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Abstract:Electric vehicles are having significant priority in transportation 

including goods, public transport etc. among many technologies in electric 

vehicle, brushless DC (BLDC) motors operated eclectic drives are mostly 

used. Speed sensorless control is required to implement for obtaining a best 

performance. At the same time, a sliding mode controller (SMC) can be 

able to produce the ultimate response under various conditions. Hence 

sensorless speed control with SMC of BLDC motor is implemented in this 

paper to drive the electric vehicle. In order to develop speed sensorless of 

motor, a model reference adaptive control (MRAC) system is developed. 

However, obtaining a fastest response is very important in electric vehicle 

speed control. Hence a TS-Fuzzy model is developed to use in the place of 

conventional PI controllers. Extensive results are collected for presentation 

by establishing Hardware – in the – Loop (HIL) with the help of two 

OPAL-RT devices.  
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1. INTRODUCTION 

Transportation is playing a key role in development of any organization or nation. 

Generally vehicles are used to transport goods and people from one location to another. 

However, conventional vehicles consume much diesel/petrol which release toxic gases 

during burning process in the vehicle. Global warming is increasing day by day due to 

conational vehicles. In order to overcome these issues, concept of an electric vehicle is 

introduced which is running by electric motor with the help of electric power.  

Electric vehicles are running mainly on electric drives. Hence, the selection of electric 

drives is very important in any electric vehicle. At very beginning, DC motors are using. 

The performances of DC motors are very well but there are many disadvantages over 

comparing with AC motors. However, AC motors are suffering with poor sped torque 

characteristics as compared with separately excited DC motor. Hence, a vector control is 

proposed to work an AC motor as a separately excited DC motor.  

Among many AC motors, induction motors and BLDC motors are commonly used in 

vehicles because of their simplicity as well as wide verity of applications. In the 

commercial electric vehicles, usually BLDC motors prefer. Hence, novel control methods 

need to be implemented on the BLDC motor to make an efficient drive for flexible 

operation. A battery bank is used in the electric vehicles as power sources. Therefore an 

inverter is interfaced between battery bank and BLDC motor to work as an electronic 

commentator to drive the motor. Various control methods are implemented on BLDC 

motor, apart from them; a sliding mode control (SMC) technique is one of the best 

methods. The control method (i.e., SMC) is implemented based on regulating dc-link 

current.  

Further, sensorless speed control method of the motor is developed and implemented 

control method with the help of T-S fuzzy controllers. Voltage fault diagnosis for electric 

vehicles is discussed by authors in [8]. Vehicle to vehicle charging management system of 

electric vehicle is implemented by authors in [9]. A detailed design and implementations of 

elective vehicles is presented by authors in [10]. LCA indicator system of electric vehicles 

is implemented by authors in [11]. A comparative economic analysis between conventional 

and plugged in electric vehicles is presented by authors in [12]. Authors in [13] discussed 

about charging safety of electric vehicles. Modeling of electric vehicles and their simulation 

results are presented by authors in [14].  

Proper inverter control technique is required for BLDC motor to drive the vehicle 

effectively. Because measuring speed with a sensor will be problematic, a speed sensorless 

technique is devised in this study using a model reference adaptive controller (MRAC). To 

regulate the motor speed, a dc-current regulation-based sliding mode controller (SMC) 

combined with the MRAC approach is used.By comparing Proportional and Integral (PI) 

with T-S Fuzzy controllers, T-S Fuzzy controllersare more effective under variable inputs 

[2]. Hence, T-S Fuzzy controllers based controltechnique is considered in this paper. 

This work is prepared by presenting the description of the system in Section-II. TS-Fuzzy 

controller is given in Section-III. A detailed modeling of BLDC motor is given in Section-

IV. Control of the BLDC motor is presented in Section-V. Hardware – in the – Loop (HIL) 

based results are included in Section-VI. Conclusionsare presented in Section-VII. Valuable 

list of references is listed at the end of the paper.  
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2. SYSTEM DESCRIPTION 

Proposed drive of an electric vehicle isdepicted in Fig. 1 which consists of power source, 

BLDC, converter, control unit etc. it is very difficulty on sensing the speed of the vehicle 

duringthe operations. To avoid this problem, sensorless speed control methodhas been 

implemented with the help of MRAC method. A SMC is implemented to track the motor at 

its reference values which is adjusted by driver of the vehicle. The detailed design and 

modeling of various components are discussed in net sections.  
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Fig. 1: BLDC Drive for Electric Vehicle. 

3. T-S Fuzzy Controllers 

Membership function of voltage errors ( ix ) & its derivatives ( ix ) are implemented to 

develop a conventionalT-S Fuzzy controllers as shown in Fig. 2.  

The mathematical expression for functions of membershipsof system is as follows: 
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Fig. 2: T-S Fuzzy represents. 

 

Table-1: Rules of a T-S Fuzzy controllers. 

Rules (t)ix  (t)ix  Values 

Rule1. N N (t)k(t)k 211 ii xxZ   
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Rule2. N P 
132 k ZZ   

Rule3. P N 
143 k ZZ   

Rule4. P P 
154 k ZZ   

The Table-3 compressed with list of rules of designed T-S Fuzzy controllers. The 

parameters of Z1, Z2, Z3, and Z4are tuned at particular instant. The ‘k’ is asample instant.k1, 

k2, k3, k4 and k5 are the fuzzy variables. Theseparameters are arranged by any tuning 

method. The following equation is expressed the output. 

1234

44332211

ZZZZ

BZBZBZBZ
Y




    (1) 

Here,B1= min.{ )( ip x , )( ip x }.B2= min.{ )( iN x , )( ip x }.B3= min. { )( ip x , )( iN x

}.B4= min.{ )( iN x , )( iN x }. 

a. Development of MRAC, BLDC, & SMC [4]. 

Permanent magnets are placed in a rotor of the BLDC motor, hence no need of supply in 

the rotor. Usually, only 2-phases are having current in BLDC motor at a time [1]. The basic 

equations for modeling of the motor are listed below.  

Lii
dt

d
Riieev bababaab )()(    (2) 

Lii
dt

d
Riieev acacacca )()(    (3) 

Lii
dt

d
Riieev cbcbcbbc )()(    (4) 


ccbbaa

e

eieiei
T


     (5) 

Where, line voltages are vab, vbc and vca. The ia,b,c are the 3-phases currents. Three phase 

back EMFs are represented byea, eb, &ec.The ‘R’andL=Ls-Lmare resistances and inductancs.  

4. Modeling of BLDC Motor 

The term Te represents electromagnetic torque produced bymotors. The vehicle speed is 

representedby  . 

Generally, 0&  cba iii    (6) 

Below equations shows back EMFs. 

bac eee  &0  

Hence, 

r

aa
e

ei
T



2
     (7) 

The speed of the vehicle is directly proportional to itsback EMFs. 

ea ke       (8) 

e

aba
a

K

vRi
dt

di
L

2

22 

     (9) 
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In steady state, 0
dt

dia , hence 

e

saab

k

Riv

2

2
  (10) 

Here, coefficientof back EMF is considered by ‘ke’.  

The following equations of motor are represented ‘DQ’reference frame. 

dsdsdradfdds iLiL      (11) 

)( qsqsqraqqs iLiL      (12) 

)( drdrfddsaddr iLiL       (13) 

)( qsaqqrqrqr iLiL      (14) 

Where, 
sladds LLL  , 

rladdr LLL  , 
rlaqqr LLL 

, slaqqs LLL  , fd denotes 

permanent magnetic flux linkage. 

The ids&iqsare playing a major role while regulating the speed of the BLDC motor. The 

parameter lists of BLDC motor are provided in Table-2.  

 

Table-2: BLDC motor ratings. 

S.No Parameters Values 

1 Power. 5hp 

2 voltage. 440Vrms 

3 current. 7.5Amp 

4  Speed. 1500rpm 

5 Range of DC voltage. 240-850V 

6 Start up voltage. 500Vdc 

7 Rated torque. 31Nm 

8 Frame model. 90MB 

9 Motor model. PE1R112M4 

10 Efficiency. 92.31 

11 Power factor. 0.99 

12 Inertia constant. 0.012kgm
2
 

13 Phase resistance. 0.9Ohm 

14 Magnetizing inductance. 10.5mH 

15 Leakage inductance. 2.5mH 

16 Magnetizing reactance. 3.3Ohm 

17 Leakage reactance. 0.8Ohm 

18 Weight. 37kg 
 

5. Control of BLDC Motor 

A MRAC method is implemented for a closed loop speed control of the motor by using 

basic below mathematical equations [2].  
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Here, ‘J’ is ainertia constant of rotor. Friction coefficient is assumed as ‘kf’. ‘M, bm, am, hn, 

gk, n’, and ‘k’ are constants. Gains of PI are Kp and Ki.  

Finally, 
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Fig. 3: MRAC block of a BLDC motor. 

Fig. 3(a) shows the basic model of the MRAC method. The speed of the BLDC motor is 

estimated and presented in 3(b). The estimated speed from MRAC block is further 

compared withthe motor reference speed. Variousparameters used in estimating the speed 

of the motor are updatebased on the PI controller. 

The amount of required power is decided the value of voltage at dc-link.  

Generally voltage at dc-link is depending on power flow from batteries into electric 

vehicles. Therefore, the motor can be set at its reference value through SMC. A model of 

theSMC is shown in Fig. 4. The model for generating required pulses is depicted in Fig. 5. 
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Tables 3 and 4 are prepared with variables used in SMC and constants of T-S Fuzzy 

controllers.  
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Fig. 4: Model represents of SMC. 
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Fig. 5: model for generating pulses to the inverter. 

Table-3: variables of SMC. 

S.No Constants Values 

1 a1 540 

2 a2 358 

3 a3 186 

 

Table-4: Gains of T-S Fuzzy& PI. 

Controller Value 

T-s Fuzzy a1=3.9, a2=3.25, a3=-

1.6, a4=1.8, a5=4.002. 

PI gains in DC block Kp=0.46, Ki=18.01. 

PI gains of MRAC Kp=4.16, Ki=17.79. 
 

6. RESULTSAND DISCUSSIONS 

The performance of the system is increased utilizing real-time simulators (RTS) in this 

study [2, 21-22]. To achieve HIL configuration in the laboratory, RTS modules such as 

OPAL-RT devices are attached. Two OPAL-RT devices are utilized to create HIL for real-

time testing of proposed complicated controllers. The planned electric vehicle system plant 

is dumped in OPAL-RT module 1 (i.e., OPAL RT-1). OPAL-RT module 2 contains all of 

the controllers. Through data cards, analog signals from the plant are transformed to digital 

for input to the controller unit (i.e., OPAL RT-2). The controller module may act as planned 

controllers and creates switching pulses for the plant's converters.The digital pulses will be 

translated to analog signals and sent into the plant via external data cards. For better 
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visibility, the essential findings are performed using a laptop rather than an oscilloscope. 

Figure 6 depicts the basic HIL configuration with two OPAL-RT dev 
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Fig. 6: HIL setup for results. 

Various analogue signals of the electric vehicle dynamic model (OPAL RT-1) are going as 

input to the control unit (OPALRT-2). On the other hand, the digital signals are coming to 

vehicle model from the controller unit. Hence, this method can be formed a HIL loop [2, 

21] effectively. The detailed HIL implementation of proposed system with proper colour 

coding is depicted in Fig. 7. Other dynamics of BLDC motor are adopted from [22]. 
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Fig. 7: HIL implementation with plant and controller units. 

 

Case-1: Comparison betweenPI &T-S Fuzzy Systems: 

Let’sassume30% decrease in speed of the motorat t = 3 sec. du to this reference speed, the 

control of the motor try to adjust the motor actual speed. The performance of control 

method is compared with PI and T-S Fuzzy controllers. Due to fixed gains of PI controllers, 

the T-S Fuzzy controller exhibits its superior performance during particular change in 

reference speed. Under these circumstances, the power consumption of the motor is 

depicted in Fig. 8. Moreover, due to constant gains of PI adjusted at change in 

speed,oscillations will become more in voltage at dc-link. 
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Fig. 8: Power consumption with PI and T-S Fuzzy. 

 

Case-2: Response of motor torque and speed: 

The proposed method is tested during changesin reference speed suddenly at t=3sec. 

During this sudden decreasing in reference speed, the motor speed must be reduced. Under 

this condition, the reference speed is estimated through the MRAC model of the BLDC 

motor. The designed SMC is generated required pulses to maintain speed at its reference 

value. Corresponding response of speed is presented in Fig. 9. Anyhow, the torque of the 

motor should be maintain at constant during steady state which is depicted by Fig. 10.  
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Fig. 9: BLDC motor speed with DCLC & MRAC. 
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Fig. 10: Torque generated by the motor under decreeing its speed. 

7. CONCLUSIONS 

A motor control is implemented in this paper to drive an eclectic vehicle with the help of 

BLDC. A hybrid control method is developed to achieve the best response during sudden 

change happen in the vehicle. Various results are examined under different case studies 
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with the help of HIL established by OPALRT modules. The T-S Fuzzy based control model 

is developedfor achieving fast tracking behaviorthe drive.The T-S Fuzzy controller is able 

to adjust the gains according to changes in the system. Hence, there is a significant priority 

of proposed method than PI controllers. By using HIL, required results are included in this 

paper by using OPAL-RT devices.  
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