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Abstract 

Nephrolithiasis is a common urological disorder. Despite advances in the surgical treatment 

of kidney stone disease, research into its prevention and medical management remain 

stagnant. This is due to lack of viable pre-clinical models to study the disorder. In this 

project, we develop and characterize a robust Drosophila melanogaster model for human 

calcium oxalate nephrolithiasis. Using this model, we have developed intravital imaging 

techniques to study stone formation and novel high-throughput drug screening platforms. We 

successfully demonstrate calcium oxalate stone formation by sodium oxalate and ethylene 

glycol supplementation, with subsequent intravital imaging using bisphosphonate based 

fluorescent probes. Screening of 360 experimental compounds has revealed 6 compounds 

that inhibit calcium oxalate stone formation. We intend to further investigate the mechanism 

of action of these compounds, use them as a starting point for rational drug design and to 

develop Drosophila melanogaster models for other kidney stone types.  
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Chapter 1  

1 Introduction 

Nephrolithiasis is a common urological disorder with an estimated prevalence of 8.4% in 

North America1. Studies such as the one conducted by the National Health and Nutrition 

Examination Survey (NHANES) reveal that the prevalence is steadily rising, from a 

modest 3.8% reported in 1976 to 8.4% in 20102. It is estimated that 19% of men and 9% 

of women will develop a symptomatic stone during their lifetime1. Although mortality 

rates due to stone disease are low, the morbidity is significant and is exacerbated by stone 

recurrence, with rates as high as 50% in the first five years and 80% throughout life3.  

Kidney stone disease also continues to be a significant healthcare burden. The total 

spending on nephrolithiasis related healthcare is estimated at a staggering US$ 5.3 billion 

annually, with 3.1 million work days lost, that account for an additional indirect cost of 

US$ 775 million annually4,5. 

1.1 Kidney Stone Subtypes 

The vast majority of kidney stones are calcium based and account for 75% of all stones 

formed6. Of these, 80% are calcium oxalate and the rest are calcium phosphate7.  

Although some stones are pure, most are heterogeneous in composition, which reflect the 

complex pathophysiological pathways that govern stone formation. Most calcium oxalate 

stones also contain small quantities of hydroxyapatite and uric acid6,8. Uric acid stones 

are the second most common, accounting for 8-14% of stones formed. 5% of these are 
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pure uric acid and others contain small amounts of hydroxyapatite and struvite6. The third 

most common is the bacterial infection associated struvite (magnesium ammonium 

phosphate) stone at 2-6%9. The purely genetic cystine stone accounts for the remainder 2-

3%10. Xanthine, an additional genetic stone subtype, is extremely rare and makes up only 

0.1% of total stone burden11. Occasionally, high doses of drugs such as triamterene, 

sulphonamides and indinavir can precipitate and form crystals in the urinary tract12. 

The distribution of various stone types in a typical North American population are 

illustrated in Figure 1.  

 

Figure 1: Distribution of stone subtypes in a North American population. 

1.2 Pathogenesis of Kidney Stone Disease 

The pathogenesis of kidney stone disease is complex and often poorly understood. It 

encompasses a wide variety of genetic and metabolic imbalances such as hypercalciuria 

and hyperoxaluria plus environmental factors such as the diet that collectively regulate 

75%	
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urine composition13. Generally, the underlying defect in all stone types is the 

dysregulation of urinary composition and pH that allows for the super saturation and 

precipitation of its constituents6.  Other common risk factors include urinary stasis due to 

obstruction, low fluid intake that results in a concentrated urine and dietary trends such as 

an increased consumption of salt and protein6,7,9. Subtle factors such as climate, 

temperature changes and geographic location have also been implicated in the rising 

prevalence of kidney stone disease14,15. 

1.2.1 Calcium Oxalate 

Calcium oxalate nephrolithiasis is a complex genetic disorder that is characterized by 

multiple metabolic abnormalities and environmental factors such as the diet16,17.  

Hypercalciuria (a urinary calcium excretion of > 6.24 mmol/day in women and > 7.49 

mmol/day in men) is the most common metabolic abnormality identified in 30-60% of 

calcium stone formers18,19. Two thirds of these patients present with ‘idiopathic’ 

hypercalciuria and have no identifiable cause. Idiopathic hypercalciuria can either be due 

to increased intestinal absorption (absorptive), increased bone turnover (resorptive) or 

increased renal losses (renal hypercalciuria), with most patients exhibiting more than one 

abnormality. The pathophysiology of absorptive hypercalciuria is varied, with some 

patients exhibiting signs of vitamin D dependent hypercalciuria characterized by 

increased circulating levels of activated vitamin D, that causes increased intestinal 

absorption of calcium and increased bone resorption through osteoclast activation20–22. A 

subgroup of hypercalciuric patients have vitamin D independent hypercalciuria, which is 

most likely due to an up regulation of the vitamin D receptor (VDR), as shown in a 
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variety of animal studies23,24. Renal leak hypercalciuria is less common and caused by 

defective tubular reabsorption of filtered calcium which leads to increased parathyroid 

hormone release, increased activated vitamin D and increased intestinal calcium 

absorption25. Chronic acidemia, such as that which occurs in renal tubular acidosis, also 

increases the risk of calcium oxalate stone formation by causing hypercalciuria, 

hypocitriuria and an acidic urine26. The most common form of resorptive hypercalciuria 

is primary hyperparathyroidism, which leads to increased levels of parathyroid hormone 

causing increased bone turnover and increased intestinal calcium absorption16,27. 

Hypophosphatemia has also been implicated in the development of hypercalciuria by 

stimulating the activation of vitamin D28. Mutations in the sodium-hydrogen exchange 

regulator factor 1 (NHERF1) have been identified in several patients as a possible cause 

for renal phosphate leak leading to hypophosphatemia29,30.  

Hyperoxaluria (a urinary oxalate excretion of > 0.5 mmol/day) is detected in 10-50% 

patients and is an independent risk factor in calcium oxalate stone formation31. 

Endogenous oxalate overproduction occurs in inborn errors of metabolism such as 

primary hyperoxaluria or metabolic breakdown of excess dietary vitamin C32–35. 

Increased intestinal absorption of oxalate occurs in low calcium diets or due to increased 

intestinal calcium absorption, such as in hypercalciuric patients or small bowel disorders 

like Crohn’s disease, surgical bowel resection and other malabsorption syndromes36–38. 

Normally, calcium in the gut forms complexes with oxalate to increase enteric clearance. 

A reduction of calcium in the gut leads to the increased absorption of oxalate and 

concomitant oxaluria39,40. Recently, the alteration of the gut microbiota with the loss of 
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Oxalobacter formigenes, an oxalate degrading bacteria, has also been implicated in 

increasing the risk of calcium oxalate stone formation41–44.  

Hyperuricosuria is also commonly detected in patients with calcium oxalate stones45. 

However, the link between high levels of uric acid and calcium stone formation has not 

yet been established19. Previous theories for uric acid crystals serving as a nidus for 

calcium oxalate deposition have since been refuted6. 

Other mechanisms by which calcium oxalate stones form are reductions in the levels of 

urinary crystallization inhibitors such as citrate and the endogenously produced tamm-

horsfall protein (uromodulin), nephrocalcin and uropontin46,47. Citrate acts by forming 

soluble complexes with calcium to increase renal clearance and prevent binding to 

oxalate48. Citrate also inhibits crystal aggregation, an important step in stone formation49. 

Hypocitriuria (a urinary citrate of < 1.67 mmol/day) is associated with an increased risk 

of calcium stone formation and can occur in isolation or with other metabolic 

abnormalities. Hypocitriuria is common in acidemic states such as chronic diarrhea, renal 

tubular acidosis and certain drugs. Diets high in protein also result in lower levels of 

urinary citrate50,51. 

Diet also plays an important role in the formation of calcium oxalate stones by regulating 

the urinary composition. Low fluid intake leads to concentration of the urine and super 

saturation of calcium and oxalate. By far, the most effective intervention for reducing the 

risk of stones is increasing fluid intake52. Alcohol and sugar sweetened drinks are 

associated with increased risk of stone formation, while orange and lemon juice that are 

rich in citrate, plus tea and coffee reduce the risk of stone formation53–56. Diets high in 
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sodium and animal protein increase the risk of stone formation50,57. Diets high in 

potassium and phytates seem to lower risk58,59.  

1.2.2 Uric Acid 

Uric acid, which is a byproduct of normal purine metabolism, has two dissociable protons 

and generally exists as hydrogen urate that forms soluble salts with sodium, potassium 

and ammonium60. The two main pathological features that predispose a patient to uric 

acid stone formation are an acidic urinary pH and increased amounts of uric acid in the 

urine. Alterations in the urinary pH and a high concentration of uric acid drive the 

conversion of soluble hydrogen urate into the relatively less soluble uric acid.  

H! + Urate → Uric Acid 

The effects of urinary pH on uric acid solubility are dramatic, with the solubility of 

dropping to 0.09 mmol/l at a pH of 5 compared to 1.2 mmol/l at a pH of 760–62.  The 

association between urinary pH and uric acid crystal precipitation explains the high 

prevalence of uric acid stones in patients that have a low fluid intake, chronic diarrhea or 

small bowel disease that cause a loss of bicarbonate and a concentrated acidic urine13,36. 

Uric acid stones are also more prevalent in populations that live in hot arid climates63. 

Recently, type 2 diabetes and metabolic syndrome have also been implicated in the 

increased risk of forming uric acid stones by reducing ammoniagenesis and reducing 

urinary pH64,65. Diets rich in red meat can increase the risk of forming uric acid stones by 

providing excesses of methionine which is metabolized to sulfuric acid, which in turn 

decreases the urinary pH50.  
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Hyperuricosuria can also contribute to uric acid stone formation with extremely high 

urinary levels causing crystallization of uric acid regardless of the urinary pH66. This is 

common in patients with gout, myeloproliferative disorders, tumor lysis syndrome and 

other genetic enzyme defects such as glucose-6-phosphatase deficiency67,68.  

1.2.3 Struvite 

Struvite is a hard mineral complex composed of magnesium ammonium phosphate69. It 

generally forms in alkaline conditions that cause a decrease in the solubility of phosphate 

which then forms complexes with other urinary constituents such as magnesium and 

ammonium. The underlying pathology of struvite stones are infection with urea splitting 

bacteria such as Klebsiella, Proteus, Pseudomonas and Staphylococcus70,71. These 

bacteria produce Urease which split urea into ammonia and carbon dioxide.  

Urea → 2NH! + CO! 

The ammonia combines with water to produce ammonium and a hydroxyl ion which 

increases urinary pH.  

NH! + H!O → NH!  +  OH! 

Struvite stones often grow very rapidly forming staghorn stones that cause the complete 

occlusion of the renal collecting system. Females and patients at higher risk of urinary 

tract infection commonly form struvite stones72,73.  
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1.2.4 Cystine 

Cystine, which is a homo-dimer of the amino acid cysteine, is a rare cause of kidney 

stone disease in humans. It is caused by the impaired proximal tubular reabsorption of 

filtered cystine due to mutations in the dibasic amino acid transporters SLC3A1 and 

SLC7A910. The cystine transporter belongs to a family of heteromeric amino acid 

transporters, with the SLC3A1 gene coding for the heavy rBAT unit and the SLC7A9 

coding for the light b0,+AT unit74. Both genes are required for proper localization and 

transit of the transporter to the cell apical membrane. The defective transporters cause 

abnormalities in renal and intestinal cystine absorption leading to high concentrations of 

cystine in the urine with super saturation and crystallization75,76. Patients with cystine 

nephrolithiasis usually present at an early age and have a protracted disease history77.  

1.2.5 Miscellaneous 

Xanthine nephrolithiasis, an extremely rare form of kidney stone disease, is caused by 

mutations of the enzyme Xanthine dehydrogenase that catalyzes the conversion of 

hypoxanthine to xanthine and xanthine to uric acid11,78. This leads to xanthinuria with 

super saturation and precipitation of xanthine crystals.  

Routinely prescribed medications can, on occasion, cause crystal deposition and 

nephropathy. Drugs such as sulfadiazine for toxoplasmosis, acyclovir for herpes zoster 

and indinavir, a protease inhibitor for HIV infection, reach high concentrations in the 

renal tubules and due to their relative insolubility precipitate and form small stones79. 
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1.3 Presentation of Kidney Stone Disease 

Pain is the most common symptom associated with kidney stone disease, although a 

subset of patients have clinically asymptomatic nephrolithiasis and are diagnosed 

inadvertently during radiologic imaging of the abdomen for unrelated causes. Patients 

with asymptomatic nephrolithiasis that have not experienced an episode of renal colic in 

the past, are less likely of becoming symptomatic in the future80. However, the inverse is 

true in patients with a previous history of kidney stones that are diagnosed with 

asymptomatic nephrolithiasis. 

The pain associated with kidney stones is usually colicky in nature and may wax and 

wane or present acutely as an unrelenting severe flank pain. Unilateral flank pain and 

costo-vertebral angle tenderness are common in stones that cause obstruction in the renal 

pelvis or upper ureter. Stones that cause obstruction in the lower ureter cause pain that 

radiates to the groin, testicle or labium. Patients with acute ureteric obstruction usually 

present with excruciating pain, accompanied by nausea and vomiting. Persistent vomiting 

can lead to metabolic alkalosis and electrolyte abnormalities.  

 

Both gross and microscopic hematuria occur in approximately 70% of patients with 

nephrolithiasis, however, the absence of hematuria in a patient with flank pain does not 

rule out kidney stone disease81–84. The time of onset of acute pain seems to correlate 

positively with the presence of hematuria, with hematuria being present in 95% of 

patients at day one and in only 68% at day three82.  
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Besides pain and hematuria, patients can present with passage of fine gravel or small 

stones. Persistent obstruction of the urinary tract can lead to kidney dysfunction and 

permanent damage. Occasionally, patients may also present with fever due to 

superimposed urinary tract infections caused by urinary stasis and obstruction. Kidney 

stones are known to harbor virulent bacteria and are thus a nidus for infection85.  

1.4 Current Animal Models for Human Nephrolithiasis 

Despite being a significant healthcare burden and a risk factor for chronic renal disease, 

research into and our understanding of the mechanisms that govern stone formation 

remain limited. This is mostly due to the lack of suitable pre-clinical models that 

recapitulate the pathophysiology of the disorder. An ideal kidney stone disease model 

should be simple, highly reliable and consistent in stone formation, whilst maintaining 

fidelity to the elemental composition of human stones. Additionally, these models must 

also be amenable to non-invasive imaging and permit the investigator to antagonize stone 

formation in order to assess the value of potential therapeutic agents.  

Historically, rats have been the animal of choice for studying nephrolithiasis, however, 

canine and porcine models also exist86–89. Although the kidneys of these animals have 

been used in the past for understanding renal structure and physiology, there are 

fundamental anatomical differences that make them poor candidates as models for kidney 

stone disease. Their kidneys are generally smaller in size, unipapillate compared to the 

multipapillate human kidneys and have fewer nephrons and tubules which make them 

incapable of forming large kidney stones90. Additionally, spontaneous nephrolithiasis in 
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rats is extremely rare and there are currently no reports of spontaneous stone formation in 

the urinary tracts of these animals91.  

Stone formation in the rat model of nephrolithiasis is induced by the administration of 

lithogenic agents such as sodium oxalate, ammonium oxalate, hydroxy-L-proline, 

ethylene glycol and glycolic acid, all of which produce hyperoxaluria88,92–95. Most of the 

lithogenic agents are administered either by supplementation in the diet or through 

intraperitoneal injections, which can prove cumbersome86,93,94,96. Additionally, the 

administration of these lithogenic agents does not accurately recreate the metabolic 

milieu required for stone formation and are often nephrotoxic leading to renal failure and 

death91,97. The size, amount and duration of calcium oxalate crystal excretion is directly 

related to the duration of lithogenic administration, with crystal formation ceasing after 

the lithogenic agent is withdrawn98. Most of the calcium oxalate crystals form in the 

tubular lumina and are non-adherent to the renal epithelium, subsequently being washed 

out in the urine98.  

Rat models of nephrolithiasis are also highly unreliable, with stone formation following 

unpredictable and protracted time lines. Low dose concentrations of 1% w/v ethylene 

glycol produced calcium oxalate nephrolithiasis in only 3 of 13 male Sprague-Dawley 

rats and 0 of 12 females at 4 weeks99. Combinations of lithogenic agents produced similar 

results. Rats administered a combined treatment of 0.75% w/v ethylene glycol and 2% 

w/v ammonium oxalate produced crystalluria at 3 days and nephrolithiasis at 7 days. 

These stones were generally < 200 µm in size and only found in the bladder aspirate100–

102.  Similar results were obtained in more recent studies using ethylene glycol and 

glyoxylate administration. Minimal crystal deposition was seen at 1 and 2 weeks in rats 
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fed a 1% w/v ethylene glycol diet, with intraperitoneal injections of glyoxylate slightly 

improving results94. 

In addition to the above drawbacks, the only method to accurately verify and monitor 

stone deposition, is to sacrifice the animals. This causes an unnecessary loss of animals 

and increased costs. Similarly, the use of this model does not allow the investigator to 

visualize stone burden in vivo, limiting their ability to identify therapeutic targets or 

evaluate the efficacy of a potential therapy. The infrastructure requirements and costs 

associated with rat based studies make large scale studies unfeasible. Small sample sizes 

used in most studies lead to questionable results at best. Also, the processing of the 

kidney tissue does not allow for the collection of stone material, which leads to 

difficulties in verifying stone composition.  

Currently, the majority of rat models aim to elucidate the mechanisms involved in 

calcium oxalate stone formation. Although rat models exist for other stone types, such as 

cystine, these models suffer the same setbacks described above103. Further work is needed 

to refine the current animal models for human nephrolithiasis. 

In light of the above limitations and the cost prohibitive nature of working with current 

animal models, the urological community has been prompted to develop newer, more 

novel models for human nephrolithiasis.  
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1.5 The Drosophila melanogaster Model of Human 

Nephrolithiasis 

Drosophila melanogaster (DM) has recently emerged as a viable model for human 

nephrolithiasis104. Although it might seem like an unlikely candidate at first, it shares a 

lot in common with humans and has many advantages over current animal models.  

1.5.1 Advantages of Drosophila melanogaster 

Drosophila is a versatile model organism that has been studied for over a 100 years, with 

novel research carried out in the field of genetics, including translational research in 

human disorders105. It is a proven translational and drug discovery model for numerous 

conditions such as Alzheimer’s disease and diabetes106. Furthermore, discoveries using 

Drosophila have improved our understanding of a variety of human renal diseases. For 

example, research in Drosophila identified the gene vha55 that encodes for the B subunit 

of the V-ATPase pump, mutations of which lead to renal acidification and death107,108. 

This work preceded the discovery of sub-lethal mutations in human V-ATPase pumps as 

a cause for renal tubular acidosis109. Xanthinuria, a rare cause of nephrolithiasis, which is 

due to mutations in the enzyme Xanthine dehydrogenase (XHD), was unknown until the 

cloning of homologs in Rosy and Maroon-like Drosophila, leading to the discovery of 

mutations in the human molybdenum cofactor sulfurase gene78. Similarly, other genes 

such as dPrestin, which encodes for the transmembrane oxalate transporter SLC26A5 in 

Drosophila, have been implicated in the formation of calcium oxalate stones110. 
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The Drosophila genome (180 million base pairs) is fully sequenced and highly conserved 

with humans. Despite millennia of divergent evolution, over 70% of DM genes have 

human homologs111. These homologs and other gene orthologs for human disorders can 

easily be identified using online tools such as the DIOPT-DIST database112. An 

exhaustive online database for all fly genes and microarray expression data are freely 

available to the research community113,114.  Additionally, the fly genome is easily 

modifiable using established genetic tools such as the GAL4/UAS system115. This bi-

partite system allows for simple mating based schemes that can spatio-temporally control 

the expression of the Drosophila genome. Through systematic mutagenesis and P-

element insertion, hundreds of fly lines have been produced that contain upstream 

activation sequences (UAS) and the yeast transcription activator factor (GAL4)116. Two 

fly lines, one containing the UAS construct followed by the gene of interest and another 

expressing GAL4 in a tissue specific pattern, are mated to produce progeny that possess 

both. GAL4 binds to the UAS activating the downstream sequence resulting in either 

gene expression or knockdown through small hairpin RNA interference. 

Drosophila has a short life cycle of 14 days and an adult life span of approximately 40-50 

days, which allows for multiple experiments to be carried out in a short period of time. 

Various strains of DM are freely available and can be mail ordered within days, usually at 

minimal cost (~$20 CAD), through the international stocking centers at Bloomington, 

Indiana, USA, the National Institute of Genetics, Mishima, Japan or the Kyoto Stock 

Centre, Kyoto, Japan. The Drosophila research community is vibrant, with most 

researchers publically sharing their proprietary fly lines. These fly stocks can be 

maintained with minimal reagents and at minimal cost (<$20 CAD per year) which 
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makes their long term use feasible. Fly husbandry is an easy skill that can be learned with 

very little training and does not require an investment in expensive infrastructure. 

Finally, current ethics guidelines exempt the use of invertebrates such as DM, which 

removes the ethical constraints associated with research in current animal models of 

human nephrolithiasis. 

1.5.2 Drosophila Renal Anatomy 

The DM renal system is composed of two components, the nephrocytes and the 

malpighian tubules. The nephrocytes are a distinct group of cells concentrated near the 

esophagus and heart. They filter the insect hemolymph, which bathe the internal organs, 

similar to the human glomerulus. These specialized cells are high adapted and are 

analogous to the podocytes in the human glomerulus (Figure 2). The filtration function 

of human podocytes is highly dependent on the slit diaphragm component proteins such 

as nephrin and NEPH1. Orthologs of both these genes are high expressed in Drosophila, 

loss of which, results in a filtration syndrome similar to congenital nephrotic syndrome of 

the Finnish type117. 
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Figure 2: Schematic diagram comparing vertebrate podocytes to insect nephrocytes. (A) 

Podocyte glomerular filtration barrier with basement membrane (bm), slit diaphragm (sd) 

and foot processes (fp). Ultrafiltration direction is show with red arrows. (B) Insect 

nephrocytes with slit membranes similar to podocytes. Adapted with permission from 

Weavers H. et. al 2010. 

 

DM have 4 malpighian tubules, which are divided into anterior and posterior pairs. These 

tubules dangle freely in the insect hemolymph and coalesce into a common ureter before 

draining into the gut at the junction between the mid and the hind gut (Figure 3). Each 

tubule is approximately 2 mm long and has a 17 µm wide lumen118. The malpighian 

tubules are further divided into distinct segments. The initial segments are generally 

wider and serve as a storage organ for naturally formed concretions of calcium phosphate 

and glycosaminoglycans119. These concretions are thought to be involved in fly calcium 

homeostasis similar to the human skeleton. A short transitional segment is followed by a 

long main segment which is made up of principal cells with interspersed stellate cells that 

collectively take part in ion and solute transport analogous to the human nephron (Figure 

4).  
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Figure 3: The Drosophila melanogaster excretory tract consists of 2 pairs of malpighian 

tubules, 1 anterior and 1 posterior, and are connected to the gut via a common ureter. 

Adapted with permission from Miller J. et. al 2013. 

 

 

Figure 4: Similarities between the human renal nephron and Drosophila malpighian 

tubules. Adapted with permission from Weavers H. et. al 2010. 
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The main segment is mainly responsible for urine production, with the principal cells 

possessing ion and solute transporters similar to the cells in the proximal convoluted 

tubules and the collecting ducts in human kidneys (Figure 5). The principal cells contain 

basolateral membrane transporters for Na+, K+ and Cl- plus an Na+ dependent bicarbonate 

exchanger. Ion gradients are maintained using an H+ATPase pump which drives the 

secondary transport of Na+ and K+. The stellate cells mostly regulate H2O and Cl- 

balance. Besides having a lot in common with the human nephron, Drosophila 

malpighian tubules are easily dissected and visualized using simple techniques such 

bright field and polarized light microscopy. 

 

 

Figure 5: Schematic diagram depicting Drosophila principal and stellate cells, with their 

respective ion and solute co-transporters. Adapted with permission from Miller J. et. al 

2013. 
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Additional parameters, that may be useful in elucidating the basic mechanisms governing 

stone formation, such as ion electrophysiology, urine composition and pH can easily be 

measured in the malpighian tubules using simple techniques such as the Ramsay 

assay118,120. 

1.5.3 Current Drosophila Nephrolithiasis Research 

Since the emergence of Drosophila as a novel model for human kidney stone disease, a 

substantial body of literature has accumulated, utilizing the model in unique ways. Chen 

et. al first described calcium oxalate nephrolithiasis by feeding the flies diets containing 

the lithogenic agent’s ethylene glycol, hydroxy-L-proline and sodium oxalate121. They 

showed dose dependent calcium oxalate crystal deposition in the malpighian tubules after 

feeding with the lithogenic diets. Potassium citrate, which complexes excess calcium, 

reduced crystal deposition in the malpighian tubules. Similarly, Hirata et. al describe a 

genetic model for calcium oxalate nephrolithiasis through selective knockdown of the 

oxalate co-transporter SLC26A5 (dPrestin)110. Selective knockdown of the dPrestin gene 

using the GAL4/UAS system reduced calcium oxalate stone formation in flies fed a 

sodium oxalate diet, outlining the importance of oxalate metabolism and transport in 

calcium oxalate stone formation. Melamine, a lithogenic agent notorious for having 

caused kidney stone epidemics in dogs fed food accidentally laced with it, has also been 

used to form calcium oxalate stones in Drosophila122. Recent work by Chi et. al, has 

successfully produced xanthine nephrolithiasis in Drosophila by selective knockdown of 

the enzyme Xanthine dehydrogenase (XDH) and identified the role of zinc in the 

formation of Randall plaques123.  Lang et. al recently described a uric acid model of 
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nephrolithiasis by selective knockdown of the Uricase enzyme in the malpighian 

tubules124. In Drosophila, purine metabolism leads to the formation of urate which is then 

converted to allantoin via the Uricase enzyme. GAL4/ UAS mediated knockdown of 

Uricase resulted in the accumulation of uric acid concretions in the malpighian tubules. 

This was mitigated with the use of drugs such as allopurinol. Other groups have been 

investigating the effects of commercially available drinks such as citrate containing juices 

and soft drinks in the Drosophila model of calcium oxalate nephrolithiasis125,126. 

Traditional Chinese medicinal plants have also been tested using the Drosophila 

model127. Potential drugs have also been tested. Landry et. al demonstrate reduced 

calcium oxalate stone deposition in the malpighian tubules with the administration of 

sulfate and thiosulfate, highlighting the importance of these compounds as competitive 

inhibitors of calcium oxalate crystalization128.  

1.6 Objectives & Research Aims 

Objective 1: To develop a robust and reliable Drosophila melanogaster model for 

calcium oxalate nephrolithiasis. 

Research Aim: Previous studies with the administration of lithogenic agents have 

reported varying results in regards to calcium oxalate stone deposition. Our goal is to 

identify the optimal lithogenic agent and its concentration, so as to reliably produce 

calcium oxalate stones in Drosophila malpighian tubules. We will use the lithogenic 

agent’s ethylene glycol and sodium oxalate at concentrations of 0.05%, 0.1%, 0.5% and 

1% w/v ratio, and measure stone burden using a combination of polarized light and 

fluorescent microscopy. 
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Objective 2: To develop ex vivo imaging capabilities using novel bisphosphonate 

based fluorescent probes. 

Research Aim: Adequate visualization and quantification of stone burden remains a 

limiting factor in both animal and Drosophila models of human nephrolithiasis. Our 

laboratory has developed novel bisphosphonate based fluorescent probes that have 

previously been shown to bind calcium oxalate129. Use of these probes will allow us to 

visualize and quantify stone burden, plus serve as a starting point for optimizing in vivo 

imaging protocols. 

Objective 3: Perform survival studies to characterize the effect of lithogenic diets on 

Drosophila life span. 

Research Aim: Lithogenic agents cause calcium oxalate stone deposition by inducing a 

state of hyperoxaluria. At higher concentrations, these agents can be toxic. For our model 

to be useful we aim to characterize the effects of lithogenic agents on the life span of 

Drosophila. We will achieve this by performing survival studies on Drosophila fed 

varying concentrations of lithogenic diet. This will allow us to select the optimal 

concentration of lithogenic agent for our subsequent experiments.  

Objective 4: To characterize Drosophila stone composition and morphology. 

Research Aims: In order to accurately model human calcium oxalate nephrolithiasis, 

Drosophila stones must be similar in composition and morphology to human stones. We 

aim to isolate stone material from the malpighian tubules and characterize stone 
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composition/morphology using a combination of scanning electron microscopy and 

energy dispersive x-ray spectroscopy. 

Objective 5: To develop novel intravital imaging techniques for studying stone 

formation in vivo. 

Research Aims: A fundamental drawback in animal models of nephrolithiasis is the 

inability to visualize or quantify stone burden in vivo. Although the use of Drosophila 

simplifies this due to the ease of malpighian tubule dissection, developing intravital 

imaging techniques would be useful in tracking stone formation and quantifying the 

effect of potential interventions. We will develop a transgenic fly line that express red 

fluorescent protein in their malpighian tubules. Utilizing multi-channel resonance laser 

confocal microscopy, we will optimize and develop imaging protocols for visualizing the 

malpighian tubules in vivo. This will provide a sound platform for subsequent imaging 

protocols.  

Objective 6: To develop a high-throughput noninvasive drug screening platform in 

the Drosophila model of human nephrolithiasis. 

Research Aim: Current animal models do not allow for large scale high-throughput 

screening of potential therapies. We will screen an experimental drug library of 360 

compounds that have been previously used as a basis for rational drug design130. Using 

our Drosophila model we will develop and validate a high-throughput noninvasive 

screening method by quantifying stone burden indirectly in the fly fecal matter. In the 

process we hope to identify compounds that antagonize calcium oxalate stone formation. 
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Chapter 2  

2 Materials and Methods 

This study did not require prior approval by the University of Western Ontario’s animal 

use subcommittee, as the experimental use of Drosophila melanogaster is exempt from 

current ethics guidelines.  

 

All Drosophila melanogaster stocks were obtained from the Bloomington Stock Center, 

Indiana, United States (http://flystocks.bio.indiana.edu), the Kyoto Stock Center, Kyoto, 

Japan (https://kyotofly.kit.jp/cgi-bin/stocks/index.cgi) and the National Institute of 

Genetics, Mishima, Japan (http://www.shigen.nig.ac.jp/fly/nigfly/).  

2.1 Drosophila melanogaster Rearing 

All Drosophila melanogaster stocks were reared in a dedicated Drosophila incubator 

(DT2-MP-47L Tritech Research Inc., Los Angeles, United States) at 22°C, 40% ambient 

humidity and a 12-12 hour light-dark cycle. Drosophila melanogaster stocks utilized in 

GAL4/UAS system experiments were reared at 29°C, 40% ambient humidity and a 12-12 

hour light-dark cycle. All stocks were regularly inspected for signs of bacterial, fungal 

and mite infestations. Stocks were rotated to fresh food media every 4-5 days to prevent 

contamination, reduce competition between adult flies and larvae for food media, and to 

ensure an adequate supply of adult flies for experiments.  

http://flystocks.bio.indiana.edu/
https://kyotofly.kit.jp/cgi-bin/stocks/index.cgi
http://www.shigen.nig.ac.jp/fly/nigfly/
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2.2 Preparation of Food Media 

Drosophila food media was prepared manually in 1 liter batches on a bi-weekly schedule 

to avoid contamination and to ensure optimal freshness. After the media ingredients were 

weighed using a digital scale (Sartorius AG, Göettingen, Germany), they were mixed in 

distilled water and heated using a standard laboratory hot plate (Salton Appliances Corp., 

Dollard Des Ormeaux, Canada). The prepared media was then manually dispensed into 

wide polypropylene vials (32-114 Diamed Inc., Mississauga, Canada). The vials were 

allowed to rest for 8-12 hours to allow for adequate media solidification. It was noted that 

allowing the vials to rest for this period reduced moisture ‘bleed’ upon subsequent use of 

the food media. After resting, the vials were closed using dense cellulose acetate plugs 

(49-101 Diamed Inc., Mississauga, Canada) and labelled accordingly. All prepared food 

media was stored in a 4°C humidity controlled cold room until further use. Food media 

was stored for a period of 1 month after which unused media was discarded. 

2.2.1 Standard Food Media 

The standard Bloomington stock center recipe was used for the preparation of standard 

Drosophila food media. The ingredients required for the preparation of 1L of food 

medium are listed in Table 1.  
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 Ingredient Amount 

1 Distilled Water 1000 ml 

2 Drosophila Agar (66-103 Diamed Inc.) 5.7 g 

3 Inactive Yeast (62-106 Diamed Inc.) 19.3 g 

4 Soy Flour (62-115 Diamed Inc.) 10 g 

5 Yellow Corn Meal (62-100 Diamed Inc.) 73 g 

6 Light Corn Syrup (62-117 Diamed Inc.) 75 ml 

7 

Acid Mix 

¼ parts Propionic Acid (1368 Sigma Inc.) 

¾ parts Phosphoric Acid (290017 Sigma Inc.) 

 

5 ml 

8 
Optional: 

Tegosept 30% Solution (20-258 Diamed Inc.) 
5 ml 

 Total 1000 ml 

Table 1: List of ingredients required for the preparation of standard Drosophila food 

media. 

 

700 ml of distilled water was brought to a boil and agar added until it was well dissolved. 

Adequate cooking of the agar allowed for better solidification and adherence of the food 

media to the vial walls. This step was followed by the addition of yeast, soy flour and 

corn meal, and the solution allowed to simmer at medium heat for 10 minutes. 75 ml of 

corn syrup was mixed with the remaining 300 ml of distilled water and added to the 

solution and allowed to simmer for 5 minutes. 5 ml of acid mix was then added and the 

final solution left to cool to 60°C, after which it was ready to be dispensed into 

Drosophila vials. The acid mix of propionic acid and phosphoric acid work to inhibit 
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bacterial and fungal growth. Occasionally, the acid mix was substituted with 5ml of 30% 

Tegosept® solution for weaker strains prone to fungal overgrowth. 

2.2.2 Lithogenic Food Media 

The lithogenic agent’s sodium oxalate (71800 Sigma Inc.) and ethylene glycol (324558 

Sigma Inc.) were used to induce calcium oxalate stone formation in wild type Canton-S 

flies (Bloomington Stock # 1). Lithogenic diets containing these agents were prepared at 

concentrations of 0.05%, 0.1%, 0.5% and 1% w/v. The agents were thoroughly dissolved 

in water before the preparation of the food media using the recipe above.  

2.3 Drosophila Lifespan Studies 

In order to identify the optimal concentration of lithogenic agents for use in our 

subsequent experiments, lifespan studies were carried out to determine the relationship 

between lithogenic agent concentration, Drosophila lifespan and calcium oxalate stone 

burden. The standard protocol for Drosophila melanogaster life span measurement was 

used for this experiment131.  

2.3.1 Age Matching 

To ensure all adult flies used for lifespan studies were of the same age and health, wild 

type Canton-S (Bloomington stock #1) were age matched. 100-150 adult wild type 

Canton-S were isolated in large egg collection cages (59-101 Diamed Inc.) over grape-

juice agar plates (Figure 6). A 1 cm wide dollop of active yeast paste (62-103 Diamed 

Inc.) was placed in the center of the grape-juice agar plates. Grape-juice agar stimulated 
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mating and provided a solid surface for the deposition of eggs. The dark red color of the 

agar contrasted well with the white eggs, allowing for better visualization and collection. 

The active yeast provided nutrition to the adult flies inside the egg collection cages. Eggs 

were allowed to collect on the surface of the agar plates for a day, after which they were 

replaced with a fresh plate and the old one discarded. This ensured that all subsequent 

eggs laid would be of approximately the same age. On the second day, the egg collection 

cages were opened and the adult flies discarded in an alcohol filled fly morgue. A cell 

scrapper was used to remove the central yeast, taking care not to damage or remove the 

deposited eggs. The surface of the grape juice agar plate was washed with 5 ml of PBS 

(Wisent Inc., St. Bruno, Canada) and a soft cotton bud was used to dislodge the deposited 

eggs. This egg/PBS suspension was then funneled into a 15 ml collection tube. The eggs 

were allowed to settle via gravity for 5 minutes and the supernatant removed from the 

tube. The settled egg ‘pellet’ was then washed with PBS at least twice or until the 

supernatant was clear. 100 µl of PBS was added to the washed eggs. 32 µl aliquots of this 

egg/PBS suspension was added to fresh room temperature standard media. Newly 

eclosed, age matched adult flies were collected after 10 days for use in lifespan 

experiments. 
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Figure 6: Grape-juice agar plates and egg collection cages used for age matching of 

Drosophila melanogaster. 

 

2.3.1.1 Preparation of Grape-Juice Agar Plates 

500 ml batches of grape-juice agar were prepared as required. The ingredients required 

for the preparation of grape-juice agar plates are listed in Table 2. Agar and sucrose was 

added to distilled water and heated until both were adequately dissolved. Grape-juice 

concentrate was then added and rigorously stirred. The solution was allowed to cool to 

65°C, followed by the addition of ethanol and glacial acetic acid. Ethanol and glacial 

acetic acid inhibit bacterial and fungal growth. The solution was then poured into 100 

mm plastic petri dishes (VWR Inc., Radnor, United States) and allowed to solidify at 

room temperature. The plates were subsequently labelled and stored in a 4°C cold room 

until further use. 
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 Ingredient Amount 

1 Distilled Water 375 ml 

2 Bacteriological Agar (5306 Sigma Inc.) 12 g 

3 Sucrose (7903 Sigma Inc.) 22 g 

4 Grape Juice (Welch’s grape-juice concentrate) 110 ml 

5 Ethanol (Sigma Inc.) 10 ml 

6 Glacial Acetic Acid (2183 Sigma Inc.) 5 ml 

 Total 500 ml 

Table 2: List of ingredients required for the preparation of grape-juice agar plates. 

 

2.3.2 Lifespan Studies 

30 age matched wild type Canton-S flies were anesthetized using CO2 narcotization 

(Flystuff Inc., San Diego, United States) and added to lithogenic food media containing 

sodium oxalate (71800 Sigma Inc.). 4 test vials were used for each concentration (0.05 %, 

0.1 %, 0.5% and 1 % w/v) of sodium oxalate. Wild type Canton-S flies in standard media 

were used as the baseline control. The flies were moved to new food media every 2-3 

days to avoid competition between adult flies and larvae, which could potentially 

adversely affect survival. Deaths were recorded every day and any flies lost during 

transfer or adherent to the vial wall during transfer were censored. The recorded data was 

saved in a Microsoft excel file. The adult flies were followed till the last death or 40 days, 

whichever occurred first.  
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2.3.3 Statistical Analysis 

The data generated by the life span studies was analyzed using the Statistical Package for 

Social Sciences (SPSS, Version 22.0.0.2 Mac, IBM Corp.). Life tables were constructed 

and a Kaplan-Meier survival analysis was performed. Statistical significance was tested 

using a log-rank test. 

2.4 Development of Novel Imaging Modalities in Drosophila 

This study aims to develop novel imaging modalities for visualizing and quantifying 

calcium oxalate stones in the Drosophila melanogaster model of human calcium oxalate 

nephrolithiasis. We have developed novel bisphosphonate based fluorescent probes that 

will bind to calcium oxalate calculi and allow us to image these calculi both ex vivo and 

in vivo. We have used a combination of polarized light, fluorescent microscopy and 

confocal microscopy to study stone formation. 

2.4.1 Synthesis of Bisphosphonate Based Fluorescent Probes 

All bisphosphonate fluorescent probes were designed and synthesized in collaboration 

with the Luyt Laboratory at the Department of Chemistry, Western University, London, 

Canada. 

Bisphosphonates are well studied group of drugs known to tightly bind to hydroxyapatite 

and other calcium containing crystals. Several groups have conjugated the moiety to a 

fluorophore and it has previously been used to image the localization of bisphosphonate 

groups in bone and in microscopic stone fragments shed in the urine of patients with 
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calcium oxalate kidney stones129,132. Our imaging agent consists of the commercially 

available bisphosphonate drug Alendronate conjugated to the fluorescent dye fluorescein 

isothiocyanate (FITC) (Figure 7). As a negative control, Notdronate was developed by 

removal of the bisphosphonate group of Alendronate, leaving 4-amino-1-butanol 

conjugated to the dye. All reagents were provided in powder form and stored in an 

opaque container at −20°C to avoid photo-bleaching. 

 

 

 

Figure 7: Molecular and chemical structure of novel bisphosphonate based fluorescent 

probes. 
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2.4.1.1 Synthesis of Alendronate-FITC 

Sodium alendronate (34.0 mg, 106 µmol) was dissolved in saturated NaHCO3 (aq) (1 

ml). Fluorescein (5/6) NHS ester (10 mg, 21 µmol) dissolved in DMF (100 µl) was added 

and the solution stirred for 2 days in the dark. The product was dried, suspended in H2O 

(1 ml) and dialyzed (cellulose ester, MWCO 0.1-0.5 kD) with water (3 X 500 mL). The 

final product’s concentration was determined by the UV absorption (ε493nm = 70,000 

M- 1cm-1). The solution was subjected to RP-FCC (Isolera One, Biotage KP-C18-HS 

12g cartridge) with a gradient from 0 to 30 % MeOH in H2O. The product was 

lyophilized to yield FITC alendronate (8.6 µmol, 41 %) as an orange powder. UP LC-MS 

(waters) method: 5-40% acetonitrile in water, both contain 0.1% formic acid, 3mins run; 

Calculated m/z 608.07 (MH+), Found m/z: 608.10; RT (min) 1.40. Purity: >95%.  

2.4.1.2 Synthesis of Notdronate-FITC 

4-Amino-1-butanol (20 mg, 200 µmol) was dissolved in saturated NaHCO3 (aq) (1 ml). 

Fluorescein (5/6) NHS ester (10 mg, 21 µmol) dissolved in DMF (100 µl) was added and 

the solution stirred for 2 days in the dark. The reaction mixture was subjected to RP- FCC 

(0 to 100 % MeOH in H2O) and the final product concentration was determined by the 

UV absorption (ε493nm = 70,000 M-1cm-1). The solution was subjected to RP-FCC 

(Isolera One, Biotage KP-C18-HS 12g cartridge) with a gradient from 0 to 25 % MeOH 

in H2O. The product was lyophilized to yield fluorescein-4-butanol (4.8 µmol, 23 %) as 

an orange powder. UP LC-MS (waters) method: 5-40% acetonitrile in water, both contain 

0.1% formic acid, 3mins run; Calculated m/z 448.14 (MH+), Found m/z: 448.04; RT 

(min) 2.23. Purity: >95%. 
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2.4.2 Specificity of Bisphosphonate Based Fluorescent Probes 

To assess the specificity of our bisphosphonate based fluorescent probes to 

hydroxyapatite and calcium based stones, we subjected synthetic hydroxyapatite particles 

(289396 Sigma Inc.) and pulverized samples of infrared spectroscopy confirmed human 

calcium oxalate stones to bright field, polarized (TP-2, T-A2, Nikon Inc.) and fluorescent 

microscopy (TE-2000, Nikon Inc.) after staining with Alendronate-FITC, Notdronate-

FITC and PBS as a control. The human stone sample was obtained from the hospital 

diagnostic laboratory and would otherwise have been discarded and destroyed. 50 mg of 

sample was incubated with 200 µl 0.1 mM Alendronate-FITC, 0.1 mM Notdronate FITC 

and PBS in an Eppendorf tube for 15 minutes. The sample was then centrifuged 

(Eppendorf Inc., Hamburg, Germany) at 15000 rpm for 5 minutes. The supernatant was 

removed and the underlying stone material was washed twice with distilled water in a 

similar fashion until the supernatant was clear. This ensured the removal of any unbound 

dye. 20 µl of sample suspended in distilled water was mounted on to glass slides with 

coverslips and imaged using brightfield, polarized light (TP-2, T-A2, Nikon Inc.) and 

fluorescent microscopy (TE-2000, Nikon Inc.).  

2.4.3 Diet Induced Calcium Oxalate Stone Formation in 

Drosophila 

15-20 wild type Canton-S flies were added to wide vials containing either sodium oxalate 

media or ethylene glycol media at concentrations of 0.05%, 0.1%, 0.5%, 1% w/v of 

lithogenic agent. The flies were fed for a period of 14 days after which they were 

removed and processed for staining and imaging.  
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2.4.4 Drosophila Dissection Technique 

Adult flies were euthanized by CO2 narcotization (Flystuff Inc., San Diego, United 

States) prior to dissection. All dissections were carried out under a dissecting microscope 

(AmScope Inc., Irvine, United States) in a Sylgard (Dow Corning Inc., Michigan, United 

States) lined Pyrex Petri dish (3160100 Sigma Aldrich Inc.). Sylgard lining provided 

protection to the delicate Drosophila tissues and also the fine tips of the dissecting 

forceps (Fine Science Tools Inc., Vancouver, Canada). Schneider’s Media (0146 Sigma 

Aldrich Inc.) was used as a dissection medium because its composition most closely 

resembles the insect hemolymph and prevented osmotic cell lysis. A minimal touch 

technique was used for dissection. The fly was anchored with fine forceps in the non-

dominant hand at the superior aspect of the thorax and submerged in the dissecting 

media. Using forceps in the dominant hand, the anal region or terminalia, was grasped 

below the final abdominal tergites and pulled gently. With gentle pressure the hindgut 

emerged first followed by the anterior and posterior tubules. Occasionally, the hindgut 

needed to be grasped to facilitate the descent of the malpighian tubules. After emergence 

of the malpighian tubules the midgut was severed and the fly discarded. The tubules were 

then processed for imaging.  

2.4.5 Ex vivo Imaging of Drosophila Malpighian Tubules 

Wild type Canton-S flies fed lithogenic diets for 14 days were removed, euthanized with 

CO2 narcotization and the malpighian tubules dissected. The tubules were then incubated 

in 100 µl of 0.1 mM alendronate-FITC, 100 µl of 0.1 mM notdronate-FITC and PBS 

respectively, for 15 minutes. Consequently, the dyes were removed and the tubules 
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washed several times with PBS to remove any unbound dye. Fine glass needles were 

used to transfer the tubules to poly-l-lysine coated microscope slides (P0425-72EA 

Sigma Inc.) for imaging. Brightfield, polarized light and fluorescent microscopy analysis 

was performed using an inverted microscope (TE-2000, Nikon Inc.). The steps of this 

experiment are demonstrated in schematic form in Figure 8. 

 

 

Figure 8: Schematic diagram demonstrating the stages in experimental design for ex vivo 

staining and imaging of Drosophila melanogaster malpighian tubules. 

 

2.4.5.1 Ex vivo Imaging Analysis 

All images were obtained with an inverted light microscope (Nikon Inc., Tokyo, Japan) 

using a 10x objective and analyzed using Image J software (NIH http://imagej.nih.gov). 

The image background was removed using the process > math > ‘subtract’ feature with a 

http://imagej.nih.gov)
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value of 25. The images were sharpened with the process > math > ‘unsharp mask’ 

feature, using a radius of 1 pixel and a mask weight of 0.60. Color threshold was adjusted 

to white or green to outline birefringent or fluorescent crystals respectively. The analyze 

> ‘analyze particle’ function was used to quantify the crystals using a pixel size of 0-

infinity, circularity of 0.00-1.00 and the outlines option checked. This analysis provided 

us with the total particle count, average particle size and the area occupied by the 

crystals. The data was statistically analyzed using Statistical Package for Social Sciences 

(SPSS, Version 22.0.0.2 Mac, IBM Corp.). 

2.4.6 In vivo Imaging of Drosophila Malpighian Tubules 

Following the successful imaging of calcium oxalate stones in ex vivo Drosophila 

malpighian tubes, we developed an innovative protocol for in vivo imaging. A transgenic 

fly line expressing red fluorescent protein (RFP) was developed in order to visualize 

malpighian tubules in vivo. Imaging this transgenic fly line allowed us to optimize our 

imaging protocols for in vivo laser resonance confocal microscopy (Nikon Inc., Tokyo, 

Japan).  

2.4.6.1 Generation of RFP Expressing Drosophila Malpighian 

Tubules 

To create a transgenic fly line that expressed red fluorescent protein (RFP) in the 

malpighian tubules, we used the established GAL4/UAS system for the genetic 

manipulation of Drosophila melanogaster115. The GAL4/UAS system is a mating based 

bi-partite system with spatio-temporal control. Two fly lines were obtained, one 
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expressing the yeast transcription activation factor (GAL4) in its malpighian tubules and 

a second, which had an upstream activation sequence (UAS), followed by sequence 

coding for the RFP protein. The progeny of this cross expressed both GAL4 which bound 

the UAS sequence and drove gene expression, as illustrated in Figure 9. The driver 

URO-GAL4 (Bloomington #44416) which expresses GAL4 in a urate oxidase pattern in 

the principal cells of the malpighian tubules, was crossed with the responder line UAS-

RFP (Bloomington #32218) to produce a transgenic RFP expressing fly. This transgenic 

line was reared at 29°C for optimal activation of the UAS/GAL4 system.  

 

 

Figure 9: Schematic diagram depicting the GAL4/UAS cross resulting in progeny that 

expresses RFP in their malpighian tubules. 
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2.4.6.2 Intravital Confocal Microscopy 

Transgenic RFP expressing flies were anesthetized using CO2 narcotization. Imaging was 

carried out using 4x and 10x objective lenses. The DAPI (408 nm) channel was utilized 

to provide background contrast and the Alexa594 (594 nm) channel was used to outline 

the red fluorescent malpighian tubules. Pinhole was set to 1.2 AU and laser energy set to 

115 with a gain of 18. Multichannel and z-stack images were taken using the NIS-

Elements Advanced software (Nikon Inc., Tokyo, Japan) and analyzed with NIS-

Elements Analysis software (Nikon Inc., Tokyo, Japan). 

2.5 Elemental Analysis of Isolated Drosophila Stones 

To adequately compare the composition of human stones to Drosophila melanogaster 

formed calcium oxalate stones, stone material formed by wild type Canton-S flies was 

isolated and analyzed using scanning electron microscopy and energy-dispersive x-ray 

spectroscopy to ascertain the elemental composition. 

2.5.1 Drosophila Stone Isolation 

150 wild type Canton-S flies were fed a 1% w/v sodium oxalate diet for 14 days. The flies 

were then transferred to an empty vial and euthanized with CO2 narcotization (Flystuff 

Inc., San Diego, United States) for 10 minutes. These flies were dissected under a 

dissecting microscope (AmScope Inc., Irvine, United States) in Schneider’s Media (0146 

Sigma Aldrich Inc.) and the malpighian tubules removed. The dissected tubules were 

transferred to a 1 ml Eppendorf tube containing 1 ml of distilled water. The sample was 

centrifuged (Eppendorf Inc., Hamburg, Germany) at 15000 rpm for 5 minutes forming a 
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pellet of stone material and malpighian tubule tissue. The supernatant was carefully 

pipetted out without disturbing the pellet. 0.5 ml of Proteinase K (5568 Sigma Inc.) at a 

concentration of > 500 units/ml and 200 µl of 0.1% Triton-X (BDH Chemicals Inc.) was 

added. Proteinase K performs optimally in the presence of a detergent. The pellet was 

then broken up using a pipette and placed in a water bath at 37°C for 12-24 hours. After 

this time, the Eppendorf tube was removed from the bath, inspected for dissolution of the 

tissue and then centrifuged (Eppendorf Inc., Hamburg, Germany) at 15000 rpm for 5 

minutes. The supernatant removed and the wash repeated 2-3 times to remove any 

remaining organic material and impurities. The sample was then suspended in 500 µl of 

distilled water for use in scanning electron microscopy and energy dispersive x-ray 

spectroscopy analysis. At this point the sample could also be stored in a −80°C freezer for 

analysis at a later date.  

2.5.2 Scanning Electron Microscopy and Energy Dispersive X-ray 

Spectroscopy (SEM/EDX) 

Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis was 

performed at Surface Sciences Western University, London, Ontario. 20 µl of isolated 

stone sample suspended in distilled water was added to the surface of a 5 mm x 5 mm 

silica wafer (Ted Pella Inc., Redding, United States) and air dried at 60°C for 2 hours. 

The wafer and sample were then sputtered with a thin layer of gold to increase 

conductivity for imaging. Scanning electron microscopy images were obtained with a 

Hitachi S4500 Field emission SEM (Hitachi Inc., Tokyo, Japan) using a 15.0 kV electron 

beam voltage. Energy dispersive x-ray spectroscopy analysis of the elemental 
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composition was done using a Quartz X One EDX System (Quartz Imaging Corporation, 

Vancouver, Canada). EDX graphs for elemental composition and atomic weight 

distribution of elements were obtained.  

2.6 High-Throughput Drug Screening Platform 

An experimental drug library containing 360 compounds was obtained through 

collaboration with Dr. Paul Spagnuolo at the School of Pharmacy, University of 

Waterloo, Waterloo, Canada. The experimental drug library is based on plant extracts 

with known regulatory activity in the human diet and has successfully been used as a 

starting point for rational drug design in previous studies130,133. The drug compounds 

were dissolved in DMSO and distributed into eight 96 well plates, in cohorts of 24 drugs 

per plate and stored in a −80 °C freezer until further use. A master list of the drugs and 

their concentrations were maintained in a Microsoft excel file for further reference. Drug 

screening was performed with an indirect approach to quantifying stone burden following 

treatment.  

2.6.1 Assessment of DMSO on Drosophila Survival  

Since our drug library used DMSO as a solvent, before the addition of drug compounds 

to the Drosophila diet, the effect of DMSO on the Drosophila survival was investigated. 

Four concentrations of DMSO 0.1%, 0.3%, 0.5% and 1% w/v, were evaluated to assess 

effects of DMSO on Drosophila survival using a similar protocol to the one described 

above.  
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2.6.2 Development of High-throughput Drug Screening Platform 

Drosophila melanogaster have two pairs of malpighian tubules that coalesce into a 

common ureter and drain urine plus other materials into the gut at the junction between 

the mid and the hindgut. We observed that insects that form stones also excrete stone 

material into the fecal matter, providing an indirect means for assessing stone burden. 

Apart from feeding, most flies rest, mate and excrete on vertical surfaces such as the 

inside of the polypropylene fly vial.  

A 0.5% w/v sodium oxalate diet was prepared based on our prior survival and stone 

burden data for the various lithogenic agents. This agent and concentration were chosen 

for drug screening due to the optimal balance between fly survival and stone burden. 200 

µl of drug-DMSO solution was added to 5 ml of sodium oxalate food media during the 

preparation of the media to a final concentration of 10 µM. The drug was thoroughly 

mixed to ensure adequate distribution. Cohorts of 48 drugs were prepared for screening 

on a weekly basis. A 22 mm x 22 mm glass coverslip (C9802 Sigma Inc.) was inserted 

vertically into the cellulose acetate plug, where it served as a surface for flies to rest and 

excrete fecal matter. 30 Wild type Canton-S flies were added to the drug vials and 

allowed to feed for 7 days. Wild Type Canton-S flies in 0.5% sodium oxalate media 

without drug and standard media were used as controls. After 7 days, the flies were 

discarded and the glass coverslips with deposited fecal matter were subjected to polarized 

light and confocal microscopy (Nikon Inc., Tokyo, Japan). All images were analyzed 

using Image J software (NIH http://imagej.nih.gov) with a potential drug ‘hit’ considered 

http://imagej.nih.gov)
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if birefringent stone material in the fecal matter was reduced by > 50 % as compared to 

controls (Figure 10).  

 

 

Figure 10: Diagram illustrating the drug screening vial setup, plus bright field and 

polarized microscopy of coverslips with Drosophila fecal matter laden with calcium 

oxalate stone material in the 0.5% w/v sodium oxalate group.  



43 

 

Chapter 3  

3 Results 

3.1 Drosophila Lifespan Studies 

3.1.1 Survival in Sodium Oxalate Diet 

Under standard laboratory conditions, the mean survival time for control wild type 

Canton-S fed standard food media was 32.09 days (Table 3). Sodium oxalate at a 

concentration of 0.05% w/v did not adversely affect survival.  

 

Means and Medians for Survival Time 

Diet Type Meana Mediana 

 Est. 
Std. 

Err 

95% CI 
Est. 

Std. 

Err 

95% CI 

Low. Upp. Low. Upp. 

Standard 32.09 .75 30.60 33.58 32.0 .96 30.10 33.89 

NaOx 0.05% 31.59 1.13 29.37 33.80 33.0 1.63 29.80 36.19 

NaOx 0.1% 27.32 .63 26.08 28.55 28.0 .33 27.33 28.66 

NaOx 0.5% 21.58 .59 20.41 22.76 23.0 .44 22.12 23.87 

NaOx 1% 15.11 .46 14.21 16.01 15.0 .44 14.12 15.87 

Overall 23.70 .49 22.73 24.67 24.0 .58 22.85 22.14 

Table 3: Means and medians for survival of wild type Canton-S in varying concentrations 

of sodium oxalate media. Estimation is limited to the largest survival time if it is censored. 
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Increasing the concentration of sodium oxalate to 0.1% and 0.5% w/v resulted in a 14.8% 

and 32.7% reduction in survival respectively. A 1% w/v concentration of sodium oxalate 

caused a 52.9% reduction in survival as compared to controls, with a mean life span of 

15.12 days. A Kaplan Meier survival analysis of wild type Canton-S fed varying 

concentrations of sodium oxalate is illustrated in Figure 11. 

 

 

Figure 11: Kaplan Meier survival analysis of wild type Canton-S fed various concentrations 

of the lithogenic agent sodium oxalate for a period of 40 days. 

 

Both male and females survived for an average of 32 days on standard food media. 

Interestingly, females on a 0.05% w/v sodium oxalate diet survived for longer (34.07 

days) as compared to males fed a similar diet or standard diet. Male flies fed a 0.1% w/v 

sodium oxalate diet survived for an average of 1.64 days longer than females fed a 
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similar diet. No statistically significant differences in survival between sexes was 

observed for 0.5% and 1% w/v sodium oxalate diet. A Kaplan Meier analysis comparing 

survival between male and female wild type Canton-S is illustrated in Figure 12. 

 

 

 

Figure 12: Kaplan Meier survival analysis of male and female wild type Canton-S fed 

various concentrations of the lithogenic agent sodium oxalate for a period of 40 days. 

 

A log-rank test revealed a statistically significant (p value < .0001) difference in survival 

between wild type Canton S fed increasing concentrations of the lithogenic agent sodium 

oxalate (Table 4).  
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 Chi-square df Sig. 

Log-Rank 

(Mantel Cox) 
327.547 4 < .0001 

Breslow 

(Generalized 

Wilcoxon) 

 

257.578 

 

4 

 

< .0001 

Tarone-Ware 290.168 4 < .0001 

Table 4: Statistical analysis of the survival distributions for the different Drosophila diet 

types. 

 

3.2 Development of Novel Imaging Modalities in Drosophila 

To develop imaging modalities in the Drosophila melanogaster model of human calcium 

oxalate nephrolithiasis, the novel bisphosphonate based fluorescent probes Alendronate-

FITC and its negative control Notdronate-FITC were developed for ex vivo imaging. 

3.2.1 Specificity of Bisphosphonate Based Fluorescent Probes 

To assess the specificity of our bisphosphonate based fluorescent probes to 

hydroxyapatite and calcium containing stones, we subjected synthetic hydroxyapatite 

particles (Figure 13) and pulverized samples of infrared spectroscopy confirmed human 

calcium oxalate stones (Figure 14) to bright field, polarized light and fluorescent 

microscopy.  
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Figure 13: Synthetic hydroxyapatite subjected to brightfield, polarized light and 

fluorescent microscopy after straining with alendronate-FITC and notdronate-FITC. Scale 

bars = 100 µm  

 

Both synthetic hydroxyapatite and pulverized human calcium oxalate stones showed 

brilliant birefringence under polarized light (Figure 13 B, Figure 14 B). Synthetic 

hydroxyapatite particles stained with Alendronate-FITC exhibited high fluorescent signal 

intensity (Figure 13 C) when subject to a 488 nm wavelength blue FITC laser, as 

compared to those stained with Notdronate-FITC (Figure 12 D). 

 

 

Figure 14: Pulverized calcium oxalate human stone sample subjected to brightfield, 

polarized light and fluorescent microscopy after straining with alendronate-FITC and 

notdronate-FITC. Scale bars = 100 µm 
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Similar results were obtained with the pulverized human calcium oxalate stone sample 

(Figure 14 C, Figure 14 D), suggesting that Alendronate-FITC selectively binds to 

hydroxyapatite and calcium containing stones. 

 

3.2.2 Ex vivo Imaging of Drosophila Malpighian Tubules 

Wild type Canton-S were used for this experiment. 20-30 flies were added to lithogenic 

diets containing sodium oxalate or ethylene glycol at concentrations of 0.05%, 0.1%, 

0.5% and 1% w/v for a period of 14 days. The malpighian tubules were subsequently 

dissected and stained with Alendronate-FITC or Notdronate-FITC. Images were taken 

with polarized light and fluorescent microscopy (Figure 15, Figure 16).  

3.2.2.1 Sodium Oxalate Diet 

Wild type Canton-S fed a sodium oxalate diet, under polarized light exhibited brilliant 

birefringence throughout the anterior and posterior malpighian tubules with finer crystals 

scattered throughout (Figure 15 A, B, C, D). At lower concentrations of 0.05% and 0.1% 

w/v sodium oxalate the calculi are deposited in the initial segments of the malpighian 

tubules (Figure 15 A, B). At higher concentrations of 0.5% and 1% w/v sodium oxalate 

fine calculi can be seen occupying the whole malpighian tubule, specifically concentrated 

in the main segments of the tubule (Figure 15 C, D).  
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Figure 15: Polarized light and fluorescent microscopic analysis of malpighian tubules 

following feeding with various concentrations of sodium oxalate. Scale bars = 100 µm 

Malpighian tubules from wild type Canton-S stained with Alendronate-FITC exhibit a 

fluorescent signal that closely corresponds to the areas of birefringence shown by 

polarized light microscopy (Figure 15 E, F, G, H). Fluorescent signal intensity is 

concentrated in the initial parts of the malpighian tubule for 0.05% and 0.1% w/v sodium 

oxalate (Figure 15 E, F). At higher concentrations of 0.5% and 1% w/v sodium oxalate 

fluorescent signal is observed throughout the tubule lumen (Figure 15 G, H). Signal 

intensity increased with increase in sodium oxalate dosage. Tubules stained with 

Notdronate-FITC did not reveal any fluorescent signal (Figure 15 I, J, K, L).  

3.2.2.2 Ethylene Glycol Diet 

Wild type Canton-S fed an ethylene glycol diet exhibited a more scattered pattern of 

birefringence in the malpighian tubules, as compared to the sodium oxalate diet. At lower 

concentrations of 0.05% and 0.1% w/v ethylene glycol calculi can be seen scantily 
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dispersed throughout the malpighian tubule and not restricted to the initial segments 

(Figure 16 A, B). At higher concentrations of 0.5% and 1% w/v ethylene glycol the 

distribution of calculi is denser, with more calculi concentrated in the main segment of 

the tubule (Figure 16 C, D).  

 

 

Figure 16: Polarized light and fluorescent microscopic analysis of malpighian tubules 

following feeding with various concentrations of ethylene glycol. Scale bars = 100 µm 

 

Flies fed a 0.05% and 0.1% w/v ethylene glycol and stained with Alendronate-FITC, 

exhibited similar scanty fluorescent signal intensity throughout the malpighian tubule 

(Figure 16 E, F). At higher concentrations of 0.5% and 1% w/v ethylene glycol there is a 

strong fluorescent signal throughout the tubule, especially the main segments (Figure 16 

G, H). Notdronate-FITC again does not exhibit fluorescent signal at any concentration of 

lithogenic diet (Figure 16 I, J, K, L).  
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3.2.2.3 Statistical Analysis 

Wild type Canton S fed a sodium oxalate diet formed calcium oxalate calculi that were 

on average 4.96 µm in size. Flies fed an ethylene glycol diet produced calculi that were 

approximately 59.5% (12.25 µm) larger than those fed the sodium oxalate diet, however, 

these calculi were distributed haphazardly throughout the tubule.  

 

Figure 17: Polarized light microscopy group: Comparison between tubule stone count, 

average stone size & total area of tubule occupied in flies fed varying concentrations of 

sodium oxalate & ethylene glycol. 

Flies fed either the sodium oxalate diet or ethylene glycol diet showed an increase in 

stone burden in response to increase in lithogenic agent concentration (Figure 17). 

However, the sodium oxalate diet group showed a more linear response and stone 

distribution throughout the malpighian tubule. Increasing the concentration of sodium 

oxalate to 0.5% and 1% w/v resulted in a 6-fold and 43-fold increase in stone count as 

compared to 0.05% w/v. Ethylene glycol showed more modest results, with a 2-fold and 

9-fold increase in stone count at concentrations of 0.5% and 1% w/v respectively.   

Fluorescent signal intensity data for both groups is illustrated in Figure 18. 
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Figure 18: Fluorescent microscopy group: Comparison between tubule stone count, 

average stone size & total area of tubule occupied in flies fed varying concentrations of 

sodium oxalate & ethylene glycol. 

 

3.2.3 In vivo Imaging of Drosophila Malpighian Tubules 

Transgenic flies and larvae expressing RFP in the malpighian tubules were imaged using 

dual laser fluorescence confocal microscopy.  

3.2.3.1 Intravital Confocal Microscopy 

Immobilized transgenic RFP expressing larvae showed bright red malpighian tubules that 

were clearly visible through the larval fat body (Figure 19 A). No malpighian tubules 

were visible in control wild type Canton-S larvae. Fine peristaltic movements of the 

tubules in the hemolymph were visible. The DAPI channel provided adequate contrast to 

the red fluorescent malpighian tubules allowing them to be visualized in their entirety 

(Figure 19 A, Figure 19 B). Minimal amount of red auto-fluorescence was present in the 

Alexa 594 channel (Figure 19 C).  
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Figure 19: (A) Intravital imaging of live Drosophila larvae expressing RFP in the malpighian 

tubules using dual channel (B) DAPI & (C) Alexa 594 laser confocal microscopy. 

Bright red anterior and posterior malpighian tubules were clearly visualized in the 

thoraco-abdomen of adult transgenic RFP expressing Drosophila group (Figure 20). No 

malpighian tubules were visible in the wild type Canton-S control group. Imaging was 

easier with the insect in supine position as compared to other orientations. The DAPI 

channel provided good contrast to the exoskeleton and external fly structures, allowing 

for the visualization of RFP tubules (Figure 20 A, Figure 20 B). Minimal auto-

fluorescence, except for the eyes, was seem in the adult fly (Figure 20 C).  

 

Figure 20: (A) Intravital imaging of live adult Drosophila expressing RFP in the malpighian 

tubules using dual channel (B) DAPI & (C) Alexa 594 laser resonance confocal 

microscopy. 
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3.3 Elemental Analysis of Drosophila Stones 

3.3.1 Scanning Electron Microscopy & Energy Dispersive X-ray 

Spectroscopy 

SEM images revealed calcium oxalate calculi with sizes ranging between 6 to 16 µm, 

often exhibiting spectacular shapes and configurations (Figure 21 A, Figure 22 A). Two 

composition types, calcium oxalate monohydrate (Figure 21, Figure 23) and calcium 

oxalate dihydrate (Figure 22) were predominately present in the sample. Calcium oxalate 

monohydrate crystals, also known whewellite, exhibit the classic dumbbell shaped 

crystals (Figure 21 A) similar to crystals observed in human urine samples. While 

calcium oxalate dihydrate or weddellite, exhibited the classic envelope shaped crystals 

(Figure 22 A).  

 

Figure 21: (A) Scanning electron micrograph of Drosophila calcium oxalate monohydrate 

stone. (B) Graphical representation of EDX analysis showing elemental distribution in 

Drosophila calcium oxalate monohydrate stone. 
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Energy dispersive x-ray spectroscopy analysis of the isolated stones revealed peaks of 

calcium (Figure 21 B, Figure 22 B, Figure 23 B) plus peaks of carbon and oxygen in 

ratios of 1:1 (Figure 21 B) and 1:2 (Figure 22 B). The peaks of gold and silicon relate to 

the underlying silica wafer on which the sample was mounted and surface sputtering of 

gold during preparation of the sample.  

 

 

Figure 22: (A) Scanning electron micrograph of Drosophila calcium oxalate dihydrate 

stone. (B) Graphical representation of EDX analysis showing elemental distribution in 

Drosophila calcium oxalate dihydrate stone. 

 

Occasionally, some calculi showed the presence of small amounts of magnesium (Figure 

22 B, Table 5), similar to human calcium oxalate stones134. 
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Figure 23: (A) Scanning electron micrograph of Drosophila calcium oxalate monohydrate 

stone. (B) Graphical representation of EDX analysis showing elemental distribution in 

Drosophila calcium oxalate monohydrate stone. 

 

The atomic weight distributions of elements present in stones isolated from Drosophila 

Melanogaster tubules are listed in Table 5. Carbon and oxygen are the predominant 

elements and occur in a similar distribution as compared to human stone samples 

analyzed by energy dispersive x-ray spectroscopy134. 
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Atomic Weight 

Percentages 
Calcium Carbon Oxygen Magnesium 

Calcium Oxalate 

Monohydrate 
8.72 43.11 48.17 0.00 

Calcium Oxalate 

Dihydrate 
10.71 27.64 61.35 0.30 

Calcium Oxalate 

Monohydrate 
8.18 34.81 57.01 0.00 

Human Stone 

Sample134 
18.17 31.71 24.33 1.67 

Table 5: Energy dispersive x-ray spectroscopy analysis of Drosophila stones 

demonstrating the elemental distribution in atomic percentages. 

 

A comparison between the relative size of calcium oxalate stones (Figure 24 B, solid 

arrow) to the malpighian tubule lumen (Figure 24 B, dashed arrow) is illustrated in the 

SEM image below. Large stones obstructing the common ureter were occasionally seen 

in flies fed lithogenic diets (Figure 24 A). 
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Figure 24: (A) Light microscope image demonstrating the four malpighian tubules (arrows) 

with a large central stone lodged in the ureter. (B) Scanning electron micrograph of a 

Drosophila malpighian tubule (dashed arrow) and Drosophila stones (solid arrow). 

 

3.4 High-throughput Drug Screening Platform 

Due to the anatomical relationship of Drosophila malpighian tubules to the gut, flies 

drain urine and other materials into the fecal matter. We have developed a non-invasive 

high-throughput screening method to measure stone burden in the fecal matter using 

polarized and confocal microscopy. We use this novel screening method to screen 

through a library of 360 experimental drugs to identify compounds that reduce calcium 

oxalate stone formation. 

3.4.1 Assessment of DMSO on Drosophila Survival 

The average life span of flies fed a 0.1% and 0.3% w/v DMSO diet was 38 and 36 days 

respectively. This was similar to the life span of 40 days in control wild type Canton-S 

fed a standard diet. Life span at concentrations of 0.5% and 1% w/v DMSO was reduced 
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to 25 days and 15 days respectively. At concentrations higher than 0.3% w/v of DMSO, 

time to eclosion was prolonged, with an overall reduction in fly life span. These results 

are in line with previous literature135.  

3.4.2 Development of High-throughput Drug Screening Platform 

Dual channel confocal microscopy with polarized transmitted light was used for analysis 

of Drosophila fecal matter deposited onto glass coverslips. EGFP and Alexa594 were 

used for background fluorescence to provide contrast for calcium oxalate stone material. 

Two control groups, one fed a standard diet and another a 0.5% w/v sodium oxalate diet 

were analyzed at the start of the experiment to produce baseline controls. Wild type 

Canton-S flies fed a standard diet did not show the presence of any calcium oxalate stone 

material in the fecal matter as shown in Figure 25.  

 

Figure 25: (A,B,C) Confocal and (D) polarized light analysis of fecal matter from flies fed a 

standard diet. (A) Merged image of GFP, Alexa594 and polarized light channels show no 

presence of calcium oxalate stone material. 
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Wild type Canton-S control group fed a 0.5% w/v sodium oxalate diet showed numerous 

calcium oxalate crystals in the fecal matter as shown in Figure 26. Stone size and 

morphology were similar to those isolated directly from the malpighian tubules in our 

scanning electron microscopy and energy dispersive x-ray spectroscopy analysis. This 

suggests that intact stone material is excreted into the fecal matter via the malpighian 

tubules. The EGFP and Alexa594 provided adequate background contrast to the fecal 

matter allowing for the visualization and quantification of stone material. 

 

 

Figure 26: (A,B,C) Confocal and (D) polarized light analysis of fecal matter from flies fed a 

0.5% w/v sodium oxalate diet. (A) Merged image of GFP, Alexa594 and polarized light 

channels show abundant calcium oxalate crystals in the fecal matter. 
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Figure 27: Polarized light microscopy images of fecal matter from stone forming 

Drosophila fed a panel of 24 drugs. Potential 'hits' are outlined in red. 

 

Following the establishment of our control groups, cohorts of 24 drugs were tested per 

week and analyzed using polarized light microscopy (Figure 27). A drug was considered 

a ‘hit’ if stone formation was reduced by > 50% compared to our control groups. Drugs 

that caused toxicity or reduction in life span were re-evaluated at a lower concentration. 

Drugs that were considered potential ‘hits’ were re-evaluated through direct visualization 

and quantification of stone burden in malpighian tubules following dissection.   

A total of 6 drugs compounds that reduced calcium oxalate stone formation were 

identified and are outlined in Table 6. 
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 Drug ‘Hits’ 

1 Aloin B 

2 Alpha-mangostin 

3 Apiin 

4 Arbutin 

5 Cucurbatacin B 

6 Isorhamnetin 

Table 6: List of drugs that reduce calcium oxalate stone formation in the Drosophila model 

of human nephrolithiasis. 
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Chapter 4  

4 Discussion and Conclusions 

In this project we demonstrate the versatility and advantages of Drosophila melanogaster 

as a novel model for human nephrolithiasis. We highlight the ease with which calcium 

oxalate stones are formed, in a highly reliable fashion, through simple dietary 

manipulation. Furthermore, we demonstrate new imaging modalities for measuring stone 

burden both in vivo and ex vivo. We have identified 6 compounds, from a large scale 

screen of 360 experimental drug compounds, that inhibit calcium oxalate stone 

formation. 

4.1 Drosophila Life Span Studies 

An ideal model for kidney stone disease should be simple, amenable to imaging and have 

an adequate life span to provide sufficient time to study stone formation or test the effect 

of a therapeutic agent. Lithogenic agents such as sodium oxalate and ethylene glycol act 

by producing a state of hyperoxaluria. Sodium oxalate is a potent source of oxalate and 

ethylene glycol serves as a precursor for oxalate formation. However, these lithogenic 

agents can also be toxic. For our model to be useful we decided to carry out life span 

studies in order to identify the optimal concentrations of lithogenic agents for use in 

subsequent experiments. Sodium oxalate was chosen as a lithogenic agent of choice due 

to our ex vivo imaging results which showed that sodium oxalate produced calcium 

oxalate stones in a more linear fashion compared to ethylene glycol.  
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A mean survival time of 32.09 days in the control wild type Canton-S group was in line 

with lifespans reported in other studies. Sodium oxalate at concentrations of 0.05% w/v 

did not adversely affect survival. Surprisingly, female flies fed sodium oxalate at this 

concentration survived for longer than the control group. A larger sample size is needed 

to validate this trend. At 0.05% w/v sodium oxalate, the flies produced minimal calcium 

oxalate stones and hence this concentration was not used for any of our subsequent 

experiments. At 0.1% w/v and 0.5% w/v sodium oxalate the flies survived for 27.32 and 

21.58 respectively. At these concentrations wild type Canton-S flies produced stones 

throughout the main segment of the malpighian tubules. Both these concentrations are 

considered suitable for ex vivo and in vivo imaging as they produced an adequate stone 

burden. A 0.5% w/v concentration of sodium oxalate was used for our high throughput 

drug screening platform. The average life span of 21 days provided an adequate time 

frame for assessing the effects of the experimental drugs on stone burden. At 1% w/v 

sodium oxalate fly survival was severely affected with an average survival time of 15.11 

days. This concentration of sodium oxalate was used in the SEM/EDX analysis 

experiment as the flies produced the maximum amount of stones allowing for better stone 

isolation and sample yield. This concentration is not recommended for drug screening or 

imaging purposes. There was no difference in survival or stone burden between sexes, 

hence sex segregation was not required for any of our subsequent experiments.  

4.2 Development of Novel Imaging Modalities in Drosophila 

One of the main drawbacks of current animal models of nephrolithiasis is difficulty in 

monitoring stone burden. We describe the superiority of the Drosophila model which is 
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amenable to both ex vivo and in vivo visualization and quantification of stone burden. We 

repurposed the bisphosphonate Alendronate and conjugated it to the fluorophore 

fluorescein isothiocyanate. We also developed a negative control Notdronate, that is 

similar to Alendronate but lacks the functional bisphosphonate ring. Bisphosphonates 

bind strongly to calcium and hydroxyapatite allowing for visualization and quantification 

of stone burden in the malpighian tubules.  

4.2.1 Bisphosphonate Based Fluorescent Probes 

To assess the specificity of our bisphosphonate based fluorescent probes to 

hydroxyapatite and calcium containing stones, we subjected synthetic hydroxyapatite 

particles and pulverized samples of infrared spectroscopy confirmed human calcium 

oxalate stones to bright field, polarized light and fluorescent microscopy.  

Alendronate-FITC strongly bound to synthetic hydroxy apatite particles and human 

calcium oxalate stone material, while our negative control did not show any binding. This 

study validates the use of Alendronate-FITC for ex vivo and in vivo imaging. 

4.2.2 Ex vivo Imaging of Drosophila Malpighian Tubules 

This study aimed to visualize and quantify calcium oxalate stone burden using the two 

lithogenic agent’s sodium oxalate and ethylene glycol at concentrations of 0.05%, 0.1%, 

0.5% and 1% w/v. Our results show that sodium oxalate is the more reliable lithogenic 

agent as compared to ethylene glycol which produces scanty and haphazard stones 

throughout the malpighian tubules. Sodium oxalate at concentrations of 0.1% and 0.5% 

w/v produced stones in the main segments of the malpighian tubules. These 
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concentrations were used for our subsequent drug screening experiments. A 

concentration of 1% w/v sodium oxalate produced the highest number of stones and was 

used for our scanning electron microscopy and energy dispersive x-ray spectroscopy 

analysis.  

4.2.3 In vivo Imaging of Drosophila Malpighian Tubules 

To our knowledge this is the first report of intravital confocal imaging of Drosophila 

malpighian tubules. This section of our study develops a unique protocol for imaging 

Drosophila malpighian tubules in vivo using a transgenic red fluorescent protein 

expressing fly. We were successful in imaging malpighian tubules in both live larvae and 

adult flies. This platform will serve as a starting point for intravital imaging in the 

Drosophila model of nephrolithiasis and provide real-time information on the sites where 

crystallization begins plus help in monitoring stone burden to the assess the effects of 

therapeutic interventions. 

4.3 Elemental Analysis of Drosophila Stones 

We extracted and isolated stones formed by Drosophila for use in scanning electron 

microscopy and energy dispersive x-ray spectroscopy analysis to ascertain their elemental 

composition. For our model to be truly translatable to human nephrolithiasis, the stones 

formed should be similar in composition to their human counterparts. 

The protocol that we developed for stone extraction and isolation was successful and 

provided an adequate sample yield. Proteinase K based malpighian tubule dissolution did 

not adversely affect the formed calcium oxalate stones. It was noted that a minimum of 
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150 dissected flies were required for sufficient sample collection. In some cases, light 

sonication for 30 minutes helped dislodge the stones from the malpighian tubules.  

SEM analysis revealed that in the presence of the lithogenic agent’s sodium oxalate and 

ethylene glycol, Drosophila formed predominately calcium oxalate stones. Both of the 

monohydrate and dihydrate forms of calcium oxalate were observed. Scanning electron 

microscopy analysis demonstrated pathognomonic dumbbell shaped calcium oxalate 

monohydrate crystals and envelope shaped calcium oxalate dihydrate crystals. Crystal 

size ranged between 6 to 16 µm which is roughly equal to the size of the malpighian 

tubule lumen and similar to the size of crystals formed in rat models of nephrolithiasis98.  

Energy dispersive x-ray spectroscopy analysis showed peaks of calcium (9.2% ± 1.33), 

carbon (35.1% ± 7.74) and oxygen (55.5% ± 6.71) which confirms that the crystal 

composition is predominantly calcium oxalate (Ca(COO)2). Carbon and oxygen was 

found in ratios of 1:1 and 1:2 which corroborates the di-anionic structure of oxalate. 

Trace amounts of magnesium were also observed in the calcium oxalate stones which is 

similar to that found in human stones. Our SEM/EDX analysis proves that the calcium 

oxalate stones formed in Drosophila closely resemble human calcium oxalate 

nephrolithiasis134.  

4.4 High-throughput Drug Screening Platform 

As highlighted in the introduction to this project, kidney stone disease continues to be a 

significant healthcare issue and accounts for a large portion of urological practice. The 

advent of minimally invasive surgical techniques such as ureteroscopy (URS), 
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extracorporeal shockwave lithotripsy (ESWL), and percutaneous nephrolithotomy 

(PCNL) have led to improved clinical outcomes in patients with kidney stone disease, 

however, advancements in the medical management of kidney stones are severely 

lacking. Current medical therapies focus on prevention of kidney stones through dietary 

modification, such as increased fluid intake whilst limiting the intake of animal protein, 

dietary oxalate and sodium. Few, if any, drugs exist that directly target stone formation. 

Current therapies involve the use of thiazide diuretics such as hydrochlorothiazide and 

chlorthalidone, that act by inducing minor volume depletion leading to the reabsorption 

of sodium and concomitant passive reabsorption of filtered calcium136,137. A reduction in 

urinary calcium leads to a decreased risk of calcium oxalate stone formation. However, 

the use of thiazide diuretics is a preventative measure and does not affect stones that have 

already formed. Potassium citrate, a potent citrate source, is commonly prescribed as 

citrate forms complexes with enteric calcium and prevents it from binding to oxalate138. 

Potassium citrate can also quickly metabolize to bicarbonate and is used to alkalinize the 

urine in patients with uric acid stone disease. Xanthine oxidase inhibitors such as 

Allopurinol are used to reduce uric acid production and are useful in both patients with 

uric acid and calcium oxalate stone disease139–141. A need exists for improved medical 

management of kidney stone disease. 

This section of our study utilizes the novel Drosophila melanogaster model of human 

calcium oxalate nephrolithiasis to screen through a library of 360 nutraceutical 

compounds to identify drugs that inhibit stone formation. The rationale for using this 

drug library stems from the proven association between the diet and kidney stone disease. 

Furthermore, nutraceuticals have been an effective starting point for rational drug design 
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in the past130. For example, Faber et. al. in their landmark paper discovered that 

administration of folic acid in children with acute lymphoblastic leukemia (ALL) caused 

an exacerbation of the disease process which ultimately led to the development of the 

now commonly used anti-metabolite chemotherapeutic agents142. Similar drug libraries 

have recently been used to identify novel chemotherapeutic drugs133. 

As with prior animal models, no method existed for large scale drug screening in the 

Drosophila model of human kidney stone disease. Our novel indirect screening method 

for measuring stone burden in fly fecal matter was highly effective. Large cohorts of 

drugs were easily screened in weeks using simple polarized and confocal microscopy. 

The experimental protocol proved simple, was easily learned and did not require an 

extensive infrastructure.  

A total of 6 compounds that reduced calcium oxalate stone formation were identified for 

a total of 360 compounds. A brief literature search revealed interesting information 

regarding the possible mechanisms by which these drugs may have exerted their effect. 

Aloin B is an anthrone derived from the leaves of the plant Aloe trichosantha. It is a 

potent chloride channel activator that initiates peristalsis in human tissues such as the gut 

and kidneys. Peristaltic action could potentially lead to early clearance of smaller calcium 

oxalate crystals limiting their ability to form larger stones. Aloin B is a known 

antimicrobial with a broad spectrum of action143. Since kidney stones are associated with 

urinary tract infections, the action of Aloin B on the renal microbiome could reduce the 

risk of stone formation. Additionally, Aloin B is also an antioxidant with anti-

inflammatory properties, as shown in prior studies144. Neutralization of reactive oxygen 
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species in the urinary tract and reduction of the inflammation associated with the 

deposition of calcium oxalate crystals could also reduce the risk of stone formation. 

Alpha Mangostin is a xanthoid that is isolated from the mangosteen tree. Previous studies 

on its pharmacological activity have shown potent anti-oxidant, anti-microbial and anti-

inflammatory properties145,146. Similarly, mangostin is basic in nature and could 

potentially alkalinize the urine leading to effects similar to that of potassium citrate. 

Cucurbatacin B is compound that imparts a bitter taste to plant species in the 

Cucurbitaceae family which includes squashes and pumpkins. It has known anti-cancer 

properties as shown in a number of studies147,148.  

Arbutin is a glycoside that inhibits tyrosinase and is extracted from the leaf of the 

bearberry plant. It has previously been used in traditional Cherokee medicine as a urinary 

tract infection remedy and recent studies have validated its antimicrobial effect149.  

Isorhamnetin is a methylated flavonoid that is isolated from the psychedelic plant Tagetes 

lucida. Isorhamnetin has known anti-mycobacterial and anti-inflammatory properties plus 

stabilizing effects on the renal cell membrane150–152. There is some evidence of the 

potential action of Isorhamnetin on Vitamin D receptor (VDR) activation that might 

cause changes in calcium metabolism leading to a decreased risk of  calcium oxalate 

stone formation153. 

Apiin is an aglycone isolated from parsley and celery. It and other apigenins have been 

previously used for treatment of urinary tract infections and urolithiasis154. It acts by 
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exerting a diuretic action through the inhibition of the Na+K+ATPase pump in renal 

tissues155. 

Our drug screening platform has yielded some interesting results. Further investigation of 

the possible mechanisms of action of these drugs will be required to validate these 

results. 

4.5 Future Directions 

Future work in this area will aim to elucidate the mechanisms of action of these drugs. 

We also wish to screen larger libraries of FDA approved drugs to further strengthen our 

results. Additionally, we have developed and optimized protocols for in vivo imaging of 

Drosophila nephrolithiasis. Our next step will be to use our novel bisphosphonate based 

fluorescent probes to visualize stone formation in real time. This will provide us with 

vital information on where and how crystallization begins, possibly exposing new 

therapeutic targets.  

Most nephrolithiasis research is targeted towards the prevention and treatment of calcium 

oxalate stones which is the most common subtype. We also aim to develop additional 

Drosophila models for other stone types such as cystine and uric acid. Work is currently 

underway to develop a simple genetic Drosophila model for cystine nephrolithiasis. We 

have identified 16 DM orthologues for the human cystine co-transporters SLC3A1 and 

SLC7A9 using the Drosophila RNAi Orthologue Online Prediction Tool (Figure 28). Of 

the 16 gene orthologs identified, fly gene CG9413 is an exact match for structure and 

function in the fly renal tubules. Using this data, we have created a transgenic fly that 
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possesses the SLC7A9 gene knockdown in the principal cells of the malpighian tubules 

by utilizing GAL4/UAS system. Two fly lines were obtained, one expressing the yeast 

transcription activation factor (GAL4) in its renal tubules and a second fly line in which 

an upstream activation sequence (UAS) is followed by a hairpin dsRNA sequence 

directed against gene CG9413. The mating of these lines resulted in a selective 

knockdown of the cystine co-transporter in the principal cells of the malpighian tubule. 

 

Figure 28: Results of the DIOPT-DIST database search for Drosophila orthologs of human 

SLC7A9 and SLC3A9 genes. 

 

Initial results are promising. Highly birefringent crystals were observed the throughout 

the malpighian tubule and gut in transgenic SLC7A9 knockdown Drosophila fed a 1% 

cystine diet (Figure 29). Similar crystals were not seen in the control wild type Canton-S 

group. 
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Figure 29: Polarized light microscopy of malpighian tubules from transgenic SLC7A9 

knockdown Drosophila fed a 1% cystine diet. 

Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis of 

stones isolated from transgenic SLC7A9 knockdown Drosophila revealed large (> 100 

µm) heterogeneous stones (Figure 30).  

The stones were mostly composed of calcium and phosphate, however, there was a large 

organic component. Further analysis of these stones with high performance liquid 

chromatography – mass spectroscopy (HPLC-MS) is planned in the future.  
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Figure 30: Scanning electron micrograph and energy dispersive x-ray diffraction 

spectroscopy analysis of stones isolated from the transgenic SLC7A9 knockdown 

Drosophila. 

 

Similarly, we are also working on a Drosophila model for uric acid nephrolithiasis. Uric 

acid, which is a byproduct of purine metabolism in humans, is converted to allantoin via 

the action of the enzyme Uricase in invertebrates such as Drosophila. We have 

developed a transgenic Uricase knockdown fly that produces uric acid concretions when 

fed a diet high in purines (Figure 31). 
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Figure 31: Polarized light microscopy of malpighian tubules from transgenic Uricase 

knockdown Drosophila fed (A) standard food media (B) high yeast media (C) 1% purine 

media. 

 

SEM/EDX analysis of stones isolated from transgenic Uricase knockdown Drosophila 

show a composition similar to that of human uric acid stones (Figure 32).  

 

 

Figure 32: SEM/EDX analysis of stones isolated from transgenic Uricase knockdown 

Drosophila. (A,B) Drosophila stone sample (C) Control human uric acid stone sample. 
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Future experiments are planned to develop Drosophila models for other stone types such 

as struvite, and screen large libraries of FDA approved drugs to identify potential 

therapies. Work is also being done to investigate the effects of gut and urinary 

microbiome on stone formation. We are confident that work in this novel model will 

impact patient care and benefit patients with nephrolithiasis in a dramatic way.  



77 

 

Bibliography 

1.  Scales CD, Smith AC, Hanley JM, et al: Prevalence of kidney stones in the United 
States. Eur. Urol. 2012; 62: 160–165. 

2.  Stamatelou KK, Francis ME, Jones C a., et al: Time trends in reported prevalence 
of kidney stones in the United States: 1976-1994. Kidney Int. 2003; 63: 1817–
1823. 

3.  Lotan Y, Cadeddu J a, Roerhborn CG, et al: Cost-effectiveness of medical 
management strategies for nephrolithiasis. J. Urol. 2004; 172: 2275–2281. 

4.  Clark JY, Thompson IM and Optenberg SA: Economic impact of urolithiasis in 
the United States. J. Urol. 1995; 154: 2020–4. 

5.  Saigal CS, Joyce G and Timilsina AR: Direct and indirect costs of nephrolithiasis 
in an employed population: Opportunity for disease management? Kidney Int. 
2005; 68: 1808–1814. 

6.  Coe FL, Parks JH and Asplin JR: The pathogenesis and treatment of kidney stones. 
N. Engl. J. Med. 1992; 327: 1141–52. 

7.  Sakhaee K, Maalouf NM and Sinnott B: Clinical review. Kidney stones 2012: 
pathogenesis, diagnosis, and management. J. Clin. Endocrinol. Metab. 2012; 97: 
1847–60. 

8.  Millman S, Strauss AL, Parks JH, et al: Pathogenesis and clinical course of mixed 
calcium oxalate and uric acid nephrolithiasis. Kidney Int. 1982; 22: 366–70. 

9.  Denstedt JD and Fuller A: Urolithiasis. ( Edited by JJ Talati, H-G Tiselius, DM 
Albala, et al). London: Springer London; 2012. 

10.  Fattah Hasan, Hambaroush Yasmin GD: Cystine Nephrolithiasis. Transl Androl 
Urol 2014; 3: 228–233. 

11.  Pais VM, Lowe G, Lallas CD, et al: Xanthine urolithiasis. Urology 2006; 67: 
1084.e9–1084.e11. 

12.  Ramello A, Vitale C and Marangella M: Epidemiology of nephrolithiasis. J. 
Nephrol. 2000; 13 Suppl 3: S45–50. 

13.  Pak CYC, Poindexter JR, Adams-Huet B, et al: Predictive value of kidney stone 
composition in the detection of metabolic abnormalities. Am. J. Med. 2003; 115: 
26–32. 

14.  Chen YY, Roseman JM, Devivo MJ, et al: Geographic variation and 
environmental risk factors for the incidence of initial kidney stones in patients with 
spinal cord injury. J. Urol. 2000; 164: 21–6. 

15.  Brikowski TH, Lotan Y and Pearle MS: Climate-related increase in the prevalence 
of urolithiasis in the United States. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 
9841–6. 

16.  Pak CY: Etiology and treatment of urolithiasis. Am. J. Kidney Dis. 1991; 18: 624–



78 

 

37. 
17.  Frick KK and Bushinsky DA: Molecular mechanisms of primary hypercalciuria. J. 

Am. Soc. Nephrol. 2003; 14: 1082–95. 
18.  Pak CY, Britton F, Peterson R, et al: Ambulatory evaluation of nephrolithiasis. 

Classification, clinical presentation and diagnostic criteria. Am. J. Med. 1980; 69: 
19–30. 

19.  Curhan GC and Taylor EN: 24-h uric acid excretion and the risk of kidney stones. 
Kidney Int. 2008; 73: 489–96. 

20.  Broadus AE, Insogna KL, Lang R, et al: A consideration of the hormonal basis and 
phosphate leak hypothesis of absorptive hypercalciuria. J. Clin. Endocrinol. Metab. 
1984; 58: 161–9. 

21.  Insogna KL, Broadus AE, Dreyer BE, et al: Elevated production rate of 1,25-
dihydroxyvitamin D in patients with absorptive hypercalciuria. J. Clin. Endocrinol. 
Metab. 1985; 61: 490–5. 

22.  Sorensen MD, Eisner BH, Stone KL, et al: Impact of calcium intake and intestinal 
calcium absorption on kidney stones in older women: the study of osteoporotic 
fractures. J. Urol. 2012; 187: 1287–92. 

23.  Li XQ, Tembe V, Horwitz GM, et al: Increased intestinal vitamin D receptor in 
genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J. Clin. 
Invest. 1993; 91: 661–7. 

24.  Karnauskas AJ, van Leeuwen JPTM, van den Bemd G-JCM, et al: Mechanism and 
function of high vitamin D receptor levels in genetic hypercalciuric stone-forming 
rats. J. Bone Miner. Res. 2005; 20: 447–54. 

25.  Coe FL and Bushinsky DA: Pathophysiology of hypercalciuria. Am. J. Physiol. 
1984; 247: F1–13. 

26.  Buckalew VM: Nephrolithiasis in renal tubular acidosis. J. Urol. 1989; 141: 731–
7. 

27.  Patron P, Gardin JP and Paillard M: Renal mass and reserve of vitamin D: 
determinants in primary hyperparathyroidism. Kidney Int. 1987; 31: 1174–80. 

28.  Lau YK, Wasserstein A, Westby GR, et al: Proximal tubular defects in idiopathic 
hypercalciuria: resistance to phosphate administration. Miner. Electrolyte Metab. 
1982; 7: 237–49. 

29.  Levi M and Breusegem S: Renal Phosphate–Transporter Regulatory Proteins and 
Nephrolithiasis. N. Engl. J. Med. 2008; 359: 1171–1173. 

30.  Karim Z, Gérard B, Bakouh N, et al: NHERF1 Mutations and Responsiveness of 
Renal Parathyroid Hormone. N. Engl. J. Med. 2008; 359: 1128–1135. 

31.  Sakhaee K: Recent advances in the pathophysiology of nephrolithiasis. Kidney Int. 
2009; 75: 585–595. 

32.  Smith LH: Diet and hyperoxaluria in the syndrome of idiopathic calcium oxalate 
urolithiasis. Am. J. Kidney Dis. 1991; 17: 370–5. 



79 

 

33.  Watts RW: Primary hyperoxaluria type I. QJM 1994; 87: 593–600. 
34.  Danpure CJ: Molecular and clinical heterogeneity in primary hyperoxaluria type 1. 

Am. J. Kidney Dis. 1991; 17: 366–9. 
35.  Hoppe B: An update on primary hyperoxaluria. Nat. Rev. Nephrol. 2012; 8: 467–

475. 
36.  Parks JH, Worcester EM, O’Connor RC, et al: Urine stone risk factors in 

nephrolithiasis patients with and without bowel disease. Kidney Int. 2003; 63: 
255–65. 

37.  McConnell N, Campbell S, Gillanders I, et al: Risk factors for developing renal 
stones in inflammatory bowel disease. BJU Int. 2002; 89: 835–41. 

38.  Annuk M, Backman U, Holmgren K, et al: Urinary calculi and jejunoileal bypass 
operation. A long-term follow-up. Scand. J. Urol. Nephrol. 1998; 32: 177–80. 

39.  Dobbins JW and Binder HJ: Effect of bile salts and fatty acids on the colonic 
absorption of oxalate. Gastroenterology 1976; 70: 1096–1100. 

40.  Lindsjö M, Danielson BG, Fellström B, et al: Intestinal oxalate and calcium 
absorption in recurrent renal stone formers and healthy subjects. Scand. J. Urol. 
Nephrol. 1989; 23: 55–9. 

41.  Sidhu H, Hoppe B, Hesse A, et al: Absence of Oxalobacter formigenes in cystic 
fibrosis patients: a risk factor for hyperoxaluria. Lancet 1998; 352: 1026–1029. 

42.  Mittal RD, Kumar R, Mittal B, et al: Stone composition, metabolic profile and the 
presence of the gut-inhabiting bacterium Oxalobacter formigenes as risk factors for 
renal stone formation. Med. Princ. Pract. 2013; 12: 208–13. 

43.  Duncan SH, Richardson AJ, Kaul P, et al: Oxalobacter formigenes and Its 
Potential Role in Human Health. Society 2002; 68: 3841–3847. 

44.  Siva S, Barrack ER, Reddy GPV, et al: A critical analysis of the role of gut 
Oxalobacter formigenes in oxalate stone disease. BJU Int. 2009; 103: 18–21. 

45.  Preminger GM: Renal calculi: pathogenesis, diagnosis, and medical therapy. 
Semin. Nephrol. 1992; 12: 200–16. 

46.  Hess B, Zipperle L and Jaeger P: Citrate and calcium effects on Tamm-Horsfall 
glycoprotein as a modifier of calcium oxalate crystal aggregation. Am. J. Physiol. 
1993; 265: F784–91. 

47.  Asplin JR, Arsenault D, Parks JH, et al: Contribution of human uropontin to 
inhibition of calcium oxalate crystallization. Kidney Int. 1998; 53: 194–199. 

48.  Pak CY: Citrate and renal calculi: an update. Miner. Electrolyte Metab. 1994; 20: 
371–7. 

49.  Kok DJ, Papapoulos SE and Bijvoet OL: Crystal agglomeration is a major element 
in calcium oxalate urinary stone formation. Kidney Int. 1990; 37: 51–6. 

50.  Breslau NA, Brinkley L, Hill KD, et al: Relationship of animal protein-rich diet to 
kidney stone formation and calcium metabolism. J. Clin. Endocrinol. Metab. 1988; 



80 

 

66: 140–6. 
51.  Mandel EI, Taylor EN and Curhan GC: Dietary and lifestyle factors and medical 

conditions associated with urinary citrate excretion. Clin. J. Am. Soc. Nephrol. 
2013; 8: 901–8. 

52.  Borghi L, Meschi T, Amato F, et al: Urinary volume, water and recurrences in 
idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 
1996; 155: 839–43. 

53.  Ferraro PM, Taylor EN, Gambaro G, et al: Soda and other beverages and the risk 
of kidney stones. Clin. J. Am. Soc. Nephrol. 2013; 8: 1389–95. 

54.  Curhan GC, Willett WC, Rimm EB, et al: Prospective study of beverage use and 
the risk of kidney stones. Am. J. Epidemiol. 1996; 143: 240–7. 

55.  Curhan GC, Willett WC, Speizer FE, et al: Beverage use and risk for kidney stones 
in women. Ann. Intern. Med. 1998; 128: 534–40. 

56.  Hönow R, Laube N, Schneider A, et al: Influence of grapefruit-, orange- and 
apple-juice consumption on urinary variables and risk of crystallization. Br. J. 
Nutr. 2003; 90: 295–300. 

57.  Muldowney FP, Freaney R and Moloney MF: Importance of dietary sodium in the 
hypercalciuria syndrome. Kidney Int. 1982; 22: 292–6. 

58.  Curhan GC, Willett WC, Speizer FE, et al: Comparison of dietary calcium with 
supplemental calcium and other nutrients as factors affecting the risk for kidney 
stones in women. Ann. Intern. Med. 1997; 126: 497–504. 

59.  Curhan GC, Willett WC, Knight EL, et al: Dietary factors and the risk of incident 
kidney stones in younger women: Nurses’ Health Study II. Arch. Intern. Med. 
2004; 164: 885–91. 

60.  Coe FL: Uric acid and calcium oxalate nephrolithiasis. Kidney Int. 1983; 24: 392–
403. 

61.  Coe FL, Strauss AL, Tembe V, et al: Uric acid saturation in calcium 
nephrolithiasis. Kidney Int. 1980; 17: 662–8. 

62.  Coe FL and Parks JH: Hyperuricosuria and calcium nephrolithiasis. Urol. Clin. 
North Am. 1981; 8: 227–44. 

63.  Halabe A and Sperling O: Uric acid nephrolithiasis. Miner. Electrolyte Metab. 
1994; 20: 424–31. 

64.  Maalouf NM, Sakhaee K, Parks JH, et al: Association of urinary pH with body 
weight in nephrolithiasis. Kidney Int. 2004; 65: 1422–5. 

65.  Taylor EN and Curhan GC: Body size and 24-hour urine composition. Am. J. 
Kidney Dis. 2006; 48: 905–15. 

66.  Coe FL: Hyperuricosuric calcium oxalate nephrolithiasis. Adv. Exp. Med. Biol. 
1980; 128: 439–50. 

67.  Yu TF: Urolithiasis in hyperuricemia and gout. J. Urol. 1981; 126: 424–30. 



81 

 

68.  Kramer HM and Curhan G: The association between gout and nephrolithiasis: the 
National Health and Nutrition Examination Survey III, 1988-1994. Am. J. Kidney 
Dis. 2002; 40: 37–42. 

69.  Griffith DP: Struvite stones. Kidney Int. 1978; 13: 372–82. 

70.  Flannigan R, Choy WH, Chew B, et al: Renal struvite stones--pathogenesis, 
microbiology, and management strategies. Nat. Rev. Urol. 2014; 11: 333–41. 

71.  Broomfield RJ, Morgan SD, Khan A, et al: Crystalline bacterial biofilm formation 
on urinary catheters by urease-producing urinary tract pathogens: a simple method 
of control. J. Med. Microbiol. 2009; 58: 1367–1375. 

72.  Kristensen C, Parks JH, Lindheimer M, et al: Reduced glomerular filtration rate 
and hypercalciuria in primary struvite nephrolithiasis. Kidney Int. 1987; 32: 749–
53. 

73.  Kaefer M, Hendren WH, Bauer SB, et al: Reservoir calculi: a comparison of 
reservoirs constructed from stomach and other enteric segments. J. Urol. 1998; 
160: 2187–90. 

74.  Feliubadaló L, Font M, Purroy J, et al: Non-type I cystinuria caused by mutations 
in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat. Genet. 1999; 23: 52–7. 

75.  Mattoo A and Goldfarb DS: Cystinuria. Semin. Nephrol. 2008; 28: 181–191. 

76.  Biyani CS and Cartledge JJ: Cystinuria-Diagnosis and Management. EAU-EBU 
Updat. Ser. 2006; 4: 175–183. 

77.  Viprakasit DP, Sawyer MD, Herrell SD, et al: Changing composition of staghorn 
calculi. J. Urol. 2011; 186: 2285–90. 

78.  Ichida K, Matsumura T, Sakuma R, et al: Mutation of human molybdenum 
cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem. 
Biophys. Res. Commun. 2001; 282: 1194–200. 

79.  Perazella M a: Drug-Induced Renal Failure: Update on New Medications and 
Unique Mechanisms of Nephrotoxicity. Am. J. Med. Sci. 2003; 325: 349–362. 

80.  Glowacki LS, Beecroft ML, Cook RJ, et al: The natural history of asymptomatic 
urolithiasis. J. Urol. 1992; 147: 319–21. 

81.  Teichman JMH: Clinical practice. Acute renal colic from ureteral calculus. N. 
Engl. J. Med. 2004; 350: 684–693. 

82.  KOBAYASHI T, NISHIZAWA K, MITSUMORI K, et al: Impact of Date of 
Onset on the Absence of Hematuria in Patients with Acute Renal Colic. J. Urol. 
2003; 170: 1093–1096. 

83.  Press SM and Smith AD: Incidence of negative hematuria in patients with acute 
urinary lithiasis presenting to the emergency room with flank pain. Urology 1995; 
45: 753–757. 

84.  Bove P, Kaplan D, Dalrymple N, et al: Reexamining the value of hematuria testing 
in patients with acute flank pain. J. Urol. 1999; 162: 685–7. 



82 

 

85.  Tavichakorntrakool R, Prasongwattana V, Sungkeeree S, et al: Extensive 
characterizations of bacteria isolated from catheterized urine and stone matrices in 
patients with nephrolithiasis. Nephrol. Dial. Transplant. 2012; 27: 4125–4130. 

86.  Khan SR and Hackett RL: Calcium oxalate urolithiasis in the rat: is it a model for 
human stone disease? A review of recent literature. Scan. Electron Microsc. 1985: 
759–74. 

87.  Palma D, Langston C, Gisselman K, et al: Canine struvite urolithiasis. Compend. 
Contin. Educ. Vet. 2013; 35: E1; quiz E1. 

88.  Mandel NS, Henderson JD, Hung LY, et al: A porcine model of calcium oxalate 
kidney stone disease. J. Urol. 2004; 171: 1301–3. 

89.  Rosenow EC: The production of urinary calculi by the devitalization and infection 
of teeth in dogs with streptococci from cases of neprholithiasis. Arch. Intern. Med. 
1923; 31: 807. 

90.  Bachmann S, Sakai T and Kriz W: Nephron and Collecting Duct Structure in the 
Kidney, Rat. In: 1986; pp 3–24. 

91.  Khan SR and Hackett RL: Urolithogenesis of mixed foreign body stones. J. Urol. 
1987; 138: 1321–8. 

92.  Khan SR, Glenton P a and Byer KJ: Modeling of hyperoxaluric calcium oxalate 
nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. 
Kidney Int. 2006; 70: 914–23. 

93.  de Water R, Boevé ER, van Miert PP, et al: Experimental nephrolithiasis in rats: 
the effect of ethylene glycol and vitamin D3 on the induction of renal calcium 
oxalate crystals. Scanning Microsc. 1996; 10: 591–601; discussion 601–3. 

94.  Oh SY, Kwon JK, Lee SY, et al: A comparative study of experimental rat models 
of renal calcium oxalate stone formation. J. Endourol. 2011; 25: 1057–61. 

95.  Khan SR and Glenton P a.: Experimental induction of calcium oxalate 
nephrolithiasis in mice. J. Urol. 2010; 184: 1189–1196. 

96.  Liu J, Cao Z, Zhang Z, et al: A comparative study on several models of 
experimental renal calcium oxalate stones formation in rats. J. Huazhong Univ. 
Sci. Technol. 2007; 27: 83–87. 

97.  Poldelski V, Johnson A, Wright S, et al: Ethylene glycol-mediated tubular injury: 
identification of critical metabolites and injury pathways. Am. J. Kidney Dis. 
2001; 38: 339–48. 

98.  Khan SR: Animal models of kidney stone formation: an analysis. World J. Urol. 
1997; 15: 236–243. 

99.  Lyon ES, Borden TA and Vermeulen CW: Experimental oxalate lithiasis produced 
with ethylene glycol. Invest. Urol. 1966; 4: 143–51. 

100.  Khan SR: Experimental calcium oxalate nephrolithiasis and the formation of 
human urinary stones. Scanning Microsc. 1995; 9: 89–100; discussion 100–1. 

101.  Khan SR: Calcium oxalate crystal interaction with renal tubular epithelium, 



83 

 

mechanism of crystal adhesion and its impact on stone development. Urol. Res. 
1995; 23: 71–9. 

102.  Khan SR and Glenton PA: Deposition of calcium phosphate and calcium oxalate 
crystals in the kidneys. J. Urol. 1995; 153: 811–7. 

103.  Livrozet M, Vandermeersch S, Mesnard L, et al: An Animal Model of Type A 
Cystinuria Due to Spontaneous Mutation in 129S2/SvPasCrl Mice. Edited by D 
Long. PLoS One 2014; 9: e102700. 

104.  Miller J, Chi T, Kapahi P, et al: Drosophila melanogaster as an emerging 
translational model of human nephrolithiasis. J. Urol. 2013; 190: 1648–56. 

105.  Letsou A and Bohmann D: Small flies--big discoveries: nearly a century of 
Drosophila genetics and development. Dev. Dyn. 2005; 232: 526–8. 

106.  Pandey UB and Nichols CD: Human disease models in Drosophila melanogaster 
and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011; 63: 
411–36. 

107.  Davies SA, Goodwin SF, Kelly DC, et al: Analysis and inactivation of vha55, the 
gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals 
a larval lethal phenotype. J. Biol. Chem. 1996; 271: 30677–84. 

108.  Allan AK, Du J, Davies SA, et al: Genome-wide survey of V-ATPase genes in 
Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol. 
Genomics 2005; 22: 128–138. 

109.  Karet FE, Finberg KE, Nelson RD, et al: Mutations in the gene encoding B1 
subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. 
Nat. Genet. 1999; 21: 84–90. 

110.  Hirata T, Cabrero P, Berkholz DS, et al: In vivo Drosophilia genetic model for 
calcium oxalate nephrolithiasis. Am. J. Physiol. Renal Physiol. 2012; 303: F1555–
62. 

111.  Chien S, Reiter LT, Bier E, et al: Homophila: human disease gene cognates in 
Drosophila. Nucleic Acids Res. 2002; 30: 149–51. 

112.  Hu Y, Flockhart I, Vinayagam A, et al: An integrative approach to ortholog 
prediction for disease-focused and other functional studies. BMC Bioinformatics 
2011; 12: 357. 

113.  Millburn GH, Crosby MA, Gramates LS, et al: FlyBase portals to human disease 
research using Drosophila models. Dis. Model. Mech. 2016; 9: 245–52. 

114.  Chintapalli VR, Wang J and Dow J a T: Using FlyAtlas to identify better 
Drosophila melanogaster models of human disease. Nat. Genet. 2007; 39: 715–20. 

115.  Duffy JB: GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. 
Genesis 2002; 34: 1–15. 

116.  Dietzl G, Chen D, Schnorrer F, et al: A genome-wide transgenic RNAi library for 
conditional gene inactivation in Drosophila. Nature 2007; 448: 151–156. 

117.  Weavers H, Prieto-Sánchez S, Grawe F, et al: The insect nephrocyte is a podocyte-



84 

 

like cell with a filtration slit diaphragm. Nature 2009; 457: 322–6. 
118.  Dow JA, Maddrell SH, Görtz A, et al: The malpighian tubules of Drosophila 

melanogaster: a novel phenotype for studies of fluid secretion and its control. J. 
Exp. Biol. 1994; 197: 421–8. 

119.  Wessing A and Zierold K: The formation of type-I concretions in Drosophila 
Malpighian tubules studied by electron microscopy and X-ray microanalysis. J. 
Insect Physiol. 1999; 45: 39–44. 

120.  Hirata T, Czapar A, Brin L, et al: Ion and solute transport by Prestin in Drosophila 
and Anopheles. J. Insect Physiol. 2012; 58: 563–9. 

121.  Chen Y-H, Liu H, Chen H-Y, et al: Ethylene glycol induces calcium oxalate 
crystal deposition in Malpighian tubules: a Drosophila model for 
nephrolithiasis/urolithiasis. Kidney Int. 2011; 80: 369–77. 

122.  Chen W-C, Lin W-Y, Chen H-Y, et al: Melamine-induced urolithiasis in a 
Drosophila model. J. Agric. Food Chem. 2012; 60: 2753–7. 

123.  Chi T, Kim MS, Lang S, et al: A Drosophila model identifies a critical role for 
zinc in mineralization for kidney stone disease. PLoS One 2015; 10: e0124150. 

124.  Lang S, Mutelifu G, Zee T, et al: OP2-05 A NOVEL GENETIC MODEL FOR 
STUDYING URIC ACID STONE DISEASE. J. Urol. 2014; 191: e388–e389. 

125.  Ho C, Chen Y-H, Wu P, et al: Effects of commercial citrate-containing juices on 
urolithiasis in a Drosophila model. Kaohsiung J. Med. Sci. 2013; 29: 488–493. 

126.  Tsai K-S, Chen Y-H, Shen J-L, et al: Does Chronic Cola Consumption Increase 
Urinary Stone Risk? Evidence from the &lt;i&gt;Drosophila&lt;/i&gt; Model of 
Urolithiasis. J. Food Nutr. Res. 2015; 3: 109–113. 

127.  Wu S-Y, Shen J-L, Man K-M, et al: An emerging translational model to screen 
potential medicinal plants for nephrolithiasis, an independent risk factor for 
chronic kidney disease. Evid. Based. Complement. Alternat. Med. 2014; 2014: 
972958. 

128.  Landry GM, Hirata T, Anderson JB, et al: Sulfate and thiosulfate inhibit oxalate 
transport via a dPrestin(mSlc26a6)-dependent mechanism in an insect model of 
calcium oxalate nephrolithiasis. Am. J. Physiol. Renal Physiol. 2015: 
ajprenal.00406.2015. 

129.  Gavin CT, Ali SN, Tailly T, et al: Novel Methods of Determining Urinary Calculi 
Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow 
Cytometry Urinalysis. Sci. Rep. 2016; 6: 19328. 

130.  Spagnuolo PA and Rogers MA: Food as a drug. Oncoscience 2015; 2: 801–2. 
131.  Linford NJ, Bilgir C, Ro J, et al: Measurement of lifespan in Drosophila 

melanogaster. J. Vis. Exp. 2013: 1–9. 
132.  Cole LE, Vargo-Gogola T and Roeder RK: Bisphosphonate-functionalized gold 

nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. 
Biomaterials 2014; 35: 2312–21. 



85 

 

133.  Spagnuolo P: Interactions Between Nutraceutical Supplements and Standard Acute 
Myeloid Leukemia Chemotherapeutics. J. Pharm. Pharm. Sci.  a Publ. Can. Soc. 
Pharm. Sci. Société Can. des Sci. Pharm. 2015; 18: 339–43. 

134.  Ouyang J-M, Gao J, Xue J-F, et al: Nanouric acid or nanocalcium phosphate as 
central nidus to induce calcium oxalate stone formation: a high-resolution 
transmission electron microscopy study on urinary nanocrystallites. Int. J. 
Nanomedicine 2014; 9: 4399. 

135.  Nazir A, Mukhopadhyay I, Saxena DK, et al: Evaluation of the No Observed 
Adverse Effect Level of Solvent Dimethyl Sulfoxide in Drosophila melanogaster. 
Toxicol. Mech. Methods 2003; 13: 147–152. 

136.  Nijenhuis T, Vallon V, van der Kemp AWCM, et al: Enhanced passive Ca2+ 
reabsorption and reduced Mg2+ channel abundance explains thiazide-induced 
hypocalciuria and hypomagnesemia. J. Clin. Invest. 2005; 115: 1651–8. 

137.  Nijenhuis T, Hoenderop JGJ, Loffing J, et al: Thiazide-induced hypocalciuria is 
accompanied by a decreased expression of Ca2+ transport proteins in kidney. 
Kidney Int. 2003; 64: 555–564. 

138.  Fink HA, Wilt TJ, Eidman KE, et al: Medical Management to Prevent Recurrent 
Nephrolithiasis in Adults: A Systematic Review for an American College of 
Physicians Clinical Guideline. Ann. Intern. Med. 2013; 158: 535. 

139.  Ettinger B, Tang A, Citron JT, et al: Randomized trial of allopurinol in the 
prevention of calcium oxalate calculi. N. Engl. J. Med. 1986; 315: 1386–9. 

140.  Favus MJ and Coe FL: The effects of allopurinol treatment on stone formation on 
hyperuricosuric calcium oxalate stone-formers. Scand. J. Urol. Nephrol. Suppl. 
1980; 53: 265–71. 

141.  Kenny J-ES and Goldfarb DS: Update on the Pathophysiology and Management of 
Uric Acid Renal Stones. Curr. Rheumatol. Rep. 2010; 12: 125–129. 

142.  Farber S, Diamond LK, Mercer RD, et al: Temporary Remissions in Acute 
Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-
Glutamic Acid (Aminopterin). N. Engl. J. Med. 1948; 238: 787–793. 

143.  Oumer A, Bisrat D, Mazumder A, et al: A new antimicrobial anthrone from the 
leaf latex of Aloe trichosantha. Nat. Prod. Commun. 2014; 9: 949–52. 

144.  Silva MA, Trevisan G, Hoffmeister C, et al: Anti-inflammatory and antioxidant 
effects of Aloe saponaria Haw in a model of UVB-induced paw sunburn in rats. J. 
Photochem. Photobiol. B Biol. 2014; 133: 47–54. 

145.  Shankaranarayan D, Gopalakrishnan C and Kameswaran L: Pharmacological 
profile of mangostin and its derivatives. Arch. Int. Pharmacodyn. thérapie 1979; 
239: 257–69. 

146.  Jung H-A, Su B-N, Keller WJ, et al: Antioxidant Xanthones from the Pericarp of 
Garcinia mangostana (Mangosteen). J. Agric. Food Chem. 2006; 54: 2077–2082. 

147.  Chen JC, Chiu MH, Nie RL, et al: Cucurbitacins and cucurbitane glycosides: 



86 

 

structures and biological activities. Nat. Prod. Rep. 2005; 22: 386. 
148.  Kapoor S: Cucurbitacin B and its rapidly emerging role in the management of 

systemic malignancies besides lung carcinomas. Cancer Biother. Radiopharm. 
2013; 28: 359. 

149.  Dykes GA, Amarowicz R and Pegg RB: Enhancement of nisin antibacterial 
activity by a bearberry (Arctostaphylos uva-ursi) leaf extract. Food Microbiol. 
2003; 20: 211–216. 

150.  Jnawali HN, Jeon D, Jeong M-C, et al: Antituberculosis Activity of a Naturally 
Occurring Flavonoid, Isorhamnetin. J. Nat. Prod. 2016; 79: 961–969. 

151.  Osman S, El Kashak W, Wink M, et al: New isorhamnetin derivatives from 
Salsola imbricata Forssk. leaves with distinct anti -inflammatory activity. 
Pharmacogn. Mag. 2016; 12: 47. 

152.  Yokozawa T, Dong E, Kawai Y, et al: Protective effects of some flavonoids on the 
renal cellular membrane. Exp. Toxicol. Pathol. 1999; 51: 9–14. 

153.  Inoue J, Choi J-M, Yoshidomi T, et al: Quercetin enhances VDR activity, leading 
to stimulation of its target gene expression in Caco-2 cells. J. Nutr. Sci. Vitaminol. 
(Tokyo). 2010; 56: 326–30. 

154.  Farzaei MH, Abbasabadi Z, Ardekani MRS, et al: Parsley: a review of 
ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 
2013; 33: 815–26. 

155.  Kreydiyyeh SI and Usta J: Diuretic effect and mechanism of action of parsley. J. 
Ethnopharmacol. 2002; 79: 353–7. 

 



87 

 

Appendices 

Appendix 1: Copyright Permission - The Journal Of Urology 

 





88 

 

Appendix 2: Copyright Permission - Nature Publishing Group 

 
  



89 

 

Curriculum Vitae 

 
Name:			 	 Sohrab	Naushad	Ali	
	
Post-secondary		 Shifa	College	of	Medicine	
Education	and		 Islamabad,	Pakistan	
Degrees:		 Jan	2005	–	Dec	2009		

M.B.B.S.	Bachelor	of	Medicine,	Bachelor	of	Surgery	
	
Honours	and		 	 Western	Graduate	Research	Scholarship	(WGRS)	
Awards:		 	 May	2015	–	May	2016	
	

Best	Poster	Presentation	at	the	Robert	Zhong	Department	of	
Surgery	Research	Day	
2015	
	

Research	Funding:	 Schulich	Masters	in	Surgery	Research	Grant	$5,000	
	 	 	 Principal	Investigator	
	 	 	 2015	–	2016	

	
Lawson	Health	Research	Institute	Internal	Research	Grant	$15,000	

	 Co-Investigator	
	 2015	–	2017	

	
Related	Work			 M.Sc.	Candidate	
Experience		 	 Western	University	
		 	 	 London,	Ontario,	Canada	
	 	 	 Lawson	Health	Research	Institute	

May	2015	–	May	2016	
	
	 Research	Assistant	
	 Western	University	
		 London,	Ontario,	Canada	
	 Lawson	Health	Research	Institute	
	 Oct	2014	–	May	2015	
	
	 Research	Assistant	
	 Western	University	
		 London,	Ontario,	Canada	
	 London	Regional	Cancer	Program	
	 Feb	2014	–	May	2014	
	



90 

 

	 Resident	Physician	
		 Division	of	Urology	
	 Northwest	General	Hospital	
		 Peshawar,	Pakistan	
	 Mar	2012	–	Feb	2013	

	
Abstracts	&	Publications:	
	
1.	 Sohrab	Naushad	Ali,	Jihye	Kim,	Paul	Spagnuolo,	Hassan	Razvi,	Hon	Leong:	High-
Throughput	and	Non-Invasive	Functional	Drug	Screening	Platform	for	Drosophila	
Melanogaster	Models	of	Nephrolithiasis.	Abstract	accepted	at	the	Annual	AUA	Congress	
2016.	 	
	 	
2.	 Kait	Al,	Sohrab	Naushad	Ali,	Jihye	Kim,	Hon	Leong,	Hassan	Razvi,	Jeremy	Burton:	
Characterization	of	the	Microbiota	Associated	with	Drosophila	Models	of	
Nephrolithiasis.	Abstract	accepted	at	the	Annual	AUA	Congress	2016.	 	
	 	
3.	 Daniel	Olvera-Posada,	Sohrab	Naushad	Ali,	Husain	Alenezi,	Marie	Dion,	John	
Denstedt,	Hassan	Razvi:	Natural	history	of	residual	fragments	after	Percutaneous	
Nephrolithotomy	(PCNL).	Accepted	for	Podium	Session	at	the	Annual	AUA	Congress	
2016.	 	
	 	
4.	 Carson	Gavin,	Sohrab	Naushad	Ali,	Thomas	Tailly,	Daniel	Olvera-Posada,	Husain	
Alenezi,	Nicholas	Power,	Jinqiang	Hou,	Andre	St.	Amant,	Leonard	Luyt,	Stephen	Wood,	
Charles	Wu,	Hassan	Razvi,	Hon	Leong:	Novel	Methods	of	Determining	Urinary	Calculi	
Composition:	Petrographic	Thin	Sectioning	of	Calculi	and	Nanoscale	Flow	Cytometry	
Urinalysis.	Scientific	Reports	5,	19328;	doi:10.1038/srep19328	(2016).	PMID:	26771074	
 	
5.	 Sohrab	Naushad	Ali,	Aymon	Naushad	Ali	and	Mian	Naushad:	Case	Report	
Munchausen	Syndrome	by	Proxy:	The	Overlooked	Diagnosis.	Journal	of	Ayub	Medical	
College	Abbottabad	2015;	27(2):	489–491.	PMID:	26411148		
	 	
6.	 Sohrab	Naushad	Ali,	Dajung	Kim,	Thomas	Tailly,	Hassan	Razvi,	Hon	Leong:	MP34-
07	Intravital	Imaging	of	the	Drosophila	Melanogaster	Model	of	Human	Nephrolithiasis.	
Journal	of	Urology	2015;	193(4):	e412–e413.	doi:10.1016/j.juro.2015.02.1303	 	
	 	
7.	 Sohrab	Naushad	Ali,	Dajung	Kim,	Thomas	Tailly,	Hassan	Razvi,	Hon	Leong:	
Fluorescent	Imaging	of	the	Drosophila	Melanogaster	Model	of	Human	Nephrolithiasis.	
The	56th	Annual	Drosophila	Conference	GSA,	Chicago	USA	2015.	 	
	 	
8.	 Sohrab	Naushad	Ali,	Niqad	Ahmed,	Aymon	Naushad	Ali,	Mian	Naushad:	
Emphysematous	Pyelonephritis:	A	Review	of	Six	Cases.	Journal	of	Ayub	Medical	College	
Abbottabad	2014;	26(4):	591–597.	PMID:	25672195	 	



91 

 

	 	
9.	 Sohrab	Naushad	Ali,	Aymon	Naushad	Ali,	Niqad	Ahmed,	Mian	Naushad:	Ureteral	
triplication	with	vesicoureteral	reflux	and	contralateral	duplication.	Journal	of	Ayub	
Medical	College	Abbottabad	2014;	24(5):	429–432.	PMID:	25603691	
	
Poster	Presentations:	
	
1.	 Sohrab	Naushad	Ali,	Dajung	Kim,	Thomas	Tailly,	Hassan	Razvi,	Hon	Leong:	
Intravital	Imaging	of	the	Drosophila	Melanogaster	Model	of	Human	Nephrolithiasis	–	Dr.	
Robert	Zhong	Department	of	Surgery	Research	Day,	London,	Ontario.	
	
2.	 Sohrab	Naushad	Ali,	Dajung	Kim,	Thomas	Tailly,	Hassan	Razvi,	Hon	Leong:	MP34-
07	Intravital	Imaging	of	the	Drosophila	Melanogaster	Model	of	Human	Nephrolithiasis	–	
Annual	AUA	Congress	New	Orleans.	
	
3.		 Sohrab	Naushad	Ali,	Dajung	Kim,	Thomas	Tailly,	Hassan	Razvi,	Hon	Leong:	
Fluorescent	Imaging	of	the	Drosophila	Melanogaster	Model	of	Human	Nephrolithiasis	–	
The	56th	Annual	Drosophila	Conference	GSA,	Chicago.	
	
Invited	Lectures:	
	
1.		 JK	Wyatt	Urology	Residents	Research	Day	

Double	Tree	Hilton,	London,	ON	
April	26th,	2016.	

	
1.	 Lawson	Health	Research	Institute	‘Talks	on	Friday’	

Shuttleworth	Auditorium,	St.	Joseph’s	Hospital	
	 February	12th,	2016.	
	
2.		 Lawson	Health	Research	Institute	‘Talks	on	Friday’	

Shuttleworth	Auditorium,	St.	Joseph’s	Hospital	
	 November	28th,	2014.	


	The Development Of Novel Imaging Modalities & High-throughput Drug Screening Platforms In The Drosophila Melanogaster Model of Human Calcium Oxalate Nephrolithiasis
	Recommended Citation

	Western University
	Scholarship@Western
	

	The Development Of Novel Imaging Modalities & High-throughput Drug Screening Platforms In The Drosophila Melanogaster Model of Human Calcium Oxalate Nephrolithiasis
	Sohrab Naushad Ali

	Microsoft Word - soh_thesis.docx

