flowability and 

mechanical properties of TSC and serve as accurate predictive tools for designing TSC 

mixtures in which a variety of types and dosages of SCMs can be incorporated.  

8.2. OVERVIEW OF FUZZY LOGIC MODELS 

Fuzzy set theory was introduced for the first time in 1965 by Zadeh, who developed fuzzy 

logic as an alternative to Aristotelian logic, in which only two possibilities are defined: true 

and false (Zadeh, 1965). FL corresponds to a natural way of thinking, in which verbally 

expressed rules are applied to address vagueness. This type of logic also encompasses the 

concept of any object belonging partially to different subsets of the universal set, rather than 

belonging entirely to only a single set. Partial belonging to a set can be described numerically 

by a membership function, which assumes values between 0 (completely false) and 1 

(completely true) (Topçu and Sarıdemir, 2008; Da Silva and Stemberk, 2013). The ability to 

deal with imprecise and vague information makes FL reasoning a robust and flexible tool for 

use in a number of engineering applications (Nehdi and Bassuoni, 2009). However, FL was 
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reported to be very complex and hence requires more time for execution when applied on 

high dimensional data. Moreover, FL performs poorly when applied on database of small 

size (Anifowose et al., 2013). 

Fuzzy inference systems (FIS) are modeling tools that can address ambiguity in complex 

systems. In general, a FIS has four basic components: fuzzification, a fuzzy rule base, a fuzzy 

output engine, and defuzzification (Ross, 2010). The purpose of fuzzification is to map the 

crisp input to values from 0 to 1 using a set of input membership functions (Subaşı et al., 

2013). Fuzzy membership functions have different forms; however, the linear forms (i.e., 

triangular shapes) are suitable for most practical applications (Nehdi and Bassuoni, 2009).  

In a fuzzy rule base, all possible fuzzy relations between the input and output data are 

expressed as IF–THEN statements, which convey human knowledge and expertise (Ross, 

2010). Fuzzy rules can be written in the following form (Sivanandam et al., 2007): 

IF (input1 is membership function1) and/or (input2 is membership function2) 

and/or……THEN (outputn is membership functionn) 

Language connectives such as “logical and” or “logical or,” which are similar to the 

operations of “intersection” and “union,” respectively, are commonly used in compounded 

rules (Nehdi and Bassuoni, 2009). For example, the fuzzy intersection of two fuzzy sets A 

and B in a universe of discourse X can be expressed in terms of membership functions μ(x), 

as follows: 

𝜇(𝑥) = 𝑚𝑖𝑛[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] = 𝜇𝐴(𝑥) ∩ 𝜇𝐵(𝑥) Eq. 8.1 

where x is an input element of the universe X; 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥) are the degrees of 

membership in fuzzy sets (A) and (B), respectively; and “min” stands for a minimization 

operator. 

In a fuzzy inference engine, all fuzzy rules in the fuzzy rule base are collected in order to 

generate an overall conclusion arising from the individual consequences of each rule. The 

Mamdani inference method is the methodology most commonly applied in the research 

reported in the literature. It was proposed by Mamdani (1975) as an attempt to control a 

steam engine by synthesizing a set of linguistic control rules obtained from experienced 

human operators (Nehdi and Bassuoni, 2009; Subaşı et al., 2013). In this method, the 

consequences of individual rules are truncated by minimization (min) or scaled by product 
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operators. In both cases, all consequences are then aggregated by a maximization (max) 

operator in order to obtain the final conclusion (Ross, 2010; Sivanandam et al., 2007). 

In defuzzification, the fuzzy output from the fuzzy interference engine is converted to a 

number (Bassuoni and Nehdi, 2008; Subaşı et al., 2013). The centroid method is the 

approach most widely employed for the defuzzification of fuzzy output sets. The centroid 

defuzzification technique can be expressed as follows: 

𝑧∗ = ∫
𝜇(𝑧)𝑧𝑑𝑧

𝜇(𝑧)𝑑𝑧
 Eq. 8.2 

Where, 𝑧∗ is the defuzzified output value, 𝑧 is the output value in a fuzzy subset (s), and 

𝜇(𝑧) is the corresponding degree of membership of the output in the same fuzzy subsets. 

Extensive details about FL methods, the associated mathematical background, and the 

application of these methods are beyond the scope of the study presented in this chapter and 

have been published previously by Ross (2010). Examples of fuzzy logic models use in the 

realm of concrete research can be found in (Bedirhanoglu., 2015; Tsai et al., 2015; Zhang, 

2015). 

8.3. EXPERIMENTAL PROGRAM 

8.3.1. Materials and Grout Mixture Proportions 

Ordinary portland cement (OPC) was used as the main binder for all tested grout mixtures. 

Three types of SCMs including fly ash (FA), silica fume (SF), and metakaolin (MK) were 

used as partial replacement for OPC. Table 8.1 summarizes physical and chemical properties 

of the used materials. Silica sand with a fineness modulus of 1.47 and a saturated surface 

specific gravity of 2.65 was used as the fine aggregate. All grout mixtures had the same sand-

to-binder ratio (s/b = 1.0), which is the commonly accepted practice. Three water-to-binder 

ratios (w/b) of 0.35, 0.45 and 0.55 were tested. A poly-carboxylate high-range water-

reducing admixture (HRWRA) with a specific gravity of 1.064, a solid content of 34% and 

pH of 5 was added at different dosages. Several TSC grout mixtures were prepared using 

single, binary, and ternary binders corresponding with different HRWRA dosages. The 

mixture proportions of the tested grouts are provided in Table 8.2. Crushed limestone coarse 

aggregate with a maximum nominal size of 40 mm, a saturated surface dry specific gravity of 

2.65, and a water absorption of 1.63% was used for the production of the various TSC 
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mixtures. Two types of cold-drawn hooked-end steel fibres were employed; their properties 

are listed in Table 8.3. The steel fibre dosages (i.e. volume fractions) used in the TSC were 

1%, 2%, 4%, and 6%, which covers the practical dosage range. 

 

Table ‎8.1 ‒‎Chemical‎analysis‎and‎physical‎properties‎of‎OPC,‎FA,‎SF,‎and‎MK 

 OPC FA SF MK 

SiO2 (%) 19.60 43.39 95.30 53.50 

Al2O3 (%) 4.80 22.08 00.17 42.50 

CaO (%) 61.50 15.63 00.49 0.20 

Fe2O3 (%) 3.30 7.74 00.08 1.90 

SO3 (%) 3.50 1.72 00.24 0.05 

Na2O (%) 0.70 1.01 00.19 0.05 

Loss on ignition (%) 1.90 1.17 4.7 0.50 

Specific gravity  3.15 2.50 2.20 2.60 

Surface area (m
2
/kg)* 371 280 19500 15000 

*1 m
2
/kg = 4.882 ft

2
/lb 

 

Table ‎8.2 ‒‎Grout‎mixture‎proportions 

Grout Mixture 

No. 

Grout Mixture 

Notation 

Binder (kg/m
3
)* Sand 

(kg/m
3
)* 

Water 

(kg/m
3
)* OPC FA SF MK 

C-0.35 100OPC 957 -- -- -- 957 335 

F1-0.35 90OPC-10FA 855 95 -- -- 950 332 

F3-0.35 70OPC-30FA 654 280 -- -- 935 327 

F5-0.35 50OPC-50FA 460 460 -- -- 921 322 

S1-0.35 90OPC-10SF 850 -- 94 -- 945 331 

SF4-0.35 50OPC-10SF-40FA 458 366 92 -- 916 321 

M1-0.35 90OPC-10MK 856 -- -- 95 951 333 

MF4-0.35 50OPC-10MK-40FA 461 369 -- 92 922 323 

C-0.45 100OPC 874 -- -- -- 874 393 

F1-0.45 90OPC-10FA 781 87 -- -- 867 390 

F3-0.45 70OPC-30FA 599 257 -- -- 855 385 

F5-0.45 50OPC-50FA 422 422 -- -- 843 379 

S1-0.45 90OPC-10SF 777 -- 86 -- 863 388 

SF4-0.45 50OPC-10SF-40FA 420 336 84 -- 839 378 

M1-0.45 90OPC-10MK 782 -- -- 87 868 391 

MF4-0.45 50OPC-10MK-40FA 422 338 -- 84 844 380 

C-0.55 100OPC 803 -- -- -- 803 442 

F1-0.55 90OPC-10FA 718 80 -- -- 798 439 

F3-0.55 70OPC-30FA 551 236 -- -- 788 433 

F5-0.55 50OPC-50FA 389 389 -- -- 778 428 

S1-0.55 90OPC-10SF 715 -- 79 -- 795 437 

SF4-0.55 50OPC-10SF-40FA 387 310 77 -- 774 426 

M1-0.55 90OPC-10MK 719 -- -- 80 799 439 

MF4-0.55 50OPC-10MK-40FA 389 311 -- 78 778 428 
*1 kg/m

3
= 0.06247 lb/ft

3 
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Table ‎8.3 ‒‎Properties‎of‎hooked-end steel fibres 

Steel Fibre 

Type 

Length 

(mm)
*
 

Diameter 

(mm)
*
 

Aspect 

ratio 

Specific 

gravity 

Tensile strength 

(MPa)
*
 

Short (S) 33 0.75 80 7.85 1100 

Long (L) 60 0.75 44 7.85 1100 

* 1 in. = 25.4 mm, 1 ksi = 6.894 MPa 

 

8.3.2. Experimental Procedures 

All grout mixtures were prepared as per the guidelines of ASTM C938 (Standard Practice for 

Proportioning Grout Mixtures for Preplaced-Aggregate Concrete). Mixing and flowability 

measurements were conducted at room temperature (T = 23C ± 2C) [73.4F ± 3.6F]. 

Immediately following the mixing, grout flowability was evaluated using a flow cone test 

according to ASTM C939 (Standard Test Method for Flow of Grout for Preplaced-Aggregate 

Concrete - Flow Cone Method). The flow cone test entails measuring the time required for 

the efflux of 1725 ml [0.06 ft
3
] of the grout through a specific cone that has a 12.7 mm [0.5-

in.] discharge tube. A spread flow test was also conducted in order to study the effects of 

SCMs on the point at which the grout mixture begins to flow freely, which identifies the 

optimum water content (Hunger and Brouwers, 2009). The grout is placed into a special 

conical mold, which is lifted straight upwards in order to allow free flow.  

Based on the efflux time and spread flow results for the various grout mixtures, it was 

found that all grout mixtures made with a w/b ratio = 0.45 could achieve the efflux time of 

35-40 ± 2 sec recommended by ACI 304.1 (2005) for successful TSC production. The 

optimum HRWRA dosage that meets the efflux time recommendations was considered for 

each grout mixture made with the selected w/b ratio. The compressive strength of the 

selected grouts was tested on 50 mm [2 in.] cubic specimens at ages of 7, 28, and 56 days 

according to ASTM C 942 (Standard Test Method for Compressive Strength of Grouts for 

Preplaced-Aggregate Concrete in the Laboratory).  

Thereafter, the effects of incorporating various rates and types of SCMs on the 

mechanical properties of the TSC mixtures made with the selected grouts were investigated. 

The mechanical performance of two-stage steel fibre-reinforced concrete (TSSFRC) 
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incorporating different steel fibre dosages and lengths was also explored. Cylindrical TSC 

and TSSFRC specimens (150mm × 300mm [6-in. × 12-in.]) were prepared. For the TSC 

specimens, all molds were filled with the coarse limestone aggregate, and the specific grout 

was then injected in a manner similar to the procedure adopted in previous TSC studies (e.g., 

Abdelgader et al., 2010; O’Malley and Abdelgader, 2010). For the TSSFRC specimens, the 

coarse aggregates and steel fibres were premixed and preplaced in the molds. A grout made 

with 100% OPC was subsequently injected to fill in the space around the coarse aggregates 

and fibres. Specimens were covered with wet burlap immediately after casting in order to 

prevent surface drying. After 24h, specimens were demolded and cured in a moist curing 

room (temperature (T) = 25C [77F] and relative humidity (RH) = 98%) until the desired 

testing ages. At each testing age (i.e. 7, 28 and 56 days), the compressive and splitting tensile 

strengths of the TSC specimens were evaluated according to ASTM 943 (Standard Practice 

for Making Test Cylinders and Prisms for Determining Strength and Density of Preplaced-

Aggregate Concrete in the Laboratory) and ASTM C496/C496M (Standard Test Method for 

Splitting Tensile Strength of Cylindrical Concrete Specimens), respectively.  

The results obtained from this experimental program were used to build a database for 

the development of FL models for predicting the grout efflux time, grout spread flow, grout 

compressive strength, TSC compressive strength, and TSC tensile strength.  

8.4. FUZZY LOGIC MODELS 

8.4.1. Database 

In this study, two FL models were created with the goal of predicting the grout flowability 

and mechanical properties of TSC. FL model I was developed for calculating the expected 

efflux time and the spread flow of a wide range of TSC grout mixtures. The database for 

training and testing this model contained 228 data points associated with 24 grout mixtures. 

The model and database have 6 input variables: the w/b ratio and the OPC, FA, SF, MK, and 

HRWRA dosages. The efflux time and spread flow of the TSC grouts constituted the 

experimental output parameters of the database. Hence, they also were the output predicted 

by the FL model I. Figure 8.1 illustrates the general structure of the developed FL model I. 

The database was divided randomly into 188 data sets for training and 40 data sets for testing 
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the model, respectively. The properties of the training and testing data sets for model I are 

listed in Table 8.4.  

 

 

Figure ‎8.1 ‒‎General‎structure‎of‎the‎developed‎FL‎Model‎I. 

 

 

Table ‎8.4 ‒‎Range‎of‎training‎and‎testing‎output‎variables‎for‎models‎I‎and‎II 

FL Model/Property 
Training Data Testing Data 

Min. Max. Avg. Min. Max. Avg. 

I/Grout efflux time (sec) 11.0 194.0 59.7 14.0 196.0 70.6 

I/Grout spread flow (cm) 25.9 41.0 11.3 11.3 39.7 26.1 

II/Grout compressive strength (MPa) 20.7 64.4 43.4 21.5 52.7 43.5 

II/TSC compressive strength (MPa) 11.6 48.8 28.6 12.7 47.1 28.8 

II/TSC tensile strength (MPa) 2.3 8.4 3.8 2.4 7.5 3.9 

 

FL model II was then developed in order to predict the compressive and tensile strengths 

of a wide range of TSC mixtures. The database for training and testing this model contained 

132 data points based on 19 TSC mixtures. The model and database have 7 input variables: 

the OPC, FA, SF, MK, short-steel fiber dosage, long-steel fiber dosage, and the age of the 

test specimen. The compressive and tensile strengths of the TSC mixtures constituted the 

experimental database parameters measured and were hence the output predicted by the FL 

model II. Figure 8.2 illustrates the general structure of the developed FL model II. The 
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database was divided randomly into 116 data sets for training and 16 data sets for testing the 

model, respectively. The properties of the training and testing data sets for model II are listed 

in Table 8.4.  

 

 

Figure ‎8.2 ‒ General structure of the developed FL Model II. 

 

8.4.2. Construction of Fuzzy Inference Systems 

The FL models were created in a MATLAB environment. The Mamdani inference method 

was used to develop these models. Partial belonging to a set was described numerically using 

a membership function that assumes values between 0 and 1. Triangular membership 

functions were used for fuzzy modeling. The membership functions for the input parameters 

used for the fuzzy modeling are illustrated in Figures 8.3 and 8.4. After the membership 

functions were determined, rules were written based on the experimental results. The 

following are examples of the rules that were created: 

For Model I: IF w/b = 0.45 and OPC = 50% and FA = 40% and SF = 0% and MK = 

10% and HRWRA = 0.2% THEN grout efflux time = 56 sec and grout spread flow is 17.5 

cm.  

For Model II: IF OPC = 100% and FA = 0% and SF = 0% and MK = 0% and short 

steel fibre= 0%, and long steel fiber = 0% and age of the test sample = 28 days THEN grout 

Grout 

Compressive 

Strength (MPa) 

TSC Tensile 

Strength (MPa) 

TSC 

Compressive 

Strength (MPa) 

 

Fuzzy 

Logic 

Model 

FA (%) 

 

SF (%) 

 

OPC (%) 

 

MK (%) 

 

Age (days) 

Short Fibre (%) 

Long Fibre (%) 



172 
 

 

compressive strength = 50.4 MPa and TSC compressive strength = 35.9 MPa, and TSC 

tensile strength = 5.6 MPa.  

In the final stage, the model results were obtained from the defuzzification monitor. The 

defuzzification was performed using the centroid of area method expressed in Eq. 8.2. 

 

 

Figure ‎8.3 ‒ Membership functions for input parameters of FL Model I. 
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Figure ‎8.4 ‒ Membership functions for input parameters of FL Model II. 
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the two FL models for the properties (i.e. grout efflux time, grout spread flow, grout 

compressive strength, TSC compressive strength, and TSC tensile strength) are shown in 

Figure 8.5. It can be observed that the FL models have captured the input-output relations as 

the points located mostly on or slightly under/above the equity line between the experimental 

and predicted values. The performance of model I with respect to predicting the grout efflux 

time and the grout spread flow is also satisfactory. These results are confirmed by the results 

of a statistical analysis of the training data with respect to the ratio of the experimental-to-

predicted values for each property (𝑃𝑒𝑥𝑝 𝑃𝑝𝑟𝑒)⁄ , as portrayed in Table 8.5. For example, the 

average, the standard deviation, and the coefficient of variation (COV) for the (𝑃𝑒𝑥𝑝 𝑃𝑝𝑟𝑒)⁄  of 

the grout spread flow training data were 1.00, 0.05, and 4.99%, respectively. These findings 

indicate that the performance of model I with respect to predicting the spread flow is 

satisfactory and that the model exhibits good prediction accuracy.  

 

Table ‎8.5 ‒ Statistical analysis based on the ratio of experiential-to-predicted property 

FL Model/Property 

Training Data Testing Data 

Avg. STDEV 
COV 

(%) 
Avg. STDEV 

COV 

(%) 

I/Grout efflux time (sec) 1.00 0.06 5.79 1.02 0.07 7.35 

I/Grout spread flow (cm) 1.00 0.05 4.99 0.97 0.06 5.84 

II/Grout compressive strength (MPa) 1.02 0.04 4.30 1.03 0.05 5.15 

II/TSC compressive strength (MPa) 1.01 0.04 3.49 1.03 0.03 3.14 

II/TSC tensile strength (MPa) 1.01 0.04 3.77 1.03 0.05 4.57 
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Figure ‎8.5 ‒ Performance of FL models using training data in predicting: (a) grout 

efflux time, (b) grout spread flow, (c) grout compressive strength, (d) TSC compressive 

strength and (e) TSC tensile strength. 
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8.5.2. Testing Predictive Capability of FL Models 

To examine the capacity of the FL model I and model II with respect to generalization, they 

were tested on 40 sets and 16 sets of test data, respectively. The values predicted by the two 

FL models for the properties of the test data (i.e. grout efflux time, grout spread flow, grout 

compressive strength, TSC compressive strength, and TSC tensile strength) are exhibited in 

Figure 8.6. Similar to the case involving the training data points, FL models I and II 

produced reasonable predictions relative to the actual corresponding values measured 

experimentally. It can be observed in Figure 8.6 that test data points were located mostly on 

or slightly deviating from the equity line.  

Table 8.5 summarizes the statistical parameters pertaining to the responses of the FL 

models I and II with respect to the actual experimental test data. For example, the average, 

the standard deviation, and the coefficient of variation (COV) of the (𝑃𝑒𝑥𝑝 𝑃𝑝𝑟𝑒)⁄  values of 

the TSC compressive strength test data were 1.03, 0.03, and 3.14 %, respectively. Based on 

the statistical analysis of the (𝑃𝑒𝑥𝑝 𝑃𝑝𝑟𝑒)⁄  values for the test data, it can be concluded that FL 

models I and II are capable of effectively generalizing the relationships between the input 

variables and the output results and that the models yield reasonably accurate predictions. 

Moreover, the performance of the FL model II was validated using data collected from 

the literature as reported in Table 8.6. It can be observed that the FL results were in 

agreement with the experimental results published by others. The slight variation between the 

experimental and FL results can be due to differences in the properties of the materials used 

in the various studies.  

8.5.3. Error Analysis of FL Models 

The performance of both FL models thus developed was assessed based on the root-mean-

square error (𝑅𝑀𝑆𝐸), the absolute fraction of variation (𝑅2), and the mean absolute 

percentage error (𝑀𝐴𝑃𝐸), using the following equations. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑|𝑃𝑒𝑥𝑝 − 𝑃𝑝𝑟𝑒|

2
 Eq. 8.3 
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𝑅2 = 1 − (
∑(𝑃𝑒𝑥𝑝 − 𝑃𝑝𝑟𝑒)

2

∑ 𝑃𝑝𝑟𝑒
2 ) Eq. 8.4 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑃𝑒𝑥𝑝 − 𝑃𝑝𝑟𝑒|

𝑃𝑒𝑥𝑝
× 100 Eq. 8.5 

where (𝑃𝑒𝑥𝑝) and (𝑃𝑝𝑟𝑒) are the experimental and predicted values of the properties (i.e. 

grout efflux time, grout spread flow, grout compressive strength, TSC compressive strength, 

and TSC tensile strength), respectively, and (𝑛) is the number of data points. 

 

Table ‎8.6 ‒‎Comparison‎between‎experimental‎results‎collected‎from‎the‎literature‎and‎

corresponding FL model II predictions 

Ref. 
OPC 

(%) 

FA 

(%) 

SF  

(%) 

Steel 

dosage 

(%) 

Age 

(days) 

Grout compressive strength 

results (MPa) 

Exp. FL 
COV 

(%) 

(Abdul Awal, 1984) 100 0 0 0 28 41.0 47.4 7.2 

(Abdelgader, 1999) 100 0 0 0 28 43.8 47.4 3.9 

 

OPC 

(%) 

FA 

(%) 

SF  

(%) 

Steel 

dosage 

(%) 

Age 

(days) 

TSC compressive strength 

results (MPa) 

 
Exp. FL 

COV 

(%) 

(Abdul Awal, 1984) 100 0 0 0 28 29.0 30.6 2.7 

(Abdelgader, 1999) 100 0 0 0 28 30.7 30.6 0.2 

(Bayer, 2004) 50 50 0 0 28 10.6 13.9 13.5 

(Abdelgader et al., 

2016) 
94 0 6 0 28 22.6 32.8 18.4 

 

OPC 

(%) 

FA 

(%) 

SF  

(%) 

Steel 

dosage 

(%) 

Age 

(days) 

TSC tensile strength results 

(MPa) 

 
Exp. FL 

COV 

(%) 

(Abdul Awal, 1984) 100 0 0 0 28 3.1 3.6 7.5 

(Abdelgader and Ben-

Zeitun, 2005) 
100 0 0 0 28 3.0 3.6 9.1 
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Figure ‎8.6 ‒ Validation of FL models using testing data unfamiliar to the models in 

predicting: (a) grout efflux time, (b) grout spread flow, (c) grout compressive strength, 

(d) TSC compressive strength and (e) TSC tensile strength. 
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Table 8.7 presents the 𝑅𝑀𝑆𝐸, 𝑅2, and 𝑀𝐴𝑃𝐸 values derived for the training and testing 

data sets in order to evaluate the performance of the FL models. It can be observed that the 

developed FL models provide a high degree of accuracy and that their predictions of 

flowability and mechanical properties are very close to the actual experiment results. For 

example, the 𝑅𝑀𝑆𝐸, 𝑅2, and 𝑀𝐴𝑃𝐸 of the TSC tensile strength predicted by the FL model II 

using the test data were 0.209, 0.997, and 4.087, respectively.  

 

Table ‎8.7 ‒ Performance of the developed FL models I and II 

FL Model/Property 

Training Data Testing Data 

RMSE R
2
 

MAPE 

(%) 
RMSE R

2
 

MAPE 

(%) 

I/Grout efflux time (sec) 2.068 0.999 4.322 3.139 0.999 5.894 

I/Grout spread flow (cm) 1.068 0.998 3.361 1.753 0.996 5.205 

II/Grout compressive strength (MPa) 1.847 0.998 2.873 2.539 0.997 3.649 

II/TSC compressive strength (MPa) 0.922 0.999 2.474 1.243 0.998 3.943 

II/TSC tensile strength (MPa) 0.142 0.999 2.586 0.209 0.997 4.087 

 

8.6. CONCLUSIONS 

This chapter reports the development of fuzzy logic models for predicting the flowability and 

mechanical properties of two-stage concrete. Based on the results obtained in this study, the 

following conclusions can be drawn: 

 The developed FL models offer simple and flexible tools for predicting the grout 

flowability and mechanical properties of TSC in which a variety of SCMs are 

incorporated. The properties predicted by the FL models were very close to the actual 

experimental results, providing evidence for the potential of these models as predictive 

tools.  

 The models exhibit adequate capacity of generalization beyond the training stage, as 

verified by the fact that the predictions obtained for the new test data that is unfamiliar to 

the models were within a similar range of accuracy to those obtained for the training 

database.  
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 The proposed FL models represent reasonably accurate tools for designing TSC mixtures 

in which several types and dosages of SCMs are incorporated, and they can also save 

time as well as reduce wastage of materials and design costs. 

 The FL models thus developed are flexible and can be easily updated and modified 

according to new findings and to accommodate data that might emerge in the future. 

Indeed, such models are adaptable and can encompass new parameters and new test data 

that becomes available in the future so that its predictive capability can be extended to 

include new materials, wider range of input parameters, or new test data such as 

durability. 
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Chapter 9 

9. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

 

9.1. SUMMARY AND CONCLUSIONS 

Two-stage concrete (TSC) has been used in the past primarily in repair, mass concrete, and 

underwater concreting. However, its applications are still limited despite major 

advancements in modern concrete technology. Therefore, the goal of this dissertation is to 

explore advancing the TSC technology through the development of a comprehensive 

database on the mechanical and durability performance of a wide scope of TSC types as well 

as discover new possibilities and applications for TSC through adjusting and improving its 

properties.  

The initial component of this study, Chapter 2, provides a critical overview of the TSC 

technology, including its development history, material specifications, engineering properties 

and long-term performance. It was revealed that there is currently scarce data on the effects 

of adding new generation of chemical admixtures (e.g. high-range water-reducing admixtures 

(HRWRA)) and using supplementary cementitious materials (e.g. silica fume, metakaolin, 

and fly ash) on the TSC properties. Furthermore, mobilizing the TSC technology in other 

applications where it can provide particular advantages still needs dedicated research. Thus, 

to fill these knowledge gaps, this dissertation explores the effects of using different 

supplementary cementitious materials (SCMs) on the TSC grout flowability, and the 

mechanical properties and durability of TSC. Furthermore, this research contributes to 

producing new types and novel products of TSC, such as green TSC pavements. 

In Chapter 3, the flowability of grouts made with single, binary and ternary binders 

incorporating various supplementary cementitious materials and having different w/b ratios 

was investigated using the flow cone method and the spread flow test. Results showed that 

grouts made with w/b = 0.45 and 0.55 can achieve the target flowability for TSC grouts 

specified in pertinent standards, while those made with w/b = 0.35 were too thick to use in 
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TSC production despite the use of HRWRA. It was concluded that the w/b = 0.45 can be 

perceived as optimum to produce grouts having an efflux time of 35-40 ± 2 sec as 

recommended by ACI 304.1 for successful TSC production. Therefore, in the remainder of 

this research, grout mixtures with w/b = 0.45 and an optimum HRWRA dosage were selected 

for further investigation. 

Chapter 4 expanded on the finding of Chapter 3. The rheological and mechanical 

properties of two-stage concrete made with single, binary and ternary binders were explored. 

Results indicated that the partial replacement of OPC with FA improved the grout’s 

flowability while reducing its resistance to bleeding. Partial replacement of OPC with SF or 

MK increased the grout’s bleeding resistance and mechanical properties, while reducing its 

flowability. Also, an empirical equation for predicting the compressive strength of TSC 

based on the corresponding grout’s compressive strength and considering the binder type was 

proposed. Moreover, it was found that there was no significant effect of the binder type on 

the relation between the compressive and tensile strengths of TSC. Finally, an empirical 

relationship between the modulus of elasticity of TSC and its compressive strength was 

proposed. The proposed empirical relationships between the properties of the grout and those 

of the corresponding TSC should offer potential tools for estimating TSC properties based on 

primary grout properties. 

Chapter 5 presented novel data on the mechanical performance of two-stage steel fibre-

reinforced concrete (TSSFRC), which so far has not been explored in the open literature. 

Results showed that the compressive and tensile strengths of TSSFRC increased with 

increasing steel fibre dosage. In particular, a high steel fiber dosage (6%) achieved 

significant improvement in TSSFRC compressive and tensile strengths. Moreover, the 

flexural strength and post-crack behaviour of TSSFRC were greatly enhanced by steel fibre 

addition. Higher steel fibre length also had significant influence on the flexural strength and 

post-crack behaviour. The addition of steel fibres greatly enhanced the flexural toughness 

and residual strength of TSSFRC. Highest values of toughness indices were obtained for 

TSSFRC specimens having 6% of steel fibre dosage. In conventional steel fibre-reinforced 

concrete, optimal mechanical performance is usually reached at a fibre dosage of around 2% 

since greater dosages tend to cause serious concrete consolidation problems emanating from 
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fibre intermingling and interaction. Conversely, TSSFRC can be produced with 6% of long 

steel fibres, thus allowing to achieve superior mechanical performance. 

Chapter 6 induced the performance of TSC made with single, binary and ternary binders 

exposed to different environments conducive to physical and chemical sulfate attack. In both 

sulfate exposure regimes, the effects of using SCMs on TSC were investigated. Results 

showed that TSC specimens incorporating FA as partial replacement for OPC achieved 

adequate resistance to chemical sulfate attack. However, under physical sulfate exposure, 

such specimens exhibited significant surface scaling, while maintaining its compressive 

strength.  

Under chemical sulfate exposure, using 10% SF as partial replacement for OPC caused 

severe damage in the TSC (S1) specimens as a result of thaumasite formation in the presence 

of limestone coarse aggregates. Moreover, S1 specimens were entirely destroyed after 6 

months of physical sulfate exposure. The drying portion of S1 specimens was physically 

damaged by salt crystallization, while the immersed portion was chemically attacked through 

thaumasite formation. The unexpected severe thaumasite formation in TSC incorporating 

10% SF in the presence of limestone aggregates requires further attention since silica fume is 

generally perceived as a performance enhancer with regards to the durability of concrete.  

However, the TSC mixture incorporating 10% MK as partial replacement for OPC 

exhibited excellent resistance to both chemical and physical sulfate attacks. It also achieved 

compressive strength gain after chemical and physical sulfate exposures. Specimens from 

ternary binder TSC achieved adequate chemical sulfate resistance. Under physical sulfate 

exposure, the TSC specimens made with ternary binders (50% OPC-10% MK-40% FA) 

exhibited better resistance to surface scaling compared with that of the TSC specimens made 

with ternary binders (50% OPC-10% SF-40% FA). The apparently conflicting effects of 

SCMs on the resistance of TSC to chemical and physical attacks warrant concerted research 

effort to allow the designer striking a balance for concrete exposed to environments 

conducive to both damage mechanisms.  

In Chapter 7, the performance of TSC mixtures incorporating recycled concrete 

aggregates, scrap tire granules, and tire steel wire fibers was explored along with grouts made 

with ternary binders incorporating high volume fly ash. This material is intended for creating 
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a novel eco-efficient construction technology of sidewalks and pavements, which requires 

minimal materials mixing and minimal placement effort.  

TSC mixtures made with recycled concrete aggregates performed poorly under freeze-

thaw cycles. Hence, it may not be suitable for pavement construction in cold climates. 

Results indicated that incorporating tire rubber particles significantly decreased the 

mechanical properties of TSC, while enhancing its toughness and resistance to freezing-

thawing cycles. However, the addition of fibers made from recycled tire wire in TSC allowed 

overcoming the negative effects on the mechanical properties induced by tire rubber 

particles. Moreover, the toughness and freeze-thaw resistance were significantly enhanced by 

the inclusion of tire steel wire fibers. It was concluded that an eco-efficient technology for 

making durable, sustainable and more economical pavements and sidewalks seems to be 

possible using the proposed “green” TSC method. 

In Chapter 8, an original approach based on fuzzy logic (FL) was proposed to predict the 

flowability and mechanical properties of a variety of TSC mixtures. It was found that the 

developed FL models have a strong potential as adaptable and flexible tools for predicting 

the grout flowability and mechanical properties of TSC in which a variety of SCMs are 

incorporated. The properties predicted by the FL models were very close to the experimental 

results, which is an evidence of the accuracy of these models. In fact, the proposed FL 

models represent accurate tools for designing TSC mixtures and they can also save time as 

well as reduce wastage of materials and design costs. Moreover, the developed FL models 

are flexible since they can be easily updated and modified according to new findings and data 

that might emerge in the future. 

9.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

The current research revealed that some further studies on TSC may be needed as follows: 

1) Extensive research is needed in order to investigate the effects of the coarse aggregate 

properties, including the size, shape, and the mineral composition of the particles, on 

the mechanical properties and durability of TSC. 

2) The durability of TSC exposed to sulfate attack was experimentally evaluated in the 

current thesis. A detailed study on the chloride ions penetration properties of TSC is 
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required. Moreover, the sulfate resistance, the chloride ions penetration and corrosion 

potential of TSSFRC need to be studied. Consequently, models base on fuzzy logic 

may be developed for estimating the durability of a variety of TSC mixtures.  

3) The mechanical properties and durability of two-stage fibre-reinforced concrete made 

with various shapes, sizes, aspect ratio and materials should be considered in the 

future investigations. 

4) Further research is needed to refine TSC formulations for pavement construction, 

particularly with regards to using various binder combinations in the grout and 

developing various strength classes for structural pavement design requirements.  

5) In the present thesis, a novel TSC technology for pavement and sidewalk construction 

is proposed. In order to pave the way for wider implementation of TSC in today’s 

concrete industry, there is still need to discover other TSC products such as precast 

lightweight TSC housing panels. 

6) Ultra high-strength concrete (UHSC) has recently attracted growing attention of 

researchers because of its unique mechanical properties and excellent durability. 

Since UHSC has an excellent flowability; a new type of TSC produced by pouring 

UHSC over coarse aggregates needs to be investigated. 
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APPENDIX 

Table A.1 ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.35 100 0 0 0 1.0 160 21.1 

0.35 100 0 0 0 1.0 165 20.4 

0.35 100 0 0 0 1.0 167 20.0 

0.35 100 0 0 0 1.2 127 26.1 

0.35 100 0 0 0 1.2 131 25.2 

0.35 100 0 0 0 1.2 132 25.2 

0.35 100 0 0 0 1.6 117 28.1 

0.35 100 0 0 0 1.6 116 28.2 

0.35 100 0 0 0 1.6 112 29.2 

0.35 100 0 0 0 2.0 111 30.9 

0.35 100 0 0 0 2.0 115 29.5 

0.35 100 0 0 0 2.0 116 29.6 

0.35 90 10 0 0 1.0 115 23.5 

0.35 90 10 0 0 1.0 119 22.6 

0.35 90 10 0 0 1.0 117 22.9 

0.35 90 10 0 0 1.2 111 28.0 

0.35 90 10 0 0 1.2 116 27.2 

0.35 90 10 0 0 1.2 115 27.3 

0.35 90 10 0 0 1.6 108 29.3 

0.35 90 10 0 0 1.6 112 28.8 

0.35 90 10 0 0 1.6 110 28.9 

0.35 90 10 0 0 2.0 107 31.5 

0.35 90 10 0 0 2.0 111 30.6 

0.35 90 10 0 0 2.0 109 30.9 

0.35 70 30 0 0 0.6 151 28.0 

0.35 70 30 0 0 0.6 156 26.2 

0.35 70 30 0 0 0.6 152 28.0 

0.35 70 30 0 0 1.0 105 26.2 

0.35 70 30 0 0 1.0 103 26.4 

0.35 70 30 0 0 1.0 101 26.9 

0.35 70 30 0 0 1.2 64 32.7 

0.35 70 30 0 0 1.2 65 31.6 
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Table A.1‎cont’d ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.35 70 30 0 0 1.2 69 30.2 

0.35 70 30 0 0 1.6 56 33.0 

0.35 70 30 0 0 1.6 60 31.5 

0.35 70 30 0 0 1.6 61 30.0 

0.35 70 30 0 0 2.0 55 32.6 

0.35 70 30 0 0 2.0 56 31.7 

0.35 70 30 0 0 2.0 60 31.7 

0.35 50 50 0 0 0.6 79 28.4 

0.35 50 50 0 0 0.6 82 27.6 

0.35 50 50 0 0 0.6 79 28.0 

0.35 50 50 0 0 1.0 50 31.0 

0.35 50 50 0 0 1.0 51 30.8 

0.35 50 50 0 0 1.0 55 29.7 

0.35 50 50 0 0 1.2 45 32.3 

0.35 50 50 0 0 1.2 47 31.6 

0.35 50 50 0 0 1.2 46 32.1 

0.35 50 50 0 0 1.6 43 35.0 

0.35 50 50 0 0 1.6 46 33.6 

0.35 50 50 0 0 1.6 43 33.4 

0.35 50 50 0 0 2.0 42 33.2 

0.35 50 50 0 0 2.0 45 32.5 

0.35 50 50 0 0 2.0 42 33.3 

0.35 90 0 10 0 2.0 189 33.0 

0.35 90 0 10 0 2.0 194 29.8 

0.35 90 0 10 0 2.0 196 27.2 

0.35 50 40 10 0 1.6 168 29.7 

0.35 50 40 10 0 1.6 169 28.7 

0.35 50 40 10 0 1.6 173 28.6 

0.35 50 40 10 0 2.0 95 34.0 

0.35 50 40 10 0 2.0 100 31.3 

0.35 50 40 10 0 2.0 99 30.7 

0.35 50 40 0 10 1.6 184 28.6 

0.35 50 40 0 10 1.6 189 27.4 
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Table A.1‎cont’d ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.35 50 40 0 10 1.6 185 28.0 

0.35 50 40 0 10 2.0 101 32.0 

0.35 50 40 0 10 2.0 106 30.0 

0.35 50 40 0 10 2.0 102 32.5 

0.45 100 0 0 0 0.2 89 18.7 

0.45 100 0 0 0 0.2 90 18.3 

0.45 100 0 0 0 0.2 94 17.0 

0.45 100 0 0 0 0.4 38 24.7 

0.45 100 0 0 0 0.4 40 24.1 

0.45 100 0 0 0 0.4 39 24.7 

0.45 100 0 0 0 0.6 37 31.0 

0.45 100 0 0 0 0.6 37 31.0 

0.45 100 0 0 0 0.6 40 28.0 

0.45 90 10 0 0 0.2 40 24.3 

0.45 90 10 0 0 0.2 44 23.4 

0.45 90 10 0 0 0.2 45 22.8 

0.45 90 10 0 0 0.4 34 28.7 

0.45 90 10 0 0 0.4 38 27.5 

0.45 90 10 0 0 0.4 33 29.3 

0.45 90 10 0 0 0.6 33 37.0 

0.45 90 10 0 0 0.6 36 34.0 

0.45 90 10 0 0 0.6 33 37.0 

0.45 70 30 0 0 0.0 89 16.4 

0.45 70 30 0 0 0.0 89 16.2 

0.45 70 30 0 0 0.0 92 15.4 

0.45 70 30 0 0 0.2 32 25.9 

0.45 70 30 0 0 0.2 35 24.5 

0.45 70 30 0 0 0.2 35 24.6 

0.45 70 30 0 0 0.4 22 31.0 

0.45 70 30 0 0 0.4 25 29.6 

0.45 70 30 0 0 0.4 25 29.4 

0.45 70 30 0 0 0.6 24 35.0 

0.45 70 30 0 0 0.6 22 36.3 
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Table A.1‎cont’d ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.45 70 30 0 0 0.6 20 39.7 

0.45 50 50 0 0 0.0 39 19.1 

0.45 50 50 0 0 0.0 42 17.3 

0.45 50 50 0 0 0.0 36 20.6 

0.45 50 50 0 0 0.2 27 26.7 

0.45 50 50 0 0 0.2 23 29.7 

0.45 50 50 0 0 0.2 25 27.6 

0.45 50 50 0 0 0.4 24 34.0 

0.45 50 50 0 0 0.4 22 34.5 

0.45 50 50 0 0 0.4 20 36.5 

0.45 50 50 0 0 0.6 16 41.0 

0.45 50 50 0 0 0.6 20 38.6 

0.45 50 50 0 0 0.6 21 37.4 

0.45 90 0 10 0 0.2 98 16.4 

0.45 90 0 10 0 0.2 92 19.3 

0.45 90 0 10 0 0.2 95 16.8 

0.45 90 0 10 0 0.4 58 25.0 

0.45 90 0 10 0 0.4 63 23.1 

0.45 90 0 10 0 0.4 62 23.9 

0.45 90 0 10 0 0.6 42 32.7 

0.45 90 0 10 0 0.6 44 32.0 

0.45 90 0 10 0 0.6 46 28.3 

0.45 90 0 10 0 0.8 38 35.0 

0.45 90 0 10 0 0.8 43 32.0 

0.45 90 0 10 0 0.8 42 32.0 

0.45 50 40 10 0 0.0 57 18.0 

0.45 50 40 10 0 0.0 61 16.7 

0.45 50 40 10 0 0.0 62 16.3 

0.45 50 40 10 0 0.2 39 22.7 

0.45 50 40 10 0 0.2 40 22.8 

0.45 50 40 10 0 0.2 38 23.5 

0.45 50 40 10 0 0.4 21 35 

0.45 50 40 10 0 0.4 25 33.9 
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Table A.1‎cont’d ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.45 50 40 10 0 0.4 26 33.1 

0.45 50 40 10 0 0.6 23 37.0 

0.45 50 40 10 0 0.6 21 37.3 

0.45 50 40 10 0 0.6 25 36.7 

0.45 90 0 0 10 0.4 96 20.8 

0.45 90 0 0 10 0.4 100 19.0 

0.45 90 0 0 10 0.4 101 18.7 

0.45 90 0 0 10 0.6 65 25.0 

0.45 90 0 0 10 0.6 62 27.4 

0.45 90 0 0 10 0.6 65 25.6 

0.45 90 0 0 10 0.8 43 33.0 

0.45 90 0 0 10 0.8 42 33.7 

0.45 90 0 0 10 0.8 41 33.8 

0.45 50 40 0 10 0.0 128 17.0 

0.45 50 40 0 10 0.0 129 16.7 

0.45 50 40 0 10 0.0 133 11.3 

0.45 50 40 0 10 0.2 54 18.0 

0.45 50 40 0 10 0.2 56 17.0 

0.45 50 40 0 10 0.2 58 17.5 

0.45 50 40 0 10 0.4 36 29.3 

0.45 50 40 0 10 0.4 41 26.0 

0.45 50 40 0 10 0.4 37 28.7 

0.45 50 40 0 10 0.6 27 37.0 

0.45 50 40 0 10 0.6 30 35.0 

0.45 50 40 0 10 0.6 30 36.0 

0.55 100 0 0 0 0.0 33 19.4 

0.55 100 0 0 0 0.0 36 17.4 

0.55 100 0 0 0 0.0 36 17.2 

0.55 100 0 0 0 0.1 27 21.0 

0.55 100 0 0 0 0.1 24 22.3 

0.55 100 0 0 0 0.1 24 22.7 

0.55 100 0 0 0 0.2 14 25.0 

0.55 100 0 0 0 0.2 16 23.8 
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Table A.1‎cont’d ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.55 100 0 0 0 0.2 18 23.2 

0.55 90 10 0 0 0.0 22 19.5 

0.55 90 10 0 0 0.0 25 18.7 

0.55 90 10 0 0 0.0 25 18.8 

0.55 90 10 0 0 0.1 20 24.0 

0.55 90 10 0 0 0.1 20 23.7 

0.55 90 10 0 0 0.1 23 21.3 

0.55 90 10 0 0 0.2 14 25.0 

0.55 90 10 0 0 0.2 18 23.0 

0.55 90 10 0 0 0.2 13 25.5 

0.55 70 30 0 0 0.0 17 23.0 

0.55 70 30 0 0 0.0 17 23.0 

0.55 70 30 0 0 0.0 20 20.0 

0.55 70 30 0 0 0.1 17 28.0 

0.55 70 30 0 0 0.1 14 29.4 

0.55 70 30 0 0 0.1 17 28.1 

0.55 70 30 0 0 0.2 15 29.0 

0.55 70 30 0 0 0.2 14 29.7 

0.55 70 30 0 0 0.2 13 31.3 

0.55 50 50 0 0 0.0 17 26.5 

0.55 50 50 0 0 0.0 17 26.1 

0.55 50 50 0 0 0.0 14 28.4 

0.55 50 50 0 0 0.1 15 28.0 

0.55 50 50 0 0 0.1 14 29.0 

0.55 50 50 0 0 0.1 13 30.0 

0.55 50 50 0 0 0.2 11 31.8 

0.55 50 50 0 0 0.2 14 30.7 

0.55 50 50 0 0 0.2 14 30.5 

0.55 90 0 10 0 0.0 130 12.7 

0.55 90 0 10 0 0.0 127 14.0 

0.55 90 0 10 0 0.0 133 12.3 

0.55 90 0 10 0 0.1 61 19.4 

0.55 90 0 10 0 0.1 63 18.6 
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Table A.1‎cont’d ‒ Database used in the FL model I 

w/b 
OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

HRWRA 

(%) 

Efflux 

Time (sec) 

Spread flow 

(cm) 

0.55 90 0 10 0 0.1 62 19.0 

0.55 90 0 10 0 0.2 31 23.0 

0.55 90 0 10 0 0.2 37 20.0 

0.55 90 0 10 0 0.2 37 20.0 

0.55 50 40 10 0 0.0 33 17.0 

0.55 50 40 10 0 0.0 35 15.1 

0.55 50 40 10 0 0.0 34 15.9 

0.55 50 40 10 0 0.1 22 20.7 

0.55 50 40 10 0 0.1 21 21.8 

0.55 50 40 10 0 0.1 23 20.5 

0.55 50 40 10 0 0.2 17 21.7 

0.55 50 40 10 0 0.2 13 23.4 

0.55 50 40 10 0 0.2 12 23.9 

0.55 90 0 0 10 0.0 142 13.3 

0.55 90 0 0 10 0.0 146 11.4 

0.55 90 0 0 10 0.0 147 11.3 

0.55 90 0 0 10 0.1 65 20.0 

0.55 90 0 0 10 0.1 72 17.1 

0.55 90 0 0 10 0.1 73 16.9 

0.55 90 0 0 10 0.2 37 21.3 

0.55 90 0 0 10 0.2 39 19.5 

0.55 90 0 0 10 0.2 41 19.2 

0.55 50 40 0 10 0.0 41 14.0 

0.55 50 40 0 10 0.0 38 17.0 

0.55 50 40 0 10 0.0 41 14.0 

0.55 50 40 0 10 0.1 28 19.6 

0.55 50 40 0 10 0.1 27 19.8 

0.55 50 40 0 10 0.1 26 20.6 

0.55 50 40 0 10 0.2 15 23.0 

0.55 50 40 0 10 0.2 20 20.6 

0.55 50 40 0 10 0.2 16 22.4 
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Table A.2 ‒ Database used in the FL model II 

OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

Age 

(days) 

Short 

fibre 

dosage 

(%) 

Long 

fibre 

dosage 

(%) 

Compressive 

Strength of 

grout (MPa) 

Compressive 

Strength of 

TSC (MPa) 

Tensile 

Strength 

of TSC 

(MPa) 

100 0 0 0 7 0 0 33.2 25.4 3.35 

100 0 0 0 7 0 0 34.0 26.3 3.42 

100 0 0 0 7 0 0 34.2 26.0 3.43 

100 0 0 0 28 0 0 49.8 31.1 3.67 

100 0 0 0 28 0 0 51.0 32.0 3.74 

100 0 0 0 28 0 0 50.4 31.4 3.69 

100 0 0 0 56 0 0 53.9 32.8 3.75 

100 0 0 0 56 0 0 54.7 33.6 3.84 

100 0 0 0 56 0 0 54.3 33.5 3.81 

90 10 0 0 7 0 0 31.1 22.9 3.13 

90 10 0 0 7 0 0 32.0 23.7 3.24 

90 10 0 0 7 0 0 31.4 23.0 3.23 

90 10 0 0 28 0 0 47.7 28.7 3.42 

90 10 0 0 28 0 0 48.7 29.4 3.53 

90 10 0 0 28 0 0 47.6 28.9 3.55 

90 10 0 0 56 0 0 53.3 36.1 3.67 

90 10 0 0 56 0 0 54.6 37.2 3.75 

90 10 0 0 56 0 0 53.5 36.8 3.68 

80 20 0 0 7 0 0 28.4 16.4 2.54 

80 20 0 0 7 0 0 29.3 17.5 2.68 

80 20 0 0 7 0 0 29.0 16.8 2.58 

80 20 0 0 28 0 0 40.5 22.8 2.94 

80 20 0 0 28 0 0 41.4 23.9 3.07 

80 20 0 0 28 0 0 40.2 22.9 2.99 

80 20 0 0 56 0 0 47.3 28.1 3.44 

80 20 0 0 56 0 0 48.3 29.2 3.56 

80 20 0 0 56 0 0 48.1 28.2 3.50 

70 30 0 0 7 0 0 26.4 13.7 2.43 

70 30 0 0 7 0 0 27.7 14.5 2.55 

70 30 0 0 7 0 0 27.2 13.8 2.52 

70 30 0 0 28 0 0 37.9 18.3 2.76 

70 30 0 0 28 0 0 38.7 19.4 2.86 

70 30 0 0 28 0 0 38.9 19.0 2.78 
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Table A.2‎cont’d ‒ Database used in the FL model II 

OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

Age 

(days) 

Short 

fibre 

dosage 

(%) 

Long 

fibre 

dosage 

(%) 

Compressive 

Strength of 

grout (MPa) 

Compressive 

Strength of 

TSC (MPa) 

Tensile 

Strength 

of TSC 

(MPa) 

70 30 0 0 56 0 0 45.8 25.2 3.24 

70 30 0 0 56 0 0 46.7 26.3 3.35 

70 30 0 0 56 0 0 46.1 25.9 3.31 

60 40 0 0 7 0 0 23.4 12.7 2.35 

60 40 0 0 7 0 0 24.3 13.5 2.46 

60 40 0 0 7 0 0 23.7 13.4 2.39 

60 40 0 0 28 0 0 31.7 17.1 2.59 

60 40 0 0 28 0 0 32.8 18.2 2.69 

60 40 0 0 28 0 0 31.8 17.8 2.67 

60 40 0 0 56 0 0 40.9 20.9 3.07 

60 40 0 0 56 0 0 41.7 21.6 3.15 

60 40 0 0 56 0 0 41.9 21.1 3.08 

50 50 0 0 7 0 0 20.7 11.6 2.26 

50 50 0 0 7 0 0 21.5 12.7 2.35 

50 50 0 0 7 0 0 20.8 11.7 2.29 

50 50 0 0 28 0 0 27.6 13.8 2.53 

50 50 0 0 28 0 0 28.5 14.6 2.65 

50 50 0 0 28 0 0 27.9 13.9 2.62 

50 50 0 0 56 0 0 37.6 18.1 2.76 

50 50 0 0 56 0 0 38.7 19.3 2.83 

50 50 0 0 56 0 0 38.3 18.1 2.81 

90 0 10 0 7 0 0 43.3 32.4 3.54 

90 0 10 0 7 0 0 44.5 33.1 3.63 

90 0 10 0 7 0 0 43.6 32.9 3.63 

90 0 10 0 28 0 0 51.7 33.6 3.73 

90 0 10 0 28 0 0 52.9 34.5 3.86 

90 0 10 0 28 0 0 52.0 34.2 3.81 

90 0 10 0 56 0 0 56.5 38.4 3.97 

90 0 10 0 56 0 0 57.3 39.5 4.17 

90 0 10 0 56 0 0 57.2 38.8 4.04 

60 30 10 0 7 0 0 29.5 17.0 2.65 

60 30 10 0 7 0 0 30.4 18.0 2.73 

60 30 10 0 7 0 0 30.1 17.2 2.72 
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Table A.2‎cont’d ‒ Database used in the FL model II 

OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

Age 

(days) 

Short 

fibre 

dosage 

(%) 

Long 

fibre 

dosage 

(%) 

Compressive 

Strength of 

grout (MPa) 

Compressive 

Strength of 

TSC (MPa) 

Tensile 

Strength 

of TSC 

(MPa) 

60 30 10 0 28 0 0 40.9 25.7 3.26 

60 30 10 0 28 0 0 41.6 26.4 3.33 

60 30 10 0 28 0 0 41.7 26.2 3.31 

60 30 10 0 56 0 0 47.7 29.4 3.54 

60 30 10 0 56 0 0 48.4 30.3 3.62 

60 30 10 0 56 0 0 48.2 30.0 3.64 

50 40 10 0 7 0 0 26.4 15.1 2.43 

50 40 10 0 7 0 0 27.5 16.0 2.55 

50 40 10 0 7 0 0 27.1 15.7 2.52 

50 40 10 0 28 0 0 37.6 24.5 3.06 

50 40 10 0 28 0 0 38.3 25.3 3.13 

50 40 10 0 28 0 0 38.1 25.2 3.11 

50 40 10 0 56 0 0 45.8 25.1 3.20 

50 40 10 0 56 0 0 46.7 25.9 3.30 

50 40 10 0 56 0 0 46.1 25.8 3.22 

90 0 0 10 7 0 0 51.5 34.5 3.73 

90 0 0 10 7 0 0 52.6 35.2 3.84 

90 0 0 10 7 0 0 52.2 35.3 3.83 

90 0 0 10 28 0 0 61.3 39.5 3.83 

90 0 0 10 28 0 0 62.3 40.4 3.93 

90 0 0 10 28 0 0 62.1 40.1 3.94 

90 0 0 10 56 0 0 63.7 42.4 3.92 

90 0 0 10 56 0 0 64.4 43.5 4.09 

90 0 0 10 56 0 0 64.2 43.1 4.05 

60 30 0 10 7 0 0 34.3 22.2 2.95 

60 30 0 10 7 0 0 35.4 23.5 3.11 

60 30 0 10 7 0 0 35.0 22.7 3.00 

60 30 0 10 28 0 0 47.5 30.0 3.44 

60 30 0 10 28 0 0 48.3 30.9 3.57 

60 30 0 10 28 0 0 48.5 30.3 3.49 

60 30 0 10 56 0 0 57.9 35.5 3.53 

60 30 0 10 56 0 0 59.1 36.7 3.64 

60 30 0 10 56 0 0 58.2 36.4 3.63 
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Table A.2‎cont’d ‒ Database used in the FL model II 

OPC 

(%) 

FA 

(%) 

SF 

(%) 

MK 

(%) 

Age 

(days) 

Short 

fibre 

dosage 

(%) 

Long 

fibre 

dosage 

(%) 

Compressive 

Strength of 

grout (MPa) 

Compressive 

Strength of 

TSC (MPa) 

Tensile 

Strength 

of TSC 

(MPa) 

50 40 0 10 7 0 0 28.6 19.5 2.79 

50 40 0 10 7 0 0 29.3 20.2 2.90 

50 40 0 10 7 0 0 29.1 20.0 2.86 

50 40 0 10 28 0 0 40.4 28.1 3.14 

50 40 0 10 28 0 0 41.5 28.9 3.28 

50 40 0 10 28 0 0 41.1 28.5 3.18 

50 40 0 10 56 0 0 48.4 30.9 3.34 

50 40 0 10 56 0 0 49.2 32.3 3.45 

50 40 0 10 56 0 0 49.4 31.3 3.41 

100 0 0 0 28 1 0 50.4 33.9 4.6 

100 0 0 0 28 1 0 50.4 36.9 4.8 

100 0 0 0 28 1 0 50.4 36.9 5.0 

100 0 0 0 28 2 0 50.4 36.7 6.1 

100 0 0 0 28 2 0 50.4 35.9 5.6 

100 0 0 0 28 2 0 50.4 39.3 6.0 

100 0 0 0 28 4 0 50.4 41.5 6.5 

100 0 0 0 28 4 0 50.4 39.1 6.7 

100 0 0 0 28 4 0 50.4 41.8 6.8 

100 0 0 0 28 6 0 50.4 47.1 7.5 

100 0 0 0 28 6 0 50.4 45.7 7.9 

100 0 0 0 28 6 0 50.4 47.9 7.7 

100 0 0 0 28 0 1 50.4 35.8 5.4 

100 0 0 0 28 0 1 50.4 36.1 4.7 

100 0 0 0 28 0 1 50.4 36.7 4.9 

100 0 0 0 28 0 2 50.4 37.9 6.0 

100 0 0 0 28 0 2 50.4 38.0 6.2 

100 0 0 0 28 0 2 50.4 39.3 6.4 

100 0 0 0 28 0 4 50.4 42.5 7.5 

100 0 0 0 28 0 4 50.4 41.9 7.1 

100 0 0 0 28 0 4 50.4 39.5 7.3 

100 0 0 0 28 0 6 50.4 46.7 8.4 

100 0 0 0 28 0 6 50.4 48.1 8.1 

100 0 0 0 28 0 6 50.4 48.8 8.1 
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