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Abstract 

A central component to scientific practice is the construction and use of scientific models. 
Scientists believe that the success of a model justifies making claims that go beyond the 
model itself. However, philosophical analysis of models suggests that drawing inferences 
about the world from successful models is more complex. In this dissertation I develop a 
framework that can help disentangle the related strands of evaluation of model success, 
model extendibility, and the ability to draw ampliative inferences about the world from 
models.  

I present and critically assess two leading accounts of model assessment, arguing that neither 
is sufficient to provide a complete understanding of model evaluation. I introduce a more 
powerful framework incorporating elements of the two views, which can help answer these 
three questions: What is the target of evaluation in model assessment? How does that 
evaluation proceed? What licenses us in making inferences about the real world, based on the 
evaluation of our models as successful? 

The framework identifies two distinct targets of model evaluation: representational similarity 
between the model and target system, and the adequacy of the model as a tool to answer 
questions. Both assessments must be relativized to a purpose, of which there are three general 
kinds: descriptive, predictive, and explanatory. These purposes differ in the way they inform 
the similarity relation, which is relevant for the similarity assessment, and the output they 
produce, which is relevant for the adequacy assessment. Any model can be assessed relative 
to any purpose, however a model encodes certain decisions made during the model’s 
construction, which impact its ability to be applied to a new purpose or new domain. My 
framework shows that extending a model, and drawing inferences from it, depends on its 
representational similarity.  

I apply this framework to several examples taken from astrophysics showing in detail how it 
can help illuminate the structure of the models, as well as make the justification for 
inferences made from them clear. The final chapter is a detailed analysis of a contemporary 
debate surrounding the use of models in astrophysics, between proponents of MOND and the 
standard ΛCDM model.  

Keywords 

Philosophy of Science, Philosophy of Astrophysics, Model Evaluation, Adequacy for 
Purpose, Similarity Relation, Domain of Application, Models, Modeling, MOND, ΛCDM. 
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Chapter 1  

1 Introduction 

1.1 Introduction 

 

- What is the difference between a physicist and an astronomer?  

- A physicist needs two data points to get a line of best-fit, but an  

astronomer only needs one. 

This joke was told to me on many occasions throughout my time as undergraduate major 

in astronomy and physics by post docs and faculty members. The first time I heard it, the 

first day in my undergraduate astronomy lab, I was shocked. While I knew this was an 

exaggeration, there is undeniably an element of truth to it. I wondered how one of our 

best sciences could function if astrophysicists were able to develop models based on such 

sparse data. I asked how we know that the model we are working with is “good” and 

“successful” if we only have one data point. The answers I received were vague, 

unspecific, and never fully satisfying.  

While this did not bother many of my peers, it troubled me greatly. In 

astrophysics, there is extremely limited access to observational data; we are limited to a 

small observable part of the universe, and will never be able to observe the universe in its 

entirety. Nonetheless, cosmologists make claims about the entire universe based on what 

they see locally1. If their models are only based on local observations, how can they 

possibly be used to make claims about the entire universe? Furthermore, astronomers will 

                                                
1
 While cosmology and astrophysics are closely related, the difference between them can be characterized 

as follows: cosmology is the study of the entire universe, and aims at answering broader questions about 
the nature of the entire universe, and the laws that govern it. Cosmologists tend to makes global claims 
based on local extrapolations, given that it is impossible for them to observe the universe in its entirety.  
Astrophysics, on the other hand, is a branch of astronomy that studies various bodies in the universe, such 
as stars, black holes, galaxies, and the interstellar medium. Astrophysicists tend to makes claims regarding 
types of local systems. Claims about the systems of interest in astrophysics often involves samples of many 
instances of a particular type of system, which can then be used to test models to describe the system of 
interest.  
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never be able to run experiments on the universe as a whole, a common tool in other 

sciences for investigation of a system. How are any of our models to be tested, and how 

are they supported? This, to some extent, is the explanation of the joke: astronomy, 

because of the nature of what is being observed, often only has a small data set to work 

with, and so we must use what we have. 

Yet this should strike one as a very perplexing situation. Scientists constantly use 

models to make ampliative inferences, to go beyond the data they have to learn more 

about the system than what they can see of it. The question in cosmology and 

astrophysics is whether we can ever be justified in doing this in spite of the fact that we 

have so few observational data. Obviously there are best practices that have developed in 

each science individually that guide the practitioners in developing their models. 

However, such reasoning is rarely analyzed, and the justifications for why practitioners 

make these decisions are rarely discussed in published work. What does make its way 

into the literature lacks detail about this process and the decisions made in developing the 

models. And the complex details about a model’s accuracy are often presented as a 

simple numerical value of (un)certainty2. Questions like these continued to bother me 

throughout my time as an astrophysics major, and (as the story goes for many), I was not 

satisfied until I found my way into a philosophy of science classroom, where 

understanding of the process of scientific reasoning and justification was the main focus 

of inquiry. 

In the philosophical literature on scientific modeling it is acknowledged that 

models are used as a tool to understand and investigate the world around us. Models, 

including physical scale models, mathematical equations, and computer simulations are 

indispensable for scientific practice. A central component to scientific practice is the 

                                                
2
 There are various different quantitative measures of a “degree of fit of a model.” For example, in some 

disciplines such as astronomy and physics, the standard deviation σ (sigma) measures dispersion of data 
around a mean. Practitioners often use “5 sigma” as the standard for discovery. The standard deviation 
measures the likelihood that data is the result of random fluctuation or error. “5 sigma” means it is 
extremely unlikely that data results from a random occurrence. In other disciplines, quantitative measures 
of a model’s degree of fit take the form of a p-value, Akaike information criterion (AIC), or Bayesian 
information criterion (BIC) for model selection. 
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construction and use of scientific models, and it is through the use of models that 

scientists are able to make claims about what we know about the world around us, and 

how the world works. The challenge in understanding how we can generate knowledge 

from models stems from the fact that models are necessarily incomplete representations, 

and partial descriptions of the features of phenomena3 in the world being modeled. Yet 

science proceeds on the assumption that we are effectively able to discover new things 

about the world through models. The interesting philosophical project is to develop an 

understanding of how we can discover true claims about the world, even though it is 

acknowledged that the models being used offer only an incomplete representation of the 

system under study.  

There is a wide variety of models, and many different ways to think that they 

relate to the real world. Scientists ultimately think that by using models in science they 

are discovering and learning about the nature of the world. Yet how is it that they reason 

and discover things about the world using what they know are only partial 

representations? How is it that models allow for the ability to make seemingly true 

claims, and how should we understand the process of assessing a model that succeeds in 

this way? Most scientists believe that the success of a good model justifies making claims 

that go beyond the model itself. An important philosophical question arises here: what 

justifies these ampliative inferences? An understanding of how these inferences work is 

needed. Scientists want to be able to say they have discovered something about the nature 

of the world, not just about the model. But how is it that they are permitted to make this 

move from claims about a model, to claims about the real world? 

My goal is to develop a framework that can help us precisely formulate such 

questions, and develop answers. This framework will allow for understanding the process 

of constructing and evaluating models, and what it means to say a model is good, or 

successful, or “fits”. Finally, it will provide an understanding of the justificatory process 

that allows scientists to make inferences from models to claims about the real world. 

                                                
3
 “Phenomenon” refers generally, covering the general and stable features of the world that are of interest 

for the scientists or modeler. 
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1.2 Background: Modeling in Philosophy of Science 

The philosophical examination of scientific models has predominantly focused on two 

key aspects. The first relates to ontology: what is a model? Attempts to determine what a 

model is also involve a second key question, how do models relate to theory? The 

syntactic view of theories (Carnap 1938; Hempel 1965) holds that a theory is a set of 

sentences in an axiomatized system of first-order logic. A model, then, is a system of 

semantic rules that offer an interpretation of those sentences. Most philosophers have 

abandoned this account in favor of the semantic view of theories. On the semantic view, a 

theory is constituted of a family, or set, of models (van Fraassen 1980; Giere 1988; Suppe 

1989; Suppes 2002). While there are different versions of the sematic view, they all see 

models as the central unit of scientific theorizing. The function of the model is to 

represent part of the world. The scientific model is what represents the phenomena, 

features of the world, or the collection of data we obtain from observations. These are 

often treated as distinct types of models: theoretical models and data models. 

A third account for understanding the relationship between models and theories 

argues for understanding models as “autonomous agents”, relatively independent of 

theory, and functioning as “instruments of investigation” (Morgan & Morrison 1999, 10). 

A model is not something that is entailed by a theory. Rather, a model is a result of 

skilled construction on the part of the modeller, and through this construction it gains a 

partial independence from theory. In a sense, “models mediate between theory and the 

world” (Morgan & Morrison 1998, 242). On this “models as mediators” account, the role 

of models is understood as a tool that is used when theories are too complex to 

understand, or can be used in the development of a theory, or to complement a theory 

when the theory is incomplete.  

Another approach to understanding what a model is—regardless of the 

relationship it holds to a theory—starts by looking at the sorts of models that exist in 

scientific practice, in order to determine the anatomy or possible forms they take. One 

recent analysis has identified at least three categories of models: Concrete, Mathematical, 

and Computational. Concrete models are physical objects that can stand in a 

representational relationship with the phenomena under investigation. Mathematical 
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models are abstract structures whose properties can stand in a relation to mathematical 

representations of the phenomena. Computational models are sets of procedures that can 

potentially stand in relations to a computational description of the phenomena (Weisberg 

2013, 7). 

While the first aspect of the philosophical investigation of models focuses on 

what constitutes a model and its relationship to a theory, the second focuses on the 

relationship between the model and the world, as well as what goes into the construction 

of models. This line of investigation is often characterized as how models relate to 

phenomena, either directly or through data. Given the complexities of real-world 

phenomena, scientists often make judgments about what aspects of the phenomena are 

relevant to their questions or the investigation at hand. In order to develop a model, 

modellers often must first identify a target system. A target system refers to the selected 

part of the real-world phenomena that we seek to represent in our model (Suarez 2003; 

Giere 2004; Frigg 2010; Godfrey-Smith 2009; Weisberg 2013). The decision about what 

constitutes the target system can range from observations or a body of scientific evidence 

available (as is the case of models of phenomena), to more fine-grained set of data (as in 

the case of models of data) (Frigg & Hartmann 2012)4.  

Sometimes modellers will have a clear sense of a specific target system that a 

single model seeks to represent. This case can be referred to as target-directed modeling. 

There are also cases of nontarget-directed modeling, which comes in at least three 

varieties (Weisberg 2013). Generalized modeling occurs when a generalized phenomenon 

is chosen as the target. For example, rather than constructing a model of a specific black 

hole, we may want to construct a model for black holes generally. Hypothetical modeling 

involves modeling possible target systems. In this case, we construct models about a 

                                                
4
 It is worth noting that while the literature on scientific modeling has focused substantially on the how 

models represent though approximations and idealizations, little work has been done on the role of 
evidence in the context of making decisions regarding what constitutes the target system that is then 
represented by the model. Hughes (1997) discuses this question tangentially though examining how we 
learn from models. More recently, in her doctoral thesis, Target Systems and their Role in Scientific 
Inquiry, Elliot-Graves (2014) begins to address the larger question of what constitutes a target system. 
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target system that might not actually be instantiated in the real world, such as a model of 

a perpetual motion machine. Finally, targetless modeling involves modeling in which the 

“target system” is not a real world target but rather a model itself5.  

Models represent target systems through means of approximations—an inexact 

description of a target system—and idealizations—the creation of a new system, some of 

whose properties approximate some belonging to the target system6. There are many 

types of idealizations that can be made in the construction of models. McMullin (1985), 

for example, distinguishes six types of idealization: mathematical, construct, formal, 

material, causal, and subjunctive. Weisberg (2013) reduces this to three: Galilean 

idealizations, minimalist idealizations, and multiple-models idealizations.  

Regardless of the particular philosophical question under investigation in any of 

these discussions, there is general agreement that the greatest challenge of using models 

in scientific reasoning is related to the fact that models are partial and incomplete 

representations of their target systems. Models make approximations or idealizations, or 

they are highly simplified and incomplete representations of target systems. Parties to this 

debate consider models to be false7. Some philosophers have even argued that models 

should be thought of as fictions; they represent entities that do not actually exist and are 

never instantiated (Contessa 2010; Frigg 2010; Godfrey-Smith 2006; 2009). 

Nevertheless, we use these false models, and consider them effective tools for making 

predictions, providing explanations, and helping to establish true claims about the real 

world (Wimsatt 1987; 2002).    

                                                
5
 For example, the “Game of Life” is a cellular automaton model. Each cell can be in one of two states, 

“alive” or “dead”, and must follow four simple rules (for more details see Conway 1970, Weisberg 2013). 
A targetless model has no real world target chosen at all. Rather, the system of interest is a model itself, in 
this case the Game of Life model. The “model” in this case is a model of the model the aims to explore the 
functioning of the model itself.  
6
 This characterization of idealization and approximation is taken from Norton 2012. It should be noted, 

however, that he does not provide these characterizations in the context of how models represent target 
systems.  
7
 In chapter 2, I will argue that models are not truth-evaluable themselves; so I strictly speaking reject the 

claim commonly made in this debate that models are false.   
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Given that models are incomplete, partial, and in some sense false, what justifies 

their use to make claims about the real world? A significant amount of the philosophical 

literature has focused on these two aspects: what a model is (and understanding the 

relationship models hold to theories) and how we construct models (and how to 

understand them as representing the real world given that they are incomplete, or partial 

representations). However, there are open questions in philosophy related to a critical 

third aspect related to scientific models, which arise after a model is constructed. What 

does it mean to say a model is good or successful, and how is this evaluated? How does 

our evaluation of models justify and inform our claims about the nature of the real world? 

Ultimately it is these questions that are of concern in providing scientific justification, 

and thus need to be answered.  

The only means by which these questions have been discussed thus far in the 

literature is by extending what philosophers have argued about theory confirmation to 

model confirmation. Confirmation theory explains how empirical evidence confirms the 

truth of hypotheses and theories. In the context of model evaluation, confirmation theory 

will also explain how the empirical evidence confirms the model. For example, in 

evaluating a model the goal is to look for empirical or confirmatory virtues, “a virtue that 

indicates that a model or models are more likely to be used to represent accurate or true 

claims about the observable world” (Lloyd 2015, 58).  

An alternative is to discuss model evaluation in terms of validation, rather than 

confirmation. Validation, employed in the context of modeling, refers to the process of 

determining the degree to which a model is an accurate representation of the real world 

from the perspective of the intended use of the model (Calder et al. 2002, Jebeile & 

Barberousse 2016; Oreskes, Shrader-Frechette & Belitz 1994, Thacker et al. 2004). 

Given the idealizations and approximations contained in models, and that models are 

evaluated relative to a specific use, it may not be the case that model confirmation 
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proceeds in precisely the same manner as theory confirmation8 (Weisberg 2006; 

forthcoming). 

In this dissertation, I will approach model evaluation without making any prior 

commitments to the process involving confirmation, or validation. Rather, I want to 

explore the question of the evaluation of success of a model by focusing simply on how it 

proceeds in scientific practice. In developing this framework, I will not assume the 

process of model evaluation is the same (or different) from theory evaluation. It is 

possible that the arguments contained in this dissertation will have implications for the 

debate about model confirmation versus validation. However, this is beyond the scope of 

the present work. This dissertation contains the positive argument for a framework for 

understanding the evaluation and justification of models, and does not directly address 

the implications of this view for other debates.  

For these reasons, my framework will take the work of Michael Weisberg and 

Wendy Parker as a starting point. Their analysis of model evaluation does not rely on 

extending theory confirmation to models. Rather, they start by examining scientific 

practice. While they both do draw conclusions about validation or confirmation of 

models from their analysis, their work on model evaluation is separable from these 

claims. I can therefore separate their work on evaluation of models from the context of 

validation and confirmation, and discuss it instead in the context only of model success.  

Furthermore, Weisberg and Parker have each respectively developed the current 

strongest starting positions for possible understandings of model evaluation: similarity 

and adequacy. Weisberg (2013, 2015, forthcoming)—following other philosophers such 

as Cartwright (1983), Giere (1988), Teller (2001), and Godfrey-Smith (2006)—argues 

that successful scientific models stand in a relation of similarity to their real-world target 

systems. Parker (2009, 2010, 2015), however, argues that successful models are 

evaluated as being adequate, or sufficient relative to a given purpose. Part of my goal is 

                                                
8
 The relationship between models and theories has also been discussed above in section 1.2. 
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to assess if one, both, or neither of these approaches is the better understanding of model 

evaluation. 

Following Parker and Weisberg, I understand models to be entities that represent 

parts of the world9. The representational relation a model holds to its target system is 

analogous to the relation a picture can hold to its subject. The model captures details at a 

certain level of resolution of the target system. Like a picture, a model can be used to 

learn things about the world, and in this sense is a tool. This view of models fits most 

naturally with the idea that models have a high level of independence from scientific 

theories. This is similar in certain respects to the “models as mediators” view. While 

models can rely on theory in their construction, the end product, or model itself, can be 

assessed mostly independently of theoretical considerations. Despite the fact that 

Weisberg does not explicitly endorse this view, I will show through close analysis of his 

weighted feature-matching equation, that he has this kind of relationship in mind. As I 

will detail in the following chapters, the model’s similarity to a system in the world is one 

of the primary components of model assessment. Our understanding of that target system 

may, in some cases, have a high theoretical component10. However, this is the extent of 

the interaction between models and theory in the framework I develop in this dissertation. 

I will provide an account of what it means to say a model is successful through 

answering three questions: What is the target of evaluation in model evaluation? How 

does that evaluation proceed? And finally, what licenses us in making inferences about 

                                                
9
In philosophy of science, the problem of representation focuses on two problems. The first problem is to 

explain in virtue of what a model is a representation of something else, the second focuses on what 
representational styles there are in science (Frigg 2006; Frigg & Hartmann 2012). However, there is no 
consensus on solutions to these problems. So, I have adopted what I take to be the most general account of 
representation currently utilized in the philosophical discussion of scientific models offered by Ron Giere 
(1988; 1996; 1999; 2004): the way in which models represent is similar to the way in which pictures 
represent. He provides further detail about this relation as that of similarity, which I will discuss in 
substantial detail throughout this dissertation. Steven French (2003; and French & Ladyman 1999) also 
provides a stricter position along this line by adopting a representational relation of isomorphism. Given a 
relation of isomorphism is stronger than similarity, I have adopted the more modest positon.  
10

 Since similarity relation used in my framework is most closely based on Weisberg’s work, his view of 
model-theory relation is the one I adopt.  
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the real world, based on the evaluation of our models as successful? Through analyzing 

these questions, I will develop an understanding of how a model can tell us true things 

about the world. 

1.3 Overview of Thesis 

What is needed in the philosophical discussion of scientific modeling is a fully general 

framework in which we can trace the path of justification of a given model. Such an 

account would be a unified way to discuss modeling, and a means for understanding the 

claims being made across various disciplines that use scientific models. My project is an 

attempt to develop such a framework. Even if such a fully general account, ultimately, is 

not possible, the attempt in itself is valuable. This is because it will succeed in unifying 

some evaluative processes, as well as help identify where current evaluative standards 

need to be disentangled and refined. It is plausible that in many cases of conflicting 

models, even a partial account can be used as a tool to determine where, precisely, the 

conflict lies.  

 I will argue that an important point has been overlooked thus far in philosophical 

work: the evaluation of a model actually contains two conceptually distinct parts, or 

components of model evaluation. The first part is evaluation of how similar the model is 

to the target system it is meant to represent. This part of evaluation happens primarily 

during the construction stage, when the model is being developed. This process is 

dynamic, and takes place over many iterations during the model’s development. The 

second part of evaluation compares the output of the model with the analogous 

phenomenon in the target system. For example, if the model outputs a prediction, it is 

then compared to a later state of the target system it intends to model to see if the 

predicted phenomenon in fact came to pass. This evaluation assumes a completely 

constructed model that generates a particular output, and that we can obtain an analogous 

output from the target phenomenon. This second part of evaluation is different from an 

evaluation of similarity, in that it assesses the adequacy of a model. Evaluation of a 

model’s adequacy is different from an assessment of a model’s similarity in that 

adequacy is concerned with what the model does, while similarity is concerned with how 
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the model represents. These two evaluations should not be seen as competitors, but rather 

be seen as targeting two different components of an overall assessment11. 

The central concept at play in each of these components of evaluation is purpose, 

the reason for which the model is created or for which the model is used. The general 

kinds of purposes that are relevant for modeling are prediction, explanation, and 

description. These purposes will determine features of the target system that are included 

in the model, the structure of the model itself, and the kinds of outputs the model 

generates. The purpose for which the model is intended will determine what counts as 

“similar” during the construction stage. Likewise, the purpose to which the model is 

being put (whether it be prediction, explanation, or description) will determine how we 

evaluate its “adequacy” at the output stage. Of course, a model that was constructed to 

provide predictions can also, for example, be evaluated for its adequacy with respect to 

its ability to give explanations. The purpose for which it was constructed does not 

constrain the purposes to which it can be put. But keeping track of the role purpose plays 

in both parts of the evaluation will allow us to develop a clearer picture of what I will call 

the overall fit of the model—a combination of its similarity evaluated at the construction 

stage, and its adequacy evaluated at the output stage. 

Drawing these distinctions will provide the resources to better understand the 

success of our best models and the failure of those that fall short. But most importantly, it 

will allow for identifying how a model can fit well with respect to one purpose while 

failing to do so with respect to another. There is therefore a possibility that some models 

that were deemed unsuccessful for failing along one dimension of evaluation can be 

judged as successful, with the understanding that they are successful only with respect to 

a particular purpose. 

                                                
11

 In the formal epistemology literature recent work has focused on how to characterize evidence in terms 
of accuracy and coherence. However, in science there is often a broader notion in mind where anything that 
has any bearing on the truth or falsity of theoretical commitments or hypotheses could potentially count as 
evidence. This issue is underdeveloped in the philosophy of science, and I will not be directly addressing it 
here. The framework I develop in this dissertation draws on examples in which what counts as evidence is 
unambiguous. While the framework likely will not help identify what counts as evidence, it useful for 
identifying when evidence makes a difference for the hypotheses. 
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There are debates ongoing today to which this framework will make an immediate 

difference. In particular, debates surrounding the Lambda Cold Dark Matter (ΛCDM) 

model in astrophysics could benefit from exactly the conceptual clarity provided by this 

framework. Many of the criticisms that this model faces would be appropriate only if it 

were intended, and therefore constructed, with a particular purpose in mind. They fail to 

have as serious an effect when the actual intended purpose of the model is identified.  

The framework I propose begins by answering the question of what 

considerations the modeller needs to take into account when constructing a model. The 

most important question is why the model is being developed in the first place, or what 

the purpose of the model is. The process often proceeds by the modeller identifying a 

target system in the world that they want to model, and then subsequently considering the 

purpose of the model. However, it is consistent with this framework that the purpose 

partially determines the target system of interest.  

The important consideration at this stage is similarity12. The modeller needs to 

build a model that is similar in the relevant respects to the target system. The purpose 

determines what that similarity relation looks like—the features, or ways in which the 

model is similar to the target system. If the purpose is to describe the target system, then 

simply having features of the models that stand in for the features of the target system 

may be sufficient. However, if the purpose is to predict, then the sorts of features of the 

target system that are included will be different. For this part of my framework I will 

draw on Michael Weisberg’s weighted feature-matching account of similarity. This is 

because Weisberg has developed the most complete account of model-world relations in 

the context of assessing similarity. Any use of the term similar will be reserved for 

talking about evaluative considerations, like those identified by Weisberg, made at this 

stage.  

                                                
12

 Similarity is roughly characterized as resembling without being identical. This definition will be made 
precise in section 2.4.1 where I introduce the weighted-feature matching definition of similarity.  
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In my framework, all models are considered to produce an output. The simplest 

case is a predictive model, where the output is a future (or past) state of the target system. 

But other things can count as outputs as well. These can be structures in the model itself 

that can feature in an explanation, or a description of the target system. Which outputs are 

of interest will depend on how we are using the model. It may seem more natural to 

reserve “output” for a prediction generated by a model. However, I am employing 

“output” in a broader sense. An output is purpose-dependent and can vary based on what 

question the model is used to answer. This can include, in addition to questions about 

predictions, questions related to interrelations of the structures in the model itself, or 

questions related to what the model represents. While this may seem like a strange usage, 

the reason it is employed here is so that I can talk about the different ways in which we 

use models, while employing the same terminology. While my framework could be 

developed with a more complicated terminology—reserving “output” for predictions and 

including terms for model structure relations and representation—it would not make a 

substantive difference.  

The second sense of evaluation that comes up in this framework occurs when the 

output of the model is compared to the target system in the real world. At this stage, what 

we evaluate is whether the model is adequate for the purpose for which we are currently 

using it. It is important to note that a model that was constructed with one purpose in 

mind can be evaluated relative to its adequacy for another purpose. This discussion of 

adequacy for purpose will draw on the work of Wendy Parker. The reason for starting 

from Parker’s work is that she provides an account of how modellers assess their model’s 

adequacy in the context of climate change. I believe this idea is generalizable, and thus I 

want to apply it in a broader context. All discussion of adequacy will be reserved for this 

component of evaluation.  

The final element of the framework is what I will call an overall assessment of 

model fit. The idea of model fit is used extremely loosely in the philosophy of science 

literature, as well as in science more broadly. The statement “the model fits” could refer 

to a model having a certain degree of similarity to the target system, to a model fitting 

data points, or to a model’s prediction fitting with our observational data or best-
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supported theory. Such ambiguity can lead to confusion about what part of a model is 

being evaluated as “fitting”. Both Weisberg and Parker use the concept of fit. But as I 

will argue, fit has a different meaning for each of them as they are evaluating different 

aspects of the model. For these reasons, it is essential to provide a specific definition of 

what I will mean by model fit. 

In my framework, model fit will refer to a claim about the assessment of both the 

similarity of the model, and the adequacy of the model, relative to a specified purpose. 

The concept of fit admits degrees; some instances of fit can be stronger than others. For 

example, cases in which we are able to include many features of the target system in the 

model, and minimize extraneous features, will be a stronger fit than cases in which we 

have not been able to include all important features of the target system of interest. 

Likewise, instances in which the model’s output is a closer match to the equivalent output 

in the real world are a stronger fit than those in which the output does not match as 

closely.  

In the end, my framework will provide guidance about the kinds of inferences that 

scientists are justified in making about the world from the models. The justification for 

inferences is grounded by (1) establishing a positive assessment of similarity of the 

model relative to the intended purpose and (2) establishing a positive assessment of the 

model’s adequacy for a particular purpose. The details embodied in these assessments 

inform us about how the model makes connections to the real world, as well as the limits 

of the model’s successful use. 

In what follows, I provide further details of the arguments I make for this 

framework in the subsequent chapters. 

1.3.1 Chapter 2: Constructing Hypotheses about Models 

When scientists conclude that they have a successful model, what exactly is it that they 

are evaluating, and what is it that they are gaining knowledge about? I begin this chapter 

by examining what the target of evaluation is in the case of models. Following other 

philosophers, I take it that model evaluation is not the evaluation of the truth of the 

models themselves, but rather the truth of hypotheses regarding the utility of models for 
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different purposes. If this is the case, the second issue—and main focus of this chapter—

is to determine what form these hypotheses should take.  

Wendy Parker and Michael Weisberg have each provided possible formulations 

for hypotheses regarding model evaluation. Parker proposes model evaluation as a matter 

of a model’s adequacy relative to a purpose to which the model is being applied (2009; 

2010). Weisberg proposes model evaluation as a matter of establishing the model’s 

similarity relation in the desired respects and degrees relative to its purpose (2013). This 

similarity relation is captured by a “weighted feature-matching” equation. I examine 

these two approaches for evaluating the success of a model, and their proposed 

formulation for hypotheses regarding model evaluation. In light of criticisms of the 

similarity account made by Parker (2015), I focus on further developing the 

understanding of the similarity relation hypothesis, and the weighted feature-matching 

equation offered by Weisberg.  

The similarity relation hypothesis and weighted feature-matching equation 

elucidate an incredible number of valuable elements that modellers consider in 

constructing their models. However, I argue there are two main problems. Weisberg 

accounts for the various elements that go into model construction in his formalized 

weighted feature-matching equation, S(m,t). From this S(m,t) equation we obtain a 

numerical value between zero and one quantifying how similar the model is to its target 

system. My first criticism is that, while conceptualizing model construction in this 

manner and formally accounting for the process is extremely valuable, it may not, in 

practice, be possible to obtain a numerical score. And even if we are able to obtain a 

score, it is not clear that we should want to use such a score, as it may have bad epistemic 

consequences. I argue that we should only consider the S(m,t) equation as an extremely 

informative tool and means for explicitly formulating the evaluative elements and 

decisions that occur at the model construction stage.  

My second criticism is that Weisberg has provided insufficient detail with respect 

to how a model’s purpose impacts the similarity relation, and the weighted feature-

matching equation. I argue that the similarity relation hypothesis must be modified to 
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explicitly include considerations of the domain of application of the model. Weisberg’s 

account will encounter a challenge that, without a domain specification, it cannot solve: 

instances in which we have the same target system, same model, and same purpose, yet 

the model should obtain different similarity scores for the different domains of 

application. I provide a case study of a mathematical model of stellar implosions to make 

this case. Domain of application must be made explicit if one is to draw on the weighting 

feature-matching equation. Without it, it is not possible to properly specify under what 

conditions the model is, in fact, similar to the target system. 

However, these critiques are not detrimental to the similarity account. Rather, 

with my proposed modifications—using the weighted feature-matching equation as a 

pragmatic guide, and including the domain of application explicitly in the hypothesis 

statement—I provide the strongest version of the similarity relation hypothesis for model 

evaluation. The similarity-relation hypothesis is an extremely informative and effective 

way to formulate a hypothesis statement. It forces us to enumerate the elements of the 

target system the modeller has chosen to include in the model explicitly. It also tracks 

what we choose to include in the construction of a model, and how the evaluation of the 

construction is relativized to a purpose within a certain domain of application.  

1.3.2 Chapter 3: Evaluating Hypotheses about Models 

With this modified version of the similarity-relation hypothesis, I turn to the question of 

whether one of the hypotheses—either the adequacy-for-purpose or a similarity-relation 

hypothesis—should be favored as best capturing the evaluation of model fit in scientific 

practice, as well as the question of how model fit should be evaluated through such 

hypotheses. By examining how Parker and Weisberg respectively propose to evaluate 

their hypotheses, I argue that each hypothesis actually has a different target of evaluation, 

and that, in the end, aspects of both similarity and adequacy need to feature in an account 

of evaluation of model fit.  

I argue that the two hypotheses work together in the following way: An 

assessment of a similarity-relation hypothesis is involved when evaluating the relation 

between the model and the target system during the model’s construction. For this 
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component of model evaluation, we should employ my modified similarity-relation 

hypotheses. Evaluation of the model’s adequacy for purpose is about evaluating the 

output of a model and comparing it to the equivalent output phenomena of the real world. 

These two aspects are different in that an assessment of adequacy is concerned with 

evaluating what the model does and its effectiveness for that aim, while assessment of 

similarity is concerned with evaluating how the model represents. I argue that it is only 

when we take both hypothesis statements together, that we can evaluate the overall fit of 

the model. 

I propose a framework in which assessment of model fit is understood through 

four components. The first component involves constructing the model and establishing 

the similarity relation via the weighted feature-matching equation. The second 

component involves, through reasoning or calculation, obtaining an output from the 

model. This component also involves determining what would be observed as the output 

in a certain test situation if the model is effective, or adequate for the purpose. The third 

component involves comparing and evaluating the level of agreement of the model’s 

output with the analogous output from the target system. The fourth component involves 

an assessment of the model’s overall fit through a final evaluation of our two hypotheses. 

The assessment of the adequacy-for-purpose hypothesis addresses whether the model is 

qualitatively or potentially quantitatively satisfactory for the purpose at hand. The 

similarity relation hypothesis addresses the standards by which the model is assessed to 

be similar to, and to representative of, the target system for the given purpose. 

1.3.3 Chapter 4: Making Inferences from Models 

Having established a framework in which evaluation of model fit is done through 

assessment of a similarity and adequacy of the model for a given purpose, I return to the 

larger question at hand: What justifies making inferences from a model to knowledge 

claims about the world?  

I argue that the justification for extending claims about a model to the world first 

requires explicit attention to the scientific purpose of the model, since both the 

assessments of similarity and adequacy are always made relative to a purpose. While the 
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particular purposes to which any given model is put can be quite specific, I argue that 

there are three general kinds of purpose: descriptive, predictive, and explanatory. The 

difference is related to the kind of output obtained from the model when attempting to 

use it for a particular purpose. In the case of a descriptive purpose, the modeller obtains 

from the model an output that somehow represents the features present in the target 

system. In the case of a predictive purpose, the modeller obtains from the model an 

output corresponding to a future or past state of affairs about the target system that is not 

originally built into the model. In the case of an explanatory purpose, the modeller 

obtains from the model an output that can serve as an explanans in an explanation of 

some phenomenon. 

The second part of the argument in this chapter is related to how inferences from 

a model about the world are justified. While assessments of adequacy for purpose can 

evaluate whether a model is successful for one application relative to one purpose, it is 

not what justifies extending models to a new purpose or new domain; nor does it ground 

inferences made from models. I argue that a model having a high degree of similarity 

relative to a purpose-dependent S(m,t) is what provides justification that allows for 

determining when a model should or should not be extended, whether the model must be 

modified in order to serve a different purpose, and ultimately the inferences that can be 

made about the world from the model. It is because one can identify how the model is 

similar to the target system in the relevant ways that one can determine the appropriate 

level of confidence in drawing conclusions about the target system that go beyond the 

information that was built into the model in the first place. 

Through examples of modelling from astrophysics, I demonstrate how my 

framework can be deployed as a tool to gain insight into success claims about models and 

a means for understanding the connections between similarity, adequacy, fit, and 

justification for inferences about the world. The astrophysical examples are used to 

support both my argument for the three general kinds of purpose models can serve, and 

my claims about similarity grounding the extension of models.  
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1.3.4 Chapter 5: Tracing the Path of Justification for ΛCDM and MOND 

The final chapter examines a case from astrophysics in which analyzing the debate in 

terms of the framework I propose can make an immediate difference. The Lambda Cold 

Dark Matter (ΛCDM) model is considered to be the current best model of large-scale 

structure formation. However, part of the model posits that 84% of the mass of the 

universe is made of matter we have never seen, dark matter. Some astrophysicists 

consider this strange matter to be an unjustified ad hoc addition to the model introduced 

to ensure the model fits the data. In response, some of these critics have proposed 

(contentious) alternative models, which fit the same data by Modifying Newtonian 

Dynamics (MOND), such that positing the existence of dark matter is not required. 

MOND proponents view their models as equivalent or superior in some respects to 

ΛCDM models.  

This is a case in which there are two models that include different elements, and 

even differ fundamentally in terms of the theory on which they are based. Yet both 

models have been evaluated as models that successfully describe the observations, make 

adequate predictions, and even offer explanations. How can a claim like this be 

understood? How should we deal with situations in which there are two models, that 

seem to contradict one another, yet are both evaluated as having a good fit? 

While one option is to regard this as a case of Kuhnian incommensurability, or as 

a case in which a purely subjective choice must be made, I argue that the debate should 

be understood as one primarily about choosing the purpose of models, and then assessing 

whether they are useful for that purpose. Through the framework I have developed, I 

demonstrate how both ΛCDM and MOND can be considered well-justified, high-fit 

models given different choices about what to prioritize. I argue that both models can be 

evaluated as having good fit, when considering their fit within their respective domains of 

application. The apparent conflict between the two models arises due to extending both 

models past the domains in which they are successful. In attempting to extend each 

model to new domains, the modeller relies heavily on the model’s explanatory fit. But, 

extending claims of explanatory fit relies on strong commitments to the similarity relation 
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established, particularly with respect to the way the model represents theoretical 

commitments (as will be seen in the case of both the ΛCDM and MOND models). 
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Chapter 2  

2 Constructing Hypotheses about Models 

2.1 Introduction 

Models are used in science as a tool to understand and investigate the world around us. 

The scientific practice of modeling is the indirect study of real-world systems through the 

construction and analysis of models.  One of the main goals in model-based scientific 

reasoning is to construct successful models. But what is the right way to understand 

claims about the success of models? One of the main ways in which a model is 

considered to be successful is when the model fits well with a part of the world, or a 

target system under investigation. However, it is not clear what exactly “fit” means, or 

how this fit is evaluated in practice. My first goal is to provide an account of what is 

meant by the claim that a model fits the target system under investigation. 

Providing an account of what it means for a model to fit involves answering three 

questions. First, what is the target of evaluation in model fit? Ultimately, I argue that 

model fit is a complex notion; “fit” must be understood as a composite evaluation 

including assessment of both the similarity and adequacy of a model. The more complete 

picture of model fit is fleshed out in chapter 3.  In the present chapter, I introduce and 

discuss these two possible options: evaluating model success in terms of assessing 

similarity and in terms of assessing adequacy.  

The target in model evaluation, I argue, is not the evaluation of the truth of the 

models themselves, but rather of hypotheses regarding the utility of models for different 

purposes. If we do not evaluate the model itself but rather a hypothesis about the model, 

the second question regards the form hypothesis statements about models should take. 

After determining what form the hypothesis should take, the final question is how the 

hypothesis should be evaluated. In this chapter, I address the first two questions. The 

third follows in chapter 3.  

The strongest arguments for the possible forms a hypothesis about model fit 

should take are offered by Wendy Parker and Michael Weisberg. Parker (2009; 2010) 
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argues that successful model fit is about assessing the adequacy of a model for its 

particular purpose. A model is successful when the model is adequate for the purpose the 

modeller intends to use it for. Weisberg (2013, 2015 forthcoming) argues that evaluating 

model fit is about evaluating a similarity relation between the model and the target 

system the model is constructed to represent. Weisberg provides a detailed account as to 

how we should understand this similarity relation and offers a weighted feature-matching 

equation of similarity, in which the similarity of a model to a target system can be 

computed as a scalar value between zero and one.  

My goal is to assess these two approaches for evaluating the success of a model. 

This chapter will proceed as follows: In §2.2, I briefly review why evaluating models 

ought to be conducted via evaluation of hypotheses about models, rather than evaluating 

the truth of the models themselves. I then provide an overview of the two candidate 

formulations for these hypotheses. Parker’s account of evaluation of models via 

assessment of adequacy for purpose seems promising, as she addresses what she means 

by “adequacy” and “purpose”. However, I claim that Parker’s account also relies on some 

kind of assessment of similarity, although she is not explicit on this point. I examine how 

she understands similarity and the relation it holds to evaluations of adequacy for 

purpose. 

With respect to Weisberg’s similarity account of model evaluation, I argue that 

this account faces two problems related to the formalization of similarity relations via the 

weighted feature-matching equation. In §2.4, I provide details of his account, and identify 

the main weaknesses as it is currently formulated. Constructing Weisberg’s weighted 

feature-matching account of similarity is highly complex. So in §2.5 I provide a detailed 

example of how the similarity hypotheses are constructed using a historical example—the 

black hole model constructed by J. Robert Oppenheimer and Harland Snyder. I use this 

example to argue that, at best, formalizing similarity relations via a weighted feature-

matching equation that outputs a value between zero and one is not possible; at worst, 

this has bad epistemic consequences. I argue that it is better and more useful to use this 

equation as a heuristic tool for explicitly enumerating the elements that go into the 

construction of the model, rather than computing a numerical value of similarity. Second, 
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and more importantly, I argue that the mechanics of the weighted feature-matching 

equation have not accounted for cases in which a model is applied outside of its intended 

domain.  

In light of these criticisms I propose a modification to the form of the similarity 

relation hypothesis and weighted feature-matching equation in order to account for these 

problems. This modification requires explicit inclusion of the domain of application of a 

model. My proposed modification to the similarity account supports the assessment of 

model construction in terms of a similarity relation and weighted feature-matching 

equation as an extremely informative and effective means by which to form a hypothesis 

for model evaluation. 

2.2 What is the Target of Model Evaluation? 

Scientists attempt to learn more about the nature of the world around us through 

representing certain features of the world in a model. However, when they construct a 

model, they need to be able to evaluate whether the model is a successful representation 

of the part of the world the model is intended to represent. When they conclude that they 

have a successful a model, what exactly is it that they are evaluating, and what is it that 

they are gaining knowledge about?  

One option is that the assessment of a model is concerned with the truth of the 

model13. On this view, a model somehow contains or embodies a truth evaluable claim 

about the system it represents. The truth of the model itself is supported14 by various 

instances of the model output matching the observational data. Another option, however, 

is to argue that models by their very nature are false. In constructing a model, 

idealizations, approximations, and assumptions are made. On this view, models cannot be 

true representations of the target system (Wimsatt 1987; 2002).  

                                                
13

 For example, Elizabeth Lloyd argues for such a position in the context of climate models in her 2009 
paper, “Varieties of Support and Confirmation of Climate Models”. 
14

 As mentioned in chapter 1, I am actively choosing not to present an account in terms of confirmation, a 
term that in this instance could easily be substituted in.  
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A third option is to argue that to attempt to evaluate models as being true or false 

is a category mistake, as they are not the sort of entities that are candidates for truth 

evaluation. On this view, a model is a representational tool that does not contain or 

embody truth evaluable claims about the system it represents. A good analogy for 

understanding this point is a painting: a painting may represent a part of the world, but is 

not itself truth evaluable. Statements about how the painting represents the world are 

truth evaluable, but these are not part of the painting itself. In the same way, models are 

used in various hypotheses, such as, “the model m is adequate for the purpose p” (Parker, 

2009). What is supported by observational evidence is the truth of this hypothesis, not 

truth of the model itself. As such, when evaluating a model, we are not evaluating 

whether the model itself is true. Instead, we evaluate a hypothesis as a claim about the 

model.  

I agree that models are not truthful representations; they are at minimum false or, 

at most, not candidates for truth evaluation. Nevertheless, we use models as effective 

representational tools in helping to establish true claims about the real world. For my 

purposes, I adopt the view that hypotheses are the direct target of evaluation because this 

is the more general case. Whether or not models are truth evaluable themselves, using a 

model to generate knowledge that goes beyond the truth of the model itself is still an 

important element of scientific reasoning. In order to do this, one must employ the model 

in a hypothesis about the real world15. In order to assess whether a model of fluid 

dynamics is successful in a new situation, such as modeling the dynamics of galaxies, we 

need to embed the model in a hypothesis statement16 about this new situation, the content 

of which is not related to the content of the original model. As a result, to say that a 

model is successful is to evaluate some hypothesis about the model fitting with the target 

it intends to represent to a certain level of acceptability. 

                                                
15

 It is not necessary that the model bear any prior relation to the target system before one undertakes this 
evaluation. That is to say, it is possible to employ a model that was constructed to represent a given target 
system in a hypothesis statement about an entirely different target system and assess its similarity and 
adequacy.  
16

 By “hypothesis statement”, I simply mean the form of a hypothesis, such as the hypothesis being formed 
as “model m is adequate of purpose p”, or “model m is similar to target t for purpose p”. 
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2.3 What Form Should the Hypotheses Take? 

If model evaluation is a matter of evaluating hypotheses as claims about the model, then 

there are two important questions to answer: (1) What form should the hypothesis 

statements take? and (2) How do we evaluate the hypotheses? In this chapter, I begin to 

answer the first question by examining two candidate formulations for these hypothesis 

statements. Wendy Parker argues we are evaluating the hypothesis that the model is 

adequate for its intended purpose. Michael Weisberg thinks we evaluate a hypothesis 

with respect to whether a model is similar enough to the target system for its intended 

purpose. I assess the benefits of each of these views, and ultimately argue that we should 

adopt a view that combines elements of both17.  

2.3.1 Similarity-Relation Hypotheses  

One possible form the hypothesis could take is framed in terms of assessment of a 

model’s similarity to targeted aspects of the real world. When scientists want to 

investigate a certain phenomenon, they construct a model. Modellers choose certain 

aspects of the real world to be represented in the model. If representations of certain 

properties of the world are included in the model, it will be similar enough to the real 

world that the model’s output can be trusted as telling us something about how the world 

will behave. A successful model will be evaluated as being similar enough to the target 

system for a certain aim.  

Weisberg, following Cartwright (1983), Giere (1988), and Godfrey-Smith (2006), 

understands this central model-world relation to be that of similarity. Models are not 

truthful representations18 or isomorphic to their target systems; rather, they stand in a 

relation of similarity with their real-world targets in relevant respects and degrees, where 

those respects and degrees depend on the information sought by the modeller. According 

                                                
17

 I will return to discussion of the second question, of how we evaluate these hypotheses, in chapter 3. I 
will argue that, in examining the accounts of evaluating the hypotheses about model fit, it is evident that 
assessments of similarity and assessments of adequacy have different targets of evaluation. Any final 
account of model evaluation will need to include elements of both. 
18

 Models are not truthful representations given that they make idealizations and approximations.  
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to Giere, this understanding can take the form of evaluating a theoretical hypothesis—a 

statement, claim, assertion, or conjecture, about the relationship between the theoretical 

model and certain aspects of the world (Geire, 2006, 25). These hypotheses are of the 

form:  

Model m is similar to the world in the desired respects and to implied 
degree of accuracy.  

If the model is similar in the desired respects and degrees, the theoretical hypothesis is 

true19.  

Weisberg identifies three issues that must be addressed in order for this account to 

be developed into a more complete picture of the model-world relation20. First, there 

must be a precise formulation of what the similarity relation actually is. Second, given 

that there is a sense in which every model is similar to every target in some respect or 

other, there needs to be a principled way of specifying which respects are relevant. 

Finally, the view must account for the pragmatic dimensions of modeling (Weisberg 

forthcoming, 10). Weisberg proposes understanding these contextual factors through his 

weighted feature-matching account of similarity. He suggests generating Giere-like 

theoretical hypothesis of the following form (forthcoming, 12): 

Model m is similar to target t for scientific purpose p to degree S(m,t),   

where S(m,t) is his weighted feature-matching equation. A model can be successfully 

applied to the target when the model fits the target, where fit is understood as this model-

world relation (2013, 93). Given that Weisberg considers the best account of the model-

world relation to be that of similarity, model fit should be understood as a hypothesis of 

the form given above.  

                                                
19

 Giere’s terminology (‘desired respects’, ‘implied degree’, and ‘theoretical hypothesis’) reflects the fact 
that he considers models to be a subset of theories. For my purposes, I discuss a more general framework 
that is not committed to this relation. The points made in this chapter stand regardless of how one 
understands the model-theory relationship. 
20

 Understanding the model-world relationship in terms of similarity was criticized by philosophers such as 
W.V.O. Quine (1969) and Nelson Goodman (1972). Weisberg’s attempt to develop a more complete 
account aims to address these criticisms by improving Giere’s account.		 
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Weisberg’s weighted feature-matching similarity equation attempts to formalize 

the model’s representational relation of similarity to a target system as a function of the 

features that the model and the target share, penalized by the features they do not share. It 

is the modeller’s construal that determines “the choice and weighting of these important 

features” (2015, 299). Weisberg claims that the broader scientific context will inform the 

modeller’s construal. The construal of a model is composed of four parts: assignment, 

scope, and two kinds of fidelity criteria. Assignment and scope tell us how the real world 

phenomena are intended to be represented in the model. Fidelity criteria are the standards 

theorists use to evaluate a model’s ability to represent phenomena. 

2.3.2 Adequacy-for-Purpose Hypotheses 

A second possible form the hypotheses could take is framed in terms of assessment of the 

model’s adequacy. Scientists construct models with the goal of being able to obtain 

predictions or explanations. The success of a model is then related to whether the model 

is adequate for providing this desired result. Parker (2009; 2010) develops the strongest 

position for an understanding of model evaluation in terms of adequacy by examining 

how to understand instances of fit between observational data and model predictions in 

the context of climate models. She understands models to be representational tools: “A 

model is a representation in that it (or its properties) is chosen to stand for some other 

entity (or its properties), known as the target system” (2009, 235).  A model is also a tool 

in that it is intended to serve some particular purpose. If a model can be said to embody a 

truth-evaluable hypothesis, it is one that is usually known from the outset to be false. 

However, she thinks models will nonetheless be evaluable as adequate for the purpose of 

interest to the modeller. As a result, she believes we should understand model fit in the 

following way:  

What these instances of ‘fit’ might be said to confirm (or support, or raise 
the probability of), if anything, are hypotheses about the adequacy of 
climate models for particular purposes. An example of such a hypothesis 
might be: This climate model, when run from these initial conditions, is 
adequate for the purpose of predicting whether Earth’s global mean 
surface temperature would increase by more than 2°C between now and 
2100 under this emission scenario (Parker 2009, 236). 
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Generalizing from this statement about climate models, I take the form of an adequacy-

for-purpose hypothesis statement to be:  

Model m is adequate for intended purpose p.  

These sorts of hypotheses are evaluated as true when the model constructed is adequate 

for the purpose at hand.  

 If we are to accept Parker’s proposal as the proper form of the hypothesis 

statement, we need to know how to understand the concepts of adequacy and purpose. 

With respect to the latter, She says that the “purpose” of a model typically involves 

answering some limited range of questions about the target system. Further, she says the 

relevant purpose will often include simulating aspects of the past, predicting aspects of 

the future, or explaining (providing information about the causes of phenomena of 

interest) (2009, 235-7). With respect to the “adequacy” of a model, she understands this 

as the idea that a model, “when used in accordance with specified methodologies, will 

convey information about the target system that allows model users to infer correct 

answers to the target questions” (2009, 236).  

 However, as a footnote to this conceptual definition of adequacy, Parker indicates 

that adequacy also relies on some sort of similarity:  

As understood by this paper, an adequate model is one that is sufficient for 
the purposes of interest not just by chance or luck but because it is similar 
enough to the target system in relevant respects. Which similarities are 
relevant and what counts as similar enough is determined by the purposes 
at hand (Parker 2009, 236, footnote 6; also see 2010, 4, footnote 7). 

It seems that Parker understands the adequacy of a model as somehow being related to 

whether the model is similar enough to the target system in certain respects. She says 

here that our model gets things right not because of luck, but by virtue of some sort of 

similarity to the target system. Does Parker mean for adequacy-for-purpose assessments 

to be related to or grounded in similarity? If so, she has not told us how one ought to 

understand the relationship of similarity; nor how purpose informs what counts as 

“similar enough”. If not, why has she bothered to mentioned similarity at all? 
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In looking to her other work, Parker seems to take adequacy to go beyond what 

assessments of similarity offer. For example, she states,  

Demonstrating that a model is similar to its target in various respects and 
degrees is not enough; one should have some reason to think that these are 
sufficient respects and degrees, given the intended uses of the model 
(Parker 2015, 275). 

I take it that Parker thinks that similarity per se does not answer the question of whether a 

model can reliably provide new information about the target system. A model being 

similar enough to a target system for one intended use does not necessarily mean that the 

model’s similarity will still be relevant when a model is used in a new context, for a 

different hypothesis, or to answer a different question. Whenever a model is used in a 

new way to address a new question about the target system, the grounds for a modeller to 

consider a model similar will need to be “revisited”, and the modeller will need to 

consider whether the model’s similarity is sufficient to provide this new information 

about the target system.  

I agree with Parker in that an account of similarity alone may not be enough; yet 

we want to say that a model is adequate not by chance, or luck. If the ultimate goal in 

using models is to make claims about the world, there likewise needs to be something 

that grounds or connects an adequate model with the target system. A model bears, in 

some sense, a similarity to its target system in that there is something that gives a 

modeller good reason to think the model stands in some relevant relation to the real 

world. Yet at the same time there is a need to guard against the fact that every model is 

similar to every target system in some respect or another. If similarity plays any role, 

there needs to be a way to say what similarities are relevant. Given that models make 

idealizations and approximations in their construction, we must be able to say more about 

what aspects of the target system the modeller has chosen to prioritize, and why.  

Based on this, the following options are left for formulation of the hypotheses for 

model evaluation: similarity alone is not enough to justify extending a model, unless 

there are reasons for the particular choice for respects and degrees. If we want to extend 

the model, then we need some reasons grounding similarity judgements. Either this 



30 

 

grounding is more clearly and accurately captured by adequacy-for-purpose assessments, 

or something has been overlooked in understanding how to characterize similarity.   

For the time being, I will set aside the question of whether adequacy-for-purpose 

hypotheses are better than similarity hypotheses, as well as the question whether some 

notion of similarity must play a role in adequacy hypotheses. Instead, I will focus on 

further developing the similarity relation. Weisberg’s account does include details about 

how modellers make decisions about what to include in their models, which might 

answer Parker’s concern. However, his account lacks clarity in places, and needs to be 

further developed.  

So what does the strongest characterization of the similarity relation look like? 

The following section provides an examination of the details of Weisberg’s 

understanding of similarity. While Weisberg has provided extraordinary details on how to 

assess similarity, I argue first for a minor point: it may not be possible, nor in our interest, 

to reduce a model’s similarity to the target system to a value between zero and one. My 

second, more significant criticism is that Weisberg has not provided sufficient detail 

about how a model’s purpose affects the similarity relation. Such detail is needed, as the 

model’s intended purpose directly constrains the weighted feature-matching equation, 

and thus overall evaluation of the similarity. Without sufficient detail as to how purpose 

constrains the similarity relation, his account is not complete. More specifically, I argue 

that Weisberg’s view fails to account for the appropriate domain of application of a 

model. Without explicit specification of a model’s domain of application, Weisberg’s 

account fails to make important distinctions in modeling success that it should make. In 

§2.5, I introduce a historical example of modeling black holes to clearly illustrate this 

point. In light of my criticisms, I provide a stronger account of the similarity relation that 

I will use for the remainder of the dissertation. 

2.4 Assessing Weisberg’s Weighted Feature-matching Account 

Weisberg understands the central model-world relation to be that of similarity.  He takes 

similarity to be the best account of the model-world relationship because of its 

“flexibility to accommodate for the complexities related to the practice of modeling” 
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while still having features that he identifies as being important for any model-world 

relation (2013, 135-7). In order to develop a strong account of similarity relations, 

Weisberg points out that he needs to be able to say what similarity supervenes on, how it 

depends on context, and how similarity judgments are to be evaluated. To this end, he 

provides his weighted feature-matching account of similarity. While the understanding of 

similarity offered by the weighted feature-matching account provides extensive detail as 

to how to understand and capture the similarity relation, it faces two important problems. 

First, reducing similarity to a quantitative score is at best not possible and at worst has 

bad epistemic consequences. Second, given the significant role a model’s purpose plays 

in formulating the similarity relation, further details (which Weisberg has not provided) 

are required to have a clear understanding of how purpose affects the evaluation of this 

relation.  

2.4.1 The Weighted Feature-Matching Account of Similarity 

Recall that the weighted feature-matching account of similarity involves hypotheses of 

the following form: 

Model m is similar to target t for scientific purpose p to degree S(m,t),  

where S(m,t) is the weighted feature-matching equation. Weisberg’s weighted feature-

matching equation attempts to account for a model’s similarity to a target system as a 

function of the features that the model and the target share, penalized by the features they 

do not share. He formally represents this as:  

𝑆 𝑚, 𝑡 = 	 '((*+ 	,+)	./((*0∩	,0)
'((*+ ,+)	./((*0∩	,0).	2( *+3,+ 	.	4( *03,0 .	5( ,+3*+ .	6((,03*0)	

		

(Weisberg 2013, 148; forthcoming, 11).  

To use this equation, a modeller must first determine their relevant feature set Δ, which is 

partitioned into two subsets, Δa and Δm. These are the attributes and mechanisms judged 

to be relevant to the goal of successfully modeling the target system. The equation is a 

normalized ratio of the features that the model and target system share (captured by the 

intersections of the model’s attributes and target’s attributes, and model’s mechanisms 

and target’s mechanisms), to the features that the model and target system do not share 
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(denoted by the differences between the sets of features in the model, and the sets of 

features in the target system).  

 The model’s scope21, or inquiry goals, determine what the significant features in 

feature set Δ will be. Weisberg argues for a liberal account of what features can be 

included, ranging from qualitative, interpretive features (such as oscillations, or 

populations getting bigger or smaller), or strictly mathematical terms, to quantitative, 

physically interpreted terms (such as the existence of an equilibrium) (Weisberg 

forthcoming, 11). The feature set will contain statistical or dynamic properties, which 

include properties and patterns of behaviours, which he calls attributes. It also contains 

causal features, or the processes underlying and generating the attributes, which he calls 

mechanisms. These are designated with subscript a and m, and can be features of the 

model (Ma , Mm) or the target (Ta , Tm). The attributes and mechanisms in the feature set 

may include theoretical elements. That is, for some target systems, there is a large 

theoretical component to how it is characterized. In these cases, the similarity in the 

model partly depends on its similarity to theory. This is the sense in which models and 

theories interact on Weisberg’s account22.  

The relations between these feature sets generate a real number via the weighting 

function f(•). This weighting function is not a fixed function, but rather determined by the 

context of the model. (I discuss how to determine the weighting function in more detail 

below). In fact, Weisberg says that a mature research program may have “a range of 

permissible weighting functions accepted by the community” (2013, 154). The weighting 

function’s output is then multiplied by the coefficients, represented by θ, ρ, α, β, γ. These 

coefficients’ values are based on decisions made by the modeller as to how important it is 

that the model has certain features, and for the model and target to have or share the 

attributes or mechanisms. This weighting is informed by background theory, goals, and 

                                                
21

 As a reminder, scope is one of the four parts of the model’s construal. For Weisberg the intended scope 
specifies which aspects of the potential target phenomena are intended to be represented in the model. 
22

 A detailed example will be given in §2.5 to clearly explicate how this works. 
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pragmatics in modeling. In cases where there is a mature background theory, it will 

seriously constrain and inform the decisions made by the modellers with respect to this 

point. When modellers do not have a mature or well-supported background theory, it is 

more likely that there will be disagreement between the modellers with respect to 

determining just how similar the model should be to the target system. Through 

accounting for the feature set Δ, weighting function f(•), and term weights α, β, … , the 

equation will output a similarity score between 0 and 1 that can be used in comparative 

judgements of similarity. 

Determining what to include as the feature set Δ, the weighting function f(•), and 

the values of the coefficients α, β, … , also depends on the scientific context, or what 

Weisberg calls the modeller’s construal. For Weisberg, scope and assignment play a role 

in the construction of the weighted feature-matching equation, since they provide 

information on how the real world phenomena are to be represented in the model. 

Fidelity criteria are the standards modellers use to evaluate a model’s ability to represent 

the phenomena. For now, I will set fidelity criteria aside and focus on how Weisberg 

understands scope and assignment. 

For Weisberg, the scientific context or construal, is a way of formalizing the 

relevant scientific considerations at play in modeling and is flexible enough to account 

for all the various different scientific practices. However, he says very little to 

specifically explain how scope, in practice, affects the development of a model. Weisberg 

provides only the following few passages to aid in determining how scope and 

assignment fit into these scientific contexts and judgements:  

The intended scope specifies which aspects of the potential target 
phenomena are intended to be represented by the model (2013, 40).  
 
When scientists choose a focus, or intended scope, they focus on some set 
of properties and abstract away the others. This yields a target system, a 
subset of the total state of the system (2013, 91). 
 
The modeler’s intended scope takes into account the research question of 
interest, the context of research, and the community’s prior practice 
(Kitcher, 1993). These elements of the modeler’s scope, in turn, determine 
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the contents of the feature set. So ultimately the choice of scope is 
equivalent to the choice of Δ (2013, 149).  

It seems Weisberg is using “scope” as a very broad term to encompass and refer to 

anything that might be a consideration in the construction of the model. Scope plays a 

role in determining how we get from a general phenomenon to our target system by 

determining what, in a complex phenomenon, is of interest as a result of the research 

question. For example, if we are examining Tasmanian devil populations, we may want 

to learn about their population dynamics, or why the devil’s immune system fails to 

recognize facial tumour disease (2013, 91). Depending on the research question, we will 

want to make sure certain aspects are accounted for in the model.  

The second aspect of a modeller’s construal, assignment, plays no role in 

determining what to include. Rather, assignment tells us how the relevant information has 

been included in the model. Assignments are explicit specifications of how parts of the 

target system are mapped onto parts of the model (2013, 39). For example, in the case of 

a concrete physical model of the Bohr atom, the small round balls in orbit around the 

nucleus are electrons. Alternatively, in a mathematical model the assignment specifies 

what the variables in the equation stand for with respect to the system. While assignment 

is often not made explicit during discussions of models, Weisberg argues assignment 

should be regarded as the formal record of this coordination.  

These aspects of the modeller’s construal are so important for Weisberg because, 

at the core, his understanding of the model-world relation is one of similarity. His 

account is an attempt to find a way to acknowledge that a model’s construction and 

evaluation are very closely connected to what modellers take to be similar to their 

intended target:  

[The] similarity relation … already supervenes, in part, on the modeller’s 
construal. When the context or scientific goals change, the construal will 
change, and aspects of the relation will change (2013, 149). 
 
Weighted feature-matching allows scientists to assess how close they have 
come to meeting their goals … Different goals can require different kinds 
of similarity relations, or at least the emphasis of different kinds of 
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features. This is accounted for by the way in which the parameter values 
of each term of equation are set (2013, 150).  

Establishing the similarity relation involves reasoning and justifying what parts need to 

be similar based on considerations from the relevant background theory, and from the 

norms and expected standards of the community of researchers. The weighted feature-

matching equation formalizes how the modeller understands, relative to a model serving 

a certain purpose, how and why a model accurately represents the target system. 

Furthermore, it identifies how a model might need to be similar to a target system. This 

explains why the model is similar to the target system not by chance or by luck; for based 

on the target system and the purpose for which the model is being constructed, the model 

should include or not include certain features of the target system. 

Thus far, I have explained how Weisberg’s weighted feature-matching equation 

works, how we determine S(m,t), and how model and target systems are accounted for in 

the S(m,t) equation. Returning to the hypothesis, 

Model m is similar to target t for scientific purpose p to degree S(m,t), 
where S(m,t) is,  
 
𝑆 𝑚, 𝑡 =
	 '((*+ 	,+)	./((*0∩	,0)
'((*+ ,+)	./((*0∩	,0).	2( *+3,+ 	.	4( *03,0 .	5( 7+3*+ .	6((,03*0)	

  , 

it is now clear that model m and target t feature in both the similarity equation and 

outside of it in the hypothesis statement. All that is left is to discuss how Weisberg 

understands scientific purpose p.  To identify what he has in mind, I critically evaluate 

his account, addressing how Weisberg proposes we understand and account for purpose p 

and arguing that how he accounts for purpose is problematic. However, before turning to 

this issue, I offer a criticism related to computing the numerical similarity score. 

2.4.2 Criticism: Do We Want a Similarity Score? 

I think we should be skeptical of summarizing the complexity of the decisions modellers 

make with respect to constructing their models and the ways in which they understand 

their model to be similar to, and representative of, the real world in terms of a single 

value between 0 and 1. Can we really capture all the relevant features of similarity 
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evaluation in a number and say one model has a similarity score of 0.789 while another 

scores 0.801, and have this comparison be meaningful? Is evaluating these elements of 

modeling with such a one-dimensional score actually worthwhile? The answer to both of 

these questions is no. 

First, while in principle it may be possible to obtain such values, it is unclear that 

these numerical scores are obtainable in practice. Weisberg himself never actually 

computes a concrete similarity score for a model. What he does do, however, is discuss in 

detail how a modeller’s desire for certain similarities will be important for the model to 

capture depending on the purpose. He demonstrates that when developing a model in 

order to say how a system might possibly work, there are certain features or properties 

(attributes and mechanisms) of the target system that one would expect a model to 

include. If the modeller thinks a certain background theory or dynamics, such as fluid 

dynamics, is critical for the target system, then the model must be similar in that it also 

relies on fluid dynamics. Modellers have reasons and justifications for including or not 

including certain aspects in the models they construct. These decisions are sometimes 

justified based on theory or on observations, or may be arbitrary23. What is valuable 

about the weighted feature-matching equation is that it formalizes and records these 

decisions. 

Second, even if it is possible to obtain a similarity score, there is a danger that 

scientists could rely too heavily on these numbers and not pay attention to how the 

numerical score was calculated. Caring about the final output value from the equation 

erases all of the important similarity judgements made during the construction of the 

model. This risks negating the important work undertaken during the construction of the 

model to keep careful track of the ways in which a model is similar to a target system. If 

the focus shifts to prioritizing the number value rather than the information contained in 

the numerical value, modellers may lose sight of the importance of knowing how and 

why the model was created.   

                                                
23

 For example, a modeller may introduce so-called “fudge” parameters that are exploratory in order to see 
if the model can be made to work.  
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For these reasons, the safer course of action is to take the weighted feature-

matching equation as useful, but only as a means for explicit discussion and specification 

of what is prioritized and included in a particular model. The weighted feature-matching 

equation illuminates the pragmatic elements of modeling practice. Being explicit about 

these judgements helps in thinking through what is important and what is being 

prioritized (and to what degree) in a model. Such explicitness is particularly important 

when assessing the model and evaluating it compared to other models. Furthermore, if 

there are conflicts about the model, then modellers will be more readily able to evaluate 

differences and determine where modeling conflicts actually lie.  

While computation of this score itself may not be useful, using the equation as a 

way to communicate what the modeller values and prioritizes will be useful. The process 

of undergoing the pragmatic exercise of enumerating the details that go into the 

modeller’s judgements of similarity relative to the model’s purpose is incredibly 

important. It explicitly identifies what is considered important for inclusion, to what 

degree, and why. The value of the weighted feature-matching equation is that we now 

have a guide to understanding why modellers evaluate a model as being similar to the 

target system for a specified purpose. It also allows for the evaluation of what has been 

identified as relevant and important for the modeller’s assessment and understanding of 

similarity. Such explicitness is not just pragmatically useful but also important 

epistemically, as it accounts for how and to what extent a model can be considered to 

represent the target system. Again, this will be valuable—particularly when conflicts 

arise, in cases that are more complex, or in cases in which there is ambiguity in trade-offs 

between the weighting of a mechanism or attributes—for identifying what the modeller 

has chosen as important features to capture. The case study discussed below in §2.4 

speaks to this point. In my modified version of the weighted feature-matching account, I 

take the S(m,t) equation as a means by which to communicate what the modeller thinks is 

important, prioritizes, and takes to be epistemically significant features of the target 

system. However, I refrain from computing a numerical similarity score. 
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2.4.3 Criticism: What’s the Purpose? 

My second, more substantive criticism of Weisberg’s weighted feature-matching 

equation is related to the role purpose plays in the weighted feature-matching account of 

similarity. All models are constructed for some reason, for some purpose. If purpose 

affects how a model is constructed and evaluated (and both Weisberg and Parker take 

evaluation of their hypotheses to be made relative to a purpose), then it is critical to 

provide a careful understanding of what purpose amounts to. A survey of the modeling 

literature24 indicates three main purposes or tasks for which we construct models: 

describing aspects of the target system, predicting aspects of the future25, or explaining 

causal aspects of the target system. I will return to these three kinds of purpose in chapter 

4, but for the time being will take these as the starting point in providing an 

understanding of how Weisberg accounts for purpose in his account.  

Weisberg claims to have accounted explicitly for the model’s purpose in his 

hypotheses, given that in order to understand claims such as “Model m is similar to target 

t for scientific purpose p to degree S(m, t)” we must understand the relationship between 

the scientific purpose p and the degree of similarity. For Weisberg, this is in fact the 

advantage of articulating hypotheses using the weighted feature-matching formalism. 

One advantage of articulating theoretical hypotheses using the weighted 
feature-matching formalism is that we can say a lot more about what is 
meant by scientific purpose p. Specifically, the weighting function f, as 
well as the relative weight (or inclusion at all) of the terms [in the 
weighted feature-matching equation], are contextual factors reflecting the 
scientific purpose (Forthcoming, 12-3). 

Weisberg goes on to claim that different scientific purposes require the construction of 

different kinds of models, such as minimal models, how-possibly models, or hyper-

accurate models (forthcoming, 12-4). He is attempting to provide a more fine-grained 

                                                
24

 For example, these are the three purposes identified by Parker (2009). Weisberg also discusses model’s 
purpose most frequently being to provide a prediction or explanation (2007, 2012, forthcoming). 
25

 Or, retrodicting aspects of the past. 
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account of how these different purposes—describing, predicting, and explaining—play 

out.  

In the case of a how-possibly model, the modeller will be interested in 

constructing a model that reproduces the target’s static and dynamic properties. A good 

model in this context will be “one that shares many and doesn’t lack too many of the 

target’s static and dynamic properties” (forthcoming, 13). As a result, the modeller aims 

for the S(m,t) equation to have a high value with respect to the intersection of the 

attributes the model and target share, and a low value for what they do not share. 

Weisberg formulates the hypothesis for a how-possibly model as: 

How-Possibly model m is similar to target t to degree		 ((*+ 	,+)
((*+ ,+)	.	( *+3,+ 	

. 

While the aim is for the value of the weighted feature-matching equation component to 

equal 1, Weisberg acknowledges that this is often not achieved26. Nevertheless, the 

formulation allows for comparing models by allowing us to “see which features, among 

the ones that matter, are omitted by different models”. In addition, “assuming a common 

feature set and weighting function, the models’ relative deviation from the target can be 

assessed” (forthcoming, 13). The similarity between a model and its target system is 

understood in terms of the S(m,t) equation, and the S(m,t) equation depends on the 

weighting function f(•). The weighting function f(•) is partially determined by our 

scientific purpose and scientific context (or construal). The purpose is also encoded to 

some extent in the relative weight of the coefficient terms, θ, ρ, α, β, γ. It might seem that 

Weisberg has accounted for all relevant aspects of purpose in the S(m,t) equation, and 

that he has also accounted for purpose in the form of the similarity relation hypothesis. 

Given these details about the role purpose plays in model similarity assessment, is 

Weisberg’s weighted feature-matching equation effective? In the next section, I construct 

and examine a weighted feature-matching equation for the Oppenheimer-Snyder (O-S) 

black hole model. This example allows me to show more clearly how the weighted 

                                                
26

 This is also an example of how Weisberg fails to actually provide an S(m,t) value between 0 and 1 but 
nonetheless provides an excellent account of what similarity amounts to in this context.  
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feature-matching similarity equation works. However, this example also illustrates a 

challenge that the weighted feature-matching equation and similarity relation hypothesis, 

as it is currently formulated, cannot solve. It highlights a case in which evaluation of a 

constructed model will have the same target system, same model, and same purpose, yet 

the model should obtain different similarity scores for the two different applications 

considered. This shows us that an important element has been left out of the similarity 

discussion thus far: domain of application. 

2.5 Modeling Gravitational Collapse and Implosion of a Star 

Early twentieth century astrophysicists were interested in what happens when massive 

stars run out of fusionable material. J. Robert Oppenheimer thought that they implode.  

However, investigation into what happens when a massive star implodes proved 

challenging. A real star rotates, giving it a non-spherical shape, high density, and pressure 

towards its center, and lower density and pressure further away from the center. When it 

implodes, it develops high-density lumps, as well as shock waves that may eject matter. 

There is also an outpouring of radiation (Thorne 1994, 215-7). In the 1930s, accounting 

for all of these features in computations would have been impossible. As a result, 

Oppenheimer and his student Harland Snyder constructed an idealized model of the 

imploding star in order to predict what might happen when the star implodes27.  

The most critical feature for Oppenheimer and Snyder (1939) was accounting for 

gravity as described by general relativity. Whichever way they chose to model the 

implosion, they determined this must be prioritized for inclusion. The star’s spin and non-

spherical shape, on the other hand, were ignored. For the target system of interest—

massive stars that spin slowly—they considered rotation and shape not to have a strong 

effect (though for some other imploding stars, this might be crucially important). They 

also took the outpouring radiation, shock waves, and high-density lumps to be negligible. 

Lastly, since they had previously shown that gravity could overwhelm all pressure in 

                                                
27

 Kip Thorne (1994) provides a detailed account of what Oppenheimer and Snyder prioritized in their 
idealized model, and this weighted feature-matching example is based on his account. 
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massive dead stars, they did not include thermal pressure, pressure arising from electron 

or neutron degeneracy, or nuclear force. While they thought the details of what happens 

in a real star during the implosion might differ slightly, they took it that the differences 

would not have a great enough effect on the outcome to require capture in their 

development of a mathematical model. 

Figure 1: Sketch of Imploding Star. 

.  

Sketch of a real imploding star and relevant attributes and mechanisms (left), as 
compared to Oppenheimer and Snyder idealized imploding star and its relevant attributes and 

mechanisms (right). Image from Thorne 1994, 217; 454. 

With these idealizations in place, Snyder worked out equations governing the 

entire implosion. From these equations one could read off aspects of how general 

relativity says stellar implosion would behave, as seen from the inside, outside, or surface 

of the star. These equations were the first to predict that for a static, external reference 

frame, as the star gets smaller, it implodes more slowly, until the point it becomes 

“frozen” at a critical circumference (now known as the event horizon). However, for an 

observer on the surface of the star, the implosion continues rapidly past that freezing 

point until “crunched” to infinite density and zero volume. These “frozen stars” are what 

we now refer to as black holes. This mathematical model predicted that when a 
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sufficiently large mass star dies, it must implode to form a black hole. At the time, the 

model predicted what was considered a very bizarre outcome, and there was no way to 

test it experimentally. It was not until the late 1950s that mathematical computer 

simulations of imploding stars also produced results in favour of Oppenheimer and 

Snyder’s claims (Thorne 1994, 218). 

2.5.1 Weighted feature-matching equation for the Oppenheimer-Snyder Black Hole 
Model 

With this background, I am in a position to construct a weighted feature-matching 

equation, S(m,t), as well as a similarity relation hypothesis for evaluation for the 

Oppenheimer-Snyder (O-S) black hole model. The target system under investigation is a 

massive imploding star. As mentioned, the purpose of the model is providing a prediction 

of the behaviour of these sorts of stars. With this target system and purpose in mind, the 

O-S model was constructed. Because every model is evaluable using S(m,t), I will now 

explicate the similarity between the target system and the model using weighted feature-

matching. 

Both the choice of mechanisms and attributes will be informed by the scope 

component of the model’s construal. Recall, “scope” refers to the aspects of the target 

that are intended to be represented by the model. The features of the target system that 

are intended to be represented in the O-S model example are the star’s mass and 

gravitational behaviour. The O-S model does not seek to represent features such as the 

star’s non-spherical shape or the star’s rotation. The assignments are explicit 

specifications of how parts of the target system are to be mapped onto parts of the model 

(Weisberg 2013, 39). In the case of the O-S black hole model, this involves specifying 

what in the mathematical model is intended to represent the aspects of our target system. 

As Weisberg points out, modellers often do not make these assignments explicitly. 

However, the assignment should be regarded as the formal record of this type of 

coordination.  

With the scope and assignment acknowledged, the next step is to identify what 

attributes and mechanisms are to be included in the model. The attributes are the static 
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and dynamic properties, and so in the target system this includes the star’s density, 

pressure, charge, spin, and mass. However, for the purpose of providing a prediction, the 

model did not need to be similar with respect to all of these attributes. In fact, the point 

was to make the idealization that the star is perfectly spherical and has uniform density. 

Priority in constructing the model is given to the mass of the star being large enough, so 

this will be included as an attribute in S(m,t). We need not, however, be concerned with 

the model having similarity with respect to accurately representing all of these attributes 

of the target system. 

The mechanisms are the processes underlying and generating the attributes, the 

causal features, Mm and Tm. For the purpose of providing a prediction in the context of 

general relativity, whatever happens with respect to attributes, the model must have the 

underlying mechanism of gravity as described by general relativity28. Oppenheimer and 

Snyder were not concerned with any other mechanisms29, such as possible quantum 

mechanical effects. 

Now that I have the relevant mechanisms and attributes identified, I can establish 

the weighting function and the values of the coefficients. Recall that for Weisberg, 

weighting is informed by our background theory, goals, and pragmatic considerations. 

Oppenheimer and Snyder’s purpose in constructing their mathematical model was 

predicting how a massive star would implode and how its implosion would appear to 

various observers. They wished to explore what the predictions of general relativity 

would be in these astronomical cases. Oppenheimer and Snyder identified this as one of 

the significant items for our feature set Δ, and therefore believed that it should receive the 

greatest weight. Their justification for this was in some sense an appeal to background 

                                                
28

 For Weisberg, the dynamical considerations in a model are captured in its mechanisms. One intuitive 
way to think about how this applies to general relativity is to consider the “shape” of spacetime to be the 
cause of gravitational effects. However, this is not essential, and should not be seen as an endorsement of a 
substantivalist view of spacetime, or commitment to the idea that spacetime has causal powers. General 
relativity as the “mechanism” for gravity could be redescribed as an attribute. 
29

 Recall that in the context of the weighted feature-matching equation, we are to understand “mechanism” 
in a loose sense. 
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theory. The current best picture of our physical laws indicated that general relativity most 

likely governs the physics of how these stars implode. In other words, they wanted to see 

how general relativity would predict an imploding star would behave. Therefore, we must 

weight this mechanism heavily in the S(m,t) equation.  

With this information in place, we can sketch the weighted feature-matching 

equation, and determine the weighting of the mechanisms and attributes that comprise the 

feature set. High weighting should be given to the model sharing the mechanism of 

spacetime and gravity described by general relativity 𝑓(𝑀: 	𝑇:). There is high 

weighting for a model sharing the correct attributes of the mass of the star in the target 

system 𝑓(𝑀< 	𝑇<). We give a very low weighting for the model being penalized for not 

sharing any other attributes such as the spin, charge, or density of the star 𝑓 𝑀< − 𝑇< . 

The low penalty is a result of the desire for the model to make idealizations about spin, 

charge, and density for the sake of computation. Of course, this low weighting is also 

justified by the significant amount of background theory and dynamical arguments that 

these effects are negligible. 

There is also only a low penalty for the model not sharing other mechanisms, such 

as inclusion of other probable theoretic elements, like quantum effects, that might be at 

play in the target system 𝑓 𝑀: − 𝑇: . Given that this model is intended to be heavily 

idealized, there must be a heavy penalty if the model includes attributes or mechanisms 

that the target system does not share 𝑓 𝑀: − 𝑇: 	or	𝑓 𝑀< − 𝑇< . In other cases, models 

will be assessed using different coefficient values, which determine different penalties for 

dissimilarity. But given that the model is constructed almost entirely from idealizations 

and background theory, these are the appropriate values.  

It is important to bear in mind that these decisions related to the penalties are not 

arbitrary or left up to the modeller’s whim. When evaluating what features are relevant 

given a particular modeling goal, theory plays an important role. In cases in which there 

is strong background theory to draw on, what the model will be penalized for including or 

not including is not a free decision on the part of the modeller. What is important to 

include is determined by the theory. However, there are instances in modeling where 
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there is not much, or any, background theory. Models that have less background theory 

and are constructed almost entirely from data will have different priorities and weighting. 

However, by requiring explicit formulation of the weighted feature-matching equation, 

the justification for these decisions is more transparent. In cases in which there is not a 

strong commitment to a particular background theory, it is even more important to pay 

attention to why a modeller might include certain features as necessary (and thus the 

modeller might judge a model to be more or less similar).  

Taken together, this information comprises the content of a weighted feature-

matching equation, which can then be joined with our other elements to compose the 

following hypothesis statement: 

The Oppenheimer-Snyder model is similar to the target system, a massive 
imploding star, for the purpose of predicting behavior of the system, to 
similarity degree S(m,t), where S(m,t) =  

'((*+ 	,+)	./((*0∩	,0)
'((*+ ,+)	./((*0∩	,0).	2( *+3,+ 	.	4( *03,0 .	5( ,+3*+ .	6((,03*0)	

		

where θ, ρ, γ, δ >> α, β. 

However, this does not yet fix a value of S(m,t), as we have not determined the weighting 

function f(•).  

As I argued in the previous section, it is clear that the weighted feature-matching 

account of similarity is a useful tool for capturing the details of the model construction 

process, particularly the judgements and justifications of what to prioritize for inclusion, 

and why. However, it is not clear what additional value is gained by calculating the 

similarity score. In fact, most of the interesting, valuable information has been detailed, 

and calculating a numerical value may lead to ignoring that information. To this extent, 

my first criticism of the weighted feature-matching account is justified: Although the 

weighted feature-matching equation is an extremely useful tool for forcing explicit 

discussion, recording the relevant considerations that went into the judgements made by 

the modellers during the construction of the black hole model, and showing how the 

construction of the O-S model was justified as being similar to the target system given its 
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intended purpose, providing a numerical score does not offer anything new, anything that 

has not already been captured by the analysis above.   

2.5.2 Same Model, Target, and Purpose: Different Weighting 

The Oppenheimer-Snyder model provided an account of the gravitational collapse of a 

star. The model contained features that were weighted highly and did not include extra 

features that were not needed. Overall, the O-S model can be evaluated as having a high 

degree of similarity with respect to the target system for the purpose of predicting the 

behaviour of the system. The Oppenheimer-Snyder model is simple enough to be able to 

compute predictions about what happens to the spacetime both on and outside the star, 

and for this purpose it was not necessary to include other features in the feature set. 

Table 1: Weighted Features of the Oppenheimer-Snyder Model. 
 

Weighted Features of the Oppenheimer-Snyder Model  
Feature Set Δ Weight Model Feature Target Feature 

Features Shared in Feature Set 
Mechanism: Gravity High GR Spacetime  GR Spacetime 
Attribute: mass High At least 3 𝑀⨀ At least 3 𝑀⨀ 

Features Not Shared in Feature Set 
Attribute: non-spherical Low spherical  non-spherical 
Attribute: angular 
momentum (spin) 

Low No yes 

Attribute: density 
 

Low Uniform Center: high & lumpy 
Outer: low & lumpy 

Attribute: shock waves Low No yes 
Attribute: outpouring 
radiation 

Low No yes 

This table provides a summary of the mechanisms and attributes of the model and target system, 
and their relative weightings in our formation of S(m,t). 

However, the community of researchers interested in black holes soon wanted to 

investigate what would happen to these stars over a longer timeframe and to make 

predictions about the system on the timescale of billions of years. Their purpose remained 

the same—modeling what would happen to their target system of an imploding star for 

the purpose of predicting how this system would behave. Their target system also stayed 
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the same, a massive imploding star. Yet a correct analysis would should now evaluate the 

O-S model as having a low similarity with the target system. What has changed?  

When the similarity of the O-S model to the target system is assessed relative to a 

longer time scales, the O-S model should receive a lower similarity score. While spin and 

charge are not relevant features for the model on short timescales, they may be needed 

when we are interested in longer timescales30. But perhaps most importantly, on longer 

timescales, quantum vacuum fluctuations have an important effect as a mechanism in the 

target system, leading to black hole evaporation (Hawking 1974). When examining 

longer timescales, these features start to have an impact and thus are necessary inclusions 

for a mathematical black hole model. They require a heavy weighting as attributes in the 

feature set31. The model should be penalized for not sharing this attribute with the target 

system. The modeller is dealing with the same target system, a massive imploding star; so 

the model has the same feature set, same attributes, and the same mechanisms. It even has 

the same purpose: predicting the behaviour of the target system. As such, nothing in these 

three elements (target system, model, and purpose) permits us to change our weighting in 

light of the model missing the spin and charge attributes and quantum fluctuation as a 

mechanism. 

The motivating change was a desire to be able to predict and describe what 

happens to the imploding star over a longer timescale. In order to see what happens over 

a longer timescale, we need to change the weighting of some of these attributes and 

mechanisms that compose the feature set. We need to see a change in the weighting 

function f(•), or the coefficients32. But since, according to Weisberg, the similarity 

                                                
30

 Hawking radiation depends only on the mass, angular momentum, and charge of the black hole. 
However, spin and charge need not be accounted for in the model. Page (1976) calculated the power 
produced and the time to evaporation for a nonrotating, non-charged Schwarzschild black hole.  
31

 Accounting for spin and charge in the mathematical model for black holes is what led to the prediction 
that over extremely long periods of time, black holes undergo black hole evaporation, also known as 
Hawking radiation.  
32

 If Weisberg allows us to change f(•) without changing the purpose, it is hard to see how we could 
compare the similarity of different models that were developed for the same purpose since their similarity 
score could depend on different f(•). 
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relation supervenes on the construal, and on the purpose, changing the elements of the 

equation must reflect a change of purpose. Yet in this case we are not changing our 

purpose, as we are understanding purpose to be about providing a prediction. What is 

changing is another element that is not explicitly included in Weisberg’s account—the 

domain of application.  

According to Weisberg, the possible purposes of models are to describe, to 

predict, or to explain. However, I believe there is an additional component that must be 

accounted for in a discussion of purpose: the domain of the model’s application. By 

domain of application I mean a scale at which the model is intended to apply—for 

example, over a particular time or distance scale. Every model makes certain 

approximations and idealizations that make it the case that its predictions, explanations, 

or descriptions are only accurate relative to a certain time, distance, or size scale. For this 

reason, I argue that each model has an implicit time, distance, or size relevancy that 

makes it potentially inappropriate to apply to other scales. This is the domain relativity of 

the model. It may not be obvious that this is something important to include, or even that 

it is different from some of the elements that have already been discussed. However, we 

want to say how constructing a new, different hypothesis statement for the same model—

representing the same target system and constructed for the same purpose—must 

acknowledge and account for a shift in the intended domain of application.  

In the case of the O-S model, on Weisberg’s understanding, we have the same 

target system and the same purpose. However, because we want to look at more than the 

initial collapse, our domain of application needs to inform and provide us with a different 

weighting to both f(•) and the coefficient values in the construction of the model. 

However, Weisberg does not seem to allow for this kind of flexibility in his account. For 

example, he says: 

For a given target and scientific purpose, the equation lets us evaluate the 
relative similarity of a number of models by scoring them. Moreover, 
when multiple plausible models have been proposed, this expression helps 
us isolate exactly where they differ (Forthcoming, 12). 
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This indicates that when one fixes the purpose and target system, that fixes the weighting 

function and coefficient values in S(m,t). The resources that Weisberg uses to 

characterize purpose have not included a distinction between different domains of 

application. As currently formulated, Weisberg’s account does account for the domain of 

application as a factor that can change our weighting.  

The O-S model’s intended purpose is to predict the behaviour of the target 

system.  In the first application, we only want to predict what happens when the star 

collapses. In the second application, the question under investigation is what happens 

when to the collapsed star over a much longer period of time. In the second application 

we still have the same model, the same purpose, and the same target system. But there is 

some reason the model is not going to be similar enough to the target system in the 

second application. This reason is related to the change of the timescale, not a change in 

purpose. It is only over a longer time scale that you need to account for aspects such as 

spin, charge, and quantum fluctuations. However, in the way Weisberg has formulated 

how to determine the weighting, it is the purpose alone that determines what goes into the 

model, without any mention of purpose being relative to a domain. He has not explicitly 

allowed for a change in a domain of application to change the weighting. 

One possible way Weisberg might attempt to solve this problem is by building the 

domain of application into the purpose (e.g. the purpose of predicting the behavior of the 

black hole over the scale of millions of years). While this strategy might be successful, 

Weisberg has discussed purpose simply as it relates to the action of describing, predicting 

or explaining, and not in a more fine-grained notion. Purpose is the role the model is 

intended to serve, but one should also explicitly acknowledge the bounds at which the 

model successfully aims to serve that purpose. As I propose below, such a qualifying 

modifier should be included explicitly to supplement the purpose as characterized by 

Weisberg. Furthermore, I advocate for the explicit inclusion of domain of application in 

the hypothesis because its effect on the weighting function f(•) is comparable to that of 

purpose. Therefore, it is just as important to make it a component of the hypothesis 

explicitly. 
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Another possible reply is that Weisberg has accounted for domain of application 

in his understanding of scope, which informs the modeller which aspects of the potential 

target phenomena are intended to be represented by the model, or even in the definition 

of the target system itself. If this is the case, Weisberg has given little in the way of 

textual evidence that this is his intention. Furthermore, given the points I have raised 

through my case study, the domain of application has not been accounted for in purpose 

either; yet domain needs to be accounted for explicitly. Either Weisberg has omitted the 

domain of application from his discussion of purpose and scope, or it is not clear that this 

is something he has considered and included in his account.  

However, I do not think my critique here is detrimental to Weisberg’s account. 

The similarity account he offers certainly will allow for the domain of application to be 

part of a modeller’s intended scope. Yet there must be a way for the domain of 

application aspect to feature in the equation. As currently formulated, scope alone allows 

for such information to bear on the equation. If domain of application should permit us to 

change the weighting of the similarity relation, then this it must be accounted for 

explicitly. 

An improved account must explicitly include the importance of the domain of 

application. I propose that this is done through inclusion explicitly in the form of the 

similarity relation hypothesis:   

Model M is similar to target T for scientific purpose P over the domain of 
applicability d to degree S(m,t).  

Domain of application should be seen as the final element that will specify the 

components of S(m,t). Providing a different S(m,t) equation (i.e. different f(•), and 

coefficient values) can be done simply by considering a different domain of application. 

This modification to Weisberg’s formulation of the hypothesis addresses the problems 

raised by the black hole case study. This addition makes my formulation the strongest 

candidate for an understanding of model evaluation at the construction stage as an 

assessment of similarity relations. A more complete hypothesis will pay explicit attention 

to the impact domain of application has on similarity judgments. The means by which we 

evaluate models is specific to domains, and modifying the similarity relation to capture 
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these complexities is going to allow for modellers to have a better tool to use, and a better 

sense of how their model’s construction has been justified.  

2.6 Conclusion. 

With these modifications in mind—using the weighted feature-matching equation only 

pragmatically and including the domain of application explicitly in the hypothesis 

statement—I have provided the strongest version of the similarity relation for model 

evaluation at the construction stage. A similarity relation hypothesis is an extremely 

informative and effective way to formulate a hypothesis statement. It forces us to 

enumerate the elements of the target system we have chosen to include in the model 

explicitly. It also requires the modeller to provide a justification of what has been 

included in the construction of a model, and of the way our evaluation of the construction 

is relativized to a purpose within a certain domain of application. All modellers must 

have these bounds defined in order to evaluate their models with respect to their intended 

purpose and to guide further application of a model beyond the original purpose. 

In the next chapter I return to evaluating the two possible formulations of the 

hypotheses—as adequacy for purpose hypothesis statements and the modified similarity 

relation hypothesis statements—in order to determine if one of these forms for 

hypotheses should be preferred over the other. I will argue that they are both essential 

elements of model evaluation but must be understood as evaluations of different 

components of a model.  
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Chapter 3  

3 Evaluating Hypotheses about Models 

3.1 Introduction  

Understanding model fit requires answering three questions: What is the target of 

evaluation?  What form should the hypothesis statements take? And finally, how should 

the hypothesis be evaluated? In the previous chapter, I established that model evaluation 

is not about evaluating the truth of the model itself, but rather evaluating a hypothesis 

about the model’s effectiveness or utility. I introduce two ways in which to form 

hypotheses about models. One focuses on evaluative standards concerning whether a 

model is adequate for a certain purpose; the other assesses if the model is similar enough 

for the purpose. I have argued that Weisberg’s similarity relation hypothesis, “model m is 

similar to target t for scientific purpose p to degree S(m,t)”, must be modified to account 

for domain of application, and I have offered the following reformulation: “model m is 

similar to target t for scientific purpose p over domain of application d to degree S(m,t)”. 

I have also argued that the weighted feature-matching equation, S(m,t), is an extremely 

useful tool for explicitly capturing the modeller’s justifications of the relation between 

the target system and model, although its utility does not stem from calculating a 

numerical 0 to 1 score.  

In this chapter, I will return to the question of whether the adequacy-for-purpose 

hypotheses should be favored over the similarity-relation hypotheses as best capturing 

evaluation of model fit in scientific practice, as well as the question of how model fit 

should be evaluated through such hypotheses. At first, it may seem that the two possible 

forms for the hypotheses are both evaluating the same thing about the model. By 

examining how Parker and Weisberg respectively propose to evaluate their hypotheses, 

however I argue that each hypothesis actually has a different target of evaluation.  

This argument proceeds as follows: Weisberg’s proposed evaluation of model fit 

involves two types of fidelity criteria—dynamical and representational. I argue, however, 

that there is a conceptual distinction between the evaluation done by assignment and 
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scope on the one hand, and the work done by the fidelity criteria on the other. 

Assignment and scope provide information about how the model represents the target, 

whereas fidelity criteria evaluate how closely the output of the model must fit the real 

world phenomena in order to be considered an adequate representation. Given that the 

fidelity criteria are concerned with evaluating the adequacy of the model, there may be 

reason to think that the fidelity criteria are actually assessing adequacy in Parker’s 

adequacy-for-purpose sense. I argue this is not the case either, given that Parker is not 

evaluating adequate representations, but rather whether a model is an adequate tool, 

effective for the purpose to which it is put. 

In light of this analysis, I argue that aspects from both similarity and adequacy 

need to feature in an account of evaluation of model fit. The two hypotheses work 

together in the following way: An assessment of a similarity-relation hypothesis is 

involved when evaluating the relation between the model and the target system during the 

model’s construction. For this component of model evaluation, we should employ my 

modified similarity-relation hypotheses (from Chapter 2). Evaluation of the model’s 

adequacy for purpose is about evaluating the output of a model and comparing it to the 

equivalent output phenomena of the real world. These two aspects are different in that an 

assessment of adequacy is concerned with evaluating what the model does and its 

effectiveness for that aim, while assessment of similarity is concerned with evaluating 

how the model represents. I argue that it is only when we take both hypothesis statements 

together, that we evaluate the overall fit of the model. 

I propose a framework in which assessment of model fit is understood through 

four components. The first component involves constructing the model and establishing 

the similarity relation via the weighted feature-matching equation. The second 

component involves obtaining through reasoning or calculation an output from the model. 

This component also involves determining what would be observed as the output in a 

certain test situation if the model is effective or adequate for the purpose. The third 

component involves comparing and evaluating the level of agreement of the model’s 

output with the analogous output from the target system. The fourth component involves 

an assessment of the model’s overall fit through a final evaluation of our two hypotheses. 
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The assessment of the adequacy-for-purpose hypothesis addresses whether the model is 

qualitatively or potentially quantitatively satisfactory for the purpose at hand. The 

similarity relation hypothesis statement addresses the standards by which the model is 

assessed to be similar to, and representative of, the target system for the given purpose. 

3.2 Methods of Evaluating the Hypothesis  

The two kinds of hypotheses under consideration are the adequacy-for-purpose 

hypotheses and my modified similarity-relation hypotheses, which take the following 

forms: 

Modified Similarity-Relation Hypotheses: Model M is similar to target 
T for scientific purpose P over the domain of applicability d to degree 
S(m,t) (where S(m,t) is the weighted feature-matching equation).  
 
Adequacy-for-Purpose Hypotheses: Model M is adequate for intended 
purpose P. 

At first glance, it might seem that these two hypotheses intend to evaluate the same 

thing—whether the model is good enough for its intended purpose. That is, while the 

hypotheses have different forms, it might be the case that, in examining how model fit is 

understood, what is being evaluated, and how that evaluation proceeds, it turns out that 

the two different hypotheses actually have the same target of evaluation. In this section, I 

will examine how the hypotheses are to be evaluated. Parker and Weisberg have each 

provided accounts of how to evaluate these hypotheses, which I will use as the basis for 

my analysis. As mentioned in Chapter 1, Parker and Weisberg have thus far provided the 

most detailed discussion of these two approaches to assessing model evaluation, which 

makes their positions the natural starting point for my discussion. In §3.3, I examine what 

the differences might be in their evaluation processes and argue that the two hypotheses 

are not evaluating the same aspects of a model and have different targets of evaluation. In 

light of this, I argue that rather than thinking one hypothesis is better than the other, there 

is plausible reason to think both are useful as components in understanding the success of 

models. The similarity hypothesis is about the model’s representational success, while the 

adequacy-for-purpose hypothesis is about the model’s output and assessing its usefulness 
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as a tool. These components of assessment are related but conceptually distinct. Their 

distinctness follows from the fact that they have different targets of evaluation33.  

3.2.1 Evaluating Similarity-Relation Hypotheses  

While I have proposed a modified form for the similarity-relation hypotheses, I will take 

Weisberg’s proposed methods for evaluations of his version of the similarity-relation 

hypothesis as the basis for my account of evaluation34. For Weisberg, evaluation of the 

similarity-relation hypothesis is about assessing the “goodness of fit” between the model 

and the target system. The aspects of this evaluation are captured through the model’s 

construal—the relevant intentions of the modeller. Recall, the construal of a model is 

composed of four parts: assignment, scope, and two kinds of fidelity criteria. Assignment 

and scope track how the real-world phenomena are intended to be represented in the 

model. The fidelity criteria provide the standards modellers use to evaluate a model’s 

ability to represent the phenomena (Weisberg 2013, 39; 2007, 123). On this view, 

similarity assessment is a central component to fit. For a model to fit, and therefore be 

successful, it must be grounded in the similarity relation. 

It is important to note that the notion of similarity employed in Weisberg’s 

account is not a strict sense of similarity—it is not to be understood as a one-to-one 

mapping or as requiring that all features or relations of the target system must be 

preserved or “fit” with the model. Rather, the fidelity criteria provide the acceptable 

standards: 

… model-target fits do not necessarily put equal weight on all aspects of 
the model and target, nor are they uniform in the degree of fit that must be 
established between each property of the model and of the target. The 
modeler’s fidelity criteria will specify which properties must fit, and to 
what degree they might fit (2013, 93). 

                                                
33

It is true that a model that is successfully similar for a purpose is more likely to be adequate for that 
purpose. However, this connection is not necessary and needs to be assessed in each case. 
34

 The changes that I proposed are relevant only in that they add to the specification in the construction of 
the model (via domain of application) and exclude evaluation of a numerical score.  
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While fidelity criteria play a central role for evaluation of model fit, Weisberg 

unfortunately provides little specific detail about the fidelity criteria. What he does say, 

however, is that they are the standards for evaluating a model’s ability to represent 

phenomena (2007, 219; 2013, 39), in that they tell us “how similar the model must be to 

the world in order for it to be an adequate representation” (2013, 41; 2007, 221).  

He also identifies two types of fidelity criteria—dynamical and representational. 

Dynamical fidelity criteria focus only on evaluating the output of the model and dictate 

how close the output of the model must be to the output of the real world phenomena 

(2007, 221; 2013, 41). One way in which these criteria are specified is as error tolerances; 

for example, the output of the model must be within ±5% (2013, 41; 2007, 221). While 

dynamical fidelity criteria determine if the model’s outputs are close enough (for 

example, if the model is making the right predictions), representational fidelity criteria 

“go beyond this” and “assess whether the output is being provided for the right reasons, 

e.g., predictions are made for the right reason” (2007, 221; 2013, 41). While Weisberg 

calls this “representational fidelity”, it really has more to do with grounding the output of 

the model in the representation that has been built into the model via the similarity 

relation. These “right reasons” for the model producing its output must be because the 

model accurately represents the target system in certain ways. This relation is captured in 

the weighted feature-matching equation, S(m,t). What is being assessed by this fidelity 

criterion is whether the model’s representation of the target system continues to be 

adequate when the output of the model is considered.  

It is important to notice that there is a conceptual distinction between the work 

done by assignment and scope, and the work done by the fidelity criteria. Assignment and 

scope provide information about how the target system is intended to be represented in 

the model. Fidelity criteria do importantly different work; they evaluate how closely the 

output of the model must fit the real world phenomena. It is only after examining the 

model’s output that one can determine if the modeller’s decisions about what to include 

(or not include) in the model were sufficient.  
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Drawing this distinction between assignment and scope, on the one hand, and the 

fidelity criteria on the other much more sharply than Weisberg does also brings out two 

features: First, this distinction indicates that there are two different components to the 

evaluation of a model. Assignment and scope should be thought of as doing some 

evaluative work, as they indicate what aspects of the model are intended to be 

representative of aspects of the target system. However, this evaluation is different from 

the evaluation connected to the fidelity criteria. Assignment and scope assess the model’s 

similarity relation relative to the target systems during construction of the model and 

establish what the modeller considers to be important properties of the target system that 

the model should (or should not) have. The fidelity criteria assess the success of the 

model, but only after we obtain an output from it.  

Second, this distinction also provides a clearer understanding of what similarity 

means in an evaluation of the similarity relation. It is grounded in reasoning about the 

properties of the system and determining which of those features are to be included or 

not. This claim is not about similarity in a strong sense. Rather, it is about a modest 

similarity focused on identifying what properties and features of the target system stand 

in relation with each other for the intended purpose of the model, and if the model does 

indeed have those properties. A modest similarity relation grounds the reasoning about 

the properties or features that are in the model. What the similarity relation specifies is 

that the model has properties that make it suitable for the purpose for which the model is 

constructed. For example, if the model was constructed to serve the purpose of predicting 

the way tree leaves move in the wind, then, even before assessing how well the model 

performs, we need to establish that something in the model stands in a similarity relation 

to the leaves and the wind. The weighted feature-matching equation captures these 

decisions. Should a model be evaluated as not doing a good enough job at predicting the 

way in which leaves move in the wind, the modeller can determine if this is a result of the 

model failing to have a feature that is similar enough to the relevant features of the target 

system. 

The target of evaluation in similarity relation hypotheses, then, is an evaluation of 

the ways in which the model is similar to the target system at the construction stage 
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through establishing S(m,t), as well as an evaluation of whether an appropriate level of 

similarity is maintained once an output from the model is obtained. A modeller first 

characterizes and determines what are the important features (attributes and mechanisms) 

of the target system to include in the model’s representation. These features are 

established in the similarity equation through our weighting of the features we have 

evaluated to be important and the degree to which their presence, or absence in the model 

should be weighted or penalized. This evaluation takes place in the process of 

constructing our weighted feature-matching similarity equation. At this point, the 

modeller establishes how the model represents or fits with the target system. This aspect 

of fit provides epistemic justification for the model having properties that make it suitable 

for use. Only after we have constructed this equation do we turn to evaluating if the 

established degree of similarity is similar enough with the aid of our fidelity criteria—

they fix the level of accuracy demanded. 

Recall that I have argued that we should understand the fidelity criteria as 

identifying a very different component of the overall assessment of the model. Rather 

than assessing the ways in which the model is similar to the target system, the fidelity 

criteria are concerned with evaluating how closely the model output must match the 

world in order to be considered an adequate representation. Fidelity criteria assess the 

success of the model, but only after we obtain an output from it. What is unclear is 

whether fidelity criteria are best understood as assessing similarity in Weisberg’s sense, 

or assessing adequacy for purpose in Parker’s sense. I want to set this question aside for a 

moment, and instead examine how Parker characterizes the target of evaluation of model 

fit as a comparative assessment of the output of a model relative to the equivalent output 

phenomena of the real world. 

3.2.2 Evaluating Adequacy-for-Purpose Hypotheses 

To assess if a model is adequate for its purpose, Parker proposes the following means of 

evaluation:  

In order to argue that we have confirmed or disconfirmed such an 
adequacy hypothesis, we will need to (i) determine what we are likely to 
observe if it is true that the model is adequate for the purpose(s) of interest 
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and then (ii) check how well what is actually observed fits with what we 
are likely to observe if the model is adequate. If what is actually observed 
fits well enough, then the observation confirms the hypothesis that the 
model is adequate for the purpose(s) of interest (2009, 237; see also 
discussion from Parker 2010, 7-8).  

With respect to (i), Parker argues that determining what should be observed in a chosen 

test situation, assuming the model is indeed adequate, is not simple. Providing an 

argument for what should be observed if the model is adequate is relatively 

straightforward in cases in which the model output can be compared directly to the 

equivalent output data. That is to say, it is relatively easy to check that a model is able to 

reproduce the data that have already been obtained. However, it is much harder, or even 

impossible, to provide an argument about what should be observed if the model is to 

serve an explanatory or predictive role. This is due to there being no simple, general 

principle that can be applied to help identify what one is likely to observe if the model is 

adequate for the purpose of explaining and predicting (2009, 242). Since a modeller 

would not know what to expect as an output from the model, that would undermine their 

ability to assess the model and thus have confidence in its outputs. In the case of 

simulating, or accounting for data already obtained, the modeller already knows what 

they are likely to observe—the model will be able to reproduce the data. However, if the 

purpose of the model is to serve an explanatory or predictive role, they often do not know 

what they are likely to observe.  

Parker notes that the evaluation of the hypothesis may be quite challenging; 

without being able to assess the first part (i), we cannot move on to the second part of 

comparing what is expected to what is actually observed (ii). That is to say, if it cannot be 

determined what to expect as an adequate output provided by the model, then one does 

not know what to be looking for in actual observations to compare the model’s output 

against. Adequacy is about selecting a model with properties that are suitable for the 

tasks at hand. 

The target of evaluation, then, is a comparative assessment of the output of a 

model to the equivalent output phenomena of the real world in order to assess if it is 

suitable for a particular purpose. This evaluation, however, is extremely difficult due to 
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the fact that little else follows from a successful model about either the target system or 

model, leaving it unclear what the modeller should find in various test situations if a 

model is adequate for a purpose, unless they have additional information about the model 

and the target system. Parker notes that in such situations, “Perhaps the best that scientists 

can do is to draw on what led them to think that the model might be adequate in the first 

place” (Parker 2010, 9). This theme will be taken up in chapter 4 in discussing what 

justifies inferences about a given model being applied in novel situations. For now, I will 

take this account of evaluating adequacy and compare it to the fidelity criteria involved in 

assessments of similarity.  

3.3 Why Fidelity Criteria and Assessment of Adequacy for Purpose are 
Different 

Adopting the means of evaluation of adequacy-for-purpose hypotheses from Parker, the 

evaluation has two parts,  

i. determine what we are likely to observe if it is true that the model is adequate for 

the purpose(s) of interest, and then  

ii. check how well what is actually observed fits with what we are likely to observe 

if the model is adequate. 

Returning to my earlier question, do fidelity criteria evaluate the same aspect as adequacy 

for purpose? If so, it might be the case that similarity and adequacy have the same target 

of evaluation. If not, it may be that there is more to model evaluation than just assessment 

of adequacy. I will address this issue, one kind of fidelity criterion at a time. 

It might seem as though the dynamical fidelity criteria are attempting to formulate 

something similar to part (i), in which the goal is to determine what the model would 

predict if it were adequate. However, the dynamical fidelity criteria are used to evaluate 

how close the output of the model must be to the output of the real world phenomenon. 

This makes it seem as though the dynamical fidelity criteria are intended to make a 

comparison similar to part (ii), in which we compare the model’s output to the actual 

observations of the real world.  
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Should the dynamical fidelity criteria be understood as Parker’s (i), (ii), or as 

something else? I do not think the intentions behind the dynamical fidelity criteria are to 

be understood as the same as step (i). And Parker’s step (ii) is not exactly the evaluation 

that these fidelity criteria intend to capture either. Given that both kinds of fidelity criteria 

are used in conjunction with a similarity relation, it follows that the dynamical fidelity 

criteria are not directly comparable to these two steps. Rather, the dynamical fidelity 

criteria, given their role as part of a modeller’s construal, are judgements about the degree 

to which the modeller would consider there to be a close enough similarity between the 

model and the target. The only difference is that the fidelity criteria evaluate the 

similarity of a model output and analogous target system output, i.e., the comparable 

output in the real world.  Weisberg says that this judgement is similar to that of error 

tolerances. The evaluation connected to the dynamical fidelity criteria assess to what 

extent the model’s output can be different from our real world observations. This analysis 

then further informs, and supports the assessment of the ways in which the model is 

similar to the target system.   

If the dynamical fidelity criteria are used to evaluate what is acceptable similarity 

between a model’s output and the real world, perhaps the representational fidelity criteria 

are comparable to the adequacy-for-purpose evaluation components (i) and (ii). This is 

not the case either. The representational fidelity criteria “give us standards for evaluating 

how well the structure of the model maps onto the target system of interest” (Weisberg 

2013, 41) and “specify how closely the model’s internal structure must match the causal 

structure of the real-world phenomenon to be considered an adequate representation” 

(2013, 73). The representational fidelity criteria aid in determining whether the model 

makes the right predictions for the right reasons. This commits to more than simply 

adequacy for purpose, as there is nothing in the assessment of adequacy for purpose that 

directly addresses the complicated evaluation of causal structure matching. We see here 

that similarity assessments again aim at a different kind of evaluation than adequacy for 

purpose assessments.  
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3.4 More Than One Evaluation of Model Fit 

In constructing a model, modellers make evaluative decisions in determining what about 

the target system is important for the model to include and how the model’s inclusion of 

certain elements of the target system, or lack of others, should be weighted in the 

weighted feature-matching equation S(m,t). As I argued in the previous chapter, we can 

make an assessment of the model construction, and the model’s similarity to the target 

system through understanding how the scope and purpose of the model inform the 

establishment of an S(m,t) equation. Yet Weisberg thinks it is the fidelity criteria that 

allow for the evaluation of whether S(m,t) is similar enough, and ground our evaluation of 

the degree in the hypothesis statement, “model M is similar to target T for scientific 

purpose P over the domain of applicability d to degree S(m,t)”.  

Should the fidelity criteria be understood as identifying a very different 

component of assessment? Rather than assessing in what ways the model is similar to the 

target system, the fidelity criteria are concerned with evaluating how closely the model 

output must match the world in order to be considered an adequate representation. 

Fidelity criteria aid in determining if a model is an accurate representation of the real 

world from the perspective of the intended uses of the model. 

However, before we even can evaluate if the output of the model is useful, we 

must have already made evaluative claims about the model’s construction. If the fidelity 

criteria are our standards for evaluating how close the model output must be to the target 

system in order for it to be adequate representation, then we need to be clear about how 

claims of this kind of adequacy are grounded. These are grounded on our assessments of 

similarity that are made during the construction of the model. What needs to be 

recognized is that there are two components to the assessment of the model fit—

similarity as it relates to the evaluation of the model’s construction relative to the target 

system and purpose, and the adequacy evaluation of the model’s output for a particular 

purpose.  

I argue that we should consider assessing similarity and assessing adequacy as 

two conceptually distinct components of evaluation. The modified similarity-relation 
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hypotheses provide an understanding of how to assess similarity through the weighted 

feature-matching equation. The fidelity criteria ultimately are not the same sort of 

evaluation as the assessment of adequacy-for-purpose. They are different because their 

target of evaluation is different. Fidelity criteria support the assessment of the similarity 

relation being adequate and do different work than assessments of a model’s adequacy 

for its intended purpose. 

3.5 Assessment of Adequacy for Purpose, or Similarity? 

This brings us back to the question of whether one of these assessments should be 

preferred over the other. Thus far, I have argued that the account of the similarity relation 

I am drawing on has implicitly identified two components of evaluation, both related to 

assessing similarity. The first relates to establishing similarity during the model 

construction; the second relates to comparing the output of the model to the comparable 

output of the world35. This second kind of evaluation, which utilizes the dynamical and 

representation fidelity criteria, may seem comparable with an assessment of adequacy for 

purpose. However, I have argued that the dynamical and representational fidelity criteria 

achieve something different as a result of the target of their evaluation being the 

similarity relation.  

Yet, adequacy for purpose includes a kind of evaluation that has not yet been 

accounted for. Adequacy provides the means which enable a modeller to evaluate more 

than just how a model is similar to the target system (and likewise for the model output). 

It is through assessments of adequacy that the model is evaluated for its usefulness or 

                                                
35

 Recall from Chapter 1, all models are considered to produce an output. The simplest case is a predictive 
model, where the output is a future (or past) state of the target system. But other things can count as outputs 
as well. These can be structures in the model itself that can feature in an explanation, or a description of the 
target system. Which outputs are of interest will depend on how we are using the model.  

I am employing “output” in a broader sense than is traditional. An output is purpose-dependent and can 
vary based on what question the model is used to answer. This can include, in addition to questions about 
predictions, questions related to interrelations of the structures in the model itself, or questions related to 
what the model represents. While this may seem like a strange usage, the reason I am doing this is so that I 
can talk about the different ways in which we employ models, using the same terminology. 
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effectiveness for a given purpose for which it has been constructed. An assessment of 

usefulness is importantly different from assessment of representation. 

My discussion thus far has identified two ways in which a model might be 

understood to fit, or be successful. On one hand, it can fit when it is similar in certain 

respects to the target system it intends to represent, and the output of the model can be 

similar to the real world. On the other hand, a model can fit and be considered successful 

if the model is adequate or useful for the job or purpose it was designed to serve. It is 

plausible that scientific models can be evaluated relative to each of these two dimensions, 

and the different evaluations can have different epistemic value.  

For example, consider a model constructed to have an extremely high amount of 

similarity, such as a 3-D paper model of a tree in which the model contains exactly the 

same number of leaves as the tree, same patterns in the trunk. And if wind passed through 

the leaves, the model provides a similar enough demonstration of the ways in which the 

leaves move. However, this model would not be adequate for providing an explanation of 

how the tree came to have its particular shape. Likewise, it is possible to design a 

mathematical model that provides extremely accurate predictions for a system, yet was 

designed ad hoc with no consideration for having any similarity with the actual target 

system36. 

For these reasons, I propose a framework for assessment of model fit that involves 

components of both similarity and adequacy. The framework assesses how the real world 

phenomena are intended to be represented in the model. This is the initial evaluation of 

the similarity relationship between the model and the target system. This is assessed in 

the context of constructing the weighted feature-matching equation S(m,t). After the 

S(m,t), similarity is assessed a second time when comparing the model output and the 

comparable target system output. This evaluation of whether the similarity is enough for 

the purpose at hand is captured through the fidelity criteria, which specify the modeller’s 

standards of similarity. My framework also includes assessing model fit in terms of 

                                                
36

 For more on this issue see discussion in Chapter 4. 
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adequacy for purpose, as it relates to the corresponding evaluative components (i) and (ii) 

discussed above. This assessment of adequacy offers to my framework something that the 

fidelity criteria do not: an evaluation of the usefulness of the model for a particular 

purpose. 

The remainder of this chapter will detail my proposed framework. Chapters 4 and 

5 will offer support for this framework as being a meaningful way to capture the 

scientific practice of evaluating model fit, as I finally turn to examining the role purpose 

plays in model evaluation (chapter 4), and then provide a case study of competing models 

from astrophysics (chapter 5). I will argue it is through assessment of both similarity and 

adequacy that one can determine if it is permissible to extend the model beyond its initial 

purpose, and justify making inferences from models to claims about the real world. I 

propose a framework for model fit evaluation that incorporates elements from both 

accounts in order to form a stronger, more complete framework for these reasoning 

processes. 

3.6 Proposed Framework 

In order to provide my proposed framework in a clear manner, I will be adapting a figure 

from Ronald Giere, John Bickle, and Robert Mauldin’s book, Understanding Scientific 

Reasoning, in which they detail four components of a scientific episode involving 

models. I have chosen this account, summarized in the figure, as my starting point, as it 

represents a fairly standard view of reasoning with models. But I will modify it in order 

to account for the points I have made thus far. It will also allow me to clearly indicate 

where the different aspects of evaluation of hypotheses about model fit come into play.  
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Figure 2: Giere, Bickle, & Mauldin (GBM) Scientific Episode. 

	
Complete picture of a scientific episode involving models for Giere, Bickle, and Mauldin (GBM) 

(adapted from 2006). 

3.6.1 Component 1: Establish the Similarity Relation 

According to the GBM account, when evaluating a model, we first establish a 

relationship between the real world and the model, expressed by a theoretical hypothesis. 

The theoretical hypothesis asserts that the model “fits” the real world. The authors take it 

that the model will fit only in some respects and to a certain degree of accuracy. If it does 

not fit to the specified degree of accuracy, then the hypothesis is false. Recall that 

Weisberg starts from Giere’s conception of a theoretical hypothesis in developing 

similarity relation hypotheses about model fit. However, models are not directly 

compared to the real world but rather to target systems, which are understood as parts of 

real-world systems37. In light of this, I modify my diagram to reflect the fact that the 

                                                
37

 For Weisberg, we can also generate hypothetical or abstract targets, or even conduct targetless modeling. 
However for hypothetical, abstract, and targetless modeling of the target system, regardless of if the 
process is that of abstractions over many phenomena, imaginary systems, or nothing at all, the process 
should still be understood as parts of real world systems.	 
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comparison of fit is between the model and a target system, which is part of the real 

world. 

Figure 3: Component 1 – Establish the Similarity Relation. 

 
Component 1 of evaluating model fit establishes the similarity relation between the target system 

and the model. 

I have also argued that the most general way to understand models is as being 

used in various hypotheses, rather than being true or false themselves. We are assessing 

the hypothesis statements, not the truth of the model itself. As such, the comparison of 

the model to the target in the above image to be understood as related to a hypothesis 

about the model. The form of the hypothesis involved here is a hypothesis that includes a 

similarity relation. Therefore, it should be understood that the first component in an 

overall account of evaluating model fit is about establishing the similarity relation 

between the model and the target system. The first part of model evaluation involves 

evaluating the initial relation between the target system, and the model being constructed. 

The first component in model fit evaluation is about determining how the real 

world phenomenon is intended to be represented in the model. This relation is 

characterized in part by the modeler’s construal, understood as the assignment and scope 

appropriate to that modeling task38. The scope specifies which aspects of the target 

                                                
38

 It is possible when assessing a model to do a rational reconstruction of the hypothetical decision-making 
process that lead to the weightings or choice of a particular similarity relation. In this sense, it can be a 
component of epistemic assessment in cases where the particular decision-making process is unavailable. 
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system are to be represented by the model, and assignment provides information on how 

that representation is achieved. This first component involves a judgement of a similarity 

relation that holds between the model and target and is captured in the establishment of 

the S(m,t) equation.   

As I argued in Chapter 2, this first aspect of evaluation involves determining what 

in the model will represent elements of the target system, and takes place via the process 

of constructing our weighted feature-matching equation for the model. In this way, 

assignment and scope are related to the choice of elements of the feature set Δ. As I 

explained in the black hole modeling example, given a certain application, the model-

target fit might be evaluated as highly similar relative to one context, and relative to other 

contexts, with different applications, the same model might be evaluated as having a low 

similarity. Therefore, specifications of the model’s domain of application at this stage 

must be made clear. 

The similarity between a model and a target system is captured by the pragmatic 

use of the elements of the S(m,t) equation. Given that similarity can be accused of being a 

subjective judgment, there is a need to be very clear about the reasons for considering the 

model to be similar to the target system.  Therefore, it is important to formulate 

statements about similarity precisely. This, I argue, is best accomplished by the modified 

similarity hypothesis statement: 

Model m is similar to target t for scientific purpose p over the domain of 
application d to degree S(m,t). 

This hypothesis embodies information regarding the ways in which the model has been 

constructed, and establishes the ways in which it is similar to the target system. The 

evaluation of the hypothesis proceeds by specifying what are the model, target system, 

scientific purpose, and domain of applicability, and how the model is similar to the target 

system, embodied by S(m,t).  

In sum, there is a clear, distinct first component in the evaluation process, which 

is best characterized by the modified similarity-relation hypothesis that contains the 

weighted feature-matching equation. The similarity-relation hypothesis establishes what 
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the connection between the model and the target system is. It also establishes the sense in 

which the modeller understands aspects of the model and the target system to be similar, 

since this part contains the modeller’s construal, which determines how we evaluate the 

first component of fit. For these reasons, it is clear that this first component of evaluation 

has its own means of establishing and evaluating an element of model fit. There are two 

components to characterizing model fit, and it is critical that we separate the two 

conceptually. The two characterizations aim to do two different things. And conflating 

the two, or failing to separate the two can lead to confusion about what in a model is 

being evaluated, and how that evaluation proceeds. 

3.6.2 Component 2: Evaluate the Model’s Output 

Returning to the GBM picture, a model next provides us with a prediction. The model 

and the prediction it provides are related by reasoning or calculation in light of 

experimental design (2006, 30). For the evaluation that takes place at this step, GBM 

states we are to “identify a prediction, based on the model and experimental setup 

identified, that says what data should be obtained if the model actually provides a good fit 

to the real world” (2006, 35). I modify prediction to instead be characterized as the 

output of the model. An output is purpose dependent, and can vary based on what 

question the model is used to answer. This can include, in addition to questions about 

predictions, questions related to interrelations of the structures in the model itself, or 

questions related to what the model represents. While this may seem like a strange usage, 

the reason I am doing this is so that I can talk about the different ways in which we 

employ models, using the same terminology. Needless to say, broadening prediction to 

include other purposes of the model, such as simulating aspects of the past, or providing 

information or an explanation about the causes of phenomena of interest, will better 

capture the complexities of what is the possible output of the model.  
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Figure 4: Component 2 – Evaluate the Model's Output 

 
Component 2 of evaluating model fit generates and evaluates the model’s output. 

Broadening the prediction component of the GBM view to output will also allow 

for capturing what is of interest in the first part (i) of evaluation of adequacy for purpose. 

The first task in evaluating model fit relative to adequacy for purpose involves 

determining what one is likely to observe if it is true that the model is adequate for its 

purpose. My second component should be seen as equivalent to Parker’s step (i).  Before 

comparing the model’s output to data, we need to, in some sense, make an evaluation of 

whether the model we have constructed is giving us a reasonable output. Of course, as 

Parker points out, this may not always be possible (2009, 2010). We may be able to 

generate the output, without being able to determine what will be observed if the model is 

indeed adequate for the purpose to which it is being put. We may not always have the 

capabilities to determine what would constitute an adequate model, even though an 

output can be generated. Regardless, it is worth at least attempting to determine what 

would follow from an adequate model and would be a reasonable output. In the event it is 

not possible to determine what an adequate output of the model would be, there will be 

other strategies in components 3 and 4 that may be useful.  



71 

 

In component 2 of model evaluation, the output from the model is obtained. By 

asking what it would mean for the model to be adequate, the modeller also starts to 

reason back about the target system and gains knowledge about where and what to look 

for back in the world. Such information can help direct research, and guide evaluation 

connected to components 3 and 4. Finally, component 2 also allows for an initial first 

check-point to determine if the model’s construction is drastically off-track. If a model 

does not adequately reproduce essential data, then the similarity relation can be re-

examined to determine what might be missing (or included) properties of the target 

system that should be included (or not included) in the model.  

3.6.3 Component 3: Evaluate Model Output/Data Fit 

The third component involves comparing the output of the model to data. These two are 

related by a “physical interaction that involves observation or experimentation” (Geire et 

al. 2006, 30).   

Figure 5: Component 3 – Evaluate Model Output/Data Fit 

 
Component 3 of evaluating model fit involves comparing the model output to the comparable 

output from the world. 
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Parker suggests in her evaluative step (ii) that we now check how well what is actually 

observed fits with what we are likely to observe if the model is adequate. In this 

component, the model output is compared to the data output through a means of assessing 

how well these match given the intended purpose of the model. This provides an 

evaluation of whether the model is adequate. Component 3 is also a comparison of 

similarity again, by establishing that the model output is similar enough to the data, and 

within a certain degree of accuracy. This evaluation employs the dynamical fidelity 

criteria. 

At this stage the ways in which the data and model output disagree are also 

identified. Very rarely do the data clearly and exactly agree with the output of the model. 

This is why it is important to decide to what degree these outputs must be similar given 

the purpose. There may also be cases in which the modeller is not able to obtain a 

comparable real world output to compare the model output against. As discussed in detail 

by Parker, it often is not clear how the features we can observe in the world relate to the 

question of whether the model is adequate for the purpose the modeller would like to use 

it for. I will reserve discussion of what is done in these instances and how this affects the 

framework until chapter 4. However, the quick answer is robustness analysis.  

3.6.4 Component 4: Assess Overall Fit 

Finally, the fourth component to model evaluation assesses the overall fit of a model 

along two dimensions—similarity and adequacy. This component is the overall 

assessment in which both the similarity and the adequacy hypotheses that are at play in 

this framework are evaluated. The adequacy-for-purpose hypothesis informs us about the 

assessment of whether the model is qualitatively or potentially quantitatively satisfactory, 

for the purpose at hand. The similarity-relation hypothesis assesses the manner in which 

the model, overall, is similar to the target system relative to the purpose for which the 

model was constructed. 
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Figure 6: Component 4 – Assess Overall Fit 

 
Component 4 evaluates the overall model fit relative to similarity and adequacy. 

The adequacy-for-purpose hypothesis obtains its assessment through comparison 

of the output of what we consider an adequate model with the comparable real world 

output. It is only with all these components on the table that one can assess if the model is 

in fact adequate for the purpose at hand. That is to say, if the model as a tool, is 

successful for the job that it is put to. We are also permitted to assess if the model, though 

constructed with a similarity relation for one purpose, can be adequate when put to a new 

purpose.  

By understanding the similarity-relation hypothesis as I have suggested, the ways 

in which the model is similar to the target system are established. The fidelity criteria aid 

in the evaluation of whether the similarity relation is satisfactory or acceptable and to 

what extent. The dynamical fidelity criteria are used to evaluate and determine what is 

acceptable similarity between a model’s output and the data of the real world. The 

representational fidelity criteria are drawn on in the overall assessment of whether the 

model is similar in the sense that it is providing these outputs for the right reasons. In this 
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way, the fidelity criteria judgements can also be used to support and articulate further 

details in adequacy-for-purpose judgements of that hypothesis. 

Geire et al. (2006) also provide detail on an underlying assumption of this kind of 

account of the model-world similarity relation. With respect to the relationship between 

the model’s output and obtained data from the real world, Geire et al. state that,  

If what is going on in the real world, including the experimental setup, is 
similar in structure to the model of the world, including knowledge of the 
experimental setup, then the data and the prediction should agree. That is, 
the data should be as described by the prediction. On the other hand, if the 
real world and the model are not similar in the relevant respects, then the 
data and prediction may disagree (2006, 30).  

The representational fidelity criteria establish our standards for evaluating how well the 

structure of the model maps onto the target system. If the data and outcome agree to the 

degree we have established based on our fidelity criteria, we have positive evidence for 

the model fit as it relates to the similarity hypothesis.  

It is this fourth component that also allows for the assessment not only of whether 

the model is in fact adequate for the purpose, allowing us to determine the extent to 

which our adequacy-for-purpose hypothesis is true, but also allows for evaluation of the 

similarity-relation hypothesis as well. It is the evaluation of both of these elements, taken 

together in this framework, that allows a modeller to say that their model fits, both with 

respect to both target system, and data outputs39. 

                                                
39

 It is important to note the complexities involved in evaluating the strength of evidence with respect to 
assessments of adequacy. The issue of what counts as evidence for assessments of adequacy is complex, 
and as Parker herself notes, “confident conclusions about what would count as evidence that supports or 
confirms a model’s adequacy for a given purpose sometimes remain out of reach” (2010, 10). While an 
understanding of the nature of this process is still needed, further work on the role of evidence would fit in 
my proposed framework by providing further discussion of judgments made by modelers at this stage. 
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Figure 7: Complete Proposed Picture of Evaluating Model Fit.  

 

3.7 Conclusion. 

Model evaluation in this framework involves the following components: 1) a similarly 

relation hypothesis is developed based on the purpose for which the model is constructed. 

This hypothesis contains S(m,t), which is a specification of all of the ways in which the 

model is similar to the target system, along with purpose p and domain of application d. 

The model’s similarity is evaluated at the construction stage, but the hypothesis itself is 

not evaluated until later, when our adequacy for purpose hypothesis is evaluated as well. 

2) The modeller obtains an output from the model, and if able, evaluates if that output is 

reasonable. 3) The modeller formulates the adequacy-for-purpose hypothesis, and 

compares the output of the model to the data from the real world. 4) The model-data fit 

informs our evaluation of both hypothesis statements, and we synthesize these 

judgements into an overall assessment of model fit.  

There are two important considerations to keep in mind. First, the purpose for 

which the model is developed, which is encoded in S(m,t), does not need to be the same 

purpose relative to which the adequacy-for-purpose hypothesis is assessed. Second, 
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although there are four components that make up my framework, this framework is not 

committed to the idea that the components proceed in discrete steps. In actual practice, 

outcomes at later stages can influence and provide feedback on considerations made at 

earlier stages. Furthermore, there can be trade-offs between similarity and adequacy 

given that there also needs to be a certain level of tractability. A model could be 

evaluated as fitting with high similarity, in that the model includes all features the 

modeller considers relevant for providing a certain prediction, but this does not 

necessarily mean that model will be adequate for providing a prediction. Having too 

many features might make it challenging for the model to actually generate an output—

through it may have a high similarity, it will not be adequate for proving the prediction.  

Three main questions have driven the analysis over the last two chapters. With 

respect to the first question—what is the target of evaluation in model fit—I have argued 

that it is a matter of evaluating hypothesis about the model rather than evaluating the 

truth of the model itself. With respect to the question of what form the hypotheses should 

take, I have detailed two forms—adequacy-for-purpose hypotheses and similarity-

relation hypotheses—and argued they actually embody two different components of 

model evaluation. The answer to the third question, how do we evaluate the hypotheses, 

is that the evaluation of the two hypotheses are part of an overall picture of model fit 

evaluation. I suggest therefore that this account of model fit provides a more complete 

framework than others currently offered in the literature.  

This leads me to a final question: How do we get from these claims about 

adequacy and similarity of the model to claims about the real world? What justifies us in 

making inferences from our models to knowledge claims about the real world? Is there 

more to making these types of claims than appealing to these established relations of 

similarity and adequacy? One might argue that this is enough to justify our inferences, 

but is this really the case? Additionally, it is now important to turn to a question of what 

to do when there is not as much theory to guide judgements about the weighting of the 

similarity relation, as well as what to do when a modeller cannot even determine what the 

expected prediction or outcome of a model might be. What does one do if they are not 
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able to generate the outcome, and perform the complete account of model fit as detailed 

above? These questions will be the focus of the next chapter.  
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Chapter 4  

4 Making Inferences from Models 

4.1 Introduction 

In the preceding chapters I have established that evaluations of model fit should be 

understood as a matter of evaluating hypotheses about the model, rather than evaluating 

the truth of the model itself.  I examined two ways to formulate these hypotheses and 

argued that we need both a hypothesis about a model’s similarity relation relative to a 

purpose, as well as a hypothesis about adequacy relative to a purpose. These two 

hypotheses have different targets of evaluation and work together to provide an overall 

evaluation of model fit. This chapter will offer support for this framework as being a 

meaningful way to capture the scientific practice of evaluating model fit, as I finally turn 

to examining the role purpose plays in model evaluation. 

The argument in this chapter will consist of two parts. The first part is about how 

to understand model assessment. It will apply the framework I developed in the previous 

chapter to show that model assessment must be understood as relative to a purpose. I will 

develop several examples from astrophysics in detail to support this argument. Part of the 

argument requires me to establish there are at least three general kinds of purpose. The 

particular purposes to which any given model is put can be quite specific. However, I will 

argue that they fall into three general kinds: description, prediction, and explanation. The 

difference is related to the kind of output obtained from the model when attempting to 

use it for a particular purpose. The details will also become clear through the examples 

presented.   

The second part to the argument in this chapter is related to how inferences from 

the models about the world are justified. I argue that these justifications are always 

grounded in similarity between the model and the target system. My framework allows 

for the connections among similarity, adequacy, fit, and justification for inferences about 

the world to be disentangled. I begin with some preliminary arguments to set the stage. 
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4.2 Preliminary Arguments 

Claims about a model’s fit with a target system, or the success of a model, can be 

meaningfully analyzed using the framework I have developed. First, the framework 

provides a means by which to disentangle claims and the background reasoning that 

supports claims about a model’s success. Second, it provides the needed understanding 

and analysis of the source of a model’s success. This is critical for seeing how the model 

can be extended, and understanding what grounds justifications for inferences made from 

the model.  

Thus far, I have argued that assessment of model fit has two parts, assessment of 

the similarity relation and assessment of adequacy for purpose. This claim will be further 

supported in this chapter as I deploy the framework to analyze examples of models from 

astrophysics. The assessments of both similarity and adequacy are always made relative 

to a purpose. I argue that there are, in general, three kinds of purpose to which a model 

can be put. By using the framework to analyze a model’s similarity and adequacy relative 

to a purpose, I argue we gain a better understanding of how claims about model success 

can be understood.  

We also gain grounds for making inferences from the model back to the actual 

system, as well as the justification for why a model can be extended. There are three 

ways in which a modeller may want to extend the model, either 1) to a new purpose (for 

example, from using the model to predict then using it to explain why that feature is part 

of the system; 2) to a new domain of application (for example, if we think a model gives 

successful prediction on short time scales of 10 years, can it give us successful 

predictions over the next 100 years?); and 3) to real world claims (for example, if our 

model predicts x occurring, then we are justified in thinking that x will be the case in the 

real system as well). In the end, I argue that the understanding of this source of success of 

a model and the justification for seeing how a model can be extended is grounded in the 

model’s similarity relation.  

In this section, I will first provide an argument for there being three kinds of 

purpose. I then provide further details on how one can understand how the inferences 
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from models inheres in the similarity relation. With these final parts of my argument on 

the table, I will then demonstrate how the framework can be deployed as a tool to gain 

insight into evaluations and claims about models. 

4.2.1 Three Kinds of Purpose 

My framework, as developed in the previous chapter, is based on the idea there are three 

kinds of purpose that are relevant for model assessment: description, prediction, and 

explanation. One might object to this as an arbitrary distinction and claim that there is no 

reason to break purpose up in this manner, or that there are more than three kinds of 

purpose. However, I think these kinds of purpose correspond to the major goals of 

science. For example, Andersen and Hepburn (2015) characterize the aims of science in 

their article, “The Scientific Method” as: “the basic aim and method of inquiry identified 

here can be seen as a theme running throughout the next two millennia of reflection on 

the correct way to seek after knowledge: carefully observe nature and then seek rules or 

principles which explain or predict its operation”. Models are representational tools used 

in scientific inquiry for these ends. Therefore, the three-part division of kinds of purpose 

into description, prediction, and explanation is a natural way to carve up the kinds of 

questions models are employed to help answer. So, I shall invoke this classification, and, 

as will become apparent as I examine real cases of modeling, will speak in favour of the 

utility of this way of understanding purpose.  

The reason it is important to consider these different kinds of purpose is because 

they correspond to different kinds of output that modellers attempt to obtain. In the case 

of a descriptive purpose, the modeller obtains from the model an output that somehow 

represents the features present in the target system40. In the case of a predictive purpose, 

                                                
40

 These can include unknown descriptive features, which are distinct from predictions. To illustrate this, 
consider the following analogy of constructing a mental map, or model, of an old house. One walks through 
the house, representing each room in a mental map. Imagine that, if in walking through and developing the 
mental representation of the house, we realize that there must be a hidden room between the library and the 
study. What has happened is that in order for the model to accurately represent the rooms we have observed 
it must be the case that there is an unobserved feature of the house. We have not generated a prediction. 
Rather, it is a condition on the adequacy of our model as an accurate description of the house. What could 
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the modeller obtains from the model an output corresponding to a future or past state of 

affairs about the target system that is not originally built into the model. In the case of an 

explanatory purpose, the modeller obtains from the model an output that can serve as an 

explanans in an explanation of some phenomenon41.  

Furthermore, with respect to constructing a model, the purpose to which a model 

is to be put will affect what features (mechanisms and attributes) the model needs to 

include. For example, if a model is being constructed to describe the current state of a 

target system, then the model must be constructed such that it includes the relevant 

features about the target system in the present state. If the modeller wants to then use that 

model to predict a future state of the system, then the model must include the features 

that are considered relevant; for example, including relevant mechanisms would be 

essential. Of course, any model can be constructed with more than one purpose in mind, 

as well as serve more than one purpose simultaneously. However, this should be 

understood as a composite of these individual assessments made relative to the kinds of 

purpose included in my framework. A model may not always provide a satisfactory 

prediction of every aspect of the target system. Furthermore, a model that makes a 

satisfactory prediction might not provide a satisfactory explanation for why what was 

predicted will be the case. If a model is expected to give a good description and good 

prediction, those two elements must be assessed individually, relative to the standards of 

that purpose. 

                                                                                                                                            

 
be said to be a prediction is the interaction between a measuring device and the target system (in this case 
perhaps a sledgehammer breaking through a wall). However, this is an expanded model.  

Another analogy to make this point clear is the following: consider what Christopher Columbus is 
apocryphally said to have “predicted” in 1492. It might be natural to say that he predicted the world was 
round. However, that the world was round was not a prediction. What he in fact predicted was that if he 
sailed west (i.e. performed a certain test), he would find himself in Asia, thereby validating the accuracy of 
his model of the structure of the earth. His model of the earth as a sphere was a descriptive model of a 
possible way the earth was. “That the earth is round” is not an output of the model, and therefore not a 
prediction in the paradigm sense of prediction. 
41

 This account of explanation is taken from Alisa Bokulich (2011) and will be further detailed later. 
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4.2.2 Extending Models and Making Inferences.  

To summarize the point about purpose: The original intent during the construction of a 

model42 does not make it the case that the model can be used for only that purpose. A 

modeller can attempt to use any model for any purpose, and in most cases, models are put 

to many purposes simultaneously. However, a model’s success relative to one purpose 

does not entail that it will be successful for everything. My framework is a tool for 

teasing apart these distinct threads of model evaluation. Insofar as a model makes 

predictions, it is assessed relative to different criteria than it is insofar as it gives 

explanations. And the assessment of a model relative to its descriptive fit is again 

different. This is due to the difference in the relevant output of a model for these kinds of 

purpose. 

However, the success for many models depends very heavily on their success 

along a single dimension of assessment. In §4.3, I will give several examples of how 

these assessments are to be analyzed in my framework. In general, this analysis proceeds 

as follows: The model’s primary purpose is identified and the corresponding kind of 

output from the model is assessed relative to its real world analogue. If it is not possible 

to obtain the real world analogue output, then robustness analysis is deployed. 

Robustness analysis is a means to analyze the output of models, which allows us to 

determine the extent to which the model’s output might depend on particular idealizing 

and simplifying assumptions. The model output, and real world analogue output 

components are used to make an assessment of adequacy and similarity relative to the 

relevant purpose. If the model was explicitly constructed with a particular purpose-

relative S(m,t) in mind, then the similarity assessment will be relatively easy. If not, some 

reconstruction will be necessary. This purpose-relative analysis of model fit along both 

                                                
42

 Of course, it is not the case that every model is explicitly constructed with a particular purpose in mind. 
Often models are inherited from other areas in science and are applied to new cases. Those that do not work 
are discarded, and those that work are kept. What my framework offers is a tool for analyzing why these 
models are successful. I will show that it is due to a high degree of similarity. Even though similarity was 
not taken into consideration when the model was imported into its new domain of application, my 
framework offers guidance about how to reconstruct the kind of similarity assessment that grounds the fit 
of the model.   



83 

 

similarity and adequacy dimensions provides for a more meaningful understanding of the 

model. 

As mentioned above, a primary goal in using models as representational tools in 

science is to learn more about the system the model represents and answer a range of 

questions, such as: What is the best way to make sense of the observations and data that 

are being acquired? What will the future state of the system be? Why does the system 

behave the way it does? What is causing the system to behave in that way? As already 

discussed, the nature of models presents a certain challenge in making claims about the 

world based the model. Therefore, the fundamental question that needs to be answered is 

what justifies making inferences from our models to knowledge claims about the real 

world. Ultimately, this justification is important because we must have confidence that 

the results, or outputs of the model, are not simply artifacts of the particular means used 

in constructing the model.  What prevents one from directly making inferences from the 

model to the real world is the need to ensure that the features of the model are not just 

artifacts, or accidents from the representation and idealizations. 

One might think that an assessment of the model’s adequacy for the purpose 

might be enough—the model provides an output that seems reasonable when checked 

against an output from the real world and is evaluated as matching well enough; so we 

should be able to extend it. Yet I argue similarity is also a piece in the overall assessment 

of model fit. What is the relevance of a similarity assessment when we have an 

assessment of the model’s adequacy? What does an assessment of the similarity-relation 

offer that assessment of adequacy for purpose does not? The reason similarity plays an 

important role in my framework is because it grounds the inferences that can be made 

from the model. A model having a high degree of similarity relative to a purpose-

dependent S(m,t) is what grounds the inferences that can be made about the world from 

the model. It is because we can identify how the model is similar to the target system in 

the relevant ways that we can be confident in drawing conclusions about the target 

system that go beyond the information that was built into the model in the first place. 
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Wendy Parker also points out this problem. She uses an analogy of a model being 

like a tool that is known to be useful in one case. She asks what would be needed to 

extend this tool other cases? 

If a tool is suitable for removing this nail from this wall, will it also be 
suitable for removing that other nail from that other wall? The answer is 
impossible to determine … unless one considers further information about 
the tool and about the original nail and wall. … Similarly, except in 
special cases, it is impossible to determine what should be observed in a 
given test situation if a model M is adequate-for-purpose, even with the 
help of true auxiliary assumptions about the conditions of the test 
situation, unless further information about M and about the target system 
is available (2010, 9). 

Elsewhere, she says,  

…from the assumption that a model M is adequate for a purpose P, little 
else follows about either the target system or M, leaving it unclear what 
scientists should find in various test situations if M is adequate for P, 
unless they have additional information about M and the target system … 
Perhaps the best that scientists can do is to draw on what led them to think 
that the model might be adequate in the first place (2010, 8). 

Similarity plays this role in my framework. It is an explicit catalogue of the reasons and 

ways in which the modeller took the model to accurately represent the target system in 

the first place. As such, it fulfills the role of providing “further information about M and 

about the target system”. This allows for the extension of the model to new cases where it 

is known that the model is relevantly similar to the new target system, a new domain, or 

for a new purpose.  

What an assessment of adequacy alone fails to do is provide information about 

why the modeller considered the model to be adequate in the first place. Without 

knowing what underlying structures, or features (attributes and mechanisms) made the 

model a good representation of the target system, it is impossible to know why extension 

of the model is justified. But perhaps more importantly, because it lacks this feature, 

adequacy does not provide grounding for inferring from something being true of the 

model to that thing also being the case in the target system the model represents.  
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My framework provides an account of the grounding for these inferences in the 

similarity relation. While similarity may not be the only way to extend an adequacy 

account to provide grounding for these kinds of inferences, it is included in my 

framework because it is a general, useful, and comprehensive way to think about the 

process of encoding the underlying structures, attributes, and mechanisms that connect 

the model to the target system. Furthermore, the specification of features in the weighted 

feature-matching equation is what preserves the information about what has been 

included in the model and why. From the following examples, I will show that the 

similarity relation is what allows a modeller to track what relevant features are uncovered 

through model exploration processes such as robustness analysis.  

Adequacy-for-purpose assessments alone are not enough to understand the use of 

models in science.  The repeated successful applications of a model justifies further 

extension only if there is reason to believe that the model is representing features that 

actually exist in the world. Otherwise, it could be luck that the model works in all of 

those cases. Those who think assessments of adequacy provide information about the 

underlying causal structures are making an assumption about the power of the account 

that is not supported by the existing literature. As characterized by Parker, adequacy does 

not include information beyond what the model is successful in doing. For these reasons, 

similarity is the basis of the model-world relation in this framework. It is the best choice 

because using the weighted feature-matching equation as a bookkeeping device explicitly 

solves the problem Parker pointed out in the above quoted passages.  

The nature of the similarity-relation hypothesis I have proposed provides the basis 

for knowing how the model can be justifiably extended. This can either be a desire to 

apply a model to a new question for the same purpose (if model M is adequate for 

predicting x, will it be adequate for predicting y?), to different purposes (if model M 

predicted x, can it explain why x is case?) as well as beyond the original domain of 

application (if the model adequately predicts x in a certain domain, can it also predict x in 

a different domain?). It is in these cases that the importance of the similarity relation as 

part of the assessment is demonstrated.  
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In the end, there are various ways in which we want to be able to make inferences 

about the world from models. One is that causal interactions captured in the model 

represent actual causal interactions in nature. Second, we might also want the outputs of a 

model to be applied to new situations, or to stand in for evidence in instances where we 

cannot do experiments directly in the world. That is to say, a model might be created for 

a certain context or purpose, but the hope is to apply it to a new or unobservable 

situation, or a different purpose altogether. Third, we want to be able to say that we can 

trust a model that makes predictions about the future. The nature of the similarity relation 

also allows for the justification for inferences from claims about the model back to claims 

about the target system and real world. 

4.2.3 A Framework for Understanding Success Claims 

The framework I have proposed is to be a tool to use to gain a better understanding of the 

success of models. Thus far, I have analyzed hypothesis statements that take particular 

forms. How does the framework I have developed account for more realistic success 

claims that scientists actually make? I argue that these sorts of claims can be analyzed 

into more basic components that correspond to the similarity and adequacy hypotheses. 

Take, for example, the following evaluative claim:  

My structure formation model successfully describes the evolution of 
large-scale structure because it yields a two-point correlation function for 
the galaxy distribution that is tolerably close to what is observed.  

While this statement does not take the form of the hypotheses on which I have based my 

framework, I argue that a claim like this is actually a composite that can be analyzed and 

broken down into the basic evaluative components and hypotheses I have proposed.  

In this example, the target system has been identified as the large-scale galaxy 

distribution, and the model is a specific structure formation model. There is an adequacy 

claim that the model is adequate for the purpose of predicting the distribution of galaxies. 

I am analyzing this in terms of prediction rather than description, as was stated in the 

original success claim, because of the nature of the output of the model, the two-point 

correlation function. The success claim also includes information about why the model 

has been assessed as adequate. This information is relevant to the second and third 
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components of model fit, namely, obtaining an output from the model, comparing it to 

the analogue output from the world, and determining whether the model is adequate. The 

output of the model is the two-point correlation function, and the real world observations 

to which it is compared are the observable small-scale distribution of galaxies. There is 

also a statement about error tolerance, which can be understood as coming from the 

dynamical fidelity criteria.  

In my framework, this is a statement about the model-data fit of component 3, and 

corresponding assessment of adequacy of the model. So, the adequacy-for-purpose 

hypothesis looks like,  

This structure formation model is adequate for the purpose of predicting 
the distribution of galaxies.  

There is nothing in this success claim about the similarity relation. This is because there 

is nothing that implies any assessment of the representational features of the model or its 

extendibility. Therefore, this success claim is not a claim of overall model fit. This is not 

uncommon for real world success claims made by scientists. Often what is most 

important to the scientists is that their model does what they want it to do, that it is 

adequate for the purpose. Questions about the model’s representational success, and how 

they are justified in extending the model often are not reflected in the published work. 

This is the kind of reasoning that goes on behind the scenes and does not necessarily 

count as a result in way relevant for publication. Nonetheless, I argue that it is a crucial 

part of understanding how a model is successful overall.   

In what follows, I analyze several models from astrophysics in order to detail how 

my framework can be used to understand assessment of model fit considering the three 

purposes a model can serve and the kind of output that accompanies each purpose. In 

each example, I will consider example success claims and highlight how the justification 

for extending a model beyond its original purpose or domain depends on success relative 

to similarity relative to a purpose. Likewise, any inference from a model, to claims about 

the world rely on the similarity relation in the same way.  
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4.3 Examples from Astrophysics.  

While it is possible for one model, constructed for a certain purpose, to then be evaluated 

for different purposes, I intend to argue that it is a mistake to evaluate different purposes 

with the same standards. In what follows I shall discuss three possible purposes for which 

a model can be intended: the purpose of providing a description, prediction, or 

explanation. I shall also examine the output related to each purpose. Understanding how 

models provide a description, or prediction will be relatively straightforward. 

Understanding how a model explains is much more complicated. I use Alisa Bokulich’s 

account (2011) of how a model explains, as it provides the best understanding of the 

relationship between a set of explanans that includes the output of a model on one hand, 

and the explanandum on the other. 

Different models are designed and constructed with different purposes in mind. 

The purposes under consideration in the model construction determines the similarity 

relation, and what is prioritized as elements, or feature sets in the model, as well as their 

relative weightings. What is critical, but overlooked, is that we must distinguish the 

purpose considerations at construction and the purpose considerations at the assessment 

of the model’s adequacy. A single model can serve different purposes but the evaluation 

of its overall fit must be constituted of its fit with respect to each of those separate 

dimensions of purpose. Evaluation of model fit must therefore be relativized to a purpose. 

The justification for the inferences we make about the world from the model follows 

from the model’s success along those dimensions. 

In this section, I will look at cases in which a model is constructed and evaluated 

relative to the same purpose. The cases I have chosen are cases in which I am evaluating 

the model fit relative to one and only one purpose. The claims made about model fit will 

apply only to the one purpose—description, prediction, or explanation—that is under 

consideration. However, this does not mean that in general every model serves only one 

purpose, or was constructed with one purpose in mind. It is possible to construct a model 

that is intended to predict and describe. However, what is important to realize is that in 

the weighted feature-matching formulation of the similarity relation the modeller needs to 

acknowledge why they are including the elements they have chosen. It is also possible 
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that a model constructed for a descriptive purpose only would be the same as one 

constructed for a predictive purpose. Again, what is important is the acknowledgement of 

what purpose was under consideration in the construction stage. 

Finally, it is important to keep in mind that after the initial assessment of model fit 

relative to one purpose (such as descriptive purpose), a model can then be assessed for its 

overall fit relative to a different purpose (such as a predictive purpose). What this 

requires is to assess the model constructed for a descriptive purpose for its adequacy 

relative to the new purpose. If it is determined not to be adequate for the new purpose, 

then one must, in revising the construction of the model, make note of what must be 

changed in the similarity relation such that the model can also serve a descriptive as well 

as a predictive purpose. 

4.3.1 How Models Describe 

Perhaps the simplest possible purpose that a model can serve is to provide a description 

of a target system. A model that serves the purpose of providing a description will be 

concerned with matching the information or empirical data about the target system as 

closely as possible. A model that aims to describe can be considered to be merely 

phenomenological, in that it seeks only to save the phenomena. In this sense, if the 

purpose of the model is to describe, the modeller’s intentions are to accommodate the 

data points or features of the target as closely as possible given that the model needs to 

describe what is occurring in the target system over a certain domain of application. 

4.3.1.1 Concrete Model of the Moon 

The paradigm case of a model serving a descriptive purpose is a concrete model—a real, 

physical object that is intended to stand in a resemblance relationship to its target system. 

Take, for example, a scaled physical 3D model of Earth’s moon at the present day. This 

model can serve a descriptive purpose, given that it represents the moon and some of its 

features to a very high degree of accuracy. The features of the target system that are 

represented in the model include the topography of the craters on the moon, relative 

distances between features, and coloration. This 3D model of the moon can be evaluated 

relative to the purpose of accurately describing these features at a particular scale. A 
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success claim, then, might look like, “The scale 3D moon model is successful in that it 

accurately describes the positions of the Kepler and Copernicus craters relative to each 

other”.   

Such a claim can undergo evaluation of model fit in my framework relative to a 

descriptive purpose in the following way: Component 143 is concerned with constructing 

a model such that it obtains a very strong similarity relation, given that the intended 

purpose of the construction of the model is to describe the system to a certain degree of 

detail. As such, it is important to capture the relevant attributes in the target system. In 

formulating the similarity relation for the model, the modeller explicitly notes what, in 

the target system of the Earth’s moon, they want to include in the model, and what, given 

the purpose of description, they are not concerned with. The modeller may care not only 

about what the craters on the moon look like, but also about their relative depths. The 3D 

model of the moon will be similar to the target system of the real moon for the purpose of 

describing features of the real moon. These features and their importance are captured in 

establishing our similarity relation S(m,t), which details the weighted list of attributes and 

mechanisms. 

Additionally, given that the model is being evaluated for the purpose of providing 

a description in the present, the domain of applicability will be only the domain for which 

the modeller already has the information they seek to describe. That is to say, given that 

the purpose of the model is only a current description, they do not need be concerned 

with possible future states of the system. In this example of the moon scale model, a 

concern is not what the topography of the moon may have been thousands of years ago, 

nor its future states. 

With respect to evaluative component 2, the model’s output is some fact about the 

features of the model that serves as a description of the target system. For example, if the 

modeller wanted to know how many craters there are on the moon above a certain size, 

                                                
43

 Recall that component 1 involves establishing the similarity relation between the target system and the 
model via the weighted feature-matching account of similarity.  
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they could consult the model, and count the craters. Component 2 involves determining 

what is to be observed if it is true that the model is adequate for its purpose as a 

description. In this case, it is expected that the model does in fact accurately describe the 

target system given that the selected features are relevant. There should be a relatively 

straightforward check in this example; the modeller would want to make sure the desired 

attributes and mechanisms are present in the concrete model. The constructed concrete 

model is expected to resemble the actual moon in the relevant ways on a smaller scale. In 

this example, we would expect the model to contain the craters of interest44 such that we 

can count them. 

Component 3 involves comparing the output of the model to the comparable 

output of the world. In this case, it is the obtained data from which the model was 

constructed. In the case of evaluating the model for a descriptive purpose, the modeller 

simply checks that all of the features or data they wanted the model to contain are, in fact, 

present in the model. Component 4 involves evaluating the model fit on the two 

dimensions—similarity and adequacy. The similarity-relation hypothesis assesses the 

manner in which the model is similar to the target system for the purpose of providing a 

description. Models being evaluated for a descriptive purpose have a heavy weighting of 

the overall model fit tied to the similarity relation. What are thought of as the important 

features to be described were identified in the S(m,t), and then it is a matter of ensuring 

that those features, attributes and mechanisms, are in the model. The adequacy-for-

purpose hypothesis informs us about the assessment of whether the model is qualitatively 

or quantitatively satisfactory for the purpose of providing a description at hand. In the 

context of a description, we simply need to determine that the overall data fit is present to 

the desired degree. For models that serve the purpose of description this can be 

understood as simply a matter of fitting, or accommodating, the model to the target 

system. The descriptive purpose is often simply a means of communicating or conveying 

scientific facts about the target system. 

                                                
44

 Of course, smaller craters might not be represented accurately. If the modeller were interested in the 
model as an adequate model for describing those craters, then the similarity would need to be high enough.  
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From a model with high descriptive fit, such as the one in this example, not much 

can be inferred beyond what was explicitly included in the model during the construction. 

A user of the model can reliably extract descriptive facts about the target system, the 

moon, without having to perform actual observations of the moon. However, the model 

does not include the kinds of mechanisms that would allow one to make interesting 

predictions or give explanations. For example, if the modeller wanted to explain how the 

moon’s craters came to be, this 3D model would not be adequate. Likewise, if the 

modeller wanted to predict what the future landscape of the craters would be on the moon 

if a meteoroid hit, this model would not be extendable. The only way to know why the 

model cannot offer such predictions, and such explanations, lies in evaluating the 

similarity relation relative to these purposes. With respect to prediction, it might be that 

the moon model is not similar with respect to the type of rock the actual moon is made of. 

For an explanation, the model has not included relevant past information about the moon 

as it has evolved over time. In general, the kinds of features included in a model 

constructed with just a descriptive purpose in mind do not include the mechanisms that 

are so crucial for providing predictions and explanations.  

Consider again the success claim, “The scale 3D moon model is successful in that 

it accurately describes the positions of the Kepler and Copernicus craters relative to each 

other”.  This claim straightforwardly is about the adequacy of the description. The model 

is adequate for the purpose of informing the model-user of the distance between the large 

craters to a certain degree of accuracy. Given that it was constructed with a similarity 

relation aimed at a descriptive purpose, it has a high degree of similarity. The model-user 

is justified in inferring from the model that these descriptive features are true of the target 

system as well. It is through imposing my framework that these differences between 

assessing the adequacy and assessing the similarity relation are brought to the forefront.   

4.3.1.2 Light Curves 

A simple concrete physical model, such as the moon model, is one example of a model 

designed to serve a descriptive purpose. Another example of a model constructed with the 

main purpose of providing a description, seen frequently in scientific research contexts, is 

a model that is based on very limited data about its target system. In this case, the target 
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system is empirically accessible only via observations that output a discrete data set. The 

model seeks to represent the target system by incorporating the data points appropriately. 

The purpose of the model is simply to provide a description of the target system based 

closely on the data points. The construction of the model may take the form of some kind 

of curve fitting. 

In cases from observational astronomy, frequently the modeller will have access 

to only a very small, finite set of data that does not contain much information. For 

example, astronomers may obtain only an image and spectra45 of a galaxy that cannot be 

interacted with directly. Often it is considered a huge success simply to describe the 

system, or some of its features, to some degree of accuracy. Models of this kind try to 

incorporate the data as closely as possible, but often have to balance that with theoretical 

considerations. As such, most models do include a certain amount of background theory, 

even if it is just about how to understand what the data represent. Recall that such 

background theory, in my framework, plays a part in informing the weightings in the 

similarity relation, S(m,t). 

An example of this kind of modeling from astronomy is the generation of light 

curves for celestial objects as a means for describing and cataloguing different types of 

objects. A light curve model graphs the light intensity at different wavelengths of a 

celestial object as a function of time. This can be used to model features of the system’s 

rotation, its interaction with another system, the evolution of a system over time, or even 

the existence of a system unable to be directly observed, as is the case in exoplanet 

research. A success claim in this context might be, “this specific light-curve best fits the 

data points we have about this star system, and so we should consider it to be the best 

description of the system”. 

                                                
45

 Spectroscopy is the analysis of the spectrum of light emitted from a source. Different kinds of matter can 
be identified by their unique absorption and emission lines. Because of this, scientists can identify the kind 
of matter present in systems. This is particularly useful in astronomy because it can be used to identify the 
material constituents of stars, galaxies, interstellar gas, etc.    
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Looking at an example, consider an investigation of MT Ser, the central binary 

star system of the planetary nebula Abell 41 (Bruch et al. 2001). This will be the target 

system. Astronomers on this project were interested in determining what the period of the 

binary system might be, to provide a description of the system. Given this target system 

and purpose, the astronomers attempted to construct a model with the purpose of 

providing a description of the system over short timescales, which would include its 

period. The known attributes of the system are the obtained observations or data points 

about the luminosity46. Constructing a model such that these attributes are closely 

accounted for in the model will receive priority, and as such, receive a high weighting in 

our similarity relation S(m,t).  

There is some ambiguity in this case, as a light curve is often described as a 

model of the data. In my framework, a data set itself is never the target system. This is a 

case where the small data set represents everything known about the target system, in this 

case the binary star system. However, this real world system itself is the target of the 

model. That is, the model represents features of the target system. In this case, all the 

features that are available to be accounted for in the model are represented by the data 

about luminosity. In cases like these, the most complete descriptive model of the target 

system is coincident with the best data model of the data set.  

Component 1 involves the construction of the model by incorporating the 

empirical data about the target system that has been obtained and attempting to address 

the known error that exists in obtaining the data. In the context of a light curve, each 

measurement of the luminosity of the object will contain error bars, which reflect known 

error such as interference of the light with the earth’s atmosphere. For example, one 

procedure used to account for this error is a Gaussian regression process (Faraway et al. 

2016; Spencer & Reese 2014; Chatzopoulos et al. 2012). This process uses a Gaussian 

curve under each data point to determine what the most useful curve will be, based on the 

location of the subsequent data point. There are theoretical motivations for adopting any 
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 A B filter was used throughout their observations in order to inhibit the contamination of the 
measurements by the strongest nebular emission lines (such as Hα) (Bruch 2001, 900). 
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approach for accommodating error; these procedures, however, are always used to make 

the model as descriptively accurate as possible. That is, given substantive assumptions 

about the nature of the sources of error, one chooses different statistical algorithms for 

determining the “best fit”. 

A very interesting feature of this example is that it is unknown what kind of stars 

are in the binary system. As a result of this, the modellers obtained two possible models, 

with the period dependent on what kind of stars are assumed to be in the system. That is 

to say, what is unknown in this case is a feature of the target system. In order to address 

this unknown, two models are constructed, each establishing a similarity relation relative 

to the two possible target systems. One possibility is a low temperature component 

orbiting around a hot sub-dwarf star, the second is two hot sub-dwarfs of similar 

temperature and luminosity (Bruch et al 2001). The modellers considered themselves to 

be constrained to these two possibilities by drawing on larger background theory related 

to star formation and various stellar properties considered to be well established. Each 

model represents one of the two possible real systems.  

We have analyzed the light curve of MT Ser, the binary central star of the 
planetary nebula Abell 41, within the framework of two quite different 
models. An unambiguous decision between the two models appears 
impossible in view of the current knowledge about the system. (Bruch et 
al. p. 909). 

Figure 8 (below) includes the observational data points and the first model used to 

describe the possible target system if it is a low temperature component orbiting around a 

hot sub-dwarf star. Model 1.1 and model 1.2 are two possible descriptions using the same 

assumptions that differ only in minor respects. The period on this model is P=0.113 days. 

Figure 9 is the second model, of two hot sub-dwarfs of similar temperature and 

luminosity. The period for this case is P=0.226 days. These models are constructed by 

accommodating the same observational data. 
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Figure 8: Low Temperature Component Orbiting Hot Sub-dwarf Star. 

 
Model 1. Top: Light curve data of MT Ser, and two different model light curves (solid and 

dashed lines). Center and bottom: O–C curve, or the difference between the observations and the 
model light curves (from Bruch et al. 2001, 901). 
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Figure 9: Two Sub-dwarfs, Same Temperature and Luminosity. 

 
Model 2. Top: Light curve data of MT Ser, and model light curve. Bottom: O–C curve, or the 
difference between the observations and the model light curve (from Bruch et al. 2001, 901). 

The output in component 2 is the curve that best accounts for the data points. In this 

example, there are two models that describe the period of the system. If the model is 

adequate for describing this target system, then we would expect to see a model that 

closely accounts for our data points.  For the time being, I am not going to discuss which 

of these two models should be chosen over the other; this evaluation comes in at a later 

point. 

For component 3, one would expect that the curve accounts for all the data points 

as closely as possible. What is likely to be observed, if the model is indeed adequate, is 

that any future observations of this system would match, and be described using one of 

these models. At this point, an assessment about whether these models are similar enough 

to the target system is determined by assessing the amount of error permissible. As seen 
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in the bottom graphs of Figure 8 and 9, there is a numerical value of just how similar the 

line is to each data point; this relation is called the O-C curve. 

Component 4 involves the assessment of the overall fit of the model. In this case, 

a descriptively adequate model will account for the data points. Both models, in this case, 

seem to be adequate given their respective target systems. What the astronomers are 

unable to say, given the current state of observations, is which one is the right description 

of the actual target system. In order to be able to assess this, they would need to obtain 

further observations to help narrow down their description of the system to know what 

the binary system is composed of. If they were to get definitive evidence that one of these 

two target systems is the real target system, that would verify the descriptive adequacy 

and similarity of one of the models. It is not a prediction of the kind of stars that need to 

be in the target system that is verified, but a description.  

This is a case where the modellers are unsure which model accurately represents 

the actual target system. The first model (in Figure 8) includes, among its attributes in its 

weighted feature-matching equation S(m,t), a low temperature component orbiting around 

a hot sub-dwarf star. The second model (in Figure 9) includes, among its attributes, two 

hot sub-dwarfs of similar temperature and luminosity. Since the models are based on 

different sets of attributes, they are different models.  

What are the modellers justified in inferring about the system, beyond the 

observational data? Even if it is assumed that each of the two models has a very high fit, 

it is still uncertain which one accurately represents the real world system. Which model is 

actually similar to the target system is unknown. Therefore, the modellers cannot, with 

certainty, extend their model to make predictions about what would be observed through 

other means. All they can do is make conditional inferences, assuming one or the other of 

the models accurately represents the target system. If the astronomers were to discover 

which model is actually similar to the target system, then they could make inferences that 

go beyond the model.  

Consider again the success claim, “this specific light-curve best fits the data 

points we have about this star system, and so we should consider it to be the best 
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description of the system”. This should be understood as claiming that the best we can 

do, given the uncertainty about the actual target system, is provide a model that matches 

everything known from observational data. The model is adequate for the description of 

the data.  

Analyzing this by breaking up our evaluation into an assessment of adequacy, and 

an assessment of similarity allows for this to be clear. Both models are adequate for the 

purpose of describing what is known about the target system. Depending on the actual 

nature of the target system, either model could turn out to have high similarity to it. 

However, since that nature is unknown, because it is underdetermined by the 

observational data, the overall situation is that there is not enough information to properly 

assess the similarity relation. Due to this state of epistemic uncertainty, there is not high 

similarity between either of the models and the actual target system. Since similarity is 

underdetermined, modellers are not justified in making inferences about the actual target 

system from this descriptive model.  

One might question whether this model is also adequate for various predictive 

purposes. For example, if it were known that the target system was two hot sub-dwarfs, 

could this model predict future luminosity observations and the future period? There is a 

sense in which these future states of the period, and possible future luminosity data 

points, can be called a prediction. They amount to saying that the model, the description 

of the system, will still be adequate in the future. These claims gain their justification 

entirely from the legitimacy of the model’s descriptive adequacy and similarity. What 

these sorts of claims amount to is taking the model—which has been constructed relative 

to a descriptive purpose and assessed as adequate relative to a descriptive purpose—and 

extending it and applying it to a predictive purpose.  

In general, it is possible to take a model that was created to serve a descriptive 

purpose and evaluate its adequacy relative to a different purpose, such as predictive 

adequacy. The similarity relation is held constant; the model was established to have a 

similarity relation relative to a descriptive purpose (component 1). However, we can then 

evaluate whether the descriptive model is adequate for a certain predictive purpose 
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(component 3): for example, predicting future states of the target system. However, there 

might be cases in which it would be concluded that the descriptive model is not adequate 

for a predictive purpose, given that the model—during construction and formation of the 

similarity relation—was not made to include features that would be needed for making 

such a prediction.   

To this point, models with similarity relations generated relative to a descriptive 

purpose can be accused of overfitting as a result of the attempts to accommodate a set of 

data. Such a model may run a risk of not being able to provide accurate predictions about 

future states of the system. However, this sort of critique fails to acknowledge is exactly 

the point that I wish to make, that prediction and accommodation aim at different 

purposes. While we would want a predictive model to avoid overfitting, the standard for a 

simply descriptive model is to fit the data appropriately. It is a mistake to evaluate a 

model for which the intended purpose is to describe by using the same standards that are 

designed to evaluate models that seek to predict.  

Above I have detailed how to understand the evaluation of a model fit relative to 

the purpose of description. Based on this form of model fit evaluation, what is it that 

licences inferences back to the real world? The purpose of a descriptive model is to 

accurately represent the desired features of the target system and reproduce the relevant 

empirical data. Based on how we evaluate these models, we can see that our justification 

for making inferences from descriptive models is based on the similarity relation. 

Providing the details of the similarity relation is what allows us to identify in what ways 

the model has successfully represented the target system. Because the model is similar, it 

is a successful description. 

4.3.2 How Models Predict  

Very rarely is the only intended purpose of a model to describe the target system. 

Scientists often intend models to do more, so that they can learn about the world rather 

than simply systematize the chosen relevant empirical data. Often models are constructed 

to provide a prediction as an output. Ideally, models intended to serve the purpose of 

providing prediction seek to make novel predictions. This typically means more than 
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simply reproducing the observations that were already used to generate or test the 

model’s initial construction. The challenge for predictive models is that we cannot 

determine if their predictions are in fact correct until we obtain data against which to 

compare those predictions.  

4.3.2.1      Binary Black Hole Merger 

For an example of a model serving a predictive purpose, let us look again at models of 

black holes. In February 2016, the Laser Interferometer Gravitational-Wave Observatory 

(LIGO) scientific collaboration reported the first direct detection of gravitational waves, 

and the first observation of a binary black hole merger (Abbott et al. 2016, 061102-1). 

This research group, in their endeavour to detect gravitational waves, used a model of a 

binary black hole merger to predict what would be observed at the LIGO detectors. A 

success claim from this discovery might be, “The detected waveform matches the 

predictions of the waveform models for the spiral and merger of a pair of black holes, and 

the ringdown of the resulting single black hole”47. 

In this example, the target system is a binary black hole merger, and the model is 

evaluated relative to the intended purpose of predicting what happens when these two 

black holes merge. Evaluation at component 1 involves identifying what aspects of two 

merging black holes the model needs to include. Similar to the example in Chapter 2, the 

model intends to capture attributes such as the mass and spin of the black holes and the 

underlying mechanism of gravity as described by general relativity. The domain of 

applicability is to account for the time in which the two black holes merge. However, the 

model is not intended to capture an extended period of time before the merger, or 

afterwards (that is, the evolution of the black hole after the merge). This information 

establishes the similarity relation relative to the purpose of providing such a prediction of 

the merging black holes.  

                                                
47

 While there is no explicit statement of the success of the model, this success claim is adapted from the 
results reported in Abbott et al. 2016.  
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Component 2 involves obtaining an output, which in this case is a prediction of 

what will happen during the merger. When the model was run, it provided a prediction of 

what the gravitational waves would look like when interacting with the LIGO detector. 

Figure 10: Black Hole Merger 

 
Computer model predictive output for a binary black hole merger output on detectors (Abbott et 

al. 2016, 3). 

This was judged by the modellers to be a reasonable expected output, if the model were 

indeed adequate. This initial judgement was made based on reasoning related to the 

theory (what should be expected in general relativity) and assumptions made in the model 

construction process. 

In September 2015, LIGO recorded observational data from their detectors of a 

gravitational-wave event. These detected strain readings were compared to their model’s 

prediction. Component 3 involves determining how the model’s prediction compares to 

the comparable real world output observed. In this case, the scientists were able to make 
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a comparison to data, checking how well what is actually observed fits with what we are 

likely to observe if the model is adequate. 

Figure 11: LIGO Detections 

 
Top graph overlays observational data from LIGO detectors located in Livingston, Louisiana (L1) 
and Hanford, Washington (H1) of observed binary black hole merger. Bottom graph is the model 

output for a binary black hole merger (Abbott et al. 2016, 3). 

The top graph in Figure 11 is the data from the two LIGO detectors. The bottom graph is 

the model output (same as Figure 10). Evaluative component 4 involves assessing 

similarity and adequacy. Based on error tolerance, modellers evaluate whether the model 

output matches the observed data closely enough to validate the prediction of the 

observable consequences of merging black holes. In this case, LIGO scientists were able 

to judge their model as being adequate for the purpose of providing a prediction.  

This, in turn, provides justification for the similarity relation used during the 

construction phase for their model to serve a predictive purpose. These two assessments 

taken together constitute a good model fit. Some support for a fit was gained in 

components 1 and 2, and further support was gained once data was obtained at 

component 3. This allowed for a stronger justification to be made at component 4 relative 

to both dimensions, adequacy and similarity, of model fit. Should the observations have 

been different from the predictions of the model, the modellers would have known the 



104 

 

model was not adequate for predicting the observable consequences of the black hole 

merger. This would have indicated that the model needed to be altered.  

In this case, the similarity relation heavily weighted the theoretical consideration 

from general relativity. This is because the only reason for believing in the existence of 

the target system and the possibility for detection of gravitational waves is that these are 

consequences of the theory. A high degree of similarity in this case is due to the fact that 

the model is constructed from the background theory, rather than being constructed from 

direct observations of the target system. A consequence of this is that if the model had 

been shown to not be adequate for its purpose, then reassessing the similarity of the 

model to the target system could have had implications for the confidence in the theory 

itself. This is an example of a case where a model serves as an intermediary between the 

observations and the theory. And as I will argue in the next section, similarity is what 

justifies making other inferences. For example, the high similarity of this model justifies 

using it in giving explanations. Again, it is important to note that this similarity is 

grounded in our confidence in the theory. In cases like this, it is because the model is 

strongly theoretically grounded that it can offer explanations.  

Returning to what can be learned from using my framework to evaluate success 

claims about models, such as, “The detected waveform matches the predictions of the 

waveform models for the spiral and merger of a pair of black holes, and the ringdown of 

the resulting single black hole”. This contains a component corresponding to an 

adequacy-for-purpose hypothesis: “the black hole merger model is adequate for the 

purpose of providing a prediction of the observable output of merging black holes”. 

However, the claim does not include a similarity component. This can be seen by the fact 

that it makes no claim about the extendibility of the model or its representational 

similarity to the system. However, in this case, as discussed above, the similarity is due in 

large part to the fact that the model is highly informed by theory.  So inferences about the 

target system can be drawn from this model, and scientists should expect it to apply to 

other similar target systems.  
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When a modeller is able to provide reasoning relevant to the four components in 

my framework, this what I will call a full account. By providing reasoning involved at 

each component, there is stronger justification for claims about the model fit. However, 

in some sciences such as astrophysics, things do not always work out so well; more 

commonly scientists are not able to compare a model’s prediction to data from the real 

world. And more importantly, when constructing a model that will be used to make 

claims about future states, modellers often know there is not the luxury of comparing the 

model’s prediction to data. Yet the goal is to make claims about model fit even in the 

absence of additional observational data. We need to understand how to gain justification 

for claims about a model’s fit in these cases as well. This will be the focus of the next 

example. 

4.3.2.2      The Collision of Milky Way and Andromeda 

In astrophysics, many of the target systems and events of interest take place over 

timescales much larger than we will ever have the opportunity to observe, and 

astronomers are only able to obtain a snapshot of an event. One such example is galaxy 

interactions—galaxies whose gravitational fields result in a disturbance of one another. 
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Figure 12: Colliding Galaxies 

 
Snapshots of various galaxy interactions (image credit: NASA, ESA, the Hubble Heritage 
(STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, 

Charlottesville/NRAO/Stony Brook University) 

Astrophysicists are not able to directly observe the complete interaction of two galaxies 

colliding over time. However, they can investigate snapshots of interactions, such as 

those in Figure 12, based on obtainable observational data (e.g. current directional 

velocity of each galaxy) and constructed models in order to learn about these interacting 

systems.  

The Local Group is a gravitationally bound collection of galaxies, of which our 

own home galaxy, the Milky Way, is a member. Observations indicate that Andromeda, a 

nearby galaxy, is moving towards our Milky Way at 110 kilometres per second (Cox et 

al. 2008). Astronomers want to predict if Andromeda will collide with the Milky Way 

and if so, predict how substantial the collision would be, as well as when this collision 
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would happen. A means by which such a prediction can be made is through construction 

a model of this target system.  

In what follows, I will present a model of the Andromeda and Milky Way (from 

Cox et al. 2008). My intention is to provide a case where a model’s primary goal is to 

provide a prediction, but there is not the option of comparing the model against real 

world data. So no evaluation can be done with respect to component 3. I use this as an 

example of a partial account of model fit and for discussion of how claims about the 

world based on models, where comparison to the real world is not possible, are justified. 

Component 1 involves model construction and establishment of the similarity relation 

between the model and the target system. The target system in this example is the Milky 

Way and Andromeda galaxies. The prediction is of their trajectories and time of collision. 

The domain of application with respect to time is through the collision and on very large 

scales so that it is appropriate to abstract away from features other than the center of 

mass. Full discussion of the construction and the establishment of similarity relation is 

outside of the scope of this paper. What I have included is just a small subset of the 

details that are particularly relevant to my discussion48.  

In constructing a model of two possibly interacting galaxies, determining the mass 

of these galaxies is critical to providing a prediction of the interaction. So is critical to 

include mass in the model. The modellers based their model on previous models of single 

galaxies, in which the baryonic matter (visible matter) is contained entirely within the 

rotationally supported exponential disc and central bulge, and is surrounded by a massive 

dark matter halo, which has nearly 20 times the mass of the baryons (Cox et al. 2008, 

462).  

                                                
48

 What is particularly interesting in this example is that the Cox et al. 2008 paper, from which this 
example is taken, contains an entire section in which the modellers detail what about the target system they 
see as essential, and what may not be as relevant or important to capture in their model for the purpose of 
providing the prediction they are interested in. What they have done is provided the explicit establishment 
of a similarity relation that takes place in relation to component 1. Should this model compete against a 
different model, divergences will be quickly identifiable. 
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There are also a number of observations that have already been obtained about 

these two systems, and so a model must satisfy all of these observational constraints. 

These observational constraints include the current distance of separation of the two 

galaxies, of 780kpc, their radial speed of 120 km s−1, local circular speed (i.e. rotation of 

the galaxies) of 220 km s−1 (Cox 2008, 462). These observations are known within 

margins of error of less than 5%, and so the radial speed is considered to have an 

extremely high weighting of importance in the model.  However, there are also features 

the modellers consider less well constrained, such as the present estimate for the 

transverse velocity of Andromeda, and spin orientation of the two galaxies with respect to 

the orbital plane of the merger. Cox et al. note that while such details are necessary if one 

wants to provide a model of the entire Local Group, such details are not as critical for 

influencing the merger between just the Milky Way and Andromeda.  

While it is true that general relativity is our best theory of gravity governing the 

target system, the modellers have chosen, for the sake of calculability, to make the 

justifiable approximation that the galaxies are a simple two-body problem governed by 

Kepler’s equations. This means that each galaxy is treated as a point-mass located at the 

galaxy’s center of mass, and Kepler’s two-body equations govern their mutual attraction. 

While the target system’s underlying mechanism is gravity as described by general 

relativity, the model is governed by Kepler’s laws. This is an appropriate approximation 

in this regime, and the predictions won’t deviate significantly from those derived from 

general relativity. Nevertheless, this is one way in which the model and target system are 

dissimilar, which would likely be assigned a moderate penalty in a similarity relation. In 

the end, the system is idealized so that the initial configuration of our Local Group model 

consists of the Milky Way and Andromeda as a two-body system embedded in a 1.5 Mpc 

across cube containing a diffuse, constant-density intragroup medium of equivalent mass. 
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Figure 13: Milky Way and Andromeda Interaction 

 
Visual representation of initial configuration the model (image from Cox et al. 2008, 463). 

Having constructed the model, in component 2 we obtain the output, the 

prediction. In the context of this model, the output is obtained by evolving the model 

using a self-consistent two-body simulation. The output obtained from this calculation is 

generic properties of the merger, including the merger time-scale, the possible evolution 

of our Solar system, and properties of the merger remnant (Cox 2008, 462). The 

prediction is that the first close passage of Andromeda by the Milky Way will occur in 

approximately 2 Gyr, with the final coalescence occurring in less than 4 Gyr (4 billion 

years). For the evaluation of component 2, the modeller considers what is likely to be 

observed if the model is adequate for the purpose of predicting when the galaxies will 

interact. This process involves analysis of what sort of observations would indicate fit, 

such as actually observing a close passage of Andromeda in approximately 2 Gyrs—or, 

on a shorter time scale of 1 million years, Andromeda remaining on the trajectory the 

model has predicted. 

However, in this example, it is not possible to obtain the comparison for 

component 3. There is no equivalent observational output from the real world to compare 

the model’s output against. Without observing when the two galaxies in the target system 

interact, it is not possible to obtain the matching data to compare to the model’s 
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prediction. In this case, it is not possible to check how well what is actually observed fits 

with what we are likely to observe if the model is adequate. Yet it is assessments of 

model fit in these contexts, cases in which we do not have real world observations against 

which to compare the model output, that are most important. Predictive models are most 

frequently constructed in order to make claims about real world events before those 

events come to pass. Moreover, many sciences use predictive models as a means by 

which to determine what sort of hypothetical interactions with the system might result in 

a change of the predicted future outcome. 

How do we assess the adequacy-for-purpose and similarity-relation hypotheses, 

and determine the model’s fit in these cases? I will argue this is the role of robustness 

analysis and will provide further detail on this point below in §4.5. Briefly, robustness 

analysis involves comparing the output of a model to the outputs of other models in 

attempts to separate genuine predictions from outputs that are accidents of the 

construction of the model. Robustness analysis can be used in aid of supporting the 

output of the model involved at component 2, but also by supporting assumptions made 

in the construction of the model in component 1. The modellers in this example 

performed a robustness analysis by generating alternative models by altering the values 

of certain parameters.  

We have performed 20 additional runs in order to test the sensitivity of our 
results to various assumptions of our model – mainly involving the initial 
orbit of the MW and Andromeda. These runs yield similar estimates for 
the merger time-scale as well as for the possible locations of the Sun in the 
future, provided that the intragroup medium is indeed similar to our 
fiducial case. While this gives us some confidence that our results are 
robust, an even larger suite of models, that spans a much wider set of 
model assumptions, will provide better statistics on these results (473). 

As seen in this example, the matter content of the two galaxies was based on other 

models about other galaxies. By gaining further justification for the elements in 

component 1 and 2, modellers can gain confidence in the output for these cases in which 

they cannot compare the model output directly to the future state of the system.  

Moving on to component 4, for cases in which there is only a partial account, 

there is, to some extent, a weaker claim about model fit as compared to full accounts. 
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Nevertheless, the similarity-relation hypothesis can be partially assessed through the aid 

of the dynamical fidelity criteria, which help to determine if that prediction seems within 

a desired error tolerance. In the present example, this takes the form of assessing error 

with respect to the timescale of collision predicted. The representational fidelity criteria 

can be used in evaluating whether it is reasonable to think the model is making the right 

predictions for the right reasons. This part involves reflective assessment on justification 

for establishing the similarity relation in the way it was and on whether the level of 

similarity of the model to the target system still holds upon examination of model output.  

With respect to the assessment of the adequacy hypothesis, the model can be 

considered adequate as long as it is consistent with other data obtained about the 

evolution of local galaxies over long timescales. An interesting feature of this example is 

that there is not any meaningful application of this prediction, given the extremely large 

timescale over which it takes place. Moreover, there is no real way we could interact with 

the system to change this outcome. Other cases of partial assessment of overall model fit 

may not have this feature—with climate models for example, modellers want to be able 

to see what sort of interventions could affect the output. In the case of the colliding 

galaxies, while a more refined prediction that captures more of the details would be more 

similar to the actual target system, a more precise prediction may not be necessary.   

Returning to assessing the success of the model in my framework, the authors of 

the paper from which this example is taken state their achievement this way: “we 

quantitatively predict when the interaction and merger of the MW and Andromeda will 

likely occur” (462). Again, this claim is primarily an assessment of adequacy. The 

justification for the confidence in the accuracy of the prediction comes in part from 

robustness analysis (as seen above) and in part, from the similarity of the model to the 

target system for its purpose. It is because the model based on Kepler’s laws is similar 

enough to the target system for the purpose of predicting the trajectories the galaxies will 

follow that there is confidence in the predicted timeframe for the collision. As the 

modellers note, this approximation is not appropriate at longer timescales, and therefore 

the model is not similar enough to the target system to extend the model and make 

predictions at significantly earlier times, “Note that extending the simulation to 
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significantly earlier times is not adequate since stellar ages imply that the two Galactic 

discs (and presumably their haloes) have not been fully assembled at 𝑧 ≳ 2” (466).  

Through these two examples (LIGO and the Milky Way-Andromeda collision), I 

have detailed how to understand the evaluation of model fit in the context of a predictive 

purpose. In the cases in which there is a full account (LIGO being able to compare model 

output to real world output in component 3), what justifies the inferences made from the 

model to the real world system is partly tied to the assessment of adequacy for purpose. It 

is the fact that the model’s output matches the real world, and therefore is supported as 

being adequate for predicting the features of the target system. However, if the model had 

not matched the observations, then the modellers would have known that they had not 

captured some important feature of the target system in the model, and would re-evaluate 

the features that made up the similarity relation. In this sense, the justification is also tied 

to the similarity relation. The similarity relation establishes that the relevant features of 

the real world system are represented in the model. If the model’s prediction is then 

found in the real world, the model has the relevant similar feature located somewhere in 

it. It is in this way that a justification for inferences about the world from the model is 

established in the case of having a full account.  

In the cases in which the modeller is only able to obtain a partial account (unable 

to compare the model output to the real world), we need to approach the justification for 

making inferences from the model’s prediction slightly differently. If it is not possible to 

compare the model’s prediction to data from the real world to see if the prediction is 

correct, then there needs to be an alternative way to build confidence in the prediction49. 

That is to say, when it is not possible to complete the component of reasoning that is 

related to assessing adequacy for purpose through comparing output to data, the goal 

                                                
49

 Of course, we may want to build confidence in the prediction in the case of a full account as well. So 
this is not to say that robustness analysis is deployed only in the context of a partial account. Rather, 
evaluation in the context of a partial account relies heavily on robustness analysis to evaluate the obtained 
output in component 2.  
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should be to make the reasoning about the output as strong as possible. In §4.4, I will 

argue that one of the strongest ways to do this is through robustness analysis.  

4.3.3 How Models Explain  

Of the three purposes, the justification for explanations from models proves to be the 

most challenging to analyze. Within the philosophy of science literature, there are over 

four decades of discussion of what constitutes a scientific explanation (Salmon 1989). In 

the philosophy of modeling literature, extending discussion to how a model can provide 

an explanation has been a challenge as well. For my purposes, I propose to import Alisa 

Bokulich’s (2011) account of how models can be understood as explanatory. Bokulich 

has provided a persuasive and detailed account of how models explain, which I describe 

below. I take her account to be the most general account for models, and so I use that 

account to detail an example of evaluating model fit in the context of an explanatory 

purpose. 

4.3.3.1 Bokulich’s account of model explanation. 

 Alisa Bokulich (2011) provides an account of the core features of a model explanation, 

the conditions under which it is reasonable to take models to be genuinely explanatory 

(2011, 38). She does this by critically analyzing three proposals in the philosophy 

literature for how models can explain—Craver’s “mechanistic model explanations” 

(2006), Elgin and Sober’s “covering-law model explanations” (2002), and what she calls 

McMullin’s “causal model explanations” (1978, 1985)50.  In light of her analysis of these 

three accounts, Bokulich provides what she considers to be a general framework of what 

these accounts all have in common, and therefore what should be the features or 

conditions of a model explanation: 

1. The explanans must make essential reference to a scientific model, and that 

scientific model involves a certain degree of idealization and/or fictionalization.    

                                                
50

 “Causal model explanations” is Bokulich’s term for McMullin’s view. However, his term for his own 
view is “hypothetico-structural”. 
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2. The model explains the explanandum by showing how the elements of the model 

correctly capture the patterns of counterfactual dependence of the target system. 

3. There must be a “justificatory step”, in which we specify what the domain of 

applicability of the model is and show that the phenomenon in the real world to be 

explained falls within that domain. 

 With respect to her first feature, part of the goal in Bokulich’s paper is to provide 

an account consistent with understanding models as fictions. In what follows I am not 

aiming to defend an account of models as fictions but rather to discuss the issues at play 

in a way that is not committed to this specific understanding of the ontology of models. I 

will treat the first feature as models involving some degree of idealization, but without 

the stronger commitment to a false model being a fiction.  

 Bokulich’s second feature stems from an account of scientific explanation offered 

by James Woodward (2003). Woodward understands an explanation as providing 

information about a pattern of counterfactual dependences between explanans and 

explanandum, where counterfactual dependences can be understood as “What-if-things-

had-been-different questions” (Woodward 2003, 11). Bokulich takes on board 

Woodward’s account but tempers it. She thinks model explanations should seek a pattern 

of counterfactual dependence, but without the requirement of causal manipulation of the 

system. She considers it “a mistake to construe all scientific explanation as a species of 

causal explanation, … and it is certainly not the case that all model explanations should 

be understood as causal explanations” (Bokulich, 39). Elaborating on feature two, she 

explains that the elements of the model can be said to reproduce the relevant features of 

the explanandum phenomenon. The model should also “be able to give information about 

how the target system would behave, if the elements described in the model were 

changed in various ways” (Bokulich, 39).  

The component of this account most relevant to my framework is the third 

condition. Bokulich take the “justificatory step” as specifying the model’s domain of 

applicability. This step is intended to: 
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draw explicit attention to the detailed empirical or theoretical process of 
demonstrating the domain of applicability of the model. In other words, it 
involves showing that it is a good model, able to adequately capture the 
relevant features of the world (39).  

She thinks justification for the model’s domain of applicability can proceed in two ways. 

The justification can proceed “top-down” from theory, in which an overarching theory 

specifies “where and to what extent the model can be trusted to be an adequate 

representation of the world” (30). However much more commonly, it proceeds bottom 

up, through various empirical investigations. The main result of this step is to distinguish 

between models that are genuinely explanatory and models that are merely 

phenomenological (39-40).  

My reason for selecting Bokulich’s account is because she argues that we can 

now recognize Craver, Elgin and Sober, and McMullin’s accounts as “subspecies” of 

model explanations, each differing from the others with respect to where the “origin” of 

the counterfactual dependency lies. In addition to mechanistic explanations (where the 

model is the mechanistic parts which make up the explanandum-style whole), covering 

law explanations (where the explanandum is a consequence of the laws cited in the 

model), and causal explanations (where the model causally produces the explanandum), 

she suggests at least a fourth subspecies, structural model explanations (p. 40). In a 

structural model explanation, the explanandum exhibits a pattern of dependence on the 

elements of the model cited in the explanans, but this dependence is also a consequence 

of the structural features of the theory(s) employed.  

I consider Bokulich’s account as easily complementing my framework as the way 

to understand how models can explain and how this evaluation takes place. The first 

element to Bokulich’s account involves the explanans making reference to an idealized or 

fictional model. I take my framework to be concerned already with models of this kind. 

However, it is not the case that the explanans make essential reference to a scientific 

model. Instead it makes reference to the output of a scientific model. These outputs will 

be relative to the context or type of model explanation; sometimes the output is a model 

structure, sometimes it is a prediction. It is these elements that will feature in the 

explanans of an explanation. Second, the model is to “explain the explanandum by 
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showing the counterfactual structure of the model is isomorphic (in relevant respects) to 

the counterfactual structure of the phenomenon” (43). In the footnote to this point, 

Bokulich says she is using the notion of isomorphism loosely. I propose to read this as 

similarity. In order to make claims about the structure of the model, we need to have 

already detailed that structure. Furthermore, the model’s ability to answer a wide range of 

“what-if-things-had-been-different” questions requires the ability to know what exactly 

was chosen to include in the model. Finally, Bokulich requires us to then justify that 

domain of applicability is an adequate guide to the domain of the phenomenon. Bokulich 

also sees the domain of applicability as central to providing the boundaries for which the 

model is to be applied. I have already indicated that these boundaries must be specified in 

the establishment of the similarity-relation hypothesis. Therefore, I will take Bokulich’s 

account, with a slight modification to her first feature, to provide the details for 

evaluation of model fit in the case of models being used for the purpose of providing an 

explanation. 

4.3.3.2 Precession of Mercury’s Perihelion   

Turning to an example, I will examine an evaluation of model fit relative to an 

explanatory purpose for the precession of Mercury’s perihelion. Under Newtonian 

gravitational theory, when a smaller mass orbits a larger mass, it will follow a circular or 

elliptical path. However, as Mercury orbits the Sun, it does not retrace the same elliptical 

orbital path each time, but rather it will rotate, or precess, over time. Astronomers say 

that the perihelion—the point on its orbit when the planet is closest to the Sun—

advances. There are a number of effects in the solar system that might cause the 

perihelion of planets to precess around the sun, such as the gravitational attraction from 

other planets. However, the predicted precession, based on Newtonian mechanics and the 

influences of all other known planets in the solar system did not match the observed 

precession. Therefore, astronomers in the 20th century were interested in seeing if 
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changing one of the underlying mechanisms, part of the gravitational theory, might 

produce models that explain the observed precession51.  

The target system to be modeled is the solar system, with a particular interest in 

Mercury and the Sun, for the purpose of explaining why there is a precession of 

Mercury’s orbit. The salient features, attributes and mechanisms, that the model should 

capture for the purpose of explaining the orbit of Mercury include the mass of sun and 

planets, as well as the trajectories and properties of orbits. While the model is based on 

the Newtonian gravitational model, the modellers are interested in seeing if inclusion of a 

general relativistic mechanism might accurately explain the precession. The selection of 

these features makes up our component 1 and establishment of the similarity relation to 

the target system. The generated model is the set of mathematical equations that provide 

the planet’s orbit.  This mathematical model can be run over time, given that the domain 

of application of the model is over an extended period.  

Component 2 evaluates the output of the model and considers what would be the 

case if the model were adequate. Figure 14 gives an illustration of what a precessing 

perihelion looks like, but it should be noted that the orbit is exaggerated.  

                                                
51

 The other option was to maintain Newtonian dynamics, but posit an additional planet, Vulcan, between 
the Sun and Mercury. However, observations did not indicate such a planet’s existence (Bertone et al. 
2005).  
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Figure 14: Mercury's Perihelion 

 
Precession of Mercury’s perihelion (image from Norton, 2013). 

The explanation for Mercury’s perihelion precession is due to the dynamic nature of 

spacetime in general relativity. This is included as an element in the mathematical model, 

which is derived from theoretical considerations. The general relativistic mechanism for 

gravity ensures geodesic motion through a dynamic spacetime52.  Because the curvature 

changes with the presence of the mass-energy of Mercury and the sun, the geodesic that 

the planet follows will precess on each orbit (and differ from the precession predicted in 

the Newtonian model). 

The reason this model can serve an explanatory purpose is detailed by Bokulich’s 

account of how models explain. This model is explanatory in that the explanans makes 

reference to the output of the model. The model explains the explanandum by showing 

how the elements of the model correctly capture the patterns of counterfactual 

dependence of the target system. There has also been a specification of the domain over 

which the model applies. 

                                                
52

 Recall that for the similarity relation, the dynamical considerations in a model are captured in its 
mechanisms. One intuitive way to think about how this applies to general relativity is to consider the 
“shape” of spacetime to be the cause of gravitational effects. However, this is not essential and should not 
be seen as an endorsement of a substantivalist view of spacetime or a commitment to the idea that 
spacetime has causal powers. General relativity as the “mechanism” for gravity could be redescribed as an 
attribute. 
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Comparing the model output to real observations of Mercury in component 3 

focuses on comparing the structure of the explanation to the elements of the target 

system. For example, if the explanandum admits of a causal explanation, the modeller 

searches for those causal dependencies in the target system. Identifying those 

dependencies in the real world shows that the explanation is adequate for the 

explanandum. Likewise, if the output of the model fits into a structural explanation, one 

searches for counterfactual dependencies or relations in the target system. In the case of 

Mercury’s perihelion, we see that in the model the structure of spacetime, and its 

dependencies on the local matter content, exist in the real world target system.  

Component 4 involves assessing the fit of the model for the purpose of providing 

an explanation. What it means for there to be a model fit is that the model produces 

certain outputs that feature in a model explanation in Bokulich’s sense. The model is 

adequate for the purpose of providing an explanation in that we see similar dependencies 

in the real world target system. As seen in the case of prediction, the similarity relation 

also plays a role in evaluating the fit of the model as a model that explains, in that it 

ensures that we include relevant structures in the model in order to give explanations that 

fit. This is another case in which we have a full account.  

An example success claim in this case is, “The general relativistic model explains 

why Mercury’s perihelion precesses at the observed rate”. My framework allows for this 

to be analyzed generally as an adequacy claim, in that general relativity can provide an 

adequate explanation for the precession of Mercury. However, should one want to extend 

the explanation in this model, for example, to explaining why there is a precession in a 

different case, the modeller must rely on the assessment of different similarity relations. 

It is only if one thinks that the mechanism for gravity, and other relevant attributes 

composing S(m,t) for the case of Mercury’s perihelion also hold for the new case, that 

one is justified in extending the model. For example, to explain the perihelion motion for 

another planet, it would be necessary to include the same mechanism for gravity as in the 

model of Mercury’s perihelion motion. It is because the model has been assessed as 

having a corresponding similarity relation that the model can be extended in the right 

way.   
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4.3.3.3 Ring Galaxy Formation 

However, as seen with predictive models, there are cases in which one can provide only a 

partial account, as it is not possible to compare the explanation to its observable 

consequences in the real world. In astrophysics, this happens frequently given that it is 

only possible to obtain a snapshot of an event through telescope observations. One such 

example is the case of galaxy collisions. This will be the focus of my example of 

evaluating a partial account with respect to a model’s purpose of providing an 

explanation.  

Most galaxies have relatively standard shapes, such as spiral or elliptical, though 

not all galaxies will fall into these categories (Mo et al 2010). These other galaxy shapes 

are often referred to as peculiar galaxies. One such galaxy is II Hz 4: 

Figure 15: Ring Galaxy 

 
Optical v-band image of II Hz 4. RN indicates the ring galaxy, and C the companion 

(image modified from Ramono et al 2008). 

What is ‘peculiar’ in the image is that the main galaxy of interest seems to have a clear 

center component, as well as ring shape around it. Galaxies like II Hz 4 are now 

categorized as collisional ring galaxies. Galaxies of this shape are somewhat rare, and so 

astronomers want to figure out why these galaxies are shaped this way.  

One possibility is that this was a spiral galaxy, but the companion object (above II 

Hz 4 in the image) collided with it. As a result of this collision, the galaxy somehow 

formed its ring shape. The problem, however, is that astronomers do not have access to 



121 

 

past observations to determine if these galaxies did look different at an earlier time. 

Furthermore, galaxy collisions take place over significantly long time scales; so it is not 

possible to directly observe the different states of a collision. The only means by which to 

investigate this target system is to construct a model in order to determine what likely 

happened.  

For Component 1, a model of the target system, II Hz 4 and its companion, is 

constructed, and the similarity relation established. From slit spectroscopy observations 

of the galaxy and its companion, astronomers obtain spectra of both of the galaxies’ 

nuclei. From the observed spectral lines, they determine the radial velocities of the two 

galaxies at the present time. These observations provide a starting basis for what a 

reasonable similarity between the model and the target system will be.  

A quick account of the similarity relation is as follows: For constructing a 

dynamical model of these galaxies, one needs a model that has similar orientation, and 

spin to the target system. There is however no need to capture the exact trajectory of 

every particle in the model; one must simply provide a general how-possibly account. 

The model then, does not need to have the same number of particles as the target system; 

so this dissimilarity will not be penalized. The target system galaxies are idealized in the 

model so that they are composed of only a few particles. While it is possible to estimate 

the actual mass of the galaxies in the target system, the model allows the masses of the 

galaxies to vary as a means of exploring how the two galaxies might interact, thus 

allowing for a kind of robustness analysis. Allowing the mass in the model to vary will 

help in developing an explanatory model. As such, the model failing to share the attribute 

of the mass with the target system will not receive a heavy penalty. The underlying 

gravitational mechanism for this model will be softened short-range gravity (Lynds and 

Toomre 1976, 387). Softened short-range gravity is an approximation of general 

relativity that has been shown to apply in this domain (Lynds and Toomre 1976). While 

this is not similar to the target system, given that the purpose of the model is to provide 

an explanation, such gravitational representation will be a sufficient approximation.   
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Figure 16: Particle Models of Ring Galaxies 

 
II Hz 4 and its companion idealized as a small galaxy hitting a simplified disc galaxy head on. 
Top: collision in which companion is ½ mass of main galaxy, Middle: two galaxies have equal 
mass, Bottom: interaction as 4:1 ratio of test particles (image from Lynds and Toomre 1976). 

At component 2, the model’s output is obtained (Figure 16). The purpose of the 

model is to provide a how-possibly explanation of why these galaxies are shaped the way 

they are. As seen in Figure 16, in all three situations a ring galaxy is formed from the 

collision. The explanation then is a simple dynamical mechanism for ring galaxy 

formation. The companion galaxy falls through the disk galaxy head on, and the 

interaction results in a ring-like density wave. The output of the model is among our 

explanantia. If our model is indeed adequate for the purpose of providing this 
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explanation, one would expect to see exactly what is seen here: given the constraints, a 

ring galaxy forms.  

In evaluating component 3, one compares the model output to the real world. 

However, astronomers only have a snapshot of the end of the interaction in the real 

world. In cases in which one cannot compare the model’s explanation to the real world, 

and have only a partial account, ideally one would need to check that the model’s 

explanation applies to all relevantly similar target systems. For these cases, we will again 

see in §4.4 that robustness analysis will lend support. As noted above, varying the masses 

of the two components of the model allows for a limited kind of robustness analysis to be 

achieved very easily.  

Component 4 is the assessment of the overall model fit. In assessing the model’s 

adequacy, one can make a partial comparison of the model output, to the output of the 

real world phenomena in that there are similar radial velocities of the system. 

Considering that in this case the aim is only exploring a how-possibly explanation, the 

model’s adequacy is assessed relative to being able to provide just that. Since this is a 

how-possibly model, it is much more permissive with respect to what can count as a good 

explanation. All that explanations of this kind are meant to show is one physically 

plausible evolution that leads to the desired final state. The similarity relation can gain 

some support through this comparison of a feature of the model output to similar features 

in the real world as well.  

With respect to assessing the similarity relation, the claim is weaker, given that 

we do not have enough information from the real world against which to compare our 

model’s explanation. However, through support from the similarity relation, we can judge 

the model to be providing an adequate explanation. It provides an explanation in that the 

formation of the ring galaxy is sensitive to the relative masses, orientation, and spin of 

the galaxies involved in the collision. If these parameters were changed, the final output 

stage would be different. This shows the counterfactual dependency between the 

assumptions of the model and the final state of the system.  
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An example success claim for this case is, “this model provides an explanation for 

why galaxies, such as those seen in Figure 15, have the peculiar shape that they do”. My 

framework allows for a claim such as this to be understood firstly as an adequacy claim. 

The model has been developed so that it provides an account of what happens when two 

galaxies with certain masses collide head-on, which in turn provides an adequate how-

possibly explanation. A model that provides an explanation often is easily extended to 

provide adequate predictions and descriptions, given that by the nature of its construction, 

it captures many of the same features in the S(m,t) that would need to be present for other 

purposes as well. In the end, however, if the claims in the model are to be extended to 

claims about the real world, then the modeller must consider the similarity relation of the 

model in S(m,t) to hold close enough to the target system to justify this extension.  

More generally, in evaluating model fit relative to the purpose of providing an 

explanation, what is it that justifies us in inferring that the explanation from our model is 

true of our target systems? The answer is similar to the case of prediction, in that what 

justifies the inferences made from the model to the real world system is tied to the 

assessment of the similarity relation. The similarity relation establishes that the relevant 

features of the real world system are represented in the model, and if the model’s ability 

to provide an explanation also explains the real world phenomenon, the implicit 

assumption is that the model has the relevant similar feature built in. It is only in this way 

that one can establish a justification for inferences about the world from the model.  

To summarize the lesson of these examples: Models serving a descriptive purpose 

seek to account for, or accommodate, empirical data and provide an output that somehow 

represents the features present in the target system. Models serving a predictive purpose 

seek to provide novel predictions about the system, and produce an output corresponding 

to a future or past state of affairs about the target system that is not originally built into 

the model. Models serving an explanatory purpose seek to establish underlying 

mechanisms and structural dependencies, and produce an output that can serve as an 

explanans in an explanation of some phenomenon.  
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I have provided details about how to evaluate models relative to their intended 

purpose to describe, predict, or explain within my framework. A model is rarely assessed 

relative to only one purpose. Many models are intended to describe our empirical data at 

the same time as providing predictions, or explanations. Ideally, a model would be 

adequate to some degree for all purposes—description, prediction, and explanation. 

However, it is important to assess the model’s successes relative to the different 

dimensions separately. Models can be extremely successful for one purpose, and 

therefore scientifically useful, even if they fail with respect to a different purpose. One of 

the most important features of modeling is that is allows for a distribution of cognitive 

labor. When investigating a target system, one model can provide extremely effective 

predictions yet fail to provide an adequate explanation. And a different model can 

provide an effective explanation, yet fail to provide an acceptable prediction53.  

Finally, I return to a problem identified in my examples: In cases in which it is not 

possible to obtain a straightforward ‘full account’54, how else can a modeller gain 

confidence in the model’s purpose-relative output when there are not acceptable analogue 

real world outputs to compare against? Some (Lloyd 2010; Weisberg & Reisman 2008; 

Weisberg 2006; 2013) have argued that robustness analysis bears the weight of further 

justifying our models. I examine this claim and how robustness analysis might be able to 

help strengthen inferences from the model to the world. While robustness analysis can 

build confidence in the model’s output, in the end, it is not the definitive solution. Rather, 

the similarity relation again helps by identifying what is being modified and prioritized 

through robustness analysis and the construction of various models. Namely, the 

similarity relation identifies what the modellers consider to be similar common features 

identified by robustness analysis. 

                                                
53

 For a discussion of cognitive labor as it connects to models, see Bokulich 2013, Muldoon and Weisberg 
2011. 
54

 This is also relevant for cases in which, though a modeller can compare their model output to an 
analogue real world output, there may be reasons they still want to gain further confidence in the model’s 
output. 
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4.4 The Role of Robustness Analysis 

Many philosophers and scientists have appealed to robustness analysis as a method for 

determining whether a model’s output is the result of something essential to the target 

system or an accident of the assumptions and idealizations made in constructing the 

model. Biologist Richard Levins, for example, characterizes the process of robustness 

analysis this way:  

[W]e attempt to treat the same problem with several alternative models 
each with different simplifications … . Then, if these models, despite their 
different assumptions, lead to similar results we have what we can call a 
robust theorem which is relatively free of the details of the model. Hence 
our truth is the intersection of independent lies. (Levins 1966, 20).  

Likewise, philosopher William Wimsatt understands robustness analysis to achieve the 

following:  

[A]ll the variants and uses of robustness have a common theme in the 
distinguishing of the real from the illusory; the reliable from the 
unreliable; the objective from the subjective; the object of focus from 
artifacts of perspective; and, in general, that which is regarded as 
ontologically and epistemologically trustworthy and valuable from that 
which is unreliable, ungeneralizable, worthless, and fleeting (Wimsatt 
1981, 128). 

The main idea in conducting robustness analysis is to compare several different models, 

each built using somewhat similar, yet distinct assumptions. If these models all have a 

similar enough prediction as their output, or if all identify a similar common feature, then 

that prediction or feature is considered well supported, or robust. Given that several 

models with different assumptions or features all provide the same output, one should 

consider this to be evidence that the feature is likely to be a feature of the real world as 

well. 

Weisberg (2006, 2013) has argued for the importance of robustness analysis in 

how we learn through models. To date, Weisberg has provided the most detailed account 

of robustness analysis, and thus his is the account I will examine. In the next section, I 

first detail his account of how to use robustness analysis in the search for robust 

theorems. I then discuss the role robustness analysis and robust theorems play in 

providing grounds for inferences from models to claims about the real world. I examine 
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the ways in which robustness analysis can be helpful for cases in which we do not have 

all components, a full account, of model evaluation. Robustness analysis in some cases 

can give reason to think model-outputted predictions or explanations may be adequate, 

that is, when there are not data from the real world to compare against. In these instances, 

robustness analysis may provide further evidence that the output of the model can be used 

in the similarity assessment, and that the robust properties stand in the similarity relation 

to properties of the target system.   

4.4.1 Weisberg’s Account of Robustness Analysis 

For Weisberg (2006, 2013) the aim of robustness analysis is to separate the scientifically 

important elements and predictions of the models from those that are accidents of the 

representation. He provides a four-step account of how robustness analysis is embodied 

in the search for robust theorems (Weisberg 2006; 2013).  

Step 1: Examine a group of models to determine if they all predict a common 

result, a robust property.  

Step 2: Analyze the models for the common structure which “generates” the 

robust property.  

Step 3: Combine steps 1 and 2 to formulate the robust theorem. Robust theorems 

take the form of a conditional statement,  

Robust Theorem: Ceteris paribus if [common structure] obtains, then [robust 

property] will obtain. 

Step 4: Conduct stability analysis of the robust theorem to determine what 

condition will defeat the link between the common structure and the robust 

property.  

With respect to step one, it is important to compare a set of models that are 

similar, yet distinct. It is important, Weisberg argues, that there be a sufficiently diverse 

set of models so that the discovery of a robust property does not depend in an arbitrary 

way on the models analyzed (2006, 737; 2013, 158).  In order to generate these varied 
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models we can, for example, construct related models of the same target system but vary 

the idealizations made. Another option could be comparing models of similar target 

systems. Thinking of the San Francisco Bay – Delta model, if one wanted to see how the 

bridge might respond to certain weather conditions, one could compare the model to 

other models of other bridges.  

The first step is followed by, or conducted in parallel with, the second step. Step 

two, Weisberg argues, involves finding the core structure in this set of models that 

generates, or gives rise to the robust property. This step can happen in a range of ways, 

depending on the models at hand. He considers the simplest or most straightforward cases 

to be those in which the common structure will be the models having the same physical, 

mathematical, or computational structure. Harder cases, however, involve “models that 

are not developed in the same mathematical or computational frameworks, or may 

represent a similar casual structure in different ways or different levels of abstraction” 

(2013, 158). These cases will rely heavily on the theorist’s ability to judge relevantly 

similar structures.  

In the most rigorous cases, theorists can demonstrate that each token of the 
common structure gives rise to the robust behavior and that the tokens of 
the common structure contain important mathematical similarities, not just 
intuitive qualitative similarities. However, there are occasions in which 
theorists rely on judgment and experience, not mathematics or simulation, 
to make such determinations. (Weisberg 2006, 738) 

Weisberg considers step three to be where we obtain an empirical description 

from our first two stages, which contain only formal or mathematical information. A 

fundamental aim in modeling is to move from information about the model, to empirical 

claims about the world. Weisberg considers step three to be where this takes place: “the 

third step of robustness analysis involves interpreting the mathematical structures as 

descriptions of empirical phenomena” (2006, 728).  It is this analysis that produces our 

robust theorem. Finally, step four determines the extent or limits of the theorem’s 

robustness. There will be conditions under which a model will no longer generate the 
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robust property. Modellers determine what these limits are through existing data and 

further empirical investigation55. 

For Weisberg, the reasoning process that gives us good grounds to believe 

predictions and explanations of robust theorems involves determining: 1) how frequently 

the common structure is instantiated in the relevant kind of system, and 2) what defeats 

the core structure giving rise to the robust property (2013, 159-60). Weisberg considers 

the first question to be best settled empirically. However, it can also be answered using 

techniques associated with robustness analysis. With respect to the second question, he 

thinks there are three kinds of robustness analysis that allow us to investigate different 

ways that the core structure can be defeated. Parameter robustness involves examining 

what happens when the values for the model description’s parameters are varied. In this 

case, the modeller intends to examine to what extent the change of parameters changes 

the behaviour. Structural robustness analysis involves adding new mechanistic features 

to the model in order to examine how parts of the causal structure represented in the 

model produce different behaviours or properties in the model (2013, 162). 

Representational robustness involves representing the mechanistic features of the model 

in a new representational framework. While parameter and structural robustness aim to 

analyze how variation in mechanistic attributes affect the model, representational 

robustness aims at investigating if the way in which the attributes are represented affects 

the production of a property of interest. 

4.4.2 Discussion 

There are three points to be made with respect to how robustness analysis fits within my 

framework, as well as the extent and limits to which it might aid inferences made from 

models. The first relates to how I think one should understand the “similar structures” 

that are identified by robust theorems and their relation to the S(m,t) similarity relation. 

The second relates to the extendibility of robustness analysis to cases where the purpose 

of a model is to provide explanations rather than predictions. The third relates to whether 

                                                
55

 The inclusion of and attention drawn to step four is what Weisberg considers Sober and Orzak (1994) to 
have missed in their criticisms of robustness analysis.  
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robust results have any epistemic significance, and acknowledging there may also be two 

different targets of evolution with respect to robustness analysis.   

With respect to my first point, step two of robustness analysis directly appeals to 

similarity between models or judgements about “relatively” similar structure. What needs 

to be clarified is that Weisberg is concerned with identifying similar structure as 

similarity relates only to the features that have been included in the model. Step two also 

highlights the importance of establishing the similarity relation between the model and 

the target as a component in the process of evaluating model fit. In detailing the 

pragmatics of model construction, modellers are explicit about what structures were 

chosen and incorporated in the model. By knowing what structures are in a model they 

can more easily compare and determine what structures are common across many 

models. This allows for a clear understanding of what sort of robustness analysis is being 

completed (be it parameter, structural, or representational). In this sense, robustness 

analysis is useful in that it helps the modeller learn about what features, attributes and 

mechanisms, might be in the target system, and so what features might have an effect on 

the output the model generates. 

With respect to my second point, the way in which Weisberg presents the process 

of obtaining a robust theorem discusses only the cases in which the model’s purpose is 

providing a prediction, and as presented, does not work for explanatory models. In his 

account, in order to obtain a robust theorem, it seems that we must have a model that 

provides a prediction, and we must be able to identify common structures. Recall that 

structure in this case is just the formal mathematics, computation, or concrete structure. A 

robust theorem is what allows us to connect predictions of a model to its structure, and 

ultimately provide explanation for the prediction. This is not the same as a model that 

serves an explanatory purpose. However, Weisberg’s process for obtaining a robust 

theorem can be extended to models serving an explanatory purpose in the sense 

developed above. In the case of a model serving an explanatory purpose the output is 

used as an explanans. Therefore, in the case of obtaining a robust theorem, we are 

concerned with the robust property being is included in the explanans. Weisberg’s step 

three then is concerned with establishing how the explanans is connected to the structure 
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and providing an explanation for the way in which the model features in the original 

explanation.   

Robustness analysis identifies similar structures in models and shows that the 

models all produce a similar output. While this can help one gain confidence in the fact 

that the output of the model is being produced for the right reason, it does not necessarily 

permit making inferences from the models to the real world. This leads to my third point 

related to whether robust results or outputs of the model have any epistemic significance. 

Wendy Parker (2011) also examines this by asking under what conditions an inference 

from robustness, to likely truth of the output, is justified. She argues that while there are 

conditions under which robust results may have special epistemic significance, it is not 

always the case that they do—it will depend on the ensemble of models and hypotheses 

(Parker 2011, 584).  

In order to determine if a robust results has special epistemic significance, Parker 

argues that one must be able to provide the following argument (2011, 584): 

1.  Likely Adequacy Condition: it is likely that one simulation56 in this collection 
is indicating correctly regarding hypothesis H.  

2.  Each of the simulations in this collection indicates the truth of H.  
\  It is likely that H.  

The most challenging aspect to making this argument, Parker thinks, is determining if 

there is good evidence that the likely adequacy condition has been met. There are at least 

two approaches for making the argument that this condition is met. The first focuses on 

the ensemble construction. On this approach one must argue that, “an ensemble of 

models samples so much of the current scientific uncertainty about how to represent the 

system (for the purpose at hand) that it is likely that at least one model produced is 

indicating correctly regarding H” 57. That is to say, if the ensemble of models is generated 

                                                
56

 In this context, Parker uses “simulation”, however in the context of my discussion this is equivalent to a 
model.  
57

 Parker notes that this is similar to Michael Weisberg’s claim: “The key comes in ensuring that a 
sufficiently heterogeneous set of situations is covered in the set of models subjected to robustness analysis” 
(2006, 739). 
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with the concern being how to construct and represent the system of study for a particular 

purpose, with a large enough ensemble, it is probable that one of the models produced is 

likely be an adequate representation (largely due to the goal being constructing a 

sufficiently heterogeneous set of models).  

The second approach focuses on ensemble performance. On this approach, an 

ensemble of models is viewed as a tool for indicating truth or falsity of a hypothesis, in 

which past performance of the ensemble is cited as evidence that it is likely one of the 

models in the ensemble is correctly indicating H. That is to say, if an ensemble of models 

is used to provide a certain output, such as a predicted future value or state of the system, 

then it is likely that one of those models provides the correct value, and the rest provide 

an output within some specified distance from that value.    

What I take from the analysis offered by Parker is that there is a distinction in 

robustness analysis that could benefit from the distinction I have made with respect to 

target of evaluation being a similarity relation or adequacy-for-purpose. I take it that, for 

Parker, arguments that focus on ensemble construction are comparable to a target of 

similarity, in that what is being evaluated is representation of the system by the models. 

Ensemble performance, on the other hand, seems to be concerned with further assessing 

adequacy-for-purpose, in that what is being evaluated is the ensemble of models serving 

as a tool. Therefore, it is important to specify whether robustness analysis is being 

deployed to determine whether the model accurately represents the target system, verses 

robustness analysis concerned with determining whether a model will be adequate for a 

particular purpose.  

Furthermore, there is an important difference between the goal of robustness 

analysis in the way Weisberg discusses it and the way Parker discusses it. In order for 

robustness analysis to proceed, Parker must assume, following Orzack & Sober (1993) 

and Woodward (2006), that if the ensemble of models covers the possibility space of 

ways to represent the target system, then one of the models in the ensemble will be the 

correct representation. For her, robustness analysis is a way of dealing with uncertainty 

about which model in the ensemble is the best fit. On the other hand, Weisberg does not 
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make this assumption. He talks about robustness analysis as a way of discovering 

structures that ought to appear in the correct representation of the target system. 

However, no model in the ensemble, as constituted at any time, must accurately represent 

the target system. For Weisberg, robustness analysis supports the conclusion that the 

modeller is identifying a causally salient feature of the target system for the purposes of 

making a certain kind of prediction, or explaining the output of a model.  

Robustness analysis can be of use to modellers in my framework in the following 

two ways: in cases in which there is uncertainty with respect to the constitution of the 

target system, but the modeller does have access to data to which she can compare the 

output of the model, identifying a robust feature of a class of models can give her 

confidence that the feature is present in the target system. In cases where the constitution 

of the target system is available (a similarity relation has been established), but the output 

of the model cannot be compared to the relevant aspects of the target system, then a 

robust theorem can give the modeller confidence in the prediction (or explanation) of the 

model, because it aids in identifying causally salient features of a relevantly similar class 

of models. In the former case, the feature of the target system is robust across an 

ensemble of models that produce the same output. In the latter case, the output of the 

model is robust across an ensemble of models that are all appropriately similar to the 

target system.   

Robustness analysis and the identification of robust properties provide 

information only about the models themselves. In order to infer that the identified 

structures are real, an additional justificatory step is needed. That is to say, robust 

theorems identify the relationship between a property that holds across a class of models, 

and the desired output. This is the distinction Parker gestures towards—assessments of 

the adequacy are much more complex. If this output helps support an adequacy claim, 

then one can say that the presence of the robust property is part of the reason that the 

model is adequate for its purpose. However, as argued above, there is still no licence to 

make inferences about structures in the real world from this adequacy claim. Those kinds 

of inferences follow only if one believes that the robust property represents something in 

the target system. Again, this is a similarity claim.  
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As a final point, this is not to say robustness analysis is useful only in instances in 

which we do not have real world data to which one can compare a model’s output. 

Robustness analysis can also further help a modeller understand what features impact the 

model’s output, in cases in which there is real world data to compare the output to. In 

both cases robustness analysis can aid in understanding how the model works, and how 

the model might relate to the target system. However, in cases in which we do not have 

real world data to compare to the output of the model, robustness analysis can be 

particularly helpful in that the modeller learns more about why the output from the model 

is obtained.  

4.5 Conclusion 

Above I have detailed how evaluation of model fit is conducted when a model’s intended 

purpose is to provide a description, prediction, or explanation. Justifying claims about the 

model’s fit is tied to the similarity relation in that it makes explicit how the modeller 

constructed the model to be similar to the target system given a certain purpose. It also 

justifies our evaluation of model fit based on adequacy for purpose, in that we directly 

compare the model output to the comparable real world output. These two elements 

combine to give us the full evaluation of the fit of a model relative to a purpose. What 

follows from this is that our justification for inferences about the real world from a model 

must be relative to the purpose of the model as well. 

Yet if one has a model with a certain similarity relation relative to a certain 

purpose, be it descriptive, predictive, or explanatory, and it is evaluated as adequate along 

that same dimension of purpose, this does not mean that it is necessarily going to succeed 

along the other dimensions. Therefore, we should not think that it is appropriate to make 

inferences about anything other than what we have determined to be appropriate to that 

dimension of purpose. To evaluate a model is to evaluate it relative to a purpose, and for 

the model to fit, or be successful, is to fit or be successful relative to that purpose. What 

we can do with models is make inferences from the models about the real world, but this 

will be constrained to a way in which the model reflects certain features of reality and not 

others through the established similarity relation at construction. 
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The similarity relation is critical because it provides justification that allows for 

determining when a model should not be extended or if the model must be modified in 

order to serve a different purpose. The importance of capturing the pragmatics of the 

modeller’s choices in the similarity relation is that it allows for examining what features 

are relevant for the evaluation relative to one purpose. It also allows for comparisons with 

features to be included in the model with respect to alternative purposes. If it were judged 

that the model would have to include other attributes and mechanisms to serve the second 

purpose, then we would know it would be inappropriate to apply that model without 

making those changes. 
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Chapter 5  

5 Tracing the Path of Justification for ΛCDM and MOND 

5.1 Introduction 

In contemporary cosmology and astrophysics, the Lambda Cold Dark Matter (ΛCDM) 

model is considered to be the current best model of large-scale structure formation that is 

in general agreement with observed phenomena. None of the parameter values in the 

model are fixed by our current best theory; instead their values are determined based our 

observational evidence. One of the most notable features of the ΛCDM model is the 

inclusion of dark matter58. According to the model, over 84% of all matter in the universe 

is dark matter —matter that is currently unobservable at any electromagnetic wavelength 

(Komatsu 2011; Bertone 2005). Part of the reason astronomers believe that there must be 

so much unobserved matter, is because galaxies rotate much faster than they would if all 

the matter they included was that which we can see. That is to say, the predicted rotation 

speeds given the mutual gravitational attraction of all the luminous matter in a given 

galaxy are much slower than what is observed. There must be more matter than we can 

see.  

However, some astrophysicists have seriously questioned whether positing that 

84% of the mass of the universe is made of matter we have never seen is a justifiable 

move. Some of these critics have proposed alternative models, which solve the problem 

of the galaxy rotations by MOdifying Newtonian Dynamics so that the missing mass is 

not required. The MOND approach is viewed as contentious, as many astrophysicists 

consider general relativity to be well established as the theory of gravity (Dodelson 

2011). They therefore regard the adoption of modified Newtonian dynamics as 

unjustifiable. However, advocates of MOND claim that their models have as good of a fit 

as ΛCDM for describing observed galaxy dynamics (Milgrom 1983; Famaey & 

                                                
58

 Of course, dark energy is another unusual feature of the model. However, in this chapter I will be 
focusing discussion on dark matter.  
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McGaugh 2012; McGaugh 2014; 2009)59. Part of the goal in this chapter is to analyze 

this claim. I will argue that the claim is accurate as long as it is understood as being 

relativized to a specific purpose and specific domain. The most important question is 

whether there is genuinely a conflict between the two models. My framework offers the 

tools to analyze this question and specify where the conflict arises.  

This is a case in which there are two models that include different elements, and 

even differ fundamentally in terms of the theories on which they are based. Yet, both 

models have been evaluated by scientists to be models that successfully describe the 

observations, make adequate predictions, and even offer explanations. They are both said 

to be high-fit models. But how can that be if they disagree about fundamental physics? 

How can we make sense of a claim like this? How should we deal with situations in 

which we have two models that seem to contradict one another, yet are both evaluated as 

having a good fit?  

At first glance, this may seem like a simple fundamental disagreement and that it 

is a mistake to evaluate MOND models as having a good fit, given that they do not use 

general relativity, our current best theory of gravity. However, the framework I have 

developed will allow us to see how both ΛCDM and MOND can be considered well-

justified, high-fit models—given different choices about what to prioritize. While some 

scientists regard this as a case of Kuhnian incommensurability or believe that there is a 

purely subjective choice to be made (McGaugh 2014), I argue that they are not seeing the 

debate as it should be understood—as one primarily about choosing the purpose of 

models and then assessing whether they are useful for that purpose. 

In this chapter, I compare the justification for ΛCDM to justification for MOND. 

I show how both of these models are well justified, high-fit models with respect to their 

adequacy for certain purposes. I will show how MOND models have high fit with respect 

to descriptive and predictive adequacy. However, they do not have as good a fit with 

                                                
59

 Proponents of MOND view their models as is equivalent or superior in some respects to ΛCDM. For the 
sake of argument I am granting the advocates of MOND their success claims. 
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respect to explanation, as a result of their inclusion of a different mechanism for gravity. 

While high similarity of mechanisms is not necessary for description and prediction, I 

will argue it is necessary for explanation.  

My evaluation is a result of paying careful attention to the role theory plays in the 

construction of the two models. My framework offers a toolkit for analyzing these sorts 

of debates so that an understanding of the disagreement can be reached. I conclude that 

both models can be evaluated as having good fit, when considering their fit within their 

respective domains of application. I claim that the apparent conflict between the two 

models arises due to extending both models past the domain where they are successful. In 

attempting to extend the model to new domains, the modeller relies heavily on a model’s 

explanatory fit. And extending claims of explanatory fit relies on strong commitments to 

the similarity relation established, particularly with respect to the way the model 

represents theoretical commitments.  

Returning to the overall goals of this dissertation, this case study will show how 

my framework deals with complicated cases in which there are multiple purposes 

involved in assessment of both similarity and adequacy. This is a case where the way in 

which theoretical considerations come into play during model construction is critical. In 

the end, this case study will show the benefit of understanding model assessment and 

justification in the way I have described. It will also emphasize how this framework can 

be an effective tool for discussions about fit between seemingly conflicting models. 

5.2 Construction of the ΛCDM Model 

The study of exact solutions of Einstein's field equations is one area of research in 

astrophysics, and the ΛCDM model is one exact solution60. While in this dissertation I 

                                                
60

 The astrophysics literature refers to FLRW models as a class of exact solutions (rather than class of 
models) to Einstein’s field equations specified by the FLRW metric. That is, any specification of parameter 
values, such as curvature (Ωk) and mass-energy density (Ωm), that is consistent with the field equations is 
referred to as a solution to the model (Hamilton 2014). In this context, the ΛCDM model is a 
parameterization of the perturbed FLRW models. However, the common usage of terms differs in 
philosophy. The reader should understand the FLRW solution as a set of models; any specification of 
parameters yields a particular model, such as the ΛCDM model. 
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have been referring to ΛCDM in the singular, it is actually a class of models. The 

particular parameterization of ΛCDM that incorporates all of the best empirical data is 

the model that I have called and will continue to call “the ΛCDM model”. Presently 

however, I will briefly discuss the class of ΛCDM models in general, which includes this 

special parameterization.  

The ΛCDM models are derived from the class of perturbed FLRW models. The 

standard FLRW models make the assumption of homogeneity. This entails that there will 

be no structure present in the FLRW models. The perturbed FLRW models do not make 

the assumption of homogeneity. Rather, they allow for the presence of inhomogeneous 

regions of higher matter density. The ΛCDM models incorporate this feature and show 

how it can evolve through gravitational attraction into large-scale structure. The ΛCDM 

models differ from the FLRW models in another important way: they include further 

specification of the kinds of matter that exist in the model. This includes baryonic matter, 

radiation, cold dark matter, and a cosmological constant Λ.   

The particular parameterization of ΛCDM based on empirical data includes the 

best estimations of the overall curvature (Ωk) of the universe, mass-energy density (Ωm), 

and other parameter values. This is considered the best model of the universe, and will be 

discussed in further detail below. Its ability to account for large-scale structure formation 

is considered one of its successes. However, as will be seen below, it has a challenger in 

MOND when it comes to accounting for behavior on the scale of individual galaxies. In 

this section, I will detail the general construction of the ΛCDM model, highlighting the 

main assumptions and idealizations, as well as discuss the domain and purpose for which 

it was constructed. 

5.2.1 Einstein Field Equations to FLRW  

Our current best theory of gravitation is general relativity. General relativity provides a 

unified description of gravity as curvature in spacetime, in which the curvature of 

spacetime is related to the energy and momentum of the mass and radiation present. This 

relation is specified by the Einstein field equations (EFE), a system of partial differential 

equations. The field equations are ten equations that describe gravitational interaction as 
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a result of spacetime being curved by matter and energy. By providing conditions, or 

assumptions, for the global properties of the spacetime within general relativity theory, 

one can reduce these ten equations to tractable, usable coupled equations (Weinberg 

1972; Misner-1973; Hamilton 2014). 

General relativity theory is extremely well established. Any model that required 

the abandonment of general relativity would be a radical departure from the current best 

understanding of the structure of the universe. General relativity theory has been 

extremely successful in predicting gravitational phenomena at certain length scales. 

Astrophysicists have considered it justified to extrapolate beyond the observable success 

of general relativity and to posit that general relativity is the correct theory of gravity on 

cosmological scales as well.  

Astrophysicists are interested in applying the field equations in order to find some way to 

model the structure of our entire universe. Since gravity is expected to be the dominant 

force on large length scales, models of the evolution of the universe at this scale are 

based on general relativity. The target system in the construction of such a model is the 

entire universe, but the domain over which the model is to apply involves only very large 

distance scales. The model would not be required to properly capture the inclusion of 

smaller features. That is to say, the astrophysicists are not a concerned with capturing 

details such as stellar populations within galaxies; rather the model is to be restricted to 

regularities above the length scale of galaxies, but below that of the Hubble radius 

(Hamilton 2014, 72). The intended purpose of such a model is to provide a mathematical 

description of the evolution of the universe, and the growth of large-scale structures over 

extremely long periods of time. The model is to serve a descriptive purpose, but also 

embody some predictive purpose as well, given that astrophysicists want to make claims 

about the possible evolution, as well as past and future states of the universe (Hamilton 

2014, 83).  

In order to develop tractable mathematical models for describing the global 

characteristics of the entire universe from the field equations, assumptions need to be 

made. Of course, these must also be justifiable idealizations or approximations of the 
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target system according to the accepted construal for astrophysical models. Two 

assumptions, which render the simplest class of models from the field equations, are that 

the universe, on very large scales (i.e., > 100 Mpc), is homogeneous and isotropic (Ryden 

2003). The assumption of homogeneity states that, regardless of location in the universe, 

the mass-energy distribution is uniform on large scales, and so spacetime has a uniform 

geometry. Spacetime can be foliated into three-dimensional hypersurfaces of constant 

time, so that any point on the surface has the same spacetime geometry. The assumption 

of isotropy says that there is no preferred direction in space. This means that on large 

scales observers will have similar observational evidence, regardless of the direction they 

look. These two idealizations are jointly referred to as “the cosmological principle”, and 

are considered to be supported by a variety of observational data (Hamilton 2014, 71; 

also see Lahav 2001; Hansen 2004; Beisbart 2010; Maartens 2011). 

These assumptions provide the large-scale smooth metric, the Friedmann–

Lemaître–Robertson–Walker (FLRW) metric. The metric provides a means by which 

distances can be measured. It is also assumed that spacetime can be treated as a perfect 

fluid61 (Wald 1984; Rugh & Zinkernagel 2011; Melia 2015). The motion of points 

through this fluid is used to represent objects such as galaxies. By applying these 

idealizations and approximations to the field equations, and taking into account 

symmetries in the equations, we arrive a class of models referred to as the Friedmann–

Lemaître–Robertson–Walker (FLRW) models62.  

5.2.2 FLRW to ΛCDM 

The FLRW models describe a universe with two unknowns (Hamilton 2014; Ryden 

2003). The first is a global scale factor, a(t), for the universe, and the second is the 

constant curvature of the universe. The scale factor is not directly observable, and its 

value must be determined indirectly from observations, similarly for the curvature. Many 

                                                
61

 This is the assumption that the stress-energy tensor is that of a perfect fluid. 
62

 The class of FLRW models includes any model related to the FLRW models, including the perturbed 
FLRW models. 
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contemporary astrophysicists see their work as efforts to determine what the values of 

these unknown variables are. There are various methodologies, observations, and 

supporting models and simulations that go into attempts to determine the values for these 

parameters (Spergel 2015; Hamilton 2014). To this extent, this work aims to determine 

features of our target system in an effort to further refine the model used to represent the 

target system. From the observable part of our universe, our observational data from 

various independent sources (such as WMAP, BOOMERanG and Planck) indicates that 

the curvature of the universe is almost perfectly flat (Giannantonio 2010; Komatsu et al. 

2011; Ryden 2003). However, the global scale factor for the universe has more 

uncertainty. 

A global scale factor is a function of time and represents the relative expansion of 

the universe. However, the differential equations for the scale factor a(t) depend on the 

content of the universe, which is parameterized by various cosmological parameters: Ωm, 

the average matter density (including matter of particles and dark matter) that undergoes 

dilution with the scale factor; ΩΛ = Λ/3H2, where H=𝑎/a is the Hubble expansion rate, 

and Λ is the cosmological constant, a constant that does not dilute with the scale factor; 

and Ωk, the average curvature of the universe (Hamilton 2014; Ryden 2003). These 

parameters are related through Ωk = 1 – Ωm - ΩΛ. A negative value corresponds to an 

infinite hyperbolic universe, a positive value corresponds to a closed spherical universe, 

and zero is an infinite flat Euclidean universe. 

Since the goal of ΛCDM is to describe structure formation, it requires a slight 

alteration to the standard FLRW matter-density assumptions. FLRW has a uniform matter 

density. However, with a uniform distribution of matter gravitational effects would be 

acting equally from all directions on all points. This is a uniform model that lacks 

structure. In order to generate large-scale structure, ΛCDM needs to assume that there are 

random perturbations in the matter density distribution at very early times in the 

evolution of the universe. The regions with higher than average matter density will attract 

matter from surrounding lower density regions, leading to a concentration of matter that 

will become the large-scale structure of the universe. This evolution is what is governed 

by the linearized field equations in this model. The use of these equations is justified 
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because, on the scales relevant for ΛCDM, gravity is weak, meaning that the spacetime 

metric is nearly flat (Wald 1984, 74). The standard Big-Bang model of cosmology does 

not give rise to the necessary density perturbations. ΛCDM requires matter density 

perturbations, which are inconsistent with the assumptions of the Big-Bang model. One 

popular way to generate these inhomogeneities in the model is by including an 

assumption about an inflationary period during the early universe to generate the density 

perturbations that allow for the formation of large-scale structures (Hamilton 2014, 72). 

Through obtaining observational data about our universe, astrophysicists are able 

to narrow down the values for these cosmological parameters. The model with parameter 

values that are in agreement with those observations and proposed attributes in our target 

system is called the ΛCDM model of cosmology. The name, ΛCDM, comes from the two 

attributes that have been included in the model (and as such determine a certain range of 

permissible parameter values). ‘Lambda’ refers to the inclusion of Λ as dark energy, a 

form of energy that is thought to permeate all of spacetime and accommodates our 

observations that indicate the expansion of the universe at an accelerated rate. ‘Cold Dark 

Matter’ refers to the inclusion of cold dark matter in the model in order to accommodate 

our observational data about matter content, and structure formation. Further discussion 

of these parameters will be reserved for the following sections.  

5.3 The Evaluation and Justification of the ΛCDM Model 

Returning to my framework, I first want to consider the similarity relation 

established in the construction of the ΛCDM model. The underlying mechanism for the 

model is gravity as described by general relativity, and is included by virtue of using the 

field equations as the model’s base. In order to construct a model from this, various 

idealizations and approximations have been made about the target system: the structure of 

the entire universe, over an extremely large-scale domain. In addition it is assumed that 

the matter density distribution deviates from uniformity, such that there are regions of 

higher density that act as “seeds” for structure formation. The weak field approximation 

states that the linearized field equations can be used in cases where gravity is not 

overwhelmingly strong. This approximation is appropriate at this scale; so the linearized 
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field equations are used to model the evolution of these seeds, which over time give rise 

to large-scale structure.  

By examining the later determination of parameter values, one feature becomes 

quite clear: gravity as a mechanism in the model has been given an extremely high 

weighting. As astrophysicists attempted to learn more about the target system, in order to 

provide possible parameter values in the model, many situations were encountered in 

which the modellers were required to include new attributes about the target system, such 

as the existence of dark matter and dark energy, in order to maintain the use of general 

relativity as the fundamental underlying mechanism63 in the model.  

The values for the parameters, as well as the idealizations made along the way, 

were adopted in order preserve a descriptive similarity relation in the model in which the 

highest weighted feature for the similarity relation is general relativity as the mechanism 

for gravity. What this illustrates is that the model is based on the theory of general 

relativity. The ΛCDM model will be assessed as having a high degree of similarity to the 

target system under this particular similarity relation weighting. This is due to the fact 

that the component of the weighted feature-matching similarity equation corresponding to 

the mechanism for gravity will have a very high weighting. Other dissimilarities between 

the model and the target system will not lead to a high penalty. Over the course of the 

construction of the ΛCDM model, astrophysicists have been continually obtaining new 

data and using it as a comparison point with observed phenomena to further refine the 

model, and make the model fit better with observations of the target system. 

Having constructed the ΛCDM model for a descriptive purpose, we can use it to 

obtain a descriptive output. Recall, that in order to obtain an output, reasoning or 

computation related to the model must occur. One such attempt to obtain an output from 

                                                

63 As a reminder, “mechanism” in this context refers to the dynamical considerations in a model. One 
intuitive way to think about how this applies to general relativity is to consider the “shape” of spacetime to 
be the cause of gravitational effects. However, this is not essential, and should not be seen as an 
endorsement of a substantivalist view of spacetime or commitment to the idea that spacetime has causal 
powers. General relativity as the “mechanism” for gravity could be re-described as an attribute.   
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the ΛCDM model is the Millennium Run I and II64. The Millennium Runs are the largest 

ever computer simulations of the formation of large-scale structure as described by the 

ΛCDM model. The Millennium Run offered a visualization of the ΛCDM large-scale 

structure description of the matter content of the universe from 13 Gyrs ago through to 

the present, as well as its future evolution. The Millennium II simulation used the ΛCDM 

model with parameter values in best agreement with observational evidence at the time: 

Ωtot = 1.0; Ωm = 0.25; Ωb = 0.045; ΩΛ = 0.75; h = 0.73; σ8 = 0.9; ns = 1, where h is the 

Hubble constant at redshift zero in units of 100 km s−1 Mpc−1, σ8 is the rms amplitude of 

linear mass fluctuations in 8 h−1 Mpc spheres at z = 0 and ns is the spectral index of the 

primordial power spectrum (Boylan-Kolchin et al 2009, 1151). Running the simulation 

involved following 21603 particles within a cubic simulation box of side length Lbox = 

100 h−1 Mpc. Each simulation particle has mass of 6.885 × 106 h−1 M⊙ , and particles 

were allowed to have individual adaptive time steps. The goal in the simulation is to 

evolve these particles in accord with the ΛCDM parameter values and the linearized field 

equations, to represent the evolution of the regions of higher mass density (or “seeds”), in 

order to show how the ΛCDM model describes structure formation evolution over time. 

                                                
64

 Millennium Run II and Millennium Run I both have the same cosmological parameters and particles, but 
Millennium Run II has a box that is smaller by a factor of 5 than Millennium Run I and thus has 125 times 
better mass resolution.  
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Figure 17: Millennium Run II 

 
This set of 12 images shows the evolutionary growth of a massive halo over cosmic time From 
top to bottom, the regions are plotted at redshift 6, 2, 1, and 0. The 3 columns from left to right 
show the evolution on different length scales. 100 x 100 Mpc/h, the center column is 40 x 40 

Mpc/h, and the right is 15 x 15 Mpc/h (in comoving units) (Boylan-Kolchin et al. 2009). 
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In considering the similarity of the model to the analogous output from our target 

system, however, this is a case in which there is not full access to observing the entire 

large-scale structure of the universe nor the timescales on which to observe such things. 

While astrophysicists cannot make a direct comparison of the output structure from the 

model to the universe, they can, however, compare the model output to smaller scale 

systems, such as galaxy clusters, in order to see if these structures are consistent with the 

output of the model. Some large-scale features can be observed, such as galaxy 

distributions, and these are similar to the output of the model. However, the output the 

modellers are most interested in is the description over time of large-scale structure. 

Since this cannot be directly observed, indirect observations, such as those of smaller 

scale structures, must suffice.   

In general, when a model is constructed so that it includes a strong theoretical 

component, then it is very likely that the model will be universally applicable. Since 

highly confirmed fundamental physical theories are to apply at all times, then a model 

closely based on them should also apply at all times. This suggests that a model with a 

strong theoretical component will likely be successful at making predictions. Even if the 

model was constructed with a descriptive purpose in mind, it will allow one to make 

claims about future and past states about the system. While a fundamental theory is valid 

in any domain, it likely will not be universally useful. Approximations and idealizations 

are made when constructing a model for a domain that differs from the standard domain 

of the theory. These approximations and idealizations may build in a domain dependence 

for the model that may not exist for the theory itself65.  An example of this is the 

Oppenheimer-Snyder black hole model seen in chapter 2. While the model was based on 

general relativity, Oppenheimer-Snyder idealized away features of the target system that 

are relevant on longer timescales (such as spin). This allowed them to create a useful 

model for their purposes, but it was not applicable outside of the domain that was 

determined by their idealizations and simplifications about the target system.  

                                                
65

 This is especially true for cases of non-fundamental theories that apply only in a limited domain.  
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Turning to assessment of adequacy of the ΛCDM model for various purposes, 

having a strong theoretical component in the establishment of the similarity relation for 

the construction of a model serving a descriptive purpose means that the description 

should apply at all times. Therefore, the ΛCDM model is also (in a sense) a predictively 

adequate model, as providing a description of a future or past unobserved state is a kind 

of prediction for which adequacy can be assessed. Furthermore, a heavy theoretical 

component in the similarity relation also means that the model should be able to be 

applied easily to unobserved cases, yielding new predictions in this sense as well.  

Yet the ΛCDM model is an incomplete case, as we cannot compare the full 

structure output to the real world, even though we can compare some features of the 

model output to the real world, such as smaller scale distribution of galaxies. 

Astrophysicists do not have direct observational access to the large-scale structure of our 

universe, nor the timescales relevant to the predictions. They can, however, compare the 

model output of structure formations to smaller scale objects, such as galaxy clusters, and 

see if these models seem to be similar. On this basis, astrophysicists have judged the 

ΛCDM model to be predictively adequate as well. It has successfully predicted a variety 

of empirical consequences ranging from galaxy distributions on large scales, to lensing 

phenomena caused by dark matter halos surrounding galaxies (Mo et al 2010).  

Most importantly, such a heavy inclusion of theory in the similarity relation, and 

in the construction of the model means the model fares well with respect to its 

explanatory adequacy. Because the ΛCDM model is based so closely on general 

relativity, it has already included the structures that are similar to the causal dependencies 

that exist in the target system. It has already included these explanatory elements, rather 

than needing to use the model to discover them. When a model is based closely on 

theory, in general, it will be explanatorily adequate because we take theories to offer 

good explanations66.  

                                                
66

 When a model is not based closely on theory, robustness analysis is an indispensable tool to aid in 
discovering these dependencies. 
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Even though the ΛCDM model is constructed for a descriptive purpose, in that the 

parameter values were chosen to accommodate observational data about the target 

system, it is adequate with respect to prediction and explanation as well. The reason for 

this is its close reliance on a well-confirmed theory in establishment of the similarity 

relation in the construction. In general, a model closely based on a theory will predict and 

explain well. Within the domain of the ΛCDM model—application to extremely large 

scale structure of the universe—the model can be evaluated as fitting well, with respect to 

its similarity to the target system for the purpose of providing a description, and it is 

adequate with respect to providing that description, as well as being able to provide 

predictions and retrodictions about the structure, and explaining why the structure is as it 

is. 

5.4 The Extension of Domain and Rise of Conflict 

Since astrophysicists take ΛCDM to be an adequate explanatory model, it is quite natural 

to want to extend the model to other domains. If a model is explanatorily adequate, and 

we consider the explanatory mechanisms to be not just adequate, but fundamental to the 

similarity relation in construction of the model, and actually similar to the target system, 

then the model should have some explanatory adequacy with respect to other domains.  

For this reason, while the ΛCDM model was constructed to apply on a large-scale 

domain, it could be extended to a different domain, such as the small-scale structure of a 

single galaxy. For the domain of small-scale structure, the field equations, on which the 

model lays its foundation, reduce to Newton's law of gravity by using both the weak-field 

approximation and the slow-motion approximation, which are considered justified 

approximations for single galaxies or clusters.  

This allows for the ΛCDM model to be extended to model galaxy rotation 

structures. And in fact, it was single galaxy rotation curves that partly led to the inclusion 

of dark matter as an attribute in the ΛCDM model (Ryden 2003). A galaxy rotation curve 

is a plot of the orbital speeds of visible stars or gas in a galaxy against their radial 

distance from that galaxy's center. How much matter is visible in a given galaxy 

determines a simple curve for rotational speed as a function of the distance from the 
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galactic center. However, the actual observational data did not match the calculated 

expected curve. 

Figure 18: Example Galaxy Rotation Curve 

 
Example galaxy rotation curve. The rotational velocities of stars are plotted against their distance 

from the center of a galaxy. The dotted line A plots what the expected rotation curve based on 
visible matter. Solid line B plots what is actually observed (Nesvold 2013). 

According to general relativity67, for the galaxies to rotate in the way the observations 

indicated, there must be significantly more mass in the galaxy than the mass we are able 

to see. As such, dark matter was postulated as an attribute of the universe and added to 

our model of the universe (and thus adding the ‘DM’ to ΛCDM).   

One of the most interesting problems in astrophysics is that modellers often do 

not even know everything that constitutes the target system that is being modeled. In 

astrophysics more generally, one of the largest problems in constructing a model of the 

large scale structure of the universe is modellers are able to directly observationally 

access only a very small part of the system. They have no direct access to the entire target 

system of interest, and moreover they are not even totally sure what is in the target 

system.  

                                                
67

 In this domain, the weak field approximation applies, meaning that it is actually Newtonian dynamics 
that is used to model galaxy rotation. However, general relativity is still considered to be the correct theory 
for this system. Newtonian mechanics is used because it is considered to be a good approximation in this 
domain.  
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In the case of the ΛCDM model, two extremely controversial attributes are 

included: dark matter and dark energy. These two features have been postulated to be part 

of our universe, but almost entirely because astrophysicists have wanted to maintain 

general relativity as the basis of the model, heavilty weighting it as a mechanism. The 

inclusion of dark matter is a strange feature, as we currently do not know for certain that 

it exists in the target system. There is a debate about whether postulating dark matter in 

order to maintain general relativity is a bad explanatory move. As a result, other 

astrophysical research programs have developed alternative models that do not posit this 

strange dark matter. However, the problem is that in order to succeed, they have to 

abandon general relativity as the mechanism for gravity in the model. While some 

consider this to be a matter of a subjective choice between incommensurable models, my 

framework will show that it involves questions about the assessment of different models 

for different purposes. Both are successful in their domain of application for multiple 

purposes. However, when the models are extended to a common domain, they are 

actually in conflict with each other, and can be directly compared. 

5.5 MOND as an Alternative Means to Fit the Data 

Proponents of Modified Newtonian Dynamics (MOND) (originally proposed by 

Mordehai Milgrom) consider the inclusion of dark matter in order to maintain 

consistency with general relativity to be a bad explanatory move. The MOND research 

program attempts to explain galaxy rotation without dark matter by modifying the 

underlying laws of physics. By modifying the underlying physics proponents are able to 

provide a model for galaxy rotation that not only does not posit dark matter but also 

matches the observed data descriptively, with a higher degree of accuracy than the 

extended ΛCDM model (McGaugh 2014; Milgrom 1983).  

Take, for example, the measured rotation curve of the galaxy NGC 1560 in Figure 

19. The observed rotation velocity data points, plotted as a function of distance from the 

galactic center, are compared to the predictions of three models. 
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Figure 19: NGC 1560 Rotation Curve 

 
The measured rotation curve of the galaxy NGC1560 shown by the data points. Newtonian curve 

based on the measured mass distribution (in blue), MOND (in green), and Newtonian + dark 
matter halo of the type predicted by CDM simulations (in red). (McGaugh (from Milgrom) 2009).   

The ΛCDM-based galaxy rotation model (ΛCDM extended by further approximations for 

its application to a single galaxy as a model with Newtonian gravitation and the inclusion 

of dark matter) is able to offer an adequate descriptive fit of the rotation curves, in that it 

generally gets the shape correct. However, if we want a model that, with the smallest 

amount of deviation, describes the data points, we must say that MOND is the better 

model. The MOND model for galaxy rotations supports a larger descriptive similarity to 

the data points. The MOND model also predicts the data points of rotation curves of other 

galaxies with higher similarity than ΛCDM, and is thus more predictively adequate68. 

The key difference is that the proponents of MOND also want it to serve the purpose of 

                                                
68

 For extended discussion and further examples of MOND verses ΛCDM galaxy rotation curves, see 
Randriamampandry & Carignan (2014), “Galaxy Mass Models: MOND verses Dark Matter Halos”.  
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offering an explanatory model, in that the explanation for these data points is modified 

Newtonian dynamics and not general relativity. As Milgrom states, MOND “explains 

almost all aspects of the mass discrepancies in galactic systems with no need to invoke 

dark matter. This is what MOND claims to achieve” (Milgrom 2009, 5). 

Much like their colleagues who support ΛCDM, MOND proponents consider 

their models for galaxy rotation to be heavily based on theory, and thus believe that their 

similarity relations are actually capturing a real causal mechanism in the target system. 

So, MOND proponents have attempted to extend its domain beyond its descriptively 

well-fitting galaxy rotation curves. However, when moving to large scales, their models 

fare quite poorly. Take, for example, the extension to large-scale structure formation 

models. 

Figure 20: ΛCDM and MOND Structure Formation 

 
Large scale structure formation model slices for ΛCDM (top) and MOND (bottom). Notice the 
MOND have shifted redshift z values, for the same ΛCDM model above. (McGaugh 2014, 12) 

In Figure 20 the top row is a depiction of the predicted structure formation from the 

ΛCDM model for the present (z=0), as well as several instances in the past (z=3, z=5). 
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These model outputs are considered by astrophysics to be well fitting with respect to 

what is known about our universe’s current structure. The MOND model also achieves 

similar structures, but in MOND the structures develop too soon (McGaugh 2014, 13). 

What astrophysicists consider to be the current structure (z=0 in ΛCDM) occurs in 

MOND at z=3. Astrophysicists consider the MOND-based model of structure formation 

not to fit with our observational data-based claims of the large scale structures (McGaugh 

2014; Dodelson 2011). Therefore, MOND does not have a good fit when applied to larger 

domains. However, ΛCDM is evaluated to fit well.  

5.6 The Importance of Similarity Relation and Domain of Application 

Recall that the puzzle about the ΛCDM and MOND models that motivated my discussion 

is how they can both be so successful, yet be based on fundamentally different physical 

theories. How do we make sense of this fact?  

Each of these models, in its own domain, fits well with respect to description and 

prediction, and each includes potentially problematic explanatory structures. ΛCDM fits 

well with respect to describing and predicting the large-scale structure of the universe. 

However, in order to maintain general relativity as its fundamental explanatory 

mechanism, it has to include dark matter as an attribute of the target system. MOND fits 

well for describing and predicting the small-scale structure of single galaxy rotations. 

However, in order to provide this accurate description, general relativity as the 

underlying causal mechanism is abandoned in favor of modified Newtonian dynamics. 

Both of these models fit well within their domains and for their intended purposes.  

What my framework allows us to see is that the models are not in conflict when 

applied in their domains, and it is only when they are taken to be good explanatory 

models, and those explanations are extended, that they come into conflict. In so far as 

ΛCDM is a model of structure formation, it does not apply to galaxies directly and does 

not directly conflict with MOND. However, its underlying fundamental physical theory is 

general relativity, which does conflict. It is ΛCDM’s similarity with general relativity 

that makes it highly explanatorily adequate in its domain. However, the attempted 
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extension to new domains, justified by high similarity to general relativity, is what brings 

it into direct conflict with MOND.  

With respect to assessing the overall explanatory fit for these two models, it is 

important to remember that one needs to separately assess explanatory adequacy and 

similarity for the purpose of explanation. Both models are adequate for explanations in 

their respective domains. Recall that adequacy is assessed by attempting to use the output 

of the model in an explanation. Both models produce outputs that can feature as 

explanantia in an explanation for phenomena relevant to their domains.  

But what is interesting about cases from astrophysics, such as this, is that we do 

not always know exactly what constitutes the target system. A consequence of having 

uncertainty with respect to what is in the target system is that there is some uncertainty 

with respect to our assessment of the similarity relation. The similarity relation 

establishes the representational relation between the attributes and mechanisms in the 

model and the attributes and mechanisms in the target system. If we do not know what is 

in the target system, we will not know what to capture in the similarity relation.  

A claim that a model has good explanatory fit means that the model is an 

adequate explanation, but also that it is similar to the target system in the right kind of 

way. Recall, it is of special importance for explanatory similarity that the mechanisms be 

accurately represented in the model. If we are justified in claims that the model has a 

good explanatory fit, then it should be the case that the model is capturing actual 

mechanisms in the similarity relation that represent actual causal dependencies in the 

target system.  

This is why we consider it justified to extend a good explanatory model beyond 

its original domain of application. A good explanation is grounded by the accurate 

representation of the target system captured in the similarity relation. For something to be 

a good explanation, it presupposes the idea that the similarity relation is capturing real 

features of the system. This is especially true with respect to mechanisms because that is 

how the causal relations in the world are represented in the model. Relatedly, if an 

element of an explanatorily adequate model is indispensable for giving a good 
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explanation, then one should conclude that what it represents is a part of the target 

system.  

Where the ΛCDM and MOND models run into trouble is when they move beyond 

their original domains and attempt to extend their claims about the model’s explanatory 

adequacy. Both are adequate explanatory models in their original domains. But what they 

disagree about is what they consider to be in the target system. That is to say, they 

disagree about the mechanisms and attributes included in the similarity relation. 

What my framework allows us to see is that when we think of a model as having 

high explanatory fit, because of the way the similarity relation is structured, we are 

endorsing the idea that the mechanisms in the model represent real causal relations in the 

world, and that the attributes in the model stand in that relation to one another. If 

scientists think they have a model with high explanatory fit, what they think they have is 

a model that has good similarity to the target system, and to the real counterfactual 

dependencies that exist in the world.  

Models with high explanatory fit make the most commitments to what there is in 

the world, and this is the reason why it is natural to think they can be extended to new 

domains. If modellers have identified features about the target system within a certain 

domain, and find that when they extend the model to a new domain those features are still 

there, it is likely because they really are there in the world. As a result, one can generate 

new models based on having a good explanatory understanding of a phenomenon. 

However, this cannot necessarily be done with prediction or description. Explanatory 

models commit to more, namely, to the existence of real counterfactual relations. 

So what does this mean, more specifically, for the case of ΛCDM and MOND? It 

means that there is not a conflict between the ΛCDM and MOND models when they are 

applied to their own domains. The ΛCDM model was constructed to describe extremely 

large-scale structure, and does well within this domain. However, the two models are in 

conflict when one attempts to extend them.  We see this in ΛCDM when it is extended to 

small-scale structure of single galaxies. While it might be adequate for the purpose of 

describing the rotation curve, it does not do it as well as the MOND model for galaxy 
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rotation does. What is hiding here in the details, however, is that the real conflict between 

the two is their explanation for the phenomena.  

The question, then, becomes which explanation is better supported? ΛCDM has, 

as far as our current knowledge of our target system goes, the stronger similarity relation 

because the mechanism for gravitational attraction in the model comes from our current 

best theory. The questionable attributes that it includes (namely, dark matter and dark 

energy) are not theoretically problematic according to general relativity. But on the other 

hand, the questionable mechanism in MOND (namely modified Newtonian dynamics) is 

theoretically problematic, because it is inconsistent with our current best theory of 

gravity. One might think that the point of models, and therefore the point of MOND, is to 

help us explore cases in which our current best theory may not be the correct theory. 

Alternative models, like MOND, can help us formulate and assess new theoretical 

hypotheses. They are a valuable tool in testing our best theories, and discovering possible 

alternatives.  

However, if the dynamics in the MOND model represents a viable alternative 

theory, then when that model is applied outside of its original domain of application, it 

should still do well. The MOND model should fit in the new domain, if it has identified 

the causal aspects that are actually in the target system. However, we do not see that. 

MOND, on large scales dramatically misses the mark (McGaugh 2014). This is evidence 

that the modified Newtonian dynamics is not identifying a real causal relation in the 

world, and just happens to work at the scale of the original domain of the model. While 

the ΛCDM model does not do better than MOND for galaxy rotation, the ΛCDM 

modellers do acknowledge that their model likely does not have the full similarity story, 

or that some of the idealizations they have made in constructing a model for the large-

scale domain (such as homogeneity and isotropy) are not justifiable when examining the 

smaller scales.  

Stacy McGaugh (2014) argues that the difference between the ΛCDM and 

MOND models is a matter of “mutual incommensurate paradigms”, that they are 

opposing explanations for the observed mass discrepancies in the universe. Each 
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paradigm has different pertinent data, and “where one makes clear predictions, the other 

tends to be mute. This makes comparison of the two fraught” (McGaugh 2014, 16). 

However, my framework provides a different means to understand the issue at hand. We 

should not understand these two models as being incommensurable, but rather as 

reflecting differences in understanding how to justify the extension of high-fit models, 

relative to the model’s similarity, and adequacy relative to a purpose and domain of 

application. My framework allows for comparison between the two, and offers a means 

of identifying where the models differ and why. My framework allows for a richer 

progress in the discussion of the conflicts between the models. 

5.7 Conclusion.  

My framework enables us to see where the ΛCDM and MOND models disagree, 

and to understand how it could be possible for two models with fundamentally different 

physics to both be good fits in their domains for their purposes. They conflict only when 

they are extended, and one is justified in extending them beyond their original domain 

only if the models are thought to be good explanatory models. And anyone who thinks 

they are good explanatory models is committed to the attributes and mechanisms in the 

models standing in some representational relation to attributes and mechanisms in the 

actual target system.  

The point at which the models enter into conflict arises when we attempt to move 

beyond the models to claims about the real world. Ronald Giere says, “There is no best 

scientific model of anything; there are only models more or less good for different 

purposes” (Giere 2001, 1060). I have argued that this is true. However, we must 

acknowledge what these models commit us to when we attempt to move beyond the 

model itself. It is when we attempt to make inferences from our models to the real world 

that we must reflect on what the establishment of the similarity relation commits us to. To 

learn about the world from a model, the model’s construction and assessment at each 

stage is of primary importance.  
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Chapter 6  

6 Conclusion 

6.1 Concluding Remarks 

In this dissertation I have presented a framework that is intended to be used to help 

disentangle the interwoven threads of evaluation of model success, model extendibility, 

and the ability to draw ampliative inferences about the world from models. I began by 

identifying three important questions that guided the development of my framework: 

What is the target of evaluation in model assessment? How does that evaluation proceed? 

What licenses us in making inferences about the real world based on the evaluation of our 

models as successful? 

The framework identifies two distinct targets of model evaluation: 

representational similarity between the model and target system, and the adequacy of the 

model as a tool to answer questions. Both assessments must be relativized to a purpose, 

of which there are three general kinds: descriptive, predictive, and explanatory. These 

purposes differ in the way they inform the similarity relation, which is relevant for the 

similarity assessment and for the output they produce, which is relevant for the adequacy 

assessment. Any model can be assessed relative to any purpose, but a model encodes 

certain decisions made during the model’s construction, which affects its ability to be 

applied to a new purpose or new domain. My framework shows that extending a model, 

and drawing inferences from it, depends on its representational similarity.  

This framework has been successful in that it has allowed me to analyze an 

important contemporary debate in astrophysics between the proponents of MOND and 

the more commonly accepted ΛCDM model of structure formation. I have shown that the 

supposed conflict between the two models can be resolved by showing that it is an 

artifact of inappropriate extension of the models, when the explanatory similarity is not 

sufficient for such an extension.  This conflict is not properly understood as 

incommensurability, as is sometimes claimed. Rather, it is a conflict between models 

designed for specific purposes in specific domains being unjustifiably extended. The 
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framework has proven its value in this case and could easily be applied to analyze similar 

cases to identify the source of conflict in model disagreement.  

However, this framework also has some open ends for further exploration and 

work. It is possible that there may be more than three kinds of purpose. Indeed, the three 

general kinds of purposes I have identified may not be exhausted or comprehensive. I do 

however think they are “primary” in some sense. The addition of another kind of purpose 

would require reflection as to what one might expect at the output stage of the framework 

that differs from the outputs already captured by description, prediction, and explanation. 

However, should there be more than just these three I see no reason the model cannot be 

extended to account for those.  

There may be scientific models that do not neatly fit into the proposed analysis. 

However, my framework clearly captures large swaths of models actually used in 

science. Any instances of model evaluation that might not fit in this framework would be 

a wonderful find, as it would illuminate possible missing aspects that may be specific to a 

certain science or type of modeling. Additionally, one could also object that the four 

components of framework presuppose discrete temporal steps in the assessment of 

models. While this is necessary for dialectical purposes, nothing about how the analysis 

actually proceeds requires that they be considered as successive steps. Rather, what I 

have done is to draw conceptual distinctions in the ways in which models are assessed. 

Furthermore, this framework could allow for tracking the complexities of model 

evolution is an iterative process, that does not proceed cleanly from component 1 to 2 to 

3 to 4. Rather, there may (and in fact often are) revisions to the construction of the model 

and the similarity relation in light of the output or comparable observational evidence 

obtained. But what the framework does track is this process, and the various aspect to the 

decisions made during the evaluation. 
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The role of evidence is also an open question both in my framework, and 

philosophical work on modeling more generally69. The role of evidence in the discussion 

of modelling can be quite messy, however what my framework provides is a means for 

identifying where evidential considerations come into play. Evidence, be it observational, 

experimental, or raw data can play a role in in determining what the target system will be, 

in the assessment of the similarity relation, or in assessing the adequacy of the model’s 

output for the purpose. My framework allows for identifying these nodes of entry for 

data, as well as how that evidence is used in the justificatory process. It may be that 

certain evidence might support a hypothesis statement, while evidence in favor of the 

model more generally differ. A closer look at the role of evidence in these contexts may 

also be illuminating for a topic I have set aside: confirmation. There are at least three 

ways in which the relation between models and evidence can be discussed, the first 

relates to whether observations or the model itself confirms our understanding of a target 

system. Second, whether a variety of evidence can validate the use of a certain model to a 

higher degree than a single line of evidence. Finally, whether the success of a model can 

serve as evidence or confirmation for a particular theory. What my framework can 

provide is a means to identify the various justificatory processes at play in the evaluation 

of a model, which may be helpful for disentangling what notions of verification, 

validation, or confirmation are at play in a positive assessment of a model as successful. 

As I noted, I have attempted to provide a framework absent of discussion of scientific 

confirmation in order to examine the process of model evaluation. Future work should 

look to see how the framework developed based on examining the practice of scientific 

modeling fits within the existing literature on confirmation generally. 

Relatedly, this project has focused on instances of modeling in which there is little 

uncertainty with respect to identifying the target system, in which the data is clear, and in 

which the models are already well-developed. However, it is often the case in actual 

scientific practice that the data itself is uncertain. For example, there may be sources of 

                                                
69

 As a point of reference, discussion of evidence in the context of scientific models is absent from the 
Stanford Encyclopedia of Philosophy’s entry on “Models in Science”. 
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systematic error in certain observations made by astronomers. Most mature sciences have 

techniques for addressing error in their data, which allows them to create models even in 

cases of uncertainty. Considerations of this kind have not played a role in the analysis 

presented in this dissertation, and may represent an interesting complication to my 

framework. This is a potential area for future research. However, a few brief remarks can 

be made presently. Uncertainty may enter in before the model evaluation of fit proceeds, 

in that there may not be agreement about what features should be included in the 

similarity relation, and weighted-feature matching equation (component 1 of the 

framework). Part of the advantage to the weighted-feature matching equation is that by 

specifying the weightings, and why certain features are weighted in the way they are, the 

modeler is tracking which aspects of model they are less certain about. Error analysis 

may be a critical part of the assessment of adequacy, or the assessment of the similarity 

relation during component three or four. In comparing the model to comparable output 

from the target system, error analysis may help inform a modeller’s evaluation. Again, 

this points to the strength of my framework as a means to identify the instances in which 

these sorts of uncertainties enter into the evaluative process. 

Finally, the analysis I have proposed often relies on saying something about a 

modeler’s intentions or decisions during the model’s construction. In some cases, one 

does not have access to any information of this kind, or a model will be used without 

having been created with any purpose in mind (e.g. inherited from other unrelated or 

historical sciences, or parameters set by trial and error). In these cases, a certain amount 

of reconstruction is needed for the analysis to proceed. If the modeler has not considered 

why the use of a historical model or model from a different discipline may be 

appropriate, inferences made from those models to the world may very well not be 

justified. To be permitted in making inferences from a model, the modeler must consider 

the ways in which the model is similar, and represents, the target system to which it is 

being applied. Regardless of whether the modeler constructed the model themselves, 

there is some similarity relation analysis that the modeler conducts such that they think 

the model represents the target system in a way that is meaningful. I see my framework 

as being particularly illuminating in these cases, as it gives means by which a modeler 
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can express their rational for adopting a specific existing model for their target system of 

interest.   

Recall the joke I heard in undergraduate physics, which started me thinking about 

these issues: What is the difference between a physicist and an astronomer? A physicist 

needs two data points to get a line of best-fit but an astronomer only needs one. While 

there is a hint of truth to the joke, it fails to take into account the purpose for which most 

astronomical models are developed. Astronomers tend to develop models for describing 

an unknown target system. They operate with a small set of data, and build the best 

descriptions of their target system they can. Their models are heavily theoretically 

influenced, and therefore a significant amount can be learned from a small amount of 

observational evidence. It is through attending to the purpose and domain a model is 

intended to be a tool for that we can better understand what success in science looks like. 

Understanding the world is a difficult task, and models are invaluable tools. But we must 

understand how they represent their target systems, how they are adequate for the jobs we 

want to use them for, and how we are justified in drawing inferences from them, if we are 

to be able to truly learn anything about our world.  
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