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Abstract. Boundary value problems for ordinary and integro-differential 
equations degenerating on the boundary of the region are considered. The 
existence of solutions is proven and a priori estimates for the solutions of the 
problems are obtained. The method of semidiscretization is applied for 
approximate solution, and the convergence of the approximate method is 
proven. Keywords: boundary, degenerate, integro-differential, factorization, 
maximum, ordinary, filtration, semidiscretization. 

1 Introduction

The study of initial-boundary value problems for parabolic equations is crucial both 
theoretically and practically. Scholars like V.D. Ilyin, A.S. Kalashnikov, O.D. Oleinik, O.A. 
Ladyzhenskaya, Zh.M. Liberman, Zh.L. Lionis, N. Babushka, and others have significantly 
advanced our understanding of the solvability of these problems. Their contributions have 
paved the way for exploring various theoretical aspects and practical applications. 
Furthermore, the successful application of numerical methods in investigating boundary 
value problems for both ordinary and partial differential equations of parabolic nature 
underscores the multidisciplinary approach required in this field. By building upon these 
foundational works, researchers can delve deeper into the behavior and solutions of such 
problems, thereby driving progress in both theoretical knowledge and real-world applications 
[1-15]. 

In the work of S.G. Mikhlin [11], variational mesh approximation for degenerate ordinary 
differential equations in the form: 

− 𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑑𝑑

𝛼𝛼𝑝𝑝(𝑑𝑑) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝑔𝑔(𝑑𝑑)𝑑𝑑 = 𝑓𝑓(𝑑𝑑) 
subject to  

u(1) 0, 0 1=    
In the research conducted by R. Merc and V.Ya. Rivkind[13],  finite difference methods 

were employed to approximate solutions for the first boundary value problem concerning a 
degenerate parabolic equation. Meanwhile, V. Walter[12],  through a series of studies 
utilizing the method of characteristics, developed solutions for the Cauchy problem and 
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demonstrated the convergence of nonlinear boundary value problems associated with 
parabolic equations. Presently, significant attention is directed towards investigating 
degenerate boundary value problems pertaining to ordinary and integro-differential equations 
of parabolic type. The interest in these problems stems from their relevance to gas and liquid 
filtration issues. These boundary value problems find applications in scenarios such as one-
dimensional gas filtration. Non-stationary filtrations are typically described by nonlinear 
parabolic differential equations, wherein the coefficients of porosity and permeability of the 
formation are often spatially variable, sometimes both horizontally and vertically. 
Consequently, these coefficients become functions of coordinates. In certain instances, the 
permeability of the formation at the region's boundary reaches zero, leading to degenerate 
equations along the boundary. Works dedicated to addressing and solving such problems 
have been outlined in references [1] and [3]. 

2 Methodology

Currently, there is a notable influx of publications dedicated to the examination of degenerate 
equations. In the work of V.V. Bobkov and O.A. Liskovets [15], a boundary value problem 
for non-degenerate ordinary differential equations, based on the maximum principle, is 
analyzed, yielding a priori estimates for the solution. Additionally, in this work, boundary 
value problems concerning degenerate ordinary differential equations on the region's 
boundary are investigated. Exact estimates for the solution of boundary value problems for 
ordinary differential equations are acquired through a modification of the differential sweep 
method [1],. Moreover, boundary value problems for integro-differential parabolic equations, 
which degenerate on the boundaries of the region, are deliberated. The direct method is 
employed for the solution, and the convergence of this approach is thoroughly examined [2].. 
The proof provided is constructive, and under certain assumptions, a priori estimates for the 
solution are obtained. These advancements, as outlined in references [1] and [2], contribute 
significantly to the understanding and resolution of degenerate equations in various contexts. 

Under certain assumptions regarding the input functions, a priori estimates for the 
solution are obtained, and the convergence of the direct method is proven [3]. 

3 Results

The issue of gas filtration is studied, which is described by an integro-differential equation 
taking into account pressure and velocity relaxation. First, auxiliary problems for ordinary 
differential equations are considered. 

Problem 1. Consider ordinary differential equations degenerating on the boundary of the 
region 
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Here,  −)(),(),(),(),( xKxmxcxbxa are given functions on the interval   and   
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Lemma 1. If ],[)(),(),(),(),( baСxkxmxcxbxa    , then there exists a solution to 

problems (1)-(3), and for the solution, the estimate holds (in case +
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The proof relies on a modification of the differential sweep method [1]. 
 
Problem 2. Consider problems arising in solving gas filtration problems taking into 

account pressure and velocity relaxation under certain assumptions. In dimensionless form, 
the filtration equation can be described by integro-differential equations. 
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All input functions are given functions in the domain of their arguments, where 
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To solve problems (4)-(6), we will apply the direct method, i.e. 
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. Approximate problem (4)-(6) with the following difference 

equations   
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Problem (7)-(9) is solved sequentially layer by layer starting at j 1,...=   . Each time, it 

is linear with respect to  njxu j ,1),( =  and has a unique solution based on the lemma 
under the assumption that all known smooth functions in the equation. 
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convergence), and there exists a unique solution to problem (1)-(2). 
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  Where 1 , 2  ,  are some constants. Thus, ( )u x, t     is uniformly continuous 

function and ( )tu x, t   is also a continuous function. In this case, there also exists a unique 
solution to problems (1),(2). 

The approximate solution constructed by the direct method converges to the exact 
solution with a rate of  ( )0  .  - - time step. 

4 Conclusion

The theorems of existence and uniqueness of the considered initial boundary value problems 
for degenerate integro-differential parabolic equations have been proven. The proof of the 
existence theorem is constructive and relies on the use of the direct method combined with 
the differential sweep method. It has been established that the approximate solution 
converges to the exact solution with a rate of   - time step. 

A priori estimates for the solutions of boundary value problems for ordinary differential 
equations have been obtained, which have been used to derive estimates for the solutions of 
integro-differential equations. The results obtained can be applied to the study of gas filtration 
problems. 
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