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Abstract 
 

Adenoid cystic carcinoma (ACC) of salivary glands is a malignancy known for its 

slow growth pattern, but poor long-term survival despite aggressive treatment.  This 

highlights the need for an improved approach to its management.   

It has been suggested that kallikrein-related peptidases (KLKs), a group of 15 

serine proteases, may serve as biomarkers for salivary gland tumors.  KLKs are involved 

in numerous biological processes and have been linked to several cancers.  

This study evaluated KLK gene expression in ACC and normal salivary gland 

tissue (NSGT).  Total RNA was isolated from 40 formalin-fixed, paraffin-embedded 

samples, which included 25 ACCs and 15 NSGTs. RNA samples were subjected to 

reverse transcription and RT-qPCR utilizing human-specific KLK1-15 primers.  KLK1-

KLK15 expression was observed in both ACC and NSGT.  Comparative ΔCq analysis 

found KLK1, KLK8, KLK11, and KLK14 to be downregulated in ACC.  This may 

represent a multiparametric panel for its diagnosis; however, additional studies are 

needed. 
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Chapter 1 

1 Introduction 

1.1  Salivary Neoplasms 
 

Tumors originating from salivary gland tissue can be derived from either 

parenchymal epithelial cells or mesenchymal stroma (1).  However, in the vast majority 

of cases, they are of epithelial origin (2).  These epithelial tumors typically arise in adults 

unlike their mesenchymal counterparts, which are most common amongst children (1).   

The mesenchymal tumors are usually benign.  They may be of vascular origin, or contain 

populations of fibroblasts and histiocytes due to fibrohistiocytic differentiation (1).  In 

contrast, the classification of primary epithelial neoplasms is more challenging due to the 

immense diversity of the tumors and the paucity of their occurrence (3).  It is estimated 

that the annual incidence of salivary gland tumors worldwide ranges from 1.0 to 6.5 cases 

per 100,000 people (3).  Therefore, in a city like London, Ontario, with an estimated 

population of 366,151 (4), one could expect to see anywhere between 3 to 24 newly 

diagnosed cases per year.  Fortunately, most of these cases will be benign. 

Salivary neoplasms can arise in any of the three paired major salivary glands or 

minor salivary glands of the oral cavity or oropharynx.  In general, the major salivary 

glands account for over 70% of all salivary tumors (5), and less than 30% of salivary 

tumors are said to occur in minor salivary glands (1).  Furthermore, knowing the site of 

origin can aid in the prediction of whether the tumor is likely to be benign or malignant.   

Typically, salivary tumors occurring in the sublingual gland or the minor salivary glands 

are more likely to be malignant compared to those occurring in the larger submandibular 

or parotid glands (3).  Minor salivary gland tumors, which are most commonly found on 



 

 

2 

the palate, followed by the upper lip and buccal mucosa, account for approximately 25% 

of all tumors (2).  Overall, 50% of these tumors will prove to be malignant, with certain 

high-risk sites such as the tongue, retromolar region and floor of the mouth approaching 

90% (1).  Keeping with this trend, tumors of the sublingual gland, the smallest of the 

major salivary glands, have a high likelihood of being malignant, up to 90% (2).  Luckily, 

they account for no more than 1% of all salivary tumors (3).  Neoplasms arising from the 

submandibular gland, the next largest gland, represent roughly 10% of all salivary tumors 

(2, 5).  Of these, the frequency of malignancy is approximately 40% (2).  Lastly, the 

parotid gland, which is the largest salivary gland, is the most common site to find a 

salivary neoplasm.  Fortunately, most of these tumors are benign.  According to Neville 

et al., it can be stated that two-thirds to three-quarters of salivary tumors occur in the 

parotid gland, and two-thirds to three-quarters of these parotid tumors are benign (3). 

Salivary neoplasms, independent of their site of origin or whether they are benign 

or malignant, generally arise from either the ductal or secretory cells of a salivary gland.  

More specifically, potential tumor cells of origin include myoepithelial cells, or those 

from acini, intercalated ducts or striated intralobular ducts (1).  Stem cells, or reserve 

cells as they are more commonly referred to, are also found within salivary glands.  

Given their undifferentiated nature, many believe that these cells are the cells of origin 

for most observed salivary tumors (2).  Regardless of whether or not this is true, the line 

of differentiation ultimately determines the tumors histopathological pattern and how it 

will be classified.  Some salivary tumors are composed of only one cell type while others 

may be composed of secretory, myoepithelial and ductal cells (1).  For example, adenoid 
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cystic carcinomas (ACCs) are a mixture of both myoepithelial cells and ductal cells (2, 

3). 

1.1.1  Adenoid Cystic Carcinoma 
 
 ACC is one of the most common malignant salivary neoplasms (3).  It is also one 

of the most easily recognizable given its characteristic histologic pattern, often referred to 

as “Swiss cheese” (3). 

1.1.1.1  Clinical Features  
 
 The peak incidence of ACC is noted within the fifth and seventh decades of life 

(2), but may occur in people of any age (1, 6).   They can be found in both men and 

women, with no clear sex predilection (2, 3, 6).   Most ACCs occur within minor salivary 

glands, approximately 50-60% of the time, with the palate being the site predominantly 

affected (3).  In fact, they are the most common salivary malignancy of the palate (7).  

These tumors can also arise within the major salivary glands.  The parotid gland is 

affected most (1, 2), but given its propensity for benign tumors, ACCs are infrequently 

seen there (3).  It is estimated that they comprise only 2 to 3% of all parotid gland tumors 

(3).  In comparison, ACCs are the most common malignancy of the submandibular gland 

(3), even though a smaller percentage of the total number of tumors are found there.   

ACC is known for its slow growth rate (1-3).  With time the tumor becomes fixed 

and indurated (1), but this may not occur until late in the course of the disease.  Pain often 

precedes any noticeable mass, and it may be the only reason a patient seeks treatment (3).  

The pain is often described as a persistent dull ache (3).  Given ACC’s propensity for 

neural involvement, facial nerve weakness or paralysis may be the initial presenting 

symptom in some patients with a parotid tumor (2).  Common features of late-stage 
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palatal tumors are evidence of mucosal ulceration or bone destruction on radiographs (3).  

Palatal lesions are also capable of perineural spread, usually along the palatine branches 

of the maxillary nerve (7).  Distant metastasis by hematogenous dissemination often 

occurs with disease progression (6).  However, lymphatic spread remains rare (6).  

Overall, metastasis occurs in up to 40% of patients (8).  The sites most commonly 

affected are the lungs followed by bone (6, 8).     

1.1.1.2  Histopathology 
 

Three major histomorphologic growth patterns are recognized (1-3).  They 

include cribriform, tubular, and solid (5).  Most tumors show evidence of all three 

patterns, but one pattern typically dominates (3).  Identifying the predominant pattern is 

important, as it will dictate tumor behavior and aggressiveness (5). 

The cribriform pattern has the prototypical Swiss cheese microscopic appearance.  

Multiple cyst-like spaces, containing a basophilic mucoid material, an eosinophilic 

hyalinized material, or a combination of both, are observed, and stain positive for mucin 

(1, 3).  Oval nests of small cuboidal epithelial cells with hyperchromatic nuclei surround 

these spaces (1).  Theses cuboidal cells have scant cytoplasm, rarely contain mitotic 

figures and are usually homogenous in appearance (3).  The tumor is often embedded in a 

mature, hyalinized stroma (1, 3). 

The tubular pattern is composed of similar appearing tumor cells, but the nests are 

smaller (2).  One to three layers of epithelial cells usually surround distinct duct-like 

structures (1, 2).   Occasionally, a layer of myoepithelial or ductal cells can be seen (3). 

The solid basaloid pattern does not have a predisposition to forming ductal or 

cystlike structures (3), but instead, the tumor cells arrange themselves in solid nests (1).  
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Furthermore, unlike the cribriform or tubular patterns, this configuration shows evidence 

of increased mitotic activity and cellular pleomorphism (3). 

Although not pathognomonic of ACC, all three patterns have a tendency for 

perineural invasion.  Microscopically, the tumor cells can often be seen wrapping 

themselves around nerve bundles (3).  Involvement of the perineurium then allows the 

tumor to invade the surrounding lymphatic vessels (1).   This facilitates distant 

metastasis, and ultimately, it is responsible for the high local recurrence rates seen 

following surgery (1). 

1.1.1.3  Diagnosis 
 
 The assessment of a patient with a suspected salivary gland tumor, such as ACC, 

is no different than that of any other patient who may present with any number of 

different complaints.  It begins by performing a comprehensive history and physical 

examination followed by appropriate imaging and tissue biopsy (9).   Equipped with this 

information, a diagnosis and surgical plan can then be devised. 

  When the suspicious lesion involves a minor salivary gland, an open biopsy is the 

preferred method to arrive at a diagnosis.  However, a mass involving a major salivary 

gland complicates the diagnostic workup.  Currently, the optimal method to make this 

diagnosis remains controversial (9, 10).   

When the mass involves the parotid gland, many surgeons will elect to perform 

fine-needle aspiration (FNA) (2).  Despite its obvious benefits, such as low cost, easiness 

to perform and safety (10, 11), many have questioned its clinical usefulness due to poor 

sensitivity (12).  A recent meta-analysis by Schmidt et al. assessed the diagnostic 

accuracy of FNA for parotid gland tumors (12).  They were able to identify 64 studies, 
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involving 6,169 cases, which looked at the ability of FNA to correctly identify 

malignancy (12).  They found the overall specificity to be quite high at 96%, but the 

sensitivity was much lower at only 79% (12).  An earlier published retrospective cross-

sectional study by Zbären et al. found similar findings.  They reported the sensitivity and 

specificity of FNA in detecting malignant salivary tumors to be 74% and 88%, 

respectively (11).  Furthermore, their results also showed that the histologic tumor type 

was correctly diagnosed by FNA only 35% of the time for malignant neoplasms (11).  It 

has been suggested that inadequate tissue sampling is the most common reason for this 

diagnostic error, and the use of ultrasound-guidance may improve the accuracy of FNA 

(5).  However, the accuracy is also undoubtedly influenced by the experience of the 

cytopathologist and the inherent difficulty of classifying malignant salivary neoplasms 

given their low volume and diverse nature (5, 11).   

 The treating physician should consider the limitations of FNA and ponder two key 

questions before making treatment decisions.  First, is the sensitivity of FNA sufficient 

enough to exclude malignancy when the results are negative (12)?  Second, can the 

results of a FNA, which is positive for malignancy, be used in determining the extent of 

surgery (12)?  Unfortunately, no practice guidelines have been developed to definitively 

answer these questions.  Therefore, it is the responsibility of the physician to know the 

shortcomings of FNA, such as its low sensitivity.  It has been suggested that FNA has the 

potential to misguide clinicians, and its results have erroneously been used to plan the 

extent of surgery (10).  Zbären et al. insist that surgical decisions, such as the need for an 

elective neck dissection or total parotidectomy, require knowledge of the tumors 
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histologic subtype and/or grade (11).  Therefore, FNA should not be used in surgical 

planning (11). 

 Computed tomography (CT) and magnetic resonance imaging (MRI) are also 

used in the diagnostic workup of salivary gland masses.  Imaging can be very helpful in 

determining the anatomic location of a tumor and delineating its margins (5).  It also 

provides valuable information about the presence of any neurovascular involvement, 

bony invasion, intracranial extensions or distant metastasis (5).  Many clinicians believe 

that MRI is the best modality to assess ACCs given their high rate of perineural spread 

(13).  It is felt that MRI is better able to demonstrate neural invasion or any infiltration of 

the skull base (13).  However, MRI, like CT, tends to underestimate the true extent of 

ACCs (14). 

The ability to make a specific diagnosis using imaging appears to have its 

limitations.  Ikeda et al. were unable to find any signs on MRI that would allow for 

perfect sensitivity or specificity in diagnosing pleomorphic adenomas (15).  This finding 

is consistent with that of other researchers, and it has prompted some to suggest that 

radiology should only be used for operative planning and not for diagnosis (10).  To 

complicate matters even further, ACCs can appear as either benign or malignant on 

imaging (7). 

1.1.1.4  Treatment and Prognosis 
 
 The treatment of choice for ACCs is aggressive surgical resection (6, 16).  Given 

that the hallmark features of this tumor are local recurrence, perineural spread, and late 

distant metastasis, obtaining clear margins at the time or surgery is paramount (14).  For 

lesions of the parotid gland, realizing this goal may necessitate total parotidectomy (9) 



 

 

8 

and resection of the facial nerve, should it be infiltrated or encased by tumor (2, 5), When 

the tumor originates in the submandibular gland, special attention needs to be directed 

towards the lingual, hypoglossal and marginal mandibular nerves (5).  If there is any 

evidence of neural involvement, the nerve in question should be sacrificed (5) during the 

sialoadenectomy procedure (1).  Any ACC found intraorally requires wide local excision 

with a 1-cm margin and one uninvolved anatomic barrier (9).  This may require radical 

bony excision to obtain tumor-free margins (2, 5). 

 ACC is radiosensitive (1, 17), and the use of adjuvant radiation has proved 

effective in the management of the disease (2).  However, there is still debate about 

whether radiation therapy should be given to all patients.  It has been suggested that 

surgery alone may be adequate when treating small tumors with clear margins (5, 17, 18).  

Some institutions have elected to provide radiation only in cases with unfavorable 

features such as positive resection margins (6, 19, 20), tumors in proximity to the cranial 

base (19), or those with a solid growth pattern (19, 20).  However, there are advocates 

who recommend combined surgery and radiation in all patients (21, 22).  Simpson et al. 

reported local control rates of 86% when adjuvant radiation was given compared to only 

11% when it was withheld (23).  Results published by The University of Texas MD 

Cancer Center showed 5 and 10-year local control rates of 95% and 86%, respectively, in 

patients who received surgery and postoperative radiotherapy (21).  More recently, based 

on their case series and review of the literature, Chen et al. declared that combined 

modality therapy should be the standard of care (22).  According to Chen et al., all 

resectable ACCs should be treated with surgery and adjuvant radiotherapy, of at least 60 

Gy, to afford patients the best chance of survival. 
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 Proponents against giving adjuvant radiation treatment indiscriminately to 

patients with ACC cite a lack of evidence to show it provides a clear survival advantage 

(19).  Even if this is true, the utility of radiation should not be discounted, and the 

importance of improved local control cannot be overstated.  One can postulate that a 

definitive survival benefit has yet to be shown because postoperative radiation is 

ineffective at preventing distant metastases (8, 22).   

It is well established that patients with distant metastasis have worse survival 

outcomes (8).  However, many patients live for remarkably prolonged periods after the 

development of distal disease (6, 8, 17).  This is particularly true when there is no 

evidence of local disease (8, 17).  Khan et al. found the median survival after the 

discovery of an isolated pulmonary lesion to be 6.8 years (17).  Furthermore, researchers 

have also shown that distant metastasis occurs independently of local treatment outcomes 

(6, 17).  Based on these observations one can argue that distant disease should not 

preclude treatment, and in fact, both local and distal disease should be treated as separate 

entities (6, 17).   

Neck disease, due to lymphatic spread, is rare in ACC (17).  As results, it is 

common belief that neck disease plays only a small role in overall survival outcomes (6).  

Therefore, neck dissections have not frequently been performed (17) and have been 

reserved only for cases with evidence of lymphatic spread (6, 14).  However, recent 

studies have shown that the incidence of occult neck metastases is higher than previously 

thought (24, 25).  A multicenter study by Amit et al., determined the incidence of occult 

nodal disease to be 17%, amongst 226 patients who underwent elective neck dissections 
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(24).  This is similar to the results published by Lee et al.; they found an occult 

metastases rate of approximately 15% (25). 

Head and neck surgeons accustomed to treating squamous cell carcinoma tend to 

follow the dogma that elective neck dissection should be performed when the risk of 

occult metastasis is greater than 15% (26).  Therefore, practitioners who previously 

avoided elective neck dissections in patients with ACC, due to the held belief that 

regional disease is rare, have been forced to reevaluate their practices.   

As one could expect, the topic has created much controversy (9, 25).  Bell et al., 

after reflecting on their decades of clinical experience managing malignant salivary 

pathology, advocate for elective neck dissection in all patients with high-grade tumors, 

advanced local disease, symptomatic facial nerve involvement, and advanced age (27).  

However, they suggest that it is probably not necessary in small, low-grade tumors (27).  

Recently, Mesolella et al. stated that all first echelon nodes need removal in order to 

control for distant metastasis even if there is no evidence of nodal disease (28).  

Similarly, based on their finding of improved rates of neck control at 5 and 10 years in 

those receiving elective neck dissection, 98% and 98%, compared to those not receiving 

neck dissections, 95% and 89%, Balamucki et al. recommend the surgical removal of 

sentinel lymph nodes (29).  

According to Neville et al. death usually results from either local recurrence or 

distant metastases (3).  The overall prognosis of ACC is poor, although this may not be 

reflected in the 5-year survival rates (16).  Survival rates at 5-years are approximately 

70%, but fall to 50% at 10-years (6, 17).  By 15 years, fewer than 35% of patients are still 

alive (6, 17).   This trend highlights the importance of long-term follow-up.  Local 
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recurrence and distant metastasis have both been observed 15-years after the initial 

presentation of the primary tumor (6).  Researchers have attempted to identify factors that 

can help predict in which patients this is most likely to occur.   

Factors associated with poorer outcomes include positive resection margins at the 

initial time of surgery (6, 14, 21, 22), advanced stage of the primary tumor (6, 17, 19), 

and tumors with a solid histopathologic growth pattern (8, 19).   

Szanto et al. in 1984 established a histologic grading system for ACC based on 

the degree of the solid component (30). Tumors containing no solid component are grade 

1, tumors containing less than 30% solid component are grade 2, and tumors with greater 

than 30% solid component are grade 3 (30).  The histologic subtypes composed of the 

solid pattern have been found to be a poor prognostic factor in patients previously treated 

for ACC (30).  The 15-year survival rates for grade 3, grade 2 and grade 1 tumors are 5%, 

26% and 39%, respectively (30).  Franzen et al. also found that ACCs composed of partly 

solid histologic features have worse patient outcomes compared to those tumors lacking 

solid areas (31).  Furthermore, they found a correlation between DNA aneuploidy and 

tumors containing an increase in solid component.  ACC with grade 3 histology were 

associated with not only increased rates of treatment failure but also DNA aneuploidy 

(31).  Their observations suggest that death typically occurs within three years from the 

time of diagnosis for an ACC with a solid pattern (31). 

Microscopic perineural involvement has not been shown to negatively impact 

patient outcomes in numerous studies (8, 14, 17).  However, any invasion of a named 

nerve by tumor cells results in a worse prognosis (14, 21, 22). 
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1.1.1.5  Biomarkers 
 

Given the difficulties in diagnosing ACCs and the challenges and controversies 

surrounding their management, recent research has focused on the identification of 

molecular markers and/or hormonal receptor expression in these tumors.   

1.1.1.5.1 C-kit (CD117) 
 
 The c-kit proto-oncogene encodes the transmembrane cell surface receptor known 

as c-kit.  C-kit is a tyrosine kinase receptor involved in cell migration, proliferation, and 

differentiation (5).  It can be found in both normal and abnormal tissues (28), and 

aberrant overexpression has been seen in certain tumors.  The receptor can be detected by 

immunohistochemical staining for CD117 (32).  

A limited number of researchers have studied the role of c-kit in salivary tissue 

(33).  Andreadis et al. focused on the immunoexpression of c-kit in both benign and 

malignant salivary gland tumors (33).  Of the 14 cases of ACC they examined, 80% 

showed c-kit expression.  Furthermore, strong immunoreactivity was seen in all of the c-

kit positive cases, with more than 50% of cells staining positive (33).  Solid ACC or those 

with grade 3 growth patterns were noted to stain most intensely (33).  Similarly, Jeng et 

al. found 80%  (20/25) of ACC cases to be c-kit positive, and all ACC with a solid 

growth pattern expressed c-kit (34).  

 Earlier studies suggest that c-kit expression is limited to specific salivary gland 

neoplasms.  Of the 79 salivary gland carcinomas studied by Jeng et al., c-kit positivity 

was seen in only 28 samples (34). The samples expressing c-kit belonged to one of three 

types of tumors, including ACC, lymphoepithelioma-like carcinoma and myoepithelial 

carcinoma (34).  Penner et al. have also suggested that different salivary gland tumors 
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differentially express c-kit (35).  Based on their observations they concluded that strong 

c-kit expression characterizes ACC, and it may aid in the differentiation between ACC 

and polymorphous low-grade adenocarcinoma (35). 

 Contrary to the works of Jeng et al. and Penner et al., others have shown that c-kit 

expression is not restricted to ACC or other malignant salivary gland neoplasms for that 

matter (33, 36).  In the study by Chandan et al., c-kit expression was found in 100% 

(15/15) of pleomorphic adenoma samples and 100% (10/10) of ACC samples (36).  

Likewise, Andreadis et al. showed that c-kit is expressed in many different types of 

benign and malignant salivary gland tumors (33).   

The ubiquitous expression of c-kit by different salivary gland neoplasms 

questions its usefulness as a marker to differentiate between tumor types (36).  That being 

said, the near universal expression of c-kit by ACC specimens (33-36) suggests a 

potential role for tyrosine kinase inhibitors (35).  

Imatinib mesylate is a tyrosine kinase inhibitor that targets ABL, platelet-derived 

growth factor receptor (PDGF-R) and c-kit (32).  Its binding to the c-kit receptor inhibits 

cell proliferation and induces apoptosis (32).  Given the overexpression of c-kit in ACC, 

Alcedo et al. explored the use of imatinib mesylate to target these tumors (32).  In their 

study, they showed a reduction in tumor burden in two inoperable cases of ACC; one was 

in the context of recurrent disease, and the other was in the context of locally advanced 

disease (32).  However, a multi-institutional phase II study was unable to duplicate the 

effectiveness of imatinib (37).  All 16 patients, with c-kit positive ACC and unresectable 

or metastatic disease, enrolled in the study failed to show any objective response to 

imatinib therapy (37).  Furthermore, Lin et al. noted rapid disease progression in 60% 
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(3/5) of patients with metastatic ACC, which were expressive for c-kit, when treated with 

imatinib over a 2 to 3 week period (38).  The authors suggested that their case series 

might represent the first documented cases of imatinib-enhanced tumor growth (38). 

2.1 Proteases 
 

Proteases play a critical role in the functioning of all living cells (39), and 

approximately 2% of all human genes are devoted to encoding these proteins (40).  The 

enzymatic activity of proteases is required for angiogenesis, neurogenesis, inflammation, 

apoptosis, hemostasis, immunity, fertilization, ovulation, wound repair, stem cell 

stimulation, and protein activation (39, 41).  For proteases to perform these vital 

functions, they are ubiquitously present in all organelles of the body.  Therefore, 

alterations in proteolytic function can have widespread pathological implications (41).  

Proteases have been implicated in a number of diseases including heart disease, cancer, 

neurodegenerative and autoimmune diseases (39, 41). 

Proteases come in many shapes and sizes and vary in terms of specificity.  Some 

proteases target only a specific peptide bond of a single protein while other 

indiscriminately target multiple substrates (41).   

Proteases are grouped into classes based on their mechanism of catalysis (39).   

The six main classes are serine proteases, cysteine proteases, threonine proteases, aspartic 

proteases, glutamic proteases and metalloproteases (41).  Proteases in each class can also 

be described as being exopeptidases, if they target the terminal peptide bond, or 

endopeptidases, if they cleave internal peptide bonds.      

The MEROPS database, founded in 1996, classifies peptidases in a hierarchical 

fashion based on their degree of biochemical similarity (40).  Proteins that share 



 

 

15 

homologous protein domains, also termed the peptidase unit, are grouped into families, 

and homologous families, which have similar three-dimensional structures and share a 

common ancestry, are grouped in clans (40, 41).  For example, tissue kallikreins belong 

to the S1 family of serine proteases of the PA clan (Proteases of mixed nucleophiles, 

superfamily A) (42). 

2.1.1  Serine Proteases 
 
 Serine proteases compromise over one-third of all known proteolytic enzymes 

(39, 43), and of all the protease classes, they have the most members (41).  They are 

broadly disseminated throughout nature and can be found in all kingdoms of life (43).  In 

total, there are 40 families and 13 clans of serine proteases (43).  Of these 40 families, 

four are responsible for approximately 40% of all human proteolytic activity (43). 

Serine proteases, like cysteine and threonine proteases, use an amino acid to guide 

the cleavage of peptide bonds.  In the case of serine proteases, a serine residue at the 

active site of the protein acts as a nucleophile to facilitate enzymatic function (41).  

Under normal physiologic pH, serine residues are poor nucleophiles and must rely on the 

interaction with an acid and a base to improve their reactivity (44).  Together, the acid-

base-nucleophile or catalytic triad, as they are more commonly referred, perform covalent 

catalysis (44).  During catalysis, the hydroxyl group of the serine nucleophile attacks the 

carbonyl group of the substrate yielding an acyl-enzyme intermediate (44).  The 

generation of the acyl-enzyme intermediate ultimately lowers the activation energy for 

proteolysis and accelerates the chemical reaction (44).   

The activity and function of serine proteases have widely been studied, 

particularly in humans.  Commonly encountered proteases include trypsin, chymotrypsin, 
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thrombin, plasmin, elastase, and kallikrein (45).  These enzymes are involved in 

digestion, coagulation, immunity, fertilization, development, neuromuscular functioning, 

apoptosis, blood pressure regulation, and malignancy (43, 45).  Most of the serine 

peptidases involved in these biological processes are endopeptidases (43, 45) 

PA clan proteases, as classified by the MEROPS database, play important roles in 

extracellular processes (43).  Together, they constitute the largest family of serine 

proteases (43).  All PA clan peptidases rely on the catalytic triad, Serine-Histidine-

Aspartate (Ser/His/Asp), to perform catalysis (39).  During a chemical reaction the serine 

residue acts as the nucleophile, the histidine residue acts as both an acid and base, and 

apartate helps orient the other residues and stabilize the charge buildup during the 

intermediate reaction (39). 

3.1 Kallikreins 

3.1.1  General Overview 
 

The kallikrein family consists of 15 closely related serine proteases.  The genes 

encoding these proteins are encoded in tandem on chromosome 19q13.3-13.4 and cover 

approximately 300 kb (46).  Together, they constitute the largest protease gene cluster in 

the human genome (47).   

The members of the KLK family share a similar homology in their DNA 

sequence (46).  Between 35-85% is shared, with the classical KLKs (KLK1-KLK3) having 

the most closely related genomic organization (48).  The remaining KLK genes (KLK4-

15) display between 34.9%-46.2% sequence similarities with KLK1 (49). 

All kallikreins are formed by five coding exons of similar exon length and 

structure (46, 49). The start codon is located on exon 1, and the stop codon is located on 
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exon 5 (46, 49).  The intron sequences (I, II, I, 0) are less conserved and more variable 

(46).  The gene lengths of these non-coding sequences vary between 4.3-10.5 kb (49).  

3.1.2  Historical Overview 
 

Kraut, Frey, and Werle discovered the first member of the kallikrein family in 

1930 (50).  Found in pancreatic extract, the novel peptidase was shown to have 

vasoactive activity due to its ability to release bradykinin from kininogenase (42, 46).  

This kinin-generating substance was named ‘kallikreas’, derived from the Greek word for 

pancreas (46).  Today, kallikreas is referred to as tissue kallikrein or KLK1 to 

differentiate it from plasma kallikrein (46, 51).  

Plasma kallikrein, also a serine protease with kininogenase activity, is synthesized 

in the liver and circulates in the blood (46, 48).  It is encoded by a single gene, KLKB1, 

located on chromosome 4q34-35 and is unrelated to tissue kallikrein (46).  Therefore, it is 

not considered a member of the kallikrein family (42, 46). 

  Forty years after Werle’s initial discovery, a second tissue kallikrein was 

identified during the forensic study of semen (52).  This newly identified peptidase was 

termed prostate-specific antigen (PSA); it was later renamed KLK3 (52).    

With advancements in technology and genomic sequencing, additional kallikreins 

were discovered in the 1990s and the family continued its expansion into the millennium 

(51, 52).  Eventually, all 15 kallikrein genes were mapped to their corresponding loci.   

In 2006, a comprehensive nomenclature system for the classification of 

kallikreins was proposed and remains in use today (51).  Under this system, kallikreins 

without kininogenase activity are called kallikrein-related peptidases, and as a result, all 

but tissue kallikrein (KLK1) were renamed (51).  The names for KLK2-KLK15 changed 
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to kallikrein-related peptidase followed by the gene number (51).  For example, KLK2 

became kallikrein-related peptidase 2.  The classification system is also used to 

distinguish between the gene and the protein.  Each gene is referred to in italics as KLK 

followed by the gene number (e.g., KLK2) and each protein is written in standard font 

followed by the protein number (e.g., KLK2) (51). 

3.1.3  Kallikreins as Proteases 
 

Tissue kallikrein and kallikrein-related peptidases belong to the S1 family of 

serine endopeptidases (42), a subgroup of the PA clan, and display trypsin-like, 

chymotrypsin-like or dual activity (trypsin and chymotrypsin) (48).  As with other serine 

proteases, the three residues forming the catalytic triad of KLKs are histidine, aspartic 

acid, and serine, and they are found at the active site of the enzyme (49).   

 Crystallographic analysis of six KLKs (KLK1, KLK3-7) has revealed a common 

archetypal tertiary fold structure (46).  It consists of two adjacent, asymmetric beta-

barrels and three interconnected loops (42, 48). This confirmation results in the formation 

of the active site.  The protein is stabilized in this configuration by five disulfide bonds 

formed from 10 highly conserved cysteine residues (42).  Externally, there are two 

exposed alpha-helices (46), and the structure is more variable resulting in different 

substrate specificity and regulatory functions for each KLK (49) 

The catalytic triad residues, His57, Asp102 and Ser195, are encoded by the 

coding exons 2, 3, and 5, respectively (46).  Their positioning is conserved in all 15 

kallikreins (42, 48, 49).  The serine residue acts as the nucleophile, the histidine residue 

as a proton donor and aspartic acid helps maintain the imidazole ring of histidine in a 

favorable orientation (48). 
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3.1.4  Kallikrein Activation 
 

Kallikreins are translated as single-stranded intracellular pre-pro-enzymes (46, 

49).  Each pre-pro-KLK has a sequence length of 244-276 amino acids and is divided into 

three parts (49).  The N-terminus domain consists of 16-30 amino acids, the pro-domain 

consists of 3-37 amino acids, and the core or catalytic domain consists of 227-252 amino 

acids (46, 50).   

Removal of the signal peptide at the N-terminus domain results in the release of 

pro-KLKs into the secretory pathway (48, 50).  Extracellularly, inactive pro-KLKs 

undergo further processing by either trypsin-like or metalloproteinase-mediated cleavage 

(53, 54).  With the removal of the pro-domain, KLKs becomes active and undergo their 

characteristic conformational folding (49).  Generation of active KLK through this 

mechanism is an important regulatory step in both normal physiology and disease (54). 

3.1.5  Regulation of Kallikrein Activity 
 

Tight control of kallikrein activity is critical for normal cell functioning.  The 

generation of active KLKs from pro-KLKs is an irreversible step with the potential to 

cause a wide array of disorders if dysregulation occurs (49).    

 KLK regulation can occur at both the transcriptional and protein levels (50).  At 

the transcriptional level, steroid hormones and promoter methylation play important roles 

(46). 

The control of KLK expression by steroid hormones has been extensively studied 

(55).  At least 14 hormone response elements have been identified in KLK genes (50).  In 

a subset of tissues, steroid hormones including androgens, estrogens, progestins, 

mineralocorticoids, and glucocorticoids clearly regulate KLK expression (55).  In the 
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prostate, KLK2 and KLK3 expression is responsive to androgen hormones (55).  Upon 

androgen stimulation, androgen receptor binds to the androgen response element within 

the promoter region of KLK2 or KLK3, which leads to the upregulation of KLK2 or 

KLK3, respectively.  Breast tissue is another prominent site where androgens are 

involved in kallikrein expression.  Similar to the prostate, KLK3 expression appears to be 

androgen dependent (55).  In fact, 98% of androgen receptor positive breast cancers 

express KLK3 (56).  

 Epigenetic factors have also been identified as important regulators of KLK 

expression (49).  In certain malignancies, DNA methylation has been shown to impair 

tumor suppression (57, 58).  One mechanism by which this occurs is through the aberrant 

methylation of CpG islands, which are GC rich regions commonly found in the promoter 

region of some genes. For example, the hypermethylation of CpG islands in acute 

lymphoblastic leukemia is involved in the downregulation of KLK10 expression and is a 

poor prognostic factor (58).  Similarly, in breast cancer, methylation causes a loss in 

KLK6 function leading to tumor progression and epithelial-mesenchymal transitions 

(EMTs) (57).   

 At the posttranscriptional level, KLKs can be regulated by small, non-coding 

microRNAs (miRNAs) (46).  These miRNA have the ability to impair protein expression 

through translational inhibition or mRNA degradation (59).  A single miRNA can target 

several KLKs, and therefore, it can exert an inhibitory effect on the expression of 

multiple KLK proteins simultaneously (59).  

 Once activated, the physicochemical microenvironment serves as the last control 

mechanism of KLK activity (49).  Endogenous inhibitors, including irreversible serine 



 

 

21 

protease inhibitors (serpins), Kazal-type inhibitors and macroglobulins, prevent excessive 

proteolytic activity (60).  Furthermore, Zn2+, a single-metal-ion inhibitor, is important in 

attenuating KLK activity and preventing physiologic dysregulation (60).  KLKs 2, 3, 4, 5, 

7, 8, 12, and 14 are all attenuated by Zn2+ (60).  The microenvironmental pH also 

regulates KLK activity (60).  The histidine base (His57), at the enzymes active site, must 

be deprotonated to become catalytically active (61).   In skin, elevated pH contributes to 

increased KLK levels (61).  Lastly, kallikrein proteins may self-regulate their activity 

through internal autolytic inactivation (62).  Experimental studies have shown that KLK6 

undergoes self-internal cleavage as means to control enzymatic function (62) 

 Disruption of KLK regulation at any of these levels, whether it occurs during 

transcription, protease activation, or protease inactivation, can be pathologic.  Anxiety, 

schizophrenia, neurodegeneration, skin-barrier dysfunction, respiratory disease, cancer 

and pathological inflammation have all been linked to aberrant control of kallikrein 

activity (42, 48). 

3.1.6  Physiological Function of Kallikreins   
 

Kallikreins are expressed in nearly all tissues throughout the human body (63). 

However, their relative abundances vary depending on the tissue type (42).  For example, 

KLK2 and KLK3 are found in high concentrations only in the prostate (63).  Others, such 

as KLK5-KLK8 and KLK13, are highly expressed in a restricted number of tissues, 

whereas KLK1, KLK4, KLK9-KLK12 and KLK14-KLK15 are ubiquitously expressed 

(42, 63).  Certain kallikreins are co-expressed in specific tissues and participate with one 

another in proteolytic cascades (48, 55) 
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 Glandular epithelia are primarily responsible for kallikrein secretion (52).  These 

cells can be found in many organs including brain, skin, prostate, colon, breast and 

pancreas (52).  As a result, KLKs are found in many bodily fluids such as breast milk, 

saliva, sweat, seminal fluid, cerebrospinal fluid and urine (63).   

 Kallikreins regulate tissue function and cell signaling through five distinct 

mechanisms (64).  These mechanisms include the generation or inactivation of 

polypeptide agonists from precursor proteins, the release of membrane-anchored growth 

factors, the activation or inactivation of growth factor receptors or protease-activated 

receptors (PARs), and signaling via the extracellular matrix (ECM) or integrins (64).  

Kallikreins are also involved in important non-catalytic functions (46).  Their interaction 

with other molecules and their chemotactic properties contribute to normal hemostasis 

(46). 

 KLKs have been implicated in physiologic pathways that regulate blood pressure, 

seminal liquefaction, kidney function, skin desquamation, tooth enamel formation, 

synaptic neural plasticity, and brain function (42).  KLKs also play an important role in 

innate immunity (42). 

3.1.7  The Role of Kallikreins in Malignancy 
 

Aberrant KLK expression in malignant tissues suggests that kallikreins are 

involved in tumorgenesis (50).  Research has shown KLKs contribute to the 

dissemination of cancer cells through their effects on cell migration and tissue invasion 

(49).  It is well documented that KLKs have proteolytic activity against ECM proteins, 

cell membrane-bound receptors, cell adhesion proteins, and growth factors and signaling 

molecules (55, 65).   
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The degradation of ECM proteins, including fibronectin, laminin, vitronectin, and 

collagen I-IV, is important in the local dissemination and metastasis of tumor cells (49, 

55).  KLK7, which is overexpressed in pancreatic adenocarcinoma and other cancers, has 

been shown to cleave both fibronectin and E-cadherin in vitro (66, 67).  The resultant 

disruption of the ECM architecture causes an increase in pancreatic cell invasion and a 

decrease in cell aggregation (67).  Similarly, KLK13 has also been shown to degrade the 

ECM, and it has been suggested that it plays a role in the spread of certain malignancies, 

such as ovarian cancer, through the cleavage of collagen I-III, fibronectin, and laminin 

(68). 

Kallikreins also exert pro-migratory effects through the modulation of EMT 

pathways (49).  In head and neck squamous cell carcinoma EMT is enhanced by low 

KLK6 expression (69).  In contrast, overexpression of KLK3 and KLK4 induces EMT in 

prostate cancer and facilitates the spread of tumor cells (70).  Furthermore, KLKs can 

indirectly regulate the migration and invasion of tumors cells through modulation of the 

urokinase-type plasminogen activator (uPA)/plasmin system (49).  KLK4 is involved in 

uPA activation through cleavage of the uPA receptor and the pro-enzyme of uPA (71).   

KLKs may also influence carcinogenesis through the regulation of oxygen 

balance and inhibition of cell-mediated immunity (55, 72).  For example, KLK3 is linked 

to the generation of reactive oxygen species independent of its proteolytic activity (73).  

KLK3 has also been shown to suppress the proliferation of T-lymphocytes in vitro (72). 

Finally, it has been suggested that KLKs have pro-proliferative effects on cancer 

cells (49).  Through the cleavage of insulin-like growth factor binding proteins (IGFBPs), 

the activity of IGF-1, an important growth factor in tumor proliferation, metastasis, and 
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angiogenesis, is disinhibited by kallikreins (74).  KLK3 is involved in the dissociation of 

the IGF-1-IGF-binding-protein-3 (IGFBP3) complex, which leads to the proliferation of 

benign prostatic hyperplasia-derived stromal cells (75).  In colon cancer, overexpression 

of KLK7 is associated with an increase in cell proliferation both in vitro and in vivo (76). 

3.1.8  Kallikreins as Biomarkers 
 
Biomarkers are widely used in medicine.  Their primary function, regardless of 

whether they are used being used for screening, diagnosis or monitoring of disease, is to 

reduce mortality and increase length of life.  One of the most studied cancer biomarkers 

is PSA, and its role in the detection of prostate cancer dates back over two decades.   

The American Urological Association (AUA) and the American Cancer Society 

(ACS) first recommended annual PSA screening for men over the age of 50 in 1992 (77). 

This recommendation quickly became adopted into clinical practice, but as time has 

passed the role of PSA as a biomarker has become controversial (77, 78).  In the Prostate, 

Lung, Colorectal, and Ovarian (PLCO) Trial, no reduction in mortality was seen in those 

screened with PSA (79).    

Since the PLCO Trial, the rates of PSA screening has declined, and the U.S. 

Preventive Services Task Force has recommended against routine PSA-based screening 

for prostate cancer (77).  In contrast, both AUA and ACS continue to recommend PSA 

testing.  These recommendations are supported by two randomized control trials out of 

Europe where the number needed to screen to prevent one death was 333 in one study 

and 1410 in the other (80, 81). 

 If clinicians decide to offer PSA testing, they must be aware that screening leads 

to the overdiagnosis of prostate cancer due the test’s low specificity (50, 82).  In fact, 
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when PSA values between 2.5 and 4.0 µg/L are used as cutoffs, 80% of test results will 

be false positives (80).   

The clinical accuracy of PSA can be improved by considering it in conjunction 

with KLK2 (50).  When PSA values are greater than 4.0 µg/L, KLK2 is universally 

expressed and the ratio of KLK2 to free PSA has been shown to have improved 

specificity compared to PSA alone (83). 

Kallikreins have also been studied as biomarkers in other malignancies.  In 

ovarian cancer, the overexpression of KLK4 and KLK5 is associated with a poor 

prognosis (84).  In contrast, KLK5 is a favorable prognostic factor in testicular cancer 

(85).  Patient survival outcomes in non-small cell lung carcinoma, laryngeal cancer, and 

low rectal carcinoma have also been linked to kallikrein expression, specifically KLK11 

(86-88).  In renal cell carcinoma, high KLK6 expression is correlated with unfavorable 

outcomes (89).  KLK6 is also associated with a poor prognosis in gastric cancer patient 

(90), and it is differentially expressed in uterine papillary serous carcinoma (91).  
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Chapter 2 

2 Hypothesis and Rationale 

2.1  Hypothesis 
 

In this study, we hypothesize that kallikrein expression in ACCs will differ from 

that of normal salivary gland tissues (NSGTs).  We further hypothesize that differential 

and aberrant expression of certain KLKs in ACC may serve as useful biomarkers in the 

management of these tumors.   

2.2  Rationale 

Early detection of cancer improves patient outcomes.  Unfortunately, the 

diagnosis of ACC can be challenging and often occurs after the tumor has spread and 

invaded the perineural space of adjacent nerves.  This not only complicates management 

but worsens patient morbidity and mortality. 

Our ability to detect ACCs early and treat them with minimally invasive therapy 

is currently lacking.  The future discovery of predictive and prognostic tests may 

facilitate early detection and identification of aggressive tumors.  

Kallikreins have been implicated in a wide variety of signaling and regulatory 

roles, and their dysregulation has been associated with tumorgenesis. The clinical 

application of KLK3, as a biomarker, highlights the potential clinical utility of KLKs in 

the diagnosis and monitoring of tumors and their potential for recurrence.  However, the 

role of KLKs in salivary tumors has not been extensively studied, and thus, may further 

our understanding of the pathogenesis and clinical behavior of ACC.    
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2.3  Aims and Objectives 
 
Specific Aim 1: To analyze the expression of KLKs in ACCs and NSGTs using real-time 

quantitative polymerase chain reaction (RT-qPCR). 
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Chapter 3 

3 Materials and Methods 

3.1  Tissue Specimens 
 
 Formalin-fixed, paraffin-embedded tissue specimens (FFPE) for both ACC and 

NSGT were obtained from the archives of the Division of Oral Pathology, Schulich 

School of Medicine and Dentistry, Western University and London Health Sciences 

Centre.  Corresponding hematoxylin and eosin (H&E) stained slides were reviewed by 

the graduate student (ZK) and a senior oral pathologist to confirm the diagnoses.  Only 

specimens where the tissue of interest (e.g. either ACC or NSGT) encompassed the 

majority of the sample were selected.  Any normal samples containing areas of 

inflammation were excluded.  In total, 25 ACCs and 15 NSGTs were deemed suitable for 

the study.  Tables 3.1 and 3.2 list patient demographic information, including age, sex, 

and location of the lesion, for the ACC and NSGT specimens.  Demographic information 

was unavailable for two of the ACC samples. 
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Table 3.1: Demographic Information for the ACC Specimens 

Age Sex Location  
 

61 Male Oral mucosa 
55 Male Left hard palate 
79 Female Right palate 
55 Male Upper lip vestibule 
64 Female Right buccal mucosa 
69 Female Left soft palate 
87 Female Left buccal mucosa 
63 Female Left hard palate 
53 Male Hard palate 
84 Female Right maxillary vestibule 
77 Female Right palate 
51 Male Right upper lip 
86 Female Left maxillary tuberosity 
64 Female Left parotid gland 
12 Male Left submandibular gland 
52  Female Submandibular gland 
53 Female Left submandibular gland 
67 Male Right submandibular gland 
77 Male Left maxillary sinus 
84 Female Right parotid gland 
77 Female Right buccal mucosa 
60 Female Maxillary buccal vestibule 
75 Male Right neck 
  Not available 
  Not available 
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Table 3.2: Demographic Information for the NSGT Specimens 

Age Sex Location  
 

75 Female Left gingiva 
38 Female Left lower lip mucosa 
53 Female Lower lip 
20 Male Right lower lip 
24 Male Right buccal mucosa 
68 Female Left lower lip 
24 Female Floor of mouth 
20 Female Lower lip 
47 Female Lower lip 
42 Female Right lower lip 
18 Male Left lower lip 
68 Male Uvula 
55 Male Right lower lip 
33 Female Lower lip 
58 Female Left hard palate 

 

3.2  Sectioning of FFPE Specimens 
 

The H&E slides for both ACC and NSGT were first examined to identify the 

areas on the slides consistent with the histopathological diagnosis.  These areas were 

circled with a marker and then transcribed onto the corresponding areas on the FFPE 

blocks.  A scalpel was used to score the marks onto the paraffin creating an outline 

around the section of interest.   

With the use of a microtome (Microm HM 325, GMI Inc., Ramsey, MN, USA), 

10 µm serial sections were cut from each FFPE block.  Tissue forceps were then used to 

carefully separate each specimen from the surrounding areas along the previously placed 

scalpel lines.  Lastly, the specimens were placed into 1.5 mL collection tubes. 
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3.3  Deparaffinization of FFPE Specimens 
  

Removal of the paraffin from the FFPE specimens was as follows: 
  
1. Xylene was added to the collection tubes containing the FFPE specimens. 

2. The collection tubes were briefly shaken with a vortex mixer (3 times for 4 

seconds) and allowed to incubate for 2 minutes. 

3. The collection tubes were spun at 12,000 x g for 2 minutes. 

4. The separated supernatant was discarded. 

5. The above four steps were repeated. 

6. Absolute alcohol was mixed with the residual specimens. 

7. The collection tubes were spun at 12,000 x g for 2 minutes. 

8. 70% ethanol was added, and the collection tubes were vortexed (3 times for 4 

seconds) and centrifuged once again for 2 minutes at 12,000 x g. 

9. The separated supernatant was discarded. 

10. The collection tubes were spun one last time for 20 seconds, and all residual fluid 

was completely removed. 

11. The tissue pellet in each tube was dried in a heating block for 15 minutes at 55°C. 

3.4  RNA Isolation from Deparaffinized Specimens 
 
 RNA was isolated from the deparaffinized specimens using the High Pure FFPE 

RNA Micro Kit (Roche Applied Sciences, Mannheim, Germany, Catalogue number: 

04823125001).  The RNA isolation protocol was as follows:  

1. Tissue Lysis Buffer and 10% sodium dodecyl sulfate was added to the 

deparaffinized specimens in each collection tube.  

2. The collection tubes were shaken in the vortex mixer (3 times for 4 seconds) and 
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centrifuged. 

3. Prepared Proteinase K solution was added, and each collection tube was vortexed 

(3 times for 4 seconds) and centrifuged. 

4. The specimens were incubated for 3 hours at 55°C. 

5. Binding Buffer and absolute ethanol were added, and each collection tube was 

shaken in the vortex mixer (3 times for 4 seconds) then centrifuged. 

6. The cell lysate from each collection tube was placed into the upper reservoir of a 

High Pure Filter Tube with a pipet. 

7. Each Filter tube, placed inside the corresponding collection tube, was centrifuged 

at 8,000 x g for 30 seconds, and the flow-through was discarded. 

8. The filter was dried by centrifuging at maximum speed for 1 minute. 

9. Prepared DNase solution was added, and each tube assembly was allowed to 

incubate for 15 minutes at 25°C. 

10. Prepared Wash Buffer I was added, and tube assemblies were centrifuged at 8,000 

x g for 15 seconds.  The flow-through was discarded. 

11. Prepared Wash Buffer II was added and tube assemblies were centrifuged at 

8,000 x g for 15 seconds.  The flow-through was discarded. 

12. Step 11 was repeated except this time each collection tube was discarded. 

13. The Filter Tubes were placed inside new collection tubes then centrifuged at 

maximum speed for 2 minutes to once again dry the filters.  The collection tubes 

were then discarded. 

14. Each Filter Tube was placed into new collection tubes, and Elution buffer was 

added. 
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15. The tube assemblies were incubated at 25°C for 1 minute then centrifuged at 

8,000 x g for 1 minute. 

16. The eluate was reloaded, and step 15 was repeated. 

17. Each collection tube now contained isolated RNA. 

3.5  Synthesis of cDNA from Isolated RNA 
 
 The isolated RNA was transcribed into complementary DNA (cDNA), via reverse 

transcription, using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules, 

CA, Catalogue number: 1708890).  The reaction protocol was as follows: 

1. 405 µL of Nuclease-free water, 180 µL of 5x iScript Reaction Mix and 45 µL of 

iScript Reverse Transcriptase were mixed in a 1.5 mL collection tube. 

2. 16 µL of the mixed reagents was then mixed with 4 µL of RNA, which had been 

previously isolated from the FFPE specimens. 

3. The reaction was completed in a CFX Connect thermal cycler (Bio-Rad 

Laboratories, Hercules, CA, USA) using the following protocol: priming for 5 

minutes at 25°C, reverse transcription for 20 minutes at 46°C and reverse 

transcription inactivation for 1 minute at 95°C. 

3.6  SYBR Green RT-qPCR of Synthesized cDNA 
 
 RT-qPCR reactions were carried out in 96 well plates using the CFX Connect 

Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA).  Each 

custom PCR plate accommodated six specimens and came loaded with KLK (KLK1-

KLK15) and β-actin primer assays from Qiagen.  The catalog numbers for the primer 

assays are listed in Table 3.3. 
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 Previously synthesized cDNA specimens (20 µL) were mixed with 225 µL of RT2 

SYBR Green qPCR Mastermix (Qiagen, Toronto, ON, Canada) and 205 µL of water.  A 

volume of 20 µL was then pipetted from the reaction mix and added to the appropriate 

well on a PCR plate.   

The RT-qPCR protocol used is shown in Figure 3.1 and was as follows: 

denaturation for 10 minutes at 95°C, 75 cycles of amplification for 15 seconds at 95°C 

and 1 minute at 60°C. 

The specificity of PCR amplification was verified by post RT-qPCR melting 

curve analysis and agarose gel electrophoresis. 
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Table 3.3: Primer Assays from Qiagen used for RT-qPCR 

Primer Assay 
 

Catalog Number 

β-actin 
 

QT01680476 

KLK1 
 

QT00020664 

KLK2 QT00088466 
 

KLK3 QT00027713 
 

KLK4 QT00495159 
 

KLK5 QT00010437 
 

KLK6 QT00013972 
 

KLK7 QT00028343 
 

KLK8 QT00017689 
 

KLK9 QT00057190 
 

KLK10 QT00039816 
 

KLK11 QT00011011 
 

KLK12 QT00067977 
 

KLK13 QT00029876 
 

KLK14 QT00039928 
 

KLK15 QT00035735 
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Figure 3.1: RT-qPCR Protocol for cDNA Amplification with KLK Primers 

 

3.7 Melting Curve Analysis of PCR Products 
 
 The generated melting curves were analyzed for each PCR product.  Table 3.4 

lists the known melting temperatures (Tm) for KLK1-KLK15 and β-actin.  These values, 

which were provided by the manufacturer, were compared to the generated melt peak Tm 

values.  Peaks with a Tm value differing from the known values or melting curves 

showing primer dimer formation were either excluded or interpreted as showing no 

expression. 
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Table 3.4: Melting Temperature for β-actin and KLK1-15 Primers 

Primer 
 

Tm Values (± 0.5°C) 

β-actin 
 

85.5 

KLK1 
 

82.5 

KLK2 82.5 
 

KLK3 84.5 
 

KLK4 83.5 
 

KLK5 79.5 
 

KLK6 81.5 
 

KLK7 84.5 
 

KLK8 82.5 
 

KLK9 85.5 
 

KLK10 82.0 
 

KLK11 80.5 
 

KLK12 81.0 
 

KLK13 85.0 
 

KLK14 85.0 
 

KLK15 84.0 
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3.8 Agarose Gel Electrophoresis of PCR Products 
  
 The products of PCR were visualized using agarose gel electrophoresis through 

the following steps: 

1. A running buffer was prepared by adding 20 ml of TAE [50X] (2M Tris-acetate, 

0.05M EDTA, pH 8.3) to 1000 ml of distilled water. 

2. 100 ml of the running buffer was added to an Erlenmeyer flask containing 2 g of 

Agarose PCR Plus. 

3. The flask was repeatedly swirled and heated until the mixture was clear. 

4. Ethidium bromide (final concentration 0.07 µg/ml) was added to the 2% agarose 

gel. 

5. The gel was brought to a boil then allowed to cool to approximately 60°C. 

6. The gel was poured into a casting tray containing a single comb, which created 20 

wells.  

7. The gel was allowed to cool and set before removing the comb. 

8. The casting tray was inserted into the Owl EasyCast B2 Mini Gel Electrophoresis 

System (Thermo Fisher Scientific, Asheville, NC, USA) with the wells positioned 

closest to the cathode. 

9. The chamber was filled with the running buffer until the gel was completely 

covered. 

10. The first well was loaded with 12 µl of TrackIT 100 bp DNA Ladder.  

11. The next 15 wells were loaded with 12 µl of amplified KLK1 through KLK15 

PCR products, which each contained 1 µl of DNA Gel Loading Dye [6X]. 
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12. The chamber was connected to the power source, and an electric current was 

applied. 

13. After adequate migration, the gel was removed and placed on an ultraviolet 

viewing box. 

14. Digital photographs were taken of the gel.  

3.9 Statistical Analysis 
 

Relative quantification using the ΔCq method was used to analyze the RT-qPCR 

data.  For each specimen, the quantification value (Cq) of individual KLKs was 

normalized to the Cq value of β-actin, a housekeeping gene.  The Cq values were 

transformed into ΔCq values using Bio-Rad CFX Manager 3.0 (Bio-Rad Laboratories, 

Hercules, CA, USA).  

The ΔCq values were calculated using the formula ΔCq = 2Cq(β-actin) - Cq(KLK).  The 

specimen with the lowest Cq value for a particular KLK had its ΔCq value set to 1.  It was 

then used as a calibrator to convert the ΔCq values of the remaining specimens to relative 

quantities.  

The calculated relative quantities for each KLK were compared between ACC and 

NSGT to look for differences in expression.  The non-parametric Mann-Whitney U Test 

was used for the statistical analyses. The level of significance was set at 0.05 (p<0.05).  

The analyses were performed using GraphPad software (GraphPad InStat version 3.00 for 

Windows 95, GraphPad Software, San Diego, California, USA). 
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Chapter 4 

4 Results 
 

4.1  Specimens Expressing KLK cDNA in ACC and NSGT 
 

The expression of kallikreins (KLK1-KLK15) was examined in ACC and NSGT 

using RT-qPCR.  As shown in Table 4.5, all members of the kallikrein family were 

expressed in both ACC and NSGT.  Three of the ACC specimens and two of the NSGT 

specimens were excluded from the study following the review of their melting curves due 

to aberrant β-actin amplification, which was reflected in discrepancies between the 

observed melt peak Tm values and that expected in Table 3.4. 

 KLK9 was the kallikrein least likely to be detected in NSGT and it was found in 

only 38.5% of samples.  In ACC, KLK9 and KLK13 were both expressed in a smaller 

number of specimens compared to the other kallikreins and the percentage of ACC 

samples expressing KLK9 and KLK13 was 45% and 41%, respectively.  Both KLK12 and 

KLK14 were found to be widely present in both tissue types.  
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Table 4.5: Percentage of ACC and NSGT Expressing KLK1-KLK15 

Gene ACC NSGT 
 

KLK1 73.0 84.6 
 

KLK2 82.0 69.2 
 

KLK3 68.0 84.6 
 

KLK4 64.0 61.5 
 

KLK5 82.0 84.6 
 

KLK6 68.0 76.9 
 

KLK7 64.0 69.2 
 

KLK8 82.0 76.9 
 

KLK9 45.0 38.5 
 

KLK10 73.0 69.2 
 

KLK11 68.0 84.6 
 

KLK12 86.0 100 
 

KLK13 41.0 61.5 
 

KLK14 91.0 84.6 
 

KLK15 77.3 69.2 
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4.2  Comparison of KLK cDNA Expression Between ACC and NSGT 
 
 Differences in kallikrein cDNA expression in ACC and NSGT were compared 

using the ΔCq method.   

Figures 4.2-4.5 depict the specific ΔCq values from each specimen for each KLK.  

The data is arranged in a scatter plot with a horizontal line representing the median ΔCq 

value.   

KLK1, KLK8, KLK11, and KLK4 were all found to have significantly lower ΔCq 

values in ACC compared to NSGT.  In contrast, no statistical difference in ΔCq values 

were seen for KLK2-KLK7, KLK9, KLK10, KLK12, KLK13 and KLK15.  The calculated 

two-tailed p-values are presented in Table 4.6. 

For KLK1, KLK8, KLK11, and KLK14, median and quartile ΔCq values for both 

tissue types are presented in Table 4.7 and Figure 4.6.  In the box and whisker plots, all 

ΔCq values are shown, the median values are marked by a horizontal line within the 

boxes, which extend from the 25th to 75th percentiles, and the whiskers extend from 

minimum to maximum values. 
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Figure 4.2: Scatter Plots of ΔCq Values for KLK1-4 in ACC and NSGT. Statistical 
Comparison using Mann-Whitney U Test. *p≤0.05; **p≤0.01 
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Figure 4.3: Scatter Plots of ΔCq Values for KLK5-8 in ACC and NSGT. Statistical 
Comparison using Mann-Whitney U Test. *p≤0.05; **p≤0.01 
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Figure 4.4: Scatter Plots of ΔCq Values for KLK9-12 in ACC and NSGT. Statistical 
Comparison using Mann-Whitney U Test. *p≤0.05; **p≤0.01 
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Figure 4.5: Scatter Plots of ΔCq Values for KLK13-15 in ACC and NSGT. Statistical 
Comparison using Mann-Whitney U Test. *p≤0.05; **p≤0.01 
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Table 4.6: Calculated Two-Tailed P-values from the Statistical Comparison of ΔCq 
Values Between ACC and NSGT using Mann-Whitney U Test 

 

 
 
 
 
 
 
 
 
 

Gene Two-tailed 
P-value          
          

KLK1 0.0198 
 

KLK2 0.1061 
 

KLK3 0.2645 
 

KLK4 0.4525 
 

KLK5 0.0922 
 

KLK6 0.3383 
 

KLK7 0.5571 
 

KLK8 0.0400 
 

KLK9 0.5135 
 

KLK10 0.2756 
 

KLK11 0.0064 
 

KLK12 0.0655 
 

KLK13 0.1996 
 

KLK14 0.0440 
 

KLK15 0.1382 
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Table 4.7: Comparison of Median and Quartile ΔCq Values in ACC and NSGT for 
KLK1, KLK8, KLK11, and KLK14 

 
Gene Tissue Type Median 

ΔCq 
First ΔCq  
Quartile (Q1) 
 

Third ΔCq  
Quartile (Q3) 

KLK1 ACC 
 

0.00710 0.00225 0.02611 

NSGT 
 

0.02903 0.01288 0.09830 

KLK8 ACC 
 

0.00543 0.00013 0.01682 

NSGT 
 

0.02862 0.01543 0.04847 

KLK11 ACC 
 

0.00146 0.00000 0.01030 

NSGT 
 

0.01959 0.00978 0.07486 

KLK14 ACC 
 

0.00467 0.00014 0.01420 

NSGT 
 

0.02583 0.01790 0.02944 
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Figure 4.6: Box and Whisker Plots of ΔCq Values for KLK1, KLK8, KLK11, and 
KLK14 in ACC and NSGT. Statistical Comparison using Mann-Whitney U Test. 
*p≤0.05; **p≤0.01 
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4.3  Verification of PCR Products on Agarose Gel Electrophoresis 
 
 PCR products were analyzed by agarose gel electrophoresis for the identification 

of KLK1-15 amplicons.   

The four gels shown in Figure 4.7 confirm good primer specificity.  In Figure 4.8, 

the gel has been converted to gray scale to allow easier comparison to the DNA ladder.  

Careful inspection of the separated bands in the gel, with reference to the Table 4.8, 

confirms the presence of KLK1-15 and ultimately the methodology of cDNA synthesis 

from RNA isolated from FFPE specimens. 

Figure 4.7: Agarose Gel Electrophoresis of PCR Products KLK1-15 in ACC (A-C) 
and NSGT (D) 
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Figure 4.8: Agarose Gel Electrophoresis of PCR Products from ACC Showing Band 
Separation of KLK1-15 Amplicons in Reference to TrackIT 100 bp DNA Ladder 

 
 
Table 4.8: Number of Base Pairs for KLK Amplicons 

 

 
 

KLK 
Amplicon 
 

Number of  
Base Pairs 
 

KLK1 118 
KLK2 134 
KLK3 101 
KLK4 172 
KLK5 96 
KLK6 146 
KLK7 171 
KLK8 114 
KLK9 184 
KLK10 134 
KLK11 183 
KLK12 81 
KLK13 185 
KLK14 104 
KLK15 135 
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Chapter 5 

5 Discussion  
 

The kallikrein family constitutes the largest cluster of proteases within the human 

genome, and all 15 KLK genes are encoded in tandem on chromosome 19q13.3-13.4 (47).  

All KLKs share similarities in their DNA sequences and tertiary structures suggesting 

conserved function amongst the encoded proteins (42, 46).  They have been reported to 

play important roles in physiological pathways, such as blood pressure control, semen 

liquefaction, skin desquamation and innate immunity (42).  Kallikreins have also been 

implicated in pathologic processes.  Studies have shown that KLKs influence 

tumorigenesis through their effects on EMT, disruption of normal oxygen balance, 

degradation of the ECM, and involvement in tumor cell proliferation (49, 55).    

KLK3 has been the most widely studied kallikrein, and it exemplifies the 

families’ potential role as biomarkers (92).  Furthermore, the discovery of extra-prostatic 

expression of KLK3 in salivary tissues, using in situ hybridization and RT-PCR, suggests 

that KLKs may be involved in salivary tumors (93).   

Shaw et al. identified the presence of all members of the kallikrein family in 

salivary glands at the time of post-mortem autopsy using semiquantitative RT-PCR of 

human tissue extracts (63).  Previous research in our laboratory has demonstrated either 

increased or decreased immunohistochemical expression of KLK5, KLK6, KLK8, 

KLK10, KLK13 and KLK14 in salivary tumors compared to NSGTs (94-99).  Based on 

these findings, Darling et al. has stated that kallikreins may serve as valuable biomarkers 

for the diagnosis and monitoring of salivary gland carcinomas (95, 97). 

In this study, we have reconfirmed that all human kallikreins are expressed in 

NSGT using RT-qPCR.  However, to our knowledge we are the first group to explicitly 
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exclude samples with any evidence of inflammation.  We feel this is important given that 

previous researchers have implicated the involvement of kallikreins in inflammatory 

processes, and histological inflammation can affect KLK expression levels (42, 48).  For 

example, elevated PSA levels have been observed in patients with benign conditions such 

as prostatitis or benign prostatic hyperplasia (100).  Okada et al. have shown that 

inflammation within biopsy specimens correlates with elevated total PSA levels (101).  

Furthermore, subclinical inflammation seems to not only increase total PSA levels but 

also decreases free PSA, in much the same manner as prostate cancer (100).  This makes 

interruption of PSA values in the gray zone (4-10 ng/ml) difficult and lowers the test’s 

specificity.  Based on this information it seemed only appropriate to first compare non-

inflamed NSGT to ACC specimens in the initial evaluation of the utility of KLKs as 

biomarkers in salivary gland tumors.    

As previously stated, the presence of KLKs has been studied at both the protein 

and nucleic acid level in NSGT and salivary gland tumors.  However, this is the first time 

kallikrein expression in NSGT and ACC has been measured using RT-qPCR.   

In this study, ACC has been shown to express significantly lower levels of KLK1, 

KLK8, KLK11 and KLK14 compared to NSGT.  Of these kallikreins, KLK8 and KLK14 

have previously been studied in ACC tissues using immunohistochemical expression (96, 

98).   

KLK8 is a favorable prognostic marker in ovarian and non-small cell lung cancer 

(102-104).  It is known to suppress cancer metastasis (103), and it is indicative of low-

grade disease and improved overall survival (102, 103).  Experimental studies have 

shown that overexpression of KLK8 suppresses the invasiveness of cancer cell lines 
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(103).  Furthermore, KLK8 retards cancer cell motility by inhibiting integrin signaling 

and actin polymerization through the cleavage of fibronectin (103).  Sher et al., using 

microarray analysis, found that the overexpression of KLK8 downregulates VEGF 

signaling, a key inducer of angiogenesis and cancer development (103).   In breast 

cancer, KLK8 expression has been shown to be downregulated using RT-PCR (105).   

In our study, we have demonstrated decreased expression of KLK8 in ACC 

compared to NSGT.  Previous work in our laboratory showed that malignant salivary 

gland tumors express significantly higher levels of KLK8 than normal salivary glands 

(96).  However, the difference in expression was largely due to increases in expression in 

mucoepidermoid carcinoma and adenocarcinoma not otherwise specified (96).   As for 

ACC, no significant difference in immunoreactive levels was observed compared to 

normal controls (96).   

Growing evidence suggests that both kallikrein gene and protein expression are 

commonly upregulated or downregulated in coordination (106)   Therefore, based on our 

observation of decreased KLK8 expression one would expect the protein levels of KLK8 

to be decreased in ACC, but instead they appeared to be unchanged.  One possible 

explanation for this finding is that the immunoperoxidase staining technique used by 

Darling et al. was not sensitive enough to detect subtle differences in expression between 

ACC and the controls. 

Unfortunately, the clinical outcomes of the patients included in this study are 

unavailable.  Thus, we can only speculate about the potential role of kallikrein 8 in ACC 

development.  It is possible that KLK8 downregulation eliminates its ability to suppress 

tumor cell invasion and may provide an explanation for ACC’s propensity for perineural 
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spread.  Also, KLK8 downregulation may facilitate hematogenous spread through VEGF 

upregulation.    

 KLK14 expression is under steroid hormone regulation, and it has a restricted 

expression pattern (107).  It is found predominantly in the central nervous system and 

endocrine-related tissue (107).  In prostate tissue, KLK14 upregulation is seen in 

cancerous tissue compared to non-cancerous tissue independent of PSA values and higher 

expression levels correlate with advanced and aggressive disease (108).  With respect to 

breast cancer, the role of KLK14 as a marker is less clear.  Yousef et al. reported a loss of 

KLK14 expression in 21 of 25 breast cancer samples analyzed using RT-PCR (109).  In 

contrast, Papachristopoulou et al. observed higher KLK14 expression in malignant breast 

tumors compared to benign tumors (110).  In addition, KLK14 overexpression has been 

associated with increased breast tumor size and stage (110, 111) and increased KLK14 

protein levels have been linked to positive nodal status (111). 

Studies have shown that KLK14 can activate PAR2 (112, 113).  PAR2 belongs to 

a family of four ubiquitous G-protein coupled receptors (PAR1-4), known as protease-

activated receptors (PARs) (106).   PARs play a diverse role in physiologic processes 

such as hemostasis, inflammation, and wound healing (114, 115).  PAR signaling has 

also been linked to carcinogenesis and has been identified in numerous tumors (115).  

Based on an in vitro study, it has been suggested that aberrant KLK14 expression 

activates PAR2 leading to colon cancer proliferation (116).  It would be interesting to 

determine if PAR2 and KLK14 are co-expressed in ACC.  It has previously been shown 

PAR2 is not only expressed in normal salivary glands, but it is involved in the control of 

normal exocrine function (117).  The presence of PAR2 in salivary gland neoplasms has 
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not been confirmed, and it is possible that KLK14 may mediate their development 

through PAR2 signaling.  

Previously published results from our laboratory found KLK14 to be expressed in 

normal salivary glands, pleomorphic adenomas, ACCs and mucoepidermoid carcinomas 

(98).  In ACC, the immunoreactivity of KLK14 was increased compared to normal 

control tissue but did not reach statistical significance (98).  In our study, we have found 

downregulation of KLK14 at the DNA level.   

Yousef et al. have previously reported discrepancies between gene and protein 

expression for many kallikreins (118).  They went on to show that miRNAs play a role in 

KLK protein expression through post-transcriptional control mechanisms (59).  A single 

miRNA was found to have the ability to target multiple kallikreins and simultaneously 

turn off their protein expression (59).  Our laboratory findings appear unique in that 

protein levels seem upregulated and gene expression is downregulated for KLK14 in 

ACC.  Additionally, KLK13 expression has been found to be significantly increased in 

ACC compared to normal control (97), yet no difference is seen between in KLK13 

levels. 

In some rare instances, protein translation has been enhanced by miRNAs in non-

kallikrein studies (119-121).  Vasudevan et al. have shown that miRNAs can either 

enhance or repress translation depending on differences in the cell cycle state (121).  In 

proliferating cells, miRNAs downregulate translation and in cells in the arrested phase of 

the cell cycle miRNAs activate translation (121).  Therefore, in ACC, where the 

proportion of cycling tumor cells has been found to be as low as 0.3% (122), miRNAs 

may in fact be responsible for increased KLK14 expression.  We can then hypothesize 
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that KLK14 may inhibit its own transcription in a negative feedback loop as it becomes 

more abundant.  Bayes et al. have shown that KLK6 activity is regulated by a negative 

feedback inhibition mechanism (62).  However, this occurs post-translationally through 

autolytic cleavage (62).  To our knowledge, a negative feedback loop that has control on 

kallikrein transcription has yet to be described, and further studies are needed to either 

confirm or dispute its existence. 

The mRNA and protein concentrations of KLK1 and KLK11 in NSGTs have 

previously been studied (63, 123).  However, their abundance in salivary gland tumors 

has not been confirmed until now.  In our study, we found KLK1 and KLK11 to be 

downregulated in ACC compared to NSGT.   

Few studies have detailed coordinated changes in KLK1 and KLK11 expression in 

either normal physiology or disease.  Komatsu et al. demonstrated abundant co-

expression of KLK1 and KLK11 compared to other members of the kallikrein family in 

normal human skin (124).  In addition, increased expression of both KLK1 and KLK11 

has been observed in high-grade renal cell carcinoma compared to low-grade renal cell 

carcinoma using immunohistochemistry (89, 125).  Nonetheless, the parallel co-

expression of KLK1 and KLK11 is an uncommon finding, and we are the first to 

document its occurrence in salivary gland tumorigenesis.   

 Studies looking only at the KLK1 gene have shown that single nucleotide 

polymorphisms (SNPs) are associated with coronary artery stenosis (126), cerebral 

hemorrhage (127) and essential hypertension (128).  Kontos et al. have suggested that 

SNPs of kallikrein genes possess value as putative genomic biomarkers (50).  Evidence 

supporting this statement stems from research studying the role of PSA in prostate 
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cancer.  Morote et al. found that SNPs of KLK2 helps predict biochemical recurrence 

after radical prostatectomy (129).   The presence and/or significance of kallikrein SNPs in 

salivary gland tumors have not been studied to date.  It is possible that they may prove to 

be useful biomarkers; therefore, this hypothesis should be studied further.   

 Accumulating evidence indicates that alterations in KLK11 expression are seen in 

a number of malignant tumors.  Increased KLK11 mRNA levels have been observed in 

prostate (130) and ovarian cancer (131) while decreased mRNA levels have been 

reported in testicular (85) and laryngeal cancer (88).  In most cases, the differential 

expression pattern of KLK11 in cancers has been documented to occur in conjunction 

with other members of the kallikrein family.  Planque et al. highlighted this observation 

in non-small cell lung carcinoma (132).  They found that KLK11 and six other 

kallikreins, including KLK4, KLK8, KLK10, KLK12-14, are more accurate in 

diagnosing lung cancer when considered together, as a multiparametric panel, rather than 

individually (132). 

The role of kallikreins as cancer biomarkers has been questioned due to their lack 

of sensitivity and specificity in many tumors (133).  However, the combination of 

multiple members of the KLK family, with or without other candidate biomarkers, may 

improve their clinical utility (50, 132, 133).  Following the work of Planque et al. in lung 

cancer (132), a later study looked at the usefulness of a multiparametric panel in ovarian 

cancer (134).  In that study, it was found that a combined panel of KLK6, KLK13, and 

CA125 is more sensitive in detecting early stage cancer than CA125 alone (134).   

Previously, Darling et al. have suggested that individual kallikreins cannot be 

considered as specific markers for salivary gland tumors (95, 97, 99).  Furthermore, if 
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KLKs are to be useful as biomarkers in salivary gland tumors multiparametric panels will 

need to be identified (98).  In this study, we have documented for the first time changes 

in co-expression of multiple KLKs in a salivary gland tumor.  It is possible that the 

downregulation of KLK1, KLK8, KLK11, and KLK14 may represent a newfound KLK 

panel for the diagnosis of ACC, and this warrants further investigation moving forward.  

If the co-expression of these four KLKs proves to be a valid multiparametric panel, it 

would be interesting to also study the expression of c-kit to see if it improves the panel’s 

sensitivity and/or specificity compared to the KLKs alone.  One anticipated challenge in 

the development of a multiparametric panel for the diagnosis of ACC is that the 

difference in ΔCq values between ACC and NSGT is quite small for all four kallikreins.  

Additionally, the expression levels of the four KLKs in the FFPE samples may not truly 

reflect those in the original tissues, which have not been subjected to heat, chemical 

exposure, and long-term storgage.  Therefore, KLK expression will also need to be 

measured in fresh frozen samples.  This will be discussed in more detail below.    

The use of FFPE tissues for RT-qPCR is a feasible technique, which allows for 

the quantification of gene expression and the detection of disease-specific biomarkers 

(135, 136).  A number of studies have successfully confirmed that extracted gene 

transcripts can be processed in this manner (137-139).  Therefore, given the large 

archival collections of FFPE tissue samples worldwide the gene expression of countless 

diseases can be easily studied retrospectively.  However, some researchers have 

questioned the accuracy of the quantitative analysis due to concerns about RNA 

degradation within the embedded specimens over time and the ill effects of delayed 

formalin fixation on RNA due to its short half-life (135, 140).  Godfrey et al. previously 
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showed that only 3% of RNA from fixed samples is available for reverse transcription, 

which was reflected in higher CT values by ~5 cycles in fixed compared to fresh tissues 

(140).  For this reason, the expression of target genes must be normalized to a 

housekeeping gene if their levels are to be compared between specimens (135, 136).  This 

process is thought to eliminate the effects of differences in RNA degradation between 

samples, but it does assume that the RNA of target and housekeeping genes degrade at 

the same rate within a particular sample (136). 

 This study is the first to quantify kallikrein expression in ACC and NSGT from 

FFPE extracts.  As previously discussed, the expression of individual kallikreins was 

normalized to β-actin in each sample and inter-specimen analysis was then performed 

using relative quantification.  Although this methodology accounts for the difference in 

RNA degradation between specimens, it does overlook the fact that the measured RNA 

levels may not reflect the actual expression levels in the tissues before fixation (140).  

Therefore, the development of a future multiparametric panel for ACC should ideally use 

fresh tissues to maximize its accuracy.   

Kallikreins have been identified in numerous biological fluids (63).  However, 

KLK1, KLK8, KLK11, and KLK14 have only been observed together in saliva and 

cervicovaginal fluid (63).  In this study, saliva from patients with ACC and NSGT was 

not available.  In the future, it would be interesting to look at the expression levels of 

KLK1, KLK8, KLK11, and KLK14 in both saliva and tissue specimens in patients with 

ACC.  Planque et al. previously found the concentration of KLK11 to be upregulated in 

the serum of patients with non-small cell lung carcinoma and downregulated at the 

mRNA level in the cancerous lung tissue (132).  They speculated that KLK11 was being 



 

 

61 

leaked into circulation due to the destruction of lung tissue and angiogenesis (132).  

Therefore, it is possible that the concentrations of KLKs may be increased in the saliva of 

patients with ACC and can be used for cancer detection.  This could reduce the need for 

biopsies and help overcome some of the shortfalls of FNA in the diagnosis salivary gland 

tumors.   

A limitation of this study is that all of the NSGT samples were taken from minor 

salivary glands.  In contrast, some of the ACC samples were from major salivary glands.  

It is possible that this may have impacted the observed differences, or lack thereof, in the 

expression levels of each KLK between the two tissue types.  Evidence supporting this 

speculation comes from previous work in our laboratory that showed higher expression of 

KLK6 in normal major glands compared to normal minor glands (95).  Therefore, 

moving forward attempts should be made to compare KLK expression levels between 

minor and major salivary glands for both ACC and NSGT to determine any effects it may 

have on the results of this study. 

Lastly, future studies need to include tissue samples with inflammation present 

within the glandular tissue.  Although we excluded these samples in this study to help 

limit the effects of inflammation on kallikrein expression, this may not truly reflect 

salivary gland tumors in clinical practice.  The impact this may have on the pattern of 

KLK expression in ACC remains unknown, however, one can postulate that inflammation 

will confound KLK levels in much the same way inflammation impacts PSA levels in 

prostate tissue.   
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Chapter 6 

6 Conclusion 
 

In this study, we looked at the gene expression of kallikreins in ACC and NSGT.  

For the first time, we have quantified the expression of KLK1-KLK15 in both tissue types 

using RT-qPCR.  Furthermore, the extraction of total RNA from archived FFPE samples 

is also novel to the study of KLK expression in salivary gland tissues.  We were able to 

confirm successful amplification of the KLK PCR products using melting curve analysis 

and gel electrophoresis. 

Our results show that all KLKs are expressed in both ACC and NSGT.  

Furthermore, we report differences in the levels of certain KLKs in ACC compared to 

controls.  Specifically, the expression of KLK1, KLK8, KLK11 and KLK14 are 

downregulated in ACC. 

We believe this study suggests that decreased kallikrein expression may be 

involved the development of ACC and may contribute to its distinct clinical behavior, 

which ranges from local invasion to distant metastasis.  We hope to further investigate 

whether a multiparametric panel of KLK1, KLK8, KLK11 and KLK14 may be useful in 

the diagnosis of ACC. 
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