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Abstract 

The fracture toughness resistance curve, i.e. the J-integral resistance curve (J-R curve) or 

the crack tip opening displacement resistance (CTOD-R) curves, is widely used in the 

integrity assessment and strain-based design of energy pipelines with respect to planar 

defects (i.e. cracks).  This thesis deals with issues related to the experimental determination 

of J(CTOD)-R curves using the newly-developed single-edge (notched) tension (SE(T)) 

specimens.  In the first study, the plastic geometry factor, i.e. the ηpl factor, used to evaluate 

J in a J-R curve test based on an SE(T) specimen is developed based on three-dimensional 

(3D) finite element analysis (FEA).  In the second study, 3D FEA is carried out on SE(T) 

specimens to develop the plastic constraint factor, i.e. the m factor, used to evaluate CTOD 

from J.  The third study reported in this thesis focuses on the compliance equation, which 

relates the crack length and specimen’s compliance (i.e. inverse of stiffness) in the 

J(CTOD)-R curves testing.  Three-dimensional FEA of clamped SE(T) specimens is 

performed to examine the accuracy of the crack mouth opening displacement (CMOD) 

compliance equations reported in the literature.  In the fourth study, the impact of the crack 

front curvature on the J-R curve measured from the SE(T) specimen is investigated through 

systematic elastic-plastic 3D FEA of SE(T) specimens containing both straight and curved 

crack fronts.  The last study reported in this thesis is focused on developing the effective 

thickness that takes accounts for the side groove effects on the estimations of the stress 

intensity factor (K) and J for SE(T) specimens. The outcomes of these studies will facilitate 

and improve the evaluation of J(CTOD)-R curves using side-grooved SE(T) specimens. 

Keywords 

Pipeline, Fracture toughness, J-integral, Crack tip opening displacement (CTOD), Finite 

element analyses, SE(T) specimen, plastic geometry factor, plastic constraint factor, 

compliance equation, curved crack front, side groove. 
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Chapter 1   Introduction 

1.1 Background 

Pipelines are an effective and safe means to transport large quantities of hydrocarbons 

over a long distance (PHMSA 2012).  According to the Canadian Energy Pipeline 

Association (CEPA), 97% of Canadian natural gas and crude oil production are transported 

by transmission pipelines.  It is reported that over $134 billion worth of energy products 

were shipped through the 73,000 km long pipelines regulated by the National Energy Board 

(NEB) of Canada at an estimated transportation cost of $7.1 billion in 2013 (NEB 2014).  

Energy pipelines may contain planar defects, i.e. cracks, in the pipe base metal and 

weldments due to various causes such as stress corrosion cracking, fatigue and the welding 

process.  The fracture toughness resistance curve (R-curve) of pipeline steels is a key input 

to the structural integrity assessment and strain-based design of pipelines with respect to 

cracks (Fairchild et al. 2012).  The R-curve is generally represented by either the J-integral 

resistance curve (J-R curve) or the crack tip opening displacement (CTOD) resistance curve 

(CTOD-R curve) (Anderson, 2005).  It follows that the accuracy of the experimentally 

measured R-curve directly influences the accuracy of the design and assessment of 

pipelines. 

The R-curve is typically determined from small-scale test specimens cut from the pipe, 

such as the single-edge notched bend (SE(B) or SENB) and compact tension (C(T)) 

specimens, which have been standardized in standards such as ASTM E1820-13 (ASTM, 

2013) and BS7448 (BSI, 1997).  Previous studies (e.g. Zhu et al, 2005; Shen and Tyson, 

2009) reveal that using R-curves evaluated from the standard deeply-cracked SE(B) and 

C(T) specimens generally leads to conservative outcomes in the design and assessment of 

pipelines containing surface cracks.  Over the last decade, the use of the clamped single-

edge notched tension (SE(T) or SENT) specimen, which was recently standardized in BS 

8571 (BSI, 2014), to determine the R-curve has gained significant research interests 

(Cravero and Ruggieri, 2007; Ruggieri, 2012; Wang et al, 2012, 2013) in the energy 

pipeline industry.  This is because the crack-tip stress and strain fields of the SE(T) 
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specimen are more relevant to a full-scale pipe containing surface cracks under internal 

pressure and/or longitudinal tension than the conventional standard SE(B) and C(T) 

specimens (Chiesa et al., 2001; Tang et al., 2010; Wang et al, 2011); therefore, the R-curve 

determined from the SE(T) specimen can lead to more accurate design and assessment of 

pipelines with respect to cracks.  The objective of the study reported in this thesis is to 

address several issues related to the experimental determination of the R-curve using the 

SE(T) specimens and to improve the current SE(T) test method.  To this end, some basic 

concepts of fracture mechanics are briefly reviewed first in Section 1.2. 

1.2 Fundamentals of Fracture Mechanics 

1.2.1 Linear Elastic Fracture Mechanics 

Fracture mechanics consists of two main branches: the linear elastic fracture mechanics 

(LEFM) and the elastic plastic fracture mechanics (EPFM) (Anderson, 2005).  The former 

attempts to describe the fracture behavior of a material when the plastic deformation is 

confined to a small region surrounding the crack tip, known as the small scale yielding 

(SSY) condition.  On the other hand, EPFM applies to the large scale yielding (LSY) 

condition where significant plasticity in the vicinity of the crack tip is considered. 

In fracture mechanics, there are three typical loading modes based on the loading 

position and direction with respect to the crack (see Fig. 1.1), namely the opening mode 

(mode I), the in-plane shearing mode (mode II), and the out-of-plane shearing mode (mode 

III) (Anderson, 2005).  Mixed mode loading arises if any two or three of these modes take 

place concurrently.  This thesis is focused on the Mode I loading because it is the most 

critical fracture mode for ductile metals.  All the discussions thereafter are with respected 

to the Mode I loading. 

Consider an isotropic linear elastic body containing a crack as illustrated in Fig. 1.2. 

Define a polar coordinate system with the origin located at the crack tip.  The stress field 

at the crack tip can be written as (Westergaard, 1939; Irwin, 1957; Williams, 1957): 
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where σij
1  is the stress tensor; r and θ are coordinates defined in Fig. 1.2; fij is a 

dimensionless function of θ, and K is the so-called stress intensity factor in the unit of 

force/area×(length)0.5.  Equation (1.1) describes a stress singularity at the crack tip, because 

σij approaches infinity as r→0.  The stress intensity factor completely defines the amplitude 

of the stress singularity; that is, the stresses, strains and displacements near the crack tip 

can be completely determined given K (Hutchinson, 1983; Anderson, 2005).  This single-

parameter characterization by K strictly relies on the satisfaction of the SSY condition, 

which requires the zone of plastic deformation to be contained well within the singularity 

fields (Hutchinson, 1983).  The size of the plastic zone ahead of the crack tip, rp, can be 

approximately calculated using the following equation (Hutchinson, 1983): 
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 (1.2) 

where σYS is the yield strength.  The ASTM standard for experimentally determining the 

linear elastic plane-strain fracture toughness of metallic materials, ASTM E399 (ASTM, 

2012), requires the crack length and uncracked ligament of the test specimen to be no less 

than 25rp at the point of fracture to satisfy SSY.  Generally speaking, SSY is met if the 

applied load is less than half the limit load at which plastic yielding extends throughout the 

uncracked ligament (Hutchinson, 1983).  Under SSY, the energy release rate G, defined as 

the rate of decrease in the potential energy with a unit increase in the crack area (Irwin, 

1957), can be related to the stress intensity factor K as follows: 

                                                 

1
 In this thesis, only i, j = 1, 2, or 3 are the subscripts of tensors.  All symbols with other subscripts denote 

scalars. 
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where E2D is the elastic modulus in two-dimensional analysis and is defined as 
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 (1.4) 

with E and ν being Young’s modulus and Poisson’s ratio, respectively. 

For a given material at a given temperature, there exists a critical stress intensity factor, 

Kc, associated with the onset of crack growth under monotonic loading (Hutchinson, 1983).  

Generally for mode I loading, Kc decreases as the thickness of the cracked body increases 

(Anderson, 2005).  In particular, the critical stress intensity factor in a mode I, plane-strain 

condition is called the fracture toughness of the material at the given temperature and 

denoted by KIc. KIc is expected to be a material property (Broek, 1986).  To ensure the 

plane-strain condition in the fracture toughness test, ASTM E399 (ASTM, 2012) also 

requires the thickness of the test specimen to be at least 25rp. 

For highly brittle materials, cracks will run dynamically once K reaches KIc, and KIc 

remains constant during the crack growth.  For more ductile materials, however, more 

energy is required to extend the crack after the onset of crack growth, due to the energy 

dissipation in the plastic zone at the crack tip (Anderson, 2005); that is, the fracture 

toughness increases as the crack grows.  The relationship between the fracture toughness 

and crack extension Δa under stable quasi-static growth conditions is defined as the 

fracture toughness resistance curve (Hutchinson, 1983; Anderson, 2005). 

1.2.2 Elastic Plastic Fracture Mechanics 

Linear elastic fracture mechanics (LEFM) loses validity when the fracture processes are 

accompanied by significant plastic deformation at the crack tip (Anderson, 2005).  As a 

rough approximation, the application of LEFM becomes questionable if the applied load is 

greater than one half of the load at which full plastic yielding occurs (Hutchison, 1983).  
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To characterize the fracture behavior of ductile materials with medium-to-high toughness, 

elastic plastic fracture mechanics (EPFM) is required. 

Before further discussions of the elastic plastic fracture mechanics, it is necessary to 

introduce some fundamentals of the theory of plasticity.  There are two main theories of 

plasticity based on two different constitutive relations. The incremental (or flow) theory of 

plasticity employs the formulations relating increments of stress and strain, whereas the 

deformation theory of plasticity employs the formulations relating the total stress and 

strain.  The incremental theory of plasticity is loading-path-dependent, whereas the 

deformation theory of plasticity is loading-path-independent.  Under the monotonic and 

proportional loading condition, the deformation theory of plasticity is equivalent to the 

incremental theory of plasticity.  Note that the deformation theory of plasticity is equivalent 

to nonlinear elasticity provided that no unloading occurs. 

The J-integral proposed by Rice (1968) and crack tip opening displacement (CTOD) 

proposed by Wells (1961) are the two most important concepts in EPFM (Anderson, 2005).  

Both parameters describe the mechanical behaviors of the elastic-plastic materials near the 

crack-tip.  Each of them can serve as a measure of material’s toughness and therefore can 

be used to set up fracture criteria.  Consider a two-dimensional cracked body (see Fig. 1.3) 

characterized by the deformation theory of plasticity (i.e. small strain kinematics and 

nonlinear elastic constitutive model) with an arbitrary counterclockwise path (Γ) around 

the crack tip. The J-integral or J is defined as 

 i
i

u
J wdy T ds

x

 
   

 
  (1.5) 

where ui and Ti are components of the displacement and traction vectors, respectively (i = 

1, 2 or 3); w is the strain energy density, and ds is the length increment along the contour 

Γ.  Note that the unit of J is energy/area or equivalently force/length.  The strain energy 

density w and traction Ti are given by (Anderson, 2005): 

    
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,
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ij ij ijw w x y w d
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where εij (i, j = 1, 2, or 3) is the strain tensor, and nj is the component of the unit normal 

vector to Γ.  Rice (1968) showed that the value of J is independent of the integration path, 

i.e. Γ, around the crack tip. Therefore, J is a path-independent integral.  It can be further 

shown (Rice, 1968; Anderson, 2005) that J is also equivalent to the energy release rate for 

the nonlinear elastic cracked body, and reduces to G for a linear elastic cracked body.  From 

this point, J is also known as the nonlinear energy release rate. 

Similar to K, J is also an intensity parameter characterizing the stress state near the crack 

tip (Anderson, 2005).  Consider a two-dimensional (i.e. plane-strain or plane-stress) 

cracked body characterized by the deformation plasticity and a Ramberg-Osgood stress-

strain relationship as follows: 
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where σ0 is the reference stress and typically set equal to the yield strength; ε0 = σ0/E, and 

α and n are parameters of the Ramberg-Osgood relationship with n commonly known as 

the strain hardening exponent.  Hutchinson (1968) as well as Rice and Rosengren (1968) 

independently showed that at distances close to the crack tip, where the elastic strain is 

negligible compared with the plastic strain, the stresses and strains are related to J through 

the following equations: 
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where In is an integration constant that depends on n, and 𝜎̃𝑖𝑗  and 𝜀𝑖̃𝑗 are dimensionless 

functions of n, θ, and stress state (plane-strain or plane-stress).  Equations (1.9) and (1.10) 

are known as the HRR solutions (singularity) (Anderson, 2005).  Therefore, J provides a 
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single-parameter characterization of the crack-tip fields in EPFM, just as K provides a 

single-parameter characterization of the crack-tip fields in LEFM. 

Several important points about J and HRR solutions are worth emphasizing.  First, the 

J-integral as originally proposed by Rice (1968) is applicable to two-dimensional (2D) 

configurations.  Further research has extended the J concept to three-dimensional (3D) 

configurations (Anderson, 2005; Shih et al. 1986), where J is considered as a local value 

that varies along the crack front.  However, J in a 3D configuration has no direct 

relationship with the near-tip stress and strain fields, but is simply a characterizing 

parameter that quantifies the severity of the crack-tip fields (Nikishkov and Atluri, 1987).  

Second, J is path-independent only for materials characterized by deformation plasticity 

(i.e. nonlinear elastic).  J is path-dependent for materials characterized by incremental 

plasticity.  However, as long as the loading is proportional everywhere in the cracked body 

(Anderson, 2005), the deformation plasticity is equivalent to the incremental plasticity.  

Finally, the HRR solutions are only applicable at locations near the crack tip, where the 

elastic strains are negligible and the singularity terms in Eqs. (1.9) and (1.10) dominate.  

At locations immediately ahead of the crack tip, however, the HRR solutions are invalid 

because they do not account for the finite geometry change (i.e. large strain) at the crack 

tip (Anderson, 2005). 

The crack tip opening displacement (CTOD) proposed by Wells (1961) is another 

parameter describing crack-tip conditions for elastic-plastic materials.  It is found that for 

materials with high toughness, the initial sharp crack tip is firstly blunted due to high degree 

of plastic deformation before subsequent ductile tearing, as shown in Fig. 1.4 (a).  At 

present, there are two widely used definitions of CTOD, namely the displacement at the 

original crack tip and the 90 degree intercept definition, as illustrated in Figs. 1.4 (a) and 

(b), respectively.  The first one was originally proposed by Wells (1961), and the second 

definition was suggested by Rice (1968) and Shih (1981) and commonly used for the 

CTOD evaluation in the finite element analysis.  If a semicircle (blunt) crack tip is assumed, 

these two definitions are essentially equivalent.  Within the limit of the SSY condition, the 

value of CTOD (δ) can be related to K or G (Irwin, 1961; Burdekin and Stone, 1966): 
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where m(SSY) is a dimensionless constraint parameter that is approximately unity for the 

plane stress condition and 2 for the plane strain condition (Hollstein and Blauel, 1977).  For 

linear elastic conditions, J is equivalent to the energy release rate G, and Eq. (1.11) 

demonstrate the equivalence of the fracture parameters (K, G, J and CTOD) in the limit of 

linear elastic conditions.  Based on the displacements at the crack tip obtained from the 

HRR solutions and the elastic-plastic finite element analyses, Shih (1981) further proved 

that CTOD is linearly related to J well beyond the validity limits of LEFM, and therefore 

CTOD and J can be considered as equivalent fracture toughness parameters in EPFM.  A 

great deal of efforts have been made to investigate the J-CTOD relationship under SSY 

and LSY conditions for different specimen configurations through finite element analyses 

(Kirk and Wang, 1995; Wang et al., 1997; Panontin et al., 2000; Shen and Tyson, 2009; 

Ruggieri, 2012). 

1.2.3 Fracture Toughness Resistance Curve for Elastic-plastic Materials 

Because J and CTOD are considered characterizing parameters for the crack-tip fields, 

it is natural to experimentally determine the fracture toughness of the material as the critical 

values of J and CTOD at the onset of crack growth, which are known as JIc and δIc.  In 

addition, J can also be considered as an intensity measure even with a small amount of 

crack growth, as long as the conditions for the so-called J-controlled crack growth are 

satisfied (Hutchinson, 1983).  These conditions essentially limit the amount of crack 

growth such that the elastic unloading and nonproportional loading near the crack tip 

associated with the crack growth are well contained within the region where the 

deformation plasticity on which the J-integral is based is still applicable.  Based on this 

argument, tests can be carried out to develop J versus (small amounts of) crack extension 

Δa for ductile material, known as the J-Resistance curve or J-R curve (Hutchinson, 1983; 

Anderson, 2005).  Equivalently, the CTOD resistance curve (CTOD-R curve) can also be 

obtained from the tests.  The J(CTOD)-R curve is a generalization of the K-based resistance 

curve (K-R curve), as the latter is only applicable under the small scale yielding condition.  



9 

 

 

For ductile materials, J and CTOD always increase with small amounts of crack advance; 

therefore, the J(CTOD)-R curve has significant practical implications for structures that are 

made of ductile materials and can tolerate certain amount of crack growth, because 

significant additional load carrying capacity can be achieved with the application of the 

J(CTOD)-R curve.  In this thesis, the fracture toughness resistance curve (R-curves) is 

referred to the J(CTOD)-R curve. 

In the pipeline industry, the R-curve tests are commonly conducted on small-scale 

specimens such as SE(B), C(T) and SE(T) specimens cut from the pipe.  The evaluation of 

the load versus load line displacement (P-LLD) curve or load versus crack mouth opening 

displacement (P-CMOD) curve is key to the experimental evaluation of the R-curve for 

these specimens.  Figures 1.5(a) through 1.5(d) show schematics of the plane-sided and 

side-grooved SE(B), C(T) and SE(T) specimens as well as the corresponding LLD and 

CMOD, where dimensions B, BN, S, W, H, and a denote the specimen thickness, net 

thickness, specimen span, width, distance between grips and crack length, respectively.  

Note that the side-grooved specimen is often used in the R curve test to promote a straight 

crack front during the crack growth process (Anderson, 2005). 

1.3 Objectives and Research Significance 

1.3.1 Investigation of Plastic Geometry Factors  

The objective of the study reported in Chapter 2 of this thesis was to carry out a 

systematic investigation of the plastic geometry factors for SE(T) specimens using three-

dimensional (3D) finite element analyses (FEA).  Both plane-sided and side-grooved SE(T) 

specimens with a wide range of the crack depth-over-specimen width ratios (a/W) and 

specimen thickness-over-width ratios (B/W) were analyzed.  The load line displacement 

(LLD)- and crack mouth opening displacement (CMOD)-based ηpl corresponding to the 

average J value over the crack front were evaluated.  The impact of a/W, B/W and the strain 

hardening characteristics on the ηpl factor were also investigated.  The research outcome 

will improve the accuracy of the J-R curve obtained from the experiment and facilitate the 

evaluation of J-R curves using SE(T) specimens. 
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1.3.2 Investigation of J-CTOD Relationship for Clamped SE(T) Specimens  

The study reported in Chapter 3 was aimed at developing a more accurate expression of 

the m factor that relates J and CTOD based on 3D FEA of clamped SE(T) specimen.  The 

analysis covered both plane-sided and side-grooved specimens with a range of specimen 

configurations (a/W = 0.2 to 0.7 and B/W = 1 and 2) and strain hardening exponents (n =5, 

8.5, 10, 15 and 20).  Based on the analysis results, a new empirical m-factor equation is 

proposed as a function of a/W, B/W, the yield-to-tensile strength ratio and loading level.  

The proposed m-factor equation will improve the accuracy of the CTOD-R curve 

experimentally obtained from SE(T) specimens. 

1.3.3 Investigation of Compliance Equations 

The study reported in Chapter 4 focused on the compliance equation, which relates the 

crack length and specimen’s compliance (i.e. inverse of stiffness) in the R-curve testing.  

Three-dimensional FEA of clamped SE(T) specimens is performed to examine the 

accuracy of the CMOD compliance equations reported in the literature.  The analysis 

covered both plane-sided and side-grooved specimens with a wide range of specimen 

configurations including nine relative crack lengths (a/W) ranging from 0.1 to 0.9, and 

seven relative thicknesses (B/W) ranging from 0.25 to 4.  Based on the FEA results, the 

crack length/compliance modification factors ((a/W) and (BCE)) are developed to improve 

the accuracy of the compliance equations.  The results of this study can improve the 

accuracy of the experimentally determined J- and CTOD-R curves using the single-

specimen technique and SE(T) specimens. 

1.3.4 Investigation of Effects of Crack Front Curvature for the J-R Curve 

Testing 

As specified in the J-R curve test standards, all machine-notched specimens need to be 

fatigue pre-cracked to simulate natural cracks before the J-R curve testing.  The fatigue 

pre-cracking often introduces curved as opposed to straight crack fronts.  The study 

reported in Chapter 5 investigated the impact of the crack front curvature on the 
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compliance, compliance rotation correction factor and values of the J-integral for the SE(T) 

specimen.  Based on the analysis results, new crack front straightness criteria that are in 

most cases less stringent than the existing criteria specified in relevant test standards are 

recommended.  The suggested criteria can potentially lead to cost savings by reducing the 

specimen rejection rate. 

1.3.5 Investigation of Effective Thickness of Side-grooved Clamped SE(T) 

Specimens for J-R Curve Testing 

In the study reported in Chapter 6, 3D FEA are performed on clamped SE(T) specimens 

to investigate the effective thickness used in the calculations of the stress intensity factor 

(K) and plastic eta factor-based J-integral.  The SE(T) specimens with six relative crack 

lengths (a/W ratios from 0.2 to 0.7), one relative thickness (B/W = 1) and eleven depths of 

side groove (i.e. BN/B = 1, 0.94, 0.92, 0.9, 0.88, 0.86, 0.85, 0.84, 0.82, 0.8 and 0.75) are 

considered in the analyses.  Based on the FEA results, new effective thickness expressions 

and values for K and J estimations for side-grooved SE(T) specimens are proposed and 

validated.  The research outcome will facilitate the evaluation of J-R curves using the side-

grooved SE(T) specimens. 

1.4 Thesis Format 

This thesis is prepared in an integrated-article format as specified by the School of 

Graduate and Postdoctoral Studies at the University of Western Ontario and consists of 

seven chapters.  Chapter 1 is the introduction of the entire thesis where a brief review of 

fundamentals of LEFM and EPFM is presented.  Chapters 2 through 6 form the main body 

of the thesis, each of which addresses an individual topic and is presented as a stand-alone 

manuscript without any abstract, but with its own references.  Finally, a summary of the 

study, main conclusions of the thesis and recommendations for future study are included 

in Chapter 7. 
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Figure 1.1: Three typical loading modes in fracture mechanics 

 

 

Figure 1.2: Stress field near the crack tip  
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Figure 1.3: Schematic of J-integral 
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(a) Displacement at the original crack tip 

 

 

 

(b) Displacement at the intersection of a 90 degree vertex with the crack flanks 

Figure 1.4: Schematically illustration of CTOD definitions 
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(a) Small-scale specimens cut from the pipe 

 

 

(b) Plane-sided three-point single-edge bend (SE(B)) specimen  
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(c) Plane-sided compact tension (C(T)) specimen 

 

(d) Plane-sided clamped single-edge tension (SE(T)) specimen 
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(e) Schematic of side grooves 

 

Figure 1.5: Schematic of small-scale specimens cut from the pipe 
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Chapter 2   Evaluation of Plastic Geometry Factors for SE(T) 

Specimens Based on Three-dimensional Finite Element 

Analysis 

2.1 Background and Objective 

2.1.1 Estimation of J Using Plastic Geometry Factors 

As an important input in the structural integrity assessment of steel structures such as 

pressure vessels and energy pipelines, the fracture toughness resistance curve, i.e. J-

integral resistance (J-R) curve, is generally obtained from the small-scale fracture test 

specimens such as the single-edge bend (SE(B)) and compact tension (C(T)) specimens.  

The test procedures for such specimens have been standardized in standards such as ASTM 

E1820-11E2 (ASTM, 2013) and BS7448-97 (BSI, 1997).  This section briefly describes 

the development of the experimental estimation methods of J-integral (J). 

Begley and Landes (1972) were among the first to evaluate J experimentally based on 

its interpretation as the energy release rate: 

 
dU

J
Bda

   (2.1) 

where U denotes the strain energy; a and B are the crack length and specimen thickness, 

respectively.  This method requires testing multiple specimens with different crack lengths, 

which can be costly and time consuming.  Subsequent work by Rice et al. (1973) introduced 

a more convenient way to evaluate J from a single test specimen.  J can be evaluated in 

either a load controlled (Eq. 2.2) or displacement controlled (Eq. 2.3) condition as follows 

(see Fig. 2.1): 

 
0

1 P

J dP
B a




  (2.2) 

or 
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J d
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 (2.3) 
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where P denotes the applied load, and Δ is the load-line displacement (LLD).  Figure 2.2 

shows a typical load vs. displacement curve in the fracture toughness test.  The total area 

under the loading path, A, is defined as the work done by the external force during the test.  

As indicated in Fig. 2.2, A can be separated by an elastic unloading path into an elastic 

component, Ael, and a plastic component, Apl, i.e. A = Ael + Apl.  Similarly, this unloading 

path separates Δ into an elastic component, Δel, and a plastic component, Δpl, i.e. Δ = Δel + 

Δpl, and Eq. (2.3) can be accordingly rewritten as 

 
0 0

1 1el pl

el pl el pl

P P
J d d J J

B a B a

  
      

    (2.4) 

where Jel and Jpl are the elastic and plastic components of J, respectively.  Jel can be 

determined from the stress intensity factor K (Anderson, 2005): 

 

2 2
(1 )

el

K
J

E


  (2.5) 

where E and v are Young’s modulus and Poisson’s ratio respectively.  The solutions for K 

have been well documented (e.g. Tada, 2000).  Sumpter and Turner (1976) introduced a 

dimensionless plastic geometry factor, 𝜂𝑝𝑙
𝐿𝐿𝐷, to relate Jpl to the plastic area under the load 

(P) versus load-line displacement (LLD) curve, 𝐴𝑝𝑙
𝐿𝐿𝐷: 
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pl

pl
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pl pl pl

pl
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bB bB
dP
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   (2.6) 

where b is the length of the remaining ligament, b = W – a.  Alternatively, Jpl can be 

evaluated from the crack mouth opening displacement (CMOD or V) as opposed to LLD 

(Kirk and Dodds, 1993); therefore,  
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or 
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where Vpl is the plastic component of CMOD, 𝐴𝑝𝑙
𝐶𝑀𝑂𝐷 represents the plastic area under the 

load versus CMOD curve (see Fig. 2.2), and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷  denotes the CMOD-based plastic 

geometry factor.  Equations (2.6) and (2.8) are prescribed in the testing standards (ASTM, 

2013; BSI, 1997) as the J calculations for basic test method.  Note that these two equations 

are limited to stationary cracks and therefore used to determine either the critical J (JIC) by 

testing a single specimen, or the J-R curve by testing multiple specimens.  For the 

determination of the J-R curve using the single-specimen testing method, another plastic 

geometry factor, γpl, is needed to make the crack growth correction in the eta factor-based 

evaluation of J (Ernst et al., 1981) as described in Appendix A.  Parameters ηpl (i.e., 𝜂𝑝𝑙
𝐿𝐿𝐷 

and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷) and γpl are key parameters to the experimental evaluation of the J-integral. 

2.1.2 Development and Evaluation of ηpl Factor 

This section briefly describes evaluation methods for the ηpl factors.  Combining the 

second term of Eqs. (2.4) and (2.6) (or Eqs. (2.7) and (2.8)), 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 are expressed 

as follows: 
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  (2.9) 

If the load P can be separated into a function of a/W and a function of Δpl/W, denoted as 

MΔ(a/W) and NΔ(Δpl/W): 

 ,
pl pla a

P M N
W W W W
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 (2.10) 
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Then Eq. (2.9a) can be further rewritten as: 
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The same approach can be used to evaluate 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 if P can be separated into a function of 

a/W and a function of Vpl/W, denoted as MV(a/W) and NV(Vpl/W): 

 ,
pl pl

V V

V Va a
P M N

W W W W

  
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 (2.12) 

and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 is expressed as: 

 
 

   

/ 1
1

/ /

CMOD V

pl

V

M a Wa

W a W M a W



  

 
 (2.13) 

The evaluation of 𝜂𝑝𝑙
𝐿𝐿𝐷(𝜂𝑝𝑙

𝐶𝑀𝑂𝐷) from Eqs. (2.10) through (2.13) is based on analytical 

procedures and is known as the load separation analysis method (Sumpter and Turner, 1976; 

Paris et al., 1980).  In these cases, 𝜂𝑝𝑙
𝐿𝐿𝐷(𝜂𝑝𝑙

𝐶𝑀𝑂𝐷) only depends on a/W and is therefore 

referred to as “the geometry factor”.  The existence of Eq. (2.10) (or Eq. (2.12)) is the basis 

to develop 𝜂𝑝𝑙
𝐿𝐿𝐷(a/W) (or 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷(a/W)).  Equations (2.10) and (2.12) are generally satisfied 

for cracked body composed by elastic-perfectly plastic materials.  For hardening materials, 

𝜂𝑝𝑙
𝐿𝐿𝐷(𝜂𝑝𝑙

𝐶𝑀𝑂𝐷) factor may depend on the strain hardening exponent (n) in addition to a/W. 

Paris et al. (1980) suggested that 𝜂𝑝𝑙
𝐿𝐿𝐷 that is independent of the loading and n exists for 

deeply-cracked bending and tension specimens of power-law hardening materials with n ≥ 

10.  Particularly, for many cracked body geometries, Eqs. (2.10) and (2.12) exist when the 

load is greater or equal to the limit load (PY).  Therefore the estimation of 𝜂𝑝𝑙
𝐿𝐿𝐷(𝜂𝑝𝑙

𝐶𝑀𝑂𝐷) 

can also be converted to the limit load analysis.  The limit loads for a variety of specimen 
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configurations have been well documented (Green and Hundy, 1956; Joch et al., 1993; 

Kanninen and Popelar, 1985; Miller, 1988; Khan and Ghosh, 2007). 

For a given specimen at a given loading level, the values of 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 can also be 

calculated from 𝐴𝑝𝑙
𝐿𝐿𝐷 and 𝐴𝑝𝑙

𝐶𝑀𝑂𝐷 and corresponding Jpl by rearranging Eqs. (2.6) and (2.8) 

as follows:  
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Note that Eq. (2.14) is theoretically equivalent to Eq. (2.9).  Note also that for side-grooved 

specimens, the specimen thickness B in Eqs. (2.6), (2.7), (2.8) and (2.14) is replaced by the 

net thickness, BN.  The evaluation of 𝜂𝑝𝑙
𝐿𝐿𝐷 (𝜂𝑝𝑙

𝐶𝑀𝑂𝐷) using Eq. (2.14) is known as the plastic 

work anaysis method (Ruggieri, 2012) and usually carried out with the aid of finite element 

analyses (FEA).  To facilitate the experimental evaluation of J, a single value of 𝜂𝑝𝑙
𝐿𝐿𝐷 or 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷  is commonly determined from the regression analysis of a set of Apl-Jpl data 

corresponding to a certain range of loading levels (Kirk and Dodds, 1993; Ruggieri, 2012; 

Kim and Budden, 2001; Kim and Schwalbe, 2012; Huang et al., 2013) (i.e., to make ηpl 

factors independent of the loading).  Generally speaking, using the plastic work analysis is 

more advantageous than using the load separation analysis to determine 𝜂𝑝𝑙
𝐿𝐿𝐷(𝜂𝑝𝑙

𝐶𝑀𝑂𝐷) if P 

cannot be easily separated into the two functions as shown in Eqs. (2.10) and (2.12).  The 

evaluation of pl for the SE(B) and C(T) specimens based on two-dimensional (2D) and 

three-dimensional (3D) FEA has been well reported in the literature (e.g. Kirk and Dodds, 

1993; Kim and Schwalbe, 2001; Huang et al., 2013; Kim et al., 2004; Zhu et al., 2008; 

Kulka and Sherry, 2012).  The evaluation of ηpl using the plastic work analysis for the SE(T) 

specimens is the focus of the study reported in this chapter. 
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2.1.3 Literature Review of Plastic Geometry Factors for SE(T) Specimen 

Det Norske Veritas (DNV) (2006) developed the following 5th-order polynomial 

equation to evaluate 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 as a function of a/W and B/W based on the results of 3D FEA: 
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where the factor 0.85 is included to account for the weak influence of work hardening and 

weld metal mismatch on 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷, and regression coefficients mi and ni (i = 0, 1, ..., 5) are 

listed in Table 2.1(a).  Equation (2.15) is specified to be applicable for clamped plane-sided 

specimens with 0.2 ≤ a/W ≤ 0.5, 1 ≤ B/W ≤ 5 and H/W =10.  Note that Eq. (2.15) is 

independent of the strain hardening exponent (n).  Note also that no equation for the 𝜂𝑝𝑙
𝐿𝐿𝐷 

factor for the side-grooved SE(T) specimen has been recommended by DNV. 

By carrying out 2D plane-strain FEA, Shen and his co-workers (Shen et al., 2008, 2009) 

obtained values of 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 for clamped SE(T) specimens with 0.1 ≤ a/W ≤ 0.7 and 

H/W = 10.  They observed that 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 is insensitive to n for 5 ≤ n ≤ 20 and a/W ≤ 0.5, and 

that 𝜂𝑝𝑙
𝐿𝐿𝐷 is insensitive to n for 15 ≤ n ≤ 20.  Based on these observations, they proposed a 

10th-order polynomial to evaluate 𝜂𝑝𝑙
𝐿𝐿𝐷 or 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 as follows: 
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where two sets of regression coefficients i (i = 0, 1, ..., 10), one for 𝜂𝑝𝑙
𝐿𝐿𝐷 and the other for 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷, are developed based on the FEA results corresponding to 15 ≤ n ≤ 20 and 5 ≤ n ≤ 

20, respectively, and listed in Table 2.1(b).  It is indicated by Shen et al. (2008, 2009) that 

𝜂𝑝𝑙
𝐿𝐿𝐷 obtained from Eq. (2.16) be only used to evaluate the crack growth correction factor, 

γpl, but unsuitable for evaluating the experimental J through Eq. (2.6).  By carrying out 3D 

FEA of the plane-sided clamped SE(T) specimen of Grade X100 steel (API, 2012) with 

a/W = 0.34 and B/W = 2, Pisarski (2010) reported that the errors of J values evaluated using 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 determined from Eqs. (2.15) and (2.16) are less than 3%. 
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Ruggieri (2012) carried out 2D plane-strain FEA and evaluated 𝜂𝑝𝑙
𝐿𝐿𝐷  and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷  for 

clamped SE(T) specimens with 0.2 ≤ a/W ≤ 0.7, and H/W = 6 and 10.  Three pairs of 5th-

order polynomials for 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 for specimens with n = 5, 10 and 20, respectively, 

were proposed: 
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where coefficients i (i = 0, 1, ..., 5) for 𝜂𝑝𝑙
𝐿𝐿𝐷 or 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 corresponding to n = 5, 10, and 20 

are listed in Table 2.1(c).  Ruggieri (2012) further carried out 3D FEA of clamped SE(T) 

specimens with a/W = 0.1 to 0.7, B/W = 0.5 and 2, and n = 5 and 20 to evaluate 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 

values.  He reported that values of 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 determined in Eq. (2.17) are generally similar to 

those obtained in 3D FEA.  However, the 𝜂𝑝𝑙
𝐿𝐿𝐷 values obtained from Eq. (2.17) have not 

been verified by 3D FEA.  Furthermore, it is unclear how Eq. (2.17) can be applied to 

specimens with n values other than 5, 10 or 20. 

More recently, Mathias et al. (2013) proposed the following expression for 𝜂𝑝𝑙
𝐿𝐿𝐷 and 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 by summarizing the results reported by Ruggieri (2012) and Cravero and Ruggieri 

(2007): 
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where coefficients i (i = 0, 1, ..., 5) are listed in Table 2.1(d).  Equation (2.18) is more 

concise than Eq. (2.17) in that the former is independent of the strain hardening exponent; 

however, the adequacy of Eq. (2.18) has not been investigated.  Note that the adequacy of 

Eqs. (2.15) through (2.18) has not been investigated for side-grooved SE(T) specimens. 

2.1.4 Objective and Approach 

Although various equations of pl for the SE(T) specimen have been reported in the 

aforementioned studies, there is a lack of a systematic study that develops pl equations for 

both plane-sided and side-grooved SE(T) specimens with wide ranges of a/W, B/W, and n.  
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Such a study is valuable in that it provides appropriate pl factor to obtain the most accurate 

J evaluated in the J-R curve test and facilitates the standardization of the testing procedure 

for the SE(T) specimen.  To this end, the objective of the study reported in this chapter was 

to carry out a systematic investigation of the pl factors for SE(T) specimens.  The focus 

of the study is the clamped SE(T) specimen with H/W = 10 because the crack-tip stress 

fields of such a specimen correspond closely to those of the full-scale pipes containing 

circumferential cracks (Shen et al., 2008), which are of primary concern to the design and 

structural integrity assessment of pipelines.  Extensive 3D finite element analyses of both 

plane-sided and side-grooved clamped SE(T) specimens with six crack lengths (a/W= 0.2, 

0.3, 0.4, 0.5, 0.6 and 0.7), two thickness-to-width ratios (B/W = 1 and 2), and five strain 

hardening exponents (n = 5, 8.5, 10, 15 and 20) are carried out.  For each of the specimens, 

the J values obtained from the virtual crack extension method as implemented in FEA were 

used to evaluate the corresponding 𝜂𝑝𝑙
𝐿𝐿𝐷  or 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 .  Based on the results of the 

investigation, a set of new equations for the eta factor are proposed and recommendations 

are provided as to the adequacy of the proposed pl equations. 

The organization of this chapter is as follows.  Section 2.2 describes the configurations 

of the FE models, material properties and computational procedures.  Section 2.3 discusses 

the impact of specimen configurations and material hardening properties on eta.  New pl 

equations are developed and verified in Section 2.4, followed by conclusions in Section 

2.5. 

2.2 Numerical Analysis 

2.2.1 Finite Element Model 

Three-dimensional models of both plane-sided (PS) and side-grooved (SG) SE(T) 

specimens with clamped ends were prepared for FEA.  The analysis matrix includes 

specimens with six different a/W ratios (a/W = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and two B/W 

ratios (B/W = 1 and 2).  Stationary cracks were assumed in the analysis.  For side-grooved 

specimens, a side groove depth of 7.5%B at each side of the specimen was adopted based 

on the recommendation by Shen et al. (2010).  All the specimens included in the analysis 
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matrix have the same width (W = 20 mm) and daylight length (H/W = 10).  A typical side-

grooved FE model with a/W = 0.5 and B/W = 1 is schematically shown in Fig. 2.3(a) 

together with the fixation and loading conditions.  

The FEA code ADINA® (ADINA, 2012) was employed to analyze all the models.  

Because of symmetry, only one quarter of the specimen with appropriate constraints 

imposed on the remaining ligament was modelled.  A typical quarter-symmetric 3D model 

has 10 layers over the half net thickness (BN/2).  For the side-grooved model, the depth of 

the side groove (i.e. (B – BN)/2) was divided into 8 layers.  The thickness of each layer was 

arranged such that the corresponding mesh density increases from the center plane to the 

free surface (or root of the side groove) to capture the high stress gradients at these 

locations.  The total number of elements is approximately 12,000 in a typical plane-sided 

specimen, and 21,000 in a typical side-grooved specimen.  For simplicity, the side groove 

was modelled in the present study as a sharp V-notch with an opening angle of 45° as 

schematically shown in Fig. 2.3(b).  The 8-node 3D brick elements with 2×2×2 integration 

were used; the accuracy of using such elements to calculate J has been shown to be 

adequate (Kulka and Sherry, 2012).  Convergence studies on mesh density were conducted 

by increasing the number of the layers along the half net tthickness from 10 to 17.  Good 

convergence of the output J was observed. 

The large-displacement large (finite)-strain formulation was employed in FEA as it can 

more accurately simulate the deformed configuration of the specimen.  This is a key 

difference between the FE model developed in the present study and those employed in the 

previous studies described in Section 2.1.3, all of which employed the small-strain 

formulation.  The large-strain analysis employs the finite strain tensor, whereas the small-

strain analysis employs the infinitesimal strain tensor and neglects the second and higher 

order terms of the displacement gradients (Mase, 1970). The use of the small-displacement 

formulation basically ignores the difference between the spatial and material coordinate 

systems, whereas the large-displacement formulation takes this difference into account and 

the Lagrangian coordinate system was selected in this study (ADINA, 2012).  To simulate 

the crack tip blunting and facilitate convergence of the finite strain analysis, a blunt crack 

tip with a radius () of 2.5 m (see Fig. 2.3(c)) was incorporated in the FE model (Dodds, 
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2009).  Cravero and Ruggieri (2005) reported that such a mesh design is adequate for 

accurately evaluating the crack-tip stress and strain fields as well as J values.  The blunt 

crack tip was also prepared through the thickness of the side groove (see Fig. 2.3(d)) to 

reduce the impact of the singularity caused by the sharp V-notch groove.  All of the FE 

models have 45 focused annular rings around the crack tip with 16 elements in each ring.  

The minimum in-plane dimension of the 1st ring is about 0.1 (Graba and Galkiewicz, 

2007; Qian and Dodds, 2006), whereas the corresponding in-plane dimension of the 

elements in the 45th ring is about 2,000 times that of the element in the 1st ring (Dodds, 

2009).  The results of convergence studies on blunt tip radius and mesh density show good 

convergence in the elastic-plastic analyses. 

2.2.2 Material Model 

In ADINA, the large-displacement large-strain formulation requires input of the Cauchy 

(true) stress-logarithmic (true) strain relationship (ADINA, 2012).  The von Mises yield 

criterion and isotropic hardening rule were adopted in the analysis.  The von Mises yield 

criterion states that yielding is dependent on the second invariant of the deviatoric stress 

tensor, J2.  An elastic-plastic constitutive model with the J2 incremental theory of plasticity 

(ADINA, 2012) was adopted in the analysis.  The true stress () and true strain () 

relationship of the material is characterized as follows: 
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where YS is the yield strength, and 0 (0 = YS/E) denotes the yield strain.  The yield 

strength, elastic modulus and Poisson’s ratio were assumed to be 510 MPa, 200 GPa and 

0.3, respectively.  Five different strain hardening exponents were considered (i.e. n = 5, 

8.5, 10, 15 and 20).  The flow stress (Y) that was used to determine the limit load (PY = 

BNbY) (Shen et al., 2008, 2009) for the SE(T) specimen was calculated as (YS + UTS)/2. 
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The quantity UTS is the ultimate tensile strength and can be estimated from the following 

equation (Wang et al., 2013): 
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where u is the (true) strain corresponding to UTS and assumed to equal 1/n (Dieter, 1986).  

For YS = 510 MPa and E = 200 GPa, UTS is about 999, 712, 666, 593, and 563 MPa 

(YS/UTS = 0.511, 0.717, 0.766, 0.860 and 0.906) corresponding to n = 5, 8.5, 10, 15 and 

20, respectively. 

 

2.2.3 Computational Procedure 

The load was applied based on the displacement control condition.  Uniform 

displacements were applied on two lateral surfaces that are considered as the clamped 

surfaces with a length of 2W (see Fig. 2.3(a)).  The final applied displacement 

corresponding to P/PY = 1.25 – 1.3 was reached in about 5,000 steps in each simulation.  

The sparse matrix solver was selected for its high efficiency in numerical analysis 

(ADINA, 2012).  The full Newton-Raphson iteration method was adopted to find the 

solution of nonlinear equations with the maximum number of iterations for each step being 

50.  The displacement convergence criterion was selected, in which the displacement 

tolerance equaled 0.0001 corresponding to a reference displacement of 1 mm (ADINA, 

2012).  At a given loading step, the values of J in each of the 10 layers along the thickness 

direction, i.e. the local J values, denoted by 𝐽𝑙𝑜𝑐
1 , 𝐽𝑙𝑜𝑐

2 ,… 𝐽𝑙𝑜𝑐
10 , were calculated using the 

virtual crack extension method implemented in ADINA (Anderson, 2005; ADINA, 2012).  

A brief description of this method is included in Appendix B.  Note that the local J value 

at the mid-plane, Jmid, equals 𝐽𝑙𝑜𝑐
0 .  Let zi denote the distance between the end of the ith layer 

and mid-plane (i.e. z0 = 0) as shown in Fig. 2.4.  The weighted average J value over the 

entire crack front, Jave, is then calculated as follows based on the trapezoidal rule: 
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Note that the local J value at the specimen free surface, i.e. 𝐽𝑙𝑜𝑐
10 , cannot be accurately 

evaluated from FEA and that the width of the 10th layer is relatively small: (z10 – z9)/(B/2) 

= 0.02.  Therefore, the 10th trapezoid is approximated by a rectangle with its area equal to 

[𝐽𝑙𝑜𝑐
9 (z10 – z9)]/2.  To ensure the path-independence of the calculated J values, the two 

outermost semicircular rings surrounding the crack tip were used to define the virtual shifts.  

For a representative PS specimen with a/W = 0.5, B/W = 1 and n = 10, the difference 

between Jave corresponding to the 20th and 45th ring is about 6.5%, and the difference 

between Jave corresponding to the 40th and 45th rings is about 1.3% at the loading level of 

P/PY = 1.3.  In this study, Jave as opposed to the local J values was used to evaluate the eta 

factors because the eta factors specified in testing standards (ASTM, 2013; BSI, 1997) are 

typically corresponding to Jave. 

Evaluation of pl requires computation of Jpl and the load-displacement response.  At a 

given loading level (i.e. P/PY), Jpl is calculated as the difference between Jave and Jel as 

indicated in Eqs. (2.4) and (2.5).  The stress intensity factor defined by Eq. (2.22) is 

employed to estimate Jel: 

  

 

 
112

1

                   a

      b

i

i

i

P a
K F

WB W

a
F

a a
t

W WW







  

 


 







      


 (2.22) 

In the present study, the non-dimensional function F(a/W) proposed by Shen et al. (2008, 

2009) as shown in Eq. (2.22b) is adopted, where coefficients ti (i = 1, 2, ..., 12) are listed 

in Table 2.2.  Note that for side-grooved specimens, the specimen thickness, B, in Eq. 

(2.22a) should be replaced by (BBN)1/2 (ASTM, 2013; BSI, 1997).  To verify the accuracy 

of Eq. (2.22b), Eq. (2.22b) is compared with F(a/W) solutions proposed by Ahmad et al. 

(1991), John and Rigling (J&R) (1998) (for H/W = 10) and Cravero and Ruggieri (C&R) 

(2007).  The first one is an analytical solution and has been recommended in DNV-RP-



34 

 

 

F108 (2006), whereas the latter two were developed based on results of 2D plane-stress 

and plane-strain FEA.  The comparison is shown in Fig. 2.5.  The figure indicates that Eq. 

(2.22b) is practically identical to J&R's and C&R's solutions.  Furthermore, Eq. (2.22b) 

and J&R's and C&R's solutions are essentially the same as Ahmad et al.'s solution for a/W 

≤ 0.6.  On the other hand, there exists an unreasonable kink at a/W > 0.6 in Ahmad et al.'s 

solution, which has also been pointed out by Shen et al. (2008).  Given that Eq. (2.22b) 

agrees very well with solutions from three independent studies, the accuracy of this 

equation is considered adequate. 

The plastic work 𝐴𝑝𝑙
𝐿𝐿𝐷  and 𝐴𝑝𝑙

𝐶𝑀𝑂𝐷  in Eqs. (2.6), (2.8) and (2.14) are calculated as 

follows, which is consistent with Fig. 2.2: 
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where C0 is the compliance (i.e. inverse of the slope of the unloading path as shown in Fig. 

2.2) determined at the initial loading steps.  In establishing the load-displacement curves, 

CMOD was determined at the crack mouth at the mid-thickness (i.e. symmetric plane) of 

the specimen.  LLD should ideally be determined at the end (clamped) surface of the 

specimen; however, it is observed that the difference between the displacement of the end 

surface and remotely applied displacement differ by less than 0.3%.  To reduce the data 

processing time, LLD was taken as the remotely applied displacement. 

Ruggieri (2012) introduced the following equation to express pl based on Eq. (2.14): 
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where 𝐽𝑝̅𝑙 and 𝐴̅𝑝𝑙 are the normalized Jpl and Apl, respectively.  The pl factor at a given 

loading level can be computed using Eq. (2.24) based on the corresponding 𝐽𝑝̅𝑙 and 𝐴̅𝑝𝑙. 
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For a given specimen, a single value of 𝜂𝑝𝑙
𝐿𝐿𝐷 or 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 is commonly determined from 

the regression analysis of a set of data within a certain range of loading levels.  In general, 

the lower bound of the loading range is set to be the limit load (PY), because 𝜂𝑝𝑙
𝐿𝐿𝐷 and 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 at P ≥ PY are typically independent of the loading level (Sumpter and Turner, 1976).  

In the present study, the upper bound of the loading range was set to be approximately 

1.25PY, which corresponds to typical maximum loading level in the SE(T) test (Shen et al., 

2009; Mathias et al., 2013; Dodds and Read, 1990; Pussegoda, 2013).  The values of 𝜂𝑝𝑙
𝐿𝐿𝐷 

and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 were evaluated by minimizing the sum of relative errors of estimated Jave values 

within the considered loading range:  
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where eac is the sum of the relative errors; J is the J value estimated from Eqs. (2.4) – 

(2.6), (2.8) and (2.22) corresponding to a given pl, and eJ = (J - Jave)/Jave denotes the 

relative error of J at a given loading level.  It is worth noting that 𝜂𝑝𝑙
𝐿𝐿𝐷  and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 

determined from Eq. (2.25) can account for more contributions from data at relatively low 

loading levels than those determined by minimizing the sum of the absolute errors 

associated with J (e.g. (J - Jave)2) (Huang et al., 2013). 

2.3 Results and Discussions 

2.3.1 Evaluated pl Factors 

Figures 2.6(a) and 2.6(b) depict 𝐽𝑝̅𝑙 with respect to LLD-based and CMOD-based 𝐴̅𝑝𝑙, 

respectively, for PS specimens with a/W = 0.2 to 0.7, n = 10, and B/W = 1.  At a given 

loading level (e.g. 𝐴̅𝑝𝑙), pl can be evaluated as the ratio of the corresponding vertical and 

horizontal coordinates in the figures.  Figure 2.6(a) indicates that the slope of the 𝐽𝑝̅𝑙 vs. 

LLD-based 𝐴̅𝑝𝑙 line for a given a/W ratio decreases as the loading level increases from zero 

to PY; however, the slope of the line is more or less constant for P > PY.  This implies that 

𝜂𝑝𝑙
𝐿𝐿𝐷  (for n = 10 and B/W = 1) is dependent on the loading level for P ≤ PY, but 
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approximately independent of the loading level for P > PY.  On the other hand, the slope of 

the 𝐽𝑝̅𝑙  vs. CMOD-based 𝐴̅𝑝𝑙  line corresponding to a given a/W ratio remains 

approximately constant for the entire loading range, which suggests that 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 (for n = 10 

and B/W = 1) is independent of the loading level. The above observations are consistent 

with those reported in the literature (e.g. Ruggieri, 2012; Cravero and Ruggieri, 2007).  

For a given specimen, 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 were determined by minimizing eac as defined in 

Eq. (2.25) for the loading range between PY and 1.25PY.  The evaluated 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 

for all the specimens considered are listed in Table 2.3.  Figures (2.7) and (2.8) show 𝜂𝑝𝑙
𝐿𝐿𝐷 

and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 values plotted against a/W for both PS and SG specimens with different B/W 

ratios and n values.  Discussions of the impacts of a/W, B/W, side-grooving and the strain 

hardening exponent on pl are presented in Sections 2.3.2 to 2.3.4. 

2.3.2 Impact of a/W 

Figures (2.7) and (2.8) indicate that both 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 strongly depend on the a/W 

ratio.  Figures 2.7(a) through 2.7(d) show that 𝜂𝑝𝑙
𝐿𝐿𝐷 increases as a/W increases until a/W 

reaches 0.4 – 0.5, after which 𝜂𝑝𝑙
𝐿𝐿𝐷 decreases as a/W further increases.  Figures 2.8(a) 

through 2.8(d) show that 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 in general decreases as a/W increases.  Similar variations 

of 𝜂𝑝𝑙
𝐿𝐿𝐷  and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷  with respect to a/W are also reported in (Ruggieri, 2012; Kim and 

Schwalbe, 2001; Huang et al., 2013; Kim and Budden, 2001; Paris et al., 1980; Kim et al., 

2004; Zhu et al., 2008; Cravero and Ruggieri, 2007; Shen et al., 2008, 2009; Mathias et al., 

2013).  For comparisons, expressions for 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 developed by DNV (Eq. (2.15)), 

Shen et al. (Eq. (2.16)), Ruggieri (Eq. (2.17)) and Mathias et al. (Eq. (2.18)) are also plotted 

in Figs. (2.7) and (2.8).  It is observed that the values of 𝜂𝑝𝑙
𝐿𝐿𝐷  corresponding to PS 

specimens with a/W ≥ 0.4 and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 corresponding to PS specimens with 0.2 ≤ a/W ≤ 0.7 

obtained from the present study agree well with those evaluated from Eqs. (2.15) – (2.17).  

On the other hand, the values of 𝜂𝑝𝑙
𝐿𝐿𝐷 obtained from the present study for PS specimens 

with a/W < 0.4 are generally lower than those from Eqs. (2.15) – (2.17).  This may be partly 

attributed to the use of large-strain formulation in the present FEA as opposed to the small-
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strain formulation adopted in the previous studies, and values of 𝜂𝑝𝑙
𝐿𝐿𝐷 corresponding to 

shallow-cracked PS specimens is sensitive to the formulation adopted in the FEA. 

2.3.3 Impact of B/W and Side Grooving 

The results given in Tables 2.3(a) and 2.3(b) suggest that the B/W ratio in general has a 

small impact on 𝜂𝑝𝑙
𝐿𝐿𝐷  and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷  as the difference between 𝜂𝑝𝑙
𝐿𝐿𝐷 ( 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 ) values 

corresponding to different B/W ratios is less than 6% (10%), except for 𝜂𝑝𝑙
𝐿𝐿𝐷  for PS 

specimens with a/W = 0.2.  For such specimens, 𝜂𝑝𝑙
𝐿𝐿𝐷

 decreases by 12% - 28% as B/W 

increases from 1 to 2 for different n values.  On the other hand, the side grooving has a 

relatively large impact on pl:  For given a/W, B/W and n, the value of 𝜂𝑝𝑙
𝐿𝐿𝐷 (𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 ) 

corresponding to the SG specimen is always greater than that corresponding to the PS 

specimen.  In particular, the values of 𝜂𝑝𝑙
𝐿𝐿𝐷 corresponding to SG specimens are markedly 

higher than those corresponding to PS specimens for a/W ≤ 0.5 and n ≥ 10.  This can be 

explained by the fact that the distribution of the local J over the crack front in an SG 

specimen is more uniform than that in the corresponding PS specimen for a given loading 

level (Wang et al., 2013); as a result, the average J corresponding to the SG specimen is 

higher than that corresponding to the PS specimen for the same loading level, leading to a 

higher eta factor for the SG specimen. 

2.3.4 Impact of Strain Hardening Exponent 

The results in Tables 2.3(a) and 2.3(b) indicate that for a given specimen configuration, 

𝜂𝑝𝑙
𝐿𝐿𝐷  generally increases with n, whereas 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷  generally decreases (increases) as n 

increases for specimen with a/W < 0.5 (a/W ≥ 0.5).  It is also observed that n has a 

pronounced impact on 𝜂𝑝𝑙
𝐿𝐿𝐷, but a relatively small impact on 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷.  For example, the 

values of 𝜂𝑝𝑙
𝐿𝐿𝐷 corresponding to n = 5 and n = 20 differ by as much as 210% for a/W = 0.2 

and B/W = 1, whereas this difference for 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 is around 10%.  Figures (2.7) and (2.8) 

suggest that the pl factors for SG specimens are somewhat more sensitive to n than those 

for the PS specimens.  
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2.4 Development of New Expressions for pl 

2.4.1 Expressions for Evaluated pl Factors 

To facilitate the experimental evaluation of J using clamped SE(T) specimens, for a 

given B/W ratio, the following polynomial equation was proposed to express pl as a 

function of a/W based on the values of 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 shown in Tables 2.3(a) and 2.3(b): 
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where pi and qi are fitting coefficients.  To take into account the impact of the strain 

hardening exponent on the eta factor, pi and qi were further proposed to be polynomial 

functions of YS/UTS as follows: 
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where the fitting coefficients Mij and Nij are listed in Tables 2.4 and 2.5.  Therefore, the 

advantage of the proposed 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷  equations is that the key influencing factors 

(i.e. a/W, B/W and n) are all explicitly taken into consideration. 

Figures 2.9(a) through 2.9(d) depict Eqs (2.26) and (2.27) for both PS and SG specimens 

with a representative n = 10.  Equations (2.15) – (2.18) were also plotted in the figures for 

comparison.  Figures 2.9(a) and 2.9(b) indicate that the 𝜂𝑝𝑙
𝐿𝐿𝐷 values evaluated from Eq. 

(2.26) are close to those given by Eqs. (2.16) – (2.18) for the PS specimens with a/W ≥ 0.4, 

but are smaller than those given by Eqs. (2.16) – (2.18) for the PS specimens with a/W < 

0.4.  On the other hand, the 𝜂𝑝𝑙
𝐿𝐿𝐷 values evaluated from Eq. (2.26) are generally larger than 
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those given by Eqs. (2.16) – (2.18) for the SG specimens.  Figure 2.9(c) indicates that the 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷  values evaluated from Eq. (2.27) agree well those given by Eq. (2.16) for SG 

specimens with B/W = 1 and a/W = 0.2 – 0.6, and Figure 2.9(d) indicates that the 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 

values obtained from Eq. (2.27) are similar to those given by Eqs. (2.17) and (2.18) for PS 

specimens with B/W = 2 and a/W = 0.2 – 0.7.  The implications of the proposed pl 

equations for the J evaluation are discussed in Section 2.4.2.  For a propagating crack, 

another geometry factor, γpl, can be evaluated by substituting Eq. (2.26) into Eq. (A.2): 
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2.4.2 Adequacy of New Expressions for pl in J Evaluation 

To investigate the adequacy of 𝜂𝑝𝑙
𝐿𝐿𝐷 and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 determined from Eqs. (2.26) and (2.27) 

respectively, J values estimated through the use of Eqs. (2.4) - (2.6), (2.8), (2.22), (2.26) 

and (2.27) were compared with the corresponding Jave values obtained from FEA.  For 

comparisons, 𝜂𝑝𝑙
𝐿𝐿𝐷  and 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷  evaluated from Eqs. (2.15) and (2.16) were also used to 

compute J.  These two equations were selected because the K solution for evaluating Jel 

associated with Eq. (2.16) is the same as the K solution adopted in the present study (i.e. 

Eq. (2.22b)), and the K solution associated with Eq. (2.15) is nearly identical to Eq. (2.22) 

(up to a/W = 0.6).  Therefore, the comparison is not impacted by the choice of the K 

solution.  The prediction error of J, eJ, as defined in Eq. (2.25) was calculated to evaluate 

the accuracy of the above-mentioned pl factor equations.  Figures (2.10) and (2.11) depict 

LLD- and CMOD-based eJ, respectively, as a function of the loading level characterized by 

P/PY for the PS and SG specimens with B/W = 1 and 2, a/W = 0.5, and n = 10.  Only values 

of eJ corresponding to 0.8 ≤ P/PY ≤ 1.25 (or Jave approximately between 100 and 400 kN/m) 
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are shown in these figures because the elastic component of J is significant (can be more 

than 50% of the total J) for P/PY < 0.8, and P = 1.25PY is typically the maximum loading 

level in the SE(T)-based J-R curve test (Shen et al., 2009; Mathias et al., 2013; Dodds and 

Read, 1990; Pussegoda et al., 2013). 

Figures (2.10) and (2.11) indicate that Eqs. (2.15), (2.16), (2.26) and (2.27) generally 

lead to underestimated J values (i.e. eJ < 0) for 0.8 ≤ P/PY ≤ 1.2, but overestimated J values 

(i.e. eJ > 0) for P > 1.2PY, for PS and SG specimens with a/W = 0.5 and n = 10.  For a given 

specimen configuration, 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 leads to more accurate predictions of J than 𝜂𝑝𝑙

𝐿𝐿𝐷.  The 

variations of eJ within the considered loading levels for specimens with other a/W ratios 

and n values generally follow the same trend but are not presented here to save space.  

Tables 2.6 and 2.7 summarize the maximum values of |eJ| for 0.8 ≤ P/PY ≤ 1.25 associated 

with Eqs. (2.15), (2.16), (2.26) and (2.27) for all the analysis cases considered.  The results 

in these tables indicate that 𝜂𝑝𝑙
𝐿𝐿𝐷 evaluated from Eqs. (2.16) and (2.26) may lead to large 

errors in J (|eJ| ranging from 10% - 304%) for shallow-cracked specimens with a/W ≤ 0.3, 

whereas 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 evaluated from Eqs. (2.15), (2.16) and (2.27) generally lead to accurate 

predictions of J with |eJ| less than 20% for all the analysis cases considered.  Furthermore, 

|eJ| for the SG specimen is smaller than that for the corresponding PS specimen because 

the crack-tip stress state in SG specimens is closer to the plane-strain condition and the 

error in Jel evalauted from Eq. (2.5) is smaller for the SG specimen than the PS specimen.  

For most of the analysis cases considered, the pl equations proposed in the present study 

lead to markedly more accurate predictions of J than Eqs. (2.15) and (2.16).  The maximum 

|eJ| corresponding to the proposed 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 equation (Eq. (2.27)) is 9% for both the PS and 

SG specimens with 0.2 ≤ a/W ≤ 0.7.  The maximum |eJ| corresponding to the proposed 𝜂𝑝𝑙
𝐿𝐿𝐷 

equation (Eq. (2.26)) for specimens with a/W ≤ 0.3 is 45%.  For specimens with a/W > 0.3, 

Eq. (2.26) leads to maximum |eJ| of 19% and 13% for PS and SG specimens, respectively.  

Based on the results in Tables 2.6 and 2.7, we provide the following recommendations as 

to the adequacy and applicability of Eqs. (2.26) and (2.27). 
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(1) The use of 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷  (Eq. (2.27)) is preferred than the use of 𝜂𝑝𝑙

𝐿𝐿𝐷  (Eq. (2.26)) for 

evaluating J values for the clamped SE(T) specimen regardless of the specimen 

configuration and material hardening property.   

(2) For shallow-cracked clamped SE(T) specimens with a/W ≤ 0.3, the use of 𝜂𝑝𝑙
𝐿𝐿𝐷 to 

evaluate J is not recommended because the evaluated J values can be associated with large 

errors. 

2.5 Conclusions 

Systematic three-dimensional finite element analyses with the large-

displacement/finite-strain formulation have been performed on clamped SE(T) specimens 

to evaluate the plastic eta factor (pl) for such specimens.  Both plane-sided and side-

grooved SE(T) specimens with a wide range of configurations (a/W = 0.2 to 0.7 with an 

increment of 0.1, and B/W = 1 and 2) and strain hardening exponents (n = 5, 8.5, 10, 15 

and 20) were considered in the analyses.  A side groove depth of 7.5%B on each side was 

included in the SG specimens.  A set of expressions for both LLD- and CMOD-based pl 

were proposed as functions of a/W, B/W, and the yield-to-tensile strength ratio.  The 

adequacy of the proposed pl equations was examined by comparing the corresponding pl-

based J values with Jave evaluated from FEA for P/PY levels ranging from 0.8 to 1.25. 

The analysis results suggest that 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 leads to more accurately predicted Jave values 

than 𝜂𝑝𝑙
𝐿𝐿𝐷 for all the specimens considered.  The 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 and 𝜂𝑝𝑙
𝐿𝐿𝐷 equations proposed in 

this study lead to markedly more accurate predictions of Jave values than those developed 

by DNV and Shen et al. for most of the analysis cases considered.  The maximum error 

associated with the Javevalues predicted based on the proposed 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 equation is 9% for 

both the PS and SG specimens with 0.2 ≤ a/W ≤ 0.7 and loading levels between 0.8 and 

1.25PY.  For specimens with a/W > 0.3, the maximum errors associated with the Javevalues 

predicted based on the proposed 𝜂𝑝𝑙
𝐿𝐿𝐷 equation are 19% and 13% for PS and SG specimens, 

respectively.  However, none of the 𝜂𝑝𝑙
𝐿𝐿𝐷  equations considered in this study is able to 
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predict Jave with reasonable accuracies for specimens with a/W ≤ 0.3; therefore, 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 as 

opposed to 𝜂𝑝𝑙
𝐿𝐿𝐷 is recommended for the J evaluation for such specimens. 
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Table 2.1: Summary of coefficients of Eqs. (2.15) – (2.18) for pl. 

 

(a) Equations (2.15) 

 

 
 

(b) Equations (2.16) 

 

 
 

(c) Equations (2.17) 

 

 

i  = 5 i  = 4 i  = 3 i  = 2 i  = 1 i  = 0

m i 196.719 -493.511 463.503 -201.862 39.413 -2.064

n i -64.642 138.837 -106.207 34.532 -4.525 1.039

i  = 10 i  = 9 i  = 8 i  = 7 i  = 6 i  = 5

14.187 5.397 -4.447 -12.202 -12.756 -1.273

i  = 4 i  = 3 i  = 2 i  = 1 i  = 0

18.399 18.644 -35.440 15.190 -0.880

i  = 10 i  = 9 i  = 8 i  = 7 i  = 6 i  = 5

-110.770 43.306 101.401 38.487 -77.984 -73.116

i  = 4 i  = 3 i  = 2 i  = 1 i  = 0

109.225 -48.572 9.519 -1.089 1.000

LLD -based  i

CMOD -based  i

n i  = 5 i  = 4 i  = 3 i  = 2 i  = 1 i  = 0

5 -320.4615 751.1830 -664.9214 266.7557 -44.8018 2.8802

10 128.2564 -289.9382 262.9431 -124.8165 31.1679 -2.0530

20 84.2051 -175.5082 142.2847 -61.6162 14.4939 -0.1600

5 -12.6667 41.7774 -47.7238 23.2332 -5.4920 1.4324

10 -1.1282 16.4779 -23.5153 10.9659 -2.3047 1.0823

20 61.2821 -131.9872 108.4318 -43.2838 7.7140 0.4023

LLD -

based ξ i

CMOD -

based ξ i
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(d) Equations (2.18) 

 

 
 

 

 

 

Table 2.2: Coefficients of Eq. (2.22b) for F. 

 

 
 

  

i  = 5 i  = 4 i  = 3 i  = 2 i  = 1 i  = 0

LLD-

based  i

-44.875 87.697 -47.963 -4.584 9.336 -0.623

CMOD-

based  i

-3.083 15.295 -18.269 7.808 -1.767 1.067

i  = 12 i  = 11 i  = 10 i  = 9 i  = 8 i  = 7

19.465 18.574 -52.322 -6.607 51.215 -36.137

i  = 6 i  = 5 i  = 4 i  = 3 i  = 2 i  = 1

-41.397 100.462 -69.051 23.886 -2.133 1.197

t i
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Table 2.3: The pl factors obtained from FEA for specimens with various configurations and strain-hardening exponents. 

 

(a) pl for specimens with B/W = 1 

 

 
  

 LLD  CMOD  LLD  CMOD  LLD  CMOD  LLD  CMOD  LLD  CMOD  LLD  CMOD

5 0.26 0.92 0.58 0.85 0.95 0.79 0.93 0.71 0.83 0.59 0.72 0.5

8.5 0.38 0.87 0.94 0.81 1.03 0.78 1.02 0.71 0.91 0.61 0.8 0.53

10 0.44 0.86 0.96 0.82 1.04 0.77 1.03 0.72 0.92 0.61 0.81 0.53

15 0.69 0.85 0.99 0.81 1.04 0.77 1.05 0.72 0.94 0.62 0.82 0.54

20 0.81 0.83 0.98 0.8 1.01 0.76 1.03 0.72 0.94 0.62 0.83 0.54

5 0.34 0.92 0.89 0.85 1.08 0.8 1.08 0.73 0.96 0.62 0.81 0.52

8.5 0.93 0.9 1.29 0.88 1.35 0.83 1.27 0.77 1.1 0.66 0.88 0.54

10 1.08 0.91 1.39 0.89 1.42 0.85 1.31 0.77 1.11 0.66 0.9 0.54

15 1.31 0.95 1.52 0.91 1.52 0.87 1.36 0.79 1.14 0.67 0.91 0.55

20 1.44 0.98 1.62 0.93 1.54 0.87 1.37 0.79 1.15 0.67 0.92 0.55

n

a/W

0.2 0.3 0.4 0.5 0.6 0.7

Plane-

sided

Side-

grooved
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(b) pl for specimens with B/W = 2 

 

 
  

 LLD  CMOD  LLD  CMOD  LLD  CMOD  LLD  CMOD  LLD  CMOD  LLD  CMOD

5 0.22 0.93 0.51 0.88 0.93 0.81 0.96 0.73 0.85 0.6 0.73 0.5

8.5 0.3 0.89 0.9 0.85 1.06 0.81 1.06 0.73 0.93 0.61 0.81 0.53

10 0.34 0.88 0.95 0.85 1.08 0.81 1.09 0.74 0.96 0.62 0.83 0.53

15 0.5 0.87 1.01 0.84 1.11 0.8 1.12 0.74 0.98 0.62 0.84 0.53

20 0.6 0.85 1.01 0.84 1.11 0.8 1.12 0.74 0.99 0.63 0.85 0.54

5 0.3 0.95 0.83 0.89 1.1 0.84 1.12 0.76 1 0.65 0.83 0.54

8.5 0.8 0.93 1.29 0.91 1.4 0.88 1.33 0.81 1.14 0.69 0.9 0.56

10 0.98 0.92 1.4 0.93 1.44 0.89 1.36 0.82 1.15 0.69 0.91 0.56

15 1.27 0.94 1.54 0.95 1.54 0.91 1.4 0.83 1.18 0.69 0.93 0.56

20 1.34 0.98 1.58 0.98 1.6 0.92 1.41 0.83 1.19 0.7 0.92 0.57

0.7

Plane-

sided

Side-

grooved

n

a/W

0.2 0.3 0.4 0.5 0.6
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Table 2.4: Coefficients Mij in Eq. (2.28). 

 

 
  

j  = 3 j  = 2 j  = 1 j  = 0 j  = 3 j  = 2 j  = 1 j  = 0

i  = 3 528.840 -1589.663 1428.230 -379.643 -87.313 -190.103 433.807 -159.729

i  = 2 -634.869 2038.619 -1888.257 502.526 199.494 121.911 -518.671 198.286

i  = 1 221.543 -789.313 761.096 -201.946 -129.052 27.746 172.821 -70.266

i  = 0 -23.045 93.004 -92.427 24.722 22.430 -14.585 -14.226 6.992

i  = 3 -253.395 569.934 -427.915 120.453 803.107 -1823.304 1342.474 -304.138

i  = 2 437.980 -968.471 721.007 -205.147 -1442.261 3252.887 -2373.697 529.551

i  = 1 -230.447 503.325 -377.091 109.734 824.519 -1846.804 1331.880 -292.147

i  = 0 34.835 -76.304 60.148 -17.549 -147.141 326.224 -230.353 50.164

Plane-sided

Side-grooved

B/W = 1 B/W = 2
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Table 2.5: Coefficients Nij in Eq. (2.29). 

 

 
  

j  = 3 j  = 2 j  = 1 j  = 0 j  = 3 j  = 2 j  = 1 j  = 0

i  = 2 19.164 -42.000 29.053 -6.982 3.693 -10.995 8.889 -3.027

i  = 1 -10.250 22.285 -14.340 2.533 0.196 2.192 -1.930 0.284

i  = 0 -1.282 2.815 -2.474 1.708 -1.671 3.089 -2.252 1.555

i  = 2 25.040 -42.248 20.037 -3.196 51.818 -101.542 61.517 -12.686

i  = 1 -23.177 36.942 -15.685 1.261 -54.803 106.394 -64.095 12.230

i  = 0 4.645 -6.629 2.244 0.946 13.948 -26.896 16.344 -2.196

Plane-sided

B/W = 1 B/W = 2

Side-grooved
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Table 2.6: Maximum absolute values of eJ corresponding to the LLD-based pl over P/PY = 0.8 – 1.25. 

 

(a) Plane-sided specimens 

 

 
 

  

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

Eq. (2.16) 247.0% 104.8% 20.8% 12.3% 11.1% 11.9% 304.4% 130.9% 23.4% 11.9% 9.4% 10.8%

Eq. (2.26) 21.7% 23.6% 14.6% 9.2% 6.7% 4.7% 23.3% 28.7% 15.9% 9.9% 8.2% 4.8%

Eq. (2.16) 158.8% 27.7% 15.4% 13.6% 6.5% 5.5% 220.2% 36.8% 13.8% 13.2% 6.7% 4.5%

Eq. (2.26) 45.3% 22.3% 14.7% 12.1% 6.7% 3.0% 45.4% 20.5% 13.4% 11.0% 5.9% 3.0%

Eq. (2.16) 128.7% 24.1% 15.6% 13.8% 6.7% 4.7% 190.6% 25.7% 14.1% 13.4% 6.9% 4.4%

Eq. (2.26) 41.1% 22.2% 15.3% 12.0% 6.5% 3.0% 43.4% 19.7% 13.3% 10.7% 5.9% 2.9%

Eq. (2.16) 50.9% 20.8% 16.1% 14.2% 7.1% 4.3% 105.3% 18.5% 14.7% 13.9% 7.3% 4.7%

Eq. (2.26) 30.6% 22.1% 17.3% 13.0% 6.0% 3.2% 35.7% 18.8% 13.6% 10.8% 5.3% 2.9%

Eq. (2.16) 26.1% 21.8% 17.3% 14.4% 7.3% 4.6% 77.8% 18.2% 14.9% 14.2% 7.5% 4.7%

Eq. (2.26) 25.7% 22.4% 18.6% 14.1% 6.1% 3.0% 30.9% 18.7% 14.1% 11.1% 5.1% 3.2%

n  = 10

n  = 15

n  = 20

B/W  = 1 B/W  = 2

a/W

n  = 5

n  = 8.5



54 

 

 

(b) Side-grooved specimens 

 

 
  

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

Eq. (2.16) 179.0% 39.8% 14.5% 12.9% 8.4% 4.5% 212.4% 50.7% 14.5% 13.8% 9.5% 4.4%

Eq. (2.26) 40.6% 20.0% 12.5% 9.2% 5.9% 2.6% 39.9% 20.3% 13.1% 9.2% 5.7% 2.9%

Eq. (2.16) 20.1% 16.4% 15.8% 14.0% 9.3% 4.8% 33.1% 15.4% 15.8% 14.9% 10.4% 5.4%

Eq. (2.26) 19.7% 12.6% 9.2% 6.8% 4.2% 2.2% 21.3% 12.1% 8.5% 6.4% 4.3% 2.5%

Eq. (2.16) 20.7% 16.8% 16.1% 14.2% 9.5% 4.8% 18.3% 15.6% 16.0% 15.2% 10.5% 5.5%

Eq. (2.26) 15.8% 11.6% 8.7% 6.2% 4.0% 2.3% 16.1% 10.2% 8.2% 6.1% 4.2% 2.5%

Eq. (2.16) 22.2% 17.4% 16.5% 14.6% 9.8% 5.0% 19.3% 16.2% 16.5% 15.6% 10.9% 5.7%

Eq. (2.26) 12.3% 9.9% 8.4% 5.7% 4.1% 2.3% 13.1% 8.8% 7.0% 5.7% 4.2% 2.5%

Eq. (2.16) 22.5% 17.7% 16.7% 14.8% 10.0% 5.1% 19.8% 16.5% 16.7% 15.7% 11.0% 5.8%

Eq. (2.26) 10.9% 9.1% 7.7% 5.8% 3.9% 2.4% 10.1% 7.8% 6.5% 5.4% 3.8% 2.9%

n  = 15

n  = 20

B/W  = 1 B/W  = 2

a/W

n  = 5

n  = 8.5

n  = 10
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Table 2.7: Maximum absolute values of eJ corresponding to the CMOD-based pl over P/PY = 0.8 – 1.25. 

 

(a) Plane-sided specimens 

 

 
  

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

Eq. (2.15) 5.4% 10.7% 8.8% 12.3% 10.1% 5.8% 6.1% 4.9%

Eq. (2.16) 2.7% 4.7% 6.0% 7.3% 8.7% 15.1% 1.9% 3.3% 3.3% 4.7% 7.8% 15.3%

Eq. (2.27) 0.7% 1.6% 1.9% 2.7% 2.0% 1.2% 0.8% 1.1% 1.7% 2.7% 2.6% 1.8%

Eq. (2.15) 12.6% 17.5% 11.5% 11.7% 7.8% 6.7% 7.1% 6.0%

Eq. (2.16) 7.9% 11.1% 8.5% 6.8% 6.2% 10.3% 4.9% 4.9% 5.1% 4.7% 5.9% 10.7%

Eq. (2.27) 3.5% 6.6% 4.9% 4.6% 1.8% 0.5% 2.0% 3.1% 4.3% 4.3% 2.8% 1.2%

Eq. (2.15) 14.6% 15.3% 11.8% 11.5% 7.9% 6.9% 7.3% 6.1%

Eq. (2.16) 9.8% 9.0% 8.8% 6.6% 5.6% 9.6% 6.0% 5.1% 5.2% 4.8% 5.4% 10.0%

Eq. (2.27) 5.1% 5.2% 5.3% 4.5% 1.7% 0.8% 3.8% 4.1% 4.8% 4.3% 2.8% 1.2%

Eq. (2.15) 16.5% 17.5% 12.9% 11.1% 8.1% 7.2% 7.5% 6.2%

Eq. (2.16) 11.6% 11.1% 9.9% 6.3% 4.5% 8.8% 7.8% 6.0% 5.6% 4.9% 4.6% 9.2%

Eq. (2.27) 8.0% 7.1% 6.3% 4.9% 1.2% 1.0% 5.9% 5.8% 5.7% 4.7% 2.7% 1.3%

Eq. (2.15) 20.4% 19.2% 14.1% 11.2% 8.3% 7.3% 7.7% 6.3%

Eq. (2.16) 15.3% 12.6% 11.0% 6.3% 3.9% 8.5% 10.7% 7.2% 6.3% 5.0% 4.3% 9.0%

Eq. (2.27) 9.1% 8.0% 6.9% 5.3% 0.8% 1.0% 7.0% 6.5% 6.2% 4.9% 2.6% 1.5%

n  = 10

n  = 15

n  = 20

B/W  = 1 B/W  = 2

a/W

n  = 5

n  = 8.5



56 

 

 

(b) Side-grooved specimens 

 

  

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

Eq. (2.15) 5.4% 9.0% 7.7% 9.0% 11.1% 8.4% 8.7% 7.5%

Eq. (2.16) 6.5% 5.7% 5.3% 4.8% 4.6% 10.1% 7.4% 6.7% 6.7% 6.0% 3.7% 8.8%

Eq. (2.27) 0.9% 2.1% 3.5% 3.8% 1.8% 0.6% 0.9% 1.5% 3.6% 4.0% 2.1% 0.9%

Eq. (2.15) 7.0% 7.8% 6.0% 5.3% 11.2% 9.4% 9.5% 8.2%

Eq. (2.16) 7.8% 6.7% 6.6% 5.8% 3.6% 7.4% 9.2% 7.9% 7.8% 7.1% 4.8% 6.3%

Eq. (2.27) 7.1% 5.7% 4.6% 3.8% 1.7% 1.4% 6.8% 5.0% 4.5% 3.8% 1.9% 1.6%

Eq. (2.15) 7.0% 6.7% 6.1% 4.8% 11.4% 9.6% 9.6% 8.3%

Eq. (2.16) 7.8% 6.9% 6.8% 6.0% 3.8% 7.0% 9.4% 8.0% 7.9% 7.2% 4.9% 6.1%

Eq. (2.27) 7.4% 6.1% 4.9% 3.6% 1.8% 1.6% 7.8% 5.7% 4.9% 3.5% 2.0% 1.8%

Eq. (2.15) 7.1% 5.7% 6.3% 5.0% 11.7% 9.9% 9.8% 8.4%

Eq. (2.16) 8.0% 7.0% 6.9% 6.2% 4.0% 6.6% 9.5% 8.3% 8.1% 7.3% 5.1% 5.6%

Eq. (2.27) 7.1% 5.6% 4.9% 3.6% 2.0% 1.7% 8.5% 5.9% 4.8% 3.4% 2.4% 2.0%

Eq. (2.15) 7.5% 5.9% 6.4% 5.2% 11.9% 10.0% 10.0% 8.5%

Eq. (2.16) 8.4% 7.2% 7.0% 6.3% 4.2% 6.4% 9.6% 8.3% 8.2% 7.4% 5.2% 5.7%

Eq. (2.27) 7.0% 5.6% 4.9% 3.8% 1.9% 1.8% 8.2% 5.8% 4.8% 3.4% 2.4% 2.2%

n  = 10

n  = 15

n  = 20

B/W  = 1 B/W  = 2

a/W

n  = 5

n  = 8.5
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Figure 2.1. Determination of the potential energy 

 

 

Figure 2.2. Determination of the plastic area under the load-displacement curve  

Displacement

L
o

a
d

Displacement

dU

-dU

dΔ

P

Δ Δ

-dP

U U

a+da

a a+da

a

P

L
o

a
d

LLD or CMOD

P

Δpl , Vpl

Apl Ael

Parallel to the initial 

loading path

Loading path

C0

1 1

C0

Δel , Vel

A = Ael + Apl



58 

 

 

W

a x

zy

Uniform displacements

see (b) see (c)

see (d)

Clamped surfaces

(a) Configuration of a typical side-grooved FE model with a/W = 0.5 and B/W = 1
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Figure 2.3. Configuration of a typical finite element model with a blunt crack tip 
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Figure 2.4. Schematic of the calculation of the weighted average J along the crack front  
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Figure 2.5. Comparisions of different F(a/W) solutions for SE(T) specimen with H/W = 10 
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Figure 2.6. Comparisons of 𝐽p̅l – 𝐴̅pl relationship for specimens with various a/W ratios, n = 10 and B/W = 1 
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Figure 2.7. Variation of LLD-based ηpl with a/W  
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Figure 2.8. Variation of CMOD-based ηpl with a/W 
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Figure 2.9. Variation of proposed ηpl with a/W (Eqs. (2.26) and (2.27)) for n = 10 materials
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Figure 2.10. Errors in J values evaluated from the LLD-based pl for the specimens with 

a/W = 0.5 and n = 10  
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Figure 2.11. Error in J values evaluated from the CMOD-based pl for the specimens 

with a/W = 0.5 and n = 10
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Chapter 3   J-CTOD Relationship for Clamped SE(T) 

Specimens Based on Three-dimensional Finite Element 

Analyses 

3.1 Background and Objective  

3.1.1 Estimation of CTOD Using Plastic Constraint m Factor 

The crack tip opening displacement (CTOD) is a widely used parameter for 

characterizing the material fracture toughness meanwhile accommodates crack-tip 

plasticity.  In the integrity assessment of flawed structures, CTOD is a design parameter to 

determine the allowable crack sizes in welded structures (Burdekin and Dawes, 1971; BSI, 

2005).  In the strain-based design of energy pipelines, the crack driving force as well as the 

tensile strain capacity is often defined in terms of CTOD (Tang et al., 2010; Wang et al., 

2011; Fairchild et al., 2012). 

There are currently two main approaches to determine CTOD experimentally from 

small-scale specimens.  The first approach is based on a plastic hinge model assuming two 

halves of the specimen rotate rigidly about a rotational center (i.e. plastic hinge) during 

tests.  CTOD can be determined directly from the measured crack mouth opening 

displacement (CMOD) through a geometric relationship.  This approach is specified in BS 

7448 (BSI, 1997) and ISO 12135 (ISO, 2002) for single-edge bend (SE(B)) and compact 

tension (C(T)) specimens and is suggested in BS 8571 (BSI, 2014) for single-edge tension 

(SE(T)) specimens. 

The second approach relies on the fact that CTOD can be uniquely related to the J-

integral (J) (Shih, 1981; Anderson, 2005) and the following equation is widely accepted 

(Irwin, 1961; Shih, 1981): 

 
 1 YS

J

m



  (3.1) 
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where  and YS denote the CTOD and material yield strength, respectively; m is the plastic 

constraint factor, and its subscript (k) (k = 1, 2 or 3) denotes the specific equation (i.e. Eq. 

(3.k)) for which m(k) is applicable.  The value of J can be evaluated from the experimentally 

measured load-displacement curve through a plastic geometry factor, ηpl (see Section 

2.1.1).  A great deal of effort (e.g. Irwin, 1961; Shih, 1981; Kirk and Dodds, 1993; Kirk 

and Wang 1995) has been made to quantify the m factor.  Early studies by Irwin (1961) 

showed that m equals 1 and 2 for the plane stress and plane strain conditions, respectively, 

based on the linear elastic fracture mechanics analysis of the energy release rate.  For 

hardening materials, Shih (1981) reported that within the region dominated by the 

Hutchinson–Rice–Rosengren (HRR) singularity (Hutchinson, 1968; Rice and Rosengren, 

1968), the m factor in Eq. (3.1) (denoted as 1/dn in his study) only depends on material 

deformation properties (e.g. the Ramberg-Osgood strain hardening exponent, n) under the 

small-scale yielding (SSY) condition. 

Kirk and Dodds (1993) and Kirk and Wang (1995) proposed the following CTOD-J 

equation for the SE(B) specimen, which is the same as Eq. (3.1) except that YS is replaced 

by the flow stress, Y: 

 
 2 Y

J

m



  (3.2) 

where Y =YS +UTS)/2, and UTS is the ultimate tensile strength.  Based on the results 

of two-dimensional plane-strain (simply denoted as 2D hereafter) finite element analyses 

(FEA), these researchers found that the m factor is a function of the relative crack length 

(a/W) in addition to n.  An empirical equation of the m factor was developed by them and 

adopted in ASTM E1290-02 (2002), which was later superseded by ASTM E1820.  The 

current edition of E1820, ASTM E1820-13 (2013) formulates the m factor as a function of 

a/W and YS/UTS for deeply-cracked (i.e. a/W ≥ 0.45) SE(B) and C(T) specimens. 

Compared with Eqs. (3.1) and (3.2), an alternative CTOD-J relationship is to evaluate 

the elastic and plastic components of CTOD (i.e. δel and δpl, respectively) separately as 

follows: 
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 3

plel
el pl

SSY YS YS

JJ

m m
  

 
     (3.3) 

where mSSY denotes the m factor under the SSY condition and is usually assigned a value 

of 2 (e.g. in the BS7448 standard (BSI, 1997)), and Jel and Jpl are the elastic and plastic 

components of J, respectively.  The evaluation of Jel and Jpl is well documented in the 

literature (e.g. ASTM, 2013; BSI, 1997) and has been discussed in Section 2.1.1.  It is 

observed that Eq. (3.3) is approximately equivalent to Eq. (3.1) with m(1) = mSSY = 2 for 

low loading levels (δpl/δel ≈ 0) and m(1) = m(3) for high loadings levels (δel/δpl ≈ 0). 

Over the last decade, the use of the non-standard single-edge tension (SE(T)) specimen 

to determine the resistance (R) curve has gained much attention in the energy pipeline 

industry largely as a result of the development of the strain-based design (Tang et al., 2010; 

Wang et al., 2011; Wang et al., 2013).  The crack-tip stress and strain fields of the SE(T) 

specimen are more relevant to the full-scale pipe containing surface cracks under internal 

pressure and/or longitudinal tension than the conventional standard SE(B) and C(T) 

specimens (Wang et al., 2013; Chiesa et al., 2001; Shen et al., 2008).  Shen and Tyson 

(2009) pointed out that the m factor under the large-scale yielding (LSY) condition may be 

dependent on the specimen configuration and loading condition (e.g. bending or tension).  

This implies that the m-factor equations proposed for the SE(B) and C(T) specimens may 

not be adequate for the SE(T) specimen.  The evaluation of the m factor for the clamped 

SE(T) specimen has been reported in the literature (Shen and Tyson, 2009; Moreira and 

Donato, 2010; DNV, 2010, 2012).  For example, Moreira and Donato (2010) obtained 

values of m(2) for the clamped SE(T) specimens based on 2D FEA.  Ruggieri (2012) 

evaluated the plastic geometry eta factors that are used to determine the plastic components 

of J and CTOD, from which m(3) can be evaluated.  Shen and Tyson (2009) indicated that 

m is also dependent on the loading level (e.g. P/PY, with PY being the limit load) under the 

LSY condition.  They carried out a series of 2D FEA of clamped SE(T) specimens with 

the daylight distance over width ratio (H/W) equal to 10 and proposed an empirical 

expression of m(2) as a function of P/PY in addition to a/W and n.  More recently, Det Norske 

Veritas (DNV) (2012) proposed an equation for m(1) for the clamped SE(T) specimens with 
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H/W =10, whereby m(1) is a function of CTOD.  The evaluation of the m-factors for the 

SE(T) specimens is the focus of the study reported in this chapter. 

3.1.2 Literature Review of the m Factors for SE(T) Specimens 

Previous versions of DNV-OS-F101 (2007, 2010) adopted the following m-factor 

equation proposed by Kirk and Wang (1995): 

 

 

3

2

2

1.221 0.793 2.751 1.418

1
3.965 8.326 6.098 1.724YS YS YS

UTS UTS UTS

m
a a

N N
W W

N
n

  

  


   




                      

 (3.4) 

Note that Eq. (3.4) was originally proposed for the SE(B) specimen based on the results of 

2D small-strain FEA that covered a/W ranging from 0.05 to 0.7, and four values of n (n = 

4, 5, 10 and 50).  Pisarski (2010) pointed out that Eq. (3.4) underestimates CTOD for the 

SE(T) specimen by approximately 25% based on the results of 2D FEA.  

The current version of DNV-OS-F101 (2012) suggests that CTOD be estimated from J 

for both the clamped and pin-ended SE(T) specimens using Eq. (3.1) with m(1) given by 
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where v is Poisson’s ratio.  Equation (3.5) is applicable to plane-sided specimens with a/W 

ranging from 0.2 to 0.5 and B/W ranging from 2 to 5 according to DNV-OF-F101 (2012); 

however, how the equation is developed is unclear.  The use of Eq. (3.5) to evaluate CTOD 

implies that an iterative procedure is required. 

By carrying out 2D large-strain FEA of clamped SE(T) specimens with a/W equal to 0.2 

and 0.5, and n equal to 5, 10, 15 and 20, Shen and Tyson (S&T) (2009) proposed the 
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following equation for m(2) to calculate CTOD from the corresponding J for the clamped 

SE(T) specimen: 
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  (3.6a) 

where PY = BN(W − a)Y, and PY and BN are the limit load and net specimen thickness, 

respectively.  The parameters mc and mp in the above equation are defined as 
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  (3.6b) 

Based on the results of three-dimensional (3D) FEA of clamped plane-sided and side-

grooved SE(T) specimens with a/W = 0.4, 0.5 and 0.6, B/W= 1 and 2, and n = 5, 10 and 20, 

Wang et al. (2013) recently reported that the errors in the CTOD values predicted from the 

m factors given by Eq. (3.6) vary in the range of 5 – 42%, depending on a/W, B/W, n, the 

loading level and whether the specimen is plane-sided or side-grooved. 

Moreira and Donato (M&D) (2010) investigated the m factors for clamped SE(T) 

specimens containing the base metal and weldment by carrying out 2D small-strain FEA.  

Their analyses covered a/W ranging from 0.1 to 0.7, and one value of n (n = 10).  For 

evenmatched base metal and weldment, they proposed the following cubic polynomial 

expression for m(2) as a function of a/W: 
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Moore and Pisarski (2012, 2013) reported that the m factors given by Eqs. (3.4), (3.5) and 

(3.7) generally lead to underestimated CTOD values compared with those determined from 

the double-clip gauge method for clamped SE(T) specimens with a/W = 0.3 and 0.5, 

whereas the m factors given by Eq. (3.6) lead to more accurate predictions of CTOD values 

for the same specimens. 

Ruggieri (2012) evaluated the plastic geometry factors, ηδ and ηJ, which respectively 

relate the CMOD-based plastic work to CTOD and J, based on 2D small-strain FEA of 

clamped SE(T) specimens with a/W ratios ranging from 0.2 to 0.7.  The corresponding m(3) 

factor can be derived as follows: 
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where Mi and Qi (i = 0, 1, ..., 5) are the fitting coefficients and tabulated in Table 3.1 for 

three different strain hardening exponents, i.e., n = 5, 10 and 20.  The author further 

validated the developed equations for ηδ and ηJ by carrying out 3D small-strain FEA of 

clamped SE(T) specimens with two B/W ratios (i.e. 0.5 and 2).  For comparison, the basis 

of Eqs. (3.4) through (3.8) in terms of the type of FEA employed to develop the equations 

and ranges of the key parameters involved in FEA is summarized in Table 3.2. 

3.1.3 Objective and Approach 

The objective of the present study was to develop an empirical equation for the plastic 

constraint m factor for clamped SE(T) specimens with H/W equal to 10 based on 3D FEA.  

We carried out extensive 3D FEA of both plane-sided and side-grooved clamped SE(T) 

specimens with six crack lengths (a/W= 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7), two thickness-to-

width ratios (B/W = 1 and 2), and five strain hardening exponents (n = 5, 8.5, 10, 15 and 

20).  For each of the specimens, the value of m at a given loading level was calculated from 

Eq. (3.2) based on the corresponding CTOD and J values obtained from FEA.  The least 

squares-based regression analysis was then performed to develop an empirical m-factor 
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equation as a function of a/W, B/W, YS/UTS and loading level characterized by the CMOD 

over crack length ratio (V/a).  The rest of the chapter is structured as follows.  Section 3.2 

describes the configurations of the FE models, material properties and computational 

procedures.  Section 3.3 shows the calculation results and development of the new m-factor 

equation as well as the validation of the proposed equation.  Concluding remarks are 

presented in Section 3.4. 

3.2 Numerical Analyses  

The FEA code ADINA® (ADINA, 2012) was employed to analyze the three-

dimensional models of both plane-sided (PS) and side-grooved (SG) SE(T) specimens with 

clamped ends.  The analysis matrix includes specimens with six different a/W ratios (a/W 

= 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and two B/W ratios (B/W = 1 and 2).  A stationary crack 

was assumed in the analysis.  For SG specimens, a side groove depth of 7.5%B at each side 

of the specimen was adopted based on the recommendation in (Shen et al., 2010).  All the 

specimens included in the analysis matrix have the same width (W = 20 mm) and daylight 

length (H/W = 10).  The geometry, mesh configurations and materials properties of the 

FEA models adopted in the present study are the same as those presented in Chapter 2 (see 

Section 2.2) and are therefore not detailed in this chapter. 

In the FEA, the load was applied based on the displacement control condition.  Uniform 

displacements were applied on two lateral surfaces that are considered as the clamped 

surfaces with a length of 2W (see Fig. 2.3(a)).  A final load line displacement of 1.3 – 1.8 

mm for plane-sided specimens or 0.8 – 1.2 mm for side-grooved specimens was reached.  

Such displacements are sufficient to achieve the maximum loading level in FEA at around 

1.25PY, which is consistent with the typical maximum load level achieved in the fracture 

toughness testing of the SE(T) specimen (Dodds and Read, 1990; Pussegoda et al., 2013; 

Shen et al., 2009; Mathias et al., 2013). 

The value of J in each layer along the thickness direction, i.e. the local J value, was 

calculated using the virtual crack extension method (ADINA, 2012).  The average J (Jave) 

value over the entire crack front was then calculated from the local J values using the 

weighted average method (ADINA, 2012).  More details about the estimation procedure of 
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the local J values and Jave in the FEA can be referred to Section 2.2.  In this study, Jave as 

opposed to the local J values was used to develop the J-CTOD relationship because J values 

are commonly evaluated experimentally using the plastic geometry factor-based approach 

(Sumpter and Turner, 1976) and the plastic geometry factors specified in testing standards 

(e.g. ASTM, 2013; BSI, 1997) are typically corresponding to Jave.   

The numerically-simulated CTOD (90) was measured based on the 90° intercept method 

(Shih, 1981; Anderson, 2005) at the mid-thickness of the specimen as schematically shown 

in Fig. 3.1.  A ±45° straight line originating at the deformed crack tip was intercepted by 

the deformed crack flanks.  The position of the intersection point on each flank was 

calculated based on the locations of the two closest nodes by linear interpolation (Ruggieri, 

2012).  The distance between the two intersection points was considered as 90 and only 

90/2 was computed in the FEA due to symmetry.  Note that the initial value of 90 equals 

twice the initial blunt tip radius (i.e., 2 = 5 m).  The values of 90 and Jave were evaluated 

from FEA for all the specimens at different loading levels.  For a given specimen at a given 

loading level, the m factor was then calculated from Eq. (3.2) based on the corresponding 

values of 90, Jave and Y, where  = 90 and J = Jave were assumed. 

3.3 Determination of J-CTOD relationship for SE(T) Specimens  

3.3.1 Results and Discussions 

Figures (3.2) and (3.3) show variations of m values with the loading levels characterized 

by V/a for PS specimens with B/W = 1 and different a/W ratios and n values.  Note that 

using V/a to characterize the loading levels is preferred over using P/PY because the former 

is less sensitive to the initial crack tip configuration of the FE model (i.e.   Note also 

that in the present study, the loading levels of V/a < 0.02 were not considered as the 

corresponding J and CTOD values are small compared with the typical fracture toughness 

values of pipeline steels.  From these figures, it is observed that m depends on the loading 

level (V/a), a/W and n, which is consistent with the findings in the literature (Shen and 

Tyson, 2009; Moore and Pisarski, 2012).  The m values generally increase with V/a within 

the range of V/a = 0.02 – 0.05, and then decrease as V/a further increases.  At loading levels 



76 

 

of V/a ≥ 0.05, the m-V/a relationship is approximately linear.  Figures 3.2(a) through 3.2(e) 

suggest that for given n and the loading level, m increases with a/W within the range V/a = 

0.02 – 0.05, whereas m decreases as a/W increases for V/a ≥ 0.05.  For high-hardening 

materials (i.e., n = 5), m is weakly dependent on the a/W ratio whereas this dependence is 

more significant for moderate- and low-hardening materials (i.e. larger n).  This can be 

attributed to that the HRR solutions characterize the crack-tip stress and strain fields 

reasonably well for specimens with high-hardening materials; as a result, the relationship 

between J and CTOD is weakly dependent on the specimen configuration.  The impact of 

the strain hardening exponent on m is shown in Figs. 3.3(a) through 3.3(f).  These figures 

indicate that for a given a/W ratio and the loading level, m decreases as n increases, which 

is consistent with the observation reported by Shih (1981). 

Figures 3.4(a) through 3.4(f) depict the m values as a function of V/a for PS and SG 

specimens with B/W = 1 and 2, n = 10 and different a/W ratios.  It is observed that the B/W 

ratio has a noticeable impact on m: m generally increases by 5% - 12% as B/W increases 

from 1 to 2, all the other conditions being the same.  The influence of B/W on m is more 

significant as a/W decreases and/or V/a increases.  Figures 3.4(a) through 3.4(f) also show 

the impact of the side-grooving on m.  The values of m for the SG models are generally 

10% higher than those for the PS models with the same a/W, B/W and n values.  The above 

observations can be attributed to the fact that increasing the B/W ratio or introducing side-

grooves in the specimens makes the plane-strain condition more prevalent along the crack 

front and that m corresponding to the plane-strain condition is higher than that 

corresponding to the plane-stress condition as reported in previous studies (Irwin, 1961; 

Shih, 1981).  Note that the m-V/a relationships for the SG models are approximately 

parallel to those of the PS models. 

3.3.2 Proposed New Equation for m 

The following empirical equation was proposed to express m as a function of V/a, a/W 

and YS/UTS based on the values of m shown in Figs. (3.2) and (3.3): 
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 (3.9) 

where λ0 equals unity and 1.116 for PS and SG specimens, respectively, and the fitting 

coefficientspij and qij (i, j = 0, 1, 2) depend on B/W and are listed in Table 3.3.  For 

comparison with Eqs. (3.4) - (3.8), key information about the FEA used to develop Eq. 

(3.9) is summarized in Table 2.  The accuracy of Eq. (3.9) was examined by evaluating the 

error in CTOD, eδ (%), computed from Eqs. (3.2) and (3.9) as follows:  
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where δest is CTOD computed through the use of Eqs. (3.2) and (3.9).  Figure 3.5 depicts 

eδ as a function of V/a (0.02 ≤ V/a ≤ 0.2) for the PS and SG specimens with a/W = 0.2 and 

B/W = 1 and 2.  Figure 3.6 is similar to Fig. 3.5, except that the specimens in Fig. 3.6 have 

a/W = 0.5.  These figures indicate that eδ is in most cases between -2% and 4%.  Negative 

and positive eδ values correspond to δest underestimating and overestimating 90, 

respectively.  The maximum values of |eδ| occur at the relatively low loading levels (V/a 

around 0.02) and are about 10% and 8% for the specimens with a/W = 0.2 and 0.5, 

respectively.  The values and variation of eδ within the considered loading levels for 

specimens with a/W = 0.3, 0.4, 0.6 and 0.7 are similar to those shown in Figs. 3.5 and 3.6, 

and are not shown for the sake of brevity.  The values of |eJ| corresponding to V/a > 0.02 

are less than 10% for all the analysis cases considered, except for the PS and SG specimens 

with a/W = 0.2 and n = 5 where maximum |eJ| is approximately 15%. 

To compare the accuracy of the proposed m-factor equation with those reported in the 

literature and reviewed in Section 3.1.2 (i.e. Eqs (3.4) – (3.8)), additional finite element 

analyses were carried out.  The analysis included PS and SG specimens with a/W = 0.25, 
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0.35 and 0.45, B/W = 1 and n = 10.  The values of eδ corresponding to Eqs. (3.4) – (3.8) 

and (3.9) for these specimens were calculated and are plotted against V/a in Fig. 3.7.  It is 

observed from Figs. 3.7(a) through 3.7(c) that for the PS specimens within the considered 

loading levels, Eq. (3.9) is the most accurate among all the equations considered.  The 

accuracy of Eq. (3.6) is comparable to and marginally less than that of Eq. (3.9).  The 

values of |eδ| corresponding to these two equations are less than 10% within the considered 

loading levels.  Equation (3.8) predicts CTOD values of the three PS specimens with 

acceptable accuracy: the values of |eδ| are less than 15%.  However, Eqs. (3.4), (3.5) and 

(3.7) are considered inadequate as they generally overestimate (or underestimate) CTOD 

by 10% - 45%.  The results shown in Figs. 3.7(d) through 3.7(f) indicate that for the SG 

specimens, Eq. (3.9) is the most accurate among all the m-factor equations considered, with 

the corresponding errors in CTOD being less than 5%, followed by Eq. (3.4) with the 

maximum error in CTOD of about 10%, whereas Eqs (3.5) – (3.8) generally overestimate 

CTOD by 10% - 60%.  It is noted that Eqs. (3.4) - (3.8) and (3.9) were also compared in 

terms of the accuracy of the predicted CTOD values for the specimens described in Section 

3.1.  As expected, the accuracy of Eq. (3.9) is the best among all the equations considered 

(the comparison is not shown for brevity).  The relative orders of accuracy corresponding 

to different equations are similar to those shown in Fig. 3.7. 

Finally, it is worth pointing out that the analyses carried out in the present study are with 

respect to specimens made of homogeneous materials.  In the context of SBD of oil and 

gas pipelines, the SE(T) specimens tested in practice are likely made of non-homogeneous 

materials, i.e. consisting of both the weldment and base metal.  Previous studies (Pisarski 

et al., 1995; Donato et al., 2009; Paredes and Ruggieri, 2012) on the plastic eta factor-based 

evaluations of J and CTOD for SE(B) and SE(T) specimens suggested that the eta factors 

developed for specimens with homogeneous materials can be applied to specimens with 

non-homogeneous materials without introducing significant errors (less than 10-15%), if 

the relative difference between the yield strengths of the weldment and base metal is within 

±20%.  We therefore remark that the m-factor equations developed in this study could be 

potentially applied to welded SE(T) specimens, if the strength mismatch is within ±20%.  

Detailed analyses are obviously needed to confirm the validity of such a suggestion. 
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3.4 Conclusions  

Systematic three-dimensional finite element analyses with the large-

displacement/large-strain formulation have been performed on clamped SE(T) specimens 

to evaluate the plastic constraint m factor that relates CTOD to J.  Both plane-sided and 

side-grooved SE(T) specimens with a range of configurations (a/W = 0.2 to 0.7 with an 

increment of 0.1, and B/W = 1 and 2) and strain hardening exponents (n = 5, 8.5, 10, 15 

and 20) were considered in the analyses.  A side groove depth of 7.5%B on each side was 

included in the SG specimens. 

The analysis results suggest that the value of m depends on n, specimen configuration 

(i.e. a/W, B/W and side-grooving) as well as the loading level as represented by V/a.  The 

findings are consistent with those reported in the literature.  For loading levels that are of 

practical concern (i.e. V/a ≥ 0.02), m is approximately a linear function of V/a.  A new 

empirical m-factor equation for the clamped SE(T) specimen was proposed as a function 

of V/a, a/W, YS/UTS and B/W.  Using the proposed equation can accurately predict CTOD 

at loading levels V/a ≥ 0.02 with the error being generally less than 10% for all the analysis 

cases considered (except for the PS and SG specimens with a/W = 0.2 and n = 5, where the 

maximum error is approximately 15%).  The proposed m-factor equation was further 

compared with the equations adopted in the previous and current versions of DNV-OS-

F101 (2007, 2012), as well as the equations developed by Shen and Tyson, Moreira and 

Donato and Ruggieri in terms of the accuracy of the predicted CTOD values.  It is observed 

that the proposed equation leads to the most accurate predictions of the CTOD values for 

both the PS and SG SE(T) specimens among all the equations considered. 
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Table 3.1: Coefficients Mi and Qi in Eq. (3.8). 

 

  

n i  = 5 i  = 4 i  = 3 i  = 2 i  = 1 i  = 0

5 -12.6667 41.7774 -47.7238 23.2332 -5.4920 1.4324

10 -1.1282 16.4779 -23.5153 10.9659 -2.3047 1.0823

20 61.2821 -131.9872 108.4318 -43.2838 7.7140 0.4023

5 81.5897 -180.7424 154.5238 -64.0121 12.5638 -0.5890

10 33.4872 -70.1900 59.1272 -25.6393 5.3676 0.1254

20 49.2308 -109.9534 97.1855 -43.1732 9.0697 -0.0157

M i

Q i
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Table 3.2: Summary of basis of Eqs. (3.4) – (3.9). 

 

  

DNV(07) DNV(12) S&T M&D Ruggieri Present study

2D / 2D 2D 2D* 3D

small strain / large strain small strain small strain large strain

0.05 - 0.7 0.2 - 0.5 0.2 and 0.5 0.1 - 0.7 0.2 - 0.7 0.2 - 0.7

/ 2 - 5 / / / 1 and 2

4, 5, 10, 50 /
5, 10, 15, 

20
10 5, 10, 20

5, 8.5, 10, 

15, 20

* Equations for η J  and η δ  were validated by 3D FEA of PS SE(T) specimens with B/W  = 0.5 and 2.

n

plane-sided (PS) or side-

grooved (SG)
PS and SG///PS/

small strain or large strain

2D or 3D

a/W

B/W

Eq. (3.8) Eq. (3.4) Eq. (3.5) Eq. (3.6) Eq. (3.7) Eq. (3.9)
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Table 3.3: Coefficients pij and qij in Eq. (3.11). 

 

  

j  = 0 j  = 1 j  = 2 j  = 0 j  = 1 j  = 2

i  = 0 2.201 1.106 -1.441 2.145 1.804 -2.241

i  = 1 -0.540 -1.303 2.280 -0.471 -1.622 2.616

i  = 0 7.036 -28.541 40.002 12.374 -45.815 55.681

i  = 1 -11.016 40.381 -64.389 -15.869 58.787 -82.230

B/W = 1 B/W = 2

p ij

q ij
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Figure 3.1. Schematic illustration of the determination of CTOD in FEA 
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Figure 3.2. Variation of m with V/a for different a/W for plane-sided specimen with B/W = 1   
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Figure 3.3. Variation of m with V/a for different n for plane-sided specimen with B/W = 1 
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Figure 3.4. Variation of m with V/a for specimen with n = 10 and different B/W 
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Figure 3.5. Variation of eδ with V/a for Eq. (3.9) for specimens with a/W = 0.2   
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Figure 3.6. Variation of eδ with V/a for Eq. (3.9) for specimens with a/W = 0.5   

/V a

(a) a/W = 0.5, B/W = 1, PS
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Figure 3.7. Variation of eδ with V/a for specimens with B/W = 1 and n = 1 
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e e

/V a

(b) a/W = 0.35, PS

/V a

(c) a/W = 0.45, PS

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

a/W = 0.2
a/W = 0.3
a/W = 0.4
a/W = 0.5
a/W = 0.6
a/W = 0.7

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

a/W = 0.2
a/W = 0.3
a/W = 0.4
a/W = 0.5
a/W = 0.6
a/W = 0.7

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

n = 5
n = 8.5
n = 10
n = 15
n = 20

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

n = 5
n = 8.5
n = 10
n = 15
n = 20

/V a

e e

/V a /V a

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

a/W = 0.2
a/W = 0.3
a/W = 0.4
a/W = 0.5
a/W = 0.6
a/W = 0.7

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

a/W = 0.2
a/W = 0.3
a/W = 0.4
a/W = 0.5
a/W = 0.6
a/W = 0.7

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

n = 5
n = 8.5
n = 10
n = 15
n = 20

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

n = 5
n = 8.5
n = 10
n = 15
n = 20

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0.02 0.05 0.08 0.11 0.14 0.17 0.20

n = 5
n = 8.5
n = 10
n = 15
n = 20

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.02 0.05 0.08 0.11 0.14 0.17 0.20

B/W = 1,  plain-sided

B/W = 1,  side-grooved

B/W = 2,  plain-sided

B/W = 2,  sided-grooved
1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.02 0.05 0.08 0.11 0.14 0.17 0.20

B/W = 1,  plain-sided

B/W = 1,  side-grooved

B/W = 2,  plain-sided

B/W = 2,  sided-grooved

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.02 0.05 0.08 0.11 0.14 0.17 0.20

B/W = 1,  plain-sided

B/W = 1,  side-grooved

B/W = 2,  plain-sided

B/W = 2,  sided-grooved
1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.02 0.05 0.08 0.11 0.14 0.17 0.20

B/W = 1,  plain-sided

B/W = 1,  side-grooved

B/W = 2,  plain-sided

B/W = 2,  sided-grooved

(d) a/W = 0.25, SG (e) a/W = 0.35, SG (f) a/W = 0.45, SG

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

n = 5

n = 8.5

n = 10

n = 15

n = 20

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

n = 5

n = 8.5

n = 10

n = 15

n = 20

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

n = 5

n = 8.5

n = 10

n = 15

n = 20

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

n = 5

n = 8.5

n = 10

n = 15

n = 20

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

n = 5

n = 8.5

n = 10

n = 15

n = 20

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

n = 5

n = 8.5

n = 10

n = 15

n = 20

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2
-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2
-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2
-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2
-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

e

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2
-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.02 0.05 0.08 0.11 0.14 0.17 0.2

Eq. (4)
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (8)
Eq. (11)

e

Eq. (3.4)

Eq. (3.5)

Eq. (3.6)

Eq. (3.7)

Eq. (3.8)

Eq. (3.9)

Eq. (3.4)

Eq. (3.5)

Eq. (3.6)

Eq. (3.7)

Eq. (3.8)

Eq. (3.9)



95 

 

Chapter 4   Numerical Investigation of Compliance Equations 

Used in the R-Curve Testing for Clamped SE(T) Specimens 

4.1 Background and Objective  

4.1.1 Introduction 

Simultaneous evaluations of the instantaneous J-integral (J) (or crack-tip opening 

displacement resistance (CTOD)) and crack length (a) are key to the widely-used single-

specimen technique in the fracture toughness resistance (R) curve testing (Clarke et al., 

1976).  One of the common approaches to evaluate the crack length in the single-specimen 

technique is the elastic unloading compliance (UC) method (Clarke et al., 1976; Clarke and 

Landes, 1979).  The UC method is based on a unique relationship between the crack length 

and elastic compliance (i.e. inverse of the stiffness, C) of the specimen, which is typically 

written as 

  2D

a
f BCE

W
  (4.1) 

where B and W are the thickness and width of the specimen, respectively; BCE2D is the 

non-dimensional normalized compliance, and f() represents the function that relate a/W 

to BCE2D.  The value of elastic modulus in two-dimensional (2D) analysis, E2D, equals the 

Young’s modulus (E) for plane-stress condition, and equals E' = E/(1 – ν2) for plane-strain 

condition with ν being Poisson’s ratio. 

By estimating the compliance of a specimen through the load-displacement data of a 

given unloading-reloading sequence in the test, the corresponding crack length can be 

determined.  Figure 4.1 schematically shows the experimental measurement of the 

compliance based on the load vs. crack-mouth opening displacement (P-CMOD) curve for 

a specimen with a growing crack.  The measured compliance usually increases with the 

crack length as shown in Fig. 4.1.  It is noted that using the CMOD compliance to predict 

the relative crack length (a/W) is more advantageous than using the load line displacement 
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(LLD) compliance because CMOD can be more accurately and easily measured than LLD 

(Zhu et al., 2008). 

As specified in test standards ASTM E1820-13 (ASTM, 2013) and BS7448-4 (BSI, 

1997), experimental evaluation of J or CTOD in the R-curve test involves separating the 

total CMOD (V) into an elastic component, Vel, and a plastic component, Vpl (see Fig. 4.1): 

 pl elV V V V PC     (4.2) 

where P is the applied load and C can be directly measured if the UC method is adopted.  

For test methods (such as the potential drop method) that directly measure the crack length 

instead of the compliance (Johnson, 1965; Schwalbe and Hellmann, 1981; Marschall et al., 

1990), the following equation is needed to evaluate C in Eq. (4.2) based on the measured 

crack length: 

 2D

a
BCE g

W


  

 
 (4.3) 

where g() represents the function that relates BCE2D to a/W.  It follows that the accuracies 

of f(BCE2D) and g(a/W) directly impact the accuracy of the experimentally determined R-

curve. 

Recently, the use of the non-standard clamped single-edge tension (SE(T)) specimen 

(referred to as the SE(T) specimen hereafter for simplicity) to determine the R-curve has 

gained considerable research interests (Chiesa et al., 2001; Shen et al., 2008; Tamg et al., 

2010; Wang et al., 2011) largely as a result of the development of the strain-based design 

and assessment methodologies in the energy pipeline industry.  A great deal of studies are 

reported in the literature concerning the compliance equation for the SE(T) specimen (Tada 

et al. 1973; John et al., 1985; Jones, 1998; Cravero and Ruggieri, 2007; Shen et al., 2008, 

2009; John and Rigling, 1998; Mathias et al., 2013; Fonzo et al., 2009; Donato and Moreira, 

2013).  For example, empirical BCE'-a/W equations for different types of specimens 

including SE(T) are well documented by Tada et al. (1973), while John et al. (1985) and 

Jones (1998) developed BCE'-a/W equations for SE(T) specimens with various a/W and 
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daylight-over-width ratios (H/W) based on the weight function analysis.  Cravero and 

Ruggieri (2007) and Shen et al. (2008, 2009) respectively proposed the a/W-BCE2D 

equations for the SE(T) specimen with 0.1 ≤ a/W ≤ 0.7 and 0.05 ≤ a/W ≤ 0.95 based on 2D 

plane-strain finite element analyses (FEA).  By using 2D plane-stress FEA, John and 

Rigling (1998) developed a 6th-order polynomial a/W-BCE equation for the SE(T) 

specimen with 0.1 ≤ a/W ≤ 0.9.  Mathias et al. (2013) proposed an empirical a/W-BCE 

equation for the SE(T) specimen with 0.1 ≤ a/W ≤ 0.7.  Fonzo et al. (2009) proposed a/W-

BCE’ equations based on the results of 2D plane-strain FEA.  Donato and Moreira (2013) 

carried out three-dimensional (3D) FEA of clamped plane-sided and side-grooved SE(T) 

specimens with 0.1 ≤ a/W ≤ 0.7, B/W = 1 and H/W = 6.  They developed an empirical a/W-

BCE equation based on the FEA results and suggested that the equation be applied to both 

plane-sided and side-grooved SE(T) specimens with 0.25 ≤ B/W ≤ 1.   

Recently, Wang and Omiya (2015) examined the accuracy of the a/W-BCE2D equations 

reported in (Cravero and Ruggieri, 2007; Shen et al., 2008, 2009; Mathias et al., 2013; 

Fonzo et al., 2009; Donato and Moreira, 2013) based on both 2D plane-strain and 3D FEA 

of SE(T) specimens with H/W = 10.  Both plane-sided and side-grooved specimens were 

considered in the 3D FEA.  Their analyses involved a/W ratios ranging from 0.05 to 0.7, 

two B/W ratios (i.e. B/W = 1 and 2) and three side-groove depths (i.e. 5%B, 7.5%B and 

10%B on each side of the specimen).  Based on the analysis results, Wang and Omiya 

developed the effective modulus, Ee, for the 3D condition to replace E2D in Eq. (1) and 

showed that using Ee can markedly improve the accuracy of the predicted crack length for 

SE(T) specimens.  The value of Ee was proposed to be evaluated as Ee = eE, where e is 

a dimensionless factor that is a function of BCE and B/W. 

4.1.2 Objective and Approach 

Despite the rich literature on the compliance of the SE(T) specimens, there are a few 

issues yet to be addressed.  First, previous studies (Cravero and Ruggieri, 2007; Shen et 

al., 2008, 2009; John and Rigling, 1998; Mathias et al., 2013; Fonzo et al., 2009; Donato 

and Moreira, 2013; Wang and Omiya, 2015) focused on the accuracy of a/W-BCE2D 

equations, whereas the accuracy of the BCE2D-a/W equations has not been investigated 
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based on 3D FEA.  Second, relatively thick specimens (B/W > 2) have been recommended 

in testing standards, e.g. DNV-RP-F108 (DNV, 2006), but the accuracy of the compliance 

equations for such specimens has not been well studied in the literature.  Finally, although 

the use of Ee has been shown (Wang and Omiya, 2015) to markedly increase the accuracy 

of various a/W-BCE2D equations, eight different empirical 4th-order polynomial equations 

were proposed in (Wang and Omiya, 2015) to evaluate the dimensionless factor e that 

relates Ee to E, for different B/W ratios and depths of the side groove.  These equations can 

be cumbersome to use in practice.  Furthermore, Ee is developed based on the assumption 

that the BCE2D-a/W equation employed in the development of Ee is perfectly accurate, 

which is not the case in reality.  It can be inferred that the accuracy of the BCE2D-a/W 

equations cannot be improved by replacing E2D with Ee.  Therefore, it is desirable to 

develop an easy-to-use approach to account for the impact of the 3D effects on both a/W-

BCE2D and BCE2D-a/W equations. 

The objective of the present study was to address the aforementioned issues.  To this 

end, 3D linear-elastic FEA of plane-sided (PS) and side-grooved (SG) SE(T) specimens 

with a/W ranging from 0.1 to 0.9 and B/W ranging from 0.25 to 4 were carried out.  The 

analysis was focused on specimens with H/W = 10 because the crack-tip stress fields of 

such a specimen correspond closely to those of the full-scale pipes containing 

circumferential cracks (Shen et al., 2008), which are of primiary concern to the strain-based 

design of pipelines.  The FEA was carried out to investigate the accuracy of the existing 

a/W-BCE2D and BCE2D-a/W equations.  Based on the FEA results, a simple approach was 

proposed to improve the accuracy of the compliance equations by introducing the crack 

length/compliance modification factors, (a/W) and (BCE).  For a given compliance equation, 

the corresponding crack length (or compliance) modification factor can be evaluated from 

a single empirical equation for both plane-sided and side-grooved specimens with various 

B/W ratios.  It should be noted that the present study is focused on the compliance of the 

SE(T) specimen in the undeformed position.  For the compliance of the SE(T) specimen in 

the deformed position, Cravero and Ruggieri (2007) and Shen and Tyson (2009) have 

developed the compliance correction procedure to account for the effect of the geometry 
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change due to the rotational deformation of the specimen, which is detailed in Appendix 

C. 

The rest of this chapter is structured as follows.  A brief review of several compliance 

equations for the SE(T) specimen is included in Section 4.2;  Section 4.3 describes the 3D 

finite element models and analysis procedures employed in this study for calculating the 

compliance; in Section 4.4, the accuracies of the compliance equations for the SE(T) 

specimens are examined based on the FEA results, and the 3D crack length/compliance 

modification factors for the SE(T) specimen are proposed and validated, followed by 

conclusions and recommendations in Section 4.5. 

4.2 Review of Compliance Equations for Clamped SE(T) Specimen  

4.2.1 a/W as a function of BCE2D 

Cravero and Ruggieri (2007) developed an a/W-BCE2D equation based on the 2D plane-

strain FEA: 

 

2 3

4 5

2

1.6485 9.1005 33.025 78.467

          97.344 47.227                        ,0.1 / 0.7     a             

1
                                                                  

1 D
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u u u

W

u u a W

u
BCE

   

   

        


  b










(4.4) 

where u is a non-dimensional factor that used to construct the a/W-BCE2D relationship. 

Similarly, Shen et al. (2008, 2009) proposed the following 9th- and 8th-order polynomial 

equations for the SE(T) specimen with H/W = 10 based on the results of 2D plane-strain 

FEA: 
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 (4.5) 

Based on a series of 2D plane-stress FEA of SE(T) specimens, John and Rigling (1998) 

developed an empirical equation whereby a/W is a function of BCE and H/W for a wide 

range of specimen configurations (i.e. 0.1 ≤ a/W < 0.9 and 2 ≤ H/W < 10).  For specimens 

with H/W = 10, the a/W-BCE relationship is presented as the following equation: 

 

2 3

4 5 6

1 1 1
0.41881 0.485754 0.16556

1 1 1
            0.027639 0.00229 0.0000749

                                                                        , 0.1

a

W u u u

u u u
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     

     
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     

 / 0.9        a W 

 (4.6) 

Mathias et al. (2013) recently proposed an empirical compliance equation as follows by 

summarizing the FEA results reported in (Cravero and Ruggieri, 2007): 

 
2 3

4 5

1.9215 13.2195 58.7080 155.2823

            207.3987 107.9176                 ,0.1 / 0.7        

a
u u u

W

u u a W

   

    

 (4.7) 

Fonzo et al. (2009) developed the following 5th-order polynomial equations based on 

the 2D plane-strain FEA: 

 
2 3

4 5

1.64461 8.7084 30.31342 69.60922

         83.52325 39.11201                  ,0.1 / 0.7

a
u u u

W

u u a W

   

   

 (4.8) 

Note that in the corresponding original publications (Cravero and Ruggieri, 2007; Shen 

et al., 2008, 2009; John and Rigling, 1998; Mathias et al., 2013; Fonzo et al., 2009), E2D 
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was taken as the plane-stress elastic modulus (E) in Eqs. (4.5) – (4.7), and plane-strain 

elastic modulus (E') in Eqs. (4.4) and (4.8).  Several studies (Shen et al., 2009; Wang and 

Omiya, 2015; Tyson et al., 2014) have revealed that using E instead of E' in Eqs. (4.4) and 

(4.8) can lead to more accurate predictions of a/W for specimens with B/W = 1.  Based on 

this, E2D was set to equal E in Eqs. (4.4) – (4.8) in the present study. 

4.2.2 BCE2D as a function of a/W 

Tada et al. (1973) proposed the following equation to express BCE' as a function of a/W 

for the SE(T) specimen: 
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1.46 3.42 1 cos
4 2
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2
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a W
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W a
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  
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 (4.9) 

Note that Eq. (4.9) is considered applicable for different H/W ratios as long as H/W ≥ 2. 

John and Rigling (1998) developed the following BCE-a/W equation for the SE(T) 

specimen with H/W = 10 based on the 2D plane-stress FEA from which Eq. (4.6) is 

developed: 
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 (4.10) 

The authors reported that Eq. (4.10) is accurate to within ±0.7% of the corresponding 2D 

FEA results. 

Recently, Wang (2015) proposed the following BCE'-a/W equations, i.e. Eqs. (4.11a), 

(4.11b) and (4.11c), by fitting the inverse of Eqs. (4.4), (4.5a) and (4.5b), respectively: 
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 (4.11) 

The absolute fitting error of Eqs. (4.11a) through (4.11c) is reported in (Wang, 2015) to be 

less than 1% for a/W ≥ 0.1.  Note that the accuracies of Eqs. (4.9) – (4.11) have not been 

verified through 3D FEA of SE(T) specimens.  Note also that for side-grooved specimens, 

the effective specimen thickness, Be(1), should be used to evaluate u (i.e. Eq. (4.4b)) for the 

a/W-BCE2D equation and be used in Eqs. (4.9) – (4.11), where Be(1) is given by (ASTM, 

2013; BSI, 1997): 

  

 
2

1

N

e

B B
B B

B


   (4.12) 

with BN denoting the net specimen thickness. 

4.3 Numerical Analyses  

The commercial software ADINA 8.9.3 (ADINA, 2012) was used to carry out the FEA.  

Linear-elastic analyses of 63 PS and 63 SG SE(T) models were performed to evaluate the 
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CMOD compliance. Young's modulus and Poisson's ratio were set to be 207 GPa and 0.3, 

respectively.  All the specimens included in this study have a width W = 20 mm and a 

daylight (H) of 10W.  Seven B/W ratios (i.e. B/W = 1/4, 1/3, 1/2, 1, 2, 3 and 4), and nine 

a/W ratios (i.e. a/W = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were included in the 

analyses.  For the SG models, the side groove was modeled as a U-shape notch with a 

depths of 7.5%B on each side of the specimen (i.e. the net specimen thickness BN = 0.85B) 

as suggested by Shen et al. (2010).  The root radius (rsg) of the side groove for models with 

B/W = 1/2, 1, 2, 3 and 4 was set to 0.5 mm as recommended in ASTM E1820 (ASTM, 

2013) (rsg = 0.5± 0.2 mm).  For models with B/W = 1/4 and 1/3, due to the thin specimen 

thickness, a smaller root radius (i.e. rsg = 0.3 mm) was used.  Results of sensitivity analyses 

(not reported here for the sake of brevity) indicate that the radius of the side groove has a 

negligible impact on the compliance of the SE(T) specimen for rsg ≤ 1 mm.  Only a quarter 

of a given specimen was modeled in the FEA due to symmetry.  The geometric 

configuration of a typical SG specimen in FEA is shown in Fig. 4.2(a) together with the 

fixation and loading conditions.  A schematic of the side groove modeling is shown in Fig. 

4.2(b). 

The 20-node 3D brick elements with 3×3×3 integration were used in the analysis.  

Stationary cracks were assumed in all the FE models.  A sharp crack tip was incorporated 

and the surfaces of the brick elements were collapsed to a line at the crack tip (see Fig. 

4.2(c)) to simulate the singularity condition.  A spider-web mesh around the crack tip was 

established with 45 concentric semicircles (i.e. rings) surrounding the crack tip.  The model 

was divided into 12 layers over the half net thickness (BN/2) and the groove ((B – BN)/2) 

was divided into 16 layers.  The in-plane and out-of-plane size of the elements closest to 

the crack tip is about 1/2000W and 1/200B.  The total number of elements is approximately 

11,000 in a typical PS specimen, and 28,000 in a typical SG specimen.  Convergence 

studies on mesh density were conducted by increasing the number of the layers along the 

half net tthickness from 12 to 17.  Good convergence of the output compliance was 

observed. 

Uniform displacements were applied on two lateral surfaces that are considered as the 

clamped surface with a length of 2W.  Negligible differences (around 0.1%) of the analysis 
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results were observed when changing the length of the clamped surface from 2W to 4W.  

Evaluation of the compliance requires computation of the load-displacement, i.e. P-

CMOD, response in the FEA.  The load (P) was calculated as the total reactions of the 

nodes on the clamped surface while CMOD (V) was recorded at the mid-thickness of the 

specimen.  The values of P and V corresponding to an applied displacement of 2 m were 

obtained, and the compliance was then calculated as V/P. 

4.4 Results and Discussions 

4.4.1 Prediction Error of the Compliance Equations 

Let e1 denote the error (%) associated with the value of a/W predicted from Eqs. (4.4) – 

(4.8), and e2 denote the error (%) associated with the value of C predicted from Eq. (4.9) – 

(4.11); that is, e1and e2 are given by  
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 (4.13) 

where the subscripts “p” and “FEA” denote the values predicted from Eqs. (4.4) – (4.11) 

and values either incorporated in or obtained from the FEA models, respectively.  Tables 

4.1 and 4.2 list e1 and e2 for the PS and SG specimens considered in this study, respectively.  

Note that the positive (negative) values indicate overestimation (underestimation) of 

BCE2D or a/W by a given equation.  Tables 4.1 and 4.2 indicate that the error of prediction 

of a given equation depends on the a/W and B/W ratios.  Table 4.1(a) suggests that Eqs. 

(4.4), (4.5a), (4.5b) and (4.6) lead to similar predictions of a/W for a given BCE.  For a 

given a/W, the values of |e1| associated with Eqs. (4.4), (4.5a), (4.5b) and (4.6) in general 

increase as B/W increases; therefore, the highest error of prediction is typically for the 

thickest specimen (i.e. B/W = 4).  For a/W ≥ 0.5, the corresponding values of |e1| are always 

less than or equal to 2.5% regardless of B/W.  For a/W < 0.5, the values of |e1| associated 
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with the four equations are in general less than 2% for relatively thin specimens (i.e. B/W 

≤ 0.5); but for relatively thick specimens (B/W ≥ 1), the corresponding values of |e2| can be 

significant.  For example, the values of |e2| of Eq. (4.5a) and (4.6) are 10.4 and 9.4%, 

respectively, for a/W = 0.1 and B/W = 4.  It is interesting to note that the trend in |e1| 

associated with Eqs. (4.7) and (4.8) is opposite to that in |e1| associated with Eqs. (4.4) 

through (4.6) in that for a given a/W |e1| associated with Eqs. (4.7) and (4.8) decreases as 

B/W increases, particularly for specimens with a/W < 0.5.  For example, |e1| associated with 

Eq. (4.7) decreases from 9.2% to 0.9% as B/W increases from 0.25 to 4 for a/W = 0.1.  The 

results in Table 4.1 further indicate that Eqs. (4.7) and (4.8) are accurate for relatively thick 

specimens regardless of a/W: the corresponding values of |e1| are generally less than 3.0% 

for 0.1 ≤ a/W ≤ 0.9 and 1 ≤ B/W ≤ 4. 

As shown in Table 4.1(b), |e2| of Eq. (4.9) decreases from about 1400% to less than 15% 

as a/W decreases from 0.9 to 0.1.  The results indicate that Eq. (4.9) is not adequate to 

characterize the BCE'-a/W relationship for SE(T) specimens with H/W = 10.  On the other 

hand, Eqs. (4.10), (4.11a), (4.11b) and (4.11c) lead to much more accurate predictions of 

C with values of |e2| generally being smaller than 10%.  For a given a/W, the values of |e2| 

associated with Eqs. (4.10) in general increase as B/W increases whereas the opposite is 

the case for Eqs. (4.11a), (4.11b) and (4.11c).  This can be explained by the fact that E and 

E' are employed in Eqs. (4.10) and (4.11), respectively.  Eq. (4.10) is accurate for relatively 

thin specimens (i.e. B/W ≤ 0.5) with a/W ≥ 0.2 with the error being less than 2%.  The 

values of |e2| associated with Eqs. (4.11a), (4.11b) and (4.11c) for specimens with a/W ≤ 

0.3 are in general less than 2% for specimens with B/W ≥ 2, but the corresponding values 

of |e2| increase significantly as B/W decreases from 2 to 0.25 or a/W increases from 0.3 to 

0.9. 

The values of e1 and e2 for the SG specimens as shown in Table 4.2 are similar to those 

in Table 4.1.  For specimens with B/W ≥ 1, the predictions by Eqs. (4.4) through (4.8) for 

the SG specimens are generally more accurate than those for the PS specimens with the 

same a/W ratios; for specimens with B/W < 1, the predictions by the same equations for the 

SG specimens are slightly less accurate than those for the PS specimens.  The predictions 

by Eqs. (4.7) and (4.8) for SG specimens are insensitive to B/W for a/W ≥ 0.5; for a given 
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a/W < 0.5, the value of |e1| associated with Eqs. (4.7) and (4.8) in general decreases as B/W 

increases.  

The results shown in Tables 4.1 and 4.2 indicate that a given compliance equation 

typically provides accurate predictions of a/W or C for certain ranges of a/W and B/W.  For 

example, Eqs. (4.4), (4.5a), (4.5b) and (4.6) lead to accurate predictions of a/W for 

specimens with a/W ≥ 0.5 and 0.25 ≤ B/W ≤ 4, and for specimens with 0.1 < a/W < 0.5 and 

B/W ≤ 0.5; the predictions of a/W by Eqs. (4.7) and (4.8) are accurate for specimens with 

a/W < 0.5 and B/W ≥ 1, and Eq. (4.10) leads to accurate predictions of C for specimens 

with a/W > 0.2 and B/W ≤ 0.5.  However, there is a lack of a single compliance equation 

that can accurately predict a/W (or C) for the entire ranges of a/W and B/W considered.  

Such an equation is desirable as it will facilitate practice as well as standardization of the 

SE(T) specimen-based J-R curve testing.  Detailed procedure to construct such an equation 

is presented in Section 4.4.2. 

4.4.2 Crack Length/Compliance Modification Factors for SE(T) Specimens 

To develop a single equation that can accurately predict a/W for all the specimen 

configurations considered in this study, we introduce the crack length modification factor, 

(a/W), as follows to account for the inaccuracies (e.g. due to the 3D effects) associated with 

a given a/W-BCE equation: 

  ( / )a W

a
f BCE

W
  (4.14) 

where f(BCE) is the right hand side of Eq. (4.4), (4.5a), (4.5b), (4.6), (4.7) or (4.8).  The 

modification factor can also be interpreted as the model error associated with f(BCE).  The 

values of (a/W) corresponding to a given equation among Eqs. (4.4) through (4.8) for all 

the PS and SG specimens considered in the FEA were computed as 
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The values of (a/W) associated with Eqs. (4.4) through (4.8) for all the specimens are plotted 

in Fig. 4.3(a) through 4.3(f) as a function of a non-dimensional factor, ω, which is defined 

as 

 
1

1 WCE
  


 (4.16) 

It follows that ω increases as a/W decreases and/or B/W increases (i.e. C decreases).  Figure 

4.3 indicates that (a/W) generally increases as ω increases for Eqs. (4.4) – (4.6), which 

implies that these 2D-based equations become less and less adequate under the 3D 

condition as the specimen thickness increases and/or the crack length decreases. The value 

of (a/W) is relatively insensitive to ω for Eqs. (4.7) and (4.8).  The advantage of plotting 

(a/W) vs. ω instead of plotting (a/W) vs. u (as defined in Eq. (4.4b)) is evident from Figure 

4.3 in that a single equation can be developed to fit all the data points shown in the 

individual figure, which correspond to both PS and SG specimens with various a/W and 

B/W ratios.  In contrast, a single empirical equation of (a/W) in terms of u cannot incorporate 

all the B/W values because the value of (a/W) is relatively sensitive to B/W for a given a/W 

but the value of u is insensitive to B/W for a given a/W (note that BC = const. for a given 

a/W under the 2D condition). 

Based on Fig. 4.3, (a/W) is expressed as the following quadratic function of ω with the 

corresponding fitting coefficients evaluated using the least squares method:  

   1 2/ 0

2

a W
R R R      (4.17) 

where the coefficients Ri (i = 1, 2 or 3) associated with Eqs. (4.4) through (4.8) are listed 

in Table 4.3.  Note that for Eqs. (4.7) and (4.8), a linear fit is considered adequate; therefore, 

R2 is set to zero for these two equations.  Equation (4.17) is depicted by the solid lines in 

Fig. 4.4(a) through 4.4(f), whereby the fitting error is less than 5% for all the data points.  

With Eq. (4.17), the advantage of using (a/W) (as opposed to, say, using Ee) to improve the 

accuracy of the predicted a/W is clear in that a single quadratic (or linear) function is 
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sufficient to evaluate all the (a/W) values corresponding to a wide range of B/W ratios for 

both the PS and SG specimens. 

A similar approach was used to improve the accuracy of the BCE-a/W equation by 

introducing the compliance modification factor, (BCE), as follows: 

  BCE

a
BCE g

W



  

 
 (4.18) 

Note that only g(a/W) associated with Eq. (4.10) is considered in the modification as Eq. 

(4.10) is in general more accurate than Eqs. (4.9) and (4.11) as shown in Tables 4.1 and 

4.2.  Similar to the interpretation of (a/W), (BCE) can be considered the model error 

associated with Eq. (4.10).  The values of (BCE) corresponding to Eq. (4.10) for all the 

specimens were computed by 

  
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BCE

F A

p

C

C
   (4.19) 

It is envisioned that (BCE) depends on a/W and B/W such that the 2D-based Eq. (4.10) 

multiplied by (BCE) becomes adequate for the 3D condition.  Figure 4.4 shows the variation 

of (BCE) with a non-dimensional factor, γ, which is defined through trial and error as: 
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 (4.20) 

Note that for SG specimens, the parameter B on the right hand side of Eq. (4.20) is replaced 

by Be(1) as defined in Eq. (4.12).  The following quadratic equation was developed to fit the 

data points shown in Fig. 4.4: 

  
20.127401.003 0.1802153

BCE
     (4.21) 

The above equation is depicted by the solid line in Fig. 4.4, whereby the fitting error is less 

than 4% for all the data points. 



109 

 

4.4.3 Numerical validations of the proposed (a/W) and (BCE) 

To validate Eqs. (4.17) and (4.21), Eqs. (4.13a) and (4.13b) were used to calculate the 

prediction errors of Eqs. (4.4) through (4.8), and (4.10), whereby the predictions of these 

equations were multiplied by the corresponding (a/W) and (BCE) evaluated from Eqs. (4.17) 

and (4.21) respectively.  Tables 4.4 and 4.5 summarize the corresponding errors of 

prediction for PS and SG specimens with different configurations.  Additional finite 

element analyses including PS and SG specimens with a/W = 0.15 and 0.25 and B/W = 

0.25 – 4 were carried out, and the errors of prediction for these specimens are also shown 

in Tables 4.4 and 4.5 (see the shaded area).  The results indicate that using (a/W) and (BCE) 

combined with Eqs. (4.4) – (4.8) and (4.10) lead to highly accurate predictions of a/W and 

C for both the PS and SG specimens with all the a/W and B/W ratios considered.  The 

corresponding errors of predictions are less than 2% for most of the specimens, and the 

maximum errors of prediction error associated with Eqs. (4.4), (4.5a), (4.5b), (4.6), (4.7) 

or (4.8) and (4.10) are 3.7, 4.8, 4.2, 4.2, 6.3, 4.6 and 4.2%, respectively.  It is noted that the 

highest errors of prediction for Eqs. (4.4) – (4.8) and (4.10) are corresponding to the SG 

specimens with a/W < 0.2, which can be attributed to the relatively poor fitting of the data 

by Eqs. (4.17) and (4.21) corresponding to large ω and small γ values (i.e. small a/W) as 

shown in Figs. 4.3 and 4.4.  Among the five equations for predicting a/W considered in this 

study, we recommend Eq. (4.6) in conjunction with the corresponding modification factor 

for practice given that the equation is relatively simple (a 6th-order polynomial) and 

applicable for a/W values (0.1 ≤ a/W ≤ 0.9) that are of practical relevance. 

4.5 Summary and Conclusions  

Three-dimensional linear-elastic finite element analyses of clamped single-edge tension 

(SE(T)) specimens were carried out to investigate the accuracy of compliance equations 

that are used to evaluate the crack length (a/W) and compliance (C) in the R-curve test.  A 

wide range of specimen configurations including nine a/W ratios ranging from 0.1 to 0.9, 

and seven B/W ratios ranging from 0.25 to 4 were considered in this study.  Both plane-

sided and side-grooved specimens were included in the analysis, with the side-groove depth 

set at 7.5%B on each side.  Key observations and findings are summarized in the following.  
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1) To predict a/W from a given compliance, Eqs. (4.4), (4.5) and (4.6) proposed by 

Cravero and Ruggieri, Shen et al. and John and Rigling respectively lead to similar 

predictions and are accurate for specimens with a/W ≥ 0.5 and 0.25 ≤ B/W ≤ 4, and for 

specimens a/W < 0.5 and B/W ≤ 0.5.  Equations (4.7) and (4.8) developed by Mathias et al. 

and Fonzo et al., respectively, are accurate for specimens with a/W < 0.5 and B/W ≥ 1.  The 

errors of prediction associated with these equations for the mentioned a/W and B/W ranges 

are generally less than 2-3%.  

2) To predict C from a given a/W, Eq. (4.9) developed by Tada et al. is not adequate for 

specimens with H/W = 10 because it leads to large errors of prediction.  Equation (4.10) 

developed by John and Rigling is accurate for specimen with a/W > 0.2 and B/W ≤ 0.5 with 

the error of prediction generally being less than 2%.   

3) The crack length modification factor, (a/W), and compliance modification factor, 

(BCE), are introduced to improve the accuracy of the predicted a/W and C, respectively.  

For a given equation among Eqs. (4.4) through (4.8), a single empirical equation was 

developed to evaluate the corresponding (a/W) from a non-dimensional factor  that is a 

function of WCE for both PS and SG specimens with all the a/W and B/W ratios considered 

in this study.  Similarly, a single empirical equation was developed to evaluate (BCE) 

associated with Eq. (4.10) from a non-dimensional factor γ that is a function of a/W and 

B/W.  The single-equation evaluation of (a/W) and (BCE) greatly facilitates their application 

in practice. 

4) Using the proposed modification factors in Eqs. (4.4) through (4.8) and (4.10) leads 

to consistently highly accurate predictions of a/W and C for all the specimen configurations 

considered in this study, with the errors of predictions being less than 2% in most cases.  

For practice, Eq. (4.6) along with the corresponding modification factor is recommended 

for predicting a/W considering its relative simplicity and wide range of applicability in 

terms of the a/W ratio.  
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Table 4.1: Prediction errors of different compliance equations for plane-sided specimens. 

(a) e1 (%) for Eqs. (4.4) – (4.8) 

 

a/W B/W 

e1  

a/W B/W 

e1 

C&R S&T J&R Mathias al. Fonzo al.  C&R S&T J&R Mathias al. Fonzo al. 

Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8)  Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8) 

0.9 

1/4 -1.5 -0.3 -0.3 -0.4 2.1 0.4  

0.4 

1/4 0.2 -0.3 -0.3 -0.4 4.7 3.6 

1/3 -1.6 -0.3 -0.3 -0.4 2.1 0.3  1/3 -0.4 -0.9 -0.9 -1.0 4.1 3.1 

1/2 -1.6 -0.4 -0.4 -0.5 2.1 0.3  1/2 -0.2 -0.7 -0.7 -0.8 4.3 3.3 

1 -1.6 -0.4 -0.4 -0.5 2.0 0.3  1 -1.2 -1.7 -1.7 -1.8 3.3 2.6 

2 -1.7 -0.5 -0.5 -0.6 2.0 0.2  2 -2.5 -3.0 -3.0 -3.1 2.0 1.7 

3 -1.8 -0.7 -0.7 -0.8 1.8 0.1  3 -2.9 -3.5 -3.4 -3.6 1.5 1.4 

4 -2.0 -0.8 -0.8 -0.9 1.7 -0.1  4 -3.1 -3.6 -3.6 -3.7 1.3 1.2 

0.8 

1/4 -0.1 -0.2 -0.2 0.1 3.0 2.1  

0.3 

1/4 0.1 -1.1 -1.0 -0.7 5.1 5.3 

1/3 -0.1 -0.3 -0.3 0.1 2.9 2.0  1/3 -0.7 -1.8 -1.8 -1.5 4.3 4.5 

1/2 -0.2 -0.4 -0.4 0.0 2.8 1.9  1/2 -0.4 -1.6 -1.5 -1.2 4.6 4.8 

1 -0.4 -0.6 -0.6 -0.2 2.6 1.8  1 -2.0 -3.2 -3.1 -2.8 3.0 3.2 

2 -0.5 -0.7 -0.7 -0.3 2.5 1.7  2 -3.7 -4.9 -4.8 -4.5 1.2 1.4 

3 -0.7 -0.9 -0.9 -0.5 2.3 1.5  3 -4.2 -5.4 -5.3 -5.0 0.7 0.9 

4 -0.8 -1.0 -1.0 -0.6 2.2 1.4  4 -4.4 -5.5 -5.5 -5.1 0.5 0.8 

0.7 

1/4 0.3 -0.6 -0.6 -0.6 3.1 2.8  

0.2 

1/4 -0.3 -0.7 -0.8 -0.4 6.5 6.3 

1/3 0.2 -0.7 -0.7 -0.6 3.0 2.7  1/3 -1.3 -1.7 -1.8 -1.4 5.4 5.2 

1/2 0.1 -0.8 -0.8 -0.8 2.8 2.6  1/2 -1.4 -1.7 -1.9 -1.4 5.4 5.2 

1 -0.2 -1.2 -1.2 -1.1 2.5 2.3  1 -3.8 -4.0 -4.2 -3.8 3.0 2.7 

2 -0.5 -1.5 -1.4 -1.4 2.2 2.0  2 -5.7 -5.8 -5.9 -5.6 1.2 0.7 

3 -0.7 -1.6 -1.6 -1.6 2.0 1.8  3 -6.0 -6.1 -6.3 -6.0 0.8 0.4 

4 -0.8 -1.8 -1.8 -1.8 1.9 1.7  4 -6.1 -6.2 -6.4 -6.1 0.7 0.3 

0.6 

1/4 0.3 -0.5 -0.5 -0.5 3.4 3.2  

0.1 

1/4 -1.6 -2.9 -2.4 -2.6 9.2 6.9 

1/3 0.2 -0.6 -0.6 -0.6 3.3 3.1  1/3 -3.6 -5.2 -4.6 -4.7 6.8 4.8 

1/2 0.0 -0.8 -0.8 -0.8 3.1 2.9  1/2 -4.5 -6.1 -5.5 -5.5 5.7 4.0 

1 -0.5 -1.3 -1.3 -1.3 2.6 2.4  1 -7.1 -9.1 -8.3 -8.3 2.3 1.3 

2 -1.0 -1.8 -1.8 -1.8 2.1 1.9  2 -8.2 -10.4 -9.5 -9.4 0.9 0.1 

3 -1.3 -2.1 -2.0 -2.0 1.8 1.6  3 -8.3 -10.6 -9.7 -9.6 0.7 0.0 

4 -1.4 -2.2 -2.2 -2.2 1.7 1.5  4 -8.2 -10.4 -9.5 -9.4 0.9 0.1 

0.5 

1/4 0.2 -0.2 -0.2 -0.2 4.0 3.6          

1/3 0.1 -0.3 -0.3 -0.3 3.9 3.5          

1/2 -0.1 -0.5 -0.5 -0.5 3.7 3.3          

1 -0.8 -1.2 -1.2 -1.2 3.0 2.6          

2 -1.6 -2.0 -2.0 -2.1 2.2 1.7          

3 -2.0 -2.4 -2.4 -2.4 1.8 1.4          

4 -2.1 -2.5 -2.5 -2.6 1.7 1.2          
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(b) e2 (%) for Eqs. (4.9) – (4.11) 

 

  

a/W B/W 

e2  

a/W B/W 

e2 

Tada al. J&R Wang  Tada al. J&R Wang 

Eq. (4.9) Eq. (4.10) Eq. (4.11a) Eq. (4.11b) Eq. (4.11c)  Eq. (4.9) Eq. (4.10) Eq. (4.11a) Eq. (4.11b) Eq. (4.11c) 

0.9 

1/4 1402.3 -1.0 -5.3 6.9 -10.5  

0.4 

1/4 31.2 0.6 -9.2 -8.4 -8.5 

1/3 1403.9 -0.9 -5.2 7.0 -10.4  1/3 31.6 0.9 -9.0 -8.2 -8.3 

1/2 1405.7 -0.8 -5.1 7.1 -10.3  1/2 32.2 1.4 -8.5 -7.7 -7.8 

1 1408.1 -0.6 -4.9 7.3 -10.1  1 35.0 3.5 -6.6 -5.8 -5.9 

2 1413.0 -0.3 -4.6 7.7 -9.8  2 38.6 6.3 -4.1 -3.3 -3.3 

3 1421.0 0.2 -4.1 8.2 -9.3  3 39.9 7.3 -3.2 -2.4 -2.4 

4 1430.1 0.8 -3.5 8.9 -8.8  4 40.4 7.7 -2.9 -2.0 -2.1 

0.8 

1/4 355.3 -1.0 -9.1 -7.5 -8.4  

0.3 

1/4 20.0 0.6 -9.0 -7.3 -7.3 

1/3 356.5 -0.7 -8.9 -7.2 -8.2  1/3 20.3 0.8 -8.8 -7.1 -7.1 

1/2 358.3 -0.3 -8.5 -6.8 -7.8  1/2 21.0 1.5 -8.2 -6.5 -6.5 

1 360.9 0.2 -8.0 -6.3 -7.3  1 24.2 4.1 -5.8 -4.1 -4.1 

2 363.2 0.7 -7.5 -5.9 -6.8  2 27.9 7.2 -3.0 -1.2 -1.2 

3 365.5 1.2 -7.1 -5.4 -6.4  3 29.0 8.1 -2.2 -0.4 -0.4 

4 368.0 1.8 -6.6 -4.9 -5.9  4 29.3 8.4 -2.0 -0.2 -0.1 

0.7 

1/4 155.7 0.1 -10.0 -7.2 -7.2  

0.2 

1/4 12.9 2.1 -9.2 -8.2 -8.2 

1/3 156.5 0.4 -9.7 -6.9 -7.0  1/3 14.2 3.2 -8.8 -7.8 -7.9 

1/2 157.9 1.0 -9.2 -6.4 -6.5  1/2 16.4 5.2 -7.8 -6.8 -6.9 

1 160.7 2.1 -8.2 -5.4 -5.4  1 19.7 8.3 -4.8 -3.7 -3.8 

2 163.3 3.1 -7.3 -4.5 -4.5  2 21.2 9.6 -2.3 -1.2 -1.3 

3 164.8 3.7 -6.8 -3.9 -3.9  3 21.4 9.7 -1.8 -0.7 -0.8 

4 166.1 4.2 -6.3 -3.4 -3.5  4 21.2 9.6 -1.7 -0.6 -0.7 

0.6 

1/4 84.1 0.7 -9.9 -7.5 -7.5  

0.1 

1/4 12.6 1.1 -6.6 -6.1 -6.3 

1/3 84.6 1.0 -9.6 -7.2 -7.3  1/3 16.8 1.0 -5.5 -5.1 -5.2 

1/2 85.7 1.6 -9.1 -6.7 -6.8  1/2 15.1 3.3 -3.7 -3.2 -3.4 

1 88.4 3.1 -7.8 -5.3 -5.4  1 19.0 6.8 -0.9 -0.4 -0.6 

2 91.4 4.7 -6.3 -3.8 -3.9  2 21.4 9.0 0.3 0.8 0.6 

3 92.8 5.5 -5.6 -3.1 -3.2  3 21.8 9.4 0.4 0.9 0.7 

4 93.7 5.9 -5.2 -2.7 -2.8  4 21.8 9.3 0.3 0.8 0.6 

0.5 

1/4 50.1 0.8 -9.6 -8.5 -8.6         

1/3 50.5 1.0 -9.3 -8.2 -8.3         

1/2 51.3 1.6 -8.9 -7.8 -7.8         

1 54.0 3.4 -7.3 -6.1 -6.2         

2 57.3 5.6 -5.2 -4.1 -4.2         

3 58.7 6.5 -4.4 -3.3 -3.3         

4 59.3 7.0 -4.0 -2.9 -2.9         
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Table 4.2: Prediction errors of different compliance equations for side-grooved specimens. 

(a) e1 (%) for Eqs. (4.4) – (4.8) 

 

a/W B/W 

e1  

a/W B/W 

e1 

C&R S&T J&R Mathias al. Fonzo al.  C&R S&T J&R Mathias al. Fonzo al. 

Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8)  Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8) 

0.9 

1/4 -1.7 -0.6 -0.6 -0.7 1.9 0.1  

0.4 

1/4 0.0 -0.6 -0.5 -0.7 4.4 4.1 

1/3 -1.7 -0.6 -0.6 -0.7 1.9 0.2  1/3 0.0 -0.6 -0.5 -0.7 4.5 4.1 

1/2 -1.7 -0.5 -0.5 -0.6 2.0 0.2  1/2 0.0 -0.5 -0.5 -0.6 4.5 4.1 

1 -1.6 -0.4 -0.4 -0.5 2.0 0.3  1 -0.6 -1.2 -1.2 -1.3 3.8 3.5 

2 -1.6 -0.4 -0.4 -0.5 2.1 0.3  2 -1.4 -2.0 -1.9 -2.1 3.0 2.7 

3 -1.7 -0.5 -0.5 -0.6 2.0 0.2  3 -1.6 -2.2 -2.1 -2.2 2.8 2.5 

4 -1.8 -0.6 -0.6 -0.7 1.9 0.1  4 -1.7 -2.3 -2.2 -2.4 2.7 2.4 

0.8 

1/4 -0.3 -0.5 -0.5 -0.1 2.7 1.9  

0.3 

1/4 -0.2 -1.3 -1.3 -1.0 4.8 5.0 

1/3 -0.3 -0.5 -0.5 -0.1 2.7 1.9  1/3 -0.2 -1.3 -1.3 -1.0 4.8 5.0 

1/2 -0.3 -0.5 -0.5 -0.1 2.7 1.9  1/2 -0.3 -1.4 -1.4 -1.1 4.7 4.9 

1 -0.2 -0.4 -0.4 0.0 2.8 2.0  1 -1.6 -2.8 -2.7 -2.4 3.4 3.6 

2 -0.1 -0.3 -0.3 0.1 2.9 2.1  2 -2.9 -4.1 -4.1 -3.7 2.0 2.2 

3 -0.2 -0.3 -0.3 0.1 2.9 2.0  3 -3.2 -4.4 -4.3 -4.0 1.7 1.9 

4 -0.2 -0.4 -0.4 0.0 2.8 1.9  4 -3.3 -4.5 -4.4 -4.1 1.6 1.8 

0.7 

1/4 0.1 -0.8 -0.8 -0.8 2.9 2.6  

0.2 

1/4 -0.5 -0.9 -1.0 -0.5 6.3 6.1 

1/3 0.1 -0.8 -0.8 -0.8 2.8 2.6  1/3 -0.7 -1.0 -1.2 -0.7 6.1 5.9 

1/2 0.1 -0.8 -0.8 -0.8 2.8 2.6  1/2 -1.3 -1.6 -1.8 -1.3 5.5 5.3 

1 0.1 -0.9 -0.8 -0.8 2.8 2.6  1 -3.8 -4.0 -4.2 -3.8 3.0 2.6 

2 0.1 -0.8 -0.8 -0.8 2.9 2.6  2 -5.5 -5.6 -5.8 -5.4 1.4 1.0 

3 0.1 -0.8 -0.8 -0.8 2.9 2.6  3 -5.6 -5.7 -5.8 -5.5 1.3 0.9 

4 0.1 -0.9 -0.9 -0.8 2.8 2.6  4 -5.6 -5.7 -5.9 -5.5 1.2 0.8 

0.6 

1/4 0.1 -0.8 -0.7 -0.8 3.2 3.0  

0.1 

1/4 -1.9 -3.3 -2.7 -2.9 8.8 6.6 

1/3 0.1 -0.8 -0.7 -0.8 3.2 2.9  1/3 -3.2 -4.7 -4.1 -4.2 7.3 5.3 

1/2 0.1 -0.7 -0.7 -0.7 3.2 3.0  1/2 -5.3 -7.1 -6.4 -6.4 4.6 3.1 

1 0.0 -0.9 -0.8 -0.9 3.1 2.8  1 -8.6 -10.9 -10.0 -9.8 0.3 -0.3 

2 -0.1 -0.9 -0.9 -0.9 3.0 2.8  2 -9.1 -11.5 -10.6 -10.4 -0.4 -0.8 

3 -0.1 -1.0 -0.9 -1.0 3.0 2.7  3 -8.8 -11.1 -10.2 -10.1 0.1 -0.5 

4 -0.2 -1.0 -1.0 -1.0 2.9 2.7  4 -8.5 -10.8 -9.9 -9.8 0.4 -0.2 

0.5 

1/4 0.0 -0.4 -0.4 -0.4 3.8 3.4          

1/3 0.0 -0.4 -0.4 -0.4 3.8 3.4          

1/2 0.1 -0.4 -0.4 -0.4 3.9 3.4          

1 -0.2 -0.7 -0.7 -0.7 3.6 3.1          

2 -0.6 -1.0 -1.0 -1.0 3.2 2.8          

3 -0.7 -1.1 -1.1 -1.1 3.1 2.7          

4 -0.8 -1.2 -1.2 -1.2 3.0 2.6          
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(b) e2 (%) for Eqs. (4.9) – (4.11) 

 

a/W B/W 

e2  

a/W B/W 

e2 

Tada al. J&R Wang  Tada al. J&R Wang 

Eq. (4.9) Eq. (4.10) Eq. (4.11a) Eq. (4.11b) Eq. (4.11c)  Eq. (4.9) Eq. (4.10) Eq. (4.11a) Eq. (4.11b) Eq. (4.11c) 

0.9 

1/4 1416.3 -0.1 -4.4 7.9 -9.6  

0.4 

1/4 31.9 1.1 -8.8 -8.0 -8.0 

1/3 1415.7 -0.1 -4.4 7.8 -9.7  1/3 31.8 1.1 -8.8 -8.0 -8.1 

1/2 1413.2 -0.3 -4.6 7.7 -9.8  1/2 31.8 1.0 -8.8 -8.1 -8.1 

1 1408.9 -0.6 -4.9 7.4 -10.1  1 33.5 2.4 -7.6 -6.8 -6.9 

2 1407.1 -0.7 -5.0 7.2 -10.2  2 35.7 4.0 -6.1 -5.3 -5.4 

3 1411.2 -0.4 -4.7 7.5 -9.9  3 36.2 4.5 -5.8 -5.0 -5.0 

4 1417.3 0.0 -4.3 8.0 -9.6  4 36.5 4.7 -5.6 -4.8 -4.8 

0.8 

1/4 358.8 -0.2 -8.4 -6.7 -7.7  

0.3 

1/4 20.5 1.0 -8.6 -6.9 -6.9 

1/3 359.0 -0.2 -8.4 -6.7 -7.7  1/3 20.5 1.0 -8.6 -6.9 -6.9 

1/2 358.7 -0.2 -8.4 -6.8 -7.7  1/2 20.7 1.2 -8.5 -6.8 -6.8 

1 357.6 -0.5 -8.6 -7.0 -8.0  1 23.4 3.5 -6.4 -4.7 -4.7 

2 356.2 -0.8 -8.9 -7.3 -8.2  2 26.2 5.8 -4.3 -2.5 -2.5 

3 356.9 -0.7 -8.8 -7.1 -8.1  3 26.8 6.3 -3.9 -2.1 -2.1 

4 358.4 -0.3 -8.5 -6.8 -7.8  4 27.0 6.5 -3.7 -1.9 -1.9 

0.7 

1/4 157.8 0.9 -9.2 -6.4 -6.5  

0.2 

1/4 13.3 2.4 -9.0 -7.9 -8.0 

1/3 157.9 1.0 -9.2 -6.4 -6.5  1/3 14.8 3.8 -8.7 -7.7 -7.8 

1/2 157.9 1.0 -9.2 -6.4 -6.5  1/2 17.4 6.2 -8.0 -6.9 -7.0 

1 158.0 1.0 -9.2 -6.4 -6.4  1 21.7 10.1 -4.7 -3.7 -3.7 

2 157.5 0.8 -9.4 -6.6 -6.6  2 22.4 10.7 -2.6 -1.5 -1.6 

3 157.6 0.8 -9.3 -6.5 -6.6  3 22.0 10.3 -2.5 -1.4 -1.4 

4 158.1 1.1 -9.1 -6.3 -6.4  4 21.6 10.0 -2.4 -1.3 -1.4 

0.6 

1/4 85.3 1.4 -9.3 -6.9 -6.9  

0.1 

1/4 12.9 1.3 -6.3 -5.8 -6.0 

1/3 85.3 1.4 -9.3 -6.9 -6.9  1/3 17.0 1.2 -5.0 -4.6 -4.7 

1/2 85.2 1.3 -9.3 -6.9 -7.0  1/2 15.4 3.6 -2.8 -2.3 -2.5 

1 86.0 1.7 -9.0 -6.5 -6.6  1 20.0 7.7 0.7 1.2 1.0 

2 86.3 1.9 -8.8 -6.4 -6.4  2 22.0 9.5 1.3 1.8 1.6 

3 86.5 2.0 -8.7 -6.3 -6.4  3 21.9 9.4 1.0 1.5 1.3 

4 86.8 2.2 -8.6 -6.1 -6.2  4 21.7 9.3 0.7 1.1 1.0 

0.5 

1/4 51.0 1.3 -9.1 -8.0 -8.1         

1/3 50.9 1.3 -9.1 -8.0 -8.1         

1/2 50.8 1.2 -9.2 -8.1 -8.2         

1 52.0 2.0 -8.5 -7.4 -7.4         

2 53.2 2.9 -7.7 -6.6 -6.7         

3 53.6 3.1 -7.5 -6.4 -6.4         

4 53.9 3.3 -7.3 -6.2 -6.2         
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Table 4.3: Fitting coefficients Ri in Eq. (4.17). 

  

  Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8) 

R0 1.01593 1.01353 1.01178 1.01105 0.96352 0.97098 

R1 -0.13845 -0.11444 -0.09813 -0.09618 0.02381 0.01728 

R2 0.36030 0.36850 0.33481 0.32747 0  0  
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Table 4.4: Prediction error (%) of Eqs. (4.4) – (4.8) and (4.10) for plane-sided specimen using (a/W) and (BCE). 

 

a/W B/W 

e1  e2  

a/W B/W 

e1  e2 

C&R S&T J&R Mathias al. Fonzo al.  J&R  C&R S&T J&R Mathias al. Fonzo al.  J&R 

Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8)  Eq. (4.10)  Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8)  Eq. (4.10) 

0.9 

1/4 -0.7 0.4 0.4 0.2 -1.4 -2.4  2.5  

0.3 

1/4 0.4 -0.4 -0.3 -0.1 1.9 2.7  -1.7 

1/3 -0.8 0.3 0.3 0.1 -1.4 -2.4  2.0  1/3 0.4 -0.3 -0.2 0.0 1.8 2.6  -2.0 

1/2 -1.0 0.2 0.2 0.0 -1.4 -2.4  1.3  1/2 0.3 -0.3 -0.2 0.0 1.5 2.3  -2.2 

1 -1.2 0.1 0.0 -0.1 -1.4 -2.4  0.1  1 -0.3 -0.7 -0.7 -0.5 0.2 0.9  -0.8 

2 -1.4 0.0 0.0 -0.2 -1.3 -2.4  -1.0  2 -0.6 -0.8 -0.9 -0.7 -1.4 -0.7  1.0 

3 -1.6 -0.1 -0.1 -0.3 -1.4 -2.5  -1.2  3 0.0 -0.1 -0.2 0.0 -1.7 -1.1  1.3 

4 -1.7 -0.2 -0.1 -0.3 -1.5 -2.6  -1.2  4 0.7 0.8 0.5 0.7 -1.8 -1.2  1.2 

0.8 

1/4 0.6 0.4 0.4 0.7 -0.6 -0.7  1.2  

0.25 

1/4 0.4 -0.4 -0.3 0.2 2.2 3.2  -1.7 

1/3 0.5 0.3 0.2 0.6 -0.6 -0.8  0.9  1/3 -0.3 -0.9 -0.9 -0.4 1.5 2.4  -2.0 

1/2 0.2 0.1 0.1 0.4 -0.7 -0.8  0.6  1/2 0.2 -0.3 -0.3 0.2 1.7 2.6  -2.0 

1 -0.1 -0.1 -0.1 0.2 -0.8 -0.9  -0.1  1 -0.6 -0.8 -0.9 -0.4 0.0 0.8  -0.4 

2 -0.3 -0.2 -0.2 0.2 -0.8 -0.9  -0.8  2 -0.8 -0.8 -1.0 -0.5 -1.7 -0.9  1.3 

3 -0.3 -0.2 -0.1 0.2 -0.8 -1.0  -1.0  3 -0.1 0.1 -0.2 0.3 -2.0 -1.3  1.4 

4 -0.3 -0.1 -0.1 0.2 -0.9 -1.1  -1.0  4 0.7 1.1 0.7 1.1 -2.0 -1.4  1.2 

0.7 

1/4 0.9 0.0 -0.1 -0.1 -0.4 0.0  1.0  

0.2 

1/4 0.4 0.5 0.4 0.8 3.3 3.8  -1.5 

1/3 0.7 -0.2 -0.2 -0.2 -0.5 0.0  0.8  1/3 0.3 0.6 0.5 0.8 3.1 3.5  -1.8 

1/2 0.4 -0.4 -0.4 -0.4 -0.6 -0.1  0.7  1/2 0.1 0.5 0.3 0.7 2.5 2.8  -1.6 

1 0.0 -0.7 -0.6 -0.7 -0.8 -0.4  0.7  1 -1.0 -0.1 -0.5 -0.2 0.4 0.5  0.3 

2 -0.2 -0.7 -0.7 -0.7 -0.9 -0.6  0.6  2 -1.0 0.2 -0.3 -0.1 -1.2 -1.2  1.6 

3 -0.1 -0.6 -0.5 -0.6 -1.0 -0.7  0.5  3 0.0 1.3 0.7 0.9 -1.4 -1.5  1.5 

4 0.0 -0.4 -0.4 -0.4 -1.0 -0.7  0.5  4 0.9 2.3 1.6 1.8 -1.4 -1.5  1.2 

0.6 

1/4 0.7 -0.1 0.0 -0.1 -0.1 0.4  0.6  

0.15 

1/4 0.7 2.4 2.0 1.6 6.1 4.6  -1.3 

1/3 0.6 -0.2 -0.2 -0.2 -0.1 0.3  0.3  1/3 0.6 2.4 1.9 1.5 5.6 4.1  -1.3 

1/2 0.3 -0.4 -0.3 -0.4 -0.2 0.2  0.3  1/2 0.0 2.0 1.5 1.0 4.6 2.9  -0.8 

1 -0.2 -0.7 -0.6 -0.7 -0.6 -0.2  0.7  1 -1.0 1.3 0.6 0.0 2.2 0.3  1.0 

2 -0.4 -0.7 -0.6 -0.7 -0.9 -0.6  1.2  2 -0.5 2.1 1.2 0.5 0.8 -1.2  1.7 

3 -0.2 -0.4 -0.4 -0.5 -1.1 -0.7  1.4  3 0.5 3.3 2.4 1.6 0.7 -1.4  1.3 

4 0.0 0.0 0.0 -0.2 -1.1 -0.8  1.4  4 1.6 4.5 3.5 2.7 0.8 -1.3  0.8 

0.5 

1/4 0.6 0.3 0.3 0.2 0.6 0.9  -0.3  

0.1 

1/4 0.0 -0.4 0.0 -0.3 6.3 4.5  -0.1 

1/3 0.4 0.2 0.2 0.1 0.6 0.8  -0.6  1/3 -0.5 -1.0 -0.5 -0.8 5.1 3.5  0.3 

1/2 0.2 0.1 0.1 0.0 0.5 0.7  -0.7  1/2 -1.3 -2.0 -1.5 -1.7 3.0 1.8  1.2 

1 -0.3 -0.2 -0.2 -0.3 -0.1 0.1  0.0  1 -2.0 -2.9 -2.4 -2.5 0.0 -0.7  2.4 

2 -0.5 -0.2 -0.2 -0.4 -0.7 -0.6  1.2  2 -0.9 -1.8 -1.3 -1.4 -1.2 -1.6  2.1 

3 -0.2 0.2 0.2 0.0 -0.9 -0.9  1.5  3 0.4 -0.4 -0.1 -0.2 -1.3 -1.7  1.4 

4 0.2 0.7 0.6 0.5 -1.0 -0.9  1.6  4 1.6 0.8 1.1 1.0 -1.0 -1.5  0.7 

0.4 

1/4 0.5 0.2 0.2 0.0 1.4 1.6   -1.2            

1/3 0.4 0.2 0.2 0.0 1.3 1.6   -1.5            

1/2 0.2 0.1 0.2 0.0 1.1 1.4   -1.7            

1 -0.2 -0.2 -0.2 -0.4 0.3 0.5   -0.7            

2 -0.5 -0.2 -0.3 -0.5 -0.7 -0.6   1.0            

3 -0.1 0.3 0.2 0.0 -1.1 -0.9   1.4            

4 0.5 1.0 0.8 0.6 -1.2 -1.0   1.4            
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Table 4.5: Prediction error (%) of Eqs. (4.4) – (4.8) and (4.10) for side-grooved specimen using (a/W) and (BCE). 

  

a/W B/W 

e1  e2  

a/W B/W 

e1  e2 

C&R S&T J&R Mathias al. Fonzo al.  J&R  C&R S&T J&R Mathias al. Fonzo al.  J&R 

Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8)  Eq. (4.10)  Eq. (4.4) Eq. (4.5a) Eq. (4.5b) Eq. (4.6) Eq. (4.7) Eq. (4.8)  Eq. (4.10) 

0.9 

1/4 -0.9 0.2 0.1 -0.1 -1.6 -2.6   3.5  

0.3 

1/4 0.2 -0.6 -0.5 -0.3 1.6 2.4   -1.3 

1/3 -1.0 0.1 0.1 -0.1 -1.6 -2.6   2.8  1/3 0.3 -0.4 -0.4 -0.1 1.7 2.5   -1.8 

1/2 -1.1 0.1 0.0 -0.1 -1.5 -2.6   1.8  1/2 0.5 -0.2 -0.1 0.1 1.7 2.4   -2.4 

1 -1.2 0.1 0.0 -0.1 -1.4 -2.4   0.2  1 0.0 -0.4 -0.4 -0.2 0.5 1.3   -1.4 

2 -1.3 0.1 0.1 -0.1 -1.2 -2.3   -1.3  2 0.1 -0.1 -0.2 0.0 -0.6 0.1   -0.3 

3 -1.4 0.1 0.1 -0.1 -1.2 -2.3   -1.8  3 0.9 0.9 0.7 0.9 -0.7 -0.1   -0.4 

4 -1.5 0.1 0.1 -0.1 -1.3 -2.4   -2.0  4 1.7 1.7 1.5 1.7 -0.8 -0.1   -0.5 

0.8 

1/4 0.4 0.2 0.1 0.5 -0.8 -0.9   2.0  

0.25 

1/4 0.1 -0.6 -0.6 -0.1 2.0 3.0   -1.3 

1/3 0.3 0.1 0.1 0.4 -0.8 -0.9   1.5  1/3 0.3 -0.4 -0.3 0.2 2.0 3.0   -1.8 

1/2 0.2 0.1 0.0 0.4 -0.7 -0.8   0.7  1/2 0.4 -0.1 -0.1 0.4 1.9 2.8   -2.3 

1 0.1 0.1 0.1 0.4 -0.6 -0.7   -0.8  1 -0.4 -0.6 -0.7 -0.2 0.2 1.1   -0.8 

2 0.1 0.2 0.3 0.6 -0.4 -0.5   -2.3  2 -0.3 -0.3 -0.5 0.0 -1.1 -0.4   0.5 

3 0.2 0.4 0.4 0.7 -0.3 -0.5   -2.8  3 0.7 0.9 0.6 1.0 -1.2 -0.5   0.2 

4 0.2 0.5 0.5 0.8 -0.3 -0.6   -3.0  4 1.5 1.8 1.4 1.8 -1.2 -0.5   0.0 

0.7 

1/4 0.7 -0.3 -0.3 -0.3 -0.7 -0.2   1.9  

0.2 

1/4 0.2 0.3 0.2 0.6 3.2 3.6   -1.2 

1/3 0.6 -0.3 -0.3 -0.4 -0.6 -0.2   1.4  1/3 0.3 0.5 0.4 0.7 3.1 3.5   -1.6 

1/2 0.5 -0.4 -0.4 -0.4 -0.6 -0.1   0.7  1/2 0.1 0.6 0.4 0.7 2.6 2.9   -1.6 

1 0.3 -0.4 -0.3 -0.4 -0.5 -0.1   -0.3  1 -1.1 -0.2 -0.6 -0.3 0.3 0.5   0.4 

2 0.5 -0.1 0.0 -0.1 -0.3 0.1   -1.6  2 -0.8 0.3 -0.1 0.0 -1.0 -1.0   1.4 

3 0.7 0.2 0.3 0.2 -0.2 0.1   -2.2  3 0.4 1.7 1.1 1.3 -1.0 -1.0   0.9 

4 0.8 0.5 0.5 0.4 -0.2 0.1   -2.4  4 1.3 2.8 2.1 2.2 -0.9 -1.0   0.5 

0.6 

1/4 0.5 -0.3 -0.3 -0.3 -0.3 0.2   1.3  

0.15 

1/4 0.5 2.2 1.8 1.4 5.9 4.4   -1.0 

1/3 0.4 -0.3 -0.3 -0.4 -0.2 0.2   0.8  1/3 0.3 2.2 1.7 1.3 5.4 3.9   -1.1 

1/2 0.4 -0.3 -0.2 -0.3 -0.2 0.3   0.1  1/2 -0.3 1.7 1.2 0.7 4.3 2.6   -0.4 

1 0.3 -0.2 -0.2 -0.3 -0.2 0.2   -0.6  1 -1.8 0.5 -0.1 -0.7 1.5 -0.4   2.0 

2 0.5 0.2 0.2 0.1 -0.1 0.3   -1.4  2 -1.0 1.6 0.8 0.0 0.5 -1.6   2.2 

3 0.9 0.6 0.7 0.6 0.0 0.4   -1.9  3 0.4 3.2 2.2 1.5 0.6 -1.5   1.4 

4 1.2 1.1 1.1 0.9 0.0 0.4   -2.1  4 1.6 4.5 3.4 2.6 0.8 -1.3   0.8 

0.5 

1/4 0.3 0.0 0.1 0.0 0.4 0.7   0.3  

0.1 

1/4 -0.3 -0.8 -0.4 -0.7 5.9 4.2   0.3 

1/3 0.3 0.1 0.1 0.0 0.5 0.7   -0.2  1/3 -1.0 -1.6 -1.1 -1.4 4.5 3.0   0.9 

1/2 0.3 0.2 0.2 0.1 0.6 0.8   -1.0  1/2 -2.2 -3.1 -2.5 -2.7 2.0 1.0   2.2 

1 0.2 0.3 0.3 0.2 0.4 0.6   -1.3  1 -3.7 -4.8 -4.2 -4.2 -2.0 -2.2   4.2 

2 0.5 0.8 0.8 0.6 0.3 0.4   -1.4  2 -2.0 -3.0 -2.5 -2.5 -2.5 -2.6   3.2 

3 1.0 1.4 1.4 1.2 0.3 0.4   -1.7  3 -0.2 -1.1 -0.7 -0.8 -1.9 -2.2   2.0 

4 1.5 2.0 1.9 1.7 0.3 0.4   -1.8  4 1.1 0.3 0.6 0.5 -1.5 -1.9   1.1 

0.4 

1/4 0.2 -0.1 0.0 -0.2 1.1 1.4   -0.7  

 

         

1/3 0.3 0.0 0.1 -0.1 1.2 1.5   -1.2           

1/2 0.4 0.3 0.3 0.1 1.3 1.5   -2.0           

1 0.3 0.3 0.3 0.1 0.9 1.0   -1.8           

2 0.5 0.8 0.7 0.5 0.3 0.4   -1.1           

3 1.1 1.6 1.5 1.2 0.2 0.3   -1.3           

4 1.7 2.3 2.1 1.9 0.2 0.3   -1.4           
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Figure 4.1: Typical P-CMOD curve with unloading-reloading sequences 
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(a)  Configuration of a typical side-grooved FE model with a/W = 0.5 and B/W = 1  
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Figure 4.2: Configuration and meshing of a typical finite element model 
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Figure 4.3: (a/W) as functions of ω for plane-sided and side-grooved clamped SE(T) specimens
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Figure 4.4: (BCE) associated with Eq. (4.10) as functions of γ for plane-sided and side-

grooved clamped SE(T) specimens 
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Chapter 5   Effects of Crack Front Curvature on J-R Curve 

Testing Using Clamped SE(T) Specimens of Homogeneous 

Materials 

5.1 Background and Objective  

5.1.1 Introduction 

Testing on plane-sided (PS) SE(B) and C(T) specimens made of homogeneous materials 

generally leads to a thumbnail-shaped crack front and shear failure of the trailing edge 

(Shih et al., 1977).  These phenomena are caused by the difference in the states of stress 

along the crack front.  At the region near the center of the PS specimen, the stress state is 

close to the plane-strain condition with high stress triaxiality, which promotes a relatively 

fast crack growth.  On the other hand, the stress state near the side surface is close to the 

plane-stress condition with low stress triaxiality, therefore causing relatively slow crack 

growth and the shear lips near the free surface (Anderson, 2005).  Numerical and 

experimental studies concerning the impact of the crack front curvature on the elastic 

compliance and crack driving forces (i.e. the J-integral (J) and the crack tip opening 

displacement (CTOD)) associated with the SE(B) and C(T) specimens are well reported in 

the literature (e.g. Steenkamp, 1988; Crouch, 1991; Nikishkov et al., 1999; Zhou and 

Soboyejo, 2002; Zuo et al., 2008;  Hutchison and Pisarski, 2013; Yan and Zhou, 2014, 

2015).  These studies reveal that the compliance, J and CTOD values evaluated by 

assuming a straight crack front in the SE(B) and C(T) specimens may involve large errors 

if the actual crack front is curved.  To ensure the accuracy of the experimentally determined 

J(CTOD)-R curve, testing standards (e.g. ASTM, 2013; BSI, 1997b) usually specify 

acceptable levels of the crack front curvature for both the fatigue pre-crack and final crack 

fronts for the SE(B) and C(T) specimens. 

5.1.2 Review of the Standard Requirements on Crack Front Curvature for 

SE(B) and C(T) Specimens 

In this section, the crack front straightness criteria for the SE(B) and C(T) specimens 

prescribed in BS 7448: Part I (BSI, 1991), Part II (BSI, 1997a), Part III (BSI, 2005) and 
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Part IV (BSI, 1997b), ISO 12135 (ISO, 2002) and 15653 (ISO, 2010) and ASTM E1820-

13 (ASTM, 2013) are reviewed.  BS 7448: Part I provides a method for determining the 

plane-strain fracture toughness (KIC), critical J and critical CTOD for specimens made of 

the base metal (BM); Part II is applicable to fracture toughness testing for specimens 

containing the weld metal (WM) and heat-affected zone (HAZ); Part III deals with the 

dynamic fracture toughness for specimens containing BM or WM, and Part IV provides a 

test method for evaluating the R-curve for specimens containing BM or WM.  ISO 12135 

(ISO, 2002) has a similar scope as the ASTM E1820 but is only applicable to specimens 

made of homogeneous materials.  In 2010, BS 7448: Part II was withdrawn and replaced 

by ISO 15653 (ISO, 2010), which deals with the testing method for specimens containing 

WM and HAZ and complements ISO 12135.  ASTM E1820-13 (ASTM, 2013) covers 

testing methods for determining the critical J, critical CTOD and R-curve, and is considered 

applicable to specimens of homogeneous materials.  A brief summary of the applicability 

of the aforementioned standards is given in Table 5.1. 

Figure 5.1 shows a cross section of a typical test specimen with a straight machined 

notch and two curved crack fronts caused by fatigue pre-cracking and stable tearing.  The 

aforementioned standards (BSI, 1991, 1997a, 1997b, 2005; ISO, 2002, 2010; ASTM, 2013) 

adopt the nine-point measurement approach to determine the initial and final average crack 

length, aave9.  The nine points (see Fig. 5.1) are equally spaced along the specimen thickness 

(z direction) with the two end points (i.e. points (1) and (9)) being a certain distance (Λ) 

away from the specimen side surfaces.  BS 7448 and the two ISO standards (BSI, 1991, 

1997a, 1997b, 2005; ISO, 2002, 2010) specify the two end points at 0.01B from the side 

surfaces, whereas ASTM E1820-13 (ASTM, 2013) specifies the two end points at 0.005W 

from the side surfaces.  In all of the seven standards reviewed, aave9 is defined by 

 
8

(1) (9)

9 ( )

2

1

8 2
ave i

i

a a
a a



 
  

 
  (5.1) 

where a(i) (i = 1, 2, …, 9) denote the crack lengths corresponding to the nine measurement 

points. 
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The straightness requirements for the fatigue pre-crack front in the above-mentioned 

standards are reviewed first.  BS 7448: Part I specifies the following crack front 

straightness requirement: 

 max9 min9 90.1 avea a a   (5.2) 

where amax9 and amin9 are the maximum and minimum values of the crack lengths at the 

nine measurement points.  For simplicity of the discussions presented in the following 

sections, a crack front shape parameter β9 is defined here as β9 = (amax9 - amin9)/W.  It follows 

that Eq. (5.2) can be expressed as β9 ≤ 0.1aave9/W. 

The crack front straightness criterion in BS 7448: Part II is given by 

 max7 min7 90.2 avea a a   (5.3) 

where amax7 and amin7 are the maximum and minimum values of crack lengths measured at 

the seven inner points along the specimen thickness (i.e. points (2) through (8) in Fig. 5.1).  

By introducing a shape parameter β7 = (amax7 - amin7)/W, Eq. (5.3) is recast as β7 ≤ 

0.2aave9/W.  

BS 7448: Part III specifies Eq. (5.2) as the crack front straightness criterion for 

specimens of BM, and the following equation for specimens containing WM and HAZ: 

 9
9 0.2 avea

W
   (5.4) 

BS 7448: Part IV specifies that the difference between aave9 and any of the nine crack 

length measurements not exceed 0.1aave9 for specimens made of BM, and 0.2aave9 for 

specimens containing WM and HAZ; that is, 

 
 

 
max9 9 9 min9 9

max9 9 9 min9 9

Max , 0.1       , for BM                       (a)

Max , 0.2      , for WM and HAZ       (b)

ave ave ave

ave ave ave

a a a a a

a a a a a

   


  

 (5.5) 

Let λ9(BS) = Max[amax9 - aave9, aave9 - amin9]/W.  The above criteria are then λ9(BS) ≤ 0.1aave9/W 

for BM and λ9(BS) ≤ 0.2aave9/W for WM and HAZ.  
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ISO 12135 requires that the difference between aave9 and any of the inner seven crack 

length measurements not exceed 0.1aave9 for specimens made of BM, whereas ISO 15653 

suggests that the fatigue pre-crack front straightness requirement defined in ISO 12135 be 

relaxed to 0.2aave9 for the CTOD and J tests using SE(B) specimens.  By introducing a 

shape parameter λ7 = Max[amax7 - aave9, aave9 - amin7]/W these two criteria are given by 

 

9
7

9
7

0.1       , for BM                       (a)

0.2      , for WM and HAZ       (b)

ave

ave

a

W

a

W









 


 (5.6) 

The crack front straightness criterion specified in ASTM E1820-13 is different from 

those in the other standards considered in this study in that the former is expressed in terms 

of the specimen thickness (B) as opposed to the average crack length aave9.  Letting λ9(ASTM) 

be defined as λ9(ASTM) = Max[amax9 - aave9, aave9 - amin9]/W, the ASTM crack front 

straightness criterion is expressed as 

 9(ASTM) 0.05
B

W
   (5.7) 

Note that although the expressions for λ9(BS) and λ9(ASTM) are the same, these two parameters 

are different because the locations of the nine measurement points are defined differently 

in BS 7448 and ASTM E1820.  The crack front straightness criteria given by Eqs. (5.2) 

through (5.7) are summarized in Table 5.1.   

For the R-curve measurement, additional requirements need to be satisfied for the final 

crack front straightness and/or uniformity of the crack extension.  BS 7448: Part IV 

specifies that the difference between maximum and minimum values of crack extension 

measured at the nine points shall not exceed 20% of the mean crack extension or 0.15 mm, 

whichever is greater; ISO 12135 requires that the shape of the final crack front should also 

satisfy Eq. (5.6a); ASTM E1820 adopts Eq. (5.7) to control the final crack front 

straightness and requires none of the nine measurements of the crack extension shall be 

less than 50% of the average crack extension.  Because the numerical analyses carried out 

in the present study do not involve growing crack, we focused on the straightness 
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requirement for both initial and final crack fronts.  The uniformity of the crack extension 

is beyond the scope of this study.  

5.1.3 Requirements on Crack Front Curvature for SE(T) Specimens 

Malpas et al. (2012) conducted three-dimensional (3D) finite element analyses (FEA) to 

investigate the impact of the crack front curvature on the estimated J and CTOD for SE(T) 

specimens with the average crack length (aave) over specimen width (W) ratio equal to 0.3 

and the thickness-over-width ratio (B/W) equal to 2.  Five crack front curvatures 

corresponding to five fatigue pre-crack straightness requirements for SE(B) and C(T) 

specimens specified in BS7448 (Parts I, II and IV) (BSI, 1991, 1997a, 1997b), ISO12135 

(ISO, 2002) and ASTM E1820 (ASTM, 2013) were considered in their study.  Based on 

the FEA results, the authors suggested that the crack front straightness requirements 

defined in BS 7448 Part IV be used for SE(T) specimens made of homogeneous (i.e. base 

metal only) or inhomogeneous (i.e. base metal and weld) materials, albeit with the 

allowable curvature increased to 20% from 10% as specified in BS 7448 Part IV.  This 

criterion was considered the optimal choice because it led to the acceptance of over 70% 

of the welded specimens and over 90% of the base metal specimens based on the authors' 

experimental data, while the predictive errors for CTOD and J caused by the crack front 

curvature were less than 10 and 13%, respectively. 

5.1.4 Objective and Approach 

It is noted that study by Malpas et al. (2012) is focused on SE(T) specimens with aave/W 

= 0.3 and B/W = 2.  For specimens with other values of aave/W and B/W, the impact of the 

crack front curvature on the evaluation of J and CTOD is unclear.  Furthermore, to our 

knowledge, the impact of the crack front curvature on the compliance of the SE(T) 

specimen and rotation correction factor (see Appendix C) for the compliance measured 

from the UC method have not been studied.  Motivated by these observations, a 3D FEA-

based investigation of the impact of the crack front curvature on J, the compliance and 

rotation correction factor for SE(T) specimens with wide ranges of aave/W and B/W were 

carried out.  The focus of the present study is the clamped SE(T) specimen with H/W = 10 
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because the crack-tip stress fields of such a specimen correspond closely to those of the 

full-scale pipes containing circumferential cracks (Shen et al., 2008), which are of primiary 

concern to the strain-based design of pipelines.  Only specimens made of the base metal 

are considered in the present study.  We carried out both linear-elastic and elastic-plastic 

3D finite element analyses of plane-sided clamped SE(T) specimens with aave/W ranging 

from 0.2 to 0.7 and B/W ranging from 0.5 to 2.  Based on the results of the investigation, a 

set of crack front straightness criteria were proposed to strike a balance between the 

accuracy of the R curve testing and specimen acceptance rate. 

The rest of this chapter is structured as follows.  Section 5.2 describes the 

characterization of the curved crack front employed in this study.  Section 5.3 describes 

the configurations of the FE models, material properties and computational procedures 

involved in the present study.  In Section 5.4, the impact of the crack front curvature on the 

compliance, J and the rotation correction factor are investigated.  The proposed crack front 

straightness criteria for the SE(T) specimen are presented in Section 5.5, followed by 

conclusions in Section 5.6. 

5.2 Characteristics of Curved Crack Front  

Previous studies (Nikishkov, 1999; Yan and Zhou, 2015) indicated that curved crack 

fronts in specimens made of homogeneous materials are typically symmetric about the 

mid-plane.  Therefore, a symmetric curved crack front was assumed in the present study, 

and the power-law function suggested by Nikishkov et al. (Nikishkov, 1999) was adopted 

to characterize both initial and final crack fronts: 
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where z (–B/2 ≤ z ≤ B/2) is the coordinate in the specimen thickness direction; az is the 

crack length at the location of coordinate z; az = 0 and az = ±B/2 denote the crack lengths at the 

mid-plane and free surfaces of the specimen, respectively, and β and p (p > 1) are 
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parameters characterizing the curvature of the crack front.  By examining the fatigue pre-

crack fronts of a series of plane-sided C(T), SE(B) and SE(T) specimens, Nikishkov et al. 

(1999) and Yan and Zhou (2015) showed that the parameter p in Eq. (5.8) can be adequately 

set to a fixed value of 3.0 for different curved crack fronts. For the present study, it is more 

convenient to express Eq. (5.8) in terms of the average crack length, aave, instead of az=0.  

The relationship between aave and az=0 can be derived as follows: 
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Let /2ave z Ba a

W
 
 .  Note that λ = 0 corresponds to a straight crack front.  The 

relationship between λ and β is then given by  
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For the crack front characterized by Eq. (5.8), it follows that 
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where Λ = 0.005W and 0.01B for the ASTM and BS (ISO) standards, respectively.  The 

shape parameters associated with Eqs. (5.2) through (5.7) can be expressed in terms of λ as 

follows: 
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Detailed derivations of Eqs. (5.11) and (5.12) are provided in Appendix D.  Equation (5.12) 

can be written in a generic form: κ = q2λ, where κ equals either β7, β9, λ7, λ9(BS) or λ9(ASTM), 

and q2 represents the right hand side of Eqs. (5.12a), (5.12b), (5.12c), (5.12d) or (5.12e) 

but without λ.  The values of q1 in Eq. (5.11a) and q2 corresponding to different p values 

are listed in Table 5.2.  The table indicates that for p = 2.5 – 3.5, aave9/W is very close to 

aave/W, with the maximum difference equal to 1.8%λ.  For parameters β7, β9 and λ7, q2 is 

sensitive to p as the maximum difference between q2 corresponding to different p is about 

10 - 32%.  On the other hand, q2 is insensitive to p for λ9(BS), λ9(ASTM) as the difference of q2 

corresponding to different p is within 2.5%.  For a crack front with p = 3.0, Eqs. (5.11) and 

(5.12) are then simplified as the following: 
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Given Eq. (5.13), the crack front straightness criteria specified in the BS, ISO and ASTM 

standards can be recast in terms of λ and aave: 
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Note that the allowable λ suggested in the BS 7448 and ISO standards depends only on 

aave/W with Eqs. (5.14a) and (5.14g) giving the most and least stringent crack front 

straightness criteria, respectively.  On the other hand, the allowable λ defined in the ASTM 

standard is a function of B/W and increases with B/W. 

5.3 Numerical Analyses  

Three groups of FE models, namely Groups 1 to 3, were analyzed to evaluate the crack 

mouth opening displacement (CMOD) compliance (C0), J and rotation correction factors 

(Fr), respectively.  Detailed information about these FE models is summarized in Table 

5.3.  Linear-elastic analyses of 198 SE(T) models in Group 1 were performed to evaluate 

C0, whereas the elastic-plastic analyses of 198 models in Group 2 and 36 models in Group 

3 were carried out to evaluate J and Fr, respectively.  For Group 2 (3), the J2 incremental 

theory of plasticity and small- (large-) displacement small- (large-) strain formulation 

(ADINA, 2012) was employed in FEA.  The true stress () and true strain () relationship 
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employed in the elastic-plastic FEA follows the Ramberg-Osgood law (i.e. Eq. (1.18)) 

where σ0 is the reference stress and typically set equal to the yield strength (YS); 0 (0 = 

YS/E) denotes the yield strain, and α and n are parameters of the Ramberg-Osgood 

relationship with n commonly known as the strain hardening exponent.  In this study, 

materials with σYS = 576 MPa, E = 207 GPa, ν = 0.3, α = 0.704 and n = 13.3 were selected 

to simulate the X80 (API, 2012) grade pipeline steel (Leis et al., 2009).  The corresponding 

ultimate tensile strength UTS equals 675 MPa.  The limit load for the SE(T) specimen, PY, 

is defined as B(W - aave)(YS + UTS)/2 (Shen et al., 2008; Shen and Tyson, 2009). 

Three-dimensional models of plane-sided SE(T) specimens with clamped ends were 

prepared for FEA.  As listed in Table 5.3, the analysis matrices in both Group 1 (G1) and 

Group 2 (G2) include specimens with six different aave/W ratios (aave/W = 0.2, 0.3, 0.4, 0.5, 

0.6 and 0.7), three B/W ratios (B/W = 0.5, 1 and 2) and eleven λ values (λ= 0, 0.01, 0.02, 

0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.1); Group 3 (G3) is the same as G1 and G2 

except that only two λ values (λ= 0 and 0.1) are considered.  Stationary cracks were 

assumed in all the analyses.  All the specimens have the same width (W = 20 mm) and 

daylight length (H/W = 10).  Only a quarter of the specimen with appropriate constraints 

imposed on the remaining ligament was modelled due to symmetry.  A typical FE model 

with aave/W = 0.5, λ = 0.1 and B/W = 1 is schematically shown in Fig. 5.2(a) together with 

the fixation and loading conditions.  

The FEA code ADINA® (ADINA, 2012) was employed to analyze all the models.  A 

typical quarter-symmetric 3D model has 10 layers over the half thickness (B/2).  The 

thickness of each layer was arranged such that the corresponding mesh density increases 

from the mid-plane to the free surface to capture the high stress gradient at these locations 

(see Fig. 5.2(b)).  The 20-node 3D brick elements with 3×3×3 integration were adopted in 

the linear-elastic analysis, whereas the 8-node 3D brick elements with 2×2×2 integration 

were adopted in the elastic-plastic analysis to improve the computational efficiency; the 

accuracy of using such elements to calculate J has been shown to be adequate (Kulka and 

Sherry, 2012). 
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For models in Groups 1 and 2, a sharp crack tip was incorporated, and the surfaces of 

the brick elements were collapsed to a line at the crack tip (see Fig. 5.2(c)) to simulate the 

singularity condition.  For models in Group 3 (i.e. large-strain analysis), a blunt crack tip 

with a radius () of 2.5 m (see Fig. 5.2(d)) was incorporated in the FE model to facilitate 

convergence (Hutchinson, 1983).  It is reported in (Shen et al., 2008; Shen and Tyson, 

2009) that a blunt crack tip with a radius of such size has no impact on the evaluated 

compliance.  A spider-web mesh around the crack tip was established with 45 concentric 

semicircles (i.e. rings) surrounding the crack tip.  All of the FE models have 45 focused 

rings around the crack tip with 16 elements in each ring.  The minimum in-plane dimension 

of the first ring (i.e. closest to the crack tip) is about 0.1 (Graba and Galkiewicz, 2007), 

whereas the corresponding in-plane dimension of the elements in the 45th ring is about 

2,000 times that of the element in the first ring (Gullerud et al., 2001).  The total number 

of elements is approximately 12,000 in a typical specimen. 

The load was applied based on the displacement-controlled condition.  Uniform 

displacements (h) were applied on two lateral surfaces that are considered as the clamped 

surfaces with a length of 2W (see Fig. 5.2(a)).  Evaluation of the compliance requires 

computation of the load-displacement, i.e. P-CMOD, response in the FEA.  The load P was 

calculated as the total reactions of the nodes on the clamped surface while CMOD (V) was 

recorded at the mid-plane of the specimen.  The compliance of the undeformed specimen 

(C0) is calculated as V/P from one loading step that corresponds to an applied displacement 

of 2 m. 

A final applied displacement corresponding to h/aave = 0.3 for models in Group 2 was 

reached in 500 increments for specimens with aave/W > 0.2.  For specimens with aave/W = 

0.2, the final applied displacement was set to h/aave = 0.5.  The maximum applied 

displacement corresponds approximately to a loading level of 1.3PY.  The values of J in 

each layer along the thickness direction, i.e. the local J values, were calculated using the 

virtual crack extension method (Anderson, 2005; ADINA, 2012).  A brief description of 

this method is included in Appendix B.  The weighted average J value over the entire crack 

front, Jave, is then calculated based on the trapezoidal rule as detailed in Section 2.2.3.  To 

ensure the path-independence of the calculated J values, the two outermost semicircular 
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rings surrounding the crack tip were used to define the virtual shifts (Anderson, 2005; 

ADINA, 2012).  For a representative specimen with a/W = 0.5, B/W = 1 and λ = 0.1, the 

difference between Jave corresponding to the 20th and 45th ring is about 3.6%, and the 

difference between Jave corresponding to the 40th and 45th rings is about 0.7% at the loading 

level of P/PY = 1.3. 

For models in Group 3, the final applied displacements corresponding to loading levels 

of 1.2 – 1.3PY were reached with 6 – 18 loading-unloading-reloading sequences.  Within 

each sequence, the magnitude of the unloading is 0.01 mm (approximately corresponding 

to 0.05PY).  The compliance of the deformed specimen (Ci) was determined by linear 

regression of the unloading-reloading P vs. V data, and the corresponding rotation 

correction factor (Fr(FEA)) was calculated as 

 
0

( )r FEA

i

C
F

C
  (5.15) 

5.4 Effects of Crack Front Curvature on J-R Curve 

5.4.1 Effect of Crack Front Curvature on Compliance 

For specimens with the same aave/W and B/W ratios, the CMOD compliance 

corresponding to a curved crack front, C0, was compared with that corresponding to a 

straight crack front, C0(λ=0).  The difference between C0 and C0(λ=0) is quantified by the 

parameter eC defined as  
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The values of eC corresponding to various λ are listed in Tables 5.4(a) through 5.4(c).  

Positive and negative values of eC mean that C0 is larger than and smaller than C0(λ=0), 

respectively. 

Table 5.4 suggests that λ has a relatively small impact on C0 for specimens with aave/W 

≥ 0.3 and various B/W ratios as the maximum absolute value of eC is about 6%; however, 
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λ can have a large impact on C0 for specimens with aave/W < 0.3 as the corresponding 

maximum absolute value of eC is as high as 12%.  Tables 5.4 also indicates that both aave/W 

and B/W influence eC.  For example, for specimens with the same B/W and λ values, eC 

decreases as aave/W increases.  For specimens with the same aave/W and λ values, eC tends 

to increase as B/W increases.  

5.4.2 Effect of Crack Front Curvature on Rotation Correction Factor 

Let eF evaluated from the following equation denote the error (%) associated with the 

value of Fr predicted from Eq. (C.2), Fr(EST): 
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where Fr(FEA) is the value of Fr output from the FEA through Eq. (5.15).  Figures 5.3(a) 

through 5.3(f) show eF values plotted against P/PY for specimens with λ = 0 and 0.1.  Only 

values of eF corresponding to P/PY ≤ 1.25 are shown in these figures because P = 1.25 – 

1.3PY is typically the maximum loading level in the SE(T)-based J-R curve test (Shen et 

al., 2009; Mathias et al., 2013; Dodds and Read, 1990; Pussegoda, 2013).  Due to the 

convergence issue of the large-strain FEA, only data corresponding to P/PY ≤ 0.9 – 1.0 are 

available for specimens with λ = 0.1 and B/W = 0.5.  It is observed from Figs. 5.3(a) through 

5.3(e) that the Fr values evaluated from Eq. (C.2) agree well with those obtained from FEA 

with the difference generally being less than 5% for P/PY ≤ 1.0.  The values of eF decrease 

rapidly as P/PY further increases to 1.2 especially for specimens with B/W = 0.5.  This is 

due to the relatively poor fitting of Eq. (C.2) to the FEA results corresponding to P/PY > 1, 

where Fr is dependent on the strain hardening, and Fr(EST) underestimates and overestimates 

Fr for n = 10 and n = 15 materials, respectively, as reported by Shen and Tyson (2009).  

For specimens with aave/W = 0.7 as shown in Fig. 5.3(f), the values of eF increase rapidly 

as P/PY increases from 1.0 to 1.2.  It is explained by Shen and Tyson (2009) that for high 

loading levels (e.g. P/PY ≥ 1.1) in the large-strain analysis, the ligament of the specimen is 

shortened (by 3 – 6% based on the present FEA results) due to the large plastic deformation.  

This phenomenon, causing larger compliance and smaller Fr(FEA) values, is more significant 
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for specimens with deep cracks and higher n values.  Figures 5.3(a) through 5.3(f) also 

suggest that λ has little impact on Fr; therefore, Equation (C.2) is considered sufficiently 

accurate for specimens with 0.2 ≤ aave/W ≤ 0.7, B/W =0.5, 1 and 2 and λ ≤ 0.1, although the 

results for specimens with B/W = 0.5 and λ = 0.1 are obtained for P/PY ≤ 0.9 – 1.0 only. 

5.4.3 Effect of Crack Front Curvature on J 

At each loading level characterized by h/aave, the difference between the average J 

obtained from a specimen with a curved crack front (Jave) and the average J obtained from 

the specimen with a straight crack front and the same aave/W and B/W ratios (Jave(λ=0)) is 

defined as  
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Figures (5.4) through (5.6) show eJ() values plotted against h/aave for specimens with 

different aave/W, B/W and λ values.  Loading levels corresponding to P = 1.0PY and P = 

1.3PY are also indicated in the figures.  The eleven dashed lines in the same subfigure 

correspond to specimens with the same B/W and aave/W but different crack front curvatures 

characterized by λ varying from 0.01 to 0.1, whereas the solid line in the subfigure 

corresponds to the specimen with a straight crack front.  These figures suggest that eJ() 

strongly depends on B/W and the loading level, and mildly depends on aave/W.  For 

example, the absolute values of eJ() corresponding to P/PY = 1.0 – 1.3 for specimens with 

B/W = 2 are less than 5% whereas these values are generally around 10% – 15% for 

specimens with B/W = 0.5.  For a specimen with a given configuration, |eJ()| generally 

decreases as the loading increases from 0 to 0.7PY and increases as the loading further 

increases.  Given aave/W, B/W and h/aave, |eJ()| consistently increases as λ increases from 0 

to 0.1. 
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5.5 Recommended Crack Front Straightness Criteria 

Based on the analysis results shown in Table 5.4 and Figs. (5.4) through (5.6), crack 

front straightness criteria for the SE(T) specimen are suggested by limiting |eC| and |eJ()| 

(for P/PY = 1.0 – 1.3) to be less than 5% simultaneously.  The values of allowable λ based 

on the proposed criteria are summarized in Table 5.5.  For practical application, the 

allowable λ is expressed as functions of aave for specimens with different B/W ratios: 
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 (5.19) 

Note that for specimens with B/W = 2 and aave/W > 0.3, the allowable λ may be further 

increased and Eq. (5.19) for such specimen configurations is equivalent to Eq. (5.14f).  

Equation (5.19) is shown in Fig. 5.7 together with the crack front straightness criteria 

specified in the seven testing standards considered in this study (i.e. Eq. 5.14(a) through 

5.14(h)).  The figure indicates that the allowable λ is dependent on aave/W if aave/W ≤ 0.3 

and is generally independent of aave/W for aave/W > 0.3.  Furthermore, the B/W ratio has a 

significant impact on the allowable λ.  Neither the BS7448-ISO nor ASTM crack front 

straightness criteria take into account the influences of both aave/W and B/W.  From the 

standpoint of controlling the difference between the specimens with curved and straight 

crack fronts in terms of J and the compliance, these criteria are not optimal.  For example, 

the criterion given by Eq. (5.14d) is generally too liberal (i.e. resulting in more than 5% 

difference in the J (compliance) values corresponding to specimens with straight and 

curved crack fronts) for specimens with B/W = 0.5, but overly restrictive for specimens 

with B/W = 1 and 2.  For specimens with B/W = 2, the crack front straightness criterion in 

ASTM E1820 (Eq. (5.14h)) is overly restrictive for specimens with aave/W > 0.3, but too 

liberal for specimens with aave/W ≤ 0.3. 
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To facilitate the practical application of Eq. (5.19) in the context of the nine-point 

measurement approach specified in the BS (ISO) and ASTM standards, Eq. (5.19) is 

slightly revised as follows:  
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where aave/W in Eq. (5.19) is replaced by aave9/W in Eq. (5.20) given that these two 

quantities are very close as shown in Table 5.2, and λ in Eq. (5.19) is replaced by κ/q2 (see 

Eq. (5.12)) in Eq. (5.20) with the values of q2 associated with p = 3.0 given in Table 5.2.  

It is recommended that κ be chosen as either λ9(BS) or λ9(ASTM) since the corresponding q2 is 

insensitive to p.  Note that the proposed crack front straightness requirement is considered 

applicable to both the fatigue pre-crack front and final crack front.  

To examine the validity of Eqs. (5.19) and (5.20) for specimens containing curved crack 

fronts with the shape parameter p equal to values other than 3.0, additional finite element 

analyses for specimens with aave/W = 0.2, 0.4 and 0.7, B/W = 1, and three allowable λ values 

given by Eq. (5.19) (i.e. λ = 0.07 for aave/W = 0.2, and λ = 0.08 for aave/W = 0.4 and 0.7) 

were carried out.  The value of p was selected to 2.5 for the additional analyses.  The 

rationale for selecting p = 2.5, as opposed to, say, p = 3.5, in the analysis is that for a given 

λ, β increases as p decreases (see Eq. (5.10)), causing the central portion of the crack front, 

which has the largest contribution to Jave, to become more curved (Yan and Zhou, 2015).  

The values of eC and eJ() for these specimens are shown in Table 5.4(b) (see values in the 

brackets) and Fig. 5.8, respectively.  The results indicate that decreasing p from 3.0 to 2.5 

but maintaining aave/W and λ has small impacts on the compliance and Jave; therefore, Eqs. 

(5.19) and (5.20) are also applicable for curved crack fronts with p = 2.5. 
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5.6 Conclusions  

Three-dimensional FEA was performed to investigate the impact of the crack front 

curvature on the undeformed compliance (C0), rotation correction factor (Fr) and average 

J over the crack front (Jave) for plane-sided clamped SE(T) specimens made of 

homogeneous materials.  Symmetric bowed crack fronts characterized by a power-law 

expression were considered in the analysis.  Three specimen thicknesses (B/W = 0.5, 1 and 

2), six average crack lengths (aave/W = 0.2 to 0.7) and eleven crack front curvatures (λ = 0 

to 0.1) were included in this study.  Three groups of FE models with the use of linear-

elastic, small-strain and large-strain elastic-plastic formulations were analyzed to estimate 

C0, Jave and Fr, respectively.  Given aave/W and B/W, C0 and Jave corresponding to the 

straight crack front and curved crack fronts with different curvatures were compared.  The 

rotation correction factors Fr corresponding to specimens with straight and curved crack 

fronts are compared with those estimated from the empirical equation proposed by Shen et 

al.  In addition to FEA, the crack front straightness criteria for the SE(B) and C(T) 

specimens specified in BS7448 (Parts I, II, III and IV), ISO12135, ISO15653 and ASTM 

E1820 were reviewed. 

The numerical results suggest that λ has little impact on C0 for specimens with aave/W ≥ 

0.3 as the maximum absolute value of eC is about 6%, whereas eC strongly depends on λ 

for specimens with aave/W < 0.3 as the corresponding maximum absolute value of eC is as 

high as 12%.  The value of |eJ()| strongly depends on B/W and h/aave, and mildly depends 

on aave/W.  On the other hand, λ has little impact on Fr and the empirical equation proposed 

by Shen et al. is considered sufficiently accurate for specimens with 0.2 ≤ aave/W ≤ 0.7, 

B/W = 0.5, 1 and 2 and λ ≤ 0.1.  Based on the analysis results and the criterion that |eC| and 

|eJ()| should be no more than 5%, crack front straightness criteria for the SE(T) specimen 

were recommended.  To facilitate the practical application, the proposed crack front 

straightness criteria were further expressed in terms of the nine-point measurement 

approach specified in the BS and ASTM standards.  The proposed criteria are more 

advantageous than those specified in the BS, ISO and ASTM standards in that the former 

ensure the differences in J and the compliance between the specimens with curved and 

straight crack fronts to be within a reasonably small range, i.e. no more than 5%. 
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Table 5.1: Summary of crack front straightness criteria for SE(B) and C(T) specimens 

 

Notes: 

1.  BM: base material. 

2.  WM: weld material. 

3.  HAZ: heat-affected zone. 

4.  Curvature parameters based on the nine points measurement: β9 = (amax9 - amin9)/W; β7 = (amax7 - amin7)/W; λ7 

= Max[amax7 - aave9, aave9 - amin7]/W; λ9 = Max[amax9 - aave9, aave9 - amin9]/W (subscripts "(BS)" and "(ASTM)" 

denote the measurement methods specified in the corresponding standards). 

5.  Only applicable for J and CTOD test using SE(B) specimens. 

6.  Curvature parameter for the crack front characterized by Eq. (5.8): λ = (aave – az = ±B/2)/W.  

              

Standards 

  

Material Scope 

Criteria  

  for any crack fronts 
for crack front described by                     

Eq. (5.8) with p = 3 

BS 7448 

Part I   BM 1 KIC, critical J and CTOD β9 ≤ 0.1aave9/W  4 λ ≤ 0.0797aave/W  6 

Part II   WM 2 and HAZ 3 KIC, critical J and CTOD β7 ≤ 0.2aave9/W λ ≤ 0.3778aave/W 

Part III   WM and HAZ Dynamic fracture toughness β9 ≤ 0.2aave9/W λ ≤ 0.1594aave/W 

Part IV 
  BM 

R-curves 
λ9(BS) ≤ 0.1aave9/W λ ≤ 0.1085aave/W 

  WM and HAZ λ9(BS) ≤ 0.2aave9/W λ ≤ 0.2170aave/W 

ISO 12135   BM 
KIC, critical J and CTOD and R-curves 

λ7 ≤ 0.1aave9/W λ ≤ 0.3000aave/W 

ISO 15653   WM and HAZ λ7 ≤ 0.2aave9/W  5 λ ≤ 0.6000aave/W 

ASTM E1820 

  

BM KIC, critical J and CTOD and R-curves λ9(ASTM) ≤ 0.05B/W 

λ ≤ 0.0271, for B/W = 0.5 

  λ ≤ 0.0526, for B/W = 1 

  λ ≤ 0.1037, for B/W = 2 
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Table 5.2: Values of q1 and q2 corresponding to different p values 

 

  

                            

p 

  q1   q2 

  
BS (ISO) 

standards 

ASTM standard   

β7 β9 λ7 λ9(BS) 

λ9(ASTM) 

  
B/W = 

0.5 
B/W = 1 B/W = 2   B/W = 0.5 B/W = 1 B/W = 2 

2.5   2.29E-03 2.29E-03 -7.93E-03 -1.31E-02   0.6484 1.3310 0.3977 0.9333 0.9333 0.9573 0.9695 

2.6   1.83E-03 1.83E-03 -8.41E-03 -1.36E-02   0.6218 1.3138 0.3828 0.9310 0.9310 0.9559 0.9685 

2.7   1.37E-03 1.37E-03 -8.89E-03 -1.41E-02   0.5968 1.2976 0.3690 0.9286 0.9286 0.9544 0.9675 

2.8   9.07E-04 9.07E-04 -9.37E-03 -1.46E-02   0.5731 1.2825 0.3562 0.9263 0.9263 0.9530 0.9665 

2.9   4.50E-04 4.50E-04 -9.84E-03 -1.51E-02   0.5507 1.2683 0.3444 0.9239 0.9239 0.9515 0.9655 

3   -5.50E-06 -5.50E-06 -1.03E-02 -1.55E-02   0.5294 1.2549 0.3333 0.9216 0.9216 0.9501 0.9646 

3.1   -4.59E-04 -4.59E-04 -1.08E-02 -1.60E-02   0.5092 1.2423 0.3230 0.9193 0.9193 0.9486 0.9636 

3.2   -9.11E-04 -9.11E-04 -1.13E-02 -1.65E-02   0.4900 1.2303 0.3134 0.9169 0.9169 0.9472 0.9626 

3.3   -1.36E-03 -1.36E-03 -1.17E-02 -1.70E-02   0.4717 1.2190 0.3044 0.9146 0.9146 0.9458 0.9616 

3.4   -1.81E-03 -1.81E-03 -1.22E-02 -1.75E-02   0.4543 1.2082 0.2959 0.9123 0.9123 0.9443 0.9606 

3.5   -2.26E-03 -2.26E-03 -1.27E-02 -1.80E-02   0.4377 1.1979 0.2880 0.9100 0.9100 0.9429 0.9597 

              

 



150 

 

Table 5.3: Summary of information of FE models 

 

  

Group 

# 
Formulation aave/W λ B/W 

1 Linear-elastic 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 
0, 0.01, 0.02, 0.03, 0.04, 0.05, 

0.06, 0.07, 0.08, 0.09, 0.1 
0.5, 1, 2 

2 
Elastic-plastic                                 

Small strain/small displacement 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

0, 0.01, 0.02, 0.03, 0.04, 0.05, 

0.06, 0.07, 0.08, 0.09, 0.1 
0.5, 1, 2 

3 
Elastic-plastic                                

Large strain/large displacement 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 0, 0.1 0.5, 1, 2 
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Table 5.4: Variation of eC (%) with λ for specimens with various aave/W ratios 

.  

Notes: values in the brackets are eC corresponding to crack fronts with p = 2.5.  

(a) B/W = 0.5 

    λ 

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

aave/W 

0.7 0.0 0.1 0.0 -0.2 -0.5 -1.0 -1.7 -2.5 -3.5 -4.6 -5.8 

0.6 0.0 0.0 0.0 -0.2 -0.6 -1.0 -1.7 -2.4 -3.4 -4.4 -5.6 

0.5 0.0 0.2 0.1 -0.1 -0.4 -0.8 -1.4 -2.2 -3.0 -4.0 -5.1 

0.4 0.0 0.2 0.1 0.0 -0.3 -0.7 -1.3 -2.0 -2.8 -3.8 -4.8 

0.3 0.0 0.1 0.2 0.1 -0.1 -0.5 -1.0 -1.6 -2.4 -3.3 -4.4 

0.2 0.0 0.7 0.9 1.0 1.0 0.7 0.3 -0.2 -0.9 -1.7 -2.7 

 

(b) B/W = 1 

    λ 

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

aave/W 

0.7 0.0 0.1 0.1 0.1 -0.1 -0.3 -0.6 -1.0 -1.0 (-1.8) -2.1 -2.8 

0.6 0.0 0.1 0.1 0.1 0.0 -0.1 -0.4 -0.7 -1.2 -1.7 -2.2 

0.5 0.0 0.2 0.3 0.4 0.3 0.2 0.0 -0.2 -0.6 -1.0 -1.5 

0.4 0.0 0.3 0.5 0.6 0.6 0.6 0.5 0.3 0.1 (0.0) -0.2 -0.6 

0.3 0.0 0.4 0.7 1.0 1.2 1.3 1.4 1.4 1.4 1.3 1.1 

0.2 0.0 1.1 1.9 2.6 3.2 3.8 4.3 4.8 (5.2) 5.2 5.5 5.8 

 

(c) B/W = 2 

    λ 

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

aave/W 

0.7 0.0 0.2 0.2 0.2 0.2 0.1 0.0 -0.2 -0.4 -0.7 -1.1 

0.6 0.0 0.1 0.3 0.4 0.4 0.4 0.4 0.3 0.2 0.0 -0.2 

0.5 0.0 0.3 0.6 0.8 0.9 1.0 1.1 1.2 1.2 1.1 1.1 

0.4 0.0 0.5 0.8 1.2 1.5 1.8 2.0 2.3 2.5 2.6 2.7 

0.3 0.0 0.6 1.3 1.9 2.5 3.1 3.7 4.2 4.7 5.2 5.7 

0.2 0.0 1.6 2.8 4.0 5.2 6.4 7.6 8.8 9.9 11.0 12.1 
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Table 5.5: Maximum allowable λ corresponding to |eC| and |eJ()| being no more than 5% 

 

Notes: 

1. Maximum λ considered in this study. The value of maximum allowable λ may be further increased without 

violating the corresponding controlling criteria. 

 

                

B/W 
  aave/W 

  0.2 0.3 0.4 0.5 0.6 0.7 

0.5   0.04 0.03 0.03 0.03 0.04 0.04 

1   0.07 0.09 0.08 0.08 0.08 0.08 

2   0.04 0.09 0.1 
1 0.1 

1 0.1 
1 0.1 

1 
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Figure 5.1. Determination of the crack front curvature through the nine-point 

measurement specified in BS7448 and ASTM E1820. 
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(a)  Configuration of a typical FE model with aave/W = 0.5, λ = 0.1 and B/W = 1 
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Figure 5.2.  Configuration and meshing of a typical finite element model.  

(b) Front view of the FE model (c) Mesh around the sharp crack tip (d) Mesh around the blunt crack tip
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Figure 5.3.  Variation of eF with P/PY for specimens with various aave/W, B/W and λ values. 
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Figure 5.4.  Variation of eJ() with h/aave and λ for specimens with B/W = 0.5 and various aave/W ratios. 
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Figure 5.5.  Variation of eJ() with h/aave and λ for specimens with B/W = 1 and various aave/W ratios. 
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Figure 5.6.  Variation of eJ() with h/aave and λ for specimens with B/W = 2 and various aave/W ratios.  
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Figure 5.7.  Comparison of the proposed crack front straightness criteria and those specified in BS, ISO and ASTM standards. 
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Figure 5.8.  Variation of eJ() with h/aave for crack fronts with p = 2.5 and 3.0.
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Chapter 6   Effective Thickness of Side-grooved Clamped 

SE(T) Specimens for J-R Curve Testing 

6.1 Background and Objective  

6.1.1 Effective Thickness for Side-grooved Specimens 

The fracture toughness resistance (R) curve, such as the J-integral-resistance (J-R) or 

crack-tip opening displacement-resistance (CTOD-R) curve, is generally obtained from the 

small-scale fracture test specimens such as the single-edge notched three-point bend 

(SE(3PB) or SE(B)) and compact tension (C(T)) specimens.  The test procedures for such 

specimens have been standardized in standards such as ASTM E1820-13 (ASTM, 2013), 

BS7448-4 (BSI, 1997) and ISO 12135 (ISO, 2002).  Testing on the plane-sided (PS) SE(B) 

and C(T) specimens made of homogeneous materials generally leads to a curved crack 

front caused by the difference in the states of stress along the crack front (Shih et al., 1977; 

Anderson, 2005).  The side-grooved (SG) specimens are used in the R-curve testing to 

achieve relatively straight crack fronts.  Figure 6.1 schematically shows the configurations 

of a side groove in a typical SE(B) or C(T) specimen.  As illustrated in the figure, one 

groove is machined into each lateral side of the specimen.  The side groove has a depth 

(dsg), a root radius (rsg) and a machined angle (sg).  The specimen has a gross thickness 

(B), whereas the net thickness between the side grooves (BN) can be calculated as BN = B – 

2dsg.  ASTM E1820-13 (ASTM, 2013) suggests machining the side groove with a radius 

rsg = 0.5±0.2 mm, a machined angle 0 ≤ sg ≤ 90 degrees and a ratio dsg/B ≤ 12.5%, whereas 

BS7448-4 (BSI, 1997) and ISO 12135 (ISO, 2002) specify a radius rsg = 0.4±0.2 mm, a 

machined angle 30 ≤ sg ≤ 90 degrees and a ratio dsg/B = 10%. 

It is reported that the J-R curves obtained from the SG specimens are generally lower 

than those obtained from the PS specimens (Andrews and Shih, 1979; Wang et al., 2012; 

Park et al., 2010).  Previous studies revealed that both rsg and sg have a negligible impact 

on the J-R curve (Park et al., 2010; Lucon and Scibetta, 2009; Yasufumi and Tomokazu, 

1984.  On the other hand, dsg significantly influences the normalized compliance (CN), the 

stress intensity factor (K) and the plastic component of J (Jpl) of the specimen, which are 
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important variables in the J-R curve testing.  The so-called “effective thickness” (Be) is 

introduced to account for the impact of the side grooves (more specifically, dsg) on these 

variables.  In the evaluations of CN, K and Jpl (i.e., Eqs (4.1) and (4.3), (2.22a) and (2.8)), 

the specimen gross thickness B is replaced by the corresponding Be, which is a function of 

B and BN (or dsg).  The present R-curve test standards (ASTM, 2013; BSI, 1997; ISO, 2002) 

specify the following three effective thickness expressions (Be(1), Be(2) and Be(3)) for SE(B) 

and C(T) specimens: 
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The use of the clamped single-edge tension (SE(T) or SENT) specimen to determine the 

R-curve has recently gained significant interests (Donato and Moreira, 2014) in the energy 

pipeline industry.  The crack-tip stress and strain fields of the SE(T) specimen are similar 

to those of the full-scale pipe containing surface cracks under longitudinal tension and/or 

internal pressure (Chiesa et al., 2001; Shen et al., 2008a); therefore, the J-R curve 

determined from the SE(T) specimen can lead to more accurate design and assessment of 

pipelines with respect to cracks.  Several research groups have put forward J-R curve test 

methods involving SG SE(T) specimens with various dsg/B ratio (e.g. Shen et al., 2008a; 

Cravero and Ruggieri, 2007; Tang et al., 2010; Pisarski et al., 2013).  For example, Cravero 

and Ruggieri (2007) developed a test method using SG SE(T) specimens with dsg/B = 10%; 

Shen et al. (2008a) suggested using SG SE(T) specimens with dsg/B = 7.5%, and the 

ExxonMobil research group (2010) and TWI research group (2013) focus on SG specimens 

with dsg/B = 5%, which is also suggested in the recently published standard BS 8571 (BSI, 

2014). 

All of the above groups recommend using Eqs. (6.1a) – (6.1c) for the SG SE(T) 

specimen in the J-R curve testing.  Shen et al. (2010) reported that, for SE(T) specimens, 

the difference between the normalized compliance CN obtained from two dimensional (2D) 
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plane-stress finite element analyses (FEA) and that from three-dimensional (3D) FEA is 

less than 4% if Eq. (6.1a) is used in the calculation.  Specimens with the daylight length 

(distance between grips, H) equal to 10W, B/W = 1, relative crack lengths (a/W) equal to 

0.2 and 0.5, and dsg/B = 0%, 5%, and 10% were investigated in their study.  Donato and 

Moreira (2013) carried out 3D FEA of SG SE(T) specimens with H/W = 6, B/W = 0.5, a/W 

ratio from 0.1 to 0.7 and dsg/B = 0%, 2.5%, 5%, and 10%.  For a given a/W, they calculated 

Be(1) by forcing the normalized compliance, CN, obtained from SG specimens equal to those 

obtained from PS specimens.  Based on their results, the error of Eq. (6.1a) is reported to 

be about 1.5%.  Note that SE(T) specimens with H/W = 10 and B/W ≥ 1 are generally 

preferred because the corresponding crack-tip stress fields are close to those of the full-

scale pipes containing cracks Shen et al. (2008b).  The adequacy of Eqs. (6.1b) and (6.1c) 

for the SG SE(T) specimen has not been investigated. 

6.1.2 Literature Review of Be(2) and Be(3) 

The experimental evaluation of J includes separate calculations of its elastic and plastic 

components, Jel and Jpl (see Eq. (2.4)).  Jel can be determined from the stress intensity 

factor, K, through Eq. (2.5) and Jpl can be evaluated using Eq. (2.8).  K can be estimated 

using Eq. (2.22) where the non-dimensional function F(a/W) for SE(T) specimens has been 

well documented by Ahmad et al. (1991), John and Rigling (J&R) (1998) (for H/W = 10), 

Cravero and Ruggieri (C&R) (2007) and Shen et al. (2008a) (see Fig. 2.5).  Note that for 

SG specimens, Eqs. (2.22a) and (2.8) need to be revised by replacing B with the 

corresponding effective specimen thickness, Be(2) and Be(3), respectively. 

The origin of Eq (6.1b) is found in a study by Freed and Krafft (1966), who proposed 

Be(2) for the four-point bend SE(B) specimen (SE(4PB)) to be given by 
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where  is a coefficient between 0.5 and unity depending on the material isotropy and dsg/B.  

In the experimental work carried out by Rolfe and Novak (1970), Eq. (6.2) with  equal to 

0.5 and 0.7 for dsg/B ≤ 5% and dsg/B = 30%, respectively, was employed to determine the 
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critical stress intensity factor (KIC) for SE(4PB) specimens made of isotropic materials.  

Note that Eq. (6.2) with  = 0.5 is equivalent to Eq. (6.1b). 

Zhang and Shi (1992) proposed the following Be(3) equation for the SE(B) specimen: 
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Machida (1997) developed the following Be(3) equation for C(T) and CC(T) specimens: 

  3
 Ne

B BB  (6.4) 

where  = 0.95 for the C(T) specimen, and  ranges from 0.85 to 1 for the CC(T) specimen 

depending on the specimen thickness. 

The recently published R-curve test standard BS 8571 (BSI, 2014) adopts Eqs. (6.1a) – 

(6.1c) for SG SE(T) specimens with B/W < 1.  For specimens with B/W ≥ 1, Eq. (6.1c) is 

replaced by Eq. (6.4) with  = 1, which is the same as Eq. (6.1b).  A thickness correction 

factor, ψ(i), is introduced in this study to relate the specimen effective thickness to the gross 

thickness, i.e. Be(i) = ψ(i)B (i = 2 and 3).  Equations (2.22a) and (2.8) can then be written for 

both the PS and SG specimens as follows: 
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where 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷  and 𝐴𝑝𝑙

𝐶𝑀𝑂𝐷  are the crack mouth opening displacement- (CMOD-) based 

plastic geometry factor and plastic work.  Note that for PS specimen, ψ(i) = 1.  Let χ = BN/B 

denote the ratio between the net and gross specimen thicknesses.  The expressions for ψ(i) 

corresponding to the effective thickness expressions given in Eq. (6.1) are therefore 
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Similarly, Eqs. (6.2), (6.3) and (6.4) can be recast as Eqs. (6.7a), (6.7b) and (6.7c), 

respectively as follows: 
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6.1.3 Objective and Approach 

The objective of the study reported in this chapter is to carry out a 3D FEA-based 

investigation of the effective thickness for the stress intensity factor and the plastic 

component of J, Jpl, for SE(T) specimens with wide ranges of a/W and dsg/B.  The focus of 

the present study is the clamped SE(T) specimen with H/W = 10.  Only specimens with 

B/W = 1 are investigated as previous studies (DNV, 2006; Malpas et al., 2012) suggest that 

the crack fronts in SE(T) specimens with B/W > 1 are likely to remain relatively straight 

without side grooving.  Based on the analysis of the obtained results, the adequacy of Eqs. 

(6.1b) and (6.1c) is examined, and new effective thickness expressions for the evaluation 

of the stress intensity factor and of Jpl are proposed for the SE(T) specimen. 

This chapter is organized as follows.  Section 6.2 describes the finite element models 

and analysis procedures.  The thickness correction factors for the stress intensity factor and 

for the Jpl for the SE(T) specimen are obtained and discussed in Section 6.3, and the 

proposed expressions and values are validated in Section 6.4.  Finally, summary and 

conclusions are presented in Section 6.5. 
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6.2 Numerical Analysis 

6.2.1 Finite Element Model 

The commercial software ADINA® 9.0.1 (ADINA, 2012) is used to carry out FEA.  Due 

to symmetry, only a quarter of a given specimen is modeled in the FEA.  The geometric 

configuration of a typical SE(T) specimen in the FEA is shown in Fig. 6.2(a) together with 

the fixation and loading conditions.  All the specimens included in this study have a width 

W = 20 mm, a daylight (H) of 10W and a thickness B = W = 20 mm.  Both PS and SG 

specimens were modeled and parameters (e.g., F(a/W) and ηpl) obtained from the PS 

specimens are used as the reference to evaluate ψ(i).  The analyses matrix consists of six 

crack lengths (i.e. a/W = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and eleven side groove depths (i.e. 

dsg/B = 0%, 3%, 4%, 5%, 6%, 7%, 7.5%, 8%, 9%, 10%, and 12.5%) with the corresponding 

thickness reduction ratios χ = 1, 0.94, 0.92, 0.9, 0.88, 0.86, 0.85, 0.84, 0.82, 0.8 and 0.75, 

respectively.  The side groove is modeled as a U-notch (i.e. sg = 0) with a fixed root radius 

rsg = 0.5 mm as recommended in ASTM E1820 (ASTM, 2013).  Schematics of U-notched 

side grooves are shown in Figs. 6.2(b).  The 8-node 3D brick elements with 2×2×2 

integration are used. 

Stationary cracks are incorporated in the FE model.  A sharp crack tip is assumed and 

the surfaces of the brick elements are collapsed to a line at the crack tip to ensure the 

simulation of the singularity (see Fig. 6.2(c)). A spider-web mesh around the crack tip was 

established with 45 concentric semicircles (i.e. rings) surrounding the crack tip.  The in-

plane and out-of-plane lengths of the elements closest to the crack tip are about 1/2000W 

and 1/200B, respectively.  The model is divided into 10 layers over the half net thickness 

(BN/2).  For the SG model, the side groove ((B – BN)/2) was divided into 12 layers.  The 

mesh density increases from the mid plane to the free surface (or root of the side groove) 

to capture the high stress gradients near the free surface.  The total number of elements is 

approximately 15,000 in a typical PS specimen, and 28,000 in a typical SG specimen. 
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6.2.2 Material Model 

An elastic-plastic constitutive model based on the J2 incremental theory of plasticity as 

well as the small-displacement small-strain formulation (ADINA, 2012) is adopted in FEA.  

The true stress () and true strain () relationship of the material is characterized by Eq. 

(2.19) where σYS is the yield strength; ε0 = σYS/E, and n is the strain hardening exponent.  In 

this study, a material with σYS = 510 MPa, E = 207 GPa, ν = 0.3, and n = 13 is selected to 

simulate the X80 (API, 2012) grade pipeline steel.  The flow stress (Y) that is used to 

determine the limit load (PY = BN(W - a)Y) (Shen et al., 2008, 2009) for the SE(T) 

specimen is calculated as (YS + UTS)/2.  The quantity UTS is the ultimate tensile strength 

and can be estimated from Eq. (2.20) where u is the (true) strain corresponding to UTS 

and assumed to equal 1/n (Dieter, 1986).  For the material considered in this study, UTS is 

estimated to be 615 MPa (YS/UTS = 0.829) and Y = 563 MPa. 

6.2.3 Computational Procedure 

The load is applied based on the displacement-controlled condition.  Uniform 

displacements (h) are applied on the two clamped surfaces with a length of 2W (see Fig. 

6.2(a)).  Evaluations of F(a/W) and 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 require computation of the load-displacement, 

i.e. P-CMOD, response in the FEA.  The load P is calculated as the total reactions of the 

nodes on the clamped surface while CMOD (V) is recorded at the mid-plane of the 

specimen. 

The values of J in each layer along the thickness direction, i.e. the local J values, were 

calculated using the virtual crack extension method (Anderson, 2005; ADINA, 2012).  A 

brief description of this method is included in Appendix B.  The weighted average J value 

over the entire crack front, Jave, is then calculated based on the trapezoidal rule as detailed 

in Section 2.2.3.  To ensure the path-independence of the calculated J values, the two 

outermost semicircular rings surrounding the crack tip were used to define the virtual shifts.  

For a representative specimen with a/W = 0.5, B/W = 1 and χ = 0.85, the difference between 

Jave corresponding to the 20th and 45th ring is about 3.6%, and the difference between Jave 

corresponding to the 40th and 45th rings is about 0.7% at the loading level of P/PY = 1.3.  
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These results demonstrate that the Jave values determined from rings remote from the crack 

tip are indeed path independent. 

At small loading levels (i.e. P/PY = 0.02 to 0.05), J is equivalent to the linear-elastic 

energy release rate and the average stress intensity factors (Kave) can be calculated through 

the following equations: 
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The values of Kave determined from FEA for PS specimens are first used to evaluate the 

values of the non-dimensional function F(a/W) in Eq. (2.22a) by equating Eqs. (2.22a) and 

(6.8).  The value of ψ(2) for an SG specimen with a given a/W is then evaluated as follows 

based on Kave determined from FEA for the SG specimen and the value of F(a/W) 

determined for the PS specimen with the same a/W: 
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To evaluate the value of ψ(3) for an SG specimen with a given a/W, the following 

procedure is employed.  The value of 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 for the PS specimen with the same a/W is 

determined first.  This requires computation of the plastic component of J (Jpl) and plastic 

work (𝐴𝑝𝑙
𝐶𝑀𝑂𝐷) for the specimen.  At a given loading level (i.e. h/a), Jpl is calculated as the 

difference between Jave and Jel as indicated in Eqs. (2.4) and (2.5).  The calculation of 

𝐴𝑝𝑙
𝐶𝑀𝑂𝐷 follows Eq. (2.23), which is consistent with Fig. 2.2.  A single value of 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 for 

the PS specimen is determined from the regression analysis of a set of data within a certain 

range of loading levels.  In general, the 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 factor is approximately independent of the 

loading level at P ≥ PY (see Section 2.3.1) and the maximum loading level in typical tests 

is about 1.1 to 1.3PY for clamped SE(T) specimens (Shen et al., 2008b; Dodds and Read, 

1990; Pussegoda et al., 2013).  In this study, the regression analysis is carried out to obtain 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 within the loading range PY ≤ P ≤ 1.3PY by minimizing the sum of relative errors of 

the estimated J values (eac) as defined in Eq. (2.25) where Jη is the J value estimated from 
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Eqs. (2.4), (2.5), (2.8), (2.22a) and (2.23) based on a given 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 at a specific loading 

level, and the summation is carried over all the loading levels between PY and 1.3PY.  Once 

𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 for the PS specimen is determined, the value of ψ(3) for the SG specimen is evaluated 

by minimizing the sum of eψ as defined in Eq. (6.10a): 
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where J is the plastic component of J estimated from Eq. (6.10b) based on a given ψ(3) at 

a specific loading level; Jpl = Jave - Jel is the plastic component of J evaluated from FEA at 

the same loading level; 𝐴𝑝𝑙
𝐶𝑀𝑂𝐷 is the plastic work for the SG specimen, and the summation 

in Eq. (6.10a) is over all the loading levels between PY and 1.3PY. 

6.3 Results and Discussions 

6.3.1 Effective Thickness for Stress Intensity Factor 

The values of ψ(2) for SG specimens with different χ are listed in Table 6.1 and plotted 

in Fig. 6.3.  For comparisons, the values of ψ(2) obtained from Eq. (6.6a) and Eq. (6.7a) 

with  = 0.7, respectively (Eq. (6.6a) is equivalent to Eq. (6.7a) with  = 0.5), are also 

shown in Fig. 6.3.  The figure indicates that the ψ(2) values obtained in this study are not 

sensitive to a/W and generally lie between those from Eq. (6.6a) and Eq. (6.7a) with  = 

0.7.  The following equation for ψ(2) as a power-law function of χ is proposed based on the 

ψ(2) values given in Table 1: 

 
 

5

2

0. 8            (0.75 1,   0.2 0.7)
a

W
       (6.11) 

The maximum fitting error of Eq. (6.11) is about 2%.  Equation (6.11) corresponds to Eq. 

(6.7a) with  = 0.58. 
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6.3.2 Effective Thickness for Plastic Component of J 

The values of ψ(3) for the SG specimens with different χ are listed in Table 6.2 and plotted 

in Fig. 6.4, together with Eqs. (6.6b), (6.7b) and (6.7c) with  = 0.95 and 1.  The ψ(3) values 

obtained from Eq. (6.6b) are close to (the difference being less than 4%) those obtained in 

this study for specimens with a/W = 0.7 and χ ≤ 0.88, and specimens with 0.2 ≤ a/W ≤ 0.6 

and χ ≥ 0.88.  On the other hand, the values of ψ(3) obtained from Eqs. (6.7b) and (6.7c) 

with  = 1 are generally greater than those obtained in this study by 2 to 35%; Eq. (6.7c) 

with  = 0.95 is adequate to calculate ψ(3) only for 0.88 ≤ χ ≤ 0.92; therefore, Eqs. (6.7b) 

and (6.7c) are considered unsuitable for the SE(T) specimens.  Because ψ(3) obtained in 

this study show high dependency on a/W when χ ≤ 0.9.  It is recommend using the ψ(3) 

listed in Table 6.2 and interpolating values for other a/W ratios once χ is given. 

6.4 Validation of Proposed Thickness Correction Factors 

6.4.1 Accuracy of the Proposed ψ(2) 

To investigate the adequacy of the proposed equation for ψ(2), Eq. (6.11), the K values 

estimated from Eq. (6.5a) corresponding to a given F(a/W), KF, are compared with the 

corresponding Kave values obtained from FEA.  The prediction error for KF, eK, is then 

calculated as 

 100%F ave
K

ave

K K
e

K


   (6.12) 

For comparison, ψ(2) values evaluated from Eqs. (6.6a) are also used to compute KF.  The 

solution of F(a/W) proposed by Shen et al. (2008a) (i.e. Eq. (2.22b)) is selected because 

this solution is practically identical to the solutions reported in three other independent 

studies (Ahmad et al., 1991; John and Rigling, 1998; Cravero and Ruggieri, 2007) and 

therefore considered accurate.  A comparison of these solutions is shown in Fig. 2.5.  Table 

6.3 lists values of eK for specimens with various a/W and χ.  The table indicates that |eK| 

ranges from 0% to 5.8% if Eqs. (6.6a) is used to evaluate ψ(2).  On the other hand, |eK| 
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ranges from 0% to 3.6% if Eq. (6.11) is used to evaluate ψ(2).  Furthermore, the use of Eq. 

(6.11) makes eK less dependent on χ.) 

6.4.2 Accuracy of the Proposed ψ(3) 

The validation of the proposed ψ(3) values, listed in Table 6.2, was conducted based on 

the FEA results (P-CMOD curve and Jave) for SG SE(T) specimens with B/W = 1, a/W = 

0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5, dsg/B = 7.5% (i.e. χ = 0.85),the strain hardening 

exponent n = 8.5, 10, 15 and 20 from a separate study reported in Chapter 3.  The range of 

n values between 8.5 and 20 is considered representative of typical pipeline steels.  Note 

that the FEA results in Chapter 3 are based on large-strain/large displacement formulation. 

The prediction error of J, eJ, as defined in Eq. (2.25) is estimated with Jη evaluated from 

Eqs. (2.4), (2.5), (2.22b), (6.5a) and (6.5b) based on the given 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷.  The values of 𝜂𝑝𝑙

𝐶𝑀𝑂𝐷 

used in the error analyses are developed in Chapter 2 based on the large-strain FEA results 

of PS SE(T) specimens and are listed in Table 2.3(a).  ψ(2) is determined using Eq. (6.11), 

whereas two different ψ(3) values evaluated from Table 6.2 and Eq. (6.6b), respectively, are 

used to calculate eJ.  Figure 6.5 depicts eJ as a function of the loading level characterized 

by P/PY.  Only values of eJ corresponding to 0.8 ≤ P/PY ≤ 1.3 (or Jave approximately 

between 100 and 400 kN/m) are shown in the figure.  Figure 6.5 indicates that the 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 

values in Table 2.3 together with ψ(3) values in Table 6.2 generally lead to underestimated 

J values (i.e. eJ < 0) for 0.8 ≤ P/PY ≤ 1.2, but overestimated J values (i.e. eJ > 0) for P > 

1.2PY, for specimens with a/W ratios from 0.2 to 0.5 and 8.5 ≤ n ≤ 20.  On the other hand, 

Jη associated with Eq. (6.6b) continually underestimates Jave throughout the considered 

loading level.  The values and variation of eJ within the considered loading levels for 

specimens with a/W = 0.25, 0.35 and 0.45 are similar to those shown in Fig. 6.5, and are 

not shown for the sake of brevity.  Table 6.4 summarize the maximum values of |eJ| for 1.0 

≤ P/PY ≤ 1.3 for all the validation cases considered.  The results in Table 6.4 indicate that 

|eJ| corresponding to ψ(3) values in Table 6.2 are generally controlled within 7% and 10 to 

20% lower than |eJ| associated with Eq. (6.6b).  The maximum values of |eJ| within the 

considered loading levels for SG specimens are similar to those obtained from PS 



173 

 

specimens reported in Section 2.4.2, which are between 4 and 8%.  Therefore, the proposed 

ψ(3) values are considered effective for these specimen configurations and materials. 

6.5 Conclusions  

Three-dimensional finite element analyses are carried out to investigate the effective 

thickness for the stress intensity factor and ηpl-based J evaluation of the clamped SE(T) 

specimen.  Specimens with H/W = 10, B/W = 1, a/W ratios from 0.2 to 0.7 and χ values 

from 1 to 0.75 are analyzed.  The thickness correction factors corresponding to K and Jpl 

are evaluated and compared with those reported in the literature.  Based on the FEA results, 

a new expression for ψ(2) is proposed as functions of χ.  Validation analyses show that the 

maximum prediction error in K is 3.6% by using the proposed expression for ψ(2), whereas 

the maximum prediction error in K is 5.8% by using the expression for ψ(2) adopted in 

ASTM E1820, BS 7448 and ISO 12135.  By using the proposed ψ(3) values, the maximum 

errors in the ηpl-based J values for the SG specimens are generally 4% to 8%, whereas such 

errors are 5% to 10% by using the expression for ψ(3) adopted in ASTM E1820, BS 7448 

and ISO 12135.  The research outcome will facilitate the evaluation of J-R curves using 

SG SE(T) specimens. 
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Table 6.1: Thickness correction factors (ψ(2)) for stress intensity factor. 

 

 
 

Table 6.2: Thickness correction factors (ψ(3)) for plastic component of J (Jpl). 

 

 
  

a/W F(a/W) 
χ 

1.00 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.82 0.80 0.75 

0.2 1.06 1.0000 0.9683 0.9561 0.9431 0.9294 0.9152 0.9079 0.9005 0.8853 0.8697 0.8290 

0.3 1.51 1.0000 0.9705 0.9582 0.9452 0.9316 0.9174 0.9101 0.9026 0.8875 0.8719 0.8314 

0.4 2.07 1.0000 0.9703 0.9580 0.9450 0.9313 0.9171 0.9098 0.9025 0.8874 0.8719 0.8318 

0.5 2.78 1.0000 0.9700 0.9576 0.9447 0.9312 0.9171 0.9100 0.9027 0.8879 0.8728 0.8337 

0.6 3.69 1.0000 0.9700 0.9578 0.9451 0.9318 0.9182 0.9112 0.9042 0.8899 0.8754 0.8381 

0.7 4.81 1.0000 0.9702 0.9585 0.9462 0.9336 0.9207 0.9142 0.9076 0.8943 0.8808 0.8463 

 

a/W pl 
χ 

1.00 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.82 0.80 0.75 

0.2 0.88 1.0000 0.9431 0.9199 0.8941 0.8647 0.8327 0.8145 0.7936 0.7518 0.7164 0.6171 

0.3 0.83 1.0000 0.9362 0.9098 0.8791 0.8469 0.8126 0.7937 0.7736 0.7344 0.6914 0.6066 

0.4 0.77 1.0000 0.9279 0.8983 0.8666 0.8336 0.8008 0.7815 0.7614 0.7282 0.6937 0.6126 

0.5 0.71 1.0000 0.9314 0.9024 0.8718 0.8410 0.8084 0.7899 0.7742 0.7423 0.7100 0.6374 

0.6 0.61 1.0000 0.9412 0.9166 0.8884 0.8601 0.8308 0.8157 0.8004 0.7717 0.7409 0.6709 

0.7 0.51 1.0000 0.9807 0.9567 0.9324 0.9065 0.8794 0.8666 0.8517 0.8241 0.7995 0.7375 
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Table 6.3: Variation of eK (%) with . 

 

 
 

Table 6.4: Maximum absolute values of eJ (%) corresponding to 𝜂𝑝𝑙
𝐶𝑀𝑂𝐷 over P/PY = 1.0 to 1.3 

 

  

a/W (2) 
χ 

1.00 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.82 0.80 0.75 

0.2 
Eq. (6.6a) -1.6 -1.7 -1.9 -2.2 -2.5 -2.9 -3.1 -3.3 -3.8 -4.3 -5.8 

Eq. (6.11) -1.6 -1.3 -1.3 -1.4 -1.5 -1.7 -1.8 -2.0 -2.3 -2.6 -3.6 

0.3 
Eq. (6.6a) -1.2 -1.1 -1.3 -1.5 -1.8 -2.2 -2.4 -2.7 -3.1 -3.6 -5.1 

Eq. (6.11) -1.2 -0.6 -0.6 -0.7 -0.8 -1.0 -1.2 -1.3 -1.6 -1.9 -2.9 

0.4 
Eq. (6.6a) -1.5 -1.4 -1.6 -1.9 -2.2 -2.6 -2.8 -3.0 -3.5 -4.0 -5.4 

Eq. (6.11) -1.5 -1.0 -1.0 -1.1 -1.2 -1.4 -1.5 -1.7 -2.0 -2.3 -3.2 

0.5 
Eq. (6.6a) -1.1 -1.0 -1.2 -1.5 -1.8 -2.1 -2.3 -2.5 -3.0 -3.5 -4.8 

Eq. (6.11) -1.1 -0.5 -0.6 -0.6 -0.8 -1.0 -1.1 -1.2 -1.4 -1.7 -2.5 

0.6 
Eq. (6.6a) 0.4 0.4 0.2 0.0 -0.3 -0.6 -0.8 -1.0 -1.4 -1.8 -2.9 

Eq. (6.11) 0.4 0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.0 -0.6 

0.7 
Eq. (6.6a) 0.7 0.8 0.7 0.5 0.3 0.0 -0.1 -0.2 -0.5 -0.8 -1.5 

Eq. (6.11) 0.7 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.1 1.0 0.7 

 

n 

a/W 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Table 

6.2 

Eq. 

(6.6b) 

Table 

6.2 

Eq. 

(6.6b) 

Table 

6.2 

Eq. 

(6.6b) 

Table 

6.2 

Eq. 

(6.6b) 

Table 

6.2 

Eq. 

(6.6b) 

Table 

6.2 

Eq. 

(6.6b) 

Table 

6.2 

Eq. 

(6.6b) 

8.5 5.7 7.3 - - 4.0 6.6 - - 6.5 5.5 - - 4.5 4.6 

10 6.7 8.1 4.6 6.1 4.3 6.6 5.4 6.2 4.7 6.3 4.4 5.7 4.8 4.3 

15 8.0 9.2 - - 5.1 7.3 - - 3.9 6.8 - - 3.8 4.8 

20 9.0 10.0 - - 5.8 7.8 - - 4.6 7.4 - - 3.4 5.0 
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Figure 6.1. Schematics of the side-grooved single-edge and compact tension specimens 
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(a) Configuration of a typical side-grooved FE model with a/W = 0.5 

  

x

y

z

W

a

see (c)

see (b)

Clamped surfaces

h



182 

 

 

 

(b) Configuration of the U-shape side groove 
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(c) Mesh around the sharp crack tip 

Figure 6.2. Configuration of a typical finite element model with a blunt crack tip 
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Figure 6.3. Variation of ψ(2) with various  and a/W 
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Figure 6.4. Variation of ψ(3) with various  and a/W   
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Figure 6.5. Error in J values evaluated using the ψ(3) associated with Eq. (6.6b) and Table 6.2 for the specimens with different a/W and 
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Chapter 7   Summary, Conclusions and Recommendations for 

Future Study 

7.1 General  

The fracture toughness of the pipe steel and weldments is a key input to the structural 

integrity assessment and strain-based design of energy pipelines with respect to planar 

defects.  For ductile materials such as the modern pipe steels, the fracture process is often 

accompanied by relatively large plastic deformation at the crack tip and considerable crack 

extension.  In this case, the fracture toughness is typically characterized by the fracture 

toughness resistance curve (e.g. J-integral (J) or crack tip opening displacement (CTOD) 

resistance curve).  The newly-developed clamped single-edge notched tension (SE(T) or 

SENT) specimen is increasingly used to determine the fracture toughness resistance curve 

in the pipeline industry.  There are two main components of the toughness resistance 

curves, namely the crack growth, Δa, and the toughness value (J or CTOD) corresponding 

to this particular crack growth.  The work reported in this thesis is focused on improving 

the current SE(T) test method regarding the evaluations of J, CTOD and Δa.  The research 

outcome can increase the accuracy of measured fracture toughness resistance curve using 

SE(T) specimen and therefore facilitates the development and application of strain-based 

design methodology used in the pipeline industry. 

7.2 Estimation of J and CTOD for SE(T) Specimens  

Three-dimensional (3D) finite element analyses (FEA) were carried out to perform a 

systematic investigation of the plastic η factor (ηpl) and plastic constraint factor (m) for 

SE(T) specimens.  The incremental-plasticity together with the large-displacement/large-

strain formulation was used in the analysis.  The von Mises yield criterion with isotropic 

hardening was adopted.  The analysis covered both plane-sided and side-grooved SE(T) 

specimens with a range of specimen configurations, i.e. six crack depth-over-specimen 

width ratios (a/W = 0.2 to 0.7) and two thickness-over-width ratios (B/W = 1 and 2), and 

five strain hardening exponents (n =5, 8.5, 10, 15 and 20).were analyzed. 
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The load-line displacement (LLD)- and crack mouth opening displacement (CMOD)-

based ηpl factors corresponding to the average J value over the crack front were evaluated 

and tabulated.  The CTOD values at the mid-plane were also outputted to evaluate the m 

factors.  The impacts of a/W, B/W, side-grooves and strain hardening characteristics on ηpl 

and m factors were investigated.  Based on the analysis results, a set of expressions for ηpl 

are proposed.  A new empirical m-factor equation is proposed as a function of a/W, B/W, 

the yield-to-tensile strength ratio and loading level.  The proposed ηpl-factor and m-factor 

equations will improve the accuracy of the J(CTOD)-R curve obtained from the experiment 

and facilitate the evaluation of J(CTOD)-R curves using SE(T) specimens. 

7.3 Estimation of Crack Size/Compliance for SE(T) Specimens 

The elastic unloading compliance method is widely used to estimate the crack length of 

the specimen in the fracture toughness testing.  In this method, the crack length can be 

estimated from the measured compliance based on the compliance equations.  On the other 

hand, the compliance equations are required to estimate the compliance if the crack length 

can be directly measured. 

Three-dimensional linear-elastic finite element analyses of clamped SE(T) specimens 

were carried out to investigate the accuracy of compliance equations that are used to 

evaluate a/W and compliance (C) in the R-curve test.  A wide range of specimen 

configurations including nine a/W ratios ranging from 0.1 to 0.9, and seven B/W ratios 

ranging from 0.25 to 4 were considered in this study.  Both plane-sided and side-grooved 

specimens were included in the analysis, with the side-groove depth set at 7.5%B on each 

side.   

It is observed that equations proposed by Cravero and Ruggieri, Shen et al. and John and 

Rigling respectively lead to similar predictions and are accurate to predict a/W from a given 

compliance for specimens with a/W ≥ 0.5 and 0.25 ≤ B/W ≤ 4, and for specimens a/W < 

0.5 and B/W ≤ 0.5.  Equations developed by Mathias et al. and Fonzo et al., are accurate 

for specimens with a/W < 0.5 and B/W ≥ 1.  To predict C from a given a/W, equation 

developed by John and Rigling is accurate for specimen with a/W > 0.2 and B/W ≤ 0.5 with 

the error of prediction generally being less than 2%.  Two modification factors, (a/W) and 
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(BCE), are introduced to improve the accuracy of the predicted a/W and C, respectively.  

Using the proposed modification factors in Eqs. (4.4) through (4.8) and (4.10) leads to 

consistently highly accurate predictions of a/W and C for all the specimen configurations 

considered in this study, with the errors of predictions being less than 2% in most cases. 

7.4 Influences of Crack Front Curvature and Side Grooves on J-R 

Curve for SE(T) Specimens 

Two groups of 3D FEA were carried out to perform investigations on the effects of crack 

front curvature and side grooves, respectively, on J-R curve testing.  The impact of the 

crack front curvature on the undeformed compliance (C0), rotation correction factor (Fr) 

and average J over the crack front for plane-sided clamped SE(T) specimens were 

investigated.  Symmetric bowed crack fronts characterized by a power-law expression were 

considered in the analysis.  Three specimen thicknesses (B/W = 0.5, 1 and 2), six average 

crack lengths (aave/W = 0.2 to 0.7) and eleven crack front curvatures (λ = 0 to 0.1) were 

included in this study.  The numerical results suggest that λ has little impact on C0 for 

specimens with aave/W ≥ 0.3 and relatively large impact on C0 for specimens with aave/W 

< 0.3.  On the other hand, λ has little impact on Fr and the empirical equation proposed by 

Shen et al. is considered sufficiently accurate for specimens with 0.2 ≤ aave/W ≤ 0.7, B/W 

= 0.5, 1 and 2 and λ ≤ 0.1.  Based on the analysis results, new crack front straightness 

criteria were proposed to ensure the differences in J and the compliance between the 

specimens with curved and straight crack fronts to be within a reasonably small range, i.e. 

no more than 5%. 

Three-dimensional finite element models of side-grooved (SG) SE(T) specimens were 

analysed to investigate the effective thickness for the stress intensity factor and CMOD-

based ηpl factors.  Specimens with H/W = 10, B/W = 1, a/W ratios from 0.2 to 0.7 and ratio 

between the net and gross specimen thicknesses (χ) from 1 to 0.75 are analyzed.  The 

thickness correction factors corresponding to K and Jpl are evaluated and compared with 

those reported in the literature.  Based on the FEA results, new thickness correction factors 

are suggested.  The research outcome will facilitate the evaluation of J-R curves using SG 

SE(T) specimens. 
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7.5 Recommendations for Future Work 

Recommendations for future work are as follows: 

1. Investigate the impact of the crack front curvature on the J(CTOD)-R curve for SE(T) 

specimens by employing appropriate crack growth models, such as the Gurson-

Tvergaard-Needleman (GTN) model, in the FEA. 

2. Develop the crack front straightness criteria for side-grooved SE(T) specimens and 

specimens made of nonhomogeneous materials, i.e. containing the weldment and 

heat-affected zone. 

3. Investigate the influences of anisotropy, residual stresses, and plastic wake of pre-

cracking on the estimation of J. 

4. Analyze the crack-tip fields of full-scale pipes containing surface cracks subjected to 

internal pressure and/or longitudinal tensile force, and compare the results with the 

crack-tip fields of SE(T) specimens. 
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Appendix A  Evaluation of Jpl for growing cracks 

Based on the deformation theory of plasticity, J is independent of the load path leading 

to the current LLD (or CMOD) and crack length a, given that the J-controlled crack growth 

conditions are satisfied (Sumpter and Turner, 1976).  Accordingly, J is a function of two 

independent variables, a and Δ.  Ernst et al. (1981) developed an incremental method to 

estimate J for growing cracks by deriving the total differential of Jpl as 

 
pl pl

pl pl pl
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dJ d J da

bB b
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Integrating both sides of Eq. (A.1) yields 
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J d J da

bB b

 

     (A.3) 

where a0 is the initial crack length.  Equation (A.3) can be applied to any loading path 

leading to the current values of Δpl and a.  Figure A.1 shows a schematic of the estimation 

of Jpl for growing cracks.  The figure includes a typical P-Δpl curve for a growing crack, 

and three deformation paths for the initial crack length, a0, and two arbitrary crack lengths 

ai and ai+1 respectively.  The actual loading path AC in the figure can be replaced by the 

fictitious loading paths AB and BC.  Integrating both sides of Eq. (A.3) along the loading 

path AB results in 

 , 1

i

plB i i i

pl pl pl

i

J J A
b B


   (A.4) 

where 𝐽𝑝𝑙
𝑖  is the value of Jpl at A or step i; 𝐽𝑝𝑙

𝐵  is the value of Jpl at B or the intermediate 

value of Jpl between step i and step i+1; bi = W - ai, and 𝐴𝑝𝑙
𝑖,𝑖+1

 equals the area of ABΔ𝑝𝑙
𝑖 Δ𝑝𝑙

𝑖+1 



193 

 

but can be adequately approximated by the area under the actual loading path between Δ𝑝𝑙
𝑖  

and Δ𝑝𝑙
𝑖+1 (i.e. the shaded area in Fig. A.1), if ∆𝑝𝑙

𝑖+1 − ∆𝑝𝑙
𝑖  is sufficiently small; 𝐴𝑝𝑙

𝑖,𝑖+1
 can be 

evaluated using the trapezoidal rule as 𝐴𝑝𝑙
𝑖,𝑖+1 ≅  

1

2
(𝑃𝑖 + 𝑃𝑖+1)(∆𝑝𝑙

𝑖+1 − ∆𝑝𝑙
𝑖 ).  Integrating 

both sides of Eq. (A.3) again along the loading path BC results in 
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where 𝐽𝑝𝑙
𝑖+1 is the value of Jpl at C or step i+1.  Combining Eqs. (A.4) and (A.5) leads to the 

following general incremental expression for calculating Jpl: 
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  (A.6) 

Equation (A.6) is adopted by ASTM E1820-11E2 (ASTM, 2013) as the main procedure to 

experimentally evaluate the J-R curve.  The crack length corresponding to each loading 

step can be determined using the unloading compliance method, which is described in 

Chapter 4.   
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Figure A.1: Schematic of the estimation of Jpl for growing cracks  
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Appendix B  Computation of J-integral using Virtual Crack 

Extension Method 

Parks (1974) and Hellen (1975) first developed the virtual crack extension approach 

based on the finite element method to calculate the energy release rate in elastic bodies 

(Anderson, 2005).  deLorenzi (1982, 1985) improved the virtual crack extension method, 

which is used in the FEA reported in this thesis and is briefly described here. 

Figure B.1 schematically shows the virtual crack extension method in two-dimensional 

analysis.  The crack front is surrounded by three zones of material divided by two contours.  

During the crack advance, material points in zone I are rigidly translated in the x1 direction 

by an amount Δx1, while points in zone III remain fixed, causing a distortion in the material 

in zone II.  Since zone I contains the crack front, the crack length is increased by an amount 

Δa.  This virtual translation of the material points is defined as the “virtual shift” in ADINA 

(ADINA, 2012).  For a material that obeys the deformation plasticity theory, deLorenzi 

(1982, 1985) showed that the energy release rate in a two-dimensional body can be 

expressed as: 

 1
1

1

1   
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where ui is components of the displacement (i = 1 or 2); w is the strain energy density; AC 

is area of the cracked body, and δij is the Kronecker delta. 

In the virtual crack extension method adopted in ADINA (ADINA, 2012), a more 

general form of Eq. (B.1) is used to calculate J considering 3D cracked body (deLorenzi, 

1982 and 1985): 
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where VC is volume of the cracked body; Δxk is components of the virtual crack extension 

vector (k = 1, 2 or 3), and ΔAC is the increase in crack area corresponding to Δxk. 

The calculation of ΔAC is discussed here.  For a 2D cracked body, ∆𝐴𝐶 = 𝑏√∆𝑥1
2 + ∆𝑥2

2 

where b is the thickness at the crack tip.  Figure B.2 schematically shows the virtual shift 

in 3D analysis. For a 3D cracked body, ∆𝐴𝐶 = ∫ √∆𝑥𝑖
′∆𝑥𝑖

′ 𝑑𝑠  where ∆𝑥𝑖
′ = ∆𝑥𝑖 −

(∑ 𝑡𝑗∆𝑥𝑗
3
𝑗=1 )𝑡𝑖, ti (i = 1, 2 or 3) is the component or directional cosine of the unit tangent 

vector along the crack front and ds is the differential length along the crack front (see Fig. 

B.2).  The definition of ∆𝑥𝑖
′  ensures that it is perpendicular to ti.  In a 3D problem, J 

typically varies along the crack front.  Defining ΔAC in the above way would result in a 

local measure of J (Anderson, 2005). 

The virtual crack extension formulation of J requires an area integration and a volume 

integration for 2D and 3D analysis, respectively.  Such an approach is easier to implement 

numerically and is more accurate than contour and surface integrations for 2D and 3D 

problems, respectively (Anderson, 2005).  Note that Eq. (B.2) is the basic expression of J 

and does not consider the impacts of hoop stress and pressure, thermal effect, and dynamic 

effect (ADINA, 2012).  Additional information about the virtual crack extension approach 

can be found in the relevant literature (e.g. ADINA, 2012; Anderson, 2005; deLorenzi, 

1982 and 1985; Hellen, 1975). 
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I: zone rigidly shifted by virtual shift 

II: zone distorted by virtual shift 

III: zone unchanged by virtual shift 

 

 

(a) Before the virtual shift (b) After the virtual shift 

Figure B.1: The virtual crack extension method in two-dimensional analysis  

  

I 

II 

III III 

II 

I 

x1 

x2 

x1 x1 Δx1 

Δa 



199 

 

 

 

 

 

 

(a) Before virtual shift (b) After virtual shift 

 

 

(c) Calculation of virtual crack area increase 

 

Figure B.2: The virtual shift in three-dimensional analysis  
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Appendix C  Rotation Correction in the Unloading Compliance 

Method for Evaluating the Crack Length 

The elastic unloading compliance method (Clarke et al., 1976) is widely used to evaluate 

the immediate crack length and plastic work done in the specimen as introduced in section 

4.1.  In the J(CTOD)-R curve test, the specimen compliance (inverse of the stiffness) is 

estimated as the slope of the load vs. crack-mouth opening displacement (P-CMOD) curve 

from each loading-unloading sequence.  For SE(B) specimen, there is an unique 

relationship between the normalized compliance and the specimen crack length.  Any 

increase of the compliance contributes the growth of the crack length and vice verce.  

Previous studies (Shen et al., 2008, 2009; Cravero and Ruggieri, 2007) suggested that 

the compliance of the undeformed SE(T) specimen generally increases as the crack grows, 

whereas the compliance of a specimen with a stationary crack in the deformed position 

decreases, as the rotational deformation increases and the load-line eccentricity decreases.  

To estimate the crack length for the SE(T) specimen using the one-to-one crack length-

compliance relationship, the measured compliance (i.e. compliance of the deformed 

specimen, Ci) needs to be first converted to the compliance of the undeformed specimen 

(C0).  This process is known as the rotation correction of the compliance and can be 

generally expressed as the following equation: 

 0 r iC F C  (C.1) 

where Fr is the rotation correction factor.  Several studies (Shen et al., 2008, 2009; Cravero 

and Ruggieri, 2007) have been carried out to evaluate the rotation correction factor for 

SE(T) specimens with straight crack fronts.  Based on the finite element analyses (FEA) 

results of (two-dimensional) 2D plane-strain SE(T) models with crack depth-over-

specimen width ratios a/W = 0.2, 0.35 and 0.5, and a three-dimensional (3D) SE(T) model 

with a/W = 0.5 and thickness-over-width ratios B/W = 1, Shen et al. (2008, 2009) developed 

the following empirical expression for Fr: 
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 (C.2) 

where P is the applied load, and PY is the limit load for the SE(T) specimen.  The adequacy 

of Eq. (C.2) for specimens containing curved crack fronts was investigated in the Chapter 

5. 
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Appendix D  Derivation of the Relationship Between β7, β9, λ7, 

λ9(BS), λ9(ASTM) and λ for Symmetric Bowed Crack Fronts 

For specimens with symmetric bowed crack fronts characterized by Eq. (5.8), crack 

lengths corresponding to the nine measurement points a(i) can be expressed as: 

    ( ) 0 5 0.25   1, 2, ...,9
2

p

i za a W abs i i
B



  
      

  
 (D.1) 

where Λ = 0.005W and 0.01B for ASTM and BS (ISO) standards, respectively.  Combining 

Eqs. (5.9), (5.10) and (D.1), the average crack length from nine-point measurement is recast 

as: 

 

 

 

 

8

9 0

1

8

1

8

1

1
0.25 5  

2 8

1 1
        0.25 5

1 2 8

1 1 1
        0.25 5

2 8

p
p

ave z

i

p
p

ave

i

p
p

ave

i

a a W abs i
B

a W abs i
p B

p
a W abs i

p p B















               

                      

                      







 (D.2) 

The maximum crack lengths from the nine- and seven-point measurement equal the 

crack length corresponding to the specimen mid plane: 

 max9 max7 0za a a    (D.3) 

Given Eq. (D.1), the minimum crack lengths from the nine- and seven-point measurement 

are calculated as the following: 
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and 
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Combining (D.3), (D.4) and (D.5) lead to the following equation: 
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The following equations can be derived from Eqs. (D.2) through (D.5): 
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    (D.7) 

For p > 1, the derivative of the right hand sides of Eqs. (D.7a) and (D.7b) with respect to p 

are always negative and positive, i.e., (amax9 - aave9) - (aave9 - amin9) < 0 < (amax7 - aave9) - 

(aave9 - amin7). 

Therefore for p > 1, it follows that 
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Equations (D.6) and (D.8) define relationships between shape parameters associated with 

the nine-point measturement to λ for specimens with symmetric bowed crack fronts. 
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