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ABSTRACT  

Corrosion of steel reinforcing bar (rebar) is the most significant cause of concrete failure, resulting in expensive 

repairs and premature structure replacements across the country. This paper will discuss a new, low-cost, zinc 

coating process for rebar. The properties of this new coated rebar and its contribution to improvement of concrete 

performance will be presented together with the status of related national and international standards. The 

Continuous Galvanized Rebar (CGR) coating process is similar to galvanizing of sheet steel.  The zinc coating is 

durable and resistant to abrasion that is routine during transport and construction, but is also highly ductile and can 

be bent without cracking to diameters of less than 4x the rebar diameter. This property ensures the bars can be 

coated pre-fabrication, reducing cost and speeding construction schedules. Once in the concrete, the zinc coating 

protects the rebar both as a barrier coating and with the well-known sacrificial properties of a galvanized coating.  

 

Keywords: Corrosion, Galvanizing, Rebar, Reinforcing steel, Zinc 

1. INTRODUCTION 

Galvanizing is by far the most effective way to protect steel from corrosion. The long life of exposed galvanized 

steel structures, such as transmission poles and street furniture, is a testament to the excellent corrosion protection 

provided by zinc coatings to steel. The zinc coating acts first as a barrier protection, isolating the base steel from 

corrosive elements, and secondly by cathodic protection, acting as a sacrificial anode to protect the steel should the 

coating be compromised. 

 

The excellent corrosion protection provided by zinc will also extend the life of steel-reinforced concrete structures 

exposed to aggressive environments that promote corrosion of steel reinforcement. Galvanizing increases resistance 

to chloride corrosion both by increasing the threshold chloride level where corrosion begins and by slowing the rate 

of corrosion after that threshold is exceeded, and is also very effective in combating the effects of carbonization-

induced reinforcement corrosion (Yeomans, 2004).  

 

Field studies highlight the excellent performance of galvanized reinforcing steel as a successfully established 

practice for extending the life of concrete structures in many countries. A recent study conducted in Canada revealed 

that galvanized steel was found to have 5-10 times lower corrosion rate than carbon steel in heavily contaminated 

concrete containing 2% of chlorides by mass of cement, depending on environmental exposures. The corrosion rate 

of carbon steel was found to increase exponentially with time in a very corrosive environment, while galvanized 

steel maintained a stable and much lower corrosion rate.  The low corrosion rates of galvanized rebar explained the 

fact that no corrosion induced cracking was found on columns of two concrete highway bridges after almost 50 

years in service (Zhang, 2015). 
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Steel reinforcement can be in the form of wire, prestressing strand or reinforcing bar (rebar). In the case of rebar, the 

most widely used method to apply the zinc is by the batch hot-dip method. It involves the immersion of cleaned steel 

bars into a bath of molten zinc at 450°C for several minutes. During immersion in the molten zinc, a metallurgical 

reaction occurs between the steel and the zinc, which produces a coating on the steel made up of a series of layers of 

zinc-iron intermetallics  (Gamma, Delta, Zeta), which grow out from the steel/zinc interface leaving a layer of 

essentially pure zinc (Eta phase) at the surface of the coating. Batch hot-dip coatings can have a mass of up to about 

1,100g/m2 (~150 microns thick). The composition of these coatings, including the thickness of the zinc surface 

layer, can vary as a function of the chemistry of the steel being coated and of the operating parameters of the zinc 

bath. Batch hot-dip coatings on reinforcing steel are almost always completely composed of the intermetallic phases 

due to the chemistry of the steel.  

 

The new continuously galvanized rebar (CGR) is produced by a similar method used for the continuous galvanizing 

of steel sheet. These highly formable coatings can be bent, stretched and twisted, and are limited only by the 

formability of the base steel. The formation of the zinc-iron alloy layers that occurs during the batch hot-dip process 

is avoided in the new process by adding a small percentage (0.20%) of aluminum to the zinc bath and by having 

much shorter immersion times (1 to 10 seconds). Aluminum acts as an inhibitor to the zinc-iron reaction, forming an 

extremely thin, iron-aluminum-zinc inhibition layer, and allows the production of an essentially pure, yet very 

formable, zinc coating on the rebar. The continuously galvanized coating above the thin inhibition layer will have 

the same essentially pure zinc composition regardless of the chemistry of the steel being coated. 

2. CORROSION OF STEEL REINFORCING BAR IN CONCRETE 

Zinc coatings passivate very quickly when exposed to fresh concrete. This passivation enhances the long term 

corrosion protection of the galvanized rebar during years of service. The initial passivation of a zinc coating when 

embedded in concrete occurs within hours, and is affected by the chemistry of the surface layer. A coating with a 

pure zinc layer is known to be more completely passivated than one that is an intermetallic zinc-iron phase 

(Yeomans, 2004). Galvanizing rebar in a continuous manner using a zinc-0.2% aluminum alloy will produce a zinc 

coated reinforcing steel with 40-60 microns of pure zinc coating that can successfully withstand the subsequent 

reinforcing bar forming operations, and has the potential to resist corrosion in concrete to an extent equal to that of 

much thicker zinc-iron coatings. 

 

The initial passivation of galvanized coatings in concrete is controlled by the relationship between the cement alkali 

content and the zinc corrosion rate. The pH of cement in contact with the zinc coating controls the formation of a 

compact and adherent layer of calcium hydroxyzincate (CHZ), a compound that passivates the surface of the zinc 

coating from further reaction with the concrete. The threshold for passivation of zinc in concrete pore solutions is at 

a pH of between 12.8 and 13.2 +/- 0.1 (Tan & Hansson, 2008).  pH levels greater than 13.2 do not develop in 

concrete pore solutions during the first few hours if sulphate is used as a settling regulator, or enough alkaline 

sulphates are present. The passivation layer develops during the first few hours after mixing when the pH of the 

concrete solution is lower than 12.8 +/- 0.1. If pH is between 12.8 and 13.2 the layer develops slowly and the 

galvanized coating may continue to react until the passivating layer is formed. In any case, regardless of the pH level 

of the concrete, the presence of a pure zinc layer is key to the rapid formation of a compact passivating film of CHZ 

on the galvanized rebar. 

  

While in service, the corrosion of rebar occurs when aggressive species, such as chloride ions, or a carbonation 

front, reach the reinforcement. In order to initiate corrosion of galvanized rebar, these aggressive species have to 

disrupt the physical barrier of the CHZ film. Carbonation lowers pH from highly alkaline to neutrality (pH 7), where 

the rate of Zn corrosion is very low. As a result, galvanized rebar does not generally corrode in carbonated concrete, 

although it can be quite corrosive to black steel. Chlorides are the more aggressive and are the most frequent cause 

of reinforcement distress. Chloride ions come from the raw construction materials, marine environments or de-icing 

salts. Zinc is attacked by chloride ions, but has a higher threshold value for initiation of corrosion than black steel. 

That is, the concentration of chloride ions needed to start corrosion of zinc is up to 4 times higher than the 

concentration needed to start corrosion of black steel. The overall behaviour depends on the source of the chloride 

ions, the state of the galvanized surface (including protection afforded by Zn corrosion products), and the degree of 

protection provided by the concrete cover. 
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Chloride ion induced corrosion of steel in concrete proceeds through a two-stage mechanism of initiation and 

propagation (Tuutti, 1982). Efforts to achieve long-term durability of reinforced concrete have been mostly directed 

at delaying initiation of corrosion of the rebar, i.e. postponing as long as possible the start of the propagation stage. 

The presence of a pure zinc layer on the surface of the steel rebar is the best way to delay the onset of corrosion of 

the rebar. The tenacious passivating film of CHZ is the first line of defense. The pure zinc layer will then corrode 

uniformly at less than one-tenth the corrosion rate of the base steel, thereby extending the onset of corrosion of the 

steel rebar. Through galvanic protection, the zinc will continue to protect the steel as the coating is consumed or 

damaged. It should also be noted that the zinc corrosion products migrate away from the corrosion site and help 

densify the concrete surrounding the rebar, further delaying the onset of corrosion, and also increasing bond 

strength.  

 

In concrete, the critical chloride level needed to initiate corrosion of bare steel is 0.65 kg/m3 (Kinstler, 2002). In a 

1992 International Lead Zinc Research Organization (ILZRO) performance evaluation report, a bridge in Boca 

Chica, FL reached this level of chloride in the concrete within 3 years, and the galvanized reinforcing bars in place 

showed no corrosion distress 19 years later. (Stejskal, 1992)  

 

As illustrated in Figure 1, both black steel and galvanized rebar inserted in concrete go through a dormant 

(initiation) period. This is labelled as “A” for bare steel and a longer period “C” for galvanized steel. After the 

initiation period, the corrosive species build up at the metal/concrete interface and corrosion begins. Bare steel 

begins to corrode rapidly at this point, as shown by the steep slope of the line in period “B” in Figure 1, until cracks, 

spalling and other damage appears on the concrete structure. Galvanized steel corrodes much more slowly through 

period "D" where even remnant zinc areas will continue to cathodically protect bare steel areas, providing a much 

longer timeline until damage to the concrete structure appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Kinetics of corrosion for Black vs. Galvanized rebar (Adapted from Yeomans, 2004) 

 

Results of potentiodynamic anodic polarization scans performed by Sergi et al show that pure zinc Eta phase 

corrodes at half the rate of the zinc-iron alloy intermetallic Zeta phase (Sergi et al, 1985). In batch hot dip 

galvanized reinforcing steel, the outermost layer of the coating is most often comprised of the Zeta phase. The new 

continuously galvanized rebar coatings will be comprised entirely of pure zinc, and are expected to corrode at half 

the rate of the zinc-iron intermetallic layers. Half the coating thickness will be required to provide equivalent 

corrosion protection.  

 

More recent results from Tan and Hansson (Tan & Hansson, 2008) confirm that the corrosion rate for a coating with 

a pure zinc surface layer is half the rate of an annealed coating composed entirely of zinc-iron intermetallic phases. 

They measured the average depth loss of coating thickness for the formation of the passivating CHZ layer on a pure 

zinc coating as compared to a fully annealed coating as listed in Table 1. Both coatings are fully passivated although 

only 0.45 microns of the pure zinc coating are consumed, while 1.18 microns of the annealed coating are consumed. 

The depth losses are considered insignificant when compared to the total coating thickness, but support the previous 
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work showing that a pure zinc coating will last twice as long as a coating composed of zinc-iron intermetallic 

phases.   

 

Table 1: Depth loss to passivation (Adapted from Tan & Hansson, 2008) 

Coating type Average depth loss to passivation 

(um) 

Annealed 1.18 

Pure Zinc 0.45 

3. CONTINUOUSLY GALVANIZED REBAR PRODUCT STANDARDS 

The CGR product is covered by two existing product standards. The first is the International Standard ISO 14657 

‘Zinc-coated steel for the reinforcement of concrete’. The ISO standard covers a wide range of coating weights from 

140g/m2 up to 600g/m2 and has no specific language about galvanizing methods. An ASTM standard A1094 

‘Specification for Zinc-Coated (Continuous Hot-Dip Galvanized) Steel Bars for Concrete Reinforcement’ is also 

available for CGR. The ASTM A1094 standard is specific for the continuous coating process and specifies coating 

weights of 360g/m2.  

4. THE CONTINUOUSLY GALVANIZED REBAR PROCESS 

The CGR coating process uses a small amount of Al (0.2%) in the zinc bath to produce a coating that is almost pure 

zinc except for an approximately 0.1 micron thick ternary intermetallic alloy layer (Fe2Al5-xZnx) at the zinc/steel 

interface. Such a coating, because of its very thin alloy layer (the same as that produced on continuously galvanized 

sheet products), is very adherent due to the metallurgical bond, and can be bent, stretched or twisted with minimal 

cracking, and no peeling or flaking. 

 

In the CGR coating process, the steel reinforcing bar is fully immersed in molten zinc for a period of only several 

seconds before cooling. Including the preheating stage, the total time the steel is at the temperature of the molten 

zinc (465°C) is 4-5 seconds. This allows all grades of steel (normal and high strength) to be galvanized with no 

change in the coating structure or risk of strain age embrittlement. In fact, any cold work stresses imparted to the bar 

by a straightening process prior to entry into the coating section would be almost entirely relieved by the preheating 

prior to zinc bath entry. All grades, including high strength, will have the same coating of essentially pure zinc. A 

conceptual continuous galvanizing process line is shown in Figure 2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed process for continuous galvanized of reinforcing bar (Courtesy of Coating Controls) 

 

The heat-to-coat method for galvanizing shown in Figure 2 uses an inert atmosphere to de-oxidize the steel before 

galvanizing. Currently, only flux based versions of this process are being used to produce cut lengths of CGR. Using 

a flux to deoxidize the steel allows for more flexibility in production schedules. To improve productivity, multiple 
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strands could be run side-by-side at speeds from 10 to perhaps 80 metres per minute. The induction heating step is 

used to dry the flux, and/or to preheat the bar surface temperature before galvanizing, allowing the normal 

continuous galvanizing iron/aluminum reaction to occur that forms the thin and ductile intermetallic alloy layer. 

 

This process could be used to convert black coils of reinforcing bar into galvanized coils that could be sent for 

subsequent processing into galvanized rebar cut lengths and formed parts. One concern about doing this is the added 

cold work that might create unacceptable strain ageing in the rebar from the extra uncoiling, straightening and 

recoiling involved in such a process. The rapid induction heating step would be expected to largely relieve any 

stresses created prior to galvanizing by taking advantage of the ‘uphill quenching’ effect. (Dieter, 1961) This would 

result in a galvanized coil of rebar with very similar cold work stresses as current black rebar coils have prior to 

being formed into parts. 

5. CONCLUSIONS 

A new continuously galvanized rebar product has been developed with excellent corrosion resistance and 

exceptional formability. Galvanizing increases resistance to chloride corrosion both by increasing the threshold 

chloride level where corrosion begins and also by slowing the rate of corrosion after that threshold is exceeded, and 

is immune to corrosion at the pH levels of carbonization-induced reinforcement corrosion. These highly formable 

CGR coatings can be bent, twisted and stretched and are limited only by the formability of the base steel.  

 

There are two multi-strand CGR lines currently in operation, one in China and one in the United Arab Emirates, 

with significant interest from potential producers in Brazil, Canada, India and the United States. The International 

Zinc Association believes that continuously galvanized reinforcing bars will significantly increase the life of 

reinforced concrete structures and maximize the investment in public infrastructure and other construction projects.  
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