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ABSTRACT  

Wind is one of the governing load cases for tall building design, which produces high level of straining actions, 

deflections and lateral and transverse vibrations. Keeping those vibrations within the comfort limits is becoming a key 

aspect in tall building design, especially for buildings with high aspect ratio. Improving the aerodynamic performance 

of the tall building by modifying its shape can lower building motions, which reduces the additional expenses for 

external damping systems and alleviate the high cost associated with lateral support systems. In the present study, an 

aerodynamic shape optimization procedure is developed by combining Computational Fluid Dynamics (CFD), 

optimization algorithm and Artificial Neural Network (ANN). The developed procedure utilizes ANN as a surrogate 

model for evaluating aerodynamic properties, which is pre-trained using two-dimensional CFD analysis. The current 

study investigates the validity of the developed procedure by conducting a high accuracy, three-dimensional Large 

Eddy Simulation (LES) based analysis on the optimal building shapes. It was observed that utilizing two-dimensional 

CFD simulations in the optimization procedure can help identify effective cross-sections of tall buildings. 
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1. INTRODUCTION 

Enhancing resiliency and sustainability of buildings requires a climate responsive design procedure. For example, 

wind is the governing design load case for typical tall buildings. Huge amount of resources is drawn to control loads 

and vibrations caused by wind (Kareem et al. 1999). A large portion of those expenses and materials can be saved by 

improving the aerodynamic performance of tall buildings. This improvement can be reached by modifying the outer 

shape of tall buildings locally at the corners or globally over the height and the width of the building (Kwok et al. 

1988, Tamura and Miyagi 1999, Carassale et al. 2014, Elshaer et al. 2014); the common method for studying 

aerodynamic mitigations of buildings is conducting BLWT tests. This approach is useful to compare different feasible 

shapes of tall buildings. However, a wide part of the search space remains unexplored as the search space is only 

limited to the tested options (Bernardini et al. 2015). In addition, utilizing BLWT tests are considered costly and time-

consuming tool for investigating a wide range of the possible options. On the other hand, CFD can explore more 

alternatives to reach the optimal shape, which is increasing the interest in that subject (Bobby et al. 2013). Thus, the 

aerodynamics shape optimization research is primarily adopting CFD because of its applicability to be integrated with 

optimization algorithms. Kareem et al. (2013a, b and 2014) introduced an innovative tool for tall building shape 

optimization by adopting low-dimensional steady CFD models. This approach is capable of overcoming the 

computational challenge associated with the iterative procedure required for optimization. 

 

In the current study, a new hybrid optimization framework is developed by coupling optimization algorithm, CFD 

solver and Artificial Neural Network (ANN) model. The optimization algorithm is used to search for the optimal 

building shape by altering the geometric parameters controlling the building shape. The unsteady CFD analyses are 
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conducted for selected samples to train the ANN with a database of shapes and corresponding aerodynamic properties. 

The computationally less expensive, ANN model, is then utilized as a surrogate model to estimate the aerodynamic 

properties during the optimization procedure. Using ANN in the optimization procedure eliminates the need for 

sequential iterative computationally demanding CFD analyses, which significantly reduces the required execution 

time (i.e. around 250 times faster than sequential procedure). Finally, a verification stage is conducted by comparing 

the optimal solution to less optimal shapes obtained during the optimization procedure. Consistent Discrete Random 

Flow Generator (CDRFG) technique (Aboshosha et al. 2015) is utilized for synthesizing the inflow. Two illustration 

examples are presented to demonstrate the capability of the proposed framework.  

2. HYBRID AERODYNAMIC OPTIMIZATION FRAMEWORK 

The Hybrid Aerodynamic Optimization (HAO) procedure begins by defining the objective function, which is the 

aerodynamic property aimed to be minimized or maximized, such as drag and/or lift. The value of the objective 

function for each shape depends on the building geometry, which is controlled by the optimization design variables. 

Then, the optimization algorithm is used to find the optimal combination of design variables that produces the highest 

fitness to the objective function. The current study adopts the Genetic Algorithm (GA). GA requires multiple 

evaluations for the objective functions during the iterative procedure of the optimization. The evaluation of the 

objective function is conducted using the ANN model that had been previously trained using 2D-CFD simulations. 

After predicting the optimal building shape, a verification step is carried out by comparing the optimal solution to 

lower fitness shapes using high accuracy 3D-CFD simulations. Figure 1 summarizes the framework of the proposed 

hybrid aerodynamic optimization procedure. 

 

 
Figure 1: Hybrid Aerodynamic Optimization framework  

 

The optimization technique used in the current study is the GA, where design variables are coded as real numbers. 

The major advantage of this technique over the gradient-based classical techniques is its capability of locating the 

global extreme value (i.e. maximum or minimum) without being trapped in a local extreme value. This key capability 

results from starting the search process from multiple points in the search space, instead of moving from a single point 

like gradient-based methods. GA is found to be efficient in estimating the optimal solution in similar complex 

optimization problems such as Zhou and Haghighat (2009) and El Ansary et al. (2011). A complete description of GA 

technique is given by Goldberg (1989) and Davis (1991). The summary of the optimization procedure using GA is 

presented in Figure 2. 
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Figure 2: Genetic Algorithm flowchart 

 

Using GA as an optimization technique requires numerous evaluations for the objective function due to having 

multiple initial candidates and many generations. These evaluations become more challenging when the objective 

function is computationally expensive such as CFD analyses. Therefore, a surrogate model can be used for estimating 

the objective function after being trained using a database of building samples and their corresponding objective 

function values resulting from CFD simulations. The utilization of a surrogate model in the optimization procedure 

will (1) significantly reduces the computational cost, (2) eliminates the need for direct integration of CFD solver within 

the optimization procedure and (3) facilitates the use of any available experimental BLWT results in conjunction with 

the CFD database. In the current study ANN model is adopted as a surrogate model for objective function evaluation. 

This numerical model is commonly used to estimate output values depending on input values after being trained by a 

database of inputs and outputs. Thus, in an optimization problem, a well-trained ANN model will result in a reliable 

estimate for objective function. The utilization of ANN as an alternative for objective function evaluation was also 

reported in other optimization problems such as natural ventilation (Zhou and Haghighat, 2009). ANN was previously 

adopted by the authors in optimizing a building shape for reducing wind drag (Elshaer et al. 2015a) and controlling 

the building vibrations due to wind (Elshaer et al. 2015b). 

3. ILLUSTRATION OPTIMIZATION PROBLEMS 

In the current study, two optimization problems are conducted to examine the efficiency of the proposed optimization 

framework. Problem 1 aims to find the optimal tall building cross-section that reduces the wind drag forces, while 

Problem 2 targets to find the optimal cross-section reducing the wind lateral vibration. Thus, the objective functions 

are set to be the mean drag coefficient (𝐶𝐷̅̅̅̅ ) and the standard deviation of the lift coefficient (𝐶𝐿′) in problem 1 and 2, 

respectively. For each combination of design variables (candidate), the objective function is defined to be the critical 

wind direction. The 𝐶𝐷 and 𝐶𝐿 are evaluated using Eq. [1]. The basic building cross-section is chosen to be a square 

of 50 mm side length similar to previous wind tunnel studies from the literature (Tamura et al. 1998, Kawai 1998, 

Tamura and Miyagi 1999). The design variables (v1 and v2) are defined to control the corner shape following Eq. [2]. 

Figure 3 shows the geometry parameters of the tall building cross-section. In order to the building shape in an accepted 

architectural shape, lower bound (LB) and upper bound (UB) are set for each design variable. For v1, LB and UB are 

set to be 0.01 and 0.2, respectively. While for v2, they are set to be -1.0 and 2.0. 
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where 𝐹𝐷 and 𝐹𝐿 are the along- and across- wind forces, respectively, ρ is the air density, 𝑣𝑟𝑒𝑓is the reference velocity 

at the building height and 
pA is the building projected cross-section area. 

1 2[2] ,
c a

v v
L c

    

 
Figure 3: Geometric parameters of the study section 

 

In order to train the ANN, CFD analyses are required for training samples to build a database of design variables, 

wind angle of attack (AOA) and the corresponding objective function values. The training samples are selected to be 

random combinations of design variables and AOA to capture the variability of the ANN outputs (objective function 

values) with the inputs (design variables and AOA), as shown in Figure 4. After selecting the required training 

samples, an initial graphics exchange specification (iges) file is generated for each input sample using AutoLisp 

(AutoCAD) to be readable for the CFD solver. (STAR-CCM+ v.10.06) package is utilized to solve the CFD analyses 

using the SharcNet high performance computer facility at the University of Western Ontario. Time history data for 𝐶𝐷 

and 𝐶𝐿 are extracted from executed models to evaluate 𝐶𝐷̅̅̅̅  and 𝐶𝐿′. A MATLAB code is utilized to automate the 

procedure of selecting samples, generating (iges) files, building CFD models, submitting jobs for SharcNet and 

extracting the output from CFD models.  

 

 
Figure 4: Training samples for Artificial Neural Network model 

 

Two-dimensional Large eddy simulation (LES) is conducted for each sample using a length scale of 1:500, time scale 

of 1:100, and a uniform inlet velocity of 10 m/s. The outlet is considered to be a pressure outlet. Top, bottom and the 

two sides are assigned a symmetric plane. All the building faces are assigned as “No-slip” walls. The total number of 

mesh cells in each model was more than 200,000 cells. The polyhedral mesh size was less than (L/20), where L is the 

width of the building. The dimensions of the employed computational domain follow the recommendation of COST 

2007 guidelines Franke et al. 2007. The dynamic Sub-Grid Scale model by Smagornisky (1963) and Germano et al. 

(1991) is used to account for the turbulence. In order to ensure the convergence and the accuracy of the solution, 

Courant Friedrichs-Lewy (CFL) is maintained less than 1.0 by setting the sol time step to be 0.0005 sec (i.e. maximum 

CFL ~ 0.5 at the top of the building). Each simulation is resolved to 1000 time steps representing 0.5 second in model-

scale (i.e. 0.8 minute in full-scale). 
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A database of 200 samples is utilized to train the ANN model for evaluating the objective function. This database is 

formed of different combinations of v1, v2, AOA and the corresponding objective function values obtained from the 

CFD analyses. 70% of the samples are used to train the ANN, while 30% are used to validate and test the developed 

model. Figure 5 shows the error distribution and the regression plot of the ANN model. The error in objective function 

evaluation using ANN model doesn’t exceed 5% in 60% of the utilized database. The regression coefficient between 

the developed model and the fitting database is found to be 0.979. These accuracy parameters reflect the capability of 

ANN as a fitting tool.  

 

Figure 5: (a) Error distribution and (b) regression plot for the ANN model  

4. RESULTS AND VERIFICATION OF THE OPTIMIZATION PROBLEMS 

The optimization procedure is conducted for the two optimization problems until the optimal solutions are obtained 

after 40 generations. Figure 6 shows the fitness curves for the optimization problems where the objective function 

value of the best fitness candidate in each generation is plotted versus the generation number. This figure illustrates 

the improvement of the aerodynamic properties (objective functions) over optimization generations. For optimization 

problem 1, the mean drag coefficient (𝐶𝐷̅̅̅̅ ) of the optimal cross-section is 1.335, which is 30% lower than that of sharp 

edge square. While for problem the standard deviation of the lift coefficient (𝐶𝐿′) of the optimal solution is 0.503. The 

optimal solution lowered the 𝐶𝐿′ by 24% than that of sharp edge square. 

 

 
Figure 6: Fitness curves for the (a) drag and (b) lift optimization problems 

 

So as to verify the obtained optimal solution, additional three cross-sections of lower fitness are selected from the 

fitness curve in each optimization problem to be compared to the optimal solution. Figure 7 shows the design variables 
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of the selected cross-sections as well as the optimal cross-section for drag and lift optimization problems. These cross-

sections are investigated using three-dimensional CFD simulations to verify the aerodynamic improvement resulted 

from the optimization procedure. Figure 7 also shows the surface plots of the objective functions evaluated using the 

ANN model. It can be noticed that the optimization algorithm is able to locate the global optimal solution without 

being trapped in a local minimum. It is noticed that the ANN model is found to be capable of fitting objective functions 

of complex shape, which indicates the efficiency of ANN as a surrogate model for objective function evaluation 

 

 

 

 

 

 

 
Figure 7: Selected cross-sections from (a) drag and (b) lift optimization problems; surface plot for the ANN model 

of the (c) mean drag and (d) fluctuating lift coefficients 

 

Three-dimensional LES are conducted for the optimal and the selected cross-sections to verify the accuracy of low-

dimensional models and ANN in HAO procedure. The used length and time scales are 1:400 and 1:100, respectively, 

with a mean wind velocity of 10 m/s at the building height. Computational domain dimensions are chosen based on 

the recommendation of COST (2007), Frank (2006) and Dagnew and Bitsuamlak (2013). CDRFG technique is utilized 

to generate a turbulent inflow because of its proven accuracy for isolated (Aboshosha et al. 2015) and complexly 

surrounded (Elshaer et al. 2016) tall buildings. The generated wind velocity and turbulence profiles are following 

ESDU 2011 assuming open terrain exposure. Figure 8 shows the velocity, the turbulence intensity and the turbulence 

length scale profiles used for generating the inflow fields using CDRFG technique. The sides and the top of the 

computational domain are assigned as a symmetry plane boundary condition, while the bottom of the computational 

domain and all building faces are defined as no-slip walls. Figure 9 shows the computational domain dimensions and 

the boundary conditions for the LES.  

 

Polyhedral control volumes are used to discretize the computational domain. The utilized grid sizes are divided into 

three zones based on the flow structures that required to be captured. Zone 1 is located away from the building of 

interest where the grid size is maximum. Zone 3 is located close to the building of interest where finer grid size is 

utilized to capture important flow details of in the wake zone and the zone around the study building. Zone 2 is located 

between zone 1 and 3 where intermediate grid size is used. The employed grid zones and sizes are selected similar to 

those adopted by the authors in Elshaer et al. (2016). A number of 15 prism layers parallel to the study building 

surfaces with a stretching factor of 1.05 is utilized in zone 3 satisfying the recommendations by Murakami, COST and 

Tominaga et al. Figure 9shows the utilized grid in the LES for the current study.  
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The simulations are conducted using a commercial CFD package (STAR-CCM+ v.10.06) employing LES with 

dynamic sub-grid scale model by Smagornisky (1963) and Germano et al. (1991). Each simulation is resolved for 

4,000 time steps representing 2 seconds in model-scale (i.e. 3.5 minutes in full-scale). SharcNet high performance 

computer (HPC) facility at the Western University is utilized for conducting the numerical simulations. The 

computational time required for each simulation is 3 hours on 128 processors. 

 

 

Figure 8: (a) velocity, (b) turbulence intensity and (c) turbulence length scale profiles used for inflow generation 

using CDRFG technique 

 
Figure 9: Computational domain dimensions and boundary conditions and Grid resolution utilized for the 3D-CFD 

simulations 

 

So as to compute the building responses for different cross-section shapes, the time histories of the base moments are 

extracted from the LES. Figure 10a shows the time histories of the normalized along-wind moment for the cross-

sections from the drag optimization problem, while Figure 10b shows the time histories of the normalized across-wind 

moment for the cross-sections from lift optimization problem. The base moments are normalized using Error! 

Reference source not found.. It can be noticed that the along-wind moment is decreasing for higher drag fitness 

cross-sections, while the fluctuation in the across-wind moments decreases for higher lift fitness cross-sections. 

 

2 2 2 2 21 1 1
[3] , ,

2 2 2
yref h y xref h x zref h x yM V B H M V D H M V D B H      

 

where 
hV is the mean velocity at the building height,   is the air density which is taken equal to 1.25 kg/m3, By is 

the building width (normal to wind direction) and Dx is the building depth (along wind direction) 
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Figure 10: Base moment time histories around (a) x-axis (along-wind) of cross-sections from drag optimization and 

(b) around y-axis (across-wind) of cross-sections from lift optimization 

 

Figure 11 shows the smoothed Power Spectral Density (PSD) plots, which illustrates the energy distribution 

corresponding to each frequency. The PSD plots are computed for the optimal shapes and the other selected cross-

sections from both optimization problems. As shown in this figure, the aerodynamic improvement can be observed 

for the optimal solutions compared to the less fitness sections. For the lift optimization problem, it is also noticed that, 

the optimal section (L4) has a broader peak than the other cross-sections, which reflects the reduction in the energy 

associated with the vortex shedding frequency. 

      

Figure 11: Base moments spectra (a) around x-axis (along-wind) of cross-sections from drag optimization and (b) 

around y-axis (across-wind) of cross-sections from lift optimization 

 

PSD are used to evaluate the dynamic responses for different cross-sections using the method described by Kareem 

and Kijewski 1999 and Kareem and Chen 2005. For the drag optimization cross-sections, the peak top displacement, 

acceleration and the base moment are plotted in Figure 12a in the along-wind direction. The optimal cross-sections 

(D4) shows lower values of dynamic responses than other less optimal cross-sections by 29%. Similarly, for the lift 

optimization, Figure 12b plots the peak top displacement, acceleration and the base moment in the across-wind 

direction. The figure indicates up to 52% reduction in the dynamic responses of the optimal cross-section (L4) 

compared to less optimal cross-sections. This reduction in motion and forces will result in significant reduction in the 

required building materials, damping systems and consequently cost. 
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Figure 12: (a) Peak top floor displacement, (b) acceleration, (c) base moments in the along-wind direction of cross-

sections from drag optimization; (d) Peak top floor displacement, (e) acceleration and (f) base moments in the 

across-wind direction of cross-sections from lift optimization 

5. CONCLUSIONS 

The current study introduces a robust optimization procedure called the Hybrid Aerodynamic Optimization (HAO), 

which combines the Genetic Algorithm (GA), the Computational Fluid Dynamics (CFD) solver and the Artificial 

Neural Networks (ANN) model. During the optimization procedure, ANN model is utilized as a surrogate model for 

objective function evaluation after being trained by a database of aerodynamic properties resulted from two-

dimensional CFD (2D-CFD) analyses. Two optimization problems are demonstrated to examine the proposed HAO 

procedure in optimizing drag and lift by modifying the corner shapes of a tall building. A verification stage is 

conducted to ensure the capability of HAO procedure by conducting three-dimensional CFD (3D-CFD) analyses to 

the optimal shapes resulted from HAO procedure. Based on the proposed aerodynamic optimization procedure and 

presented examples, the following conclusions are deduced: 

 

 Using ANN as an alternative to the expensive CFD analyses in HAO (1) eliminates the need for direct 

integration of CFD solver within the optimization procedure (2) facilitates the use of any available 

experimental BLWT results in conjunction with the CFD database and (3) accelerates the computational time 

required for the optimization process. 

 ANN model is capable of capturing complex variations in the objective function, which results in better 

fitting to the training data (i.e. regression coefficient = 0.979). 

 The two-dimensional LES model provides satisfactory accuracy for comparing local (corner) modifications 

in addition to significant reducing in the required computational time. 

 Despite the multiple extreme values in the objective function, Genetic Algorithm (GA) is capable of 

estimating the global optimal solution without being trapped in a local extreme value. 

 For the drag optimization problem, the mean drag coefficient (𝐶𝐷̅̅̅̅ ) is lower by 30% for the optimal shape 

compared to the sharp edge corner. While in the lift optimization problem the standard deviation of the lift 

coefficient (𝐶𝐿′) is reduced by 24% for the optimal corner compared to the sharp edge one. 
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