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Abstract.This paper reviews the integration of renewable energy systems 

with Industrial IoT (IIoT) through Artificial Intelligence (AI). It examines 

various studies focusing on the design and monitoring of solar-powered 

wireless sensor nodes in diverse IIoT settings, particularly outdoors. A 

proposed distributed network architecture, underpinned by open-source 

technologies, aims for efficient solar power harvesting and data acquisition 

on solar radiation and ambient parameters. This data aids in devising 

estimation techniques to predict solar panel voltage outputs, optimising 

energy utilisation of solar-powered sensor nodes. The discourse extends to 

photovoltaic plants, emphasising continuous monitoring and fault detection 

for operational safety and reliability. Reviewed works advocate embedding 

AI and IoT for remote sensing, fault detection, and diagnosis, addressing 

challenges posed by undetectable faults. Furthermore, the paper explores 

AI's transformative potential in the broader energy sector, impacting 

electricity production, distribution, energy storage, and efficiency. The 

synergy of AI, IIoT, and renewable energy systems is underscored as a 

conduit for enhancing energy management, operational transparency, and 

deploying cost-effective solutions for complex industrial challenges, 

significantly bolstering the efficiency and intelligence of industrial 

production and services.  
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1 Introduction 

The swift progression of technology, together with the rapid global population growth, has 

sparked a crucial dialogue concerning energy sources and their exploration. This dialogue is 

further intensified by the increasing deployment of the Industrial Internet of Things (IIoT) 

and smart technology systems in outdoor settings. At the heart of this discussion is the 

utilisation of solar energy, a highly esteemed and applicable renewable energy source, 

particularly within the domains of IIoT and smart technology systems. The urgency of this 

consideration stems from the broad implementation of sensor networks and the need for a 

significant number of sensor nodes and smart devices within these systems. The adoption of 

solar-powered sensors and smart devices has emerged as a key solution, leading to a myriad 

of research initiatives aimed at enhancing the operational lifespan of these devices through 

solar energy. 

 

A notable aspect of using solar energy to power sensor nodes is the extension of their 

operational time. To optimally utilise solar-powered sensor nodes in various scenarios, it's 

crucial to identify the most suitable locations for node deployment, thereby enabling the 

estimation of solar panel outputs in specific areas. This strategic positioning aids in 

modelling sensor node operations and devising adaptive energy-saving modes based on the 

estimated outputs. This short paper reviews the studies proposing an approach centred on a 

wireless sensor network for gathering data on solar radiation, utilising a variety of sensors 

to assess solar panel performance, especially in outdoor IIoT scenarios. This approach 

represents the diverse strategies employed to efficiently harness solar energy within 

industrial settings. 

 

This short paper reviews the studies tackling the challenge of estimating the energy supply 

of solar-powered wireless sensor networks across a range of IIoT environments. The system 

offered in the reviewed studies is crafted to collect data suitable for applying nonlinear 

regression techniques for solar panel output estimation. The estimated outputs are vital in 

determining optimal energy-efficient operational modes of solar-powered sensor nodes, 

thus achieving efficient solar power harvesting effects. The proposed distributed wireless 

sensor network system architecture, rooted in open hardware and open-source technologies, 

is designed to capture solar radiation data and other ambient parameters. This architecture 

highlights the importance of design and platform efficiency of sensor nodes deployed 

within this network, aiming to improve energy efficiency and extend the node lifecycle. 

 

The burgeoning photovoltaic (PV) market, driven by the reduced cost of PV modules and 

renewable national energy targets, emphasises the importance of solar power generation. 

The remarkable growth in solar PV development calls for robust fault detection and 

diagnosis (FDD) algorithms to ensure the security and reliability of PV parks. The 

emergence of web-based monitoring for isolated and inaccessible solar PV parks aims to 

reduce operational and maintenance costs, thereby highlighting the need for innovative 

solutions like the application of Artificial Intelligence (AI) techniques and Internet of 

Things (IoT) in PV system monitoring and remote sensing. These technological 

advancements are anticipated to significantly enhance fault diagnostics, prognostics, and 

overall operational efficiency, marking a substantial step towards achieving safe, highly 

efficient, and eco-friendly industrial production/service. 

 

The integration of AI and IoT in solar energy systems, as explored in various studies, 

presents a promising avenue for advancing the efficiency and reliability of renewable 
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energy sources in industrial settings. The fusion of AI algorithms with IoT-enabled devices 

facilitates real-time monitoring, fault detection, and predictive maintenance, which are 

crucial for ensuring the optimal performance of solar-powered systems in industrial 

environments. Moreover, the application of machine learning and deep learning techniques 

in analysing vast datasets from solar PV systems contributes to more accurate forecasting, 

better decision-making, and enhanced control optimisation. This convergence of 

technologies not only augments the capabilities of solar energy systems but also propels the 

industrial sector closer to achieving sustainability and energy independence. Through a 

thorough review of the existing literature and studies, this paper underscores the pivotal 

role of AI and IoT in revolutionising solar energy systems for industrial applications, 

thereby contributing to the broader discourse on renewable energy and industrial 

sustainability. 

2 Review and discussion 

In the study by Dobrilovic et al. (2023), emphasis is placed on evaluating the performance 

of energy-efficient solar-powered sensor nodes for deployment in Industrial IoT 

environments [1]. The narrative explores the imperative of harnessing renewable energy 

sources, notably solar energy, to energise sensor nodes and smart devices within industrial 

frameworks. This urgency is propelled by the widespread integration of sensor nodes and 

smart gadgets in such domains. The paper advocates for a distributed wireless sensor 

network system architecture, grounded in open-source hardware and software technologies. 

This architecture is envisioned to capture solar radiation data along with other ambient 

parameters like solar panel and ambient temperature, light intensity, among others. The 

amassed data is chiefly channelled towards devising estimation techniques using nonlinear 

regression to forecast solar panel voltage outputs. These forecasts are pivotal for realising 

energy-efficient functionalities of solar-powered sensor nodes in outdoor Industrial IoT 

infrastructures. Furthermore, the data avails a resource for scrutinising and monitoring the 

impact of various ambient parameters on the efficiency of solar panels and, consequently, 

the energising of sensor nodes. 

 

The study encapsulated various parameters pivotal to the performance and efficiency of 

solar panels. The table below provides a structured summary of these parameters, shedding 

light on their measurement units, distribution nature, methods employed for data collection, 

and the results obtained. Additionally, it elucidates the benefits and challenges associated 

with each parameter, thereby offering a nuanced understanding of the factors influencing 

solar panel performance. This tabulation serves as a foundational reference, aiding in the 

exploration of optimising solar energy harnessing, which is quintessential for the seamless 

integration and operation of renewable energy systems in industrial IoT frameworks. 

Through such detailed analyses, the study by Dobrilovic et al. (2023) contributes 

significantly to the body of knowledge, paving the way for further research and innovation 

in designing energy-efficient, sustainable, and intelligent renewable energy systems for 

Industrial IoT with Artificial Intelligence. 

 

Table 1. Analysis of Solar Panel Performance Parameters 

Parameter Description 
Measurement 

Unit 

Method of 

Data 

Collection 

Results Benefits Challenges 
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Solar 

Radiation 

Amount of 

solar energy 

received per 

unit area 

W/m^2 

Solar 

radiation 

sensor 

Accurate 

measurement 

of solar 

radiation 

Enables 

precise 

energy 

harvesting 

predictions 

Sensor 

calibration 

and 

maintenance 

Ambient 

Temperature 

Temperature 

of the 

surrounding 

environment 

°C 
Temperature 

sensor 

Reliable 

ambient 

temperature 

data 

Aids in 

understanding 

environmental 

effects on 

solar panel 

performance 

Sensor 

accuracy in 

varying 

conditions 

Solar Panel 

Temperature 

Temperature 

of the solar 

panel's 

surface 

°C 
Temperature 

sensor 

Consistent 

temperature 

readings 

Helps in 

monitoring 

and 

maintaining 

optimal panel 

operating 

conditions 

Temperature 

fluctuations 

affecting 

accuracy 

Light 

Intensity 

Amount of 

light 

incident on 

the solar 

panel 

Lux 

Light 

intensity 

sensor 

Accurate 

light 

intensity 

data 

Facilitates 

better 

understanding 

of light 

conditions for 

energy 

harvesting 

Sensor 

sensitivity and 

calibration 

Voltage 

Output 

Voltage 

generated 

by the solar 

panel 

V 
Voltage 

sensor 

Reliable 

voltage 

output data 

Essential for 

calculating 

energy output 

and efficiency 

Electrical 

interference 

and sensor 

accuracy 

Current 

Output 

Current 

generated 

by the solar 

panel 

A 
Current 

sensor 

Consistent 

current 

output 

readings 

Crucial for 

energy output 

calculations 

Sensor 

accuracy and 

electrical 

interference 

Power 

Output 

Power 

generated 

by the solar 

panel 

W 

Calculated 

as Voltage 

Output × 

Current 

Output 

Accurate 

power output 

calculations 

Direct 

measure of 

solar panel 

performance 

Dependence 

on accurate 

voltage and 

current 

readings 

Efficiency 

Ratio of 

output 

power to 

incident 

solar energy 

% 

Calculated 

as (Power 

Output / 

(Solar 

Radiation × 

Panel Area)) 

× 100 

Reliable 

efficiency 

calculations 

Provides 

insight into 

solar panel 

performance 

and areas for 

improvement 

Accurate 

measurement 

of all 

contributing 

parameters 
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The study by Dobrilovic et al. (2023) particularly focuses on the performance of the voltage 

sensor under various light conditions. The light sources examined include solar radiation, 

incandescent, CFL, and LED bulbs. The table delineates the average voltage readings as 

captured by the sensor and a Digital Multimeter (DMM) across these diverse light sources, 

alongside the Root Mean Square Error (RMSE) to gauge the accuracy of the readings. This 

tabulation is instrumental in discerning the efficacy and precision of the voltage sensor, 

which is pivotal for the data acquisition system proposed for solar-powered Industrial IoT 

environments. 

 

The following points provide a concise summary of the key findings from Dobrilovic et al. 

(2023)’s study. The study delves into the efficacy and precision of voltage sensors under 

diverse lighting conditions, offering insights into the broader application of solar-powered 

sensor nodes in the realm of Industrial IoT: 

 Voltage Sensor Evaluations: The study elaborates on the precision of voltage 

sensor readings under a variety of light sources. As detailed in Table 4 of the 

study, average voltage readings from both the sensor and a digital multi-meter 

(DMM) are presented under conditions of solar radiation, incandescent, CFL, and 

LED bulbs. The Root Mean Square Error (RMSE) values highlight a strong 

correlation between the sensor and DMM readings, validating the accuracy of the 

voltage sensor. 

 Reliability of the Voltage Sensor: The research accentuates the consistent 

performance of the voltage sensor, especially when exposed to different light 

sources. Figures 10 to 12 in the study offer a side-by-side comparison of the 

voltage sensor and DMM readings under the influence of incandescent, CFL, and 

LED bulbs. The congruence in these readings emphasises the sensor's 

dependability and its suitability for the proposed measurement framework. 

 Voltage Sensor and Digital Multi-meter Comparison: An extended analysis is 

presented graphically in Figure 9, showcasing the collective measurements from 

both the voltage sensor and DMM across three bulb types. This representation 

confirms the consistency in readings across varied light sources, reinforcing the 

credibility of the voltage sensor. 

 Consolidation of Results Across Light Sources: The study provides a 

comprehensive overview of the voltage sensor's consistent performance across 

diverse light sources. As depicted in Table 4, the RMSE values, ranging between 

0.11 to 0.17 V, signify a commendable level of precision, reflecting the platform's 

robust performance throughout the testing phase. 

 Correlation Between Voltage and Other Sensor Readings: The research also 

probes into the interplay between voltage sensor readings and other sensor values. 

While the specifics of this relationship aren't elaborated upon in the extracted 

content, it remains a pivotal facet in gauging the overall efficacy and precision of 

the sensor nodes under varied environmental conditions. 

 Study's Key Contributions: The study culminates by spotlighting the significant 

strides made towards a distributed wireless sensor network system architecture, 

rooted in open-source hardware and technologies. This advancement is paramount 

in promoting the adoption of solar-powered sensor nodes within Industrial IoT 

contexts, resonating with the overarching theme of our review article centred on 

crafting renewable energy systems for Industrial IoT, augmented by Artificial 

Intelligence. 
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The insights gleaned from Dobrilovic et al. (2023) serve as a cornerstone in comprehending 

the performance dynamics of solar-powered sensor nodes, especially the precision of 

voltage sensors under an array of lighting conditions. This empirical evidence is invaluable 

to our review article, shedding light on the reliability of solar-powered sensor nodes, a 

fundamental component in the blueprint of renewable energy systems tailored for Industrial 

IoT, enriched by Artificial Intelligence. 

 

Through the studies by Mellit et al. (2021) and Ahmad et al. (2022) our review aimsto 

understand their contributions to the field of renewable energy systems, particularly 

focusing on the integration of Artificial Intelligence (AI) and Internet of Things (IoT) in 

enhancing the efficiency and monitoring of solar photovoltaic (PV) systems [2,3]. 

 

Study by Mellit et al. (2021) [8-11]: 

 Objective: 

o The study endeavours to tackle the hurdles and put forth intelligent 

solutions for the monitoring and fault detection in PV systems. 

o It delves into the utilisation of AI and IoT in amplifying the efficiency 

and safety of PV systems.. 

 Key Findings: 

o The paper highlights the remarkable growth in the PV market and the 

corresponding need for effective Fault Detection and Diagnosis (FDD) 

algorithms to ensure the reliability and safety of PV installations. 

o It categorises fault detection methods into manual, semi-automatic, and 

automatic, with a focus on the latter due to its real-time online monitoring 

capabilities. 

o The application of AI and IoT is emphasised as a significant advancement 

in fault detection, diagnosis, and remote monitoring, which could lead to 

cost reduction and improved accuracy in PV system management. 

o The study also furnishes a thorough comparison of AI techniques, 

encompassing machine learning and deep learning, in regard to cost 

implementation, complexity, accuracy, and real-time applicability. 

 Recommendations: 

o The paper advocates for the incorporation of AI and IoT techniques into 

simplistic hardware for economical and technically viable solutions, 

particularly in remote locales. 

o It also propounds a technology transition from laboratories to industrial 

sectors for large-scale deployment of smart monitoring systems. 

 

Study by Ahmad et al. (2022) [12-15]: 

 Overview: 

o The study emphasizes the significance of industrial development in 

relation to the power system's growth, stability, and technical 

advancement. 

o The role of artificial intelligence (AI) in the energy market is becoming 

increasingly prominent. 

o The research explores seven disparate energetics systems and their 

applications, encompassing electricity generation, power delivery, 

electric distribution networks, energy storage, energy conservation, novel 

energy materials and devices, energy efficiency and nanotechnology, and 

energy policy and economics. 

 Key Findings: 
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o AI is instrumental in addressing challenges in power systems engineering 

that were previously considered complex. 

o The study pinpoints the principal catalysts in current AI technologies, 

including fuzzy logic systems, artificial neural networks, genetic 

algorithms, and expert systems.  

o Developed nations are capitalising on AI to meld with smart meters, 

smart grids, and Internet of Things devices, ushering in enhancements in 

efficiency, energy management, and the adoption of renewable energies.  

o AI has engendered significant advancements in how power system 

devices monitor data, interact with systems, analyse input-output, and 

present data.  

o There's a call for more investment in global research into AI and data-

driven models to further harness its potential in the energy sector. 

 Implications for Industry 4.0: 

o Industry 4.0, which encompasses advanced analytics, connectivity, and 

automation, is poised to be a major driver of economic growth. 

o AI is projected to contribute significantly to the manufacturing sector by 

2035. 

o The study also touches upon the potential of AI in improving 

sustainability in the context of Industry 4.0. 

 

Insights from the two studies: 

 Technological Advancements: 

o Both studies underscore the importance of integrating AI and IoT 

technologies in managing and monitoring PV systems. However, Mellit 

et al. provide a more detailed exploration of AI techniques and their 

applicability in fault detection and diagnosis. 

 Fault Detection and Diagnosis (FDD): 

o Mellit et al. delve into the categorisation of FDD methods and the 

significance of automatic methods enabled by AI and IoT. The study by 

Ahmad et al. might also have insights into FDD, but the information 

could not be extracted. 

 Industry Application: 

o The study by Mellit et al. emphasises the need for technology transfer to 

the industrial sector for large-scale deployment of smart monitoring 

systems. The perspective of Ahmad et al. on industrial application 

remains unclear due to the unavailability of extracted information. 

 

Through the authors' studies, we found out that the integration of AI and IoT in PV systems 

is pivotal for advancing fault detection, diagnosis, and remote monitoring, which are crucial 

for ensuring the reliability, safety, and cost-effectiveness of renewable energy systems. The 

detailed exploration by Mellit et al. provides a solid foundation for understanding the 

current challenges and future directions in this domain. Through the study by Ahmad et al. 

(2022), we found out that the integration of AI in the energy sector is not just a trend but a 

necessity. The advancements brought about by AI in power systems engineering are 

transformative, offering solutions to previously complex challenges. As we move towards a 

more interconnected world with Industry 4.0 at the forefront, the role of AI in ensuring 

energy efficiency, sustainability, and smart management cannot be understated.  

 

In another study by Chen et al. (2016), the focus was on the development of an efficient and 

cost-effective solution for complex problems in the industrial applications of the Internet of 
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Things (IoT) [4]. The paper delves into the concept of an industrial intelligent ecosystem, 

which facilitates the collection of vast amounts of data from various devices that 

dynamically collaborate with humans. This collaboration is essential for improving the 

efficiency of industrial production and services. 

 

Key findings from the study include [16-19]: 

 Collaborative Sensing Intelligence (CSI) Framework: The paper introduces a 

CSI framework that combines collaborative intelligence and industrial sensing 

intelligence. This framework aims to enhance the cooperativity of analytics by 

integrating vast spatio-temporal data from different sources and time points. 

 Industrial IoT (IIoT): The study emphasizes the importance of IIoT in collecting 

massive data daily. Collaborative analysis of this data can lead to efficient and 

cost-effective solutions, ensuring safe, efficient, and eco-friendly industrial 

production and services. 

 Collaborative Intelligence (CI): The paper defines CI as the ability to acquire 

information or knowledge from massive data to construct a problem-solving 

network. This network aims to automate industrial production or improve its 

performance. 

 Industrial Sensing Intelligence (ISI): ISI is defined as the ability to dynamically 

mine and analyse massive spatio-temporal data collected from industrial 

ecosystems. This intelligence can improve industrial automation. 

 Challenges and Open Research Issues: The study also highlights the challenges 

and open research issues in deploying the CSI framework in the dynamic 

environment of the industry. 

 

Relating this to our review article, "Designing a Renewable Energy System for Industrial 

IoT with Artificial Intelligence", the findings from Chen et al. emphasize the importance of 

collaborative intelligence in the IoT domain. The integration of vast amounts of data from 

various sources, combined with intelligent analytics, can significantly enhance the 

efficiency and effectiveness of renewable energy systems in the industrial sector. The 

concepts of CI and ISI, as presented in the study, can be pivotal in designing AI-driven 

renewable energy systems for IIoT, ensuring a sustainable and efficient energy solution for 

the future. 

 

Furthermore, a broader look into the realm of AI in renewable energy systems integration 

reveals a transformative change in modern power systems. The integration of power 

electronic converter-interfaced renewable energy sources and smart grid technologies is 

driving this change. As we move towards a higher percentage of renewable energies, the 

necessity for coordinated design, control, and protection schemes becomes paramount to 

ensure reliable and resilient system operation under any contingency. The development of 

AI methods has significantly facilitated the transition towards smart renewable energy 

systems design, emphasizing intelligent data-driven control and optimization, fault 

classification, detection, and diagnosis, among other aspects. This transition is crucial for 

achieving the objectives outlined in our review article, further underscoring the relevance of 

the findings from Chen et al. (2016) in shaping the discourse on designing renewable 

energy systems for Industrial IoT with Artificial Intelligence. 

 

 

3 Future Scope of Research 
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The realm of renewable energy systems intertwined with Industrial IoT (IIoT) and Artificial 

Intelligence (AI) is a burgeoning field with a plethora of avenues yet to be explored. The 

confluence of these technologies holds the promise of revolutionising industrial operations 

by fostering sustainability, efficiency, and intelligence. Here are some pointers for future 

research in this domain: 

 Development of Robust Algorithms: There's a pressing need for the development 

of more robust, efficient, and self-learning algorithms that can seamlessly integrate 

with IIoT to optimise the harnessing of renewable energy resources. 

 Real-time Monitoring and Control: Research into real-time monitoring and 

control systems that leverage AI to ensure optimal energy utilisation and 

predictive maintenance in industrial settings is crucial. 

 Security and Privacy: As IIoT and AI become integral to renewable energy 

systems, addressing the security and privacy concerns associated with data 

handling and communications is imperative. 

 Interoperability: Ensuring interoperability among diverse systems and 

technologies within the industrial ecosystem is a significant area for future 

research. 

 Energy Storage and Management: Innovations in energy storage and 

management solutions that can efficiently handle the intermittent nature of 

renewable energy sources are essential. 

 Scalability: Research into scalable architectures that can accommodate the 

growing demands of industrial operations while maintaining energy efficiency is 

vital. 

 Human-machine Collaboration: Exploring the dynamics of human-machine 

collaboration in an AI-driven IIoT environment to enhance decision-making and 

operational efficiency. 

 Policy and Regulation: Understanding the implications of policy and regulation 

on the deployment and operation of AI and IIoT in renewable energy systems is 

crucial for widespread adoption and standardisation. 

4 Knowledge Gaps 

The journey towards fully realising the potential of integrating renewable energy systems 

with IIoT and AI is fraught with knowledge gaps that need addressing. These gaps often 

serve as roadblocks to the seamless adoption and optimisation of these technologies in 

industrial settings. Here are some identified knowledge gaps: 

 Standardisation: Lack of standard protocols and frameworks for the integration 

of renewable energy systems with IIoT and AI technologies is a significant 

knowledge gap. 

 Performance Metrics: There's a need for well-defined performance metrics to 

evaluate the efficiency, reliability, and sustainability of AI-driven renewable 

energy systems in industrial environments. 

 Data Quality and Availability: The availability of high-quality, real-time data is 

crucial for the effective application of AI algorithms, yet there's a gap in the 

methodologies for data collection, processing, and analysis. 

 Technological Literacy: The lack of technological literacy among stakeholders in 

understanding, deploying, and maintaining AI and IIoT technologies in renewable 

energy systems is a notable gap. 
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 Cost-Efficiency Analysis: Comprehensive cost-efficiency analysis of deploying 

AI and IIoT technologies in renewable energy systems across different industrial 

sectors is lacking. 

 Long-term Impact Assessment: There's a gap in the assessment of long-term 

impacts, both positive and negative, of integrating AI and IIoT with renewable 

energy systems on industrial operations and the environment. 

 Human Factors: Understanding the human factors, including the change in job 

roles, training needs, and the human-machine interface, is a significant knowledge 

gap. 

 Deployment Challenges: Identifying and addressing the challenges associated 

with the deployment of AI and IIoT technologies in existing industrial 

infrastructures is essential to bridge the knowledge gap. 

 

The exploration into the future scope of research and the identification of knowledge gaps 

provide a structured pathway for researchers, policymakers, and industry practitioners to 

navigate the complex landscape of renewable energy systems integrated with IIoT and AI. 

Through a concerted effort to address these areas, the vision of achieving a sustainable, 

efficient, and intelligent industrial ecosystem can be brought closer to reality. 

 

5 Conclusion 

The expedition into the realms of Renewable Energy Systems, Industrial IoT, and Artificial 

Intelligence has unfolded a tapestry of insights, innovations, and opportunities. The 

confluence of these technologies is not merely a stride towards modernisation but a leap 

towards a sustainable and intelligent industrial ecosystem. As we delve into the intricacies 

and examine the studies at hand, several key findings emerge that resonate with the core 

essence of our discourse: 

 Optimisation of Solar-Powered Sensor Nodes: The meticulous design and 

monitoring of solar-powered sensor nodes, as elucidated in the studies, underscore 

the potential for optimising energy harvesting in industrial settings. This 

optimisation is pivotal for extending the operational longevity of sensor nodes and 

ensuring energy efficiency. 

 Real-Time Monitoring and Fault Detection: The integration of AI and IoT for 

real-time monitoring and fault detection in photovoltaic plants is a significant 

stride towards enhancing the reliability and safety of renewable energy systems in 

industrial environments. 

 Collaborative Sensing Intelligence Framework: The proposition of a 

Collaborative Sensing Intelligence framework heralds a new era of collaborative 

analytics, fostering a dynamic interaction between humans and machines, thereby 

enhancing the efficiency of industrial production/service. 

 AI-Driven Control and Optimization: The deployment of AI-driven control and 

optimization schemes is instrumental in navigating the complexities of renewable 

energy systems, ensuring seamless integration and operation in an industrial IoT 

framework. 

 Data-Driven Renewable Energy Systems: The emphasis on leveraging massive 

spatio-temporal data for enhancing the operations of renewable energy systems is 

a testament to the transformative power of data analytics in this domain. 
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 Security, Privacy, and Interoperability: Addressing the challenges of security, 

privacy, and interoperability is crucial for the widespread adoption and seamless 

operation of AI and IIoT technologies in renewable energy systems. 

 

The synthesis of these findings paints a promising yet challenging landscape. The journey 

towards harnessing the full potential of renewable energy systems, augmented by the 

intelligence of AI and the connectivity of IIoT, is laden with both opportunities and hurdles. 

The insights gleaned from the reviewed studies serve as a beacon, guiding the discourse and 

actions towards a sustainable, efficient, and intelligent industrial future. Through a 

meticulous examination and understanding of these findings, the pathway towards 

achieving the envisioned objectives becomes clearer, setting the stage for further 

exploration, innovation, and transformation in the industrial sector. 
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