
RESILIENT INFRASTRUCTURE 
June 1–4, 2016 

 

 

 

 

 

###-1 

 

AN APPROACH TO CLASSIFICATION OF NATURAL DISASTERS BY 

SEVERITY 

H. Jithamala Caldera 

University of Calgary, Canada 

 

S. C. Wirasinghe 

University of Calgary, Canada 

 

L. Zanzotto 

University of Calgary, Canada 

ABSTRACT  

Existing scales for natural disasters describe severity in terms of intensity. Intensity scales are not highly correlated 

with impact factors such as fatalities, injuries, homelessness, affected population, and cost of damage. The 

descriptive words for disasters are also not sufficient to clearly comprehend the real magnitude of severity as there is 

no consistent method to distinguish one terminology from another. Further, data collection standards vary among 

countries and, therefore, comparisons across space and time are difficult to make. Several discrepancies between 

various sources of information complicate the interpretation of trends in disaster data. Furthermore, comparing 

different events and obtaining a sense of scale are problematic due to the deficiencies that reduce the quality of the 

data set, and disaster managers may face inconsistencies in identifying the magnitude of a disaster, responding to the 

event properly, and allocating resources for mitigation measures. There is no scale currently that is supported with 

data that can rate the severity of any natural disaster. This ongoing study attempts to develop a multidimensional 

scale. It also proposes a unified way of describing disasters by focusing on clear definitions, analyzing extreme 

events, and developing a set of criteria to make comparisons and rank natural disasters based on their impact, to help 

governments and relief agencies respond when disaster strikes. An initial severity scale based on fatalities is used to 

compare and rate disasters such as earthquake, tsunami, volcano and tornado. This concept can be applied to any 

type of disaster including windstorms, snowstorms, and wildfires.  

 

Keywords: Natural Disasters; Disaster definitions; Classification; Severity; Impact of disasters 

1. INTRODUCTION 

Natural disasters come in all shapes and sizes ranging from a community fire to a large-scale tsunami. Currently, 

existing scales for natural disasters define severity levels in terms of intensity. Overall, intensity levels are in fact not 

the best way to describe the severity levels of a disaster because they are an indication only of the strength but not 

the impact of a disaster. The impact depends on where a disaster occurs, e.g. a populated city or rural area. In 

addition, there are different types of scales for different disasters: Earthquakes are measured using the Richter scale, 

volcanic eruptions using the VEI and Tornadoes using Enhanced Fujita Scale (EF-Scale). However, different types 

of disasters cannot be compared as there is no relationship between among different intensity scales. For example, 

comparing a Richter scale 7 earthquake with the VEI 7 volcanic eruption or with the EF scale 4 tornado impact is 

not possible. Therefore, a common method to compare different types of disasters is of interest. 

 

The descriptive terms for disasters are not sufficient to clearly distinguish the severity level. Natural events that 

cause fatalities, injuries and property damage are identified as emergencies, disasters, calamities, cataclysms, and 

catastrophes. Although these words have increasing levels of seriousness, one observer’s “disaster” might be 
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another’s “catastrophe” or even “calamity” depending on personal feelings towards, and experience of, the event. In 

addition, almost all well-known dictionaries use one term to define another, and the words are used interchangeably. 

Table 1: Definitions of disaster terms. Source; Oxford dictionary of English 3rd edn (Oxford University Press, 2010) 

Emergency Disaster Catastrophe Calamity Cataclysm 

A serious, 

unexpected, and 

often dangerous 

situation requiring 

immediate action. 

A sudden accident 

or a natural 

catastrophe that 

causes great damage 

or loss of life. 

An event causing 

great and usually 

sudden damage or 

suffering; a disaster. 

An event causing 

great and often 

sudden damage or 

distress; a disaster. 

A large-scale and 

violent event in the 

natural world. 

 

 

For example the Oxford Dictionary describes a disaster as a catastrophe, and then defines catastrophes and 

calamities as disasters (Wirasinghe et al., 2013). The definitions of these terms according to the Oxford Dictionary 

are given in Table 1. Further, the vocabulary, context and interpretation of each term is not fixed (Kelman 2008) as 

the meaning of these words change over time.  

 

Obtaining a sense of the real magnitude of a disaster’s severity cannot be comprehended merely using the 

descriptive terms as there is no consistent method to distinguish one term from the other. In addition, the lack of a 

common terminology to identify the scale of the disaster is a major issue in disaster-related information management 

and processing (Hristidis et al. 2010). It can lead to “…inconsistent reliability and poor inter-operability of different 

disaster data compilation initiatives” (Below et al. 2009). In addition, comparing different events and obtaining a 

sense of scale are problematic due to the deficiencies that reduce the quality of the data set, and disaster managers 

may face inconsistencies in identifying a hazard potential, responding to the event properly, and allocating resources 

for mitigation measures (Gad-el-Hak 2008). Also, disaster compensation and insurance policies may not manifest a 

clear basis when there are deficiencies (Kelman 2008). These issues support the need to develop a consistent scale to 

understand the disaster continuum and develop a platform for reliable and transparent data management process that 

facilitates relative comparisons among various degrees of disasters (Löw & Wirtz 2010; Gad-el-Hak 2008). 

 

Figure 1: Algorithm following a destructive event 

 
Figure 2: Example of proportional odds model which 

are parallel in ordinal logistic regression 

 

As a foundation to the science of disaster medicine, de Boer (1990) tried to classify disasters as shown in Figure 1. 

He argued that if the destructive event has causalities and required extra mobilization of medical resources, then the 

event is classified as a disaster. On the other hand if the destructive event does not have any causalities but requires 

extra mobilization for other resources then it is classified as a calamity, otherwise they are accidents. Disaster scope 

has also been presented to differentiate the destructive capacity of a disaster by Gad-el-Hak (2008). As shown in 

Table 2, the disaster scope has five levels, which differentiate the severity of a disaster according to the number of 

*Depending on the medical severity Index 

Yes Yes 

No No 

Yes No 

Destructive Event 

Casualties? 

*Extra 

mobilizati
on medical 

resources? 

Extra 

mobilizati
on other 

resources? 

Disaster Accident Calamity 
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displaced/ tormented/ injured/ killed people or the adversely affected area of the event. However, the ranges 

proposed for casualties and the area affected are arbitrary. Currently, there is no scale that is supported with data that 

can rate any natural disaster. As a solution to above mentioned inconsistencies, an initial scale based on fatalities is 

developed combined with clearly define terminologies to compare different types of disasters in terms of severity.      

Table 2: Disaster scope. Source; Gad-el-Hak (2008) 

Scope  Number of casualties  Geographic area affected 

I Small disaster < 10 or  < 1 km2 

II Medium disaster 10 – 100 or  1 – 10 km2 

III Large disaster 100 – 1000 or  10 -100 km2 

IV Enormous disaster 1000 - 10000 or  100 – 1000 km2 

V Gargantuan disaster >10000 or  >1000 km2 

2. PRELIMINARY ANALYSIS 

The severity of the impact of natural disasters increases with an increase in the impact to humans and their 

possessions and with an increase in intensity of an event for a given population density. Existing scales measure the 

destructive power of the disasters. If existing scales also demonstrate the severity of a given disaster, then there 

should be relationship between the existing scale and the impact parameters such as fatalities, injuries, economic 

damage. Otherwise, a different scale is mandated to measure the severity of a disaster. 

 

The relationship between the available impact parameters with the existing scale have been studied using the data in 

National Oceanic and Atmospheric Administration (NOAA) database for different disasters. As shown in Table 3, 

impacts of a disaster is not highly correlated with the existing scales for volcano, earthquake, tsunami and tornado 

because all the correlation coefficients are less than 0.5. That means there is no evidence that there is a linear 

relationship between impact parameters and the existing intensity scale according to the available data. However, a 

nonlinear relationship between existing scales and impact factors can exist. This hypothesis is tested using 652 

volcanic eruptions records from 4360 B.C. to 2014 A.D. in the NOAA database with five impact factors: number of 

fatalities, injuries, houses damaged, missing people and damage (in million dollars). Volcanic eruptions are 

measured using the VEI scale which is the best currently available factor that distinguishes one eruption from the 

other.  

 

First, it is necessary to see whether there is a relationship between each impact factors before evaluating the 

relationship between VEI scale and the combination of impact factors. Spearman's rho correlation coefficient (ρ) is 

used to observe the correlation because all factors tested are ordinal variables.  Table 4 shows the correlation 

coefficient (ρ) and the number of data points (N) used to calculate ρ for each pair of variable. Damage measured in 

million $ has a very good linear relationship with houses damaged (ρ=0.9). One variable (e.g. number of houses 

damaged) stayed in the model while the other (e.g. damage in million $) is omitted because of the high correlation. 

Damage in million $ has a close relationship with time and inflation, and thus hard to estimate. Hence it is omitted 

from the model. The Number of missing people and number of fatalities are also highly correlated (ρ=0.9). It can be 

observed that the number of pair wise data (N) used to evaluate ρ is fairly low with presence of missing number of 

people. It may explain the higher ρ value for some pairs. Therefore, the number of missing people is also omitted 

from the model. Other pairs, for example fatalities and houses damaged, are not highly correlated but have a 

moderate to good relationship (0.5 ≤ ρ < 0.75). Therefore, fatalities, injuries and houses damaged is selected to see 

the relationship between impact factors and VEI scale. To find the relationships between VEI scale and other impact 

factors that represent the human impact of an eruption, ordinal logistic regression analysis is employed because the 

VEI is an ordinal categorical variable ranging from 0 to 8. In ordinal logistic regression it is assumed that each level 

of VEI is parallel to the other as shown in Figure 2. Different approaches have been tried to select a good 

relationship between VEI and the other variables. Some of the approaches are; 

 

 Different link function (logit, probit, complementary log-log, negative log-log, Cauchit (inverse Cauchy)) 

o The Link Function for the logit model is 

[1] 
 
 

x
jVEIobability

jVEIobability
Log  













Pr

Pr
  ; where j = 1, 2, …, 8 and α, β are regression parameters. 
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 Log transformation of fatalities, houses damaged, injuries 

 Different periods  

o last 32 years (after 1982), after the VEI scale is introduced 

o last 114 years: after 1900, after a significant improvement in recording data 

o last 514 years: after 1500 

 Include/ exclude interaction terms to the model (to address the multicollinearity effect) 

o Fatalities*Houses Damaged 

o Fatalities*Injuries 

Table 3: correlation between intensity scales and impact factors  

Disaster Existing Scale Fatalities Injuries Damage  House Destroyed House Damaged Missing 

Volcano VEI scale 0.33 0.39 0.09 0.33 - 0.45 

Earthquake Richter Scale 0.13 0.285 0.488 0.23 0.237 - 

Tsunami Intensity Scale 0.248 0.134 0.168 0.043 - - 

Tornado EF Scale 0.339 0.366 0.32 - - - 

Table 4: Spearman’s rho correlation coefficient (ρ) and the number of data point (N) for volcanic effects variables 

Variable Missing Injuries Damage Million$ Houses Damaged 

ρ N ρ N ρ N ρ N 

Fatalities 0.90 9 0.71 77 0.54 69 0.50 63 

Missing   0.92 5 0.50 3 1.00 2 

Injuries     0.64 22 0.54 28 

Damage Million$       0.90 53 

Table 5: P-values, criteria for each test and the Pseudo R-Square of individual ordinal logistic models  

 Fatalities Injuries Houses Damaged All p values 

Test of Parallel Lines 0.171 0.801 0.825 >0.05 

Goodness-of-Fit (Deviance) 0.105 0.685 0.888 >0.05 

Model Fitting 0 0.001 0.003 <0.05 

Pseudo R-Square (Cox and Snell) 0.131 0.152 0.113 - 

 

o Houses Damaged*Injuries 

 VEI grouping (lack of data in lower and higher levels of VEI) 

o VEI (6,7,8->5) 

o VEI(0,1->1) and VEI(5,6,7,8->5) 

 

Records of different periods has been analyzed to observe whether there is a difference between the sample before 

and after: 1900 that is after a significant improvement in recording data; and 1982 that is after the VEI scale was 

introduced. To select the best model (relationship) out of the above approaches three different hypothesis tests: tests 

of parallel lines (testing the assumption), goodness of fit tests, and overall model fits, have been conducted at the 

95% confidence level.  

 

Ordinal interval variables of fatalities, injuries and houses damaged individually have formed a good ordinal 

regression models with VEI. The best models are given when the link function is logit as shown in Equation 1; that 

is with the assumption that the residuals are logistically distributed, and some VEI are grouped (VEI 0,1 as VEI 1 

and VEI 5,6,7,8 as VEI 5). P values for the tested hypotheses and the Pseudo R-Square values for models fatalities, 

injuries, and houses damaged individually with grouped VEI scale are showed in Table 5. Calculated p-values for 

the test of parallel lines and goodness of fit test are greater than 0.05 and the calculated p-values for model fitting is 

less than 0.05 for the models fatalities, injuries, and houses damaged individually with grouped VEI scale. Thus, the 

best three models are fatalities, injuries, and houses damaged individually with grouped VEI scale at 95% 



NDM-528-5 

 

confidence level. Table 6, shows the estimated parameters α (threshold) and β (location) in Equation 1 with 

corresponding p-values for the best selected models. All the p-values corresponding to the estimated parameters are 

less than 0.05 in fatalities and injuries models whereas, they are less than 0.1 in the houses damaged model. Hence, 

the estimated α and β in Equation 1 is suitable for the three models at 95% confidence level for fatalities, injuries 

and at 90% confidence level for houses damaged.  

 

The results highlight the fact that individual variables of fatalities, injuries and houses damaged are better than the 

combinations of above variables, in explaining the relationship with VEI. Moreover, one variable become significant 

with the presence of another variable, because of multicollinearity between two variables (e.g. injuries become 

significant with the presence of fatalities, houses damaged become significant with the presence of fatalities and 

houses damaged become significant with the presence of injuries). Therefore, there might be evidence of an 

unexplainable component in this relationship. Prior experience, preparedness, awareness, evolving technology, 

mitigation methods, early warning systems and distance to the original event may minimize the number of fatalities  

Table 6: Parameter Estimates for volcano effects categorised data 

 Fatalities Injuries Houses Damaged 

Estimate P-value Estimate P-value Estimate P-value 

Threshold (α) VEI 1 -1.312 .000 -1.353 .021 -1.440 .037 

VEI  2 .869 .000 1.024 .029 .991 .090 

VEI  3 2.559 .000 2.948 .000 2.515 .000 

VEI  4 4.211 .000 4.918 .000 4.130 .000 

Location (β) .706 .000 .906 .001 .706 .004 

 

 

and injuries although, the magnitude and the intensity of a disaster, may maximize the impact.  The multicollinearity 

effect remains the same for all applied approaches hence the combination of impact variables could not be achieved 

as expected. Therefore, the results shows that VEI scale can only partially evaluate the severity which means a scale 

is required to compare the impact of same disaster and well as to compare different disasters. 

3. INITIAL SEVERITY SCALE 

The impact of disasters on people, facilities, and the economy should be studied in detail to understand the severity 

of a natural disaster. The factors, such as the number of fatalities, injuries, homelessness, affected population, 

affected area, and cost of damage can be considered for a multi-dimensional scale which may provide a technique to 

compare and contrast the impacts of different types of disasters. A one dimensional scale based on fatalities is 

introduced as follows as an initial step. 

 

Extreme value theory helps to study the behavior and the destructive capacity of strong, violent uncontrollable 

disasters which are infrequent. Three different methods, block maxima, Rth order statistics, and threshold, can be 

used to determine the extreme values from a given data set. Extremes are placed in the tail end of the parent 

probability distributions and in this case, the right tail end as the considered extremes are maxima or severe events. 

An extreme value distribution (EVD) is essential to evaluate the probability of extreme disasters.  

 

To understand the disaster continuum, a global level dataset with different types of natural events should be 

considered. Therefore, ten different type of disasters; large scale global disasters such as earthquakes, tsunamis, and 

volcanoes, regional scale disasters such as floods, cyclones, and tornadoes, and local scale disasters such as flash 

floods, forest fires, landslides and lightning, are included in the study. Block maxima method is not suitable because 

it do not give enough data for the analysis and threshold method is not suitable because the extremes which exceed 

some threshold value only consider the large scale disasters but not small scale extremes such as lightning. 

Therefore, Rth order statistic is used for the extreme value analysis to understand the full range of severity. To 

develop a fatality based scale by reflecting the reasonable amount of data from each type of disaster, the 10th order 

statistic is selected. Records of fatalities in the top ten extreme cases for each disaster type are taken as one dataset 

for this purpose. However, only the most extreme seven lightning fatalities were considered because the dataset 
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consists of natural events that cause at least one fatality. The mean and the standard deviation of the 97 disaster data 

for fatalities is 112,135 and 290,807. Figure 3 shows the histogram of fatalities and the best fitted Weibull 

distribution (Equation 2) plotted in the same graph.  

 

[2] 
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Table 7 shows the introduced fatality based disaster scale with ten different levels to differentiate the severity of a 

disaster. The magnitude of an impact of a disaster is evaluated based on the logarithm of the fatalities. Logarithm or 

the base 10 is selected to differentiate the severity levels, intervals, ranges or boundaries for all types of natural 

disasters in the fatality based disaster scale because the probability of a very high classification is low for severe 

natural disasters as the events are rare. More severe disasters have a higher classification according to the 

logarithmic scale, therefore, an increase in the severity ranges by power of 10, as the level increases in the fatality 

based disaster scale, can be justified by the fact that the probability of such events is rare. In addition, the base 10 

measurement is easy to remember and meaningful to differentiate one severity level from the other. Therefore, the 

severity levels in Table 7 introduce a way to measure the severity of a natural disaster. The sample probabilities as 

well as expected probabilities which are evaluated using Equation 2, are shown in Table 7. The ten levels, or 

categories, are labeled with commonly used terms that describe various magnitudes of a disaster from emergency to 

cataclysm. The proposed definitions of these terms: emergency, disaster, catastrophe, calamity and cataclysm in the  

Table 7: Fatality based disaster scale. Source; Caldera & Wirasinghe (2014) 

Type Fatality Range Sample 

Probability 

Expected 

Probability 

Example 

Emergency 1 ≤ F < 10 0 0.021 A small landslide that kills one person 

Disaster Type 1 10 ≤ F < 100 0.031 0.051 Edmonton tornado, Canada - 1987 - 27 

deaths 

Disaster Type 2 100 ≤ F < 1,000 0.268 0.118 Thailand flood – 2011 - 815 deaths 

Catastrophe Type 1 1,000 ≤ F < 10,000 0.175 0.238 Hurricane Katrina, USA – 2005 - 1833 

deaths 

Catastrophe Type 2 10,000 ≤ F < 0.1M 0.216 0.334 Tohuku earthquake and tsunami, Japan - 

2011 - 15882 deaths 

Calamity Type 1 0.1M ≤ F < 1M 0.299 0.203 Haiti earthquake - 2010 – 316.000 deaths 

Calamity Type 2 1M ≤ F < 10M 0.010 0.022 China floods - 1931 – more than 2,500,000 

deaths 

Cataclysm Type 1 10M ≤ F < 100M 0 5.27*10-05 Black death pandemic - from 1346 to 1353 

Cataclysm Type 2 100M ≤ F < 1B 0 1.04*10-11 Super Volcano (e.g. Yellowstone) – less 

than 1 billion estimated deaths 

Partial or Full 

Extinction 

1B ≤ F < 10B 0 0 Meteor strike (diameter > 1.5 Km) - less 

than 1.5 billion estimated deaths 

Pandemic (Avian influenza) – less than 2.8 

billion estimated deaths 
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Figure 3: Histogram of extreme fatalities for ten 

different natural events and the fitted Weibull 

distribution  

 
Figure 4: Histogram of extreme fatalities for volcano 

in block maxima model and the fitted density 

 

In Table 7 types of events are defined according to the following definitions for the existing terminologies on the 

basis of dictionary and commonly accepted understandings. However, using any combination of four of the five 

words to describe a fifth word is carefully avoided. The ordering from lowest to highest in Table 7 is taken into 

consideration, rather than relying on the five words to describe each other. There is an increasing level of 

seriousness as indicated in the definition of the terms using the following methods of designation: to describe 

circumstance, from lowest to highest, ‘event’, ‘disturbance’, ‘upheaval’; to describe the impact, from lowest to 

highest,  ‘damage’, ‘destruction’, ‘devastation’; to describe the injuries, from lowest to highest, ‘serious’, ‘major’, 

‘massive’, ‘uncountable’; and to describe the fatalities from lowest to highest, ‘many’, ‘extensive’, ‘great’, 

‘unimaginable’. 

 EMERGENCY: A sudden natural event that causes damage, injuries and some fatalities 

Table 8: Disaster Classification 

Type Flash 

Flood 

Forest 

Fire  

Lightning Tornado Volcano  Land 

slide 

Cyclone/ 

Hurricane  

Earthquake Tsunami Flood 

Emergency √ √ √ √ √ √ √ √ √ √ 
Disaster Type 1 √ √ √ √ √ √ √ √ √ √ 
Disaster Type 2 √ √ √ √ √ √ √ √ √ √ 
Catastrophe Type 1 √ √ √ √ √ √ √ √ √ √ 
Catastrophe Type 2 × × × × √ √ √ √ √ √ 
Calamity Type 1 × × × × × √ √ √ √ √ 
Calamity Type 2 × × × × × × × × × √ 
Cataclysm Type 1 × × × × × × × × × × 
Cataclysm Type 1 × × × × × × × × × × 
Partial or Full 
Extinction 

× × × × × × × × × × 

 

 DISASTER: A major natural event that causes significant damage, and many serious injuries and fatalities 

 CATASTROPHE: A large scale natural disturbance that causes severe destruction, major amount of injuries 

and extensive fatalities 

 CALAMITY: A very large scale natural disturbance that causes widespread destruction, massive amount of 

injuries and a great loss of life 
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 CATACLYSM: An extremely large scale natural upheaval, that causes widespread devastation, uncountable 

amount of injuries and unimaginable loss of life 

 

The minimum level of the scale, ‘emergency’ is the situation when there is at least one fatality and less than ten 

fatalities. The highest level ‘Partial or Full Extinction’ is defined when there are fatalities exceeding one billion. The 

severity level of the most extreme disaster that occurred, and for which data is available, is categorized as Calamity 

Type 2, however, a Cataclysm Type 1 or 2 disaster with very small probability is expected according to Table 7. The 

disasters such as meteoroid impact has the potential to vary from emergency to the partial or full extinction although 

there is no historical data record. Its range can go from a small meteor strike that explodes in the atmosphere to a 

large asteroid that falls to the earth causing unimaginable impacts. Table 8 illustrate the levels covered by each 

disaster indicated as ’√’ and the levels not covered indicated as ‘x’. In Table 8, the list of disasters has been ordered 

to show the increasing coverage of the scale. According to this classification, local disasters such as flash flood, 

lightning cover the lower levels whereas the disasters with potential regional or global level impacts cover upper 

levels. A flood has the ability to reach the calamity Type 2 level. Local disasters such as flash flood, forest fire, 

lightning and tornadoes go up to the catastrophe Type-1 level. 

3.1 Separate analysis for each disaster 

By using the above fatality based disaster scale, separate analysis for earthquake, tornadoes, tsunamis and volcanoes 

has been done. The volcano disaster is selected to demonstrate the separate analysis for each type of disaster. There 

are 236 volcanoes in the NOAA database which have at least one eruption. 

3.1.1 Block maxima model 

In the block maxima method each volcano is considered as one block and the full lifetime of the volcano is 

considered as the width of each block. Therefore, only the maximum fatality recorded for each volcano is considered 

for extreme value data analysis. For instance, in the volcanic effects for the Mount Tombora 1815 eruption record 

10,000 fatalities, Mount Krakatoa, 1883 eruption record 2,000 fatalities. All the records which do not have at least 

one fatality are not considered because the fatality data which are blank in the database either represent no fatality or 

no record found. Accordingly, extreme fatality recorded eruptions for 136 volcanoes are shown to be distributed as a 

3 parameter Weibull (α=0.33925, µ= 1, σ= 109.04) distribution (Equation 3) with sample mean 1202.81, sample 

variance 4251.75 and the maximum 30,000. Figure 4 shows the histogram of the extreme fatality volcano effects 

and the fitted Weibull (3P) density (dashed line). Rth order statistic method is not used in the volcano study because 

there are enough data (136) for the extreme fatality analysis. 

[3] 
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3.1.2 Threshold model 

Usually, a mean residual plot aids to estimate the threshold, u0. For u> u0, E(X-u/ X>u) is a linear function of u and 

E(X-u/ X>u) is the mean of the values that exceed the threshold, u, for which the sample mean of the threshold 

values above u provides an empirical estimate. These estimates are expected to change the linearity of E(X-u/ X>u) 

at some value of u along the u-axis. The value of u at which linearity changes is the suitable threshold value for 

which the generalized Pareto model is appropriate (Coles 2001). The mean residual plot equals 
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u

, where x(1), …x(nu) consists of the nu observations that exceed u. Figure 5 shows 

the mean residual plot for the number of fatalities. The graph is approximately linear from u=0 to u ≈ 153, beyond 

which it is appears to curve until u ≈ 10,000, whereupon it decays sharply. It is tempting to conclude that there is no 

stability until u = 10,000, after there is approximate linearity. Thus suggest u0 = 10,000, however, there are just three 

exceedances of the threshold u = 10000, too few data to make meaningful inferences. Moreover, the information in 

the plot for large values of u is unreliable due to the limited amount of data on which the estimate and are based. The 

second procedure for threshold selection is to estimate the threshold value approximately equaling it to 1.5  as 

suggested by Hasofer (1996). Accordingly, threshold set at u0 = 26.28 where there are 307 eruption records which 
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has at least one fatality. There are 113 volcano eruptions exceed 26 fatalities and follow the Pareto distribution with 

a shape parameter (α) = 0.41937, and scale parameter (σ) = 27 as shown in equation 4.  

[4] 
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Figure 5: Mean residual plot 

 

 
Figure 6: Histogram of extreme fatalities for volcano 

effects and the fitted Pareto density (dash line). 

3.1.3 Estimated probabilities for severity levels of volcano 

According to the fatality based disaster scale severity boundaries given in Table 7, the estimated probabilities of 

extreme volcano eruptions are calculated using the best fitted Weibull distribution and Pareto distribution as shown 

in Table 9. Sample probabilities of volcano disaster are also calculated for severity levels of fatality based disaster 

scale using the 307 eruption records which has at least one fatality. The severity level of the most extreme volcanic 

eruption for which data is available (450 A.D. -Ilopango, El Salvador, 30,000 fatalities) can be categorized as 

Catastrophe Type 2. However, expected probabilities indicate that volcanic eruptions can be even more destructive,  

for example, 4 in 100,000 eruptions have the ability to reach the calamity type 1 or higher according to the fitted 

Weibull distribution, whereas the estimate is 3 in 100 according to the fitted Pareto distribution. Note that the  

Table 9. Probability of an eruption to be of the given type 

Type Fatality 

Range 

Sample 

probability 

Expected Probability Example 

Block Maxima Threshold 

Emergency 1 ≤ F < 10 0.531 0.35 - Nabro volcano, Eritrea (2011) – 

7 deaths 

Disaster Type 1 10 ≤ F < 

100 

0.225 0.27 0.423* Marapi volcano, Indonesia 

(1975) – 80 deaths 

Disaster Type 2 100 ≤ F < 

1,000 

0.130 0.26 0.358 Pinatubo volcano, Philippines 

(1991) – 450 deaths 

Catastrophe 

Type 1 

1,000 ≤ F < 

10,000 

0.098 0.11 0.136 Lamington volcano, Papua New 

Guinea (1951) – 2942 deaths 

Catastrophe 

Type 2 

10,000 ≤ F 

< 100,000 

0.0163 0.01 0.052 Ruiz volcano, Colombia (1985) 

– 23080 deaths 

Calamity Type 

1 and higher 

100,000 ≤ F 

< 1M 

0 0.00004 0.032 - 

 *27 ≤ F < 100 
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probabilities calculated according to the fitted extreme value distributions, are conditional probabilities given a 

volcanic eruption recorded with at least one fatality. Volcanic eruptions can vary from emergency to the Catastrophe 

Type 2 level. However, an unusual large (super volcanic) eruption has the potential to exceed the above mentioned 

levels. They can possibly cause a calamity or even a partial or full extinction. Expected Pareto probability is higher 

than the expected Weibull probabilities as it consider all the eruptions which have more than 26 fatalities. In 

contrast, Weibull distribution has the full range of expected fatalities although it does not consider all the extreme 

fatality records. Weibull probabilities are closer to sample probabilities than Pareto probabilities. According to the 

fitted Weibull distribution for volcanic eruptions, 35 percent of the eruptions are the Emergency type, 27% and 26% 

eruptions are Disaster type 1 and 2 respectively, 11% and 1% eruptions are Catastrophe type 1 and 2 respectively, as 

shown in Table 9.  

3.2 Combined analysis 

Extreme fatality analysis is conducted for earthquake, tsunami and tornado disasters as well, similar to the above 

volcano eruption extreme fatality analysis. By considering block maxima and threshold models, the probabilities of 

extreme disaster events are calculated for the severity levels introduced in fatality based disaster scale. Table 10 

shows the summarized version of the obtained probabilities for expected extreme volcanoes, earthquakes, tsunamis 

and tornadoes. According to the block maxima method, both earthquakes and tsunamis have 0.2% probability for 

calamity type 2 or higher events. In other words 2 in 1000 extreme tsunamis or earthquakes can have more than 1 

million fatalities, although there are no historical events. Extreme tsunamis have the highest probability to be the 

calamity type 2 compared to volcano, earthquake and tornado according to the threshold model which consider the 

all the worst disaster records. In contrast, tornado has the least probability 0.01% to be Catastrophe Type 2 

compared to worst disaster records of volcanoes, earthquake and tsunamis because they are local events.  

Table 10: Expected probabilities of volcano, earthquake, tsunami and tornado based on block maxima model 
Type Fatality Range Volcano Earthquake Tsunami Tornado 

Weibull Pareto Weibull Pareto Weibull Pareto Weibull Pareto 

Emergency 1 ≤ F < 10 0.35 - 0.24  0.11  0.74 0.949 

Disaster Type 1 10 ≤ F < 100 0.27 0.423* 0.13  0.14  0.14 0.045 

Disaster Type 2 100 ≤ F < 1000 0.26 0.358 0.16  0.26  0.01 0.005 

Catastrophe Type 1 1000 ≤ F < 10000 0.11 0.136 0.24  0.32 77.7# 8*10-4 0.001 

Catastrophe Type 2 10000 ≤ F <0.1M 0.01 0.052 0.18 0.817ǂ 0.16 19.7 6*10-5  ª 1*10-4 ª 

Calamity Type 1 0.1M ≤ F < 1M 4*10-5 0.02 0.05 0.176 0.01 2.3  

Calamity Type 2 

and higher 

1M ≤ F 0 0.012 0.002 0.007 0.002 0.27  

*27 ≤ F < 100; ǂ30000 ≤ F < 100000; and #2000 ≤ F < 10000; ª Catastrophe Type 2 and higher 

4. DISCUSSION 

Three different models: block maxima, Rth
 order statistic, and threshold methods are used to analyse extreme natural 

disasters based on fatalities for the purpose of determining a severity scale and classification. Depending on the 

application, different models are suitable. For example, block maxima estimated probabilities based on a country is 

useful to evaluate the probability of the worst tsunami that local authorities/governments should consider for 

preparation, while block maxima or Rth
 order statistic based on location is useful to evaluate the probability of the 

worst tsunami during the next 150 years that planners should consider. 

 

By using the above fatality based disaster scale introduced in Table 10 and disaster classification in Table 8, it is 

easy to compare and contrast volcanoes, earthquakes, tsunamis and tornadoes. The same concept can be applied to 

any type of disaster including windstorms, convective storms, snowstorms, and wildfires. Moreover, by having the 

expected probabilities according to the historical disasters, disaster managers and emergency respondent personal 

can have a clear sense of scale about the severity of each type of disasters. This knowledge can be used to deploy the 

resources as needed when disaster strikes. 
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5. CONCLUTION 

This study provides an overall picture of the severity of natural disasters, as well as a set of criteria used to make 

comparisons for all types of disasters and to rank them to help governments and relief agencies respond quickly 

when disaster strikes. This is an ongoing research project to develop a multidimensional scale to understand the 

disaster continuum. 
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