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Forest management changes the physical environments and nutrient dynamics

and then regulates the forest productivity. Soil phosphorus (P) availability is critical

for productivity in tropical and subtropical forests. However, it was still poorly

understood how soil P content and fraction respond to various forest management

practices in these regions. Here, we measured the soil total P, available P, and

Hedley’s P fractions, including inorganic and organic P (Pi and Po), in subtropical

pine plantations treated with understory removal (UR), non-dominant species

thinning (NDST) and dominant species thinning (DST) after nine years.

Compared to plantations without management (CK), treatments such as

UR, NDST, and DST decreased soil total P at 0–10 cm and soil available P at 0–

10 cm and 10–20 cm. Increases in resin-Pi, NaOH-Pi, and C.HCl-Pi resulted in a

higher total Pi in 0–10 cm (p < 0.05) in treated plots (UR, NDST, and DST) than in

CK plots. UR, NDST, and DST treatments increased NaHCO3-Po and NaOH-Po

(p < 0.05) but decreased C.HCl-Po at a depth of 0–10 cm. Regardless of

management treatments, soil total P, available P, and P fractions in 0–10 cm

showed higher contents than those in 10–20 cm. There were positive relationships

between total P and total Po (p < 0.01) and between available P and total Pi. There

were also positive relationships between total P, available P, NaHCO3-Pi, and

NaOH-Pi (p < 0.05). In conclusion, forest management such as UR, NDST, and DST

decreased soil total P and available P, and transforming soil P fractions to available

P will meet the P demand following management in the pine plantations of

subtropical China.
KEYWORDS

understory removal, selective logging, Hedley’s P fraction, soil P dynamic, P-deficient
plantation, Pinus massoniana
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Introduction

Due to phosphorus (P) leaching losses and recalcitrant P

fraction formation (Walker and Syers, 1976), low soil P

availability often limits productivity in forest ecosystems,

especially in tropical and subtropical regions (Vitousek et al.,

2010; Reichert et al., 2022). Stand-level management practices,

such as understory removal (UR) and selective thinning, improve

plant growth by changing the physical environments (Trentini

et al., 2017; Giuggiola et al., 2018) and nutrient cycles (Rocha

et al., 2019; Qiu et al., 2020). Therefore, clarifying the responses of

soil P pools to UR and thinning practices is essential in developing

management strategies to improve forest productivity (Noormets

et al., 2015).

Although the thinning effects on soil P pools differed in a

specific forest, the global meta-analysis found that selective thinning

generally increases soil total P and available P contents (Zhou et al.,

2021; Zhang et al., 2023). In tropical rain forests, thinning can

decrease soil total P and organic P (Imai et al., 2012; Lontsi et al.,

2019). However, thinning was found not to affect soil total P in the

subtropical spruce forests (Hu et al., 2016) or to decrease soil

available P in subtropical coniferous mixed forests (Zhou et al.,

2015). Thinning treatment increased soil available P in temperate

spruce and larch plantations (Zhou et al., 2019; Zhao et al., 2023)

but not in a temperate pine forest (Kaye et al., 2005). Moreover, a

meta-analysis pointed out that UR decreases soil total P but

increases soil available P (Zhang et al., 2022a). Usually, due to

differences in plant growth and their P demand for various species

(Reichert et al., 2022), soil total and available P dynamics under

forest management may differ in various forests, and thus, further

studies are needed.

Soil P includes inorganic (Pi) and organic (Po) forms, which are

divided into multiple fractions (Hedley et al., 1982; Tiessen and

Moir, 1993). Although soil total P stock is always larger than

vegetation P stock (Imai et al., 2010), it is challenging to meet the

P demand for plant growth due to differences in the availability of

multiple P forms (Hedley et al., 1982). The P fractions extracted by

Hedley’s method have been used to explore the environmental and

management effects on soil P pools (Negassa and Leinweber, 2009)

and provide crucial information on soil P dynamics (Liu et al.,

2021). Previous studies found that variations in soil P fractions

varied with thinning intensity, forest type, soil type, and geographic

location (Ye et al., 2018; Liu et al., 2018b). UR treatment only

significantly reduced residual-P concentration (Zhang et al., 2022b).

To our knowledge, however, which soil P fractions are available as

potentially usable P for plants after forest management is unknown.

Here, we collected soil samples in pine plantations treated with

UR and selective thinning after nine years in subtropical China. We

measured the total P, available P, and Hedley’s P fractions,

including Pi and Po, to examine the differences between

management treatments. Our previous study observed a

significant positive effect of soil P availability on stand

productivity in pine plantations (Jian et al., 2022a). We therefore

hypothesize that forest management decreases soil total P and

available P contents (Hypothesis 1) due to the increased plant
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growth after forest management (Lei et al., 2021). Because soil

microbes often accelerate the transformation of Po to Pi (Fan et al.,

2018; Liu et al., 2021), we expect that soil Pi rather than Po fractions

will increase after forest management (Hypothesis 2). To meet

increased P demand for plant growth following forest management

(Table 1), we predict that soil available P increases with decreasing

soil Po and residual-P fractions (Hypothesis 3). A previous study

showed that ectomycorrhizal (ECM) and arbuscular mycorrhizal

(AM) trees responded differently to Pi addition in tropical and

subtropical forests (Liu et al., 2018a). Therefore, in the selected pine

(an ECM tree) plantation, our results will provide new insights into

understanding soil P dynamics under forest management.
Materials and methods

Site description

The study was conducted at Jiulingtou Forest Farm (30°59′N,
110°47′E) in subtropical China. The site is characterized by a

typical humid monsoon climate, with a mean annual temperature

of 16.9°C and a mean annual precipitation between 1000 mm

and 1250 mm (Lei et al., 2018). The zonal soil type is yellow-

brown soil (Cambisols, Shi et al., 2010) with a 1.0–1.2 m depth.

Reforestation in the study region was widely implemented to

alleviate land degradation resulting from deforestation of

climax vegetation.

The forest management experiment was performed in an

aerially seeded Pinus massoniana forest established in the 1970s.

At the beginning of the forest management experiment, the stand

density was approximately 1700 stems per hectare (Lei et al., 2018;

Shen et al., 2018), and the species composition mainly included

coexisting trees (e.g., Toxicodendron vernicifluum, Betula

luminifera, and Cunninghamia lanceolataand) and understory

shrubs (e.g., Pyracantha fortuneana, Litsea pungens, and

Lespedeza bicolour). In the early stage of forest management, soil

total P is between 0.20 g·kg-1 and 0.24 g·kg-1 in this pine plantation

(Lei et al., 2018). These soil total P contents had been categorized as

very low in tropical and subtropical regions (Reichert et al., 2022).

In other words, the pine plantations investigated in this study

represent a P-deficient ecosystem to some extent.
Experimental design

In September 2013, four experiment plots (20 m × 20 m) were

set within three large pine plantations (Lei et al., 2018). One

treatment for one plot in each plantation randomly put the

following four practices. (1) Control (CK): the forest remains in

its original state, except for slight disturbances (e.g., sampling)

during the investigation. (2) Understory removal (UR):

understory shrubs were removed yearly to reduce competition

with overstory vegetation. (3) Non-dominant species thinning

(NDST): the non-dominant species whose DBH is more than 5

cm were reduced by 15% (the basal area calculated) to reduce
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competition with dominant species. (4) Dominant species thinning

(DST): the pine trees with a DBH of more than 17.9 cm were

reduced by 75% (the basal area calculated) to reduce competition

with other trees. All forest management practices have not treated

any roots, living herbs, and floor litters (Lei et al., 2018) and

significantly enhanced the annual increment of DBH for the

remaining trees (Table 1).
Soil sampling and analyses

Mineral soils at 0–10 cm and 10–20 cm were randomly sampled

from nine points using a soil auger in July 2022. The soil samples in

each plot were manually mixed and air-dried indoors to pass

through a 2-mm sieve. Total P and available P contents were

measured by plasma emission spectroscopy (IRIS Intrepid II XSP,

Thermo Fisher Scientific, USA) following digestion with NHO3-

HClO4-HF solution and using a continuous flow analyzer

(Analytical AA3 Auto Analyser, SEAL, Germany) after extraction

with HCl-H2SO4 solution, respectively (Jian et al., 2022b). The P

fractions, including resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi,

NaOH-Po, HCl-Pi, C.HCl-Pi, C.HCl-Po, and residual-P, were

measured by Hedley’s method (Hedley et al., 1982) and its

modification (Tiessen and Moir, 1993).
Statistical analysis

Data were tested to meet the normality requirements

(Kolmogorow-Smirnow test) and homogeneity (Bartlett test) and

were logarithmically transformed when necessary for subsequent

analysis. One-way analyses of variance (ANOVA) and the Tukey

HSD test were used to determine the differences in soil P pools

among forest management practices and soil layers. The

correlations among soil P pools were examined using Pearson’s

correlation analysis and general linear regression models.

All analyses were implemented in R 4.3.0 (R Development Core

Team, 2023).
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Results

Soil total P and available P contents

Forest management treatments and their interactions with soil

layers did not significantly affect soil total P and available P

(Supplementary Table S1). Compared to CK, treatments such as

UR, NDST, and DST declined soil total P (0–10 cm; Figure 1A) and

soil available P (0–10 cm and 10–20 cm; Figure 1B) with no

significant level. Regardless of management treatments, soil total

P (0.28 ± 0.02 g·kg-1) in-depth 0–10 cm was greater (p < 0.001) than

that in-depth 10–20cm (0.25 ± 0.02 g·kg-1) (Figure 1A).
Soil P fractions

Forest management treatments, soil layers, and their interactions

differently affected soil P fractions (p < 0.05; Supplementary Table S1).

Soil C.HCl-Pi in 0–10 cm and C.HCl-Po in 10–20 cm were higher in

NDST and DST plots than in CK plots (p < 0.05; Table 2). Overall,

increased resin-Pi, NaOH-Pi and C.HCl-Pi in treatment plots resulted in

higher total Pi in 0–10 cm in UR (51.53 ± 2.88 mg·kg-1), NDST (60.79 ±

6.49 mg kg-1) and DST (58.26 ± 4.31 mg·kg-1) than in CK plots (46.87 ±

2.44mg·kg-1) (p < 0.05; Table 2). Compared to CK, treatments, including

UR, NDST, and DST, increased NaHCO3-Po and NaOH-Po but

decreased C.HCl-Po at 0–10 cm. Moreover, differences in P fractions

between 0–10 cm and 10–20 cm varied in different treatments (Table 2).
Relationships between soil P pools

Soil total P was positively related to soil NaHCO3-Pi (R
2 = 0.29, p <

0.01; Figure 2B), NaHCO3-Po (R2 = 0.32, p < 0.01; Figure 2C) and

NaOH-Pi (R2 = 0.24, p < 0.05; Figure 2D). Soil total P was not

significantly related to soil resin-Pi, NaOH-Po, HCl-Pi, C.CHCl-Pi,

C.CHCl-Po and residual-P (Figures 2A, E–I). Soil available P was

positively correlated with NaHCO3-Pi (R
2 = 0.15, with a marginally

significant level of 0.059; Figure 3B) and soil NaOH-Pi (R2 = 0.19,
TABLE 1 Information on the selected plantations after treatments in September 2013.

Variable Control (CK) Understory
removal (UR)

Non-dominant
species

thinning (NDST)

Dominant species
thinning (DST)

Topographical features

Altitude (m) 1225 ± 8 1240 ± 3 1200 ± 4 1226 ± 6

Slope (°) 34 35 33 33

Aspect Northwest Northwest Northwest Northwest

Stand characteristics †

Average DBH (cm) 11.10 ± 0.37 12.50 ± 0.43 17.74 ± 0.56 9.36 ± 0.30

Average height (m) 8.33 ± 0.14 8.91 ± 0.16 12.35 ± 0.24 8.54 ± 0.58

DDBH (cm) § 0.96 ± 0.09 1.10 ± 0.07 1.12 ± 0.06 1.04 ± 0.12
†Values are shown as mean ± standard errors.
§DDBH represents the increment of diameter at breast height (1.3 m) for the remaining trees between 2013 and 2016 (Lei et al., 2021).
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TABLE 2 Comparison of soil P fractions among forest management treatments.

Soil layer
(cm)

P fraction
(mg·kg-1)

Control (CK) Understory
removal (UR)

Non-dominant
species

thinning (NDST)

Dominant species
thinning (DST)

0–10 Resin-Pi 0.87 ± 0.24Aa 1.14 ± 0.30Aa 1.29 ± 0.34Aa 1.13 ± 0.26Aa

NaHCO3-Pi 5.40 ± 0.31Aa 4.41 ± 0.91Aa 5.94 ± 1.72Aa 3.92 ± 0.58Aa

NaHCO3-Po 10.78 ± 1.63Aa 14.57 ± 4.60Aa 14.79 ± 0.33Aa 12.60 ± 2.61Aa

NaOH-Pi 16.94 ± 1.59Aa 19.66 ± 1.05Aa 20.22 ± 1.68Aa 20.51 ± 2.26Aa

NaOH-Po 66.85 ± 2.72Aab 69.65 ± 2.42Aa 72.25 ± 2.51Aa 62.12 ± 4.25Ab

HCl-Pi 2.95 ± 0.37Aa 1.92 ± 0.78Aa 3.32 ± 1.83Aa 2.61 ± 0.67Aa

C.HCl-Pi 20.71 ± 3.21Ab 24.40 ± 4.21Aab 30.02 ± 2.27Aa 30.09 ± 3.33Aa

C.HCl-Po 28.21 ± 10.93Aa 25.15 ± 5.36Aa 17.28 ± 3.94Aa 21.55 ± 2.00Aa

Residual-P 50.24 ± 10.28Aa 58.61 ± 15.19Aa 62.50 ± 1.75Aa 66.21 ± 2.61Aa

Total Pi 46.87 ± 2.44Ac 51.53 ± 2.88Abc 60.79 ± 6.49Aa 58.26 ± 4.31Aab

Total Po 105.84 ± 6.90Aa 109.37 ± 10.58Aa 104.32 ± 2.42Aa 96.28 ± 6.68Aa

10–20 Resin-Pi 1.19 ± 0.09Aa 0.80 ± 0.21Ab 1.03 ± 0.11Aab 1.22 ± 0.03Aa

NaHCO3-Pi 3.09 ± 1.38Ba 2.85 ± 0.17Ba 3.37 ± 1.24Aa 2.47 ± 0.75Aa

NaHCO3-Po 10.98 ± 1.27Ba 9.27 ± 2.59Aa 7.45 ± 1.61Ba 14.12 ± 6.92Aa

NaOH-Pi 14.38 ± 2.73Aa 13.71 ± 0.22Ba 14.42 ± 2.54Ba 13.89 ± 2.23Ba

NaOH-Po 65.68 ± 6.71Aa 69.79 ± 1.55Aa 70.25 ± 6.63Ba 62.78 ± 9.91Aa

HCl-Pi 1.52 ± 0.67Ba 2.03 ± 0.38Aa 1.93 ± 0.43Aa 1.96 ± 0.42Aa

C.HCl-Pi 23.68 ± 2.11Aa 23.80 ± 2.06Aa 23.60 ± 2.81Ba 20.75 ± 3.72Ba

C.HCl-Po 12.52 ± 1.35Ab 16.95 ± 4.92Aab 18.34 ± 1.07Aa 20.99 ± 3.33Aa

(Continued)
F
rontiers in Plant
 Science
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FIGURE 1

Comparison of total P (A) and available P (B) among forest management treatments. Values are means ± 1 standard deviation (n = 3). Different
capital letters represent significant differences between soil layers (p < 0.05). CK, control; UR, understory removal; NDST, non-dominant species
thinning; and DST, dominant species thinning.
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p < 0.05; Figure 3D) but was negatively correlated with soil residual-P

(R2 = 0.25, p < 0.05; Figure 3I). Soil available P was not significantly

correlated with soil resin-Pi, NaHCO3-Po, NaOH-Po, HCl-Pi, C.CHCl-

Pi and C.CHCl-Po (Figures 3A, C, E–H). Also, there were positive
Frontiers in Plant Science 05
relationships between total P and total Po (R2 = 0.31, p < 0.01;

Figure 4B) and between available P and total Pi (R2 = 0.13, with a

marginally significant level of 0.089; Figure 4C). There were not

significant relationships between total P and total Pi (Figure 4A) and
B C

D E F

G H I

A

FIGURE 2

Correlations of soil total P with resin-Pi (A), NaHCO3-Pi (B), NaHCO3-Po (C), NaOH-Pi (D), NaOH-Po (E), HCl-Pi (F), C.HCl-Pi (G), C.HCl-Po (H) and
residual-P (I). CK, control; UR, understory removal; NDST, non-dominant species thinning; DST, dominant species thinning; 0–10, 0–10 cm soil
layer; 10–20, 10–20 cm soil layer; Pi, inorganic phosphorus; and Po, organic phosphorus.
TABLE 2 Continued

Soil layer
(cm)

P fraction
(mg·kg-1)

Control (CK) Understory
removal (UR)

Non-dominant
species

thinning (NDST)

Dominant species
thinning (DST)

Residual-P 62.59 ± 2.50Aab 54.46 ± 2.64Ab 64.64 ± 14.51Aab 75.72 ± 6.98Aa

Total Pi 43.86 ± 4.54Aa 43.18 ± 1.87Aa 44.35 ± 3.80Ba 40.28 ± 5.37Ba

Total Po 89.18 ± 6.21Ba 96.00 ± 7.27Aa 96.04 ± 8.34Aa 97.89 ± 11.17Aa
Values are means ± 1 standard deviation (n = 3). Different capital letters in the same column represent significant differences for the same variable between layers (p < 0.05), and different
lowercase letters in the same row represent significant differences between treatments (p < 0.05). Pi, inorganic phosphorus; and Po, organic phosphorus.
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between available P and total Po (Figure 4D). Significantly positive

relationships among NaHCO3-Pi, NaOH-Pi, and HCl-Pi, as well as

between resin-Pi and residual-P, were observed (Supplementary

Figure S1).
Discussions

Forest management decreased soil
P content

Our results identified that both total P and available P in UR,

NDST, and DST plantations were lower than those in CK plots

(Figure 1), which agreed with the first hypothesis but did not support

the results of the previous meta-analysis (Zhou et al., 2021; Zhang
Frontiers in Plant Science 06
et al., 2022a, 2023). In the P-deficient pine plantations (Reichert et al.,

2022; Jian et al., 2022b), the rapid growth of the remaining trees after

forest management (Table 1) accelerated the plant P uptake from

soils (Rocha et al., 2019) and then decreased soil P. Moreover, high

total P and available P contents in topsoils were likely related to the P

biogeochemical cycle: movement of soil P from subsoil (Zhou et al.,

2021) and return of P element in plant organs to the topsoil via litter,

detritus, and roots decomposition (Hu et al., 2016). Unfortunately,

this study did not measure the relevant data, and further

confirmation is needed for these mechanisms.

Interestingly, total P (0.27–0.29 g·kg-1) and available P (5.39–

6.62 mg·kg-1) of 0–10 cm after nine years were higher than those in

the initial stage of forest management (0.22–0.24 g·kg-1 and 0.86–

2.15 mg·kg-1, respectively; Shen et al., 2017; Lei et al., 2021). Forest

management increased soil temperature (Zeng et al., 2023) and
B C

D E F

G H I

A

FIGURE 3

Correlations of soil available P with resin-Pi (A), NaHCO3-Pi (B), NaHCO3-Po (C), NaOH-Pi (D), NaOH-Po (E), HCl-Pi (F), C.HCl-Pi (G), C.HCl-Po
(H) and residual-P (I). CK, control; UR, understory removal; NDST, non-dominant species thinning; DST, dominant species thinning; 0–10, 0–10 cm
soil layer; 10–20, 10–20 cm soil layer; Pi, inorganic phosphorus; and Po, organic phosphorus.
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understory diversity (Wang et al., 2019), which accelerates litter

decomposition (Hu et al., 2016) and promotes soil microbial

biomass (Lei et al., 2021) and activity (Rocha et al., 2019), and

then improved P availability in the pine plantations.
Diverse effects of forest management on
soil P fractions

Plants can absorb directly resin-P, NaHCO3-Pi, and NaHCO3-

Po from soils (Hedley et al., 1982). Compared to CK plots, these soil

P fractions in UR, NDST, and DST plots increased in 0–10 cm but

decreased in 10–20 cm (Table 2), consistent with previous results

(Liu et al., 2018b; Ye et al., 2018). The high affinity of humic acid for

Fe and Al ions can weaken the adsorption of Fe and Al ions at

mineral surfaces to Pi (Gérard, 2016), thus preventing P deposition

and increasing soil P availability. Also, root exudates can

decompose the moderately labile P and occluded P (Broeckling

et al., 2008), and microorganisms can hydrolyze Po (Zhang et al.,

2016), thereby promoting the transformation of NaOH-Po and

C.HCl-Po to the active P (Fan et al., 2018; Liu et al., 2021).
Frontiers in Plant Science 07
As a potential P source for plant absorption, soil NaOH-Pi was

higher, but soil NaOH-Po was lower in DST plots than in CK plots

(Table 2). These results differed from previous studies where slight

and moderate logging significantly reduced NaOH-Po but increased

NaOH-Pi (Liu et al., 2018b; Ye et al., 2018). Likely, the understory

shrubs and herbs with arbuscular mycorrhizal symbiosis in DST plots

(Wang et al., 2019) promoted the secretion of phosphatase and root

exudates, thereby mineralization of Po. Moreover, several studies did

not observe the thinning effects on soil occluded P (Hu et al., 2016;

Liu et al., 2018b; Ye et al., 2018). However, NDST and DST

treatments significantly increased soil C.HCl-Pi in 0–10 cm and

C.HCl-Po in 10–20 cm in the pine plantations (Table 2). Differences

in climatic factors and soil types in various study areas are likely

related to the inconsistent findings, which need further confirmation.
The potential contribution of residual-P to
available P after forest management

Forest management increased total Pi but decreased total Po of

0–10 cm (Table 2), supporting previous findings (Liu et al., 2018b;
B

C D

A

FIGURE 4

Correlations of total P with total Pi (A) and total Po (B), as well as correlations of available P with total Pi (C) and total Po (D). CK, control; UR,
understory removal; NDST, non-dominant species thinning; DST, dominant species thinning; 0–10, 0–10 cm soil layer; 10–20, 10–20 cm soil layer;
Pi, inorganic phosphorus; and Po, organic phosphorus.
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Ye et al., 2018) and our second hypothesis. These results suggested

that forest management treatments exacerbated the P demand of

plants due to high growth (Table 1). On the one hand, Pi is the main

form of plant absorption and utilization (Hedley et al., 1982), and

the soil Pi content is mainly dominated by the balancing process

between different P fractions (Walker and Syers, 1976), leading to

an increase in soil total Pi. On the other hand, the selected pine

species are ECM, and mycorrhizal symbiotes can absorb Po

fractions (Liu et al., 2018a; Mei et al., 2024), leading to a decrease

in soil total Po. Residual-P accounted for approximately 24.6%-

35.6% of soil P fractions (Table 2). It was negatively related to

available P (Figure 3I) and positively associated with resin-Pi

(Supplementary Figure S1). These results pointed out the

potential contribution of residual-P to available P after forest

management, which partially supports our third hypothesis. We

also acknowledge that this finding is from correlation analysis and

theoretical inference, and further confirmation of the

transformation mechanism between soil P fractions is needed to

determine whether plants can absorb various P fractions.
Conclusions

Compared to plantations without management, total P and

available P declined while total Pi increased in topsoils in

subtropical pine plantations treated by understory removal and

thinning after nine years. Selective thinning treatments promoted

the accumulation of occluded P, including C.HCl-Pi and C.HCl-Po.

The negative relationship between residual-P and available P and

the positive relationship between residual-P and resin-Pi suggest

that transforming residual-P into available P may significantly

contribute to the high plant P demands due to the high growth

rate after forest management.
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