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We present the analytic theory of brown dwarf evolution and the lower mass limit of the hydrogen burning main-sequence stars
and introduce some modifications to the existing models. We give an exact expression for the pressure of an ideal nonrelativistic
Fermi gas at a finite temperature, therefore allowing for nonzero values of the degeneracy parameter. We review the derivation of
surface luminosity using an entropy matching condition and the first-order phase transition between the molecular hydrogen in
the outer envelope and the partially ionized hydrogen in the inner region. We also discuss the results of modern simulations of the
plasma phase transition, which illustrate the uncertainties in determining its critical temperature. Based on the existingmodels and
with some simple modification, we find the maximum mass for a brown dwarf to be in the range 0.064𝑀⊙–0.087𝑀⊙. An analytic
formula for the luminosity evolution allows us to estimate the time period of the nonsteady state (i.e., non-main-sequence) nuclear
burning for substellar objects. We also calculate the evolution of very low mass stars. We estimate that ≃11% of stars take longer
than 107 yr to reach the main sequence, and ≃5% of stars take longer than 108 yr.

1. Introduction

One of the most interesting avenues in the study of stellar
models lies in understanding the physics of objects at the
bottom of and below the hydrogen burning main-sequence
stars.Themain obstacle in the study of very lowmass (VLM)
stars and substellar objects is their low luminosity, typically
of order 10−4𝐿⊙, which makes them difficult to detect. There
is also a degeneracy between mass and age for these objects,
which have a luminosity that decreases with time.Thismakes
the determination of the initial mass function (IMF) difficult
in this mass regime. However, in the last two decades, there
has been substantial observational evidence that supports the
existence of faint substellar objects. Since the first discovery
of a brown dwarf [1, 2], several similar objects were iden-
tified in young clusters [3] and Galactic fields [4] and have
generated great interest among theorists and observational
astronomers. The field has matured remarkably in recent
years and recent summaries of the observational situation can
be found in Luhman et al. [5] and Chabrier et al. [6].

In two consecutive papers, Kumar [7, 8] revolutionized
the understanding of low mass objects by studying the

Kelvin-Helmholtz time scale and structure of very low mass
stars. He successfully estimated that stars below about 0.1𝑀⊙
contract to a radius of about 0.1𝑅⊙ in about 109 years, which
was a correction to the earlier estimate of 1011 years. The
earlier calculation was based on the understanding that low
mass stars evolve horizontally in the H-R diagram and thus
evolve with a low luminosity for a long period of time.
However, Hayashi and Nakano [9] showed that such low
mass stars remain fully convective during the pre-main-
sequence evolution and are much more luminous than the
previously accepted model based on radiative equilibrium.
Kumar’s analysis showed that, for a critical mass of 0.09𝑀⊙,
the time scale has a maximum value that decreases on
either side. Although this crude model neglected any nuclear
reactions, it did give a very close estimate of the time scale.
The second paper [8] gave a more detailed insight into
the structure of the interior of low mass stars. This model
was based on the nonrelativistic degeneracy of electrons
in the stellar interior. Kumar’s extensive numerical analysis
for a particular abundance of hydrogen, helium, and other
chemical compositions yielded a limiting mass below which
the central temperature and density are never high enough
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to fuse hydrogen. A more exact analysis required a detailed
understanding of the atmosphere and surface luminosity of
such contracting stars.

The next major breakthrough in theoretical understand-
ing came from the work of Hayashi and Nakano [9], who
studied the pre-main-sequence evolution of low mass stars
in the degenerate limit. Although it was predicted that there
exist lowmass objects that cannot fuse hydrogen, the internal
structure of these objects remained a mystery. A complete
theory demanded a better understanding of the physical
mechanisms which govern the evolution of these objects.
It became essential to develop a complete equation of state
(EOS).

D’Antona and Mazzitelli [10] used numerical simulations
to study the evolution of VLM stars and brown dwarfs
for Population I chemical composition (𝑌 = 0.25, 𝑍 =0.02) and different opacities. Their model showed that for
the same central condition (nuclear output) an increasing
opacity reduces the surface luminosity. Thus, a lower opacity
causes a greater surface luminosity and subsequent cooling
of the object.Their results implied that the hydrogen burning
minimum mass is 𝑀 = 0.08𝑀⊙ for opacities considered
in their model. Furthermore, they showed that objects with
mass close to𝑀 = 0.08𝑀⊙ spend more than a billion years at
a luminosity of ∼10−5𝐿⊙.

Burrows et al. [11] modelled the structure of stars in the
mass range 0.03𝑀⊙–0.2𝑀⊙. They used a detailed numerical
model to study the effects of varying opacity, helium fraction,
and the mixing length parameter and compared their results
with the existing data. Their important modification was
that they considered thermonuclear burning at temperatures
and densities relevant for low masses. A detailed analysis
of the equation of state was performed in order to study
the thermodynamics of the deep interior, which contained
a combination of pressure-ionized hydrogen, helium nuclei,
and degenerate electrons. This analysis clearly expressed
the transition from brown dwarfs to very low mass stars.
These two families are connected by a steep luminosity
jump of two orders of magnitude for masses in the range of0.07𝑀⊙–0.09𝑀⊙.

Saumon and Chabrier [12] proposed a new EOS for fluid
hydrogen that, in particular, connects the low density limit
of molecular and atomic hydrogen to the high density fully
pressure-ionized plasma.Theyused the consistent free energy
model but with the added prediction of a first-order “plasma
phase transition” (PPT) [12] in the intermediate regime of the
molecular and themetallic hydrogen.As an application of this
EOS, they modelled the evolution of a hydrogen and helium
mixture in the interior of Jupiter, Saturn, and a brown dwarf
[13, 14]. They adopted a compositional interpolation between
the pure hydrogen EOS and a pure helium EOS to obtain
a H/He mixed EOS. This was based on the additive volume
rule for an extensive variable [15] and allowed calculations of
the H/He EOS for any mixing ratio of hydrogen and helium.
Their analysis suggested that the cooling of a brown dwarf
with a PPT proceeds much more slowly than in previous
models [11].

Stevenson [16] presented a detailed theoretical review
of brown dwarfs. His simplified EOS related pressure and

density for degenerate electrons and for ions in the ideal
gas approximation. Although corrections due to Coulomb
pressure and exchange pressure are of physical relevance,
they together contribute less than 10% in comparison to
the other dominant term in the pressure-density relationship
for massive brown dwarfs (𝑀 ≥ 0.04𝑀⊙). The theoretical
analysis gave a very goodunderstanding of the behavior of the
central temperature𝑇𝑐 as a function of radius and degeneracy
parameter𝜓. Stevenson [16] discussed the thermal properties
of the interior of brown dwarfs and provided an approximate
expression for the entropy in the interior and in the atmo-
sphere of a brown dwarf. He also derived an expression for
the effective temperature as a function of mass.

A method to use the surface lithium abundance as a
test for brown dwarf candidates was proposed by Rebolo
et al. [17]. Lithium fusion occurs at a temperature of about2.5 × 106 K, which is easily attainable in the interior of the
low mass stars. However, brown dwarfs below the mass of0.065𝑀⊙ never develop this core temperature.They will then
have the same lithium abundance as the interstellar medium
independent of their age. However, for objects slightly more
massive than 0.065𝑀⊙, the core temperature can eventually
reach 3×106 K.They deplete lithium in the core and the entire
lithium content gets exhausted rapidly due to the convection.
This causes significant change in the observable photospheric
spectra.Thus, lithiumcan act as a browndwarf diagnostic [18]
as well as a good age detector [19].

Following this, an extensive review on the analytic model
of brown dwarfs was presented by Burrows and Liebert [20].
They presented an elaborate discussion on the atmosphere
and the interior of brown dwarfs and the lower edge of the
hydrogen burning main sequence. Based on the convective
nature of these low mass objects, they modelled them as
polytropes of order 𝑛 = 1.5. Once again, the atmospheric
model was approximated based on a matching entropy
condition of the plasma phase transition between molecular
hydrogen at lowdensity and ionized hydrogen at high density.
The polytropic approximation enabled the calculation of the
nuclear burning luminosity within the core adiabatic density
profile [21]. While the luminosity did diminish with time in
the substellar limit, the model did show that brown dwarfs
can undergo hydrogen burning for a substantial period of
time before it eventually ceases. The critical mass deduced
from this model did indeed match that obtained from more
sophisticated numerical calculations [11].

In this work, we give a general outline of the analytic
model of the structure and the evolution of brown dwarfs.
We advance some aspects of the existing analytic model by
introducing a modification to the equation of state. We also
discuss some of the unresolved problems like estimation of
the surface temperature and the existence of PPT in the
brown dwarf environment. Our paper is organized as follows.
In Section 2, we discuss the derivation of a more accurate
equation of state for a partially degenerate Fermi gas. We
incorporate a finite temperature correction to the expression
for the Fermi pressure to give a more general solution to the
Fermi integral. In Section 3, we discuss the scaling laws for
various thermodynamic quantities for an analytic polytrope
model of index 𝑛 = 1.5. In Section 4, we discuss the
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derivation of the equations [20] connecting the photospheric
(surface) temperature with density, where the entropies at the
interior and the exterior are matched using the first-order
phase transition. In the spirit of an analytic model, we derive
simplified analytic expressions for the specific entropies
above and below the PPT. We also highlight the need to
seek alternate methods given current concerns about the
relevance of the PPT in BD interiors. We discuss the nuclear
burning rates for lowmass objects in Section 5 and determine
the nuclear luminosity 𝐿𝑁 [21]. In Section 6, we estimate
the range of minimum mass required for stable sustainable
nuclear burning. In Section 7, we discuss a coolingmodel and
examine the evolution of photospheric properties over time.
In Section 8, we estimate the number fraction of stars that
enter the main sequence after more than a million years. In
the concluding section, we discuss further possibilities for an
improved and generalized theoreticalmodel of browndwarfs.

2. Equation of State

In main-sequence stars, the thermal pressure due to nuclear
burning balances the gravitational pressure and the star can
sustain a large radius and nondegenerate interior for a long
period of time. However, substellar objects like brown dwarfs
fail to have a stable hydrogen burning sequence and instead
derive their stability from electron degeneracy pressure. A
simple but accurate model needs to have a good equation
of state that incorporates the degeneracy effect and the
ideal gas behavior at a relative higher temperature. Burrows
and Liebert [20] give a pressure law that applies to both
extremes but has a poor connection in the intermediate zone.
Stevenson [16] also gives an empirical relation for the pressure
that does include an approximate correction term to connect
the two extremes. Here, in order to obtain a more accurate
analytic expression for the pressure, we integrate the Fermi-
Dirac integral exactly using the polylogarithm functions
Li𝑠(𝑥). The most general expression for the pressure is

𝑃𝐹 = 𝑔𝑠 ∫∞
0

4𝜋𝑝2
(2𝜋ℏ)3 𝑑𝑝( 1𝑒𝛽(𝜖−𝜇) + 𝑏)(13𝑝 𝑑𝜖𝑑𝑝) (1)

[22], where 𝑏 = 1 for the Fermi gas and 𝜖(𝑝) =
√𝑝2𝑐2 + 𝑚2𝑐4 − 𝑚𝑐2 and the other variables are the
standard constants. For substellar objects, the electrons are
mainly nonrelativistic due to the relatively low temperature
and density. In the nonrelativistic limit, that is,𝑚2𝑐4 ≫ 𝑝2𝑐2,
the energy density reduces to 𝜖(𝑝) ≃ 𝑝2/2𝑚. Now, rewriting
(1) in terms of the energy density gives

𝑃𝐹 = 𝑎∫∞
0

𝜖3/2𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1 , (2)

where 𝑎 = (2/3)(4𝜋(2𝑚)3/2/(2𝜋ℏ)3), 𝛽 = (𝑘𝐵𝑇)−1, and we
have taken 𝑔𝑠 = 2. In the limit 𝑇 → 0, for all 𝜖 < 𝜇, the
argument of the exponential is negative and hence the
exponential goes to zero as 𝛽 → ∞. Thus, the integral
reduces to the Fermi pressure at zero temperature. However,
in a physical situation at finite temperature, the integral can
be solved analytically using the polylogs. The details of the

exact derivation for a general Fermi integral are shown in
Appendix A. The expression for the pressure of a degenerate
Fermi gas at finite temperature is

𝑃𝐹 ≃ 𝑎25𝜇5/2 − 18𝑎𝛽−1𝜇3/2 ln (1 + 𝑒−𝛽𝜇)
+ 32𝑎𝛽−2𝜇1/2𝜋

2

6 + 34𝑎𝛽−2𝜇1/2Li2 (−𝑒−𝛽𝜇) ⋅ ⋅ ⋅ .
(3)

The above expression for pressure is themost general analytic
relation for the pressure of a degenerate Fermi gas at a finite
temperature. The first term is the zero temperature pressure
and the subsequent terms are the corrections due to the finite
temperature of the gas and include Li𝑠, the polylogarithm
functions of different orders 𝑠. The expression is terminated
after the fourth term as the polylogs fall off exponentially as
the gas becomes more and more degenerate. Equation (3) is
a natural extension of the first-order Sommerfeld correction
[23].

The central temperature of VLM stars and brown dwarfs
is of the same order as the electron Fermi temperature and
thus the degeneracy parameter 𝜓 is defined as

𝜓 = 𝑘𝐵𝑇𝜇𝐹 = 2𝑚𝑒𝑘𝐵𝑇
(3𝜋2ℏ3)2/3 [

𝜇𝑒𝜌𝑁𝐴]
2/3 , (4)

where 𝜇𝐹 is the electron Fermi energy in the degenerate limit
and 1/𝜇𝑒 = 𝑋 + 𝑌/2 is the number of baryons per electron
and 𝑋 and 𝑌 are the mass fractions of hydrogen and helium,
respectively. Other constants have their standard meaning.

Rewriting (3) in terms of the degeneracy parameter𝜓 and
retaining terms only up to second order, we arrive (for 𝜇 =𝜇𝐹) at

𝑃𝐹 = 25𝑎𝐴5/2 [ 𝜌𝜇𝑒 ]
5/3 [1 − 516𝜓 ln (1 + 𝑒−1/𝜓)

+ 158 𝜓2 {𝜋23 + Li2 (−𝑒−1/𝜓)}] ,
(5)

where 𝐴 = (3𝜋2ℏ3𝑁𝐴)2/3/2𝑚𝑒 is a constant. However, the
interior of a brown dwarf is also composed of ionized hydro-
gen and helium. The total pressure is a combined effect of
both electrons and ions; that is, 𝑃 = 𝑃𝐹 + 𝑃ion, where 𝑃𝐹
is the Fermi pressure for an ideal nonrelativistic gas at a
finite temperature. The pressure due to ions for an ionized
hydrogen gas can be approximated as

𝑃ion = 𝑘𝜌𝑇𝜇1𝑚𝐻 . (6)

Therefore, the final equation of state for the combined
pressure is

𝑃 = 25𝑎𝐴5/2 [ 𝜌𝜇𝑒 ]
5/3 [1 − 516𝜓 ln (1 + 𝑒−𝛽𝜇)

+ 158 𝜓2 {𝜋23 + Li2 (−𝑒−1/𝜓)} + 𝛼𝜓] ,
(7)
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where 𝛼 = 5𝜇𝑒/2𝜇1 and 𝜇1 is the mean molecular weight for
helium and ionized hydrogen mixture and is expressed as

1𝜇1 = ((1 + 𝑥H+)𝑋 + 𝑌4 ) , (8)

where 𝑥H+ is the ionization fraction of hydrogen. It should
be noted that 𝑥H+ changes as one moves from the core
(completely ionized) to the surfacewhich ismainly composed
of molecular hydrogen and helium.

There are several corrections to the EOS that can be
considered.TheCoulombpressure and the exchange pressure
(see (13) in Stevenson [16]) are two important corrections
to (7). However, as stated earlier, they are less important
for more massive brown dwarfs. Hubbard [24] presents
the contribution due to the electron correlation pressure,
which depends on the logarithm of 𝑟𝑒, the mean distance
between electrons. Stolzmann and Blocker [25] present an
analytic formulation of the EOS for fully ionized matter
to study the thermodynamic properties of stellar interiors.
They show that the inclusion of both electron and the ionic
correlation pressure results in a ∼10% correction to the EOS.
Furthermore, Gericke et al. [26] state that themain volume of
the brown dwarfs and the interior of giant gas planets are in a
warm dense matter state, where correlation energy, effective
ionization energy, and the electron Fermi energy are of the
same order of magnitude. Thus, the interiors of these objects
effectively form a strongly correlated quantum system. Becker
et al. [27] give an EOS for hydrogen and helium covering a
wide range of densities and temperatures. They extend their
ab initio EOS to the strongly correlated quantum regime and
connect it with the data derived using other methods for the
neighboring regions of the 𝜌-𝑇 plane. These simulations are
within the framework of density functional theory molecular
dynamics (DFT-MD) and give a detailed description of the
internal structure of brown dwarfs and giant planets. This
leads to a 2.5%–5% correction in the mass-radius relation.

The study of the EOS of brown dwarfs will help in under-
standing degenerate bodies in the thermodynamic regime
that is not so close to the high pressure limit of a fully degen-
erate Fermi gas. In this context, theMie-Grueneisen equation
of state is of relevance to test the validity of the assumption
that the Grueneisen parameter 𝛾 = (𝜕 log𝑇/𝜕 log 𝜌)𝑠 is inde-
pendent of the temperature 𝑇 [28] at a constant volume 𝑉.
The brown dwarf regime is in a way more interesting than
the white dwarf regime since it is not so close to the limit of a
fully degenerate Fermi gas. In Appendix C, we have provided
analytic expressions for two parameters that are of particular
relevance for the brown dwarfs: the specific heat (𝐶V or 𝐶𝑝)
and the Grueneisen parameter.

3. An Analytic Model for Brown Dwarfs

In this section, we derive some of the essential thermody-
namic properties of a polytropic gas sphere based on the
discussion in Chandrasekhar [29]. As is evident from (7), the𝑃-𝜌 relation for a brown dwarf is a polytrope

𝑃 = 𝐾𝜌(1+1/𝑛), (9)

where the index 𝑛 = 3/2. 𝐾 is a constant depending on the
composition and degeneracy and can be expressed (from (7))
as

𝐾 = 𝐶𝜇−5/3𝑒 (1 + 𝛾 + 𝛼𝜓) , (10)

where for a simplified presentation we represent the correc-
tion terms as

𝛾 = − 516𝜓 ln (1 + 𝑒−𝛽𝜇) + 158 𝜓2 {𝜋23 + Li2 (−𝑒−1/𝜓)} (11)

and 𝐶 (on using the values of natural constants, we get 𝐶 =1013 cm4 g−2/3 s−2) = (2/5)𝑎𝐴5/2 is a constant. The solution to
the Lane-Emden equation subject to the zero pressure outer
boundary condition can be used to arrive at useful results for𝑅, 𝜌𝑐, and 𝑃𝑐 for the polytropic equation of state (see (7)).The
radius can be expressed as

𝑅 = 2.3573 𝐾𝐺𝑀1/3 (12)

[29]. On substituting (10) for𝐾, the radius for a brown dwarf
can be expressed as the function of degeneracy and mass:

𝑅 = 2.80858 × 109 (𝑀⊙𝑀 )1/3 𝜇−5/3𝑒 (1 + 𝛾 + 𝛼𝜓) cm. (13)

Similarly, the expressions for the central density𝜌𝑐 and central
pressure are given by the relations 𝜌𝑐 = 𝛿𝑛(3𝑀/4𝜋𝑅3) and𝑃𝑐 = 𝑊𝑛(𝐺𝑀2/𝑅4), where the constant 𝛿𝑛 = 5.991 and𝑊𝑛 =0.77 for the polytrope of 𝑛 = 1.5 [29]. On substituting the
expression for 𝑅 (13) in these relations, we get

𝜌𝑐 = 1.28412 × 105 ( 𝑀𝑀⊙)
2 𝜇5𝑒(1 + 𝛾 + 𝛼𝜓)3 g/cm

3, (14)

𝑃𝑐 = 3.26763 × 109 ( 𝑀𝑀⊙)
10/3 𝜇20/3𝑒(1 + 𝛾 + 𝛼𝜓)4 Mbar. (15)

These are the scaling laws of the density and pressure
in the interior core of a brown dwarf. Interestingly, these
vary with the degeneracy parameter 𝜓 that is a function of
time. Thus, a very simple polytropic model can yield the
time evolution of the internal thermodynamical conditions
of a brown dwarf. From the definition of the degeneracy
parameter in (4) and using (14), the central temperature can
be expressed as a function of 𝜓:

𝑇𝑐 = 7.68097 × 108 K( 𝑀𝑀⊙)
4/3 𝜓𝜇8/3𝑒(1 + 𝛾 + 𝛼𝜓)2 . (16)

The central temperature has a maximum for a certain value
of 𝜓, and it increases for greater values of 𝑀. Further, using
(13), we have shown the variation of central temperature𝑇𝑐 as a function of radius 𝑅. 𝑇𝑐 increases as the object
contracts under the influence of gravity. It peaks at a certain𝑅 and then cools over time.The maximum peak temperature
increases for heavier objects and also depends on the extent
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Figure 1: The variation of 𝑇𝑐 versus radius 𝑅 for different masses.

of ionization of hydrogen and helium. Figure 1 shows the
variation of the central temperature as a function of radius
for different mass ranges. If the critical temperature for
thermonuclear reactions is around 3 × 106 K, we can roughly
estimate the criticalmass for themain sequence as∼0.085𝑀⊙.
This is similar to the estimated critical mass (∼0.084𝑀⊙) for
the main sequence (see Figure 1 in Stevenson [16]). However,
it should be noted that the estimate of minimummass is very
sensitive to the mean molecular mass 𝜇1. In Figure 1, we have
used 𝜇1 = 1.23 for fully neutral gas (similar to 𝐴 ∼ 1.24 for
cosmic mixture as used in Stevenson [16]). Depending upon
the value of𝜇1, theminimummassmay vary significantly. For
example, if we consider a fully ionized gas, that is, 𝜇1 = 0.59,
it yields a minimummass of 0.12𝑀⊙.
4. Surface Properties

In this section, we discuss a very simple but crude model
which is broadly based on the phase transition proposed by
Chabrier et al. [14] and the isentropic nature of the interior
of brown dwarfs. The development of a theoretical model
for studying the variation of surface luminosity over time for
low mass stars (LMS) and brown dwarfs is a great challenge.
There is no stable phase of nuclear burning for brown dwarfs
and the luminosity gradually decreases with time. This leads
to an age-mass degeneracy in observational determinations.
Our lack of knowledge in understanding the physics of the
interior of brown dwarfs restricts the development of a com-
prehensivemodel. However, extensive simulations were done
on the molecular-metallic transition of hydrogen for LMS
and planets [13, 14]. Chabrier et al.’s [14]model predicts a first-
order transition for the metallization of hydrogen at a pres-
sure of ∼1Mbar and critical temperature of ∼15300K. Such
pressure and temperature values are appropriate for giant
planets and brown dwarfs. Modern numerical simulations
[30, 31] do confirm the existence of such phase transitions at
the same pressure range but predict a much different range of
temperature ∼2000K–3000K. This new temperature regime

is certainly too low for brown dwarfs. Although the pressure
estimate is relatively well established in these numerical
simulations, the phase transition temperature is still a matter
of continuing investigation [27]. Having noted these caveats,
we present the existing model for the surface temperature,
based on Chabrier et al. [14] and Burrows and Liebert [20].
We also introduce a simpler treatment of the specific entropy.

The PPT occurs over a narrow range of densities near1.0 g/cm3 from a partially ionized phase (𝑥H+ ∼ 0.5) to a neu-
tral molecular phase (𝑥H+ < 10−3). For massive brown
dwarfs, the phase transition occurs nearer to the surface.
Burrows and Liebert [20] used the following approximate
analytic expressions for the specific entropy (equations (2.48)
and (2.49) in Burrows and Liebert [20]) for the two phases of
the PPT:

𝜎1 = −1.594 ln 1𝜓 + 12.43,
𝜎2 = 1.032 ln𝑇𝜌0.42 − 2.438.

(17)

Similar expressions for the entropy at the interior and the
atmosphere are given in equations (21) and (22) in Stevenson
[16]. We use a simplified approach to make the origin of the
above equation clear in the spirit of an analytic model. We
derive analytic expressions for the entropy of the ionized and
themolecular hydrogen separately for the two phases (similar
to equations (2.48) and (2.49) in Burrows and Liebert [20])
and match them via the phase transition. It is assumed that
the presence of helium does not affect the hydrogen PPT [14].

The region between the strongly correlated quantum
regime and the ideal gas limit can be modelled with correc-
tions to the ideal gas equation. Such correction terms can be
expressed by virial coefficients (see equation (1) in Becker
et al. [27]). For simplicity, we ignore such corrections in our
EOS (see (7)) and consider only the contribution of electron
pressure (see (5)) and the ion pressure (see (6)) of the partially
ionized hydrogen (of ionization fraction 𝑥H+) and helium
mixture.

The total entropy for our EOS (see (7)) is the sum of
the entropies of the atomic/molecular gas and the degenerate
electrons. The internal energy per gram for the monoatomic
gas particles is

𝑈 = 32 𝑘𝐵𝑁0𝑇𝜇1 . (18)

Ideally, we can consider the total energy as a combination
of kinetic energy, radiation energy, and ionization energy
(B.3). But as the electron gas is degenerate, the radiation
pressure is relatively unimportant. Furthermore, as shown in
Appendix B, we may even neglect the contribution of the
ionization energy as the gas is only partially ionized. Taking
the partial derivatives of the expression for the internal energy
equation (18), we can express the change in heat 𝑑𝑄 using
the first law of thermodynamics (see (B.2)). However, as the
ionization fraction 𝑥H+(𝜌, 𝑇) is a function of density and
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temperature, we further use Saha’s ionization equations (B.5)
to get

𝑑𝑄𝑇 = −32 𝑘𝐵𝑁0𝜇1
𝑑𝑇𝑇 + 𝑘𝐵𝑁0𝜇1

𝑑𝑊𝑊 + (32)
2𝐻𝑘𝐵𝑁0 𝑑𝑇𝑇

+ 32𝐻𝑘𝐵𝑁0 𝑑𝑉𝑉 ,
(19)

where 𝑊 = 𝑇3𝑉, 𝐻 = 𝑥H+(1 − 𝑥H+)/(2 − 𝑥H+). A more
generalized version including the radiation and the ionization
terms is shown in (B.6) in Appendix B. For 𝑇𝑑𝑆 = 𝑑𝑄, we
integrate (19) to express the entropy in the interior of the
brown dwarf as

𝑆1 = 𝑘𝐵𝑁0𝜇1mod
ln 𝑇3/2𝜌1 + 𝐶1, (20)

where

1𝜇1mod
= ( 1𝜇1 +

32
𝑥H+ (1 − 𝑥H+)2 − 𝑥H+ ) (21)

and 𝜇1 is different for each model in this region and is
calculated using𝑥H+ fromTable 1. However, the contributions
to entropy due to radiation and the degenerate electrons (see
equation 2–145 in Clayton [32]) are negligible in the range of
temperature and density applicable for brown dwarfs. Based
on a similar argument, the analytic expression for the entropy
of nonionizedmolecular hydrogen and heliummixture at the
photosphere is expressed as

𝑆2 = 𝑘𝐵𝑁0𝜇2 ln 𝑇5/2𝜌2 + 𝐶2, (22)

where 1/𝜇2 = 𝑋/2 + 𝑌/4 is the mean molecular weight
for the hydrogen and helium mixture. The expression for
entropy 𝑆2 is derived using the first law of thermodynamics
(Appendix B) and the relation of the internal energy of
diatomic molecules (𝑈 = (5/2)(𝑘𝐵𝑁0𝑇/𝜇2)). Here, we have
considered only five degrees of freedom as the temperatures
are just sufficient to excite the rotational degrees of H2
but the vibrational degrees remain dormant. It should be
noted that (20) and (22) are just simplified forms of the
entropy expressions presented in Burrows and Liebert [20]
and Stevenson [16].

Thus, the entropy in the two phases is dominated by con-
tributions from the ionic and molecular gas, respectively.
Using the same argument as Burrows and Liebert [20]
that the two regions of different temperature and density
are separated by a phase transition of order one, we can
estimate the surface temperature. Using the expression for the
degeneracy parameter 𝜓 from (4), we can simplify (20) to be

𝑆1 = 32 𝑘𝐵𝑁0𝜇1mod
(ln𝜓 + 12.7065) + 𝐶1. (23)

Furthermore, the jump of entropy

Δ𝜎 = 𝑆2 − 𝑆1𝑘𝐵𝑁0 (24)

(see Table 1) for the phase transition at each point of the
coexistence curve of PPT [12] is used to estimate the relation|𝐶1 − 𝐶2| between the two constants in (20) and (22). For𝑇 = 𝑇eff and 𝜌2 = 𝜌𝑒 in (22), we can use (23) and (22) in (24)
and the value of |𝐶1 − 𝐶2| to obtain a wide range of possible
values of surface temperature 𝑇eff in terms of the degeneracy
parameter and photospheric density 𝜌𝑒:

𝑇eff = 𝑏1 × 106𝜌0.4𝑒 𝜓V K. (25)

The values of the parameters 𝑏1 and V for different models are
shown in Table 1. According to Chabrier’s model, the critical
temperature ∼1.53 × 104 K and critical density ∼0.35 g cm−3
mark the end of the phase transition with Δ𝜎 = Δ𝑆/𝑘𝐵𝑁 =0. In the following discussion, we briefly summarize the
steps from Burrows and Liebert [20]. We replace equation
(2.50) in Burrows and Liebert [20] by (25) to estimate the
surface luminosity. As an example, we select a particular
phase transition point (model D) and show the derivation of
surface luminosity using hydrostatic equilibrium and ideal
gas approximation. The photosphere of a brown dwarf is
located at approximately the 𝜏 = 2/3 surface, where

𝜏 = ∫∞
𝑟

𝜅𝑅𝜌 𝑑𝑟 (26)

is the optical depth. Using the general equation for hydro-
static equilibrium, 𝑑𝑃 = −(𝐺𝑀/𝑟2)𝜌𝑑𝑟, and (26), the photo-
spheric pressure can be expressed as

𝑃𝑒 = 23 𝐺𝑀𝜅𝑅𝑅2 , (27)

where 𝜅𝑅 is the Rosseland mean opacity and the other
variables have their standard meanings. Furthermore, our
EOS (see (7)) in the approximation of negligible degeneracy
pressure near the photosphere gives the photospheric pres-
sure as

𝑃𝑒 = 𝜌𝑒𝑁𝐴𝑘𝐵𝑇eff𝜇2 . (28)

Now, using the expression for radius 𝑅 (13) in (27), we can
calculate the external pressure 𝑃𝑒 as a function of𝑀 and 𝜓:

𝑃𝑒 = 11.2193 bar𝜅𝑅 ( 𝑀𝑀⊙)
5/3 𝜇10/3𝑒(1 + 𝛾 + 𝛼𝜓)2 . (29)

On using (29) in (28) and substituting 𝑇eff for model D with𝑏1 = 2.00 and V = 1.60 from Table 1, the effective density 𝜌𝑒
can be expressed as a function of𝑀 and 𝜓:

𝜌1.40𝑒 = 6.89811𝜅𝑅𝑁𝐴𝑘𝐵 (
𝑀𝑀⊙)
5/3 𝜇10/3𝑒 𝜇2 g/cm3

(1 + 𝛾 + 𝛼𝜓)2 𝜓1.58 . (30)

Substituting the expression for 𝜌𝑒 from (30) in (25), we derive
the expression for effective temperature for model D as a
function of𝑀 and 𝜓:
𝑇eff

= 2.57881 × 104 K𝜅0.2856𝑅 ( 𝑀𝑀⊙)
0.4764 𝜓1.1456

(1 + 𝛾 + 𝛼𝜓)0.5712 .
(31)
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Similarly, the surface temperature can be evaluated for all
the other models. Since the procedure is the same for all
the models in Table 1, we just show one calculation. For
this range of surface temperatures, the Stefan-Boltzmann law,𝐿 = 4𝜋𝑅2𝜎𝑇4eff , yields a set of possible values of the surface
luminosity 𝐿 as a function of the degeneracy parameter 𝜓.
The luminosity for model D using (13) and (31) is

𝐿 = 0.41470 × 𝐿⊙𝜅1.1424𝑅 ( 𝑀𝑀⊙)
1.239 𝜓4.5797

(1 + 𝛾 + 𝛼𝜓)0.2848 , (32)

where 𝜎 is the Stefan-Boltzmann constant. Substellar objects
below the main-sequence mass gradually evolve towards
complete degeneracy and a state of stable equilibrium as their
luminosity decreases over time. In the following sections, we
show that the degeneracy parameter 𝜓 is a function of time
and it evolves towards 𝜓 = 0 over the lifetime of brown
dwarfs.This gives us an estimate of the luminosity at different
epochs of time.

4.1. Validity of PPT in Brown Dwarfs. There is a distinction
between the temperature-driven PPT with a critical point at∼0.5Mbar and between 10000K and 20000K as predicted by
the chemical models [33] and the pressure-driven transition
from an insulating molecular liquid to a metallic liquid with
a critical point below 2000K at pressures between 1 and3Mbar.The latter is predicted, for example, by Lorenzen et al.
[34],Mazzola et al. [35], andMorales et al. [31] based on the ab
initio simulations. Lorenzen et al. [34] rule out the presence of
PPT above 10000K and give an estimate of the critical points
for the transition at𝑇𝑐 = (1400±100)K, 𝑃𝑐 = 1.32±0.1Mbar,
and 𝜌𝑐 = 0.79 ± 0.05 g/cm3. Similarly, Morales et al. [31] esti-
mated the critical point of the transition at a temperature near2000K and pressure near 1.2Mbar. Signatures of pressure-
driven PPT in a cold regime below 2000K are obtained by
Knudson et al. [36]. Figure 1 in Knudson et al. [36] shows
the melting line (black) as well as the different predictions
for the coexistence lines for the first-order transition (green
curves). Brown dwarf interior temperatures are far above
these estimates for a first-order transition from the insulating
to the metallic system.The same is true for Jupiter. Of course,
a continuous transition may be possible in Jupiter and brown
dwarfs, but a first-order transition may not be possible.
Thus, the determination of the range of temperature of this
transition provides a much needed benchmark for the theory
of the standard models for the internal structures of the gas-
giant planets and low mass stars.

5. Nuclear Processes

VLM stars and brown dwarfs contract during their evolution
due to gravitational collapse. The core temperature increases
and the contraction is halted by either the degeneracy
pressure of the electrons or the onset of the nuclear burning,
whichever comes first. In the first case, the brown dwarf con-
tinues to lose energy through radiation and cools down with
time without any further compression. However, massive
brown dwarfs or stars at the edge of the main sequence can
burn hydrogen for a very long time before they either cease

nuclear burning or settle into a steady state main sequence.
The thermonuclear reactions suitable for the brown dwarfs
and VLM stars are

𝑝 + 𝑝 → 𝑑 + 𝑒+ + ], (33)

𝑝 + 𝑑 → 3He + 𝛾. (34)

As the central temperature is not high enough to over-
come the Coulomb barrier of the 3He–3He reaction and the
p-p chain is truncated, 4He is not produced. Most of the
thermonuclear energy is produced from the burning of the
primordial deuterium (see (34)). The energy generation rates
of the above processes are given as

�̇�𝑝𝑝 = 2.5 × 106 [𝜌𝑋2𝑇2/36 ] 𝑒−33.8/𝑇1/36 erg/g ⋅ s,

�̇�𝑝𝑑 = 1.4 × 1024 [𝜌𝑋𝑌𝑑𝑇2/36 ] 𝑒−37.2/𝑇1/36 erg/g ⋅ s
(35)

[37]. However, one can fit the thermonuclear rates to a power
law in 𝑇 and 𝜌 in terms of the central temperature (𝑇𝑐) and
density (𝜌𝑐) as in Fowler and Hoyle [21]:

�̇�𝑛 = �̇�𝑐 [ 𝑇𝑇𝑐 ]
𝑠 [ 𝜌𝜌𝑐 ]

𝑢−1 , (36)

where 𝑢 ≃ 2.28 and 𝑠 = 6.31 are constants that depend on
the core conditions [20]. To obtain the luminosity due to the
nuclear burning 𝐿𝑁 = ∫ �̇�𝑛𝑑𝑚, we use the power law form for
the nuclear burning rate �̇�𝑛 (see (36)), and making the poly-
tropic approximation 𝜌 = 𝜌𝑐𝜃𝑛 and setting 𝑇/𝑇𝑐 = (𝜌/𝜌𝑐)2/3,
we obtain

𝐿𝑁 = ∫ ̇𝜖𝑛𝑑𝑚 = 4𝜋𝑎3�̇�𝑐𝜌𝑐 ∫𝜃𝑛(𝑢+2𝑠/3)𝜁2𝑑𝜁, (37)

where 𝑟 = 𝑎𝜁 [29]. Inserting (14) and (16) in (37) yields the
final expression for luminosity as

𝐿𝑁 = 7.33 × 1016𝐿⊙ ( 𝑀𝑀⊙)
11.977 𝜓6.0316

(1 + 𝛾 + 𝛼𝜓)16.466 . (38)

6. Estimate of the Minimum Mass

In this section, we estimate the minimum main-sequence
mass by comparing the surface luminosity (32) with the
luminosity (𝐿𝑁) due to nuclear burning at the core of LMS
and brown dwarfs. Instead of just quoting one value as the
critical mass, we have presented a range of values depending
on the various phase transition points listed in Table 1. This
will give us a range of values for the minimum critical mass
that is sufficient to ignite hydrogen burning. Model H marks
the end of the phase transition and gives a lower limit of the
critical mass. However, we calculate the mass limit for model
B and model D only. Equating 𝐿𝑁 of (38) with 𝐿 of (32) gives
us

𝑀𝑀⊙ =
0.02440𝜅0.106𝑅

(1 + 𝛾 + 𝛼𝜓)1.507
𝜓0.1617 = 𝐹 (𝜓) , (39)
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Table 1: Effective temperature for different phase transition pointsa.

Model log𝑇 (K) 𝑃 (Mbar) 𝜌1 (g cm−3) 𝜌2 (g cm−3) Δ𝜎 2𝑥H+ 𝑏1 V
A 3.70 2.14 0.75 0.92 0.62 0.48 2.87 1.58
B 3.78 1.95 0.70 0.88 0.59 0.50 2.70 1.59
C 3.86 1.62 0.64 0.80 0.54 0.50 2.26 1.59
D 3.94 1.39 0.58 0.74 0.51 0.51 2.00 1.60
E 4.02 1.13 0.51 0.65 0.46 0.52 1.68 1.61
F 4.10 0.895 0.43 0.55 0.42 0.50 1.29 1.59
G 4.18 0.631 0.35 0.38 0.14 0.33 0.60 1.44
H 4.185 0.614 0.35 0.35 0.00 0.18 0.40 1.30
aThe phase transition points are taken from Chabrier et al. [14]. This gives the possible range of surface temperature depending on the phase transition points.
For different values of temperature and density at which the phase transition takes place, the effective surface temperature is calculated using (25).

where 𝛼 = 2.32 for 𝜇𝑒 = 1.143 and 𝜇1 = 1.24, which
are the number of baryons per electron and the mean mole-
cular weight of neutral (𝑥H+ = 0) hydrogen and helium, res-
pectively. These mass densities are evaluated for hydrogen
and helium mass fractions of 𝑋 = 0.75 and 𝑌 = 0.25, res-
pectively.

The right hand side of (39) has a minimum at a certain
value of 𝜓. This gives the lowest mass at which (39) has
a solution and this corresponds to the boundary of brown
dwarfs and VLM stars. The minimum of 𝐹(𝜓) is at 𝜓min =0.042. Substituting this in (39) and for 𝜅𝑅 = 0.01 cm2/g, the
minimummass (model D) is

𝑀 = 0.078𝑀⊙. (40)

A similar analysis for model B gives the value of minimum
mass of 𝑀 = 0.085𝑀⊙ for 𝜓min = 0.042. For the other
models, the minimum main-sequence mass is in the range
of 0.064–0.087𝑀⊙.

The solution is relatively independent of themeanmolec-
ular weight 𝜇1. For example, using partially ionized gas; that
is, 𝜇1 = 0.84 in 𝛼; the minimum stellar mass increases by only∼5%.

7. A Cooling Model

A simple cooling model for a brown dwarf is presented in
both Burrows and Liebert [20] and Stevenson [16]. In this
section, we review some of these steps using our more exact
EOS (7) and represent the evolution of the brown dwarfs over
time. Using the first and the second law of thermodynamics,
the time varying energy equation for a contracting star is
expressed as

𝑑𝐸𝑑𝑡 + 𝑃𝑑𝑉𝑑𝑡 = 𝑇𝑑𝑆𝑑𝑡 = ̇𝜖 − 𝜕𝐿𝜕𝑀, (41)

where 𝑆 is the entropy per unit mass and the other symbols
have their standardmeaning.The energy generation term �̇� is
ignored. On integrating over mass, we get

𝑑𝜎𝑑𝑡 [∫𝑁𝐴𝑘𝐵𝑇𝑑𝑀] = −𝐿, (42)

where 𝐿 is the surface luminosity and 𝜎 = 𝑆/𝑘𝐵𝑁𝐴. Now,
replacing 𝑇 in terms of the degeneracy parameter 𝜓 in (4)
and using the polytropic relation 𝑃 = 𝐾𝜌5/3, we arrive at

𝑑𝜎𝑑𝑡 𝑁𝐴𝑘𝐵𝜓𝜇2/3𝑒 ∫𝑃𝑑𝑉 = −𝐿. (43)

Using the standard expression, ∫𝑃𝑑𝑉 = (2/7)(𝐺𝑀2/𝑅), for
polytropes of 𝑛 = 1.5, the integral in (42) reduces to

∫𝑁𝐴𝑘𝐵𝑇𝑑𝑀 = 6.73857 × 1049𝜓𝜇8/3𝑒(1 + 𝛾 + 𝛼𝜓)2 ( 𝑀𝑀⊙)
7/3 . (44)

The variation of the entropy with time (42) can be expressed
as the rate of change of degeneracy over time. As the star
collapses, the gas in the interior becomes more and more
degenerate and finally the degeneracy pressure halts further
contraction. A completely degenerate star (𝜓 = 0) becomes
static and cools with time. Thus, by substituting the time
variation of entropy, using (23), that is,

𝑑𝜎𝑑𝑡 = 1.5𝜇1mod

1𝜓 𝑑𝜓𝑑𝑡 , (45)

and (44) into the energy equation (42) and using the lumi-
nosity expression formodelD (32), we obtain an evolutionary
equation for 𝜓:

𝑑𝜓𝑑𝑡 = 9.4486 × 10−18𝜅1.1424𝑅 (𝑀⊙𝑀 )1.094 (1 + 𝛾 + 𝛼𝜓)1.715
⋅ 𝜓4.5797.

(46)

This is a nonlinear differential equation of𝜓 for model D, and
an exact solution can only be obtained numerically. However,
we use some very simple andphysical approximations to solve
this differential equation to yield a simple relation of 𝜓 as a
function of time and mass 𝑀. As we are trying to estimate
the critical mass for hydrogen burning, it is safe to ignore the
early evolution of VLM stars and brown dwarfs.Thus, we will
solve the differential equation (46) with the assumption 𝜓 ≪1. Thus, we can drop the term (1 + 𝛾 + 𝛼𝜓)1.715 as it is almost
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Figure 2: The variation of 𝐿/𝐿⊙ over time 𝑡 for different masses.

unity in the range 0 < 𝜓 < 0.1 and integrate (46) in the above
limit to obtain

𝜓 = (317.8 + 2.053 × 10−6 (𝑀⊙𝑀 )1.094 𝑡
yr
)−0.2794 . (47)

Similarly, we can solve for 𝜓 for all other models and obtain
the evolution of degeneracy over time.We use this expression
of𝜓, for model D, and can express luminosity as a function of
time 𝑡 and mass𝑀. The time evolution of luminosity (model
D) is represented in Figure 2. It is evident that such low
mass objects continue to have low luminosity for millions of
years before they gradually start to cool. For 𝑡 > 107 yr, the
luminosity declines as a function of time, 𝐿 ≃ 𝑡−1.2, as shown
in Figure 2 (dashed black line). A simplified expression of the
variation of luminosity after 107 yr for model D is

𝐿 ≃ 𝐿⊙ ( 𝑀𝑀⊙)
2.63 ( 𝑡107 yr)

−1.2 . (48)

Our luminosity model is consistent with the simulation
results of the present day stellar evolution code Modules for
Experiments in Stellar Astrophysics (MESA) (see Figure 17 in
Paxton et al. [38]). Paxton et al. [38] use a one-dimensional
stellar evolution module, MESA star, to study evolutionary
phases of brown dwarfs, pre-main-sequence stars, and LMS.

In Figures 3 and 4, the ratio 𝐿𝑁/𝐿 is plotted against
time for different masses in the substellar regime for models
B and D, respectively. As evident for both models, there
is a nonsteady state of substantial nuclear burning for mil-
lions of years for substellar objects. For a critical mass of0.085𝑀⊙ (model B) and 0.078𝑀⊙ (model D), the ratio 𝐿𝑁/𝐿
approaches 1 in about a few billion years and marks the
beginning of main-sequence nuclear burning (note that the
time to reach the main sequence will increase if we use a
partially ionized gas; for example, it becomes ≈10Gyr if we
use 𝜇1 = 0.84). Stars with greater mass reach a steady state
where the thermal energy balances the gravitational collapse.

However, as our model does not consider any feedback from
hydrogen fusion, the curves do not stabilize to a steady
state main-sequence regime, in which 𝐿𝑁/𝐿 remains 1 until
nuclear burning stops. Interestingly, the ratio 𝐿𝑁/𝐿 is close
to unity formany objects below themain-sequence transition
mass. This suggests that they burn nuclear fuel for a part
of their evolutionary cycle but do not have enough mass to
sustain a steady state. Note that the results of Becker et al. [27]
discussed in Section 2 would affect the luminosity 𝐿 by less
than a few percent. For example, if the radius 𝑅 increases (or
decreases) by 2.5% for a constant value of mass𝑀, 𝐾 in (12)
increases by 2.5%, and 𝑇eff (31) decreases by 1.5%, therefore 𝐿
decreases by ∼1%.

7.1. Brown Dwarfs as Clocks. Interestingly, the cooling prop-
erties of brown dwarfs (Figure 2) can be calibrated to serve as
an astronomical clock. As the electron degeneracy pressure
puts a lower limit to the size of the dwarf, it cools slowly
and radiates its internal energy. The luminosity of a brown
dwarf is the most directly accessible observable quantity. As
luminosity is a time variable, one can get important informa-
tion on the age of a brown dwarf depending on its mass
and the cooling rate. As evident from Figure 2, given mass
and the luminosity, one can roughly identify the age of the
dwarfs. However, it is still a challenge to estimate themass of a
browndwarf. An essential part of the solution is to find brown
dwarfs in a binary system where one can get an accurate
estimate of the mass and then compare its luminosity against
available models. Newly discovered brown dwarfs in eclips-
ing binaries [39, 40] can provide a data set of directly meas-
ured mass and radii. This can yield an empirical mass-
radius relation that also tests the prediction of the theoretical
models. Furthermore, lithium in brown dwarfs has been used
as a clock to obtain the ages of young open clusters as origi-
nally suggested by Martin et al. [41] and Basri et al. [18]
and most recently applied to the Pleiades by Dahm [42].
Massive brown dwarfs (𝑀 > 0.065𝑀⊙) deplete their lithium
on a longer time scale, but VLM stars and objects above
the hydrogen burning limit fuse lithium on a much shorter
time scale [43]. A limitation of our model is that it does
not include rotation. But the mechanical equilibrium in our
models may not be significantly affected by this. For example,
in model D, using (47) in (13), we find the radius of a 107-
year-old brown dwarf of mass 0.075𝑀⊙ to be ∼8 × 109 cm.
This implies that for a median observed rotational period
(2𝜋/𝜔) of one day [44] the ratio ofmagnitude of the rotational
energy (∼𝑀𝑅2𝜔2) to gravitational energy (∼𝐺𝑀2/𝑅) for a0.075𝑀⊙ brown dwarf is ∼10−4. However, convective mixing
and the consequent lithium abundance have a strong con-
nection to the rotation rate of brown dwarfs and pre-main-
sequence stars [45]. Fast rotators are lithium-rich compared
to their slow rotating counterparts, indicating a connection
between the lithium content and the spin rate of young pre-
main-sequence stars and brown dwarfs [46]. Rapid rotation
reduces the convective mixing, resulting in a higher lithium
abundance in fast rotating pre-main-sequence stars.Thus, the
rotational evolution of a brown dwarf can potentially be used
as a clock as discussed in Scholz et al. [44].
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8. Low Mass Stars That Reach
the Main Sequence

In Figure 5, we plot the time required by low mass stars to
reach the main sequence. The curves represent the steady
state limit where 𝐿𝑁/𝐿 = 1 for four different models. It is
interesting to note that objects of masses at the critical mass
boundary between brown dwarfs and main-sequence stars,
for example, 0.078𝑀⊙ for model D, reach the steady state in
about 2.5Gyr.This suggests that objects just below the critical
mass undergo nuclear burning for an extended period of time
but fail to enter the main sequence. Furthermore, stars in the
mass range 0.078𝑀⊙–0.086𝑀⊙ for model D take more than108 yr to reach the main sequence. Depending on the phase
transition points for differentmodels, these numbers vary but
the fact that stars close to theminimummass limit can take an
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Figure 5: The time needed to reach the main sequence, that is,𝐿𝑁/𝐿 = 1, for objects of different masses. Four colored dashed lines
represent different models as labeled. The triangles mark the main-
sequence critical mass for the respective models.

extended amount of time to reach the main sequence means
that young stellar clusters may contain a significant fraction
of objects that are still in a phase of decreasing luminosity and
behave like brown dwarfs. These objects will ultimately settle
into an extremely low luminosity main sequence. Here, we
estimate the fraction of stars that take more than a specified
time to reach the main sequence by using the modified log-
normal power law (MLP) probability distribution function of
Basu et al. [47]. Their cumulative distribution function is

𝐹 (𝑚)
= 12 erfc(− ln (𝑚) − 𝜇0√2𝜎0 )

− 12 exp (𝛼𝜇0)𝑚−𝛼 erfc(𝛼𝜎0√2 − ln (𝑚) − 𝜇0√2𝜎0 ) .
(49)

We use the best fit MLP parameters corresponding to
Chabrier’s [48] initial mass function (IMF) as obtained by
Basu et al. [47], where 𝜇0 = −2.404, 𝜎0 = 1.044, and 𝛼 =1.396. We then use the cumulative function to calculate the
fraction of stars taking more than either 107 yr, 108 yr, or109 yr to reach themain sequence. Table 2 contains our results
for models A to H. It turns out that about 0.2% of stars
take more than 109 yr to reach the main sequence and about
4% take longer than 108 yr and about 12% take longer than107 yr, for model D. Some of these objects will end up on
an extremely low luminosity main sequence, and a sample
of luminosity values when an object just above the substellar



Advances in Astronomy 11

Table 2: Minimum mass and fractions of stars.

Model 𝑀min
a 𝑀9b 𝑁9c 𝑀8b 𝑁8c 𝑀7b 𝑁7c

Ad 0.087 — — 0.090 0.014 0.107 0.085
B 0.085 0.085 0.000 0.089 0.020 0.107 0.095
C 0.081 0.081 0.001 0.087 0.029 0.106 0.108
D 0.078 0.078 0.002 0.086 0.038 0.105 0.118
E 0.073 0.075 0.006 0.085 0.052 0.103 0.127
F 0.069 0.072 0.013 0.084 0.069 0.099 0.129
G 0.064 0.068 0.018 0.082 0.081 0.089 0.109
H 0.064 0.067 0.014 0.080 0.073 0.085 0.093
a𝑀min is the minimum mass to reach the main sequence.
b𝑀9,𝑀8, and𝑀7 are the masses up to which the stars take at least 109 yr, 108 yr, and 107 yr, respectively, to reach the main sequence.
c𝑁9,𝑁8, and𝑁7 are the number fraction of stars reaching the main sequence in more than 109 yr, 108 yr, and 107 yr, respectively.
dNote that, for model A, low mass stars reach the main sequence in <109 yr.

Table 3: Luminosity at the main sequence.

𝑀/𝑀⊙ 108 (yr) 𝐿/𝐿⊙a
0.080 3.66 1.90 × 10−5
0.085 1.15 9.12 × 10−5
0.090 0.56 2.33 × 10−4
0.095 0.31 4.67 × 10−4
aThe luminosity of low mass stars in model D when they enter the main
sequence.

limit achieves 𝐿𝑁/𝐿 = 1, that is, reaches the main sequence,
is given in Table 3.

9. Discussion and Conclusions

This paper presents a simple analytic model of substellar
objects. A focus of the paper was to revisit both the develop-
ment and the shortcomings of the theoretical understanding
of the physics governing the evolution of low mass stars
and substellar objects over the last 50 years. We have
also made some modifications to the existing models to
better explain the physics using analytic forms. Although
observational constraints hinder our understanding, a sim-
ple analytic model can answer many questions. We have
summarized the method of determining the minimum mass
for sustained hydrogen burning. Objects in the mass range0.064𝑀⊙–0.087𝑀⊙ mark this critical boundary between
brown dwarfs and the main-sequence stars.

We have derived a general equation of state using polylog-
arithm functions [49] to obtain the𝑃-𝜌 relation in the interior
of brown dwarfs. The inclusion of the finite temperature
correction gives us a much more complete and sophisticated
analytic expression of the Fermi pressure (3). The application
of this relation can extend to other branches of physics, espe-
cially for semiconductor and thermoelectric materials [50].

The estimate of the surface luminosity is a challenge given
our limitations in understanding the physics inside such low
mass objects. Also, it is still an open question if a phase
transition actually occurs in a brown dwarf. The results of
modern day simulations [30, 31] do raise doubts about the
relevance of phase transitions in the brown dwarf scenario.

We are not aware of well defined analytic models that have a
unique way of estimating the surface luminosity apart from
using the PPT technique as given in Burrows and Liebert
[20]. In this work, rather than considering a single value for
the phase transition point, we have used the entire range
of temperatures from the phase transition coexistence table
[14]. These are within the uncertainty range of the critical
temperature of the PPT as proposed by the recent simulations
[30]. Thus, considering the large uncertainties involved in
such models, this range of values of the minimum mass is
much more acceptable than a single distinct transition mass.
However, the next step forward is to develop an analytic
model for surface temperature that is independent of the PPT.

We estimate that ≃5% of stars take more than 108 yr to
reach the main sequence, and ≃11% of stars take more than107 yr to reach themain sequence (Table 2).The stars in these
categories have mass very close to the minimum hydrogen
burning limit and will eventually settle into an extremely low
luminositymain sequencewith𝐿/𝐿⊙ in the range≈10−5–10−4.
The very low luminosity non-main-sequence hydrogen burn-
ing in substellar objects and the pre-main-sequence nuclear
burning in very low mass stars are very interesting to study
further, and our simplified model can certainly be improved
in its ability to estimate the time evolution.

Appendix

A. Pressure Integral

The general Fermi integral can be written as

𝐹𝑛 = 𝑎∫∞
0

𝜖𝑛𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1 ,
= 𝑎∫𝜇
0

𝜖𝑛𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1 + 𝑎∫∞
𝜇

𝜖𝑛𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1 ,
= 𝑎∫𝜇
0
𝜖𝑛𝑑𝜖 − 𝑎∫𝜇

0
𝜖𝑛𝑑𝜖 + 𝑎∫𝜇

0

𝜖𝑛𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1
+ 𝑎∫∞
𝜇

𝜖𝑛𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1 ,



12 Advances in Astronomy

= 𝑎∫𝜇
0
𝜖𝑛𝑑𝜖 − 𝑎∫𝜇

0

𝜖𝑛𝑑𝜖𝑒−𝛽(𝜖−𝜇) + 1
+ 𝑎∫∞
𝜇

𝜖𝑛𝑑𝜖𝑒𝛽(𝜖−𝜇) + 1 .
(A.1)

On substituting 𝑥 = −𝛽(𝜖 − 𝜇) in the second term and𝑥 = 𝛽(𝜖 − 𝜇) in the third term, we arrive at

𝐹𝑛 = 𝑎∫𝜇
0
𝜖𝑛𝑑𝜖 − 𝑎𝛽 ∫𝛽𝜇

0

(𝜇 − 𝑥/𝛽)𝑛
𝑒𝑥 + 1 𝑑𝑥

+ 𝑎𝛽 ∫∞
0

(𝜇 + 𝑥/𝛽)𝑛
𝑒𝑥 + 1 𝑑𝑥.

(A.2)

The numerator in the above integrals can be expanded as

(𝜇 ± 𝑥𝛽)
𝑛 ≃ 𝜇𝑛 ± 𝑛𝜇𝑛−1 (𝑥𝛽)

+ 𝑛 (𝑛 − 1)2 𝜇𝑛−2 (𝑥𝛽)
2 + ⋅ ⋅ ⋅ .

(A.3)

Substituting this in the integral for the pressure, we can
proceed as follows:

𝐹𝑛
= 𝑎∫𝜇
0
𝜖𝑛𝑑𝜖 + 𝑎𝛽𝜇𝑛 {∫

∞

0

𝑑𝑥𝑒𝑥 + 1 − ∫𝛽𝜇
0

𝑑𝑥𝑒𝑥 + 1}
+ 𝑛 𝑎𝛽2 𝜇𝑛−1 {∫

∞

0

𝑥𝑑𝑥𝑒𝑥 + 1 + ∫𝛽𝜇
0

𝑥𝑑𝑥𝑒𝑥 + 1}
− 𝑛 (𝑛 − 1)2 𝑎𝛽3 𝜇𝑛−2 {∫

𝛽𝜇

0

𝑥2𝑑𝑥𝑒𝑥 + 1 − ∫∞
0

𝑥2𝑑𝑥𝑒𝑥 + 1} .

(A.4)

Substituting 𝑛 = 3/2 for the Fermi pressure (2) and
evaluating these integrals using the polylogs [49], we arrive
at a simplified form

𝑃𝐹 ≃ 𝑎25𝜇5/2 − 18𝑎𝛽−1𝜇3/2 ln (1 + 𝑒−𝛽𝜇)
+ 32 𝜋

2

6 𝑎𝛽−2𝜇1/2 + 34𝑎𝛽−2𝜇1/2Li2 (−𝑒−𝛽𝜇)
− 34𝑎𝛽−3𝜇−1/2Li3 (−𝑒−𝛽𝜇) ⋅ ⋅ ⋅ .

(A.5)

Similarly, for 𝑛 = 1/2, the expression for the number density
can be obtained as

𝜌 ≃ 𝑎23𝜇3/2 + 38𝑎𝛽−1𝜇1/2 ln (1 + 𝑒−𝛽𝜇)
+ 𝜋212𝑎𝛽−2𝜇−1/2 + 34𝑎𝛽−2𝜇−1/2Li2 (−𝑒−𝛽𝜇)
+ 14𝑎𝛽−3𝜇−1/2Li3 (−𝑒−𝛽𝜇) ⋅ ⋅ ⋅ .

(A.6)

B. Surface Properties

The surface properties of a brown dwarf can be analyzed by
studying the phase diagram of hydrogen in the interior and
the photospheric region. The total pressure inside a stellar or
substellar object can be represented as

𝑃 = 𝑃𝑔 + 𝑃𝑟, (B.1)
where 𝑃𝑔 is the gas pressure due to the adiabatic ideal gas and𝑃𝑟 is the radiation pressure. At a temperature comparable to
that of the envelope surrounding the interior of a substellar
object, hydrogen is partially ionized and the helium gas is
mostly molecular. For a quasistatic change, the first law of
thermodynamics yields

𝑑𝑄 = (𝜕𝑈𝜕𝑇)
𝑉

𝑑𝑇 + (𝜕𝑈𝜕𝑉)
𝑇

𝑑𝑉 + 𝑃𝑑𝑉 (B.2)

[32]. The most general expression for the internal energy of a
monatomic gas is

𝑈 = 32 𝑘𝐵𝑁0𝑇𝜇1 + 𝑎𝑇4𝑉 + 𝑥𝜒𝑁0, (B.3)

where we have considered the energy due to photon radiation
and gas ionization. Here, 𝜒 is the ionization energy and 𝑥 is
the ionization fraction of hydrogen. Taking the partial deriva-
tives of (B.3) and using the second law of thermodynamics𝑇𝑑𝑆 = 𝑑𝑄, we arrive at

𝑑𝑆 = −32 𝑘𝐵𝑁0𝜇1
𝑑𝑇𝑇 + 𝑘𝐵𝑁0𝜇1

𝑑𝑊𝑊 + 43𝑎𝑑𝑊
+𝑁0 (𝜒 + 32𝑘𝐵𝑇)(𝜕𝑥𝜕𝑇 𝑑𝑇𝑇 + 𝜕𝑥𝜕𝑉 𝑑𝑉𝑇 ) ,

(B.4)

where 𝑊 = 𝑇3𝑉. The ionization fraction is a function of
density and temperature, 𝑥(𝜌, 𝑇). Using the Saha equation,
we obtain

(𝜕𝑥𝜕𝑇)𝑉 =
𝑥 (1 − 𝑥)2 − 𝑥 1𝑇 (32 + 𝜒

𝑘𝐵𝑇) ,
( 𝜕𝑥𝜕𝑉)

𝑇

= 𝑥 (1 − 𝑥)2 − 𝑥 1𝑉.
(B.5)

Using the above relations, we can simplify (B.4) to be

𝑑𝑆𝑘𝐵𝑁0 = − 32𝜇1
𝑑𝑇𝑇 + 𝑑𝑊𝜇1𝑊 + (32)

2 𝐻𝑑𝑇𝑇 + 32 𝐻𝑑𝑉𝑉
+ 4𝑎𝑑𝑊3𝑘𝐵𝑁0 + 𝜒(𝑑𝑉𝑇𝑉 + 3𝑑𝑇𝑇2 +

𝜒
𝑘𝐵

𝑑𝑇𝑇3 ) ,
(B.6)

where𝐻 = 𝑥(1−𝑥)/(2−𝑥).This expression is the same as (19)
except for the final two terms due to radiation and ionization
energy, respectively. We can ignore the final term and retain
terms of linear order in𝑇. On integrating and simplifying the
above expression, we get the entropy for the partially ionized
hydrogen and helium gas:

𝑆1 = 𝑘𝐵𝑁0 ( 1𝜇1 +
32 𝑥 (1 − 𝑥)2 − 𝑥 ) ln 𝑇3/2𝜌 + 43𝑎𝑇3𝑉

+ 𝐶1.
(B.7)
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At low temperature (𝑇 < 4000K) and low pressure, hy-
drogen is predominantly molecular and fluid. Repeating the
above derivation for the nonionized diatomic hydrogen gas
with energy𝑈 = (5/2)(𝑘𝐵𝑇𝑁0/𝜇2) and molecular helium, we
can arrive at an expression for the entropy:

𝑆2 = 𝑘𝐵𝑁0𝜇2 ln 𝑇5/2𝜌 + 43𝑎𝑇3𝑉 + 𝐶2. (B.8)

In the above expressions for entropy, 𝜌 and 𝑇 are the density
and the temperature, respectively. Other variables are as des-
cribed in the text.

C. Thermal Properties

We discuss some of the more accurate expressions for the
important thermal properties of a degenerate system.

C.1. Fermi Energy. Using (A.6) for the number density, we
can write the general expression for the chemical potential 𝜇
in terms of the Fermi energy 𝜇𝐹 at 𝑇 = 0 [51]. Considering
only the first three terms (A.6) and for 𝜌 = (2/3)𝜇3/2𝐹 , we find

𝜇 ≃ 𝜇𝐹 − 𝜋212 1
(𝛽𝜇𝐹)2 −

38 1𝛽𝜇𝐹 ln (1 + exp−𝛽𝜇𝐹) . (C.1)

The second and the third terms are the correction factor 𝐶 to
the zero temperature Fermi energy. For 0.03 < 1/𝜇𝐹𝛽 < 0.20,
the correction factor 𝐶 will be in the range ∼8 × 10−4 < 𝐶 <4 × 10−2.
C.2. Specific Heat. In the nondegenerate completely ionized
limit, the specific heat 𝐶V ∼ 3𝑘𝐵𝑁/2. At finite temperatures,
the value of the specific heat is less than the limiting value;
that is, 𝐶V < 3𝑁𝑘𝐵/2. The specific heat of the ideal Fermi gas
decreases monotonically. At low but finite temperatures,

𝐶V𝑁 ≃ 𝜋22 𝑘𝐵𝑇𝜇𝐹 . (C.2)

A detailed analysis in the calculation of the specific heat
shows that the numerical coefficients in the expansion
approached a limiting value of 2.

C.3. Grueneisen Parameter. Applying the condition of con-
stant entropy to (20) leads to the condition

𝑇 = 𝐶𝜌2/3, (C.3)

where 𝐶 is a constant. The Grueneisen parameter 𝛾 is given
by the expression

𝛾 = (𝜕 log𝑇𝜕 log 𝜌)𝑠 . (C.4)

Using (C.3) in the above expression, we estimate the value
of the Grueneisen parameter 𝛾 to be 2/3. This value is in
approximate accord with Stevenson [16], who indicated that𝛾 ≃ 0.6 in dense Coulomb plasma when obtained from com-
puter simulations.

C.4. Ionic Correlation. Ionic correlation is an important con-
tribution as considered by Stolzmann and Blocker [25],
Becker et al. [27], Hubbard et al. [52], and Gericke et al.
[26] to name but a few. Stolzmann and Blocker [25] use the
method of Pade’s approximations to provide explicit expres-
sions for the fully ionized plasmaof theHelmholtz free energy
and pressure. They have considered the nonideal effects of
different correlations such as the electron-electron, ion-ion,
electron-ion, and exchange contribution for a wide range of
values of the Coulomb coupling parameter Γ, which is the
ratio of the Coulomb to thermal energy:

Γ = 𝑒2𝑘𝐵𝑇 (4𝜋𝑛𝑒3 )1/3 = Γion⟨𝑧5/3⟩ . (C.5)

Here, 𝑛𝑒 stands for the electron density and ⟨𝑧5/3⟩ is the
charge average, given as

⟨𝑧5/3⟩ = ∑𝑛𝑖𝑍5/3𝑖∑𝑛𝑖 , (C.6)

for ions of different species 𝑖. The greatest effect is in the
relative pressure contribution𝑃𝑖𝑖/𝑃ideal of the ionic correlation
term for hydrogen at 𝑇 = 105 K, estimated to be ∼−0.1 at𝜌 ∼ 103 g/cm3 and a minimum of ∼−0.2 at 𝜌 ∼ 10 g/cm3.
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