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Abstract 

Unmanned Aerial Vehicle (UAV) has the capability of acquiring high spatial and temporal 

resolution images. This new technology fills the data gap between satellite and ground survey 

in agriculture. In addition, UAV-based crop monitoring and methods are new challenge of 

remote sensing application in agriculture. 

First, in my thesis the potential of UAV-based imagery was investigated to monitor spatial 

and temporal variation of crop status in comparison with RapidEye. The correlation between 

red-edge indices and LAI and biomass are higher for UAV-based imagery than that of 

RapidEye. Secondly, the nitrogen weight and yield in wheat was predicted using the UAV-

based imagery. The intra-field nitrogen prediction model performs well at wheat early 

growth stage. Additionally, the best data collection time for yield prediction is at the end of 

booting stage. The results demonstrate the UAV-based data could be an alternative effective 

and affordable approach for farmers on intra-field management. 
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Glossary 

Agrisoft PhotoScan - is a professional tool for a photogrammetry pipeline, which 

photogrammetric processing of digital images and generates 3D spatial data to be used in 

GIS applications. 

ASD – (Analytical Spectral Devices) is a high performance single-beam field 

spectroradiometer measuring over the visible to short-wave infrared wavelength range. The 

instrument is very rapid scanning, acquiring single spectra in milliseconds via its fiber-optic 

input. 

BBCH – is a scale used to identify the phonological development stages of a plant. It used a 

decimal code system which is divided into principal and secondary growth stages. 

BRDF – (Bidirectional reflectance distribution function) is a function of four real variables 

that defines how light is reflected at an opaque surface. 

Bushel – is a measure of capacity, used for dry goods. 1 bushel wheat is 24 kg. 

CAN-EYE software – is an imaging software used to extract the canopy structure 

characteristics from true-color images, which includes LAI, ALA, FAPAR, FCOVER, 

bidirectional gap fraction. 

Coefficient of variation (CV) – also known as relative standard deviation, is a standardized 

measure of dispersion of a probability distribution or frequency distribution. 

fCover – (fraction of green vegetation cover) corresponds to the fraction of ground covered 

by green vegetation. 

GPS – is a global navigation satellite system that provides location and time information in 

all weather conditions. 

LAI – calculated one-side area of leaves per ground surface, is a parameter of canopy 

structure.  

Levenberg-Marquardt algorithm – is used to solve non-linear least squares problems. 
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Matlab –is a multi-paradigm numerical computing environment and fourth-generation 

programming language.  

PAI – Plant area index calculated the one-side area of leaves and stems per ground surface, is 

a parameter of canopy structure. 

Pix4D – Advanced photogrammetry software uses images to create professional 

orthomosaics, point clouds, models and more. 

Tetracam – An array multispectral imaging system with light weight and adjustable filters of 

lens. 
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Chapter 1  

1 Introduction 

1.1 Remote sensing in precision farming 

Agriculture in Canada is a well-established and advanced industry, making Canada 5th 

among agricultural producers and exporters in the world (Agriculture and Agri-Food 

Canada, 2015). This long-standing lead in the global marketplace is inseparable from 

technological innovations and practices in agricultural production. Precision farming is 

an information and technology based farm management system which helps to identify, 

analyze and manage variability within fields for optimum profitability, sustainability and 

protection of the farm field (Banu, 2015). Nowadays, precision farming activities that are 

aided by Geographical Information System and remote sensing technique such as GPS 

precise sampling, crop health and yield monitoring, and variable rate fertilizer 

application, help farmers to make better decisions, reduce inputs and improve yields 

efficiently.  

One of the biggest concerns in farmers’ farming management is the precise nitrogen 

fertilizing and final yield prediction. Nitrogen content is an important factor to indicate 

crop health status and affects the final yield. Farmers tend to apply nitrogen fertilizer 

efficiently to yield a profitable crop production. Excessive nitrogen fertilizer inputs, not 

only increase the agricultural costs, can also damage the groundwater and pose a threat to 

environment (Ribaudo et al., 2011). Meanwhile, crop yield determines individual 

farmer’s income and provides important information for government to guide crop price 

and manage crop production. Remote sensing, as one of the most important elements in 

precision farming, acquires information about the crop characteristics without making 

physical contact with the crop (Jensen, 2016), which offers an essential alternative to 

crop data collection, analysis and interpretation. Remote sensing products can be used by 

government to make agricultural policies and track agriculture activities, and provide 

valuable guidance for individual farmers on aspects such as health status of crops. 
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1.2 Optical satellite remote sensing 

Current remotely sensed crop nitrogen monitoring and yield estimation methods have 

been using optical satellite or airborne imagery for models establishment (Boegh et al., 

2013; El-Shikha et al., 2008; Ribaudo et al., 2011; Singh, Semwal, Rai, & Chhikara, 

2002; Thorp et al., 2012). The essential idea of crop nitrogen monitoring and final yield 

estimation is the measurement of long-term vegetation vigou as represented by multiple 

temporal vegetation indices. The vegetation indices, as the products after satellite image 

enhancement, such as normalized difference vegetation index (NDVI), green NDVI, and 

modified chlorophyll absorption ratio index (MCARI) had been developed and applied in 

crop canopy or chlorophyll content estimation (El-Shikha et al., 2008; Feng et al., 2014; 

Thenkabail, Smith, & Pauw, 2002; Wu, Niu, Tang, & Huang, 2008). Nitrogen is a 

primary component of chlorophyll that absorbs 70% to 90% of blue and red bands in 

incident light and reflects light in green and near infrared (NIR) bands (Inman, Khosla, & 

Mayfield, 2005). Therefore, remote sensing studies can use spectral vegetation indices to 

quantitatively evaluate the concentrations of chlorophyll and nitrogen in crop canopies. 

Crop yield prediction can be achieved using remote sensing products such as LAI 

combined with a crop growth model to simulate the final yield (Clevers, 1997; 

Doraiswamy, Moulin, Cook, & Stern, 2003; Jing-feng Huang, Tang, Ousama, & Wang, 

2002).  

Nowadays, many optical satellite systems have been launched due to an increase demand 

of accurate, real-time, and cost-effective information about earth observation, such as 

Landsat 8 (2013), RapidEye (2008), GeoEye-1 (2008), WorldView-2 (2009), SPOT-7 

(2014), and Sentinel-2A (2015). For instance, the longest-running earth observation 

program, Landsat, provides continuous free remote sensing data for research and 

applications in many fields though six Landsat missions spanning nearly 44 years 

(Powell, Pflugmacher, Kirschbaum, Kim, & Cohen, 2007). The most recent Landsat-8 

provides nine spectral bands with spatial resolution range from 15 to 60 meters and a 16 

day revisit time. Past research have demonstrated the application capability of Landsat in 

leaf area index (LAI) (Cohen, Maiersperger, Gower, & Turner, 2003; Liu, Pattey, & Jégo, 

2012) and crop yield estimation (Doraiswamy et al., 2003; Ferencz et al., 2004) for large 
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areas. Another satellite system, RapidEye constellation that contains five satellites, was 

developed in Germany and launched in 2008. Its constellation system can offer a one day 

revisit time on the same area with spatial resolution of 5 meters and provide crop 

monitoring with rapidly changing conditions. In addition, the RapidEye, the multispectral 

satellite system that first offer the red-edge band, has great potential in crop classification 

and chlorophyll or nitrogen measurement (Ramoelo et al., 2012; Schuster, Förster, & 

Kleinschmit, 2012). Airborne and satellite hyperspectral data has also been used in crop 

nitrogen monitoring (Basso, Fiorentino, Cammarano, & Schulthess, 2015; Chen et al., 

2010; Jain, Ray, Singh, & Panigrahy, 2007). Some researchers developed specific 

vegetation indices to estimate plant nitrogen and chlorophyll based on ground 

hyperspectral measurement (Barnes et al., 2000; Ye, Sakai, Okamoto, & Garciano, 2008). 

Given the great potential of application in agriculture, remote sensing is restricted to 

regional and national scales due to the restriction of spatial and temporal resolution in 

optical imagery. Optical satellite imagery always has problem with revisit time and cloud 

cover during crop monitoring which poses difficulties to provide high quality multiple 

temporal images. Additionally, the cost of high temporal resolution airborne imagery is 

too high to achieve frequent monitoring in one crop season for individual users. Data 

collection of ground based methods in large fields like in Canada where farmers usually 

have several hundred acre farms can be time-consuming and cost inefficient. Therefore 

the current methods based on multispectral and hyperspectral data, even capable of 

providing crop information at regional and national scales, is difficult to apply on real 

time and intra-field crop management. An alternative remote sensing solution is needed 

to provide the flexible and accurate intra-field crop monitoring.   

1.3 UAV-based remote sensing 

One of the most important requirements for intra-field crop monitoring is high spatial and 

temporal resolution imagery. In terms of remote sensing data collection, the UAV is a 

reliable platform that can fly by following a pre-programed route and capture the 

centimeter resolution images at specific locations. UAV operation has few restrictions 

except in inclement weather, which gives the UAV a higher capability in high frequency 

image collection than that of satellites. Compare to airborne remote sensing, an UAV can 
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easily achieve over 90% overlap images which is useful for homogeneous canopy 

mosaicking in image processing. Currently, UAV can be classified into two categories: a 

fix-wing plane which has a large area coverage and a long flight duration, but a less 

payload; and a multicopter which has a larger payload, but a shorter flight duration. In 

Chapter 2, the experiment used the multicopter and a heavy multispectral camera, while 

in Chapter 3 a fix-wing plane was used with a light camera in order to cover a larger area. 

The overall time of image processing after acquisition in UAV is shorter than that of 

satellites. All images can be pre-processed in the same day, can provide real-time results 

for deliver to individual users instantly. In addition, the cost including UAV system, data 

collection, and data processing is much lower than that of airborne and satellites. With 

the rapid development of the UAV technique in recent years, many researchers have 

attempted to use different types of sensors attached to an UAV to monitor crops and 

predict yields (Bendig et al., 2014; J. Berni, Zarco-Tejada, Suarez, & Fereres, 2009; Hunt 

et al., 2010; Kalisperakis, Stentoumis, Grammatikopoulos, & Karantzalos, 2015; Zarco-

Tejada, González-Dugo, & Berni, 2012). 

1.4 Research objectives and structure 

The objectives of this research are to evaluate the UAV-based multispectral imagery for 

usage in crop intra-field status monitoring and application in crop nitrogen and yield 

prediction in Ontario. As mentioned above, nitrogen content monitoring and final yield 

precision are the factors of most concern. Optical satellite and airborne imagery do not 

meet individual farmer’s need for crop real-time and intra-field monitoring. UAV-based 

multispectral imagery provides a potential opportunity to fill in gaps between remotely 

sensed precision farming management and individual farmers. 

The objectives of this thesis are to: 

1. Compare the ability to detect intra-field spatial crop status variations between the 

UAV-based multispectral imagery and optical satellite imagery in corn field. 

2. Evaluate the accuracy of multiple temporal UAV-based multispectral imagery in 

the estimation of LAI and biomass. 
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3. Develop and evaluate a total nitrogen weight model for wheat using UAV-based 

blue-green-NIR imagery, in order to estimate total nitrogen in the early growth 

stage and provide a nitrogen weight map. 

4. Develop and evaluate a final yield model for wheat using UAV-based blue-green-

NIR imagery, in order to predict the final yield and determine the best data 

collection time for wheat yield prediction. 

Two study sites were employed to evaluate and develop methods for crop status 

monitoring and yield estimation from UAV-based imagery. One of the study sites is a 

corn field in St. Isidore in Eastern Ontario. The other study site is a wheat field in 

Melbourne in Southwestern Ontario. 

This thesis is presented in integrated-article format. In Chapter 1, a brief review of the 

literature on the research problems and the objectives of research given. Chapter 2 is the 

detection sensitivity in spatial crop status variations between the UAV-based 

multispectral imagery and optical satellite imagery and evaluate the multi-temporal 

remotely sensed products, LAI and biomass, in terms of accuracy. Chapter 3 develops 

wheat total nitrogen and biomass prediction models from an alternative biomass estimate 

method. In Chapter 4, a summary of this thesis is given to answer the research problems 

and objectives. Possible future research directions is discussed at the end.  
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Chapter 2  

2 Comparisons between UAV-based and RapidEye Data 
for Intra-Field Spatial Variation Mapping and Multi-
Temporal Monitoring of Corn Growth Status 

2.1 Introduction 

The monitoring of intra-field variability in crop development and health status during the 

growing season can help to optimize and forecast crop production. High temporal and 

spatial resolution crop status data can provide accurate, near-real-time information  for 

farmers  to make well-informed decision  on farming activities, as well as maximizing the 

efficiency  of farming procedures (Jingfeng Huang, Wang, Li, Tian, & Pan, 2013).  

Nowadays, UAVs have been used in many studies for agricultural crop status monitoring 

(Kelcey & Lucieer, 2012) (Zarco-Tejada et al., 2012) (J. Berni et al., 2009). Since the 

UAV is capable of high temporal and spatial resolution imagery collection, it is able to 

meet the crop monitoring requirements at specific growth stages and regions of interest. 

The traditional space-borne optical sensors are frequently affected by unfavorable 

weather conditions.  For instance, although the RapidEye constellation system has five 

identical satellites, the successful image acquisition is still hindered by cloud cover issue.  

The UAV, on the contrary, is less affected by cloudy conditions.  In addition, the data 

cost for UAV is comparatively lower than high-resolution satellite imagery.  

Given the many advantages of the UAV, it is limited by spatial coverage and payload due 

to both power supply and safety considerations. Therefore, light weight sensors play an 

important role in crop monitoring using UAVs. In today’s market, light weight sensors 

for crop monitoring could be classified into two groups, the broad-band and narrow-band 

multispectral sensors. Some researchers have used a modified near-infrared (NIR)-green-

blue digital camera and the UAV system for crop monitoring and examined the 

relationship between the green NDVI and LAI (Hunt et al., 2008; Lelong et al., 2008). 

This modified camera block red light using a red filter on a digital camera to collect 
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broadband NIR data. Some other  studies used the Tetracam ADC lite camera to collect 

crop optical information in red, green and NIR bands to  derive crop NDVI (Agüera, 

Carvajal, & Pérez, 2012). Both cameras were equipped with broad-band multispectral 

sensors which could only provide simple green NDVI (GNDVI) or NDVI; they cannot 

generate vegetation indices that incorporated the red-edge bands. More recently, many 

studies used  a narrow-band multispectral camera or hyperspectral camera with red-edge 

bands on a UAV system for monitoring crop  growth condition and field management 

practices(J. A. J. Berni, Zarco-Tejada, Suárez, González-Dugo, & Fereres, 2009; Gevaert, 

Tang, Suomalainen, & Kooistra, 2014)  

The application of UAVs to precision farming has experienced rapid growth over the past 

decade, but the reflectance retrieval and geometric correction of the data remain a 

challenge.  As most of the vegetation indices (VIs) require reflectance, the digital 

numbers (DNs) collected by the UAV need to be converted to reflectance. A widely used 

approach was the empirical line method (Dean, Warner, & McGraw, 2000)(Levin, Ben-

Dor, & Singer, 2005).  The gray gradient calibration panel  with the range of reflectance 

from 0% to 100% (Wang & Myint, 2015) was also used to  establish the relationship 

between the surface reflectance and the raw image DNs. However, most commercial 

reference reflectance targets are very expensive and hard to maintain during heavy 

fieldwork (Buchhorn, Petereit, & Heim, 2013; Weidner & Hsia, 1981). Some researchers  

calculated vegetation indices directly from DNs (Nebiker, Annen, Scherrer, & Oesch., 

2008). Unfortunately, this relative vegetation index is hard to apply to long-term 

quantitative analysis and cross-site comparisons. Meanwhile, in order to apply UAV-

based remotely sensed images in long-term crop monitoring, the biophysical products 

derived from UAV-based images need to be accurate and reliable in practices. 

Leaf area index (LAI) is a key crop biophysical variable used in crop growth modeling 

for estimating crop phenological stage and forecasting crop final yield (Haboudane, 

Miller, Pattey, Zarco-Tejada, & Strachan, 2004). LAI has been demonstrated to have 

significant relationship with canopy vegetation indices (Kalisperakis et al., 2015; Kross, 

McNairn, Lapen, Sunohara, & Champagne, 2015). The commonly used vegetation 

indices were calculated based on the reflectance in visual and NIR bands, such as the 
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NDVI and green NDVI. These vegetation indices  are only sensitive to low LAI (less 

than 3) and  start to saturate at medium and high LAI (Nguy-Robertson et al., 2012). 

Beside the saturation problem, vegetation indices  are also sensitive to the background 

soil; therefore, Soil Adjusted Vegetation Index was used to eliminate the influence of soil 

(Huete, 1988). Vegetation Indices combined with the reflectance of the red-edge bands, 

such as SRre, NDVIre, and MCARI2 (Kross et al., 2015), have  shown increased 

potential for estimating LAI,. The red-edge indices in RapidEye had been evaluated for 

corn LAI retrieval  with mixed results (Kross et al., 2015). In this study, a different 

narrow range of red-edge band (745-755nm) was selected for the Tetracam MCA 6 

camera other than the RapidEye red-edge band (690-730nm), and the Tetracam red-edge 

indices will be evaluated in this study. 

In addition to the LAI, biomass is another  biophysical parameter  in crop  modeling 

which helps estimate crop yield (Bendig et al., 2014). Traditional biomass measurements 

are carried out via a destructive method which measures the above ground plant weight 

over a unit area. The time-consuming and destructive  nature of this method deems it 

unfeasible for  large sample collection, hence it has promoted the development and 

application of remotely sensed data for biomass estimation (Gunlu, Ercanli, Baskent, & 

G., 2014; Jin et al., 2014). Many studies  adopted a simple regression method to estimate 

the above ground biomass through vegetation indices (Chen et al., 2010; Jin et al., 2014). 

However, this method always has VI saturation problems at medium to high biomass. 

Contrarily, the cumulative method has the capability to eliminate the saturation problem  

in biomass estimation (Hou, Gao, Niu, & Xu, 2014; Kross et al., 2015; Liu et al., 2004).  

In terms of data comparison for different sensors, some studies used a statistical approach 

to compare results of VIs from UAV and satellite at the same day (Kross et al., 

2015)(Coast, Mccabe, Houborg, & Rosas, 2015)(Shang et al., 2015). This approach of 

images statistical comparison was used to evaluate the capability of different platforms 

and sensors for intra-field crop monitoring. Beside the statistical comparison for sensors 

self-characterizes, the long-term performance on crop monitoring is also an important 

factor for different platforms and sensors. The comparison of products derived from 

remotely sensed data of different platforms and sensors could be another approach to 
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analyze the accuracy and tendency of remotely sensed data. This study aimed to compare 

the UAV and RapidEye remote sensing data using a statistical approach to evaluate the 

detection capability for crop status and a long-term LAI and biomass comparison 

approach to evaluate the accuracy and tendency of UAV-based imagery in agriculture 

application. This study was carried out at St. Isidore, eastern Ontario, Canada. This area 

has consistently frequent cloud cover during the crop growing season. Therefore, a UAV 

system with a narrow-band multispectral camera was used to collect multi-temporal 

imagery in 2014. The purpose of the study was to evaluate the performance of the UAV 

system and the multispectral camera on crop growth monitoring through an experiment 

over a corn field.   

2.2 Methods 

2.2.1 Study site 

The study site was located south of St. Isidore, eastern Ontario, Canada (45.3°, -74.9°) 

(Figure 2.1).  The farmland in this area is privately owned.  It supports non-irrigated dry 

land farming with one harvest during the relatively short May to September growing 

season.   This site is typical of the crop mix found in this part of Canada.  Corn is one of 

the main crop types in this region and the farm following a corn-soybean-wheat rotation.  

The study was carried out during the 2014 growing season over a corn field. The corn 

was seeded in early May and harvested in early October. A nitrogen treatment experiment 

was conducted in this field with two levels of applications, at 50% and 100% of the 

recommended fertilizer applications at planting (Figure 2.2& 2.3).  
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Figure 2.2 The true color image of the experimental corn field on July 24. The 

mosaicked UAV image composited from blue, green, and red bands was showing the 

corn field. 

(a) 



17 

 

 

Figure 2.3 50% (red zone) and 100% (blue zone) nitrogen treatment zones in the 

corn field. Six sampling points were deployed within the field, three in the 50% zone 

and three in the 100% zone. 
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2.2.2 Field data collection 

Six sampling points were selected in the experimental field (Figure 2.2), three on 50% 

nitrogen treatment zone and three on 100% nitrogen treatment zone. Measurements were 

taken at during each UAV flight (June 6, June 23, July 24, and September 9). At each 

sampling point, 14 upward digital hemispherical photos were taken on the ground using a 

Nikon D300s camera with 10.5mm fisheye lens were collected every 5 m along two 

parallel transects, with seven photos per transect. These photos were used to estimate LAI 

with the CAN-EYE software (Version 6.2) by an indirect LAI estimation method (Shang 

et al., 2015). Above-ground corn biomass was collected at each sampling point right after 

each UAV flight. At each sampling location, five random plants were collected within a 

5m by 5m area. The corn plants were partitioned into leaves, stem and seeds and weighed 

separately for fresh weight, and then oven dried at 80°C for 3 days. Average corn row 

distance was 75cm and plant distance was 12cm within the row; these measurements 

were used to calculate the plant density. The oven-dried corn biomass was weighed again 

and converted to total weight per square meter using the plant density. Average plant 

height was also measured at each sampling point from three random corn plants.  

2.2.3 UAV and RapidEye multispectral data preprocessing 

The RapidEye constellation contains five identical satellites which could provide regional 

and global scale crop monitoring with a high frequent revisit time. Moreover, the 

RapidEye contains a specific red-edge band for agriculture application and provides 5 

meter high spatial resolution images which contains more information in crop monitoring 

than other satellites. Our UAV system with the Tetracam camera has similar bands design 

as the RapidEye for crop monitoring and could achieve similar vegetation indices with 

RapidEye, and higher spatial resolution imagery than RapidEye. In terms of the 

comparison between UAV and satellite images, the RapidEye has the most representative 

and comparability which has most potential application in crop intra-field monitoring. 

Four RapidEye satellite images (May 31, June 19, July 25, and September 5) and four 

UAV-base images (June 9, June 23, July 24, and September 9) were obtained during the 

corn growing season  to compare the single date spatial variations in crop status and 
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temporal dates variations in LAI and biomass estimation. All RapidEye images were 

processed in ENVI for radiometric and atmosphere correction. 

Table 2.1 Specification comparison between sensors in UAV and RapidEye. 

Data UAV (Tetracam) RapidEye 

Spectral 

Bands (nm) 

Blue 485-495 440-510 

Green 545-555 520-590 

Red 640-660 630-685 

Red Edge 745-755 690-730 

NIR 845-855 760-850 

Resolution (m) 

Depends on height (0.5 in 

this study) 5 

A total of four UAV flights were carried out during the corn growing season. A hexa-

rotor multicopter UAV that had maximum 5kg payload and 18-minute flight time at 

3.2kg payload was used in this study. A Tetracam MCA-6 multispectral array camera 

was mounted on the UAV to collect corn spectral information at the wavelength of 

490nm (band width 10nm), 550nm (10nm), 650nm (20nm), 700nm (10nm), 740nm 

(10nm), and 850nm (40nm). The specification comparison between UAV and RapidEye 

was shown in Table 2.1. Before each flight, the exposure time of the multispectral camera 

was adjusted based on the illumination condition while capturing the images. All UAV 

flights were carried out between 10am to 2pm. The images were retrieved and pre-

processed using the Tetracam PixelWrench-2 software to remove lens distortion and 

vignette of images. Mosaicked images are shown in Appendix A. After the pre-

processing, the images were mosaicked by the PIX4D software (Figure 2.1) and the 

resolution was 0.5 m. The mosaicked UAV images were converted to reflectance for each 

band based on the empirical line method. A white and a grey reference tarp were placed 

on the ground while the UAV was capturing images over the study site (Figure 2.3). The 

alternative reference targets, bare soil and asphalt road, used in this empirical line method 

in this study due to most calibration panel is hard to maintain and transport during heavy 

duty fieldwork. The reflectance of the white tarp, gray tarp, bare soil, and the asphalt road 

were used for the UAV image radiometric correction, the white and gray tarps were 

known reference targets; the bare soil and asphalt road had homogeneous surfaces and 

neat spectra. An Analytical Spectral Devices (ASD) spectroradiometer was used to 
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collect 5 measurements of spectra for all targets in the range between 325nm and 1075nm 

with a sampling interval of 1.6nm. All targets were measured before and after each UAV 

flight to calculate the average reflectance for all reference targets to reduce the 

bidirectional reflectance distribution function (BRDF) effects. The selection on the 

reflectance of white (45%) and gray (5%) tarps were based on the fact that most 

vegetation reflectance measurements for all bands between 400nm and 900nm were 

concentrated between 5% and 60% in practice. The reflectance of the bare soil and 

asphalt road in all bands were also concentrated between 5% and 45%.  

 

Figure 2.4 Reference tarps on the ground. (a) Both white and grey tarp, (b) 45% 

white tarp, (c) 5% grey tarp. 
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Table 2.2 Overview of UAV imagery acquisition dates and number of ground 

measurements. 

UAV imagery dates 
RapidEye imagery 

dates 
LAI samples Biomass samples 

6-Jun-14 31-May-14 6 6 

23-Jun-14 19-Jun-14 6 6 

24-Jul-14 25-Jul-14 6 6 

9-Sep-14 5-Sep-14 - 6 

2.2.4 Radiometric calibration for UAV imagery 

Before and after the UAV flight, all reference targets, white tarp, grey tarp, bare soil, and 

asphalt road were measured by ASD. The average reflectance curves for all reference 

targets are shown in Figure 2.4. The average reflectance of all targets for all six bands in 

the Tetracam were calculated based on the band width of each camera and ASD 

measurements, including measurements before and after the UAV flight. In the UAV 

images, the edge of the grey tarp (5%) had higher DN than the center (Figure 2.5). This 

may have caused by the diffused reflection of the targets around the tarp. Additionally, 

the black tarp has very low reflectance which was influenced easily by other objects. In 

order to eliminate the influence on the black tarp, a lower flight altitude and a bigger tarp 

will be needed to provide more pure pixels in future work. After removing the black tarp, 

the reference reflectance value of other targets had a linear relationship between DNs in 

green, red, red-edge, and NIR bands. These results demonstrated the feasibility of using 

bare soil and asphalt road as targets to convert DNs into reflectance. The calibration 

equations are shown in Appendix B. 
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Figure 2.5 The average reflectance curve for all reference targets on June 23. 
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Figure 2.6 Ground reference targets in green band of UAV images on June 23. Red 

box is bare soil; yellow box is black tarp; blue box is white tarp; and green box is 

asphalt road. 

 

2.2.5 Comparison of Remotely sensed products, LAI and biomass 

The relationships between vegetation indices and LAI and biomass were used to evaluate 

the accuracy of remote sensing data in this study. The vegetation indices include: 

normalized difference vegetation index (NDVI), green normalized difference vegetation 

(GNDVI), modified triangular vegetation index 2 (MTVI2), red edge normalized 

difference vegetation index (NDVIre), simple ration (SR), and red edge simple ratio 

(SRre). These VIs were evaluated for the estimation of corn LAI at each sampling point. 

The best-fit linear and non-linear relationships between the VIs and LAI and biomass 

were evaluated in Matlab v. R2013a. The cumulative VIs were used to evaluate the 

estimation of total dry biomass. Cumulative VI has been used extensively for the 

evaluation of plant phenology, total biomass and absorbed photo synthetically active 

radiation (APAR) (Hou et al., 2014)(Liu et al., 2004)(Kross et al., 2015).  A temporal 
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plant vegetation index can easily be fitted using a logistic model; therefore, at each 

sampling point the cumulative VI value was calculated based on the logistic model that 

was determined by the multi-temporal UAV-based and RapidEye images with 

Levenberg-Marquardt method in Matlab v. R2013a. The logistic model used in this study 

is as follows (Equation 2.1) (see appendix C) 

                                 Equation 2.1 

where VI (DOY) is the fitted VI value at day of year (DOY), α, and b are the fitting 

parameters, c + d is the maximum cumulative VI value, and d is the initial background VI 

value (Hou et al., 2014).  

Table 2.3 Vegetation indices used in the study. 

Index Equation Reference 

NDVI 
Normalized difference 

vegetation index 
(RNIR − RRED)/(RNIR + RRED) Gitelson et al. (1996) 

gNDVI Green NDVI (RNIR – RGREEN)/(RNIR + RGREEN) Rouse et al. (1974)  

SR Simple ratio RNIR/RRED Jordan (1969) 

NDVIre 

Red edge normalized 

difference vegetation 

index 

 (RNIR – RRED-EDGE)/(RNIR + 

RRED-EDGE) 

Gitelson and Merzlyak 

(1994)  

SRre Red edge simple ratio RNIR/RRED-EDGE 
Gitelson and Merzlyak 

(1994)  

MTVI2 
Modified triangular 

vegetation index 

1.5[1.2(RNIR − RGREEN) − 

2.5(RRED − RGREEN)]/√ [(2RNIR + 

1)2 − (6RNIR − 5√(RRED)) − 0.5]  

Haboudane et al. (2004) 
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2.3 Results and discussion 

2.3.1 UAV and RapidEye imagery NDVI histograms and basic 
statistics 

The UAV and RapidEye NDVI histograms were used to assess the sensitivity of sensors 

for the entire corn field since NDVI is a common vegetation index used to analyze green 

vegetation in remote sensing studies. The range, mean and coefficient of variance (CV) 

of NDVI values were used to evaluate the detection capability in spatial variations for 

intra-field crop development and health status within one day measurement. Moreover, 

the NDVI value in 50% and 100% nitrogen treatment zones were also used to 

demonstrate the difference of intra-field detection capability in spatial variations between 

the UAV and RapidEye imagery in corn reproductive stage. 

The histograms of the UAV and RapidEye derived NDVI of the corn field both showed a 

Gaussian distribution but with different range of values. For example, in June, the UAV 

NDVI values at original resolution (0.5m) had a broader range between 0.02 and 0.83; 

after rescaling the UAV resolution to 5m to match RapidEye resolution, the range 

between minimum and maximum value changed to 0.14 and 0.79. The RapidEye derived 

NDVI had a narrower range, between 0.25 and 0.62 (Table 2.3). In July, the original 

UAV derived NDVI ranged between 0.29 and 0.83, and the range of values became 0.67 

to 0.82 after data were rescaled to 5m.  The RapidEye derived NDVI had a much 

narrower range of values between 0.63 and 0.70. The different range of NDVI values 

between the two sensors were caused by the difference of images resolution.  High 

resolution UAV images contained more pixels so that the images include more detail and 

information, such as shadow and bare soil between plants. In addition, offset in images 

acquisition between two sensors would lead to different reflectance in each band due to 

BRDF effect. 

The basic statistics of the UAV and RapidEye derived NDVI values of the corn field in 

June and July revealed different behaviors between the UAV and the RapidEye sensors. 

In June, the mean NDVI values between the UAV and the RapidEye did not show 

substantial differences. However, the UAV derived NDVI exhibited a higher mean and 
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larger standard deviation compared with the RapidEye derived NDVI value. In July, the 

mean values between the UAV and RapidEye derived NDVI showed significant 

difference (Table 2.3). The UAV provided a much higher mean NDVI value and larger 

standard deviation again. Likewise, both dates of NDVI values showed that the CV for 

NDVI was greater in the UAV imagery (higher resolution) than RapidEye imagery 

(lower resolution) and more variations were detected by the UAV high resolution 

imagery. 

Table 2.4 UAV and RapidEye derived NDVI value statistics at original resolution in 

June and July. 

Date Platform 
Sample 

Number 
Minimum Maximum Mean 

Standard 

Deviation 

CV 

(%) 

23-Jun UAV 332852 0.02 0.83 0.5 0.09 18 

19-Jun RapidEye 6991 0.25 0.62 0.43 0.05 11.62 

24-Jul UAV 1017959 0.29 0.9 0.77 0.02 2.32 

24-Jul RapidEye 6991 0.63 0.7 0.67 0.01 1.49 

The higher spatial resolution of the UAV imagery provided a possibility for intra-field 

crop variations detection since it had a broader range of NDVI values and higher CV in 

this study. In June, the corn plant was going through rapid vegetative growth, and canopy 

was not closed at this time.  The RapidEye pixel contained both soil and crop spectral 

information and provided a narrow range of NDVI values compare to UAV images. In 

July the corn canopy was almost completely closed, and the RapidEye NDVI showed a 

very narrow range of values mainly from the contribution of the corn canopy. However, 

the UAV derived NDVI showed a much broader range of values both in June and July 

which still was able to capture the plant canopies as well as the soil between the rows due 

to its higher spatial resolution.  
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Figure 2.7 Corn field NDVI histogram as percentage of total values. UAV NDVI 

rescaled to the same resolution as RapidEye. (a) RapidEye NDVI histogram for corn 

on June 19, (b) UAV NDVI histogram for corn on June 23, (c) RapidEye NDVI 

histogram for corn on July 25, (d) UAV NDVI histogram for corn on July 24. 

The UAV imagery was rescaled to 5m resolution, the same as the RapidEye imagery. 

Figure 2.6 showed the histogram of the UAV derived NDVI for the corn field in June and 

July. On both dates, the UAV imagery had higher mean NDVI values than that of the 

(a) (b) 

(c) (d) 
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RapidEye. The Tetracam on the UAV had a narrower bandwidth which were blue (485-

495nm), green (545-555nm), red (640-660nm), red-edge (745-755nm), and NIR (845-

855nm). RapidEye had relative broader bandwidth which were blue (440-510nm), green 

(520-590nm), red (630-690nm), red edge (690-730nm), and NIR (760-880nm). For all 

bands the except red-edge band, the spectrum range of the Tetracam bands were narrower 

than the RapidEye spectrum range, which may provide a lower reflectance value at the 

trough of spectrum and higher reflectance value at the peak of spectrum.  The 

relationship between temporal UAV and RapidEye derived VIs values were evaluated in 

this study (Figure 2.7). All VIs had a high correlation between the UAV and RapidEye 

imagery, the NDVI had the highest coefficient of determination. In addition, all 

relationships between temporal UAV and RapidEye derived VIs did not show the same 

slope values, which are caused by the different characteristics of the sensors and different 

image acquisition time.  The SRre and NDVIre were not evaluated in this study since the 

Tetracam used different red-edge bands than the RapidEye; these two vegetation indices 

were evaluated using the LAI and biomass later on.  

  

 (a) (b) 
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Figure 2.8 Relationship of vegetation indices between UAV and RapidEye imagery 

at each sampling point. (a) NDVI, (b) green NDVI, (c) MTVI2, (d) SR. 

2.3.2 Intra-field crop monitoring using UAV and RapidEye 

After rescaling the July 24 UAV imagery to 5m resolution, a visual inspection was 

carried out on 50% and 100% nitrogen treatment zones of the corn field. The imagery 

acquired on July 24 showed better results than that of the images acquired in the other 

day on the different nitrogen treatment zones.  At this time, the corn plant had reached the 

maximum height. In the 50% nitrogen treatment zone, two areas of lower NDVI were 

observed on both the UAV and the RapidEye imagery. On the UAV imagery, the 50% 

and 100% nitrogen treatment zones had a significant difference in the range of the NDVI 

values. On the RapidEye imagery, however, these two different nitrogen treatment zones 

did not show a very clear difference (Figure 2.8).  

(c) (d) 
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Figure 2.9 Different NDVI maps for 50% and 100% nitrogen treatment zones in 

UAV and RapidEye imagery on July 24 and July 25. (a) 50% and 100% nitrogen 

treatment NDVI map from UAV imagery, (b) 50% and 100% nitrogen treatment 

NDVI map from RapidEye imagery. 

The histograms of the NDVI of 50% and 100% nitrogen treatment zones derived from the 

UAV and RapidEye imagery were used to compare the detection capability of within-

field growth variations. In the RapidEye imagery, the range of NDVI values in 50% and 

100% nitrogen treatment zones was between 0.63 -0.69 and 0.64 -0.69 respectively. In 

the UAV imagery, the range of NDVI values in 50% and 100% nitrogen treatment zones 

were 0.65-0.80 and 0.73-0.81 respectively (Figure 2.9). The major NDVI values in 

RapidEye images showed a 35% and 40% difference in overall data for two different 

nitrogen treatment zones. UAV images showed only an 18% and 30% difference of the 

major NDVI values. The boarder range of NDVI values and lower percentage of major 

values in the overall NDVI values made the intra-field variation to be detected by the 

(a) (b) 
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high resolution UAV imagery, suggests that the UAV had a better capability of 

monitoring intra-field crop growth variations.  

  

 

  

 

Figure 2.10 NDVI histogram for 50% and 100% nitrogen treatment zones in the 

UAV and RapidEye imagery. (a) NDVI histogram for 50% N treatment zone of 

RapidEye, (b) NDVI histogram for 100% N treatment zone of RapidEye, (c) NDVI 

histogram for 50% N treatment zone of UAV, (d) NDVI histogram for 100% N 

treatment zone of UAV. 

(a) (b) 

(c) (d) 
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2.3.3 Comparison of LAI and biomass between UAV and RapidEye 

imagery  

In this study, the maximum ground LAI measurement was 4.65 m2/m2 recorded on July 

24 at corn reproductive stage. The scatterplots of the NDVI, gNDVI, and MTVI2 against 

the LAI showed these indices had a saturation problem when LAI is greater than 3m2/m2 

(Figure 2.10, a, b, and c) and they exhibited an exponential distribution. VIs of NDVIre, 

SR, and SRre showed no saturation for LAI throughout the entire growing season which 

showed a clear linear distribution against the LAI field measurements. Likewise, these 

three vegetation indices kept showing a continuous increase when LAI value is greater 

than 3m2/m2. The best coefficient of determination (R2) between LAI and VIs was 0.93 

with the SRre.  

  
 

 

 

(a) (b) 
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Figure 2.11 Scatterplot between LAI (m2/m2) and UAV derived vegetation indices: 

(a) NDVI, (b) gNDVI, (c) MTVI2, (d) NDVIre, (e) SR, (f) SRre. The solid line is the 

best-fit function between all LAI measurements and vegetation indices. 

According to the VIs results of RapidEye images, the best fit function for the RapidEye 

derived NDVI, gNDVI, MTVI2 and NDVIre was exponential, but all these indices 

exhibited saturation when the LAI was greater than 3m2/m2 in  this study (Figure 2.11). 

The same was true for the UAV derived NDVI, gNDVI, and MTVI2.  Both the RapidEye 

derived SR and SRre had linear best fit functions; the SR showed a saturation when LAI 

greater than 3m2/m2, and the SRre showed no saturation for the entire LAI range.  

(c) (d) 

(e) (f) 
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(a) (b) 

(c) (d) 
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Figure 2.12 Relationship between LAI (m2/m2) and RapidEye derived vegetation 

indices: (a) NDVI, (b) gNDVI, (c) MTVI2, (d) NDVIre, (e) SR, (f) SRre. The solid 

line is the best-fit function between all LAI measurements and vegetation indices. 

In contrast, the UAV derived NDVI, gNDVI, MTVI2, and SR had lower coefficient of 

determination than that of the RapidEye NDVI, gNDVI, MTVI2, and SR. Since the high 

spatial resolution UAV-based imagery had the capability to detect the slight difference of 

reflectance values changes which was affected by backs of leaves under wind action in a 

small area, minor changes on crop canopy could provide different results on VIs 

calculation, specifically on visual bands which had smaller values than red-edge and NIR 

bands. Meanwhile, although both the UAV and RapidEye multispectral imagery had 

similar band selection, the bands in the Tetracam camera, sensor on our UAV system had 

different bandwidth with the RapidEye, in this case it might provide different VIs results. 

The red-edge band selection for Tetracam (735-745nm) was different with the RapidEye 

bands (690-730nm) in this study. The UAV derived NDVIre and SRre showed no 

saturation and a higher coefficient of determination than that of RapidEye. In addition, 

these two VIs had a showed a linear relationship for the entire range of LAI 

measurements. These results demonstrated the red-edge band selection on Tetracam had 

the capability on long-term intra-field LAI estimation specifically on corn reproductive 

stage.  

The cumulative VIs were used to estimate the dry biomass in this study which could 

provide a reasonable results based on crop growth principle. Because of biomass is the 

cumulative production of plant photosynthesis during the growing season, when LAI 

reached the maximum value and started to decrease at maturity stage, the biomass 

continuously increased. All cumulative vegetation indices showed a linear relationship 

with the corn total biomass (Figure 2.12). Although the UAV derived cumulative gNDVI, 

NDVIre and SRre showed saturation when the total biomass was greater than 500g/m2, 

they became sensitive again when the total biomass was greater than 1500g/m2. These 

three VIs were not sensitive to the difference of biomass at the end of July when biomass 

(e) (f) 
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of corn had a larger variation range. The UAV derived cumulative NDVI and MTVI2 

showed biomass saturation when it was greater than 500g/m2, and was invariant when the 

total biomass was greater than 1500g/m2. The UAV derived cumulative SR showed no 

saturation throughout the entire total biomass measurements in this study. 

  

 

  

 

(a) (b) 

(c) (d) 
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Figure 2.13 Relationship between biomass and UAV cumulative vegetation indices: 

(a) cumulative NDVI, (b) cumulative GNDVI, (c) cumulative MTVI2, (d) cumulative 

NDVIre, (e) cumulative SR, (f) cumulative SRre. The solid line is the best-fit 

function between all biomass measurements and cumulative vegetation indices. 

Similar to UAV derived cumulative vegetation indices, the best fit function for RapidEye 

cumulative VIs was linear (Figure 2.13). Additionally, the RapidEye cumulative NDVI 

and MTVI2 has an invariant when the total biomass was greater than 500g/m2 along the 

entire biomass measurement period. The RapidEye cumulative gNDVI, NDVIre, SR, and 

SRre showed saturation when total biomass was greater than 500g/m2 but regained 

sensitivity when the total biomass reached greater than 1500g/m2.  

  

(e) (f) 
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Figure 2.14 Relationship between biomass and RapidEye cumulative vegetation 

indices: (a) cumulative NDVI, (b) cumulative GNDVI, (c) cumulative MTVI2, (d) 

cumulative NDVIre, (e) cumulative SR, (f) cumulative SRre. The solid line is the 

best-fit function between all biomass measurements and cumulative vegetation 

indices. 

Comparing with RapidEye cumulative VIs, the UAV derived cumulative VIs had similar 

performance against the biomass measurement during the crop growth from June to 

(a) (b) 

(c) (d) 

(e) (f) 
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September. Most of the UAV and RapidEye derived VIs had invariance responses to 

biomass when biomass was 500 g/m2. Although, some of the VIs regained the sensitivity 

when biomass was greater than 1500g/m2, these VIs may provide an inaccurate biomass 

estimation at corn early growth stages. The UAV derived SR was sensitive along the 

entire biomass measurement from June to September. It demonstrated the UAV imagery 

could be used on corn biomass estimation and had better performance than the RapidEye 

with cumulative SR. All vegetation indices and cumulative vegetation indices results as 

shown in Appendix D. 

2.4 Conclusions 

This study provided a comprehensive temporal UAV-based multispectral imagery 

processing approach for corn field monitoring in eastern Ontario. An empirical line 

method was used to convert DNs to reflectance in UAV-based imagery. Afterwards, a 

single date NDVI comparison of the UAV-based and RapidEye imagery was calculated 

and used to demonstrate that UAV-based imagery can capture the intra-field variability in 

corn field. Meanwhile the red-edge indices of UAV-based imagery had a better potential 

in long-term LAI and biomass estimation for corn during the entire growth season. In 

contrast to the RapidEye derived NDVI results when corn was at reproductive stage in 

July, the UAV derived NDVI had a greater range of NDVI values and higher CV values 

which could provide more detail and information on corn real-time monitoring. 

Additionally, the UAV imagery captured the variation (NDVI) of the two (50% and 

100%) nitrogen treatment zones well.  

Both the UAV and RapidEye derived VIs against corn LAI value had good correlation. 

However, most of VIs, except RapidEye derived SRre and UAV derived NDVIre, SR, 

and SRre, had saturation problems when LAI was greater 3m2/m2. The UAV derived 

NDVIre and SRre showed sensitivity to LAI from emergence to LAI up to 5 m2/m2 and 

these two red-edge indices had a better coefficient of determination than that of the 

RapidEye. The cumulative vegetation indices performed well for the estimation of corn 

total dry biomass with both the UAV and RapidEye. Except for the UAV cumulative SR, 

most of the cumulative VIs saturated when the total biomass was around 500 g/m2. The 
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UAV cumulative SR showed no saturation for the entire biomass measurement in this 

study. The better performance on remote sensing products of LAI and biomass revealed 

that the UAV-based imagery had a greater sensitivity to crop biophysical variables 

compared with the RapidEye imagery throughout the entire growing season. Likewise, 

the broader range of NDVI values and higher coefficient of variance showed the UAV-

based imagery had a greater detection capability than that of the RapidEye imagery. In 

summary, there is great potential in using the UAV for intra-field variability detection 

and seasonal crop growth monitoring. 
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Chapter 3  

3 Estimation of Intra-field Winter Wheat Nitrogen Weight 
and Yield Using UAV-Based Imagery and Ground 
Calculated Biomass 

3.1 Introduction 

Precision farming is an approach to agriculture management that achieves maximum 

efficiency with appropriate fertilizer and water applications (Krishna, 2013). One of the 

requirements for successful precision farming is the accurate monitoring of nitrogen 

content and prediction of yield from models based on early growth stage parameters. 

With the development of remote sensing technology, satellite imagery has been analyzed 

in numerous studies to monitor nitrogen content and predict crop yield (Clevers, 1997; 

Doraiswamy et al., 2003; Jing-feng Huang et al., 2002). The use of traditional optical 

satellite remote sensing techniques on small farm fields to determine intra-field variation 

has several disadvantages that are discussed, and in this study, a new solution for remote 

sensing monitoring and prediction using Unmanned Aerial Vehicle (UAV)-based 

imagery is introduced. 

Nitrogen is an essential plant nutrient during the growing season for crops and is the 

largest agricultural input in current cropping systems (Adam K. et al., 2007). The timing 

and amount of nitrogen fertilizer application affect the final production and economic 

benefits (Fageria, 2014). Traditional analysis of crop nitrogen requirements uses chemical 

methods, such as plant and soil sample combustion methods in the laboratory, which are 

time consuming and costly. Additionally, with these methods, instantaneous and wide-

range monitoring of crops is difficult to achieve. For an on-the-go method to monitor 

crop nitrogen, many studies attempted to use remote sensing to collect images for a large 

area (Clevers  A.A., 2012; D.G. Sullivan  P.L. Mask, D. Rickman, J. Luvall and J.M. 

Wersinger, 2004; E. Raymond Hunt JR.  Craig S.T. Daughtry, James Mcmurtrey III, and 

Charles L. Walthall, 2005). Nitrogen is a primary component of chlorophyll that has 

strong absorption in blue and red light. Therefore, remote sensing studies can use spectral 
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vegetation indices to evaluate the concentration of chlorophyll, thereby calculate nitrogen 

content.  

Common remotely sensed nitrogen analysis focuses on vegetation indices derived from 

optical multispectral and hyperspectral images such as ratio vegetation index (RVI), 

nitrogen reflectance index (NRI), and double-peak canopy nitrogen index (DCNI) (Chen 

et al., 2010). Typically, multispectral satellite imagery provides limited band 

combinations on crop nitrogen monitoring in remote sensing studies. Different vegetation 

indices and methodologies were developed to estimate the nitrogen content in different 

stages of crop growth in past studies (D.G. Sullivan  P.L. Mask, D. Rickman, J. Luvall 

and J.M. Wersinger, 2004)(Caturegli et al., 2015). Hyperspectral imagery provides the 

ideal data for crop monitoring in remote sensing studies because this imagery has a 

higher spectral resolution and provides more spectral information on plants (Sims & 

Gamon, 2002)(Hansen & Schjoerring, 2003). In many studies, crop N was evaluated at a 

specific wavelength at the scale of the leaf (Hansen & Schjoerring, 2003; Rodriguez, 

Fitzgerald, Belford, & Christensen, 2006), and many vegetation indices have also been 

developed to estimate plant N and chlorophyll based on ground hyperspectral 

measurements (Barnes et al., 2000; Gitelson & Merzlyak, 1994). 

Estimation of crop yield is an important issue in food security, and these estimates help 

determine crop prices and manage crop production. In the USA, the Large Area Crop 

Inventory Experiment (LACIE) was conducted to estimate wheat production worldwide 

using the Landsat Multispectral Scanner (MSS) system (Erickson, 1984). In addition to 

global monitoring and estimation of crop yields with remote sensing, most studies 

focused on a specific area and crop and used different remote sensing technologies. 

Although the prediction of crop yields has been developed, the application of early yield 

prediction is still restricted by remote sensing data collection and crop types. When 

satellite imagery is used to monitor nitrogen, requirements of intra-field monitoring for a 

small-scale farm field are difficult to achieve. Hyperspectral imagery is expensive and 

therefore highly frequent monitoring in one crop season is not practical. Most studies that 

monitor crop nitrogen using hyperspectral imagery are ground-based methods. However, 

for multispectral satellite imagery, the problem is revisit timing and cloud cover during 
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monitoring because optical satellite data cannot “see through” clouds. Thus, the 

availability is largely affected by weather conditions and time monitoring of crops 

(weekly) may be impossible. With satellite data, spatial resolution is also reduced for a 

small-scale field, which is not adequate for within-field crop monitoring. With the current 

methods based on multispectral and hyperspectral data, monitoring crop nitrogen using 

remote sensing techniques is possible, but the application is difficult in real time and for 

field-scale management of crops.  

In general, optical remote sensing methods for crop yield estimation are divided into two 

primary groups in terms of the data resource. One group combines crop growth and plant 

physiological models with remote sensing data to develop a crop yield model (Baez-

gonzalez, Chen, Tischarena-lopez, & Srini, 2002; Fang, Liang, & Hoogenboom, 2011; 

Johnson, 2014; Prasad, Chai, Singh, & Kafatos, 2006; Rojas, 2007). To apply this 

method, the entire crop growth season must be observed to collect the agrometeorological 

and plant physiological parameter data. Additionally, the application of this method 

requires an understanding of remote sensing data processing and also an in-depth 

background in plant physiology. The other group uses remote sensing data and crop 

yields to produce a direct mathematical relation to estimate crop yield, which is based on 

the assumption that the vigor of the crop canopy has a simple, direct relation to crop yield 

(Hamar, Ferencz, Lichtenberger, Tarcsai, & Ferencz-Arkos, 1996)(Hamar et al., 1996). 

This method is more convenient and it has the advantages of an easier process of data 

collection. However, this method still requires the collection of temporal series of data 

and is not universally applicable to different crops and years. Collection of multiple 

remote sensing data is a difficult process in a weather complicated region, such as our test 

area of Melbourne, Ontario, Canada, which had many days covered by clouds. Moreover, 

both methods are applied in large-scale predictions of crop yield. Predicting crop yield is 

difficult in a small-scale farm because the intra-field variation is difficult to determine by 

low resolution satellite images. Meanwhile, the common ground yield data was made up 

by many single farms yield data which is hard to represent intra-field yield variations. 

Although, the spatial yield distribution data collected by farmers’ harvester has been 

applied in precision farming management to help farmer to monitor the intra-field yield 
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distribution, this type of spatial yield distribution data has not been addressed in remote 

sensing study in yield prediction yet.  

The UAV has been developed rapidly in recent years. Depending on the different types of 

sensor attached to an UAV, there are many different applications. The UAV has many 

advantages for agriculture research: 1) the UAV provides higher spatial and temporal 

resolution than satellite images; 2) the UAV can obtain results under cloud cover, 

whereas satellite images are limited by cloud visibility, and 3) the entire UAV system is 

cheaper than satellite images. Because of these advantages, the UAV has a great potential 

for remote sensing applications to collect high spatial and temporal imagery in agriculture 

to achieve intra-field crop monitoring. The UAV has been used in many studies to 

determine vegetation indices, monitor crops health status and predict crop yield with one-

day optical imagery collected by the UAV system; some studies demonstrated the 

potential of the UAV to estimate crop LAI and yield in practices and capability of intra-

field monitoring  (E. Raymond Hunt JR.  Craig S.T. Daughtry, James Mcmurtrey III, and 

Charles L. Walthall, 2005; Lelong et al., 2008; Swain, Thomson, & Jayasurya, 2010). 

The well-developed UAV technique turns the sensor into the key element for the 

application of the UAV in agriculture. Currently, modified digital and array multispectral 

cameras are the primary portable and light sensors used with UAV system. Modified 

digital cameras have broader bands that can only acquire a few simple vegetation indices, 

whereas array multispectral cameras are much more complicated in operation and too 

expensive currently to be widely used by individual farmers. Moreover, the images 

captured by both camera will need image normalization process or radiometric correction 

to ensure the data can be used in temporal crop analysis. Therefore, in order to develop an 

approach for individual farms’ intra-field farm management with the UAV system, a 

practicable and affordable modified digital camera was used to collect UAV-based blue-

green-NIR imagery in this study. 

Additionally, the ground reference measurements will need a large number of samples to 

estimate and validate the model to represent the relationship between nitrogen content or 

final yield and the vigor of crop canopy directly within a small area,. An alternative 

approach is to estimate plant biomass using a calculated model with a set of plant 
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structural parameters including fractional vegetation cover (fCover), plant height and 

plant bulk density. This alternative approach has been investigated and evaluated in many 

previous studies (Krebs et al., 2003; Muukkonen et al., 2006; Rottgermann, Steinlein, 

Beyschlag, & Dietz, 2000), and a linear relationship is found between the fraction of 

cover and biomass or LAI for low, open arctic vegetation (Wenjun et al., 2009). Instead 

of a time consuming and destructive biomass measurements, this biomass estimation 

method could provide a large number samples to validate the total nitrogen weight and 

yield prediction model using UAV-based blue-green-NIR imagery. 

3.2 Materials and Methods 

3.2.1 Study sites 

The study sites were four winter wheat fields located in Melbourne, Ontario, Canada. 

Three wheat fields belonged to Brenair Farm Inc., and one winter wheat field belonged to 

Brent Farm INC. These two farm companies are the clients of A&L Canada Laboratories 

Inc., which provides complete soil and plant analyses and fertilization recommendations 

for farmers and fertilizer dealers in Ontario, Quebec, Alberta, Saskatchewan and 

Manitoba. According to soil analyses, the soil type and nutrient levels were similar at the 

four sites; therefore, these two farm companies adopted the identical fertilization 

recommendations for winter wheat in this study. 
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The four winter wheat fields were planted to soybean in 2014. In 2015, no-till farming 

was used at the study sites, with the identical seed density and a row distance of 18 

centimeter. Eight points were sampled in each field, and the distance between each 

sampling point was greater than 50 m. Figure 3.1 shows the location of each study site. 

Field data were collected at our study sites from early May to early July on four dates: 

May 21, May 29, June 19, and July 2. The test period covered the phenology of winter 

wheat growth stage BBCH between 40 and 99. BBCH officially stands for “Biologische 

Bunesanstalt, Bundessortenamt und Chemische industry.” Which is a scale used to 

identify the phonological development stages of a plant. The complete data set included 

aerial images captured by an UAV with a modified digital camera, wheat foliage nitrogen 

content, plant leaf area index, plant height, and wheat biomass. 

3.2.2 Field data collection 

Three height measurements were recorded at each sample point, with the average height 

representing the height of plants at each point. Biomass was measured four times in each 

study site on the identical day as the UAV flight and was determined by destructive 

sampling in a 0.5 m by 0.5 m area at each sample point. Plant biomass was measured 

after samples were oven-dried at 80°C for 72 h, with the values rescaled to g per m2. 

Wheat tissue samples were collected on four days: May 21, May 29, June 19 and July 2. 

At each sample point, 20 random wheat leaves and stem tissue samples were collected 

within a 2 m radius. All samples were sent to A&L Canada Laboratories on the identical 

day as the sampling for total nitrogen analysis. Tissue samples were oven-dried overnight 

at 80°C and ground with a cyclone grinder to pass through a 1 mm sieve. Sample 

powders were analyzed with a LECO (Laboratory Equipment Corporation) FP628 

Nitrogen Determinator using a combustion method to measure the total nitrogen content. 

Nitrogen content was expressed as a percentage. 

Plant area index (PAI) and fractional vegetation cover (fCover) were calculated by an 

indirect method that used hemispherical canopy photography at each sample point. The 

hemispherical wheat canopy photographs were acquired with a Nikon S300s DLSR 

camera and a 10.5 mm fisheye lens. At each sample point, two rows of images contained 
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7 images for each row; images were captured at a height of one meter above the wheat 

canopy. The digital photos were analyzed with CANEYE version 6 (INRA-UAPV, 

France) to calculate PAI and fCover. All data shows in Appendix E. 

3.2.3 UAV-based blue-green-NIR imagery processing 

UAV flights were on three days: May 21, June 19 and July 2 in 2015. A modified digital 

Canon PowerShot S110 12 megapixel camera was used to capture blue-green-NIR 

images. The camera was fitted on a fixed wing UAV that was developed by A&L Canada 

Inc. to collect images for entire fields. The UAV was controlled to follow a pre-

programmed flight route generated by the ground control software Mission Planner 

(Appendix F). The UAV collected blue-green-NIR geo-tagged digital images at the 

altitude of 150 m above ground level (AGL) with a 1 second interval between image 

capture. The images were collected between 10:00 a.m. and 2:00 p.m. under cloud-free 

conditions. To obtain high quality orthomosaic images for future analyses, the degree of 

overlap in the route direction was greater than 80%; the overlap degree in the lateral 

direction was greater than 60% for each test flight. After collection, images were 

mosaicked by image processing software Agisoft (Appendix G) and imported into 

ArcGIS for future processing of images to calculate the Green Normalized Difference 

Vegetation Index (GNDVI) (Equitation 3.1) (Merzlyak, 1998).  

                                GNDVI = (DNNIR-DNgreen) / (DNNIR+DNgreen)                 Equation 3.1 

The total sample numbers in this study are shown in Table 3.1. Four aerial images for the 

four test wheat field as shown in Figure 3.2. The aerial images were composited by blue, 

green and NIR bands.  
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(a)                                                               (b) 

  

(c)                                                          (d) 

Figure 3.2 Mosaicked UAV-based aerial images (NIR shows as red, blue shows as 

blue, green shows as green) for all test field, (a) field one, (b) field two, (c) field 

three, (d) field four. 
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Table 3.1 Date and total sample number for data collection. 

Date PAI 

Plant 

Height 

Nitrogen 

Content 

Dry 

biomass 

UAV 

imagery 

21-5-2015 34 34 34 4 444 

29-5-2015 32 - 32 - 334 

19-6-2015 33 33 25 4 357 

2-7-2015 33 33 25 8 336 

3.2.4 Spatial yield distribution 

Brent and Brenair Farm companies provided spatial variable yield data at the end of the 

wheat harvest. A grain yield monitor was used to collect spatial yield data which display 

the yield distribution in a spatial color coded map. This device was installed on a 

combine harvester and is designed to measure the harvested mass flow, moisture content, 

and geographic information, in addition to providing high resolution and accurate yield 

data. The wheat spatial yield was a composite of many points, with the wheat yield in 

units of bushels/acre. The red points near the boundary were caused by a second 

measurement with the combine harvester (Figure 3.3). The spatial yield data were 

composed of many points that contained the yield value. All data were processed in 

ArcGIS for removal of duplicate points, resampling, and data extraction.  
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Figure 3.3 Map of spatial yield. All data were in a point format, with the unit 

bushels/acre. 

3.2.5 Model development 

Past study has demonstrated to plant height and plant structure were strongly correlated 

with plant dry biomass for arctic vegetation (Wenjun et al., 2009)Therefore, we tested for 

correlations between wheat plant height × wheat leaf properties and biomass at our study 

sites. We then used biomass and wheat foliage nitrogen content to calculate the total 

nitrogen weight per unit area. We collected data on wheat height and dry biomass and 

captured hemispherical photographs in our four wheat field for this method. 

GNDVI was used to monitor the greenness of vegetation, with the greenness of plant 

leaves determined by the concentration of chlorophyll, the green pigment of plants. 

Additionally, chlorophyll contains four nitrogen atoms that form bonds to magnesium. 
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(Noyd R. et al. 2016) Therefore, GNDVI was used to determine nitrogen content in this 

study. Additionally, a linear relationship between wheat dry biomass and fraction of 

cover × plant height (biomassfCover model) was described by the following equation:  

Y = α × H × fCover,                               Equation 3.2 

and a linear relationship between wheat dry biomass and PAI × plant height (biomassPAI 

model) was described by the following equation:  

Y = b × H × PAI                                Equation 3.3 

These models were analyzed and tested in this study. 

In the models, H is plant height in m, PAI is plant area index in m2/m2, fCover is 

fractional vegetation cover as a %, and α and b is the slope of the linear relationship with 

a 0 intercept and also represents biomass bulk density (Wenjun et al., 2009). After 

analyses, a simple regression method was applied to determine the relationship between 

GNDVI and biomass × N content to determine total nitrogen content per unit area.  

To determine the possibility of predicting winter wheat final yield using GNDVI values, 

the relationships between GNDVI and biomassfCover and between GNDVI and biomassPAI 

were determined. Temporal biomass data were derived from temporal GNDVI data. 

Then, multiple linear regression was performed to determine the relationship between 

temporal GNDVI from May to June and the final spatial yield. Figure 3.4 shows the 

overall flowchart for data processing and models establishment.  
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3.3 Results 

3.3.1 UAV-based imagery normalization and GNDVI calculation 

The same camera may provide different DNs on the images for the same area at different 

time with the influence of different illumination. An image normalization process will 

convert all multi-temporal images to the same scale to represent at the same object. The 

optical satellite imagery will be converted to a reflectance value before the calculation of 

vegetation indices. For the UAV-based imagery, a ground reference will be needed to 

measure the reflectance value by the ASD in order to convert DNs to reflectance. In this 

study, the data provided by A&L Lab is missing the reflectance measurements. 

Therefore, an image normalization process was used to rescale all multi-temporal images 

at the same value to represent the same object. The road and the roof of a house in the 

field were used as reference targets to normalize the UAV-based imagers (Figure 3.5). 

   

(a)                                                                      (b) 
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   (c)                                                                    (d) 

Figure 3.5 Ground reference targets, roof and road (red boxes) selection in the 

UAV-based imagery. (a) image captured on May 21, (b) image captured on May 29, 

(c) images captured on June 19, (d) image captured on July 2. 

All images used data on June 19 as the reference value to normalize. After the image 

normalization, the GNDVI images were calculated for all multi-temporal UAV-based 

images. Figure 3.6 shows the GNDVI images on May 29 before and after images 

normalization. In the images, the range of GNDVI values had a minor change. 
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Figure 3.6 GNDVI images before and after image normalization on May 29. (a) 

GNDVI image before normalization, (b) GNDVI image after normalization. 
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3.3.2 Winter wheat biomass vs. plant height and fCover and PAI  

A simple linear regression model was developed between reference dry biomass and 

plant height × fCover that was evaluated by the coefficient of determination (R2 = 

0.9222) (Figure 3.7). A simple linear regression model was also developed between 

measured dry biomass and plant height × PAI that was evaluated by the coefficient of 

determination (R2 = 0.8758) (Figure 3.8). 

 

Figure 3.7 Scatter plot for fCover and reference dry biomass for all samples in 

wheat collected during the entire season (n = 16). R2 is the coefficient of 

determination. 
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Figure 3.8 Scatter plot for PAI and reference dry biomass for all samples in wheat 

collected during the entire season (n = 16). R2 is the coefficient of determination. 

As shown in these two figures, dry biomass was strongly correlated with plant height and 

plant leaf properties, i.e., fCover and PAI in winter wheat, respectively. Therefore, winter 

wheat plant dry biomass could be represented by the biomass calculated model which 

includes parameters of plant height, plant area index and fCover. In this study, the 

correlation between wheat plant cover fraction × plant height and dry biomass resulted in 

a higher R2 value. 

3.3.3 Relationship between winter wheat foliage nitrogen and GNDVI; 
total nitrogen weight and GNDVI 

A simple regression model was used to evaluate the correlation between wheat foliage 

nitrogen and GNDVI; however, the relation is weak, with R2 = 0.0361. 
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Figure 3.9 Scatter plot for GNDVI and nitrogen content for all sample points in 

wheat (n = 113). 

Because of the poor correlation between wheat foliage nitrogen content and GNDVI, 

total foliage nitrogen content was difficult to determine from GNDVI directly. Hence, we 

multiplied estimated dry biomass by foliage nitrogen content to represent the estimated 

total nitrogen weight of wheat canopy per unit area. Then, as a first step, a simple 

regression model was used to analyze the relationship between GNDVI and estimated 

nitrogen content for all data from May to July. The R2 values for these models with 

fCover and PAI were 0.5396 and 0.5860, respectively.  
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Figure 3.10 Scatter plot for GNDVI and estimated nitrogen weight with fCover (n = 

71). 

 

Figure 3.11 Scatter plot for GNDVI and estimated nitrogen weight with PAI (n = 

71). 
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We removed the data collected in July since it contributed the most outliers, and 

exponential regression models were applied to GNDVI and estimated nitrogen weight 

with fCover and PAI data in May and June only. These regression models were 

established with 41 points, and 11 of the points were used to estimate the accuracy of the 

model (Figure 3.12 and 3.13). The coefficient of determination (R2) for the fCover model 

and that for the PAI model was 0.7931 and 0.8229, with RMSEs of 5.54 g/m2 and 3.79 

g/m2, respectively. 

 

Figure 3.12 Scatter plot for GNDVI and estimated nitrogen weight with fCover in 

wheat (n = 41). 
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Figure 3.13 Scatter plot for GNDVI and estimated nitrogen weight with PAI in 

wheat (n = 41). 

We applied the PAI × plant height total nitrogen weight model in our test field using 

GNDVI to calculate the estimated nitrogen weight; this model was selected because of 

the higher coefficient of determination and lower RMSE. The map of total nitrogen 

weight for one of our test sites is shown in Figure 3.14. The range of total nitrogen 

weight was from 1.55 g/m2 to 25.81 g/m2, with a corresponding color scale ranging from 

red (low) to green (high). 
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Figure 3.14 Map of total nitrogen weight for test field one.  

3.3.4 Estimation of winter wheat final yield using temporal GNDVI 

An exponential regression was used to determine the relationships between GNDVI and 

estimated biomassfCover and biomassPAI. The coefficient value of R2 was 0.8049 and 

0.8302 for the fCover model and the PAI model, respectively (Figures 3.15 & 3.16). 
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Figure 3.15 Scatter plot for GNDVI and estimated biomassfCover. 

 

Figure 3.16 Scatter plot for GNDVI and estimated biomassPAI. 

In this study, 466 samples were selected, which were separated into two groups. The first 

group contained 350 sample points that were used to build the models, and the second 

group contained 116 samples that were used for verification. A comparison between 

different combinations of single and multi-temporal biomass data were carried out in this 

study to determine the best combination of multi-temporal data in yield prediction. The 
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combinations are shown in the table below, including the coefficient of determination for 

each model. 

Table 3.2 Data combinations and results using linear regression  

  21-May 29-May 19-Jun R2 

Combination  

      0.35 

      0.76 

      0.65 

      0.79 

      0.68 

      0.78 

      0.81 

According to the results in Table 3.2, the best R2 result comes from the combination of 

May 21, May 29, and June 19. The combinations of date May 21 and May 29, May 29 

and June 19 have very similar R2 results, 0.78 and 0.79 respectively. Multiple linear 

regression was applied to three date estimated biomass, which was derived from the 

fCover model, and final yield data; the correlation value R was 0.8972 (Figure 3.17). The 

RMSE for our yield model was 11.8 bushels/acre, which was significant at p < 0.0001. 

Multiple linear regression was also applied to determine the relationship between 

estimated multi-temporal biomass results, which was derived from the PAI, and final 

yield data; the correlation of R was 0.8971, the RMSE was 11.85 bushels/acre, and p < 

0.0001 (Figure 3.19). Because some bare area with no wheat coverage in the wheat field 

produced outliers in these models, data for bare area were removed, and the correlation 

between reference yield and predicted yield improved to 0.9040 and 0.9039, and the 

RMSE improved to 11.5 bushels/acre and 11.53 bushels/acre, respectively (Figures 3.18 

& 3.20). By using the improved models, maps of predicted yield were generated based on 

the multiple linear regression models (Figure 3.21). 
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Figure 3.17 Scatter plot for predicted yield and reference yield map using the 

fraction vegetation cover model. 

 

Figure 3.18 Scatter plot for predicted yield and reference yield map using the 

fraction vegetation cover model, with bare area removed. 
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Figure 3.19 Scatter plot for predicted yield and reference yield using the PAI model. 

 

Figure 3.20 Scatter plot for predicted yield and reference yield map using the PAI 

model, with bare area removed. 
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(a)                                        (b)                                          (c) 

Figure 3.21 Map of predicted yield and true spatial yield (bushels/acre), (a) fCover 

model, (b) PAI model, (c) True spatial yield. The blank part in (c) were bare area in 

the wheat field for which the harvester had no measurements. 

3.4 Discussion  

3.4.1 Relationship between Nitrogen content and GNDVI 

In the first part of this study, we determined the relationship between wheat foliage 

nitrogen and the remote sensing results GNDVI. The GNDVI was correlated weakly with 

the reference wheat foliage nitrogen content measurements (R2 = 0.085). Wheat foliage 

nitrogen content ranged from 3% to 6%, with a trend for nitrogen content to decrease 

from May to July, possibly caused by mechanisms of nitrogen distribution and 

transformation in wheat. In the tillering and stem extension stage, wheat absorbed much 

nitrogen from soil to produce chlorophyll, and therefore, the two measurements in May 

were the highest for nitrogen content. From stem extension to the heading stage, the 

transfer of nitrogen in leaves to grain was initiated, and the foliage nitrogen content 

rapidly declined. Therefore, we calculated the total weight of foliage nitrogen using a 

physical dry biomass estimation method to evaluate the relationship between total weight 

of foliage nitrogen and GNDVI. 
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3.4.2 Nitrogen weight model with May and June data 

According to the relationship between reference biomass and fCover or PAI, the 

estimated biomassfCover or biomassPAI multiplied by the nitrogen content per unit area 

represented the total nitrogen weight per unit area. Exponential regressions were used to 

evaluate the relations between estimated biomassfCover and biomassPAI and total nitrogen 

weight, with coefficient values of R2 of 0.585 and 0.5385, respectively. As shown in 

Figures 3.10 and 3.11, most outliers were found in the data collected in July. Therefore, 

we used the data from May and June to establish the total weight nitrogen models. The 

coefficient values of R2 between GNDVI and total nitrogen weight per unit area 

increased significantly for both models.  

From May to June, wheat growth stage was at BBCH 40 to 69, which is the primary 

period for wheat structural change as the wheat awns develops and stems elongate 

(White, 2007). In May, wheat growth extended from late tillering to stem extension 

stages. In June, wheat growth passed from the stem extension stage to the heading stage. 

As a result, from May to June, the fCover, PAI and plant height increased significantly; 

therefore, total nitrogen weight models were sensitive to data from May and June. In 

July, wheat growth passed from the heading stage to the ripening stage, with wheat grains 

generated and formed in this period, and the nitrogen content decreased as the nitrogen in 

foliage transferred to grain. Values of GNDVI from UAV-based images decreased when 

wheat leaves turned yellow from green in July, although little change occurred in plant 

structure and height in July. Therefore, these nitrogen weight models were more strongly 

correlated with GNDVI in May and June. In Figure 3.22(d), for example, although the 

wheat had started to turn yellow, the height was (c) identical to that in June. Because of 

the high correlation between GNDVI and total nitrogen weight in May and June, these 

nitrogen weight predicted models can be used for early and mid-season wheat nitrogen 

monitoring and mapping for farmers on decision making and variable fertilizer 

application.  
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Figure 3.22 Photographs of wheat fields at different BBCH. (a) May 21 at BBCH 42; 

(b) May 29 at BBCH 48; (c) June 19 at BBCH 65; (d) July 2 at BBCH 79; (e) July 27 

at BBCH 99. 

(a) (b) 

(c) (d) 

(e) 
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3.4.3 PAI vs. fCover for biomass estimation 

Because fCover and PAI represented plant structure and leaf density, the comparison 

between biomass estimation models derived from fCover and PAI was given in this 

study. These two models all had similar values for the coefficient of determination. When 

we used plant height multiplied by fCover and PAI to calculate the estimated 

biomassfcover and biomassPAI of wheat plants, the coefficient value of R2 was 0.9222 and 

0.8758 for fCover × plant height and for PAI × plant height, respectively. Both 

parameters were strongly correlated with wheat dry ground reference biomass. However, 

in the both prediction models for total nitrogen weight and final yield, the coefficient of 

determination was lower in the models with fCover than in those with PAI. This 

difference might be caused by a basic difference between the calculation principles of 

fCover and PAI. The fCover is the planer projection of all plant leaves and stems and is a 

measure of the fraction of ground covered by green vegetation, whereas PAI is the total 

area of leaves and stem in a spatial area that is calculated based on one side of green leaf 

area per unit ground area. Additionally, PAI provides a three-dimensional distribution of 

plant leaves, with plant height included as a factor in the calculation. Therefore, when we 

compared the correlations between reference biomass and fCover × plant height and 

reference biomass and PAI × plant height in linear regression models, the coefficient of 

determination was higher in PAI model than that in fCover model. We used exponential 

regression to establish the model for wheat total nitrogen weight, with the PAI model 

providing a higher coefficient of determination because plant height was considered 

twice. As a reasonable model, the total nitrogen weight model with fCover should be 

used in practice. In the wheat yield prediction models, both fCover and PAI were used to 

predict the biomass on May 21, May 29 and June 27. With multiple linear regression 

models, the trend of biomass change was used to predict the final yield. The effect of 

overestimated biomass from using fCover was insignificant in the model. The predicted 

yield provided from yield prediction models with fCover and PAI both had similar 

correlation values, 0.9040 and 0.9039, respectively to the reference yield.  
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3.4.4 Discussion of estimated yield data 

A relationship between GNDVI and estimated biomass which was calculated based on 

the plant structural properties × plant height was evaluated in this study. From Figures 

3.15 and 3.16, GNDVI was strongly correlated with estimated biomass in winter wheat, 

with coefficient values of 0.8049 and 0.8302 for estimated biomassfCover and biomassPAI, 

respectively. Therefore, we used multi-temporal estimated biomass values derived from 

GNDVI to build a multiple linear regression model to predict the final winter wheat 

yield. A total 466 sample points were selected from the four random areas in four wheat 

fields, with 350 points used to establish the model and the other 116 points used to 

validate our model. In order to select the best dataset to apply in multiple linear 

regression model, seven combinations of dataset were applied in linear regression model. 

The correlation between predicted biomass on May 29 and reference yield is higher than 

those data on May 21, and June 19. Additionally, for all predicted biomass combinations 

that contain data on May 29, the correlation between predicted multi-temporal biomass 

and reference yield is higher than that without data on May 29. These results showed that 

the data on May 29 strongly influence the accuracy in the yield estimation model. At this 

period, the wheat growth stage is at BBCH 48 which is after the flag leaf sheath opens 

and before the first awns are visible. With the fully developed wheat canopy, the GNDVI 

results had a better performance on wheat status monitoring without the interference from 

soil background and wheat yellow awns. This is the prime time for winter wheat 

monitoring in order to predict the final yield.  

The multiple linear regression model built with data from May 21 and 29 and June 19 had 

a correlation of R = 0.8972. However, GNDVI on July 2 was a poor representation of 

wheat plant structure because wheat leaves started to turn yellow and wheat heading on 

the top of the canopy covered most leaves; therefore, the multiple linear regression model 

used data for May and June only. Additionally, some bare areas without plants occurred 

in wheat fields in May. In June and July, these spots were covered by alfalfa, which 

provided a high GNDVI in images from June and July. For example, in Figure 3.22(e), 

green alfalfa is visible in the left top of this image, whereas the wheat had matured 

completely. In Figures 3.17 & 3.19, the scatter plots of predicted yield vs. reference yield 
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are shown with models built by data from May 21 and 29 and June 19. Some outliers 

occurred with low reference yields of approximately 30 bushels/acre and predicted yields 

of 70 bushels/acre. These outliers were caused by bare areas in wheat fields, which 

changed the GNDVI irregularly during the growth of wheat plants. In May, no plants 

were in these spots, and the GNDVI value was as low as the soil, whereas in June, these 

spots began to be covered by other vegetation such as alfalfa, with high GNDVI values. 

Figure 3.23 shows the wheat empty spots (blue circles) were covered by alfalfa on June 

19. Therefore, we removed the sample points from these empty spots and rebuilt our 

model; the coefficient value of R increased to 0.9040, the RMSE was 11.5 bushels/acre, 

and p < 0.0001. 

 

Figure 3.23 Bare areas in wheat field. 
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3.5 Conclusions 

The UAV-based remote sensing information of GNDVI was used to predict the wheat 

nitrogen weight (g/m2) and final yield in this study. Both methods provides a predicted 

mapping for intra-field nitrogen and predicted yield spatial distribution. Both fCover and 

PAI were used to establish the nitrogen and yield prediction models and assess which 

nitrogen prediction models had better performance for wheat early growth stages at 

BBCH 40-69 between tillering to heading stages. With the GNDVI values derived from 

the multi-temporal UAV-based remotely sensed images and the measurements of the 

ground reference included PAI, fCover, plant height, and foliage nitrogen content, the 

best yield prediction time was indicated in this study. 

We used the relationship between biomass and plant structure × plant height to introduce 

a simple method for estimating total nitrogen weight in wheat leaves and a combined 

multi-temporal dataset method for predicting wheat final yield based on GNDVI values 

derived from UAV-based blue-green-NIR optical images. We first determined the 

relationship between GNDVI and ground total nitrogen weight per unit area from May to 

June. Based on the coefficient of determination (R2 = 0.7742), GNDVI could be used to 

monitor and predict total nitrogen status in early and mid-season wheat, BBCH 40-69. 

This period, which is important for wheat growth and final grain production, affected the 

final biomass and yield production. Within field mapping of nitrogen was generated in 

this study, these results could help farmers in quantitative spatially variable fertilizer 

application. Instead of laboratory plant analysis, the UAV-based imagery method 

provides a real-time and entire field nitrogen prediction. Second, the yield prediction 

model was developed based on the strong correlation between GNDVI and biomass. A 

multiple linear regression model was applied using temporal series GNDVI data to build 

a wheat yield prediction model and generate a yield spatial distribution map. The best 

yield prediction time for winter wheat was determined to be wheat BBCH stage 48 before 

awns appear. This results provides almost a two month early winter wheat prediction for 

farmers, this could effectively help farmers to make better decision on wheat 

management. 
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UAV-based remote sensing can provide more temporal images for a crop field than 

traditional satellite images. Additionally, UAVs provide very high-resolution images for 

a study area. In this study, the resolution of UAV images was 0.50 m per pixel, which 

was sufficient to identify bare areas in wheat fields. By contrast, with traditional satellite 

images, obtaining a sufficient level of detail in a small-scale field is difficult. The 

combination of high-resolution UAV-based blue-green-NIR images and high-resolution 

spatial yield data provided many sample points. The yield prediction model that was 

established with these many sample points provided reliable predictions. In this study, we 

selected 460 total points to build and test our model.  

Improvements are required for multispectral image collection using UAV systems and 

also for the frequency of image capture. A multispectral camera could collect more 

information at different wavelengths. The UAV imagery in this study was conducted by 

image normalization process to rescale all image; the future research could analyzed by 

using reflectance values to study the nitrogen variation in different years. Additionally, 

the method in this study could include more vegetation indices in the monitoring of other 

crops. As demonstrated in this study, a collection of high-frequency, UAV-based images 

could help determine the best period to monitor crops for nitrogen and yield predictions. 

With consideration of farmer concern about plant health status within their farms, this 

model could help farmers easily achieve within field nitrogen monitoring and final yield 

prediction. Furthermore, as demonstrated in this study, UAV-based images can provide 

intra-field crop yield prediction with its high spatial and temporal imagery. Further tests 

on yield prediction should include environmental factors, such as rainfall, temperature 

and solar radiation, because this information could improve the model to determine 

yearly variation in yields. 
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4 Conclusions 

4.1 Summary 

Remote sensing information is one of the important components in precision farming 

which provides an efficient and effective tool for crop monitoring. The precise and real-

time crop nitrogen monitoring and yield prediction during the crop growth season help 

farmers to make better decisions and estimate profit in agricultural activities. This real-

time information greatly depends on continuous remotely sensed crop monitoring.  

The commonly available optical remote sensing data is not reliable to provide high 

quality temporal imagery during the entire crop growth season due to frequent cloud 

cover and rainy weather in Ontario. In addition, the spatial resolution of imagery restricts 

the application of optical remote sensing data in intra-field crop monitoring. The UAV-

based imagery provides an alternative high spatial and temporal data source for crop 

monitoring with a greater detection capability compared with the traditional optical 

satellite for intra-field variations. 

Chapter 2 presented a comparison in detection capability and sensitivities to LAI and 

biomass estimations between the UAV-based multispectral imagery and the RapidEye 

imagery for corn in eastern Ontario. The comparison including detection in spatial 

variations, sensitivity in various fertilizer treatment, and six vegetation indices in LAI and 

biomass estimation demonstrated that the UAV-based multispectral images had a great 

potential in intra-field variability detection and seasonal crop growth monitoring.  

Chapter 3 developed models to estimate total nitrogen weight and final yield using UAV-

based blue-green-NIR imagery in winter wheat in Southwestern Ontario. A biomass 

estimation method was used to establish the models of total nitrogen weight and final 

yield prediction in order to provide farmers nitrogen weight and prediction yield maps 

and help in nitrogen management in future farm activities. 
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4.2 Conclusion and results 

The research presented in this thesis provided responses according to the research 

objectives in Chapter 1. 

1. The UAV derived NDVI had a greater range of NDVI values and higher CV 

values when compared with RapidEye NDVI value to represent spatial variations 

in corn field. The UAV imagery had a better performance in capturing the crop 

status variation of the two nitrogen treatment zones than that of RapidEye. The 

UAV provided more details and information to identify the region of interest on 

real-time monitoring in corn field. 

2. NDVIre and SRre derived from the UAV imagery showed a high sensitivity to 

LAI from emergence to LAI up to 5 m2/m2. The cumulative SR derived from the 

UAV imagery showed no saturation for the entire biomass measurement. The 

remote sensing products of LAI and biomass revealed that the UAV-based 

multispectral imagery had a greater sensitivity to crop biophysical variables.  

3. The total nitrogen weight model derived from a calculated biomass model had a 

good performance for early growth stage of wheat at BBCH 40-69 which is after 

wheat rooting stage and before fruit development stage.  

4. The final yield model was established based on early multi-temporal estimated 

biomass. The map of predicted yield was provided by this yield prediction model 

and the best yield prediction time was indicated when wheat growth stage is 

BBCH 48.  

4.3 Research contributions 

The main contributions of the research in chapter 2 are demonstrated in three aspects: 

1. An operational procedure of reflectance conversion method had been provided for 

UAV-based multispectral image processing. Using this procedure, the reflectance 

was calculated based on two reference targets and some natural reference targets. 

2. Two red-edge vegetation indices, NDVIre and SRre, were shown to have better 

performance in LAI estimation using UAV-based multispectral imagery. 
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3. The cumulative SR yielded a better performance in biomass estimation using 

UAV-based multispectral imagery than that of all RapidEye cumulative 

vegetation index. 

The main contributions of research in Chapter 3 is that the total nitrogen weight model 

could provide farmers real-time nitrogen monitoring map for farmers in wheat early 

growth stage in Southwestern Ontario. The nitrogen weight prediction model has a better 

performance from May to June at wheat BBCH stages 40-69. The yield prediction model 

provides a yield spatial distribution map in this study that is two month earlier than 

harvest season. The wheat BBCH stage 48 is the prime time to monitor wheat status for 

final yield prediction. Meanwhile, Chapter 3 demonstrates the application capability of 

calculated biomass model in winter wheat biomass estimation. This biomass calculated 

model provides a non-destructive ground reference biomass measurement method which 

avoid time-consuming process and plant damaged during the field work.  

4.4 Possible future research 

4.4.1 Multispectral camera 

Since the UAV system could provide flexible flight performance and high temporal and 

spatial resolution imagery, the ground-based methods on crop status measurement may be 

done on UAV system to achieve more accurate results than satellite images. The 

advantages of the multispectral camera were demonstrated in Chapter 2. It could provide 

some better vegetation indices in the estimation of plant biophysical parameters. 

Specifically the red-edge bands in multispectral camera could provide more vegetation 

indices combinations. Therefore, a multispectral camera could be applied in future 

research on wheat and corn total nitrogen and final yield estimation. Additionally, many 

researchers used ground based multispectral or hyperspectral imagery to monitor crop 

disease and water status. By using the Tetracam, the wavelength of each band can be 

adjusted to the requirements of different indices, these indices derived from ground based 

research could be measured with the UAV system and achieved for a large area 

monitoring. 
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4.4.2 Plant height and fraction of vegetation cover 

The winter wheat biomass was calculated based on plant height, fCover and plant bulk 

density in Chapter 3. Beside the multispectral information and fractional vegetation cover 

derived from remote sensing data, the plant height could be achieved from 

photogrammetry technology in remote sensing with a UAV system. The measurements of 

plant height using the photogrammetry technology can be achieved by a normal digital 

camera which also provides fractional vegetation cover data. With the plant height and 

fractional vegetation cover, the biomass of different plant could be calculated using 

different plant bulk density. Instead of using the optical data to estimate and represent 

crop status, this method avoids the reflectance correction of remote sensing data and 

measures the volume of the crop in the field. Without the image radiometric correction, 

the normal digital camera makes the UAV system operation on crop monitoring is much 

easier for individual farms and reduces the cost of the UAV system. Moreover, this 

would effectively reduce the time consumption and plant destruction during ground 

reference data collection, providing a real-time measurement of crop biomass and help 

individual farmers to monitor their fields.  
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Appendices 

Appendix A Temporal UAV imagery in corn field 

 

Figure A-1 True color UAV image for corn field on June 9, 2014 in St. Isidore. 
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Figure A-2 True color UAV image for corn field on June 23, 2014 in St. Isidore. 
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Figure A-3 True color UAV image for corn field on July 24, 2014 in St. Isidore. 
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Figure A-4 True color RapidEye image for corn field on May 31, 2014 in St. Isidore. 
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Figure A-5 True color RapidEye image for corn field on June 19, 2014 in St. Isidore. 
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Figure A-6 True color RapidEye image for corn field on July 25, 2014 in St. Isidore. 
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Appendix B UAV-based imagery calibration results 

  

  

Figure B-1 Relationship between reflectance and DNs for green, red, red-edge, and 

NIR band. 

By using the empirical line method to convert the UAV images from DN to reflectance, 

the relationship between DN and reflectance in each band had been shown above. The 

three reference points were asphalt road, bare soil and white tarp in the images. In green, 

red, red-edge and NIR bands, DN and reflectance had a simple linear correlation.  
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Appendix C Cumulative Vegetation Index Theorem and Results 

This theorem calculated cumulative biomass using cumulative vegetation index with 

logistic function was proposed by Zhang in 2003 (Zhang et al., 2003). This theorem is 

based on the early vegetation index distribution in a year can be fitted in a logistic 

function.  

 

Figure C-1 Annual vegetation index distribution curve. 

The left side of the center line, the curve represented the vegetation index distrbution 

from emergency and mature states. The black dots are vegetation indices values. The 

striped area under the curve is cumulative vegetation indices values. This curve can be 

repreented in a logistic function shown below: 

 

where VI (DOY) is the fitted VI value at day of year (DOY), α, and b are the fitting 

parameters, c + d is the maximum cumulative VI value, and d is the initial background VI 

value. 

Reference:  

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., … 

Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing 

of Environment, 84(3), 471–475. http://doi.org/10.1016/S0034-4257(02)00135-9 
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Appendix D Vegetation index and cumulative vegetation 

index for corn field in 2014 

Table D-1 UAV-based imagery Vegetation index values 

Date 
Sample 

ID 

UAV VI 

NDVI  GNDVI MTVI2 NDVIre SR Srre 

9-Jun-16 

CE_01 0.1600 0.2760 0.0970 0.0400 1.3820 1.0830 

CE_02 0.2310 0.3530 0.1960 0.0570 1.6010 1.1200 

CE_03 0.2710 0.3600 0.2850 0.0710 1.7420 1.1520 

CE_04 0.1710 0.3070 0.0900 0.0490 1.4120 1.1030 

CE_06 0.2480 0.3190 0.2760 0.0570 1.6610 1.1200 

CE_08 0.2120 0.2610 0.2550 0.0390 1.5390 1.0810 

23-Jun-16 

CE_01 0.5480 0.5480 0.7180 0.0770 3.9750 1.1680 

CE_02 0.5990 0.5990 0.7750 0.1380 5.0080 1.3210 

CE_03 0.5530 0.5530 0.7070 0.1200 3.9160 1.2740 

CE_04 0.5210 0.5210 0.6560 0.1010 3.3760 1.2250 

CE_06 0.5330 0.5330 0.6730 0.1010 3.5430 1.2240 

CE_08 0.5420 0.5420 0.7690 0.0710 4.3940 1.1530 

24-Jul-16 

CE_01 0.8400 0.7530 0.8790 0.1980 11.4880 1.4950 

CE_02 0.8740 0.8180 0.8760 0.2520 14.9200 1.6720 

CE_03 0.8510 0.7890 0.8680 0.2200 12.4430 1.5650 

CE_04 0.8840 0.8410 0.8730 0.2750 16.2060 1.7570 

CE_06 0.8380 0.7430 0.8840 0.1750 11.3750 1.4240 

CE_08 0.8580 0.7980 0.8700 0.2250 13.0820 1.5820 

9-Sep-16 

CE_01 0.8240 0.5980 0.9700 0.0920 10.3800 1.2030 

CE_02 0.8150 0.7760 0.8360 0.1670 9.8120 1.4010 

CE_03 0.8460 0.7180 0.9080 0.1860 12.0250 1.4580 

CE_04 0.8370 0.7510 0.8760 0.2030 11.2410 1.5090 

CE_06 0.7240 0.6820 0.7880 0.1240 6.2400 1.2830 

CE_08 0.7930 0.7130 0.8130 0.1520 8.9810 1.4590 

Table D-2 RapidEye imagery vegetation index values 

Date 
Sample 

ID 

RapidEye 

NDVI GNDVI MTVI2 NDVIre SR Srre 

9-Jun-14 

CE_01 0.0900 0.1540 0.0490 0.1230 1.1970 1.2810 

CE_02 0.1120 0.1730 0.0910 0.1220 1.2520 1.2770 

CE_03 0.0890 0.1260 0.0880 0.1230 1.1950 1.2800 

CE_04 0.0890 0.1560 0.0440 0.1010 1.1950 1.2240 
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CE_06 0.0610 0.1330 -0.0130 0.1300 1.1300 1.2980 

CE_08 0.0800 0.1090 0.0850 0.1090 1.1730 1.2440 

23-Jun-14 

CE_01 0.4460 0.3670 0.6330 0.2930 2.6090 1.8310 

CE_02 0.4880 0.4150 0.6580 0.3650 2.9060 2.1480 

CE_03 0.4730 0.3820 0.6660 0.3230 2.7950 1.9520 

CE_04 0.3950 0.3710 0.5360 0.2680 2.3080 1.7310 

CE_06 0.4090 0.3630 0.5700 0.2970 2.3850 1.8470 

CE_08 0.4800 0.4080 0.6510 0.3400 2.8450 2.0290 

24-Jul-14 

CE_01 0.6540 0.5540 0.7880 0.4330 4.7870 2.5280 

CE_02 0.6700 0.5760 0.7930 0.4570 5.0660 2.6800 

CE_03 0.6580 0.5710 0.7800 0.4650 4.8440 2.7350 

CE_04 0.6680 0.5690 0.7950 0.4720 5.0330 2.7890 

CE_06 0.6740 0.5600 0.8100 0.4440 5.1350 2.5970 

CE_08 0.6740 0.5810 0.7940 0.4740 5.1430 2.8020 

9-Sep-14 

CE_01 0.7180 0.6330 0.8120 0.4250 6.0920 2.4760 

CE_02 0.7680 0.7380 0.8010 0.5030 7.6270 3.0240 

CE_03 0.7890 0.7140 0.8420 0.5200 8.5000 3.1680 

CE_04 0.8110 0.7590 0.8390 0.5770 9.5930 3.7270 

CE_06 0.7490 0.6600 0.8310 0.4490 6.9560 2.6280 

CE_08 0.7770 0.6830 0.8490 0.4790 7.9680 2.8390 

Table D-3 UAV-imagery cumulative vegetation index values 

Date 
Sample 

ID 

UAV Cumulative Vis 

NDVI GNDVI MTVI2 NDVIre SR Srre 

9-Jun-14 

CE_01 1.1619 2.0715 0.6547 0.2138 14.0553 10.3069 

CE_02 1.5921 2.4449 1.1431 0.3319 13.2811 10.5936 

CE_03 1.7947 2.3872 1.6192 0.4036 14.5269 10.8097 

CE_04 1.2371 2.2622 0.6881 0.2275 12.8300 10.3307 

CE_06 1.5371 2.1925 1.7710 0.3506 14.3558 10.7659 

CE_08 1.4111 1.8959 1.4786 0.1590 13.0588 10.2690 

23-Jun-14 

CE_01 5.7443 7.8037 5.6450 1.0127 50.3515 25.7910 

CE_02 7.2836 8.9911 8.2417 1.6160 47.4704 27.4778 

CE_03 7.3748 8.6339 8.6646 1.6185 51.1677 27.5495 

CE_04 5.6524 7.8575 4.9426 1.1798 39.8821 26.0125 

CE_06 6.8290 9.0272 8.3947 1.3623 48.1282 26.9981 

CE_08 6.4420 7.3142 8.9239 0.8461 47.6975 25.5322 

24-Jul-14 

CE_01 30.3802 28.6549 33.3579 5.6426 301.8433 68.0564 

CE_02 31.9051 32.3859 34.7153 8.3291 411.6353 75.3305 

CE_03 30.8676 30.4885 35.0714 7.3637 321.6148 71.9679 

CE_04 29.8193 30.1024 31.2178 7.4777 416.9493 74.0721 

CE_06 29.8000 28.8702 33.3245 5.9839 288.6613 67.9091 
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CE_08 30.1197 29.8485 35.4049 5.8098 372.6998 69.2274 

9-Sep-14 

CE_01 71.0655 59.8620 73.8368 14.2355 854.0733 134.0768 

CE_02 72.3756 68.2272 72.7620 19.8747 1004.1000 150.3733 

CE_03 71.2219 64.3253 74.1706 17.8349 907.0049 145.1810 

CE_04 70.5210 65.7979 69.7159 19.4263 1131.4000 148.8691 

CE_06 69.4358 60.9860 70.2327 14.4069 832.7562 136.9263 

CE_08 70.1623 67.5246 73.6409 15.5936 947.8225 139.1617 

Table D-4 RapidEye imagery cumulative vegetation index values 

Date 
Sample 

ID 

RapidEye Cumulated VI 

NDVI GNDVI MTVI2 NDVIre SR SRre 

31-May-14 

CE_01 0.6144 1.4254 0.3801 1.0888 11.1672 11.5228 

CE_02 0.9940 1.6967 0.8114 1.0840 12.4351 11.8226 

CE_03 0.7416 1.2426 0.7382 1.0863 11.5932 11.7812 

CE_04 0.6993 1.4970 0.3687 0.9588 11.0992 11.1417 

CE_06 0.5417 1.1755 -0.0469 1.1094 10.7532 11.6272 

CE_08 0.6536 0.9226 0.7300 0.9241 11.3716 11.1708 

19-Jun-14 

CE_01 4.3271 5.1226 3.7687 3.5107 38.2513 30.9913 

CE_02 3.8817 5.9238 4.0661 3.7075 43.0505 36.0759 

CE_03 3.6529 4.9024 4.6732 3.5967 40.4024 34.6824 

CE_04 3.8188 5.2896 2.8166 3.5926 36.0891 31.9265 

CE_06 2.4265 3.9973 2.9845 3.7548 36.0351 31.8176 

CE_08 3.5320 3.7959 0.4288 3.5561 40.4265 31.1575 

25-Jul-14 

CE_01 23.8516 20.0472 28.1032 16.2804 152.6934 106.4862 

CE_02 25.3393 21.1539 28.5155 18.2628 165.4867 112.8375 

CE_03 25.2619 19.7197 29.4267 18.1978 154.9695 107.7526 

CE_04 20.1413 19.7314 27.2961 15.1852 144.7499 100.8133 

CE_06 23.6214 22.1451 27.4287 16.8100 134.1870 109.3346 

CE_08 25.0994 22.4311 29.3153 17.7652 161.4435 115.9912 

9-Sep-14 

CE_01 54.5088 46.7825 63.2971 35.1520 400.8264 216.5742 

CE_02 56.7113 40.9588 63.5835 39.3740 453.6348 240.8751 

CE_03 57.3405 48.9725 65.1103 39.8590 448.7985 240.8046 

CE_04 53.6577 49.8607 63.2436 39.0626 473.5131 248.9617 

CE_06 54.9173 48.9719 63.5368 36.4512 380.4456 224.2625 

CE_08 57.0306 50.2447 65.4574 38.7324 457.5197 240.1152 
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Appendix E Ground reference data 

Table E-1 Corn field ground reference data, LAI, averagey height and biomass, in 

2014 

Date Site LAI (m2/m2) 
Average height 

(cm) 
Biomass (g/m2) 

9-Jun-14 

CE01 0.14 30.20 12.67 

CE02 0.10 35.80 13.33 

CE03 0.01 35.80 15.33 

CE04 0.04 32.60 11.33 

CE06 0.01 29.40 10.00 

CE08 0.19 34.20 18.00 

23-Jun-14 

CE01 0.62 70.00 124.00 

CE02 1.03 71.60 118.67 

CE03 1.03 80.40 120.67 

CE04 0.69 62.00 87.33 

CE06 0.94 65.80 88.00 

CE08 1.24 87.80 167.33 

24-Jul-14 

CE01 3.12 278.40 1113.33 

CE02 4.39 294.40 718.00 

CE03 3.46 288.20 676.67 

CE04 4.65 302.60 698.00 

CE06 4.39 276.20 540.67 

CE08 3.82 292.80 857.33 

9-Sep-14 

CE01  -  - 1356.00 

CE02  -  - 1245.33 

CE03  -  - 1847.33 

CE04  -  - 1570.00 

CE06  -  - 1186.00 

CE08  -  - 1576.00 

Table E-2 Wheat ground reference data, PAI and average height, vegetation cover 

fraction and nitrogen content in 2015 

 Date 
Sample 

ID 
Average height 

(cm) 
fcover 

(%) 
PAI 

(m2/m2) 
Nitrogen 

(%) 

19-May-
15 

W33-09 0.32 6.50 0.31 5.32 

W33-08 0.35 - 0.21 5.51 

W33-07 0.34 19.30 0.41 5.17 

W33-06 0.33 12.50 0.51 4.96 
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W33-05 0.36 14.80 0.38 5.14 

W33-04 0.35 11.00 0.38 5.35 

W33-03 0.30 10.93 0.16 5.15 

W33-02 0.40 12.20 0.40 5.22 

W115-14 0.26 28.30 0.51 4.37 

W115-13 0.27 25.70 0.48 5.16 

W115-12 0.29 20.60 0.57 5.15 

W115-11 0.31 26.70 0.56 5.20 

W115-10 0.29 18.50 0.46 5.22 

W115-09 0.33 31.00 0.65 5.28 

W115-08 0.35 27.40 0.73 5.57 

W115-07 0.30 22.40 0.60 5.46 

W112-15 0.30 42.10 0.80 5.19 

W112-14 0.33 27.70 0.60 5.04 

W112-13 0.32 24.60 0.89 5.33 

W112-12 0.32 28.50 0.72 4.80 

W112-11 0.35 33.20 0.73 5.03 

W112-10 0.30 29.20 0.63 5.30 

W112-09 0.30 29.90 0.79 4.84 

W112-04 0.32 27.50 0.73 5.02 

W108-08 0.40 23.50 0.75 4.49 

W108-07 0.41 35.50 0.80 4.99 

W108-06 0.45 30.40 0.57 4.90 

W108-05 0.43 35.00 0.61 5.17 

W108-04 0.43 44.40 0.85 5.93 

W108-03 0.42 22.40 0.48 4.36 

W108-02 0.39 25.30 0.39 4.95 

W108-01 0.40 8.10 0.34 4.85 

29-May-
15 

W33-10 0.30 12.80 0.36 5.15 

W33-09 0.27 13.60 0.52 4.91 

W33-08 0.29 -  0.29 4.93 

W33-07 0.36 29.10 0.91 5.09 

W33-06 0.37 25.90 0.90 4.57 

W33-05 0.30 25.10 0.51 4.85 

W33-04 0.36 27.90 0.75 5.22 

W33-03 0.43 31.10 0.76 4.73 

W33-02 0.35 26.80 0.83 4.83 

W115-14 0.41 23.50 0.60 4.66 

W115-13 0.31 38.30 0.67 5.00 

W115-12 0.31 42.90 0.84 4.92 

W115-11 0.35 44.70 0.58 5.14 
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W115-10 0.36 38.10 0.61 5.02 

W115-09 0.39 36.80 0.64 5.11 

W115-08 0.39 38.00 0.70 4.96 

W115-07 0.35 43.00 0.77 5.10 

W112-15 0.40 33.20 0.80 4.44 

W112-14 0.43 38.30 0.60 4.73 

W112-13 0.49 19.80 0.89 4.92 

W112-12 0.42 20.40 0.72 4.36 

W112-11 0.41 22.40 0.73 4.65 

W112-10 0.42 12.50 0.63 4.98 

W112-09 0.35 23.50 0.79 4.66 

W108-08 0.55 27.50 1.27 4.58 

W108-07 0.56 21.10 1.09 4.73 

W108-06 0.58 23.30 1.11 4.58 

W108-05 0.45 22.80 0.98 4.18 

W108-04 0.50 23.50 0.96 4.90 

W108-03 0.59 25.60 1.04 4.39 

W108-02 0.50 24.70 0.98 4.50 

W108-01 0.55 32.70 0.74 4.35 

19-Jun-
15 

W33-10 0.49 48.30 1.30 4.55 

W33-09 0.60 39.80 1.20 4.67 

W33-08 0.56 30.30 0.75 4.55 

W33-07 0.53 42.10 1.18 3.42 

W33-06 0.57 42.70 1.14 3.08 

W33-05 0.56 35.20 1.02 4.62 

W33-04 0.58 50.00 1.38 4.27 

W33-02 0.60 46.90 1.12 4.12 

W33-01 0.58 44.80 1.23 4.14 

W112-15 0.94 54.10 1.53 4.71 

W112-14 0.91 48.40 1.18 4.50 

W112-11 0.92 42.00 0.54 4.29 

W112-10 0.78 53.70 1.85 4.16 

W112-09 0.83 51.50 1.50 4.37 

W112-04 0.90 47.10 1.43 4.45 

W108-08 0.77 45.90 1.34 3.98 

W108-07 0.85 43.70 1.95 4.15 

W108-06 0.86 57.70 1.48 4.01 

W108-05 0.60 50.40 1.13 3.96 

W108-04 0.86 41.50 1.39 4.23 

W108-03 0.81 39.90 1.07 4.07 

W108-02 0.77 49.20 1.07 3.73 
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W108-01 0.75 41.60 1.02 3.57 

W115-12 0.81 64.40 1.01 3.72 

W115-11 0.81 44.80 1.57 3.47 

W115-10 0.75 66.00 1.50 3.31 

W115-09 0.75 61.00 1.12 3.90 

W115-08 0.79 50.90 0.88 3.95 

W115-07 0.87 45.20 1.57 3.89 

2-Jul-15 

W33-10 0.42 76.80 0.72 3.84 

W33-09 0.63 19.10 0.91 3.74 

W33-08 0.55 31.10 0.75 3.28 

W33-06 0.57 37.50 1.21 2.90 

W33-05 0.52 42.70 0.95 3.31 

W33-04 0.53 28.20 1.67 3.42 

W33-02 0.53 35.60 1.29 3.46 

W112-15 0.94 67.00 1.39 4.05 

W112-14 0.91 36.20 1.52 3.59 

W112-11 0.92 24.00 0.85 3.88 

W112-10 0.78 7.50 1.14 3.60 

W112-09 0.83 31.50 1.23 3.29 

W112-04 0.90 36.30 1.52 3.31 

Table E-3 Ground reference biomass for wheat fields in 2015 

Date 
Sample 

ID 
Biomass 
(g/m2) 

Height 
(cm) 

PAI 
(m2/m2) 

PAI*H/100 
fCover 

(%) 
fCover*H/100 

21-May-
15 

W33 132.00 35.00 0.37 0.13 13.46 4.71 

W08 326.00 60.00 0.60 0.36 28.08 16.85 

W115 169.00 73.00 0.74 0.54 30.34 22.15 

W112 109.00 30.00 0.57 0.17 25.08 7.52 

19-Jun-
15 

W33 276.44 41.30 1.14 0.47 42.23 17.44 

W112 600.22 71.30 1.30 0.93 46.29 33.00 

W115 679.00 58.30 1.34 0.78 49.47 28.84 

W108 669.33 73.30 1.28 0.93 44.00 32.25 

2-Jul-15 

W108 1014.62 90.00 1.52 1.37 53.60 48.24 

W115 884.04 89.00 1.53 1.36 54.20 48.24 

W110 929.00 94.00 1.64 1.54 54.00 50.76 

W33 588.29 93.00 1.39 1.29 36.20 33.67 

W108 1017.14 86.00 2.00 1.72 67.00 57.62 

W115 1003.47 87.00 1.99 1.73 65.00 56.55 

W112 711.88 81.00 1.12 0.91 44.80 36.29 

W33 572.36 81.00 1.12 0.91 44.80 36.29 
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Appendix F UAV system and ground station 

The UAV-based imagery data were collected by a fixed wing UAV that was developed 

by A&L Canada Inc. to collect images for entire fields. This UAV has a maximum 500g 

payload and 40 minutes flight time. The maximum coverage of this UAV will depend on 

the flight height.  

 

   

Figure F-1 Fixed wing UAV for image collection in this study. 
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The UAV was controlled to follow a pre-programmed flight route generated by the 

ground station software Mission Planner. All UAV flight parameters are shown in the 

software to help the operator control the UAV. The route can be setup based on the field 

size and image overlap requirement. As Figure G-3 shows, different image capture 

density was operated at the same field to achieve different image overlap.   

 

Figure F-2 Control panel of the Mission Planner software. 

   

Figure F-3 Different flight path showed at the same field. 
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Appendix G Temporal UAV-based blue-green-NIR imagery 

processing 

The UAV-based blue-green-NIR images were processed in the images mosaicking 

software Agisoft. All images have geo-tags which help to ensure the geometric accuracy 

of the final image. After the image mosaicking, the final blue-green-NIR image can be 

exported as a tiff file which can be processed in ENVI or ArcGIS, the resolution of the 

final image can be achieved as high as 10 center meters. The final mosaicked images for 

the wheat field are shown in Figure G 2-5. 

 

Figure G-1 UAV-based images processing in Agisoft. 
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Figure G-2 UAV-based blue-green-NIR imagery on May 21, 2015 
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Figure G-3 UAV-based blue-green-NIR imagery on May 29, 2015 
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Figure G-4 UAV-based blue-green-NIR imagery on June 19, 2015 
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Figure G-5 UAV-based blue-green-NIR imagery on July 2, 2015 
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